Nondeterminator-3:
A Provably Good Data-Race Detector That Runs
in Parallel
by
Tushara C. Karunaratna

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2005

(© Massachusetts Institute of Technology 2005. All rights reserved.

Department of Electrical Engineering and Computer Science
August 16, 2005

Certified Dy
Charles E. Leiserson

Professor of Computer Science and Engineering

Thesis Supervisor

Accepted Dy . ..o
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

Nondeterminator-3:
A Provably Good Data-Race Detector That Runs in Parallel
by

Tushara C. Karunaratna

Submitted to the Department of Electrical Engineering and Computer Science
on August 16, 2005, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes the implementation of a provably good data-race detector, called
the Nondeterminator-3, which runs efficiently in parallel. A data race occurs in a
multithreaded program when two logically parallel threads access the same location
while holding no common locks and at least one of the accesses is a write. The
Nondeterminator-3 checks for data races in programs coded in Cilk [3,10], a shared-
memory multithreaded programming language.

A key capability of data-race detectors is in determining the series-parallel (SP)
relationship between two threads. The Nondeterminator-3 is based on a provably
good parallel SP-maintenance algorithm known as SP-hybrid [2]. For a program with
n threads, 77 work, and critical-path length T, the SP-hybrid algorithm runs in
O((Ty/P + PT,)lgn) expected time when executed on P processors.

A data-race detector must also maintain an access-history, which consists of, for
each shared memory location, a representative subset of memory accesses to that
location. The Nondeterminator-3 uses an extension of the ALL-SETS [4] access-
history algorithm used by its serially running predecessor, the Nondeterminator-2.
First, the ALL-SETS algorithm was extended to correctly support the inlet feature
of Cilk. This extension increases the memory-access cost by only a constant factor.
Then, this extended ALL-SETS algorithm was parallelized, so that it can be combined
with the SP-hybrid algorithm to obtain a data-race detector. Assuming that the
cost of locking the access-history can be ignored, this parallelization also inflates the
memory-access cost by only a constant factor.

I tested the Nondeterminator-3 on several programs to verify the accuracy of
the implementation. I have also observed that the Nondeterminator-3 achieves good
speed-up when run on a multiprocessor machine.

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering

Acknowledgments

Thanks to my supervisor Charles Leiserson for introducing me to this project. Thanks
to Jeremy Fineman, in addition to Charles, for providing invaluable guidance on
carrying out this project. In addition to technical aspects, Charles also provided
invaluable help with the presentation of this document. Thanks to Jeremy for letting
me borrow a couple of diagrams from his papers. Thanks to them both for being very
patient. Thanks also to Bradley Kuszmaul, Gideon Stupp, and other members of the
Supercomputing Technologies group for helpful comments.

Thanks to my family back at home for providing invaluable support. Thanks also
to my host family in Boston for helping me in many ways during the last few years.
There are other friends that I would like to thank as well.

This work was supported in part by the Singapore-MIT Alliance, by NSF Grant
ACI-0324974, and by NSF Grant CNS-0305606. Any opinions, findings and conclu-
sions or recommendations expressed in this thesis are those of the author and do not

necessarily reflect the views of the National Science Foundation (NSF).

Contents

1 Introduction

2 Implementing the SP-hybrid algorithm
2.1 Data structures usedo

2.2 SP-hybrid runtime functions
3 Extending the All-Sets access-history algorithm
4 Performance measurements of SP-hybrid updates
5 Related work

6 Concluding remarks

11

17
17
21

31

41

43

45

List of Figures

1-1
1-2

1-3

2-1

2-2

2-3

2-5
2-6
2-7
2-8

2-10
2-11

2-12

3-1

3-3
3-4

A Cilk program with a datarace.
A dag representing a multithreaded computation.

The parse tree for the computation dag shown in Figure 1-2.

The global-tier component of the SP-hybrid algorithm, written as Cilk-

like pseudocode.
Pseudocode for BEFORE_SPAWN.
Pseudocode for INIT_FRAME.
Pseudocode for WHEN_RETURNED.
Pseudocode for AT _SYNC_FAST.
Pseudocode for START_THREAD_SLOW.
Pseudocode for BEFORE_SYNC_SLOW.
Pseudocode for AFTER_.SYNC_SLOW.
Pseudocode for SP_TRACE_PRECEDES.
Pseudocode for SP_ISLEFTOF.
Pseudocode for SP_PRECEDES.

Pseudocode for SP_PARALLEL.

The Extended All-Sets algorithm, which handles inlets correctly. . .
Pseudocode for the Parallel All-Sets algorithm.
Pseudocode for UPDATELEFT of Parallel All-Sets.

Pseudocode for UPDATERIGHT of Parallel All-Sets.

4-1 Performance measurements of SP-hybrid updates on a variety of test

10

Chapter 1

Introduction

This thesis describes the implementation of a provably good data race detector, called
the Nondeterminator-3, which runs efficiently in parallel. A data race occurs in a
multithreaded program when two logically parallel threads access the same location
while holding no common locks and at least one of the accesses is a write. Data
races are common bugs in parallel programs and are often hard to track down. The
Nondeterminator-3 checks for data races in programs coded in Cilk [3,10], a shared-
memory multithreaded programming language.

Figure 1-1 illustrates a data race in a Cilk program. The procedures fool, foo2,
and foo3 run in parallel, resulting in parallel accesses to the shared variable x. The
accesses by fool and foo2 are protected by lock A and hence do not form a data
race. Likewise, the accesses by fool and foo3 are protected by lock B. The accesses
by foo2 and foo3 are not protected by a common lock, however, and therefore form
a data race. If all accesses had been protected by the same lock, only the value 3
would be printed, no matter how the computation was scheduled. Because of the
data race, however, the value of x printed by main might be 2, 3, or 6, depending on
scheduling, since the statements in foo2 and foo3 are composed of multiple machine
instructions which may interleave, possibly resulting in a lost update to x.

The Nondeterminator-3 succeeds the serially running Nondeterminator-2 [4]. Al-
though data race detectors are only debugging tools, there are many reasons for build-

ing an efficient parallel data-race detector. Firstly, a parallel data-race detector would

11

int x; cilk void foo3() {

Cilk_lockvar A, B; Cilk_lock(B);
X++;
cilk void fool() { Cilk_unlock(B);
Cilk_lock(A); }
Cilk_lock(B);
x += b; cilk int main() {
Cilk_unlock(B); Cilk_lock_init(A);
Cilk_unlock(A); Cilk_lock_init(B);
} x = 0;
spawn fool();
cilk void foo2() { spawn f002();
Cilk_lock(A); spawn f003();
X —-= 3; sync;
Cilk_unlock(A); printf ("%d4d", x);
} }

Figure 1-1: A Cilk program with a data race.

enable faster debugging of data races in parallel programs. An on-the-fly data-race
detector that preserves the parallelism of an application program would enable the
program to be run with race-detection options always turned on; a serially-running
data-race detector, on the other hand, would not enable such real-time testing. The
Nondeterminator-3 implementation also helps in demonstrating the possibility of us-
ing the underlying theoretical ideas to obtain a data-race detector that achieves good

speed-up in practice.

Series-parallel parse trees and SP-hybrid

A key capability of data-race detectors is in determining the series-parallel (SP) rela-
tionship between two threads. The Nondeterminator-3 is based on a provably good
parallel SP-maintenance algorithm known as SP-hybrid [2]. For a program with
n threads, 77 work, and critical-path length T, the SP-hybrid algorithm runs in
O((Ty/P + PT)lgn) expected time when executed on P processors.!

