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tWe study the problem of exe
uting parallel programs, in parti
ular Cilk programs, on a
olle
tion of pro
essors of di�erent speeds. We 
onsider a model in whi
h ea
h pro
essor main-tains an estimate of its own speed, where 
ommuni
ation between pro
essors has a 
ost, andwhere all s
heduling must be online. This problem has been 
onsidered previously in the �eldsof asyn
hronous parallel 
omputing and s
heduling theory. Our model is a bridge between theassumptions in these �elds. We provide a new more a

urate analysis of an old s
hedulingalgorithm 
alled the maximum utilization s
heduler . Based on this analysis, we generalize thiss
heduling poli
y and de�ne the high utilization s
heduler . We next fo
us on the Cilk platformand introdu
e a new algorithm for s
heduling Cilk multithreaded parallel programs on hetero-geneous pro
essors. This s
heduler is inspired by the high utilization s
heduler and is modi�edto �t in a Cilk 
ontext. A 
ru
ial aspe
t of our algorithm is that it keeps the original spirit ofthe Cilk s
heduler. In fa
t, when our new algorithm runs on homogeneous pro
essors, it exa
tlymimi
s the dynami
s of the original Cilk s
heduler.1 Introdu
tionOne of the basi
 problems in parallel 
omputing is how to exe
ute a parallel program on a 
ol-le
tion of heterogeneous pro
essors, that is, pro
essors of di�erent and possibly 
hanging speeds.In this paper we fo
us on the s
heduling issues that arise when pro
essors are heterogeneous. Wedevelop s
heduling algorithms that are designed to run eÆ
iently in parallel 
omputing environ-ments. We 
onsider general parallel 
omputing environments, but with a parti
ular fo
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One of the most important 
onstraints of the parallel setting is that the s
hedulers must makerapid de
isions about how to assign tasks to pro
essors; otherwise, the time to run the s
hedulermay a
tually delay the exe
ution of the parallel program. These s
heduling de
isions must bemade with only partial knowledge of the a
tual s
heduling problem be
ause both the stru
tureof the parallel program and the speeds of the pro
essors are only known online, that is, as the
omputation unfolds1. Furthermore, the entire state of the system is not automati
ally visible toany pro
essor. Ea
h pro
essor i is only aware of its own lo
al state; in order to determine the stateof another pro
essor j, pro
essor i must expli
itly 
ommuni
ate with j and this 
ommuni
ation hasa 
ost. Consequently, a 
entralized s
heduler, whi
h repeatedly gathers all the information aboutthe states of the pro
essors, may be too expensive. This paper des
ribes a s
heduling algorithmthat is distributed.Our s
heduler is optimized for the following pattern of speed 
hanges, whi
h seems to be the
ommon 
ase in parallel 
omputing environments.1. Most of the time the pro
essor speeds are fairly 
onsistent, and therefore a pro
essor 
anmaintain a good estimate of its own speed. This estimate naturally is not 
ompletely a

urate,but most of the time it will be mostly a

urate.2. Pro
essor speeds may o

asionally 
hange dramati
ally, but these 
hanges are limited. TheeÆ
ien
y of our s
heduler is allowed to degrade gradually as pro
essors be
ome more errati
.The model in this paper is a bridge between asyn
hronous parallel 
omputing and s
hedulingtheory; these two �elds atta
k the general problem of exe
uting parallel programs on pro
essors ofdi�erent speeds. However, both of these �elds make assumptions that di�er dramati
ally from theparallel setting des
ribed above. For example, in asyn
hronous parallel 
omputing the pro
essorspeeds are assumed to 
hange arbitrarily and adversarially. This worst-
ase assumption is oftentoo pessimisti
 and may lead to ineÆ
ient s
hedules. In s
heduling theory the pro
essor speeds areassumed to remain 
onstant, and the s
heduler is provided with global knowledge of the state ofthe system, a large amount of time to run, and o�ine knowledge of the stru
ture of the 
ompu-tation. Based on these assumptions, the system is unrealisti
ally predi
table and the s
heduler isunrealisti
ally powerful.We further des
ribe why it is useful to bridge these �elds and then pro
eed to the main resultsin this paper.1.1 Asyn
hronous Parallel ComputationExe
uting parallel programs on heterogeneous pro
essors is studied intensely in the area of asyn-
hronous parallel 
omputation [20, 19, 34, 32, 28, 5, 3, 2℄. In this �eld, the goal is to run a parallelprogram that is written assuming syn
hronization barriers, on a 
olle
tion of asyn
hronous pro
es-sors that do not have a syn
hronization primitive.1In some spe
ial 
ases, su
h as numeri
al algorithms, the stru
ture of the parallel program may be known inadvan
e. This paper 
onsiders general parallel 
omputations (e.g., parallel 
hess programs) and does not assume thatthe programmer provides the running times of the parallel tasks and a mapping from tasks to pro
essors.2



