LecTix: A Lecture-Multimedia Player
by
Timothy D. Olsen

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2005
(© Massachusetts Institute of Technology 2005. All rights reserved.

Department of Electrical Engineering and Computer Science
June 7, 2005

Certified Dy . ...
Charles E. Leiserson

Professor

Thesis Supervisor

Accepted by ..o
Arthur C. Smith

Chairman, Department Committee on Graduate Students






LecTix: A Lecture-Multimedia Player
by
Timothy D. Olsen

Submitted to the Department of Electrical Engineering and Computer Science
on June 7, 2005, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

LecTix 2.0 is a multimedia player designed specifically for the playback of recorded
classroom lectures. LecTix 2.0 plays multimedia consisting of synchronized audio,
video, and PowerPoint-style slides. In addition to controls commonly found in multi-
media players, LecTix 2.0 features controls designed specifically for lecture-multimedia
playback such as customizable skip, variable-speed playback with pitch-normalization,
and a browsable timeline of slides.

LecTix 2.0’s features contribute to its being usable, widely available, and exten-
sible. LecTix 2.0’s automatic media synchronization and large, externally consistent
controls for navigation make for a learnable, memorable, and efficient user interface.
LecTix 2.0’s open-source implementation using the Java Media Framework allows it to
be freely distributable, portable, and convenient to use without a network connection.
LecTix 2.0’s media class hierarchy, events, and lecture description result in a modular
player that can be extended to support new media types without recompilation of
the player’s core.

In addition to presenting LecTix 2.0, this thesis reviews seven players in use today.
I compare them to LecTix 2.0 in terms of usability, availability, and extensibility. I
also present a case study of the production of lecture multimedia and the use of an
early version of LecTix in an introductory algorithms course.

Thesis Supervisor: Charles E. Leiserson
Title: Professor






Acknowledgments

I have taken a round-about journey to get to this point, but I have finally made it.
Without people to support and encourage me, I wouldn’t have made it this far.

I thank my advisor, Charles Leiserson, for his patience, advice, and insight. He’s
made a better writer out of me. Professors like him are what make MIT so great.

I thank my parents and my sister for their never ending love and support, and for
knowing not to bother me while I wrote “the thesis.”

Members of the Supercomputing Technologies Group provided feedback on LecTix
and friendship. I thank Kunal Agrawal, Elizabeth Basha, Michael Bender, John
Danaher, Leigh Deacon, Jeremy Fineman, Zardosht Kasheff, Angelina Lee, Bradley
Kuszmaul, Sid Sen, Gideon Stupp, and Jim Sukha.

I thank the people who have worked on LecTix and those who continue to do so.
In particular, I thank Kai Huang and Luis F. G. Sarmenta. Luis also provided well
thought-out advice on the thesis document.

I thank Charles Leiseron, Tomas Lozano-Perez, and the Singapore-MIT Alliance
for funding my research. This project never would have gotten done without the
support.

Rob Miller’s course on user interface design and implementation was essential to
LecTix 2.0’s implementation. I thank him and Min Wu for imparting their knowledge
to me and offering their invaluable feedback. I also thank the students who performed
a heuristic evaluation of what was an atrocious prototype of LecTix: Alex Faaborg,
Albert Leung, Andrew Perelson, and Anson Tsai.

Numerous other people provided feedback on LecTix. I especially thank Tom
Lasko, Larry Rudolph, and Bill Thies. Bill Thies also took slide timings for the
course 6.046: Introduction to Algorithms.

I thank the people from MIT’s Academic Production Media Services for capturing
lecture videos and providing copies for me. 1 especially thank Joanne Flood, Craig
Milanesi, and Peter Hess.

I thank Alejandro Caro for being a great and patient manager while [ worked at

5



Akamai Technologies. He helped me to become a better person.

I thank my friends who have stuck with me through thick and thin: Greg Ander-
son, Michael Collier, Rachel Craig, Alex Dzindolet, Gene Fierro, Lizzy Hickey, Effie
Hios, Oliver James, Rhiannon Jordan-Woodbury, Matt Lalime, Gabe Law, Betty Li,
Celeste Loetz, Mike McGlothin, Vicky Medina, Erick Medina, Diego Medina, Becca
Nathan, Ernesto Pascaul, Kenny Perry, Ian Scott, Jaime Tayag, Kat Troncellito,
Brett Wiesner, and James Williams. These folks have always kept it real. They're
my family.

I thank Xiaolu Hsi, Marcia Yousik, and Kim McGlothin for their support. I never
would have made it this far without them.

And I thank MIT for generous financial aid and for teaching me how to use my
brain. I graduate smarter and more knowledgeable than I was ten years ago.

Images of PowerPoint slides shown in Figures 1-2, 2-1, 2-2, 4-4, 5-4, and 5-7 are

reproduced by permission from Charles E. Leiserson.



Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2

LecTix 2.0: A Lecture-Multimedia Player . . . . . . . ... ... ...

Organization of the Thesis . . . . . . . ... ... ... .. ... ...

2 Usability

2.1
2.2

Attributes of Usability . . . . . . ... . ... ... L.
Features of LecTix 2.0 that Contribute to Usability . . . . .. .. ..
2.2.1 Large Controls . . . . .. ... .. .. ... .. ...
2.2.2  Externally Consistent Controls . . . . . ... ... ... ...
2.2.3 Navigation Controls . . . . . ... .. ... .. ... .. ...
2.2.4 Media Synchronization . . . . . .. ... ...
2.2.5 Variable-Speed Playback . . . . . ... ... ... ... ....

3 Availability

3.1
3.2

3.3

Attributes of Availability . . . . . ... ... oo
Features of LecTix 2.0 that Contribute to Availability . . . . . . . ..
3.2.1 The GNU General Public License . . . . . .. ... ... ...
3.2.2  The Java Programming Language . . . . . . . ... ... ...
3.2.3 Java Media Framework . . . . . . .. .. ... 0oL

Restrictions on Contemporary, State-of-the-Art Codecs . . . . . . ..

7

11

13
15
17

19
19
20
20
21
22
25
29



3.3.1 Specifications, API’s, and Royalties . . . . . . ... ... ...

3.3.2  Portability of Vendors’ Players . . . . . . . .. ... ... ...

4 Extensibility

4.1 Attributes of Extensibility . . . . .. ... ... ... ... .. .. ..

4.2 Features of LecTix 2.0 that Contribute to Extensibility . . . . . . ..
4.2.1 The GNU General Public License . . . . . . ... ... ....

4.2.2 'The Java Programming Language . . . . . . . ... ... ...
4.2.3 Media-Class Hierarchy . . . ... ... ... ... ... ....
4.2.4 Media Events . . . . . .. ... Lo

4.2.5 Lecture Description . . . . . . . ... ... 0L

5 Related Work

5.1 Columbia Video Network . . . . . . . . . . . . . . . ...,

5.2 IIT Online .

5.3 Microsoft Producer . . . . . . . ... ...
5.4 Singapore-MIT Alliance . . . . . .. ... ... ... ... ......
5.5 Stanford Online . . . . . . . . .. ..o
5.6 University of Minnesota UNITE . . . . . . ... ... ... ......