The execution of a multithreaded program can be viewed as a directed acyclic

graph, or computation dag, where nodes are either forks or joins and edges are

'In [9], the SP-hybrid algorithm has been improved to give better asymptotic bounds.

12

Figure 1-2: A dag representing a multithreaded computation. The edges represent threads,
labeled ug,u1,...us. The diamonds represent forks, and the squares indicate joins.

SN
VANV AN

VAN 7\,
uz/ \u3 ué/ \u7

Figure 1-3: The parse tree for the computation dag shown in Figure 1-2. The leaves are
the threads in the dag. The S-nodes indicate series relationships, and the P-nodes indicate
parallel relationships.

threads. Such a dag is illustrated in Figure 1-2. A fork node has a single incoming
edge and multiple outgoing edges. A join node has multiple incoming edges and a

single outgoing edge. Threads (edges) represent blocks of serial execution.

For fork-join programming models, where every fork has a corresponding join that
unites the forked threads, the computation dag has a structure that can be represented
efficiently by a series-parallel (SP) parse tree [8]. In the parse tree each internal

node is either an S-node or a P-node, and each leaf is a thread of the dag.

Figure 1-3 shows the parse tree corresponding to the computation dag from Fig-
ure 1-2. If two subtrees are children of the same S-node, then the parse tree indicates
that (the subcomputation represented by) the left subtree executes before (that of)
the right subtree. If two subtrees are children of the same P-node, then the parse

tree indicates that the two subtrees execute logically in parallel.

The SP-hybrid algorithm given in [2] takes as input an execution of a multi-

threaded program represented as a series-parallel parse tree.

13

Results

The main results obtained in this thesis are the following.

e [have translated the SP-hybrid algorithm from its abstract form which was
given as a walk on the series-parallel parse tree in [2], into actual C code incor-
porated into the Cilk implementation.

e I discovered a deficiency in the serial ALL-SETS access-history algorithm [4],
which was part of the Nondeterminator-2. The deficiency was that it could
not satisfactorily handle the implicit atomicity guarantees provided by Cilk.
For example, Cilk guarantees that inlets within a procedure instance all run
atomically with respect to each other. An experienced Cilk programmer may
assume these atomicity guarantees while writing code. The naive solution of
simply avoiding the reporting of data races between implicitly atomic sections
fails because this approach would preclude the detection of other data races.
Other naive approaches, such as the use of an “inlet lock,” also fail. My solution
to this problem is an algorithm that involves expanding the access-history to
maintain two representative thread ID’s rather than just one.

e | have parallelized the extended ALL-SETS algorithm, so that it allows non-
depth-first expansion of P-nodes. By combining this parallelization with the
SP-hybrid implementation, I have obtained a data race detector for Cilk that

runs in parallel.

Usage and organization of the program

The Nondeterminator-3 can be invoked at compile-time by passing the -nd_sphybrid
flag to the cilkc compiler driver. For example, if program.cilk is the program given

in Figure 1-1, then the commands

cilkc —nd_sphybrid program.cilk
./a.out

would produce an output similar to

14

Data race
‘x” (program.cilk:line 14) with
‘x’ (program.cilk:1line 20)

The work of the Nondeterminator is split between the cilk2c source-to-source
compiler and the Cilk runtime system. When the -nd_sphybrid flag is passed to the
cilkc compiler driver, cilk2c instruments the program with calls to SP-maintenance
functions in the runtime system. These functions update the SP-maintenance data-
structures as necessary. Each memory access is also instrumented so that it is notified
to the access-history algorithm. The access-history algorithm makes calls to the

functions that implement the SP-hybrid queries.

Organization of this document

The remainder of this document is organized as follows. Chapter 2 describes my
implementation of the SP-hybrid algorithm. Chapter 3 presents my extension of the
serial ALL-SETS algorithm to correctly support inlets, and also a parallelization of
this extended algorithm. Chapter 4 provides some performance measurements of
the data-race detector. Chapter 5 discusses related work. Chapter 6 offers some

concluding remarks.

15

16

Chapter 2

Implementing the SP-hybrid

algorithm

In this chapter, I present my implementation of the SP-hybrid algorithm. The SP-
hybrid algorithm has been translated from its abstract form, which was given as a
walk on the series-parallel parse tree in [2], into actual C code incorporated into the
Cilk implementation. T will first give an overview of the data structures and types
that are used. Then, T will give low-level pseudocode for my implementation of the

SP-hybrid runtime functions.

2.1 Data structures used

The SP-hybrid algorithm partitions the threads into traces, where a trace is a set of
threads that have been executed by a single worker. A computation is a dynamic
collection of disjoint traces. As the computation unfolds, each thread is inserted
into a trace. Between different traces, the SP relationships are maintained using a
shared SP-order data structure, sometimes referred to as the global tier. Within
each trace, the SP relationships are maintained using an SP-bags data structure,
sometimes referred to as a local tier.

I will first describe the data structures of the global tier. Then, I will do the same
for the local tier. Finally, I will describe the state that needs to be maintained by

17

each worker as it executes parts of the computation.

Global tier

The global tier is based on an order-maintenance data structure, which is an abstract

data type that supports the following operations:

e CREATE_OM_STRUCT(): Creates and returns a new ordering.

e CREATE_OM_ELEMENT(L): Creates and returns a new element that can be

inserted in the ordering L.

e OM_NSERT(L, X,Y): In the ordering L, inserts element Y immediately after

element X.

e OM _MULTI_INSERT(L, Y7, Y3, X, Y, Y5): In the ordering L, inserts elements Y;
and Y5 in this order immediately before X, and inserts Y, and Yj; in this order
immediately after X. This operation is supported by using a constant number

of OM_INSERT operations.

e OM_PRECEDES(L, X,Y'): Returns TRUE if X precedes Y in the ordering L, and

otherwise returns FALSE.

The global tier consists of two linear orderings, Eng and Heb. A trace is repre-
sented by two elements, one in each of Eng and Heb. In my implementation, a C'
struct called Trace encapsulates the Eng and Heb elements. For any two traces X
and Y in the global tier, X serially precedes Y if and only if both the Eng element
of X precedes the Eng element of Y in the Eng ordering and the Heb element of X
precedes the Heb element of Y in the Heb ordering. Traces X and Y are parallel if
and only if neither X serially precedes Y nor Y serially precedes X.

Figure 2-1 shows the global-tier component of the SP-hybrid algorithm, written as
Cilk-like pseudocode that operates on the series-parallel parse tree. This pseudocode
was taken directly from [2]. SP-HYBRID accepts as arguments an SP-parse-tree node
X and a trace U, and it returns a trace. The algorithm is essentially a tree walk
which carries along with it a trace U into which encountered threads are inserted.