Pro
essors are assumed to be arbitrarily errati
. That is, a pro
essor may initially run so slowlythat it is essentially stopped, 
hange speed abruptly so that it runs extremely (even in�nitely) fast,and then stop on
e more. Corre
tness proofs typi
ally assume that pro
essor speeds are determinedby an adversary, whose goal is to prevent the parallel program from exe
uting 
orre
tly or eÆ
iently.Be
ause pro
essors may 
hange speeds to an arbitrary degree, pro
essors are not assumed to haveknowledge of their own speed.The ma
hinery of asyn
hronous parallel 
omputation is useful for mission 
riti
al appli
ations,in whi
h a program must run 
orre
tly and steadily, regardless of the errati
 behaviors of theindividual pro
essors. On the other hand, it may not be worth paying the overhead of these s
hemesif the appli
ation is not mission 
riti
al; similarly, it may not be worth paying the overhead if thepro
essors are not arbitrarily errati
, that is, if they 
hange speeds, but most of the time by toomu
h.1.2 S
heduling on Related Pro
essorsExe
uting a parallel program on heterogeneous pro
essors is a 
ommon problem in s
hedulingtheory. In this �eld there is an underlying assumption that pro
essors may have di�erent speedsbut that the speeds do not 
hange. The goal is to s
hedule a parallel program represented as adire
ted a
y
li
 graph (dag) to minimize the makespan, that is, the maximum 
ompletion time ofthe jobs. Using terminology from s
heduling theory, the problem is that of s
heduling pre
eden
e-
onstrained tasks on related pro
essors to minimize the makespan.Be
ause this problem is NP-hard [35℄ even when all pro
essors have the same speed, thes
heduling 
ommunity has 
on
entrated on developing approximation algorithms for the makespan.Early papers introdu
e O(pp)-approximation algorithms [23, 24℄, and more re
ent papers proposeO(log p)-approximation algorithms [16, 17, 14, 15℄. Unfortunately, some 
ommon assumptionsfrom s
heduling theory often do not apply to parallel 
omputing, and 
onsequently many s
hedul-ing algorithms from this �eld are not usable in our setting. For example, many of these s
hedulingalgorithms run o�ine, that is, after seeing the entire stru
ture of the parallel program. In addition,the s
hedulers usually have full knowledge about the state of the system and have the unlimitedability to apply the s
heduling de
isions.Finally the quality of many of the s
heduling algorithms are measured using the approximationratio. Even in the homogeneous setting , i.e., when all pro
essors run at the same speed, it is knownthat the approximation ratio may be misleading [12℄ by a fa
tor as large as 2. The approximationratio is dramati
ally less reliable when pro
essors are heterogeneous for several reasons that wedes
ribe shortly.1.3 The Heterogeneous SettingTo develop intuition about the heterogeneous setting, 
onsider the natural 
lass of greedy s
hedules ,in whi
h no pro
essor is allowed to stay idle if there is a task that 
an be assigned to it. Whenpro
essors are homogeneous, all greedy s
hedules have essentially 
omparable makespans (within a3



fa
tor of 2 of ea
h other). However, when pro
essors are heterogeneous there may be an unboundedratio between the makespan of the best greedy s
hedule and the makespan of the worst greedys
hedule. To obtain a s
hedule having a good makespan, fast pro
essors should be assigned tolonger paths in the dag and slower pro
essors should be assigned to shorter paths. This assignmentpro
ess is 
omputationally diÆ
ult be
ause nodes in the dag may belong to many interleaving pathsof di�erent lengths.Thus, for any p homogeneous pro
essors, 
onsider p heterogeneous pro
essors that have the sameaverage speed. The optimal makespan in the heterogeneous setting may be mu
h smaller than in thehomogeneous setting. However, pra
ti
al and 
omputational limitations usually prevent this elusives
hedule from being found. On the other hand, it is easy to en
ounter a poor s
hedule, espe
iallywhen the pro
essors' speeds 
an 
hange. This is why users prefer homogeneous pro
essors toheterogeneous ones, even though in ideal 
onditions the heterogeneous pro
essors may allow shorters
hedulers. Thus, in this paper the obje
tive of an eÆ
ient s
heduler is to use its heterogeneouspro
essors as eÆ
iently as if they were homogeneous.1.4 ResultsWe present the following results.1. We provide a new analysis of of an old s
heduling algorithm 
alled the maximum utilizations
heduler [23℄. In parti
ular, we prove a bound on the makespan and on the number ofpreemptions. Based on this analysis, we generalize this s
heduling poli
y and de�ne thehigh utilization s
heduler . We explain why these s
heduling poli
ies have 
lose to optimalmakespans on dags that represent most parallel programs.The algorithms presented so far are not dire
tly implementable be
ause the s
hedulers requiretoo mu
h 
entralized 
ontrol. However, they provide insight into how to s
hedule parallelprograms on heterogeneous systems.2. We next fo
us on the Cilk platform and present the main result of the paper. We intro-du
e a new algorithm for s
heduling Cilk multithreaded parallel programs on heterogeneouspro
essors. This s
heduler is inspired by the high utilization s
heduler, modi�ed to �t in aCilk 
ontext. A 
ru
ial aspe
t of our algorithm is that it retains the original spirit of theCilk s
heduler. In fa
t, when our new algorithm runs on homogeneous pro
essors, it exa
tlymimi
s the dynami
s of the original Cilk s
heduler.1.5 De�nitions and NotationThere are p pro
essors labeled 1; : : : ; p where pro
essor i has speed �i steps/time. For the sakeof 
onvenien
e, we assume that �1 � �2 � : : : � �p. In mu
h of the paper we assume that thepro
essor speeds do not 
hange; later we mention how our solutions behave when speeds 
hange.Let �tot steps/time be the total 
omputing power of all of the pro
essors, that is, �tot = Ppi=1 �i:Let �ave steps/time be the average speed of the pro
essors, that is, �ave = �tot=p:4