5.7 LecTix 1.3 .

5.8 Comparison of Players to LecTix 2.0 . . . .. ... ... ... ....

6 LecTix 1.3 Case Study

6.1 Production of Lecture Multimedia . . . . . . . . . . . . .. ... ...

6.2 Student Reaction to LecTix 1.3 . . . . . . . . . . . . . . . ... ...

7 Conclusion

7.1 LecTix 2.0 Contributions . . . . . . . . . . . . . . . . ...

7.2  Future Work

Glossary

Bibliography

43
43
44
45
46
47
49
54

57
58
28
60
60
64
64
67
68

73
73
76

77
77
78

79

81



List of Figures

1-1
1-2

2-1
2-2
2-3

RealPlayer . . . . . . . . . . . 14
LecTix 2.0’s main components. . . . . .. .. ... ... ....... 16
LecTix 2.0 and RealPlayer’s real-world controls. . . . . . . ... ... 22
LecTix 2.0 controls . . . . . . . . ... .. ... ... 23
Segment synchronization vs. trigger synchronization . . . . . . . . .. 28
Layers of LecTix 2.0’s extensibility. . . . . . ... .. ... ... ... 45
LecTix 2.0 media-class hierarchy . . . . . .. ... .. ... ... ... 48
Event-support classes and interfaces . . . . . . .. ... ... ... .. 51
Advancing aslide . . . . . . ... ... 53
A lecture description file . . . . . ... ... oL 55
Columbia Video Network . . . . . .. ... ... ... ... ... ... 59
[T Online . . . . . . . . .. 61
Microsoft Producer . . . . . . . . ... oo 62
Singapore-MIT Alliance . . . . . ... ... ... .. ... ...... 63
Stanford Online . . . . . . . .. ... o o 65
UNITE . . . . 66
LecTix 1.3 . . . . o o o 67
Production work-flow for 6.046: Introduction to Algorithms . . . . . . 75



10



List of Tables

2.1

3.1
3.2
3.3
3.4
3.5

4.1
4.2

5.1
5.2
5.3

6.1

LecTix 2.0 features that contribute to usability . . . ... ... ... 20
LecTix 2.0 features that affect availability . . . . .. ... ... ... 32
Java Virtual Machine ports . . . . . . . .. ... oL 34
Java Media Framework video-codec support by platform . . . .. .. 36
Openness of state-of-the-art formats and codecs . . . . . ... .. .. 39
State-of-the-art formats and codecs: players and ports. . . . . . . .. 41
LecTix 2.0 features that contribute to extensibility . . . . .. .. .. 44
LecTix 2.0 media events . . . . . . . . . . . . . . ... ... ..... 49
Expanded list of features that contribute to usability . . . . . . . .. 69
Reviewed players’ features that affect usability . . . . . ... ... .. 70
Reviewed players’ availability . . . . ... ... ... ... .. .... 70
Downloads for LecTix 1.3 and lecture-multimedia . . . . . .. . . .. 76

11



12



Chapter 1

Introduction

Distance education and e-learning hold the promise of anytime, anywhere education.
These technologies can be essential for learners place-bound by factors such as em-
ployment, child-care demands, disability, or remoteness of the location where they
live [39]. Other learners may simply prefer not to have their schedules constrained
by a class or a tutor. In this context, the lecture-multimedia player has arisen as a

fundamental e-learning tool.

From Multimedia Players to Lecture-Multimedia Players

To understand what a lecture-multimedia player is, we must first understand what a
multimedia player is. Figure 1-1 shows RealPlayer [38|, a popular multimedia player.
Like most multimedia players, RealPlayer is designed primarily for listening to music
or online radio, and for watching movie trailers, music videos, news clips, and the
like.

RealPlayer’s user interface reflects this design. A large portion of space is devoted
solely to the video. Controls lie along the bottom of the player, allowing the user to
play, pause, seek to any point in time, and adjust the volume.

Lecture-multimedia players extend the capabilities of regular multimedia players
by offering additional features geared toward viewing lectures. They play audio and
video like other multimedia players; however, they also present additional multimedia

relevant to the lecture (such as PowerPoint-style slides), and extra controls for quick

13



F @alﬂajﬂer File  Miew Play Favorites Tools Help @ - 0O X '

.|v

00 kbps

&) Mow Playing || {Paused) Lards of Dogtown - Trailer - Sony Fictures Entet () [ 1T} 0:55 [ 241
-:’\_ @ - i PP - _.__.1_.—_—_.2-_21_‘ @"_'_)_
L_ @ Real Gui;:!e 0 Music & My Library Iﬂ Iusic Store J
Controls Video

Figure 1-1: RealPlayer: a multimedia player by RealNetworks.

14



navigation. Lecture-multimedia players feature extra navigation controls because

students often want to watch a specific part of a lecture.

1.1 LecTix 2.0: A Lecture-Multimedia Player

This thesis presents LecTix 2.0, a lecture-multimedia player I designed and imple-
mented to be usable, “available,” and extensible.

LecTix 2.0’s user interface is designed specifically for interactive viewing of lecture-
multimedia. Shown in Figure 1-2, LecTix 2.0 plays audio, video, and accompanying
PowerPoint-style slides. The user interface also includes a control panel and a brows-
able time line of the slides. In addition to the controls common in regular multimedia
players for playing, pausing, seeking, and adjusting volume, LecTix 2.0 has controls
for skipping forward or backward a customizable number of seconds, browsing through
the slides, and adjusting playback speed.

LecTix 2.0 is a product of the LecTix project, a research effort to design and
implement a lecture-multimedia player. The LecTix project identifies three properties

that a lecture-multimedia player should have:

o Usability: The lecture-multimedia player should be easy, practical, and pleasant

to use.

e Awailability: Students should be able to obtain the player at a low cost (ideally,
free), and use it to view a lecture anywhere, anytime, in any format, and on the

computing platform of their choice.

o Futensibility: 1t should be possible to add new features—in particular, sup-
port for new media types. Ideally, adding new media types should not require

recompilation (a new release) of the player.

This thesis shows how the design and implementation of LecTix 2.0 attempts to
attain each of these three properties. Overall, it successfully does so; LecTix 2.0 is

usable, extensible, and moderately available.

15



Video

Edit  View

Help

Current Slide

e Solving a
=" constraint

Linear programming Where each row of .| contains
exactly one 1, one - 1, and the rest 0s.

stem of difference

Example: Solution:
Xi—%,<3 2 =3
LA Tl T g =
b AR -2 ;=X S Wy x=0
X — %<2 Xy =2
LU e
Constraint graph: (Thc. -
. .  matrixhas
X=X SwWy I:) \\l)‘—r“ y.) dimensions
' ' < Elx )

© 20014 by Charles E. Leiserson Infrodhction to Algormthms

Howember 3, 1004

0:50:00

0:52:42

qrin, 2 (els] L]
0:53:18 ¢ 7 L Stow | E
—— g Sob iuxlnu:_mtﬂu af differe o Sobving ;;;Jsslwn af difference

oy Solvimg & system of difference
- inis

T Unsatisfiable constraints

0 Unsatis fable constraints

Comatrai pragth

- (-

/]
/i

Control Panel

Slide Timeline

Figure 1-2: LecTix 2.0’s main components.

16




LecTix 2.0 successfully achieves usability and extensibility. LecTix 2.0 achieves
usability by offering an automatically synchronized presentation and large controls for
navigation that are consistent with the real world. LecTix 2.0 achieves extensibility
by being open-source and featuring a decoupled, modular class hierarchy with support
of the addition of new media types without recompilation of the LecTix core.

With regard to availability, however, LecTix 2.0 is only moderately successful. In
the United States and other countries where ideas in software can be patented, a
conflict of availability arises that pits the distributability and portability of a player
against its compatibility with contemporary patented codecs. LecTix 2.0 gives up

some compatibility so that it can be a free, open-source, portable player.

1.2 Organization of the Thesis

This thesis contains seven chapters, a glossary, and a bibliography.

Chapter 2: Usability This chapter describes the features of LecTix 2.0 that con-
tribute to its usability. Usability is broken down into five attributes as identified by
Nielsen [31]. Each attribute is shown to be addressed by a feature in LecTix 2.0. The
chapter also presents LecTix 2.0’s controls and compares different methods of media

synchronization.

Chapter 3: Availability This chapter describes the features of LecTix 2.0 that
affect its availability. Availability is broken down into four attributes, and the features
of LecTix 2.0 that affect each of the four attributes are discussed. The chapter also
gives an overview of the restrictions and fees associated with the implementation and
distribution of state-of-the-art codecs (MPEG-4, RealVideo, Sorenson, and Windows
Media Video) and why these restrictions and fees pose problems for open-source

players.

Chapter 4: Extensibility This chapter describes the features of LecTix 2.0 that

contribute to its extensibility. Extensibility is shown to consist of three attributes,

17



each of which are addressed by features of LecTix 2.0. Features that are discussed

include the media-class hierarchy, event mechanism, and lecture description.

Chapter 5: Related Work This chapter reviews seven lecture-multimedia play-
ers. It compares the features of the seven players and LecTix 2.0, and discusses how

those features affect the usability, availability, and extensibility of each player.

Chapter 6: LecTix 1.3 Case Study This chapter discusses the use of the prior
version of LecTix, LecTix 1.3, in the course, 6.046: Introduction to Algorithms. The

chapter also describes the methods used to produce lecture multimedia for the class.