The EXECUTE-THREAD procedure executes the thread and handles all local-tier op-

18

SP-HYBRID(X, U)

> X is a SP-parse-tree node, and U is a trace
1 if ISLEAF(X)
2 then > X is a thread
3 U—UuU{X}
4 EXECUTE-THREAD(X)
5 return U

if ISSNODE(X)
then > X is an S-node
U’ — spawn SP-HYBRID(left[X],U)
sync
10 U"” — spawn SP-HYBRID(right[X],U")
11 sync
12 return U”

> X is a P-node
13 U’ < spawn SP-HYBRID(left[X],U)
14 if SYNCHED()

15 then > the recursive call on line 13 has completed
16 U” — spawn SP-HYBRID(right[X],U")

17 sync

18 return U”

> A steal has occurred
19 create new traces Uy, Uz, Uy, and Us
20 AcQuIRE(lock)
21 OM-MuULTI-INSERT(Eng, U1, U2, U,Ua, Us)
22 OM-MULTI-INSERT(Heb, U1, Us, U, U2, Us)
23 RELEASE(lock)
24 Sruir(U, X,Ui,Us)
25 spawn SP-HYBRID(right[X],U4)
26 sync
27 return Us

Figure 2-1: The global-tier component of the SP-hybrid algorithm, written as Cilk-like
pseudocode.

erations. The SYNCHED procedure determines whether the current procedure is syn-
chronized (whether a sync would cause the procedure to block), which indicates
whether a steal has occurred. The SPLIT procedure uses node X to partition the
existing threads in trace U into three sets, leaving one of the sets in U and placing
the other two into U; and U,. For a detailed description of this algorithm and its

correctness, please refer to [2].

I will now describe the local-tier data structures and the Nondeterminator-specific
state that needs to be maintained by each worker. Then, I will describe how to

implement the SP-hybrid algorithm as part of the Cilk runtime system.

19

Local tier

An SP-bags data structure maintains SP relationships within a trace. The SP-bags

data structure is based on a disjoint-set data structure, which we view as an abstract

data type that supports the following operations:

CREATE_DS_ELEMENT(data): Creates a new set containing exactly one ele-
ment. The element has a data field, in which it stores data. Returns the
element.

DS_GET_DATA(z): Returns the data associated with element .
DS_SET_DATA(z, newdata): Sets the data field of element x to newdata.
DS_UNION(z,y): Performs a union of the two sets containing elements z and
y. Returns the canonical element representing the resulting set.
DS_FIND_SET(z): Returns the canonical element representing the set that con-

tains element z.

For each trace, each procedure instance whose threads are in that trace is rep-

resented by a disjoint-set element. For each procedure instance that is currently

executing or is in a worker’s deque, two “bags” of procedure ID’s are maintained.

The s-bag of a procedure instance F' contains the ID’s of the descendant proce-
dure instances of F' that are in the same trace as the currently executing thread
in F' and that logically precede the currently executing thread in F.

The p-bag of a procedure instance F' contains the ID’s of the descendant proce-
dure instances of F' that are in the same trace as the currently executing thread
in F' and that operate logically in parallel with the currently executing thread

in F.

Associated with each trace are two Trace pointers, called the S-SET and the

P-SET, which point to the trace. In the canonical element representing an s-bag,

the data field points to the S-SET. Similarly, in the canonical element representing

a p-bag, the data field points to the P-SET. Thus, to determine whether an element

is in an s-bag or a p-bag, we first find its canonical element and then check whether

its data field points to the S-SET or the P-SET of the trace. To obtain the trace

20

to which a thread belongs, we dereference the data pointer of the canonical element

twice.

ND state

Each active worker must keep track of certain Nondeterminator-specific state. This
state includes the current trace (which is the trace containing the currently executing
thread), the S-SET and P-SET of the current trace, the s-bag and the p-bag of the
currently executing procedure instance, and the ID of the current procedure instance.
We encapsulate this state in a C struct called ND_state.

The fields current_trace, S_.SET, P_SET, s_set, p_set, current_proc_id are point-
ers to the current trace, S-SET, P-SET, s-bag, p-bag, and current procedure in-
stance 1D, respectively. We also need two additional fields, called syncing_slow and
next_sync_block_start_trace, whose meanings are explained as we walk through the
pseudocode in section 2.2.

SP queries may need to be performed from C' code that does not have access to
the worker state. One approach for providing the Nondeterminator state to such C'
code is by changing the signature of the function to accept an additional argument,
the worker number. A global ND_state array can be kept, and the required object
can be accessed by indexing the array with the worker number.

All calls to C' functions will need to be changed to pass this additional argument,
however, and it is not possible for the preprocessor to distinguish between a standard
C function and one that has been instrumented by the Nondeterminator. Therefore,
rather than changing any method signatures, we store and retreive the worker num-
ber in thread-local storage using the pthread methods PTHREAD_SETSPECIFIC and

PTHREAD_GETSPECIFIC.

2.2 SP-hybrid runtime functions

This section lists and describes pseudocode for implementing the SP-hybrid algorithm

as part of the Cilk runtime system. First, I will list and describe the pseudocode for

21

updating the SP-hybrid data structures. Then, I will list and describe the pseudocode

for performing the SP queries.

Implementation of SP-hybrid updates

The updates to the SP-hybrid data structures are implemented as additions to the
default actions taken by the Cilk runtime system when spawns, returns, syncs, and
steals are encountered. The pseudocode below shows only the Nondeterminator-
specific additions and not the default actions that the Cilk runtime system already
takes (such as pushing and popping Cilk activation frames, performing steals, and
detecting whether a procedure’s parent has been stolen).

When a spawn is encountered by a worker, this worker creates and initializes
a new ND_state record for the procedure instance that is spawned. This work is
shared between the procedures BEFORE_SPAWN and INIT_FRAME shown in Figures
2-2 and 2-3, respectively. The newly created record is initialized by setting the current
trace, S-SET, and P-SET to be the same as those of the parent. A new procedure-
instance ID is created and put into the s-bag. Pointers to this ND_state record are

stored in the global ND_state array and in the child’s activation frame.

BEFORE_SPAWN(frame)

> frame is the calling procedure’s activation frame

nd_state[me] = MALLOC(SIZEOF(ND_state))
nd_state[me|—current_trace = frame—nd_state—-current_trace
nd_state[me|—S_SET = frame—nd_state—S_SET
nd_state[me|—P_SET = frame—nd_state—P_SET

=W N

Figure 2-2: Pseudocode for BEFORE_SPAWN.

Figure 2-4 shows pseudocode for the Nondeterminator-specific actions that are
taken when a spawned procedure returns to its parent. The actions taken depend
on whether or not the parent procedure had been stolen. If the parent had not been
stolen, then we first execute any inlet that is waiting for the result returned by the
child. We then perform the usual SP-bags action, which is to move the contents of

the child’s s-bag to the parent’s p-bag. The ND_state of the worker is also restored

22

INIT_FRAME(frame)

> frame is the child procedure’s activation frame

frame—nd_state = nd_state[me]

nd_state[me|—s_set = CREATE_DS_ELEMENT(nd_state[me|—S_SET)
nd_state[me|—p_set = NULL

nd_state[me|— current_proc_id = nd_state[me|—s_set

nd_state[me|— syncing_slow = FALSE
nd_state[me|—next_sync_block_start_trace = NULL

OO W N~

Figure 2-3: Pseudocode for INIT_FRAME.

to that stored in the parent so that the worker can resume executing the parent. On
the other hand, if the parent had been stolen, then the ND_state record of the child
must be stored along with any inlet that is waiting for the result returned by the
child. The worker then automatically unwinds and returns to the worker pool. The
worker that executes the inlet must restore the ND_state record from the inlets queue
before executing the inlet, in order to have the correct state for the current procedure
ID, S-SET, and P-SET. This restoration of state is necessary because logically, the
inlet executes serially after the child’s final sync block and before the child procedure

syncs with the parent.

WHEN_RETURNED(frame)

> frame is the parent procedure’s activation frame

if frame had been stolen
then if there is an inlet waiting for the result
then store nd_state|me] in inlets queue
else FREE(nd_state[me))
return
if there is an inlet waiting for the result
then execute the inlet
frame—nd_state—p_set
= DS_UNION(frame—nd_state—p_set, nd_state[me|—s_set)
9 DS_SET_DATA(frame—nd_state—p_set, frame—nd_state—P_SET)
10 FREE(nd_state[me])
11 nd_state[me] = frame—nd_state

0O O UL = W N+

Figure 2-4: Pseudocode for WHEN_RETURNED.