A dire
ted a
y
li
 graph (dag) G = (V;E) des
ribes the stru
ture of a parallel program. Thenodes of the dag represent tasks that the pro
essors must 
omplete, and the edges represent de-penden
ies between the tasks. Thus, if there is an edge (u; v) 2 E, then v 
annot be exe
uteduntil after u 
ompletes. In this 
ase, we say that u is a parent of v. Tasks are grouped into largersegments of 
ode 
alled threads ; a thread is a path in the dag, where all nodes in the thread, ex
eptpossibly the �rst and the last, have outdegree and indegree of 1.A series parallel dag G = (V;E) is a dire
ted a
y
li
 graph with two distinguished verti
es,a sour
e s and a sink t. The family of series parallel graphs are des
ribed using the followinggrammar. A series parallel dag G = (V;E) is one of the following: (1) A single edge extending froms to t, that is, V = fs; tg and E = f(s; t)g. (2) Two series parallel graphs G1 and G2 
omposed inparallel. The sour
es s1 and s2 of G1 and G2 respe
tively are merged into a single sour
e s and thesinks t1 and t2 of G1 and G2 are merged into a single sink t. (3) Two series parallel graphs G1 andG2 
omposed in series. The sink t1 of G1 and the sour
e s2 of G2 are merged into a single node.Cilk parallel programs are modeled by fully stri
t dags . A fully stri
t dag is series parallel, allof the nodes in the dag have outdegree at most 2, and there is one node with indegree 0 and onenode with outdegree 0. The root thread is a path extending from the �rst node in the dag to thelast node. A node in the root thread with outdegree 2 spawns another thread, whi
h 
ontinuesuntil it joins the root thread on
e more. This thread may spawn 
hild threads , whi
h may in turnspawn other 
hild threads.Let W1 represent the total work , that is the total number of nodes in the dag G. Let W1represent the 
riti
al path length of the graph, that is, the number of nodes in the longest 
hain inG. Consider a modi�ed dag G0 in whi
h all nodes with indegree and outdegree of 1 are removed,that is, all paths of su
h nodes are repla
ed by a single edge. Let S1 represent the total numberof edges in G0, and let S1 be the 
riti
al path in G0. Let Tp represent the time to exe
ute G on ppro
essors. A task or thread is ready if all of its prede
essors in G have been exe
uted.We say that a thread is preempted if it is interrupted and later resumed, possibly on a di�erentpro
essor. We say that there is a migration whenever the state of the system is moved from one pro-
essor to a di�erent pro
essor. Thus, there may be a migration if a previously idle pro
essor beginsexe
uting a thread be
ause the pro
essor may have obtained the thread from another pro
essor.There is not a migration if a pro
essor �nished exe
uting a thread and then exe
utes a su

essorthread in the dag. Thus, there may be a migration without a preemption, or a preemption withouta migration. All migrations entail an additional 
ost, whi
h we take into a

ount.We say that an event E o

urs with high probability if for any 
 > 0 there exists a proper 
hoi
eof 
onstants su
h that Pr fEg � 1� n�
.1.6 Related WorkGraham [21, 22℄ proved that a list s
hedule is a (2� 1=p)-approximation to the optimal makespan,and this result holds for any greedy s
hedule. (In a list s
hedule, the jobs have �xed prioritiesand the pro
essors exe
ute the ready tasks in the system with the highest priorities.) This resultsderives from the following theorem: 5