Chapter 7: Conclusion This chapter concludes with comments on the contribu-

tions of LecTix 2.0 and the LecTix project. Ideas for future work are also presented.

Glossary 'The glossary defines terms that might be unknown to readers unfamiliar

with distance education or multimedia.

Bibliography The bibliography lists works that have enabled me to “stand on the
shoulders of giants” |7].

18



Chapter 2
Usability

While usability is important in any software that interacts with a user, lecture-
multimedia players place a greater than usual emphasis on the user due to its focus
on the user interface. Other features such as reliability and performance directly im-
pact the usability of a player. This chapter looks at the five attributes that compose
usability as defined by Nielsen [31] and demonstrate how LecTix 2.0 contributes to

each of these five attributes, hence making it a usable lecture-multimedia player.

2.1 Attributes of Usability

Overall, usability is the degree to which a system is easy, practical, and pleasant to

use. The attributes of usability as defined by Nielsen [31] are:

o Learnability: The degree to which the system is easy to use.

o Efficiency: The degree to which the system can be used efficiently, once the

user has learned the system.

o Memorability: The degree to which it’s easy to remember how to use the system,

even if used infrequently.

e Few and Noncatastrophic Errors: The degree to which there are few errors, the

degree to which those errors are discovered by the user, and the degree to which

19



Table 2.1: LecTix 2.0 features that contribute to usability

Feature Learnability Efficiency Memorability Few Errors Satisfaction
Large Controls — v — v —
Real-World Controls v — v v —
Navigation — v — — v
Synchronization — v — v v
Variable-Speed — v — v v

those errors do not destroy the user’s work.

o Satisfaction: The degree to which the system is pleasant to use.

These five attributes compose usability. A player that addresses all five issues is

considered usable.

2.2 Features of LecTix 2.0 that Contribute to Us-
ability

Five features of LecTix 2.0 contribute to the five attributes of usability. These five
features are (1) large controls, (2) controls that match the real world, (3) controls
for navigation, (4) media synchronization, and (5) variable-speed playback. Table 2.1

shows which usability attributes each feature contributes to.

2.2.1 Large Controls

Large controls contribute to high efficiency and few errors. Large controls are more
quickly hit than small controls. Furthermore, users are less likely to accidentally miss
hitting them.

LecTix 2.0’s large controls take advantage of Fitts’s Law [12] so that they can
be more quickly hit, thereby improving efficiency. Fitts’s Law states that the time
to move the pointer to a target is proportional to the logarithm of the ratio of the

width of the object to its distance from the pointer. MacKenzie proposed the slightly

20



different but more accurate Shannon formulation of Fitts’s Law [26]:

D
T = a+ blog, (W+1) , (2.1)

T is the average time to move to the target, a and b are empirically determined
constants, D is the distance to the center of the target, and W is the width of the
target measured along the axis of motion. As we can see, increasing W, the width of
the target, decreases 7', the time to hit the target.

Large icons also reduce the probability of an error occurring. An error occurs
when the user, thinking he or she has hit the target, actually misses the target and
clicks the mouse anyway. In Equation 2.1, W is the maximum distance (along the
axis of motion) from the center of the target that the user can position the pointer
to correctly hit the target. Card, Moran, and Newell showed Fitts’s Law could be
derived by modeling the movement to the target as a series of successive movements
until the pointer hits the target [5]. Each successive movement carries with it a
probability that the user misses the target. Once the user thinks he or she has hit the
target, movement can end. Therefore, as W increases, the user needs fewer successive
movements on average to hit the target. With fewer chances for the user to mistakenly

think he or she has hit the target, the probability of an error occurring decreases.

2.2.2 Externally Consistent Controls

Controls that match the real world, or externally consistent controls, contribute to
high learnability, high memorability, and few errors. Users can quickly learn, easily
remember, and correctly interpret the purpose of these controls.

The labeling of LecTix 2.0’s controls matches the user’s intuition well, allowing the
user to quickly learn and remember their functions. Figure 2-1 shows how LecTix 2.0’s
rewind and fast-forward buttons compare to those of RealPlayer. LecTix 2.0 labels
the rewind and fast-forward buttons consistent with the VCR. RealPlayer, on the
other hand, relegates the rewind and fast-forward to be secondary functions of the

previous-clip and next-clip buttons. To rewind or fast-forward, users must hold down

21



Figure 2-1: LecTix 2.0’s rewind and fast-forward buttons (left) better match the real world
than RealPlayer’s (right). Despite rewind and fast-forward being useful functions for lecture
viewing, RealPlayer maps the buttons’ primary functions to previous-clip and next-clip. To
rewind or fast-forward, the user must hold down one of the buttons—a procedure not readily
apparent. Many users may not even realize that RealPlayer can rewind or fast-forward.

the previous-clip or next-clip button, respectively. It may not be apparent to do
so, potentially leaving many users unknowledgeable that the player can rewind or

fast-forward.

2.2.3 Nayvigation Controls

Controls for navigation contribute to high efficiency and satisfaction. A variety of
controls for navigation ensures an appropriate control is used for the task at hand.
Using the appropriate control increases efficiency and decreases frustration which
leads to increased user satisfaction.

To get an idea of the range and versatility of LecTix 2.0’s controls, I describe each
control in turn and then present scenarios for which a particular control shows most
useful.

Shown in Figure 2-2, LecTix 2.0 provides controls typical of multimedia play-
ers, as well as controls designed specifically for lecture viewing. The controls of
LecTix 2.0 typically found in multimedia players include play, pause, rewind, fast-

forward buttons, and seek and volume sliders. The controls designed specifically for

22



M . -
| . Solving a system of difference
i~ constraints

Linear programming where each row of .| contains
exactly one 1, one -1, and the rest 07,
Example: Solution:
X -%<3 X, =3
X% <=2 r X-x<wy x,=0

<2 =2

X — %352

Constraint graph: (ThC. A

—~ . o~ Iainx has

Play / Pause =X S Wy I:> ( j—«:) dimensions
] x [V

: © 20014 by Chardes E. Laserson introdurtion to Algorithms. Movember 3, 2004 L1535

Rewind =" Speed
Fast p
% mal
Fast-Forward [stow | 1 ﬁ Volume
m

Seek (

b ' 4 )
0:48:4 0:50:00 0:52:42 ; .[l:55:41 0:56:30 0:58:!
1 \\ y
Slide Timeline Skip Back / Forward Previous / Next Slide

Figure 2-2: LecTix 2.0 controls.

lecture-viewing are customizable skip-back and skip-forward buttons; previous- and
next-slide buttons; an interactive slide timeline; and a speed slider with shortcuts for

slow, normal, and fast settings.

As is common in many media players, there is one button to play and pause. This

button toggles between a play state and a pause state.

Unlike many media players (but similar to many VCRs), the rewind and fast-
forward buttons are also toggle buttons. Clicking on the rewind button, for example,
begins rewinding. The user can then click on rewind button or play button to stop
rewinding. This interface removes the need for the user to hold down a button while

rewinding or fast-forwarding.

While rewinding or fast-forwarding, LecTix 2.0 moves the video along accordingly.
This feature is an improvement over RealPlayer (Figure 1-1, page 14) which pauses

the video until rewinding or fast-forwarding is completed.

The seek slider allows the user to quickly jump to any point in the lecture, but

23



with low accuracy.

The skip-back and skip-forward buttons enable the user to skip back or forward a
specific amount of time. Underneath the skip-back and skip-forward-buttons are two
dials for customizing the number of seconds to skip.

To the right of the skip buttons are the previous- and next-slide buttons. These
allow the user to quickly scan the topics in a lecture.

Another control related to the slides is the slide timeline which sits along the
bottom of the user interface. Users can click on a slide to go to the relevant point in
time in the lecture. The slide timeline also serves as media, presenting a view of the
slide through thumbnails interspersed with the times at which slide transitions occur.

The speed slider allows the user to alter the playback speed of the lecture mul-
timedia. To prevent the audio from sounding too high or low, LecTix 2.0 shifts the
pitch of the audio back to normal. Three buttons serve as shortcuts for slow, normal,
and fast settings.

The slider to the very right controls the volume. LecTix 2.0 provides a shortcut
button for muting the audio, and another for setting it to full volume.