23

Figure 2-5 shows pseudocode for the Nondeterminator-specific actions taken when
a sync statement is encountered in a fast clone of a Cilk procedure. Since fast clones
have never been stolen, we simply need to perform the usual SP-bags action which is

to move the contents of the current procedure’s p-bag into its s-bag.

AT_SYNC_FAST(frame)

1 nd_state[me]—s_set
= DS_uNION(nd_state|me]—s_set, nd_state[me]—p_set)
2 nd_state[me|—p_set = NULL
3 DS_SET_DATA(nd_state[me|—s_set, nd_state[me]—S_SET)

Figure 2-5: Pseudocode for AT_SYNC_FAST.

Figure 2-6 shows pseudocode for the Nondeterminator-specific actions performed
when a worker starts executing a slow clone of a procedure. First, we check the state of
the field syncing_slow, which indicates whether execution of the procedure resumes at
a sync point (this happens when a suspended procedure has been awakened as a result
of all the children having returning to the parent). If it does, then we immediately
return, and the necessary work will be done when AFTER_SYNC_SLOW is called at
the sync point.

On the other hand, if the stolen procedure’s execution resumes at a thread that
begins immediately after a spawn, then we perform the trace-splitting: the central
part of SP-hybrid’s global-tier component. We assume that the current worker had
acquired a “steal lock” of the victim, which we denote by victim_steal locks[victim].
After the new traces have been inserted, we release this lock. The purpose of this
lock is to ensure that no other steals from the victim will take place until all these
new traces have been inserted; the SP-hybrid algorithm’s correctness requires that
“top-most” traces are split first. We then move the s_set of the stolen procedure to
the newly created trace Uy, and the p_set to U,. Finally, we reinitialize the current
procedure’s ND_state record and set the current worker’s ND_state pointer to point

to this record.

24

START_THREAD_SLOW(frame)

1
2

0~ O Ot = W

10
11
12
13
14

15
16
17
18
19

20
21
22
23

24

if frame—nd_state—syncing_slow
then return

> Create and insert the new traces

create new traces Uy, Us, Uy, Us

ACQUIRE(OM _insert_lock)

OM_MuLTI_INSERT(Eng, Uy, Us, frame—nd_state—current_trace, Uy, Us)
OM_Mucrti_INSERT(H eb, Uy, Uy, frame—nd_state—current_trace, Uy, Us)
RELEASE(OM _insert_lock)

RELEASE (victim_steal_locks[victim])

> Move the s-set set to U; and the p-set to Us
Trace ** U;_SET = MALLOC(SIZEOF(Tracex))
*Ul_SET = U1

DS_SET_DATA(frame—nd_state—s_set, Uy _SET)
Trace ** Uy SET = MALLOC(SIZEOF(Tracex))
Uy SET = U,

DS_SET_DATA(frame—nd_state—p_set, Uy _SET)

> Re-initialize the frame’s nd_state using the new trace U,
frame—nd_state—current_trace = U,
frame—nd_state—S_SET = MALLOC(SIZEOF (Tracesx))
frame—nd_state— P_SET = MALLOC(SIZEOF (Tracex))
x frame—nd_state—S_SET = x frame—nd_state—P_SET = U,
frame—nd_state—s_set
= CREATE_DS_ELEMENT(frame—nd_state—S_SET)
frame—nd_state—p_set = NULL
frame—nd_state—current_proc_id = frame—nd_state—s_set
if frame—nd_state—next_sync_block_start_trace == NULL
then frame—nd_state—next_sync_block_start_trace = Us

nd_state[me| = frame—nd_state

Figure 2-6: Pseudocode for START_THREAD_SLOW.

BEFORE_SYNC_SLOW(frame)

1 frame—nd_state— syncing_slow = TRUE

Figure 2-7: Pseudocode for BEFORE_SYNC_SLOW.

25

The procedure BEFORE_SYNC_SLOW, shown in Figure 2-7, is called immediately
before a slow clone checks whether all its spawned children have returned. If it is the
case that some children have not yet returned, then the procedure would be suspended
and would be reawakened only when all the children have indeed returned. To prevent
the procedure START_THREAD_SLOW from performing any redundant splitting upon
the reawakening of the procedure, we set the field syncing_slow.

The procedure AFTER_SYNC_SLOW shown in Figure 2-8 is called after all the
children have returned to the parent and immediately before execution of the first
thread of the next sync block. We first reset the field syncing_slow. It is also necessary
to restore the ND_state pointer of the worker, because some inlets may have been

executed immediately before the call to this procedure.

AFTER_SYNC_SLOW(frame)
1 frame—nd_state—syncing_slow = FALSE
2 nd_state|me] = frame—nd_state
3 if frame—nd_state—next_sync_block_start_trace # NULL
4 then frame—nd_state—current_trace
= frame—nd_state—next_sync_block_start_trace
5 frame—nd_state—S_SET = MALLOC(SIZEOF (Tracesx))
6 frame—nd_state— P_SET = MALLOC(SIZEOF (Tracex))
7 x frame—nd_state—S_SET = xframe—nd_state—P_SET
= frame—nd_state—current_trace
8 frame—nd_state—s_set
= CREATE_DS_ELEMENT(frame—nd_state—S_SET)
9 frame—nd_state—p_set = NULL
10 frame—nd_state—current_proc_id = frame—nd_state—s_set
11 frame—nd_state—next_sync_block_start_trace = NULL
12 else AT_SYNC_FAST(frame)

Figure 2-8: Pseudocode for AFTER_SYNC_SLOW.

If no steals of the procedure instance had occurred in the preceeding sync block,
then the field next_sync_block_start_trace would be equal to NULL. In such a case,
the actions that need to be taken are the usual SP-bags actions, the code for which
is already present in the function AT_SYNC_FAST, to which we simply jump. If

one or more steals had indeed occurred in the preceeding sync block, then the field

26

next_sync_block_start_trace would have been set at the first such steal, in the function
START_THREAD_SLOW. In such a case, we modify the ND_state so that subsequent
threads that descend from the current procedure instance (until the next steal of it,

if any) will start getting inserted into this new trace.

Implementation of SP-hybrid queries

Now, I will list and describe the pseudocode for performing the SP-hybrid queries.
Figure 2-9 shows pseudocode for the query SP_TRACE_PRECEDES, which takes

two traces U and V' and returns TRUE if all the threads in U serially precede all the

threads in V, and FALSE otherwise. This is determined by comparing the relative

order of U and V' in the Eng and Heb order-maintenance data structures.

SP_TRACE_PRECEDES(U, V)
1 if OM_PRECEDES(Eng,U,V) and OM_PRECEDES(Heb, U, V)

2 then return TRUE
3 else return FALSE

Figure 2-9: Pseudocode for SP_TRACE_PRECEDES.

SP_I1SLEFTOF(z, y)

> We assume that the calling worker is currently executing thread y

U = «xDS_GET_DATA(DS_FIND_SET(z))

V = «DS_GET_DATA(DS_FIND_SET(y))

if U#V
then return OM_PRECEDES(Eng, U, V)
else return TRUE

QU > W N+~

Figure 2-10: Pseudocode for SP_ISLEFTOF.