Theorem 1 ([21, 22, 13℄) A greedy s
hedule (or list s
hedule) has makespanTp � W1p + �p� 1p � W1:Ja�e [23℄ shows that the following preemptive s
heduling poli
y, 
alled a maximum utilizations
hedule is a O(pp)-approximation algorithm. At all times maintain the following invariant: ifthere are i, i < p, ready threads, assign these threads to the i fastest pro
essors. Note that threadsmay be preempted ; that is, in the middle of the exe
ution of a thread, a faster pro
essor may take upthe responsibility for exe
uting the thread. Ja�e [24℄ then showed that the following nonpreemptiveis also a O(pp)-approximation algorithm for the makespan. Consider the following two s
hedulesand sele
t the one having the better makespan: (1) assign all jobs to the fastest pro
essor, and(2) assign all jobs greedily to pro
essors having speed faster than half the average. More re
ently,Chudak and Shmoys [16, 17℄ obtained an O(log p)-approximation by using a linear programmingrelaxation to de
ide at whi
h speed ea
h task should run. Chekuri and Bender [14, 15℄ developeda 
ombinatorial approximation algorithm having the same asymptoti
 approximation ratio.Cilk S
heduler. Cilk is a parallel system with a s
heduler that has provable performan
e guar-antees. The Cilk s
heduling algorithm is entirely distributed and uses the idea of work stealing .Namely, if a pro
essor is idle, it randomly 
hooses another pro
essor, 
he
ks if the pro
essor hasextra work, and if so, steals some. The work is stolen in a way that avoids a large in
rease inmemory usage or in running time. The Cilk s
heduler works as follows. Ea
h pro
essor maintainsa double-ended queue, whi
h is 
alled a ready deque. Threads 
an be inserted and removed fromeither end of the ready deque. If a pro
essor has no lo
al work to do, it begins work stealing.The pro
essor uses its own ready deque as a sta
k but other pro
essors' deques as queues. Ea
hpro
essor i operates as shown in Figure 1. (For a more 
omplete introdu
tion to the Cilk s
hedulersee for example [12, 10℄.)2 High Utilization S
hedulesWe now provide a new analysis of the maximum utilization s
heduling poli
y. This s
hedulermaintains the following invariant. During ea
h time interval in whi
h there are exa
tly i readythreads, for ea
h i < p, the fastest i pro
essors exe
ute these tasks. If there are i � p ready threads,then all of the pro
essors work. Beyond this basi
 restri
tion, any pro
essor may exe
ute any task.Note that in order to maintain this invariant, the s
heduling poli
y must allow preemptions.The maximum utilization s
heduling poli
y is a O(pp)-approximation algorithm, but thereare other s
heduling algorithms that have 
omparable approximation ratios and that do not evenrequire preemption. Thus, the advantages of of the maximum utilization s
heduler are more subtle,and 
onsequently this s
heduling strategy has hardly been revisited. However, many of the others
heduling strategies su�er from the following drawba
ks: either they are too 
ompli
ated to beimplemented eÆ
iently, or they produ
e s
hedules that are qualitatively unsatisfa
tory.The maximum utilization s
heduler has a straightforward generalization, whi
h we 
all a highutilization s
heduler. In this s
heduler we relax the invariant so that at all times: if there are i,6



Cilk S
heduler1. The pro
essor 
hooses a vi
tim pro
essor j uniformly at random.2. If the vi
tim j's ready deque is empty, pro
essor i attempts to steal again.3. Otherwise, it steals the thread T from the top of the deque and begins exe
uting it. Thepro
essor begins working on thread T until one of three situations:(a) Thread T spawns a thread T 0. In this 
ase, the pro
essor puts T on the bottom ofthe ready deque and starts work on thread T 0.(b) The thread T returns or terminates. If the deque is not empty, the pro
essor beginsworking on the bottom thread. If the deque is empty, it tries to steal and exe
utethread T 's parent. Otherwise, if the parent is busy, the pro
essor attempts to worksteal.(
) The thread rea
hes a syn
hronization point. In this 
ase, the pro
essor attemptsto work steal. (Note that the deque is empty.)Figure 1: The Cilk S
heduler.i < p, ready threads, the fastest idle pro
essor is at most � times faster than the slowest busypro
essor. Thus, when � = 1, we obtain a maximum utilization s
hedule. This makespan of a highutilization s
hedule appears inferior to the makespan of a maximum utilization s
hedule, but mayhave the advantage of fewer preemptions.We demonstrate two advantages of high utilization s
hedules: (1) in the 
ommon 
ase in parallel
omputing, high utilization s
hedules are almost optimal, and (2) they 
onvey a straightforwardmessage to pra
titioners, run your parallel program on the fastest pro
essors that you 
an �nd, andthis may be all the optimization that is required. On a
tual systems su
h as the Cilk platform,the unembellished high utilization s
hedule may be too 
ompli
ated to implement. However, thestraightforward 
on
ept of using the fastest available pro
essors 
an be generalized. Thus, highutilization strategies are important be
ause of the guidan
e that they give in a
tual situations.Theorem 2 Any maximum utilization s
hedule has makespanTp � W1p �ave +  �2�1 + �3�2 + � � �+ �p�p�1! W1p �ave � W1p �ave + �p� 1p � W1�ave :Proof: We introdu
e an a

ounting tool. We postulate p�1 disjoint shadow threads ST2; ST3; : : :STp.Ea
h shadow thread is an imaginary 
hain of tasks. When a pro
essor i is unable to do any workon an a
tual thread , we say that the pro
essor begins working on its shadow thread STi.Consider any time interval in whi
h pro
essor i is idle and thus working on its shadow threadSTi. Sin
e not all pro
essors have a
tual work, we are assured that progress is being made on7