Most of LecTix 2.0’s controls’ main purpose is navigation. These controls include
play, pause, rewind, fast-forward, skip-back, skip-forward, previous-slide, next-slide,
the slide timeline, and the speed slider. Nonetheless, each of these controls have a
somewhat different purpose, and they are used appropriately in different situations.

Listed below are some scenarios for which different controls may be used.

Start watching the lecture: play button.

Take a break: pause button.

Course-grained scan: seek slider or skip-forward button.

e Fine-grained scan: rewind and fast-forward buttons.

Repeat something that was unclear (instant replay): skip-back button.

Skip-over uninteresting events: skip-forward button.

24



Scan the topics: previous-slide and next-slide buttons.

Select a topic: slide timeline.

Quickly watch or review material: speed slider (fast setting).

The lecturer is speaking too quickly in one of the user’s non-native languages:

speed slider (slow setting).

By having controls specialized for common tasks, users can efficiently watch lec-
tures and learn. In turn, users experience less frustration, leading to greater overall

satisfaction with LecTix 2.0.

2.2.4 Media Synchronization

A feature typical of lecture-multimedia players is the synchronization of multimedia.
Synchronization ties together individual media streams, ensuring each one continually
presents content relevant to the other media streams’ content.

Automatic synchronization of media contributes to high efficiency and few errors.
It relieves the user of the burden of synchronizing the multimedia on their own,
allowing them to devote more attention to the lecture and eliminating errors that
could occur during manual synchronization.

In general, lecture-multimedia consist of two types of media: continuous and
discrete. Continuous media, such as video and audio, frequently change with time.
Discrete media, such as slides, change infrequently with time. Typically, a lecture-
multimedia player links to a library that automatically synchronizes continuous media
to a clock. In contrast, the player, if it supports synchronization, must directly
synchronize discrete media. Therefore, the problem of synchronization from the point
of view of the player is to synchronize discrete media and any clocks that continuous
media synchronize to. (See Section 4.2.3, page 47, for a discussion on how LecTix 2.0
implements continuous and discrete media.)

Many lecture-multimedia players available today (see Chapter 5 for a review and

comparison of several such players) feature some form of synchronization. Not all

25



players, however, provide automatic synchronization that operates correctly during
user interaction. Some players do not provide any automatic synchronization at all,
leaving synchronization to be performed manually by the user.

LecTix 2.0 implements a form of media synchronization I call segment synchro-
nization. Segment synchronization correctly maintains synchronization in the face
of user interaction. An inferior form of synchronization that may momentarily leave
media unsynchronized during or after user interaction is called trigger synchroniza-
tion. A complete lack of automatic synchronization (except for audio and video which
are synchronized not by the player, but by their containing format) is called manual

synchronization.

Manual synchronization

Other than possibly starting all media streams from the beginning when a multimedia
presentation is loaded, a player that offers only manual synchronization makes no
effort to synchronize media streams. It is therefore left to the user to synchronize
media streams.

There is an advantage to leaving synchronization to the user: he or she can browse
through media without jumping to that time in the lecture. The disadvantage, of
course, is that watching the lecture requires constant maintenance on behalf of the
user to ensure all media streams remain relevant to each other.

Another option is to allow synchronization—trigger or segment—to be turned off,
enabling manual synchronization. An earlier version of LecTix, LecTix 1.3 (page 67),
provides this option. The user can turn on synchronization when watching the lecture,
and turn synchronization off while browsing through media. LecTix 2.0 does not have

this option, but adds a slide time line for independent browsing.

Trigger synchronization

Trigger synchronization is the synchronization of multimedia only when the video
plays through a certain point in time. In the example shown in Figure 2-3(a), a user

plays a lecture from video frame 1 to video frame 7, during which the user does not

26



interact with the player. Under these circumstances, the transition from frame 3 to
frame 4 triggers the transition from slide A to slide B. Likewise, the transition from
frame 6 to frame 7 triggers the transition from slide B to slide C.

If the user navigates through the lecture while the lecture is playing (for example,
by dragging the seek slider), then trigger synchronization may fail to keep the lecture
synchronized. For instance, in Figure 2-3(b), if the user seeks directly from frame 2
to frame 5, then the player misses the transition to slide B. The player should show
slide B during frames 5 and 6, but does not because it never transitions from frame
3 to frame 4. The lecture resynchronizes, however, once the player transitions frame

6 to frame 7, causing a transition to slide C'.

Segment synchronization

To stay synchronized in the face of user interaction, a player must support segment
synchronization. Figure 2-3(c) illustrates the advantage of using segment synchro-
nization. In this example, the current slide remains synchronized despite the user
seeking from frame 2 to frame 5.

One way to implement segment synchronization uses a modified form of trigger
synchronization. If, in addition to synchronizing at trigger points, the player also
forces a synchronization every time the player makes a discrete jump in time—for
example, the user seeks to a different point in the video—then the presentation stays
correctly synchronized.

Another way to implement segment synchronization is by periodically forcing a
synchronization of the video and slide streams. As long as the period between syn-
chronizations is small enough, then the user sees correct synchronization of the mul-
timedia.

We can define how small this time interval should be by comparing it to the cycle
time of the model human’s perceptual processor as developed by Card, Moran, and
Newell [5]. If a corresponding video frame and slide appear within one cycle of the
perceptual processor, then the model human perceives the two events as happening

at the same time. Card et al. give a range for the duration of one cycle of the human

27



Video Frame
-
N
w
1N
&
(o)
~

>
o
@)

Time

(a)

Video Frame
-
N
&
o))
~

>
O

Time —— >

(b)

Video Frame
-
N
&
o
~

>
Y,
@)

Time

(c)

Figure 2-3: Segment synchronization succeeds where trigger synchronization fails. Each
sub-figure depicts two concurrent media streams: a video stream and a sequence of slides.
A sequence of numbered frames represents the video stream. Each slide is assigned a capital
letter. Thin dividing lines represent transitions between video frames that do not cause a
slide transition. Thick dividing lines represent video frame transitions that cause a slide
transition. (a) Trigger synchronization properly transitions slides during normal playback
without user navigation. The transition from video frame 3 to video frame 4 triggers a
transition from slide A to slide B. (b) If the user drags the seek slider—jumping the video
from frame 2 to frame 5—then trigger synchronization misses the transition to slide B.
The lecture later resynchronizes when the transition from video frame 6 to video frame 7
triggers the transition to slide C'. (c) Despite the user seeking to video frame 5, segment
synchronization properly transitions to slide B.

28



perceptual processor as being between 50 and 200 milliseconds with an average of 100
milliseconds. The correct time of transition, however, may be any time from within
a range of several seconds. Longer transition times are particularly well tolerated
for solely blackboard-based lectures. Lectures with slides presented in the recorded
video, however, have a narrower range of correct synchronization times such that the
cycle time of the perceptual processor may become significant.

Although periodically forcing synchronization has some overhead, developers can
implement it more easily and cleanly than a modified trigger synchronization. Trigger
synchronization requires support from the video player to send notification when it
reaches a trigger point. Periodically forcing synchronization, on the other hand,
requires the operating system to send notifications (alarms) periodically—a feature
found in most operating systems—and that synchronization calls are cheap, especially
in the case where no transition should occur.

LecTix 2.0 implements segment synchronization by the latter method. Discrete
media and the continuous media’s clocks synchronize every 300 milliseconds. While
outside of the range given by Card et al. for the period of the cycle time of the
human perceptual processor, infrequent calls to synchronize present a low load to the

computer’s processor.

2.2.5 Variable-Speed Playback

Variable-speed playback contributes to high efficiency, few errors, and high satisfac-
tion of use of LecTix 2.0. Whether users wish to review a lecture at fast pace, or
slow down the lecture so that they can understand the lecturer clearly, variable-speed
playback allows users to watch the lecture at a pace that is natural for them.

Both playing a lecture fast or slow have advantages that contribute to usability.
Users playing a lecture fast can finish watching the lecture more quickly than if they
had watched it at a normal pace, thereby increasing efficiency. For users whose native
language is the one spoken by the lecturer, playing the lecture slow decreases errors
in listening.

Furthermore, informal feedback from students shows that the control for variable-

29



speed playback is fun to use, thereby increasing user satisfaction.