Figure 2-10 shows pseudocode for the query SP_ISLEFTOF, which takes two
threads =z and y where y is the thread that the calling worker is currently execut-

ing. It returns TRUE if thread x is encountered before thread y in a left-to-right walk

27

of the SP parse tree, and returns FALSE otherwise. If z and y are in different traces,
then we compare their order in the Eng order-maintenance data structure. If they
are in the same trace, then we simply return TRUE, because the threads of a trace
constitute a subcomputation that is executed by a single worker, and workers always

execute a stolen subcomputation in the serial left-to-right order.

SP_PRECEDES(z,)

> We assume that the calling worker is currently executing thread y

then return SP_TRACE_PRECEDES(U, V')
else return (U_SET == nd_state[me]—S_SET)

1 U_SET = DS_GET_DATA(DS_FIND_SET(x))
2 U=xUSET

3 V =«DS_GET_DATA(DS_FIND_SET(y))

4 U4V

)

6

Figure 2-11: Pseudocode for SP_PRECEDES.

Figure 2-11 shows pseudocode for the query SP_PRECEDES, which takes two
threads z and y where y is the thread that the calling worker is currently execut-
ing. It returns TRUE if z serially precedes y, and FALSE otherwise. First, we obtain
the “data field” of the canonical element containing the trace x and store it in U_SET'.
We then obtain the trace U that contains x by dereferencing U_SET. If and y are
found to be in different traces in line 4, then we use the query SP_TRACE_PRECEDES.
On the other hand, if they are found to be in the same trace, then x serially precedes
y if and only if x is in an s-bag of the trace containing thread y, which we determine
by checking if U_SET is equal to the S_.SET of the trace containing thread y.

Note that if we had obtained U by directly dereferencing the “data field” of the
canonical element containing x, rather than by first storing the “data field” in U_SET,
then in line 6 we would have had to reread the “data field.” This code would have
been incorrect, because a steal could have caused = to migrate from one trace to
another in between the times that lines 4 and 6 are executed. Note also that we did

not have to use this approach to obtain V', the trace containing thread y, because a

28

SP_PARALLEL(x,y)

> We assume that the calling worker is currently executing thread y

then return —-SP_TRACE_PRECEDES(U, V)
else return (U_SET == nd_state[me]—P_SET)

1 U_SET = DS_GET_DATA(DS_FIND_SET(x))
2 U=xUSET

3 V =%DS_GET_DATA(DS_FIND_SET(¥))

4 ifU#V

)

6

Figure 2-12: Pseudocode for SP_PARALLEL.

thread never migrates between traces while it is executing.

Figure 2-12 shows pseudocode for the query SP_PARALLEL, which is the same as
SP_PRECEDES except at lines 5 and 6. At line 5, we return TRUE if and only if trace
U does not precede trace V. (It cannot be the case that y precedes x, since = has
already at least partially executed and y is still executing.) At line 6, we return TRUE

if and only if U_SET is equal to the P_SET of the current trace.

A sequential consistency issue

We must ensure that whenever we change the “data field” of the canonical element of
an s-bag or p-bag, dereferencing this data field twice would lead to the trace containing
the s-bag or p-bag. Otherwise, an SP-hybrid query that is concurrently executing may
not obtain the correct trace. Therefore, in START_THREAD_SLOW shown in Figure 2-
6, the order of lines 10 and 11 and of lines 13 and 14 are important. To prevent these
instructions from being reordered, a memory-fence instruction must be inserted in

between each of these pairs of lines.

Garbage collection of thread IDs

To avoid a memory leak, we must free a thread ID whenever there can no longer be a
reference to it from the access-history. We accomplish this by maintaining, for each

thread ID, a count of the number of references to it from the access-history.

29

30

Chapter 3

Extending the All-Sets

access-history algorithm

In this chapter, I present an extension of the serial A11-Sets algorithm to correctly
support the inlet feature of Cilk. Cilk guarantees that the threads of a procedure
instance, including its inlets, operate atomically with respect to each other. Unfortu-
nately, the parse tree does not capture the atomicity guarantees that involve inlets.
The A11-Sets implementation used by the Nondeterminator-2 approached this prob-
lem by the use of a fake global “inlet lock”: when an inlet is entered, acquire this
lock, and when it returns, release the lock. This approach is incorrect for two reasons.
Firstly, it does not take into account the atomicity between inlet and non-inlet threads
of the same procedure instance. Secondly, it precludes the data-race detector from
detecting data-races between inlets of different procedure instances. A naive solution
is to have a separate fake “inlet lock” for each procedure instance, but this approach
leads to access-history lists with (nearly) unbounded length. My solution directly
modifies the A11-Sets algorithm to take the atomicity guarantees into account, and

it increases the memory and time complexity by only a constant factor.

I also present Parallel All-Sets, which is a parallelization of the extended
Al1-Sets algorithm. This algorithm is parallel in the sense that, unlike the serial

A11-Sets algorithm, it allows for non-depth-first expansion of P-nodes.

31

Extending Al1-Sets to support inlets

To extend the All-Sets algorithm to support inlets, we first make the following
helpful definitions.

Definition For a thread e, we use frame(e) to denote the Cilk procedure instance

that contains e.

Definition We say that threads e; and es are strongly parallel (written as eq|||e2)

if 1 || e2 and frame(ey) # frame(es).

Definition An access is a 3-tuple (e, H, 1), which denotes that thread e has read or

written location [while holding the set H of locks.

A data-race exists between two accesses (e1, Hi,l) and (eq, Hy,[) if and only if

e1l|e2 and Hy N Hy = {}.

AccEess({e, H,1))
1 for each (a,b, H',l) € lockers
2 do if (H' N H = {}) and (af|e or b||e)
3 then declare a data race
4 if 3 thread ids’ @ and b such that {a,b, H,l) € lockers
5 then if a < e
6 then if frame(e) = frame(a)
7 then lockers < (lockers — {(a,b, H,1)}) U {{e,b, H,1)}
8 else lockers « (lockers — {{a,b, H,1)}) U {{e,a, H,1)}
9 elseif (b < e) and (frame(e) # frame(a))
10 then lockers «— (lock:ers —{(a,b, H, l>}> U{{a,e,H,1)}
11 else lockers «— lockers U {{e,initial, H,l)}

Figure 3-1: The Extended Al1-Sets algorithm, which handles inlets correctly.

Figure 3-1 gives pseudocode for the Extended All-Sets algorithm. In the pseu-
docode, initial denotes an imaginary “initial” thread that serially precedes all other
threads and is part of a procedure instance different from those of all other threads.
Unlike in the original serial A11-Sets algorithm, the extended version stores a lockset

together with two thread ID’s in each locker.

32

Definition A locker is a 4-tuple {(a,b, H,l), which denotes that accesses (a, H,)
and (b, H,1) have occurred. (The ID a is thought of as the “primary” thread ID, and
the ID b is thought of as an “extra” thread ID.)

The two thread ID’s in a locker together “represent” any past accesses to the same
location while holding the same lockset. This notion is explained in the following

definition.

Definition Consider some point during an execution of the program. Let (e, H,),
(a, H,1), and (b, H,l) denote any three (not necessarily distinct) accesses that have

occurred so far. We say that the locker (a,b, H,[) strongly represents the access

(e, H,1) if for any thread f that executes in the future, we have that el|| f implies that

either al||f or b|| f.

Before proving the correctness of the Extended All-Sets algorithm, we restate

the following two important lemmas from [8].

Lemma 1 Suppose that three threads e1, es, and ez execute in order in a Serial,
depth-first execution of a Cilk program, and suppose that e; < ey and eq || e3. Then,

we have ey || e3.]