the 
riti
al path at the rate of the slowest working pro
essor. That is, sin
e only faster pro
essors1 : : : i� 1 may be working on the 
omputation, the 
riti
al path is advan
ing at a rate of at least�i�1 steps/time.Be
ause the 
riti
al path has length W1, pro
essor i 
an work on STi for �i=�i�1W1 timeunits. Pro
essor 1 is never idle. Therefore the total amount of work the pro
essors dedi
ate toa
tual and shadow threads is at most W1 + (�2=�1 + �3=�2 + : : : + �p=�p�1)W1: Be
ause thepro
essors operate at �tot steps/time we obtain the desired bound.Note that from the Theorem 2, we obtain Theorem 1 as a 
orollary. The makespan 
an bemarginally improved by more strategi
ally pla
ing pro
essors on threads. Namely, put the i-thfastest pro
essor on the i-th longest 
riti
al path. This poli
y guarantees that the 
riti
al pathprogresses at least at the average speed of the working pro
essors.Claim 3 Suppose that the maximum utilization strategy additionally maintains the invariant thatthe i-th fastest pro
essor exe
utes the thread that is i-th farthest from the end of the dag. Thisamounts to putting the fastest pro
essor on the 
riti
al path. Then the 
omputation has makespan.Tp � W1p �ave + "�2�1 + 2 �3�1 + �2 + 3 �4�1 + �2 + �3 + � � � + (p� 1) �p�1 + �2 + : : :+ �p�1# W1p �ave :Proof: As in Theorem 2, we introdu
e p�1 disjoint shadow threads ST2; ST3; : : :STp, where ea
hshadow thread is an imaginary 
hain of tasks. When a pro
essor i is unable to do any work on ana
tual thread , we say that the pro
essor works on its shadow thread STi.Consider any time interval in whi
h pro
essor i is idle and thus working on its shadow threadSTi. Sin
e not all pro
essors have a
tual work, progress is being made on the 
riti
al path at least asfast as the average speed of the working pro
essors. That is, sin
e only faster pro
essors 1 : : : i� 1may work on the 
omputation, the 
riti
al path advan
es at a rate of at least �1+�2+���+�i�1i�1steps/time.Be
ause the 
riti
al path has length W1, pro
essor i 
an work on STi for �i (i�1)�1+�2+���+�i�1 W1time units. Pro
essor 1 is never idle. Therefore the total amount of work the pro
essors dedi
ateto a
tual and shadow threads is at mostW1 + "�2�1 + 2 �3�1 + �2 + 3 �4�1 + �2 + �3 + � � � + (p� 1) �p�1 + �2 + : : :+ �p�1#W1 :Be
ause the pro
essors operate at �tot steps/time we obtain the desired bound.Unfortunately, this gain in makespan seems small in 
omparison to the potentially in�nitenumber of additional preemptions that this poli
y entails.The proof of Theorem 2 extends to prove the following theorem that provides a bound on themakespan of a high utilization s
hedule.Theorem 4 Any high utilization s
hedule has makespanTp � W1p �ave + �p� 1p � �W1�ave :8



We now provide a bound on the number of migrations in a high utilization s
hedule.Theorem 5 Consider a high or maximum utilization s
hedule of an arbitrary dag. If there are atotal of S1 threads, then there are at most 2S1 migrations.Proof: We divide the 
omputation into phases, S1; S1 � 1; : : : ; 2; 1, where in phase � the
omputation has � (in
omplete) threads. Within a phase, a 
omputation has no migrations atall. A phase begins when the number of a
tive threads (e.g., threads 
urrently being exe
uted bypro
essors) 
hanges.Assume without loss of generality (w.l.o.g.) that at most one thread 
ompletes at any time.(If two threads 
omplete simultaneously, we break the tie arbitrarily.) There are two 
ases forthe dynami
s of the s
hedule when a thread 
ompletes. (1) When a thread T� 
ompletes, no newthreads a
tive be
ome a
tive. Then the slowest 
urrently-a
tive pro
essor k migrates to the idlepool, and the pro
essor j on T� migrates to k's thread. (If we are lu
ky, the slowest 
urrently-a
tive pro
essor k is already on thread T�.) (2) When a thread T� 
ompletes, x new threads be
omea
tive. Then x� 1 pro
essors migrate from the idle pool to a new a
tive thread and one pro
essormigrates from the 
ompleted thread T� to a new a
tive thread.If ea
h migration requires an extra 
ost ofM , then we have a bound on the in
rease in makespanfrom Theorem 6 when migrations have a 
ost, namely 2MS1=p. The quantity M may in
lude the
ost to send the system state from one pro
essor to another or even may in
lude the 
ost to restarta thread from some previous 
he
kpoint.Theorem 2, Claim 3, and Theorem 4, whi
h bound the makespan of maximum and high uti-lization s
hedules, hold even when the speeds of pro
essors 
hange. Theorem 5, however, no longerapplies. Instead, the number of migrations in
reases as the pro
essors be
ome more errati
. Anopen question is to 
hoose the value of � that optimizes the makespan while avoiding too manymigrations.2.1 Performan
e in the Common CaseEven though the high utilization s
hedule is a O(pp) approximation algorithm for general dags, ondags that represent most parallel programs, the algorithm has a substantially better performan
e.In most parallel programs W1=p � W1 [12℄. An interpretation of this inequality is that theparallel program has enough inherent parallelism to justify the use of p pro
essors. Observe thatin Theorems 2 and 4, W1=�tot is a lower bound on the makespan, and when � > 1 is suÆ
iently
lose to 1, this quality dwarfs �W1=�ave. Therefore, even though the high utilization s
hedule is aO(pp) approximation for general dags, in the 
ase of dags representing typi
al parallel programs, itis almost optimal. This 
loseness to optimal is not true of the nonpreemptive O(pp) approximationalgorithm. 9