Variable-speed playback is usually accompanied by pitch-shifting of the audio
back to its original pitch, otherwise known as pitch-normalization. LecTix 2.0 borrows
Andrew J. Leiserson and Luis F. G. Sarmenta’s implementation of pitch-normalization
found in Lecture Viewer [18|, a predecessor to LecTix. This implementation uses the
synchronized overlap-add algorithm for time-scale modification of speech proposed by

Roucus and Wilgus [40].

30



Chapter 3
Availability

A lecture-multimedia player is of limited use if it cannot be acquired at a low cost
(after all, students tend to have a limited budget), and if it cannot play any lecture
multimedia, anywhere, anytime, on the student’s computing platform of choice. This
thesis uses the term “availability” to refer to how successfully a user can access and
effectively use a player in a variety of scenarios.

This chapter decomposes the property of availability into four attributes, and
show how features in LecTix 2.0 affect each attribute. Because of an inherent conflict
of availability between a player’s price and compatibility with contemporary codecs,
this chapter also gives an overview of the restrictions and fees associated with the
implementation and distribution of contemporary codecs in countries where software
can be patented, and discusses how these restrictions and fees pose problems for

open-source players.

3.1 Attributes of Availability

Availability is the degree to which a user can acquire a player cheaply, and use it to
play any lecture-multimedia, anywhere, anytime, and on any platform. Availability

consists of four attributes:

o Distributability: The degree to which a player may be distributed cheaply and

without restriction.

31



Table 3.1: LecTix 2.0 features that affect availability

Feature Distributability Portability Convenience Compatibility

GPL v v — —
Java — v — —
JMF v * v X

* On one hand, the Java Media Framework (JMF) contributes to portability by
providing playback for the Cinepak, MJPEG, and H.263 codecs across all Java-
supported platforms. On the other hand, the JMF only supports playback for the
MPEG-1 codec on select platforms.

e Portability: The number of platforms the player runs on, and how easily the

software can be ported to other platforms.

o (Convenience: The degree to which the player can play a lecture anywhere,

anytime.

o Compatibility: The degree to which the player can play all lecture multimedia,

encoded in any format or codec.

These four attributes compose availability. A player is available if it addresses all

four issues.

3.2 Features of LecTix 2.0 that Contribute to Avail-
ability

As shown in Table 3.1, three features of LecTix 2.0 affect the four attributes of
availability. These features are (1) its open-source license, the GNU General Public
License; (2) the Java language, in which it’s implemented; and (3) its use of the Java
Media Framework. All three features contribute in some way to availability. Some
facets of the Java Media Framework, however, detract from LecTix 2.0’s portability

and compatibility.

32



3.2.1 The GNU General Public License

LecTix 2.0’s open-source license, the GNU General Public License (GPL) [13] con-
tributes to LecTix 2.0’s distributability and portability. As an open-source license,
the GPL allows LecTix 2.0, its source code, and derived works to be freely redis-
tributed. Furthermore, the GPL requires that the source code to any derived works
be made available upon distribution. With access to the source code, developers can

port LecTix 2.0 to the platform of their choice.

3.2.2 The Java Programming Language

LecTix 2.0’s language of implementation, Java [17], contributes to portability. Pro-
grams written in the Java language can run on a wide variety of platforms, from cell

phones to high-end servers.

Java owes its high portability to the Java Virtual Machine (JVM). The JVM is an
abstract computing machine, emulated on real computing platforms by JVM imple-
mentations. Programs written in Java compile to JVM instructions, also known as
bytecodes. The JVM is designed to be efficiently emulated, allowing it run efficiently

on any platform.

Table 3.2 shows the wide range of desktop and server operating systems ported
to by various JVM implementations. Table 3.2 lists 18 operating systems that can
run a Java program. Many of the operating systems run on wide variety of hardware,

further increasing the number of platforms with JVM implementations.

Not all of the operating systems listed in Table 3.2, however, can run LecTix 2.0.
The Graphical User Interface (GUI) toolkit that LecTix 2.0 uses is not ported as
widely as JVMs for the Java language. The Java Swing library is included with the
JVM implementations represented by the Vendor, IBM, and Sun columns. Twelve
of the operating systems listed have a port from one of those JVM implementations,

and are expected to be able to run LecTix 2.0.

33



Table 3.2: Java Virtual Machine ports to desktop and server operating
systems

Operating JVM Implementation

System Vendor® Blackdown® GCJP IBM¢ Jikes®? Kaffe®? Sun®
AIX va — v vi o v
AmigaOS — — —
BeOS
BSDi
FreeBSD
Hurd

HP / UXx
IRIX
Linux
Mac OS X
NetBSD
NeXTStep — —
OpenBSD — —
Plan9 — —
Solaris v'e —
SunOS — —
Tru64 v —
Windows v —
Sources: Jikes [22], Pick [33], Schmidt [41], the GCC Team [15].
Vendor of the operating system.

Open-source project.

Vendors that distribute JVMs for operating systems besides their own.
Vendor and IBM are the same port.

Ported by the FreeBSD Team.

Using Linux binary emulation.
Vendor and Sun are the same port.

BN
|

ERNEERNA N
|
A N N N N N N N N N N NENENEN

|
RN N N NN NN N
SN N R N NN NN N

R ™ o Qo o T W

34



3.2.3 Java Media Framework

The Java Media Framework (JMF) is a set of libraries that provide a multimedia
framework for Java programs to work with. It provides implementations of vari-
ous multimedia formats and codecs. LecTix 2.0 relies on the JMF for multimedia
playback.

The Java Media Framework (JMF) is a mixed bag when it comes to availability.
On one hand, the JMF contributes to distributability and convenience. But on the
other hand, the JMF detracts from compatibility. When it comes to portability,
various aspects of the JMF contribute to portability, while other aspects detract from
it.

Overall, the JMF contributes to LecTix 2.0’s distributability. Despite the source
code to the JMF being publicly available, the JMF is not technically open-source
because it imposes restrictions and legal liabilities upon its distribution. Such legal
liabilities might discourage its distribution. Nonetheless, the JMF benefits the dis-
tributability of LecTix 2.0 because it is distributed separately by Sun Microsystems, a
company able to negotiate, asses the risk of patent litigation, and cross-license patents
if necessary.!

The JMF contributes to convenience by allowing multimedia to be played from
the client machine. After downloading lecture multimedia from a server, a student
can then watch the lecture without a network connection. The lifetime of lecture
multimedia on a server (as well as the server’s stability) may be limited, and a network
connection may not always be available from a student’s laptop. Storing the lecture-
multimedia locally means it can be played anywhere, anytime.

The JMF both contributes to and detracts from portability. Table 3.3 shows a
selection of video codecs supported by the JMF. On one hand, the JMF supports
playback of the Cinepak, MJPEG, and H.263 [20| video codecs on any platform with

an implementation of the Java Swing toolkit. On the other hand, the JMF only

!The Java Virtual Machine shipped by Sun is licensed in a similar fashion to the JMF. Of
course, this can be distributed separately as well. Stallman [43] gives an excellent explanation for
why patented ideas in software tend to only be legally usable by corporations with large patent
portfolios.

35



Table 3.3: Java Media Framework video-codec support by platform
Windows/x86, Linux/x86, Mac OS X/PowerPC

Video Codec Solaris/Sparc and Others®
Cinepak v v
MJPEG v v
MPEG-1 v —
H.263 v v

Source: Sun Microsystems [45].
& That is, any platform with Java Virtual Machine and Java Swing toolkit
implementations.

supports MPEG-1 [21| playback on the Windows/x86, Linux/x86, and Solaris/Sparc
platforms. In practice, only the H.263 and MPEG-1 video codecs are of high enough
quality for lecture videos,? leaving H.263 as the best codec for portability.

The JMF’s limited options for the encoding of lecture videos (H.263 and MPEG-1)
greatly detracts from LecTix 2.0’s compatibility. State-of-the-art codecs found in con-
temporary multimedia players—such as RealVideo, MPEG-4, and Windows Media—
are not supported by the JMF. Therefore, LecTix 2.0 cannot play lecture videos

encoded in those codecs.

How Software Patents Cause a Conflict in Availability

LecTix 2.0’s lack of compatibility with many contemporary codecs is unfortunate,
but unavoidable in countries such as the United States where ideas in software can
be patented.> Compatibility with patented codecs is often at odds with two other
attributes of availability: distributability and portability.