Lemma 2 (Pseudotransitivity of ||) Suppose that three threads ey, es, and e ex-
ecute in order in a serial, depth-first execution of a Cilk program, and suppose that

e || ea and ey || e5. Then, we have e || es. 0

We now prove the correctness of the Extended All-Sets algorithm.

Lemma 3 The following invariant holds after each access. Fach locker {(a,b, H, 1) in
lockers satisfies (i) frame(a) # frame(b) and (ii) for any thread f that executes in
the future, we have that b || f implies that a || f.

Proof. By induction on the number of accesses that have occurred. The base case

is when no accesses have occured, in which case the invariant holds trivially. For the

33

induction step, note that the access-history is modified only at lines 7, 8, 10, and 11.
It is easy to check that (i) holds in each of these cases. With the help of Lemmas 1

and 2, it is also easy to check that (ii) holds in each of these cases. L]

The following three lemmas can be viewed as some form of “transitivity” of the

relation “strongly represents”.

Lemma 4 Suppose that (e,b, H,l) strongly represents {(a, H,l), and that {a,b, H,l)
strongly represents (d, H,l). Then, (e, b, H,l) strongly represents (d, H,).

Proof. Let f denote any thread that executes in the future. If d||f, then either

al|f or b|||f. If al|f, then either e|||f or b||f. Hence, if d|||f, then we have either el|| f
or b||| f, as required.]

Lemma 5 Suppose that {e,a, H,l) strongly represents (b, H,l), and that {a,b, H,I)

strongly represents (d, H,l). Then, {(e,a, H,l) strongly represents {d, H,).

Proof. Let f denote any thread that executes in the future. If d|||f, then either
al|f or bl||f. If b]|| £, then either al||f or el||f. Hence, if d|||f, then we have either al|| f

or e||f, as required.]

Lemma 6 Suppose that {a,e, H,1) strongly represents (b, H,l), and that {a,b, H,I)

strongly represents (d, H,l). Then, {(a,e, H,l) strongly represents (d, H,).
Proof. The proof is exactly the same as for Lemma 5. []

Theorem 7 The following invariant holds after each access. For any location I,
any lockset H, and any access (d, H,l) that has occurred so far, there exists a locker

(a,b, H,l) € lockers that strongly represents the access {d, H,).

Proof. By induction on the number of accesses to [that have occurred. The base
case is when no accesses to [have occurred, in which case the claim holds trivially.
For the induction step, assume that the claim holds after some set of accesses to [has
occurred. Let (e, H,[) denote the next access to [. To see that the claim also holds
after this access, note that either lockers is left unmodified or exactly one of lines

7,8,10, 11 executes. We consider each case in turn:

34

e [ockers is left unmodified: This event falls into at least one of the following two

subcases.

e al| eandb| e By Lemma 2, we have e || f implies that both a || f
and b || f. By Lemma 3(i), we know that frame(a) # frame(b). Thus, if
e[| f then either al|f or b||f. Consequently, (a,b, H,[) strongly represents
(e, H,l).

e a || e and frame(e) = frame(a): By Lemma 2, we have e || f implies that
a || f. Moreover, since frame(e) = frame(a), we have e|||f implies that

al|f. Thus, (a,b, H,) strongly represents (e, H,).

e line 7 executes: By Lemma 1, we have a | f implies that e | f. Moreover, since
frame(e) = frame(a), we have al||f implies that e||f. Hence (e, b, H,l) strongly
represents (a, H,l). Now apply Lemma 4 to see that the claim holds.

e line 8 executes: By Lemmas 3(ii) and 1, we have b || f implies that both a || f
and e || f. Therefore, since frame(e) # frame(a), we have b||f implies that
either all|f or e||f. Hence (e, a, H,I) strongly represents (b, H,1). Now apply
Lemma 5 to see that the claim holds.

e line 10 executes: This case is similar to the one where line 8 executes. The
locker (a, e, H,1) strongly represents (b, H,l). Now, apply Lemma 6 to see that
the claim holds.

e line 11 executes: The claim trivially holds in this case because the current access

is the only access to [with lockset H that has occurred so far.

O

Corollary 8 The Extended All-Sets algorithm detects a data race in a computa-

tion if and only if a data race exists.

Proof. We see from the condition checked in line 2 of ACCESS that a data race is
reported in line 3 only if a data race exists between (e, H,[) and either (a, H',l) or
(b, H',1).

Conversely, suppose that a data race exists between accesses (d, H',l) and (e, H,),

and that they occur in this order. By Theorem 7, we know that immediately before

35

the access (e, H, 1), there exists a locker (a,b, H' 1) in lockers that strongly represents
the access (d, H',l). Therefore, we have H' N H = {} and either af||e or b||e. So a

data race is reported in line 3. L]

Theorem 9 Consider a Cilk program that references V' shared memory locations, and
in which the mazimum number of locks held simultaneously is k and the maximum
number of distinct locksets used to access any particular location is L. Then, the

access-history takes space O(kKLV'), and each call to ACCESS runs in time O(kL).

Proof. For any location [and any lockset H, there is at most one locker (a, b, H,)
in the set lockers. This property holds, because in an execution of ACCESS, if there is
already a locker (a,b, H,[), then either this locker is replaced by another locker with
the same lockset and location, or no change is made. Each locker takes space O(k).
Hence, the space taken by lockers is O(kKLV).

To obtain the time bound, we will implement the set lockers as a table that is
indexed by the location. Each element of the table is a list of triples (a,b, H). Note
that the length of each list is at most L. When a location [is accessed, O(L) set
operations and O(L) series-parallel queries are performed. Each set operation takes

time O(k) and each series-parallel query takes constant time. Hence, the time per

call to ACCEss is O(kL). L

Parallelizing the extended A11-Sets algorithm

This section presents Parallel All-Sets, which is a parallelization of the extended
A11-Sets algorithm. This algorithm is parallel in the sense that it maintains the
access-history correctly while allowing for parallel execution of the program. The

following notation is used in my presentation of the algorithm.

Definition Let e; and e; denote any two threads. We say that e; isLeftOf ey if ¢4

is visited before ey in a left-to-right walk of the parse tree.

Definition Let e; and e; denote any two threads. We say that e; isRightOf ey if e;

is visited after es in a left-to-right walk of the parse tree.

36

Figures 3-2, 3-3, and 3-4 show pseudocode that constitutes the Parallel Al1-Sets
algorithm. To allow for a parallel execution of the program, we combine the serial
Extended All-Sets algorithm with an approach similar to that used by Mellor-
Crummey [12]: we keep “leftmost” and “rightmost” thread ID’s for each (lock-
set,location) pair, and we keep “primary” and “secondary” versions for both the

“leftmost” and “rightmost” accesses.

AccEess((e, H,1))
1 for each (ap,br,ag,br, H' 1) € lockers
2 doif (H' N H ={}) and (ag||e or b||e or agl|e or br||e)
3 then declare a data race
4 if dthread ID’s ay,. by, ag, br
such that (ar, by, ar,bgr, H,1) € lockers

5 then UPDATELEFT((e, H,[))
6 UpbpATERIGHT((¢, H, 1))
7 else lockers « lockers U { (e, initial, e, initial, H,1) }

Figure 3-2: Pseudocode for the Parallel All-Sets algorithm.