3 An Enhan
ed Cilk S
hedulerDire
t implementation of the the s
heduling poli
ies in the previous se
tion are impra
ti
al be
ausethey rely on global 
ontrol. However, the general design prin
iple of high utilization is 
riti
al, andwe apply this 
on
ept in Cilk s
heduling. In this se
tion we des
ribe an enhan
ed Cilk s
hedulerthat runs 
orre
tly and robustly even when pro
essors have di�erent speeds. Moreover, whenthe pro
essors run at similar speeds, our new s
hedule behaves identi
ally to the standard Cilks
heduler. Thus, an important feature of our s
heduler is that it is extremely similar to the originals
heduler at a small 
ost in algorithmi
 
omplexity.In this algorithm there are two kinds of migrations: steals and muggings . In a steal, a pro
essorbegins working on a thread at the top of another pro
essor's ready deque. In a mugging, thereis no work on another pro
essor's ready deque, and so the pro
essor \mugs" a pro
essor that isslower by at least a � fa
tor and takes the thread that the slower pro
essor was working on. Thepseudo
ode for the Enhan
ed Cilk S
heduler appears in Figure 2.Enhan
ed Cilk S
heduler1. Pro
essor i 
hooses a vi
tim pro
essor j uniformly at random.2. If the vi
tim j's deque is not empty, it steals the thread T from the top of the deque.3. If the vi
tim j's deque is empty, but the vi
tim is working on a thread T and its speedis � times slower than pro
essor i, then i mugs j, that is, i interrupts j and takes thethread T .4. If pro
essor i has lo
ated a thread T , i works on T until one of four situations:(a) Thread T spawns a thread T 0. In this 
ase, the pro
essor puts T on the bottom ofthe ready deque and starts work on thread T 0.(b) The thread T returns or terminates. If the deque is not empty, the pro
essor beginsworking on the bottom thread. If the deque is empty, it tries to steal and exe
utethread T 's parent. Otherwise, if the parent is busy, the pro
essor attempts to worksteal.(
) The thread rea
hes a syn
hronization point. In this 
ase, the pro
essor attemptsto work steal. (Note that the deque is empty.)(d) Pro
essor i is mugged and the thread T is migrated to another pro
essor. In this
ase, pro
essor i attempts to work steal.5. Otherwise, there is a failed steal attempt; pro
essor i tries to steal again.Figure 2: The Enhan
ed Cilk S
heduler.10



If all pro
essors operate at speeds within an � fa
tor of ea
h other, then there are no muggingsand the s
heduler behaves like the standard Cilk s
heduler. The parameter � 
an be tuned tooptimize system performan
e.Indeed, it is not even ne
essary to de�ne a parti
ular value of �. That is, our algorithm stillworks for any � > 1, i.e., pro
essor i mugs pro
essor j only if �i > �j . The advantage of introdu
ing�, is that it redu
es the number of migrations. Optimizing the value of � is an topi
 of future work.3.1 Design Assumptions and Changing SpeedsWe make the following additional assumptions: (1) Ea
h pro
essor steals at a rate proportional toits speed. (2) Steals and steal attempts are 
ompleted in an amount of time that is proportionalto the speed of the pro
essor doing the stealing/mugging. It is important that the steal responseson the platform do not depend on the speed of the vi
tim pro
essor be
ause otherwise the slowestpro
essor 
an delay the entire system.2 There are several ways to ensure this design prin
iple. Forexample, there might be a bound on the ratio between the fastest and slowest pro
essor. We 
ouldalso require some me
hanism for 
ommuni
ating steal attempts, su
h as a shared memory, thatallows one pro
essor to look dire
tly into the deques of other pro
essors.The Enhan
ed Cilk S
heduler is designed to be eÆ
ient when speeds 
hange. This is be
ausethe s
heduler relies on brief intera
tions between pairs of pro
essors, rather than global 
ontrol.The pro
essors do not have to store information about the speeds of other pro
essors, whi
h mightqui
kly be
ome out of date. However, as the pro
essors be
ome more errati
, there may be addi-tional steals and muggings.The following se
tion bounds the running time and number of steals and muggings in the 
asewhen the pro
essors speeds do not 
hange by too mu
h. The performan
e of the algorithm degradesgra
efully as the speeds be
ome more errati
. An important open question is to optimize the valueof � to remove unne
essary muggings.3.2 AnalysisWe now analyze the running time of the Enhan
ed Cilk S
heduler. We prove the following perfor-man
e guarantee.Theorem 6 With high probability the exe
ution time Tp of the enhan
ed Cilk S
heduler is boundedas follows: Tp � W1p �ave + O�W1�ave� :We use an a