Patented codecs often restrict the distributability of players that implement them.
Use of a patented codec requires a license which may not necessarily be available. If
a license is not available, a lecture-multimedia player must use the inventor’s Ap-
plication Programming Interface (API) or be based on the inventor’s player. For

example, a likely reason for the Singapore-MIT Alliance (SMA) distance education

2MJPEG can be of high quality, but it does not perform any inter-frame compression, resulting
in very large file sizes.

3 As of May 2005, bills for software patents are currently under legislation in the European Union
and India.

36



program decision to base their player (see Section 5.4, page 60) on RealPlayer—as
opposed to building their own player that can play the RealVideo codec—is that Real
did not offer a license for the codec at the time. And in the case where a license is
available, royalties are often required upon the codec’s distribution. Furthermore—
whether through the inventor’s API, player, or license—restrictions are imposed on
distribution. Such restrictions, coupled with royalties that may be required, detract
from a lecture-multimedia player’s distributability.

Patented codecs detract from a player’s portability in the case when a license
for the codec is not available. Often the inventor’s API or player is ported to only
select platforms, limiting the portability of the lecture-multimedia player that uses
the inventor’s API or player.

Nonetheless, despite incompatibility with many contemporary codecs, LecTix 2.0
achieves moderate availability by being distributable, portable, and convenient. The

result is a free, open-source, and portable lecture-multimedia player.

3.3 Restrictions on Contemporary, State-of-the-Art
Codecs

This section details the restrictions and fees associated with the use of contemporary
codecs in the United States, and shows how these restrictions and fees directly impact
distributability and portability. I present five formats and five codecs, and I discuss
their restrictions with regard to royalties, open specifications, and APT’s. 1 also
discuss four multimedia players, and show how restrictions on contemporary codecs
limit their distributability and portability.

While contemporary formats and codecs go hand in hand, this section focuses
mainly on contemporary codecs because they are the most restricted. Nevertheless,
this section presents information on formats for completeness and because one of the

formats requires a royalty.

I consider five pairs of contemporary formats and codecs. These pairs are presented

37



below. The format is listed first, followed by the codec, and then a description of the

two.

Ogg, Theora The Xiph.Org foundation develops the Ogg container format and The-
ora [47] video codec. Theora is based on On2’s VP3 video codec, which On2 has
patented but irrevocably licensed to the public for free. Theora development is

currently in a late alpha stage and is soon to go beta.

RealMedia, RealVideo RealNetworks develops the RealMedia container format
and RealVideo video codec. The RealMedia format has an open specification
and may be used for free; but the RealVideo codec is only available as a binary

API and requires a royalty upon distribution.

MPEG-4, MPEG-4 The MPEG-4 standard consists of several parts, two of which
are a container format and a video codec. Both require royalties upon distri-
bution, but the video codec does not require any royalties on the first 50,000

players distributed in a year.

QuickTime, Sorenson 3 The QuickTime container format developed by Apple is
similar to the MPEG-4 container format. QuickTime is an open specification
like MPEG-4, but can be licensed for no charge [9]. Sorenson Communica-
tions develops the Sorenson 3 video codec. Sorenson 3 does not have an open

specification, but Apple licenses binary APT’s for it at no charge.

ASF, Windows Media Video 9 Microsoft develops the Advanced Systems For-
mat (ASF) and the Windows Media Video 9 codec. ASF is an open format and
can be licensed at no charge. Windows Media Video is not open, but a binary

API is available at no charge for the Windows operating system.

3.3.1 Specifications, API’s, and Royalties

Closed specifications (documentation on how to implement the format or codec),
limited ports of API’s, and royalties are the three features commonly found in con-

temporary codecs that detract from the distributability and portability of any player

38



Table 3.4: Openness of state-of-the-art formats and codecs

Format Open API available Royalty®
Codec Specification Linux® Mac OS X¢ Windows®  ($)

ASF v v v v 0
Windows Media Video 9 X X X v 0

MPEG-4 v v v v 0.154
MPEG-4 v v v v 0.25°¢

Ogg v v v v 0
Theora v v v v 0

QuickTime v v v v 0
Sorenson 3 X X v v 0

RealMedia v v v v 0
RealVideo X v v v 0.25

& Per decoder distributed.

b Tntel x86.

¢ PowerPC.

4 $100,000 annual cap.
¢ Only payable after 50,000 units annually.
f$1,000,000 annual cap for non-Windows platforms.

that implements them. I show here which of these restrictions affect contemporary,
state-of-the-art formats and codecs.

Table 3.4 shows the degree to which contemporary, state-of-the-art formats and
codecs are restricted. The Open Specification column signals whether a specification
is publicly available. The next three columns tell us whether an API is available for
the Linux/x86, Mac OS X, and Windows/x86 platforms. The last column, Royalty,
gives the royalty due per player distributed.

Table 3.4 tells us two unsurprising things. First, all formats and codecs have
an API available for the Windows platform—not surprising given its desktop-market
dominance. Second, any format or codec with an open specification has API’s avail-
able for all three platforms. As with open-source software, an open specification for
a format or codec naturally lends itself to be implemented on many platforms.

But one interesting thing Table 3.4 shows is that Ogg Theora is the only* contem-

porary, state-of-the-art codec available that has an open specification and is royalty

“Dirac [4] and the Snow codec (developed as part of the FFmpeg project [11]) are state-of-the-art,
open-source, and royalty-free codecs that were only in their infancy at the time of this writing.

39



free. The Windows Media Video 9 and Sorenson 3 codecs do not charge royalties,
but their specifications are closed, and their API ports are limited. RealVideo has
API’s [35] available for all three platforms, but its specification is closed and the API’s
require a royalties. MPEG-4, which has an open specification and API ports to all
three platforms, charges royalties for both the container format and codec.

As we can see, most contemporary video codecs either restrict distributability due
to royalties, portability due to closed specifications and limited ports of the API, or
both.

3.3.2 Portability of Vendors’ Players

Even though codec vendors may not publish the codec’s specification or offer a de-
veloper API for every platform, they often offer their own players, usually at no cost.
For the most part, these players are closed-source, which restricts outside developers
from modifying the code, and porting it to new platforms. I show here how closed
specification and closed source-code has affected the portability of vendors’ players
and the codecs they can play.

Table 3.5 shows the players® available from codec vendors for playing contempo-
rary formats and codecs on the Linux/x86, Mac OS X/PowerPC, and Windows/x86
platforms. In the left-most column, the table lists these platforms and the players
that run on them. The remaining columns indicate the format-codec pairs that the
players can play.

None of the players can play all five formats and codecs across all three platforms.
Only RealPlayer on the Windows platform can play all five format-codec pairs. In
addition, RealPlayer is the only player ported to all three platforms.

Helix Player [37|, the only open-source player listed, fares worse than any other
player on Table 3.5: it plays only one of the format-codec pairs, and it runs on only
one of the platforms listed. The conflict between distributability and compatibility,

discussed on page 36, explains Helix Player’s limited codec support. On the other

>Table 3.5 does not consider players such as MPlayer [34] or VLC [6] because they are distributed
from Europe where software patents are not enforced.

40



Table 3.5: State-of-the-art formats and codecs: players and ports
Format / Codec

Platform Ogg / RealMedia / MPEG-4 / QuickTime / ASF /
Player Theora  RealVideo MPEG-4 Sorenson 3 ~ WMV9
Linuz / 86
Helix Player v X X X X
RealPlayer v v X X X
Mac OS X / PowerPC
RealPlayer X v v v X
QuickTime Player X X v v X
Windows Media Player X X X X v
Windows / x86
RealPlayer v v v v v
QuickTime Player X X v v X
Windows Media Player VP X X X v

2 Requires Xiph Player Plugin [36]

b Requires Ogg Directshow Filters [23]
hand, Helix Player’s apparent limited portability seems to contradict the notion that
an open-source license contributes to portability.

Nothing could be further from the truth. Helix Player is an off-shoot of RealPlayer
which initially targeted the Linux/x86 platform. Helix Player and RealPlayer share
the same playback engine; the only difference is that RealPlayer can play patent-
encumbered codecs with tricky licenses. The existence of RealPlayer on the Mac
OS X/PowerPC and Windows/x86 platforms serves Helix Player’s niche on those
platforms, for now.