UPDATELEFT({e, H,1))

1 Let ar,br,ar,br be thread ID’s
such that {(ar,br,ar,br, H,1) € lockers

2 if (a, <e) or (eisLeftOf ay)

3 then if frame(e) = frame(ar,)

4 then lockers « (lockers —{{ap, by, ar,br, H, l}})

U {{e,br,agr,br, H,1)}

5 else lockers « (lockers —{{ap,br,ar,br, H, l}})
U {{e,ar,ar,br, H,1)}

elseif ((b, < e) or (e isLeftOf by)) and (frame(e) # frame(ar))

then lockers «— (lock:ers —{{ap, by, ar,br, H, l}})

U {<aL7€7aR;vaHa l>}

N O

Figure 3-3: Pseudocode for UPDATELEFT of Parallel All-Sets.

Each locker contains the thread ID’s ay, by, ar, and by which are thought of as,

o«

respectively, the “leftmost primary,” “leftmost secondary,” “rightmost primary,” and

37

UPDATERIGHT({¢, H, 1))

1 Let ap,by,ar,br be thread ID’s
such that {(ar,br,ar,br, H,1) € lockers

2 if eisRight0f ag
3 then if frame(e) = frame(ag)

4 then lockers « (lockers —{{ap, by, ar,br, H, l}})
U {<aL7 bLa €, bR; H: l>}
5 else lockers «— (lockers —{{ap, by, ar,br, H, l}})

U {<aL7 bLa €, AR, Ha l>}
elseif (e isRightOf by) and (frame(e) # frame(ag))
then lockers « (lock:ers —{{ap, by, ar,br, H, l}})

U {<avaLaaR767 H: l>}

N O

Figure 3-4: Pseudocode for UPDATERIGHT of Parallel All-Sets.

“rightmost secondary” thread ID’s. In UPDATELEFT the thread ID’s a; and b, are
updated, and in UPDATERIGHT the thread ID’s az and by are updated. We now

update our notion of “strongly represents” as follows.

Definition Consider some point during an execution of the program. Let (e, H,),
(ar,, H,1), {(by,H,1), {ar,H,1), and (bg, H,l) denote any five (not necessarily dis-
tinct) accesses that have occurred so far. We say that the locker (ar, by, ag,br, H,)
strongly represents the access (e, H,l) if for any thread f that executes in the

future, we have that el|| f implies that either ag||f or bL||f or agl|f or bg|||f-

The following theorem asserts the correctness of the Parallel All-Sets algo-

rithm.

Theorem 10 The following invariant holds after each access. For any location | and
any lockset H, for any access (d, H,l) that has occurred so far, there exists a locker

(ar,,br,ar,br, H,1) € lockers that strongly represents the access (d, H,1).

Proof sketch. Rather than providing a formal, lengthy proof of the theorem, we
will provide some intuition. Consider some point during an execution of the pro-

gram. For any location [and any lockset H, the thread ID’s a;, and by, in the locker

38

(ar,,br,ar,br, H,1) are those that would be present under an execution of the serial
Extended All-Sets algorithm on a left-to-right execution of the threads that have
occured so far. The thread ID’s ap and bgr in this locker are those that would be
present under an execution of the serial Extended All-Sets algorithm on a left-to-
right execution of the threads that have occured so far with the left and right branches
of all P-nodes swapped.

Consider some access (d, H,1) that has occurred so far, and some future thread f
such that d|||f. If f is to the right of d, then we have either a||f or br||f. If f is to
the left of d, then we have either ag||f or bgl||f. O

The theorem directly implies that the Parallel All-Sets algorithm correctly
detects a data race in a computation if and only if one exists.

The size of the access-history has grown by only a constant factor, but we need
to deal with concurrent updates. In my current implementation, I simply have a lock
for each location of the table, and the procedure ACCESS is performed while holding

the relevant lock.

39

40

Chapter 4

Performance measurements of

SP-hybrid updates

In this chapter, I provide some performance measurements of SP-hybrid updates. The
experiments were run on an SMP system consisting of 4 1.4-megahertz AMD Opteron
processors, each with 1024-kilobytes of 1.2 cache, 64-kilobytes of .1 data/instruction

caches, running GNU/Linux.

Test Case Original Performance — With SP-hybrid updates
program size F#processors | time(sec.) speed-up | time(sec.) speed-up
fib 37 1 19.6 1 50.4 1

2 10.4 1.9 24.8 2.0
3 7.01 2.8 18.4 2.7
4 5.21 3.8 16.6 3.0
paraffins 23 1 5.81 1 15.6 1
2 2.86 2.0 8.63 1.8
3 1.96 3.0 6.82 2.3
4 1.48 3.9 6.26 2.5
strassen 1024 1 4.23 1 9.44 1
2 2.27 1.9 4.91 1.9
3 1.61 2.6 3.41 2.8
4 1.28 3.3 2.71 3.5

Figure 4-1: Performance measurements of SP-hybrid updates on a variety of test cases.

Figure 4-1 shows some recordings of performance. The first block of columns

gives the various test cases used. The second block gives the performance recordings

41

without the Nondeterminator turned on. The third block gives the performance
recordings when the SP-hybrid updates are performed.

The most important column in this table is the final one, which shows the speed-up
obtained with the SP-hybrid updates turned on. We see that the SP-hybrid updates
seem to preserve the original parallelism of the user program. The anomalies are
when the programs fib and paraffins are run on 4 processors — the speed-up in
these cases are noticeably lower than the original speed-up.

During the performance testing, I observed that caching can have a significant
impact on performance. At first, I had the ND_state records of the workers stored
contiguously as an array. Since workers wrote to their respective ND_state records
during each spawn and return, false sharing came into play — each such write by a
processor would have invalidated the cache lines containing the array in each other
processor. The speed-up for £ib on 4 processors was only 1.6. Moving the ND_state
records into the CilkWorkerState records nearly doubled the speed-up. It may be
the case that such caching issues are the cause of the two anomalies mentioned above.

Unfortunately, I was unable to obtain performance measurements of the complete
Nondeterminator-3 (that is, with the access-history enabled in addition to the SP-
hybrid updates). The reason is because of an issue with porting to the 4-processor
SMP system, which has word /address size of 64-bits. Some of the access-history code
(which had been carried over from the Nondeterminator-2 implementation) performed
address computations that had been hard-coded assuming 32-bit pointers, and I could

not complete the porting in time.

42

Chapter 5

Related work

In this chapter, I summarize related work on race detection and SP-maintenance
algorithms.

Static race detectors [14] analyse the text of a program to attempt to determine
whether a program will ever produce a data race when run on all possible inputs.
These detectors are conservative in the sense that they may report races that do not
exist, since static analysis cannot fully determine the semantics of a program.

Most race detectors are dynamic tools, which detect potential races by executing
the program on a given input. Some dynamic race detectors perform a post-mortem
analysis based on program execution traces [7,11,13,15,16]. On-the-fly race detectors,
like the one implemented in this thesis, detect races during execution of the program.

Netzer and Miller [17] distinguish between feasible races and apparent races. A
feastible data race is one that can actually occur in an execution of the program.
Netzer and Miller show that locating feasible data races in a general program is
NP-hard. Most race detectors, such as the one implemented in this thesis, detect
apparent races, which are an approximation of the races that may actually occur.
These detectors typically ignore data dependencies that may make some apparent
races infeasible.

Dinning and Schonberg’s “lock-covers” algorithm [6] detects apparent races in
programs that use locks. The All-Sets algorithm [4] of Cheng et al. improves the lock-

covers algorithm by providing better time and space bounds. Cheng et al. also give a

43

much more efficient algorithm, called Brelly, that detects violations of an “umbrella”
locking discipline. The umbrella locking discipline precludes data races, and therefore
Brelly can be used to detect data races in programs that obey this discipline. These
algorithms require serial execution of the program. Mellor-Crummey [12] gives an
access-history algorithm that can be used to detect determinacy races during a parallel
execution of the program. The access-history algorithm used in the Nondeterminator-
3 extends Mellor-Crummey’s technique to support locks.