ounting argument to prove Theorem 6. Observe that at all times a pro
essor iseither (1) exe
uting an instru
tion, or (2) attempting to steal (and perhaps a
tually stealing or2If the steal attempts run at the speed of the vi
tim pro
essor then the work-stealing approa
h 
annot haveguaranteed good performan
e. This is be
ause the root thread of the 
omputation may reside on a pro
essor that isentirely stopped, and the 
omputation 
annot pro
eed. 11



mugging). For simpli
ity of analysis, we assume that ea
h of these operations requires one unit ofwork. (In fa
t, exe
uting an instru
tion is likely to be mu
h faster and so in our analysis we 
angroup multiple instru
tions together.)We postulate two bu
kets that we use for a

ounting, a work bu
ket and a steal bu
ket . Ea
htime a pro
essor 
ompletes a unit of work on the dag it puts one dollar into the work bu
ket; ea
htime a pro
essor 
ompletes a steal attempt (su

essful or not) it puts one dollar into the stealbu
ket. (This approa
h was used in the original paper of [12℄ and in mu
h of the subsequent workon Cilk.) There are �tot dollars that enter the bu
kets per unit of time. Therefore, if at the end ofthe 
omputation, there are a total of D dollars in both bu
kets, then the 
omputation ran in timeD=�tot.Computing the number of dollars in the work bu
ket is straightforward, be
ause ea
h time thepro
essor 
ompletes one unit of work, it puts a dollar in the work bu
ket.Observation 1 At the end of the 
omputation there are a total of exa
tly W1 dollars in the workbu
ket.We now use a potential-fun
tion argument to prove a bound on the number of dollars in thesteal bu
ket. This argument is an extension of the result in [1, 8℄ and begins with some de�nitions.De�nitions. For any (nonroot) node v, suppose that node u is the last of v's parents to be exe
uted.Then we say that the exe
ution of node u enables node v. Node u is 
alled the designated parentof v and edge (u; v) is 
alled the enabling edge. The graph 
omposed of all the enabling edges is
alled the enabling tree. The node that is being exe
uted at time t by pro
essor i is 
alled theassigned node of pro
essor i at time t. We assign weights to all of the nodes, so that we 
an usethese weights in a potential fun
tion argument. Let d(u) denote the depth of node u in the dag,i.e., the distan
e to the root node. Ea
h node u has weight w(u) = W1�d(u), so that nodes 
loserto the root have larger weight.We now present the potential fun
tion from [1, 8℄, whi
h we will use. Let Rt be the set of readynodes at time t. Ea
h node is either in some deque or assigned to and exe
uted on some pro
essor.For ea
h ready node v 2 Rt, we de�ne its potential �t(v) as�t(v) = ( 32�w(v)�1 if v is assigned;32�w(v) otherwise.We let �t(i) denote the sum of the potentials of the nodes on pro
essor i at time t. We let�t = Ppi=0 �t(i) be the value of the potential fun
tion at time t. Thus, the initial potential is32�W1 be
ause the root node has depth 0 and is initially unassigned. The �nal potential is 0be
ause all nodes have been 
ompleted.Now supplied with these de�nitions, we show that the Stru
tural Lemma of the deques from [1, 8℄still holds in the heterogeneous setting. This lemma guarantees that for any deque at all timesduring the exe
ution of the work stealing algorithm, the designated parents of the nodes in thedeque lie on the root-to-leaf path in the enabling tree.12



Lemma 7 ([1, 8℄) Let k be the number of (ready) nodes in a given deque at any time t, andlet v1; v2; : : : ; vk denote these nodes ordered from bottom to top. Let v0 be the assigned node. Inaddition, for i = 1 : : :k, let ui be the designated parent of vi. Then for i = 1 : : :k, node ui is anan
estor of ui�1 in the enabling tree. Moreover, although it may be that u0 = u1, for i = 2 : : :k,ui�1 6= ui. Thus, the weights of the nodes in
rease from bottom to top, that is, w(v0) � w(v1) <w(v2) < : : : < w(wk).Proof: The proof is by indu
tion on times in whi
h the stru
ture of the deque 
hanges, as in [1, 8℄.There are �ve possible ways that the deque may 
hange: (S) The top node of the deque is stolen;(E0) The assigned node enables 0 
hildren; (E1) The assigned node enables 1 
hildren; (E2) Theassigned node enables 2 
hildren; (M) The pro
essor is mugged and the assigned node is moved toa faster pro
essor. The �rst four 
ases are des
ribed and analyzed in the proof in [1, 8℄.The 
ase of muggings, whi
h is unique to the heterogeneous setting, is trivially integrated intothe 
orre
tness proof. After a mugging, the mugged pro
essor has no assigned tasks and an emptydeque, and the mugging pro
essor has an assigned task but an empty deque. Thus, the 
laimfollows trivially in the 
ase of muggings be
ause there is that most one node.The Stru
tural Lemma enables us to prove the following observation:Observation 2 ([1℄, Lemma 6) For any pro
essor at time t during the exe
ution of the s
hedul-ing algorithm, the potential of the topmost nodes in the deques 
ontributes at least 3=4 of thepotential asso
iated with the pro
essors that have nonempty deques.We now divide the 
omputation into phases , whi
h are de�ned indu
tively by when steal at-tempts o