Hence, Helix Player developers have been concentrating their efforts on other
platforms. Besides Linux/x86, Helix Player also supports the Symbian cell-phone
platform. Ports are in progress to the Solaris/Sparc, Solaris/x86, HP-UX /PA-RISC,
Linux/PowerPC, Linux/MIPS, Linux/Sparc, Linux/ia64, FreeBSD/x86, and AIX/
PowerPC platforms. Given time, the number of platforms Helix Player supports will

outnumber the platforms supported by the other players that Table 3.5 lists.

41



42



Chapter 4

Extensibility

Great technology is said to perform well not only the tasks it was designed for,
but tasks never envisioned by the original designers as well.! An extensible system
facilitates the inclusion of new features never dreamed of by the original designers.
Just as in research where researchers build on top of each others’ works, extensible
systems allow developers to do the same and “stand on the shoulders of giants” [7].
This chapter presents the three attributes that make up extensibility, and dis-
cusses the features of LecTix 2.0’s design and implementation that contribute to each

attribute, thereby making it an extensible lecture-multimedia player.

4.1 Attributes of Extensibility

Extensibility is the degree to which any developer can add new features to a system.

Extensibility consists of three attributes:
e Modifiability: The ease with which a system can be modified by any developer.

o Modularity: The degree to which a system is organized into cleanly separated,

decoupled parts.

o Interfaceability: The degree to which a player can be externally interfaced to,

allowing it to be extended without recompilation (i.e. a new release) of the

!This idea is not my own, but I have been unable to find its source.

43



Table 4.1: LecTix 2.0 features that contribute to extensibility

Feature Modifiability Modularity Interfaceability
GPL v — —
Java v v v
Class Hierarchy — v v
Events — v v
Lecture Description — — v

player.

These three attributes compose extensibility. A player that has all three attributes

is considered extensible.

4.2 Features of LecTix 2.0 that Contribute to
Extensibility

LecTix 2.0 has five features that contribute to extensibility: (1) its open-source li-
cense, the GNU General Public License (GPL); (2) the Java language, in which it’s
implemented; (3) a hierarchy of media classes; (4) a system for media classes to notify
each other of events; and (5) a file format for describing lecture-multimedia presen-
tations. Table 4.1 shows which attributes of extensibility each feature contributes
to.

As is usually the case with extensible systems, these features build on top of each
other to provide several layers of extensibility. Figure 4-1 depicts these layers. The
GPL ensures that the source code to the LecTix 2.0 core remains available. Java, a
programming language that supports abstraction and garbage collection, facilitates
the modification of LecTix 2.0’s open source code. Java’s object-oriented features
of classes, encapsulation, and inheritance enable the organization of a hierarchy of
media classes (media types). The media classes that sit at the top of this hierarchy
provide a uniform interface for manipulation by the LecTix 2.0 core. A media-event
notification system builds on top of the media classes’ uniform interface to enable

media objects to broadcast events without explicit knowledge of the recipients. The

44



Lecture Description

(Presentation of media objects)

Media Events

(Interface between media objects)

Media-Class
Hierarchy

(Interface to LecTix core)

Java
(Objects)

LecTix core

Figure 4-1: Layers of LecTix 2.0’s extensibility.

lecture description file pulls it all together, describing the media objects to display

and how to synchronize them.

Now I describe each of the five features and how they contribute to LecTix 2.0’s

extensibility.

4.2.1 The GNU General Public License

LecTix 2.0’s open-source license, the GNU General Public License (GPL) |13] con-
tributes to LecTix 2.0’s modifiability. As discussed in Section 3.2.1 on page 33, the
GPL permits distribution of derived works and ensures that source code remains
available. With permission to distribute derived works, and access to the source

code, developers can modify LecTix 2.0 to their liking.

45



4.2.2 The Java Programming Language

LecTix 2.0’s language of implementation, Java [17|, contributes to LecTix 2.0’s modifi-
ability, modularity and interfaceability. These contributions stem from Java’s design
as an object-oriented programming language [44| with support for abstraction and

garbage collection.

Java’s support for abstraction and garbage collection facilitates the modification of
LecTix 2.0. Support for abstraction enables developers to think of problems at a high
level. Garbage collection provides automatic memory management for developers,

allowing them to devote more attention to the problem at hand.

Java’s support for abstraction can be broken into three parts: classes, encap-
sulation, and inheritance. Classes and encapsulation contribute to the attribute of

modularity. Inheritance contributes to the attribute of interfaceability.

Classes and encapsulation enable LecTix 2.0 to be broken up into separate mod-
ules. A class is a data type representing a set of variables and methods that can
operate on those variables. An instance of a class is called an object. Encapsulation,
also known as data hiding, allows objects to hide state from each other, effectively de-
coupling them. Using classes and encapsulation, a programmer can organize a system

into separate, decoupled parts.

Inheritance builds on classes and encapsulation to provide a consistent interface
among related classes. Inheritance is the ability for classes to share behavior. For
example, if a class A inherits from a class B, then A will have the variables and methods
that B has. In addition, A can add its own variables and methods or even override B’s
methods. B is considered a subclass of A, and A is considered to be a superclass of B.
Objects of class B can then substitute for objects of class A by a behavioral notion of
subtyping [24], and newly introduced external modules can communicate in a general

fashion through the interface of class A, without knowledge of class B.

46



4.2.3 Media-Class Hierarchy

Taking advantage of inheritance, LecTix 2.0 defines a media-class inheritance hierar-
chy that contributes to the player’s modularity and interfaceability. This inheritance
hierarchy enables LecTix 2.0 to reuse code and to provide a uniform interface to media

objects, leading to concise, elegant code.

Each of the LecTix 2.0’s media classes implements either a specific or generic
type of media. For example, a specific media type can implement video or slides. A
generic media type, on the other hand, covers a broad range of media types. Two
examples of generic media are continuous and discrete media. Continuous media
change continuously with time, such as video or audio. Discrete media changes only
a discrete number of times during a presentation. PowerPoint-style slides are an

example of discrete media.

Object-oriented programs can represent these notions of generic and specific media
types. A class representing a specific type is a concrete class. A class that represents

a generic type is an abstract class.

Such classification of media types naturally lends itself to a representation by an
inheritance hierarchy of media classes. Figure 4-2 shows the media-class hierarchy
implemented by LecTix 2.0. Figure 4-2 labels abstract classes (those representing
generic types) with italics, and concrete classes (those representing specific types)
with roman type. The most general of media classes, LTMedia, sits at the top of the
hierarchy. LTMedia can represent any media type in LecTix 2.0. Two abstract classes
subclass LTMedia: ContinuousMedia and DiscreteMedia. As in our example, Con-
tinuousMedia represents media that change continuously with time; DiscreteMedia

represents media that change only a discrete number of times.

Two concrete classes sit at the bottom of the hierarchy. The first, JMFMedia,
subclasses ContinuousMedia. JMFMedia represents media playable by the Java Me-
dia Framework (see page 35). The second, SlideMedia, subclasses DiscreteMedia.

SlideMedia represents PowerPoint-style slides.

The abstract classes (LTMedia, ContinuousMedia, and DiscreteMedia) provide

47



LTMedia

7

ContinuousMedia DiscreteMedia

JMFMedia SlideMedia

Figure 4-2: LecTix 2.0 media-class hierarchy. Abstract classes are labeled with italics.
Concrete classes are labeled with roman type.

a uniform interface for its subclasses to hide behind. Code that manipulates concrete
media objects does so in a general fashion, without any explicit references to concrete
media classes. For example, the LTMedia class declares the method getVisualCom-
ponent () which returns a java.awt.Component object that can display itself visually
on the screen. Rather than having to consider whether a media object is video or a
sequence of slides, the Graphical User Interface (GUI) of LecTix 2.0 treats the media
object as an LTMedia object, calls getVisualComponent (), and displays the returned

object.