Savage et al. give an on-the-fly race detector called Eraser [19] that works on
programs that have static threads, and enforces the simple locking discipline that a
shared variable must be protected by a particular lock on every access. Eraser does
not use an SP-maintenance algorithm, and hence it reports races between threads
that operate in series. The umbrella discipline of Brelly is a generalization of Eraser’s
locking discipline. By keeping track of SP relationships, Brelly reports fewer spurious
races.

Nudler and Rudolph introduced the English-Hebrew labelling scheme [18] for
maintaining SP relationships. Their labels grow proportionally to the maximum
concurrency of the program. Mellor-Crummey proposed the “offset-span” labelling
scheme [12], which uses shorter label lengths but still not bounded by a constant.

Feng and Leiserson’s SP-bags algorithm [8] is based on Tarjan’s union-find data
structure [20]. SP-bags inflates the space requirement by only a constant factor and
the time by nearly as low as a constant factor. The time overhead is reduced to a
constant factor in [9].

The SP-order algorithm [2] uses the technique of English-Hebrew labelling to-
gether with a centralized order-maintenance data-structure [1,5], and provides a con-
stant factor inflation of time and space. The SP-hybrid algorithm [2,9] combines the
SP-order and SP-bags algorithms, resulting in a SP-maintenance algorithm that runs

in parallel.

44

Chapter 6

Concluding remarks

In this section, I offer some concluding remarks.

My implementation of the Nondeterminator-3 has some ineffiencies that are due to
locking. Firstly, the order-maintenance data-structure used by my implementation of
the SP-hybrid algorithm is currently a serial version which is locked on all operations.
The SP-hybrid paper [2] gives a scheme for avoiding locking on queries, but in practice
a more complicated scheme is necessary when implementing on machines that do not
provide a guarantee of sequential consistency. Secondly, in the parallelized ALL-SETS
algorithm, when an access to location [occurs, the access history list corresponding
to location [must be locked. Finally, we also need to lock the SP-maintenance data-
structures during garbage-collection. It would be interesting to see whether wait-free
approaches lead to better speed-up in practice.

I believe that the Extended Al1-Sets algorithm can be generalized to obtain a
more efficient way of supporting fake locks. The Nondeterminator data-race detectors
provide fake locks to allow the user to protect accesses involved in apparent but
infeasible races. Currently, fake locks are treated just like any other lock, and are
placed in locksets. Using fake locks local to procedure instances could potentially
cause a large blow-up in the number of distinct locksets. If we restrict to one the
number of fake locks that can protect the same access, then we can generalize the
Extended All-Sets algorithm by simply making a small change that would involve

constructing a locker out of two accesses that held different fake locks.

45

It may also be desirable to allow the user to specify, via fake locks, which sets of
inlets of a procedure instance commute with each other. Although Cilk guarantees
that the inlets within a procedure instance commute with each other and with the
parent procedure instance, the code may not commute. Therefore, a better alternative
might be to allow the user to explicitly specify the atomicity guarantees that he/she
assumes, via fake locks. If the sets of inlets that commute with each other are disjoint,
then this stronger guarantee can be made by using at most one fake lock per access,
and thus the Extended All-Sets algorithm could still be used.

It would also be desirable to extend the Brelly algorithm to correctly support the
inlet feature of Cilk and to obtain a version that allows for parallel execution of the

program.

46

Bibliography

1]

M. A. Bender, R. Cole, E. Demaine, M. Farach-Colton, and J. Zito. Two sim-
plified algorithms for maintaining order in a list. In Proceedings of the 10th

FEuropean Symposium on Algorithms (ESA), pages 152 164, 2002.

Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E. Leiserson.
On-the-fly maintenance of series-parallel relationships in fork-join multithreaded
programs. In Proceedings of the Sizteenth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 133-144, Barcelona, Spain, June
27-30, 2004.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded
runtime system. Journal of Parallel and Distributed Computing, 37(1):55-69,
August 25 1996. (An early version appeared in the Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’95), pages 207-216, Santa Barbara, California, July 1995.).

Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and
Andrew F. Stark. Detecting data races in Cilk programs that use locks. In
Proceedings of the Tenth Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA °98), pages 298-309, Puerto Vallarta, Mexico, June 28-
July 2, 1998.

P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In

Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages

47

[6]

[10]

[11]

[12]

[13]

365-372, New York City, May 1987.

Anne Dinning and Edith Schonberg. Detecting access anomalies in programs
with critical sections. In Proceedings of the ACM/ONR Workshop on Parallel
and Distributed Debugging, pages 85 96. ACM Press, May 1991.

Perry A. Emrath, Sanjoy Ghosh, and David A. Padua. Event synchronization
analysis for debugging parallel programs. In Supercomputing ’91, pages 580-588,
November 1991.

Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy
races in Cilk programs. In Proceedings of the Ninth Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA), pages 1-11, Newport, Rhode
Island, June 22-25 1997.

Jeremy T. Fineman. Provably good race detection that runs in parallel. Master’s
thesis, Massachusetts Institute of Technology Department of Electrical Engineer-

ing and Computer Science, August 2005.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation
of the Cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN
‘98 Conference on Programming Language Design and Implementation, pages
212-223, Montreal, Quebec, Canada, June 1998. Proceedings published ACM
SIGPLAN Notices, Vol. 33, No. 5, May, 1998.

David P. Helmbold, Charles E. McDowell, and Jian-Zhong Wang. Analyzing
traces with anonymous synchronization. In Proceedings of the 1990 International

Conference on Parallel Processing, pages 1170-1177, August 1990.

John Mellor-Crummey. On-the-fly detection of data races for programs with
nested fork-join parallelism. In Proceedings of Supercomputing’91, pages 24-33.
IEEE Computer Society Press, 1991.

Barton P. Miller and Jong-Deok Choi. A mechanism for efficient debugging
of parallel programs. In Proceedings of the 1988 ACM SIGPLAN Conference

48

[14]

[15]

[16]

[17]

[18]

[19]

[20]

on Programming Language Design and Implementation (PLDI), pages 135-144,
Atlanta, Georgia, June 1988.

Greg Nelson, K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Extended
static checking home page, 1996.

http://www.research.digital.com/SRC/esc/Esc.html

Robert H. B. Netzer and Sanjoy Ghosh. Efficient race condition detection for
shared-memory programs with post/wait synchronization. In Proceedings of the
1992 International Conference on Parallel Processing, St. Charles, Illinois, Au-

gust 1992.

Robert H. B. Netzer and Barton P. Miller. On the complexity of event order-
ing for shared-memory parallel program executions. In Proceedings of the 1990

International Conference on Parallel Processing, pages 11: 93-97, August 1990.

Robert H. B. Netzer and Barton P. Miller. What are race conditions? ACM
Letters on Programming Languages and Systems, 1(1):74-88, March 1992.

[tzhak Nudler and Larry Rudolph. Tools for the efficient development of efficient
parallel programs. In Proceedings of the First Israeli Conference on Computer

Systems Engineering, May 1986.

Stefan Savage, Michael Burrows, Greg Nelson, Patric Sobalvarro, and Thomas
Anderson. Eraser: A dynamic race detector for multi-threaded programs. In
Proceedings of the Sizteenth ACM Symposium on Operating Systems Principles
(SOSP), October 1997.

Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm.

Journal of the ACM, 22(2):215-225, April 1975.

49