ur. The �rst phase begins at time t = 0, the start of the 
omputation, and it ends after(�+2)p steal attempts have o

urred. (Re
all the de�nition of �: in order for a pro
essor i to muga pro
essor j, it must be that �i > ��j .) The i-th phase begins at the end of the (i� 1)-th phaseand 
ompletes after (� + 2)p additional steal attempts have been made.Theorem 8 There is at least a 
onstant probability that within ea
h phase, the potential drops byat least a 
onstant fa
tor. Therefore, there are at most O(logn) phases, both expe
ted and with highprobability.Proof: At any time t we partition the potential �t = Dt+St+Ft into 3 disjoint 
omponents. The
omponent Dt is asso
iated with pro
essors whose deque 
ontains nodes. The rest of the potentialis asso
iated with pro
essors that have empty deques, but whi
h may have assigned nodes. Wedivide this remaining potential into 
omponents asso
iated with pro
essors we de�ne as slow andfast respe
tively. A pro
essor i is 
alled slow in phase `, if during phase `, the pro
essor does nothave time to �nish exe
uting the node that it was working on when the phase began. A pro
essori is 
alled fast otherwise.We �rst 
onsider the potential Dt asso
iated with the set of pro
essors whose deques are notempty. Re
all that at least 3=4-th of the potential from nodes in the deques is exposed to stealsat the top of the deques. Consequently, be
ause there are (2 + �)p steal attempts in any phase13



and the probability that a given steel attempt does not steal from a given deque is (1� 1=n), theprobability that there is no steal attempt in a deque is at most e�(2+�). When the node at the topof the deque is stolen, the potential of this node de
reases by a fa
tor of 2=3 be
ause the node isnow assigned to a pro
essor.Let value Q be the sum of the potentials of the nodes at the top of the deques. Thenthe expe
ted value of the remaining potential of these nodes after the phase ends is at moste�(2+�)Q+ (1� e�(2+�)) 2Q=3. Therefore, by the Markov inequality, there is at least a 
onstantprobability that the potential asso
iated with these nodes de
reases by at least a 
onstant fa
tor.Consequently, by Corollary 2, with at least a 
onstant probability the potential asso
iated with allthe nodes in those deques de
reases by at least a 
onstant fa
tor.We now examine the 
omponent Ft of the potential, that is, the potential asso
iated with fastpro
essors having empty deques at the start of phase `. For any su
h pro
essor i, the 
ompletion ofi's assigned node 
auses the potential to de
rease by at least a 
onstant fa
tor be
ause i's originalassigned node will be 
ompleted.Finally, we examine the 
omponent St of the potential, that is, the potential asso
iated withslow pro
essors having empty deques at the start of phase `. In order to redu
e the potential ofa slow pro
essor i that 
ontributes to St, another pro
essor j must (1) 
hoose to mug pro
essori, and (2) 
omplete one node of the thread that it obtained from pro
essor i. In order to mug i,pro
essor j must be more than � times faster than pro
essor i. How many steal attempts are therein phase ` that satisfy these 
onditions? Any pro
essor that makes � + 2 steal attempts in thephase must be more than � times faster than pro
essor i, whi
h does not even �nish exe
uting onenode. Consequently, in (� + 2)p steal attempts, there will be at least p steal attempts that satisfyall of these 
onditions. Therefore, the probability that any given slow pro
essor is not mugged isat most 1=e. Let value Q0 be the sum of the potential of the nodes being exe
uted by the slowpro
essors. Then the expe
ted value of the remaining potential of these nodes after the phase endsis at most Q0=e. Therefore, by the Markov inequality, there is at least a 
onstant probability thatthe potential asso
iated with these nodes de
reases by at least a 
onstant fa
tor.By 
onsidering all three 
ases, we 
on
lude that there is at least a 
onstant probability thatthe total potential de
reases by at least a 
onstant fa
tor. Therefore, an appli
ation of Cherno�Bounds [33℄ demonstrates that after at most O(W1) phases the potential has de
reased until it iszero, both expe
ted and with high probability.From Lemma 8, we 
on
lude that there are at most O(�W1p) steal attempts and 
onsequentlyO(�W1p) dollars in the steal bu
ket. Therefore, the running time of the algorithm is W1=(p�ave)+O(�W1�ave), whi
h �nishes the proof of Theorem 6.4 A
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