The abstract classes facilitate the reuse of code by providing common objects and
methods for their subclasses to use. For instance, continuous types of media in Lec-
Tix 2.0 keep a running clock that drives the playback of all media. ContinuousMedia
provides a timer to periodically wake up subclasses so that they can notify other
media classes of the time. Discrete types of media maintain a time-ordered list of
individual media to present, such as slides. DiscreteMedia provides a time-ordered
list of general objects and methods to manipulate the list. SlideMedia can then
specialize the list for slides, and reuse the methods to manipulate the list provided

by SlideMedia

48



Table 4.2: LecTix 2.0 media events

Media Event Description
RATE_CHANGED Change the playback rate
MEDIA_TIME_CHANGED Change the current media time
STARTED Start playback
STOPPED Stop playback
SKIP_STARTED Start rewind or fast-forward
SKIP_STOPPED Stop rewind or fast-forward
VOLUME_CHANGED Change the volume
PREV_SLIDE Show the previous slide
NEXT_SLIDE Show the next slide

4.2.4 Media Events

LecTix 2.0 features a media-event notification system that contributes to LecTix 2.0’s
modularity and interfaceability. The system provides a mechanism for media objects
to broadcast events without requiring knowledge of the recipients, thereby decoupling
the media objects. The event notification system also serves as a uniform interface
for communication among media objects.

For concreteness, Table 4.2 gives an overview of the events used in LecTix 2.0.
User interaction with LecTix 2.0’s controls results in most sending of the events
listed.. In addition, continuous media objects typically send MEDIA_TIME_CHANGED
events periodically to notify other media of the current running time. The STOPPED
event may be sent by either the control panel or by a continuous media object when
it has reached the end of media time.

Before proceeding to describe the implementation of LecTix 2.0’s media-event no-
tification system, we must first define the term interface. In object-oriented program-
ming, an interface is a label for a set of method declarations. Method declarations
declare the types of objects that the methods take as arguments and the type of ob-
ject each method returns. Unlike a method definition, an interface does not provide
implementations for its methods.

Interfaces are important in languages that do not support multiple inheritance.
Multiple inheritance is the ability to inherit from more than one superclass. To

prevent confusing situations where more than one superclass defines methods with

49



identical signatures, some languages such as Java and Smalltalk [16] do not allow
for multiple inheritance. Instead, Java provides interfaces, for which a class can
implement any number of. Having multiple interfaces does not pose the same problem
that having multiple inheritance does, because interfaces only declare methods, not
define them.

Through the implementation of multiple interfaces, media objects can take on
different roles in LecTix 2.0. Media objects can (1) display themselves, (2) send
events, (3) receive events. Figure 4-3 shows the hierarchy of classes and interfaces to
support these roles.

Starting from the bottom right of the figure, LTMedia—the parent of all media
classes (see Figure 4-2 on page 48 for the complete media class hierarchy)—provides
the getVisualComponent () method for displaying media. Media classes usually over-
ride this method, because LTMedia’s default implementation returns a null object.
Nonetheless, LTMedia’s definition provides a uniform interface across all media ob-
jects.

To the left of LTMedia is the ControlPanel class, responsible for the controls the
user interacts with. It inherits from JPanel, a class from the Java Swing toolkit.

Above ControlPanel and LTMedia are three interfaces and one class that make
up LecTix 2.0’s event system. The top two interfaces in the events system, LTMedi-
aListener and LTMediaEventSource, model after interfaces suggested by Geary |14,
pages 300-309|. LTMediaListener serves as a uniform interface to objects that listen
to media events; it declares methods for receiving each media-event type. LTMediaL-
istener inherits from EventListener, an interface from the java.util package that
declares no methods but exists solely to tag various kinds of event-listener classes.?
Positioned to the right of the LTMediaListener class, LTMediaEventSource serves
as a uniform interface to objects that send events; it declares methods for adding and
removing listeners from its notification list.

In addition to Geary’s suggested event-support classes, LecTix 2.0 adds the LT-

MediaSocialite interface and LTMediaEventBroker class to complete its media-

2Java uses events for all types of classes, particularly in the Java Swing toolkit.

20



java.util

'
'

' -

' <<interface>>
'

i EventL istener
i (tag)

'

'

'

LecTix 2.0 ]
Event System

Custom-Event Support Interfaces suggested by Geary [14]

<<i nterface>> <<i nterface>>
LTMedial istener L TMediaEventSour ce
+nedi aTi neChanged(e: LTMedi aEvent ) +addLTMedi aLi st ener (| : LTMedi aLi st ener)
+next Sl i de(e: LTMedi aEvent ) +renovelLTMedi aLi st ener (| : LTMedi aLi st ener)

<<i nterface>>
L TMediaSocialite ] L TMediaEventBroker
(tag) #processLTMedi aEvent (e: LTMedi aEvent )

s

ControlPanel <

'

'

:

'

: LTMedia
'

: #processLTMedi aEvent (e: LTMedi aEvent)
'

'

'

'

'

'

'

+get Vi sual Conponent (): Conponent

Media-Class Hierarchy |

Figure 4-3: Unified Modeling Language (UML) [2| representation of event-support classes
and interfaces. Each solid box represents a class or interface. Interfaces and concrete classes
are labeled in bold type, with interfaces distinguished by the «interface» stereotype. The
abstract class LTMedia is labeled in bold italics. Solid lines ending with a triangular ar-
rowhead indicate inheritance. Dashed lines ending with a triangular arrowhead indicate
implementation of an interface. The solid line that begins with a diamond-shaped head in-
dicates that ControlPanel has an LTMediaEventBroker object as a member variable. With
the exception of JPanel, each class or interface lists a sampling of its method definitions or
declarations, respectively, in the bottom half of its box. The note (tag) indicates an inter-
face with no method declarations. The symbol + precedes public methods. The symbol #
precedes protected methods.

ol



event system. Sitting directly under LTMediaListener, the LTMediaSocialite in-
terface serves to tag classes that implement both LTMedialistener and LTMedi-
aEventSource classes. To the right of the LTMediaSocialite interface sits the LT-
MediaEventBroker class; it provides a default implementation of an LTMediaEventSource
and maintains the event notification list of listeners. It also defines the protected
(only accessible to it and its subclasses) processLTMediaEvent () method for send-
ing events.

So that all media classes can send and receive messages, LTMedia implements
the LTMediaSocialite interface. LTMedia inherits from LTMediaEventBroker, gain-
ing an implementation for maintaining notification lists and sending messages. To
receive messages, LTMedia implements the LTMediaListener interface with default
definitions of the event-receiving methods. The default definitions take no action;
media classes override them when they wish to receive an event.

The ControlPanel class also implements the LTMediaSocialite interface. Be-
cause it already inherits from the JPanel class, however, ControlPanel cannot
also inherit from LTMediaEventBroker (see discussion of multiple inheritance on
page 50). Instead, ControlPanel takes LTMediaEventBroker as a member vari-
able. ControlPanel defines its implementation of processLTMediaEvent and LT-
MediaEventSource’s event-notification-list maintenance methods to call those of LT-

MediaEventBroker.

Media-Event Example

To get a better idea of how media events work in practice, let’s consider an example
where a student advances a slide. Figure 4-4 shows the four steps LecTix 2.0 takes
to advance a slide.

First, the user clicks on the next slide button (Figure 4-4(a)). ControlPanel then
instantiates an object representing the event NEXT_SLIDE and calls processLTMedi-
aEvent () with the event object as its argument.

Second, processLTMediaEvent() calls nextSlide() on all of ControlPanel’s

media-event listeners (Figure 4-4(b)). In this case, the media-event listeners are

o2



€¢

MecTix 293 MecTix 298
File Edit View Help File Edit View Help
~ <+ Example of Bellman-Ford ~ <+ Example of Bellman-Ford
-1 =
ﬂ’ ,74/:71 5 - ﬂ’ 77/ 8 i)
& 5 § 8 = & 5
AN W3 Jx\-
(oD Vi
4
End of pass 2 (and 3 and 4). End of pass 2(and 3 and 4).
‘ o | n Fast @ Fast @
«nmnn 2 = «n « o ]
0:16:14 I Slow E 0:16:14 Slow E

03 01611 (1614 0739 02356 02635 03 01611 (1614 0739 02356 02635 0:52
4] 4] I
TecTix 298 TecTix 299
File Edit View Help File Edit View Help
“ " Correctness “ " Correctness
Theorem. If G = (1. ) contains no negative- Theorem. If G = (1. ) contains no negative-
weight cycles, then afier the Bellman-Ford weight cycles, then afier the Bellman-Ford
n exeeutes, d[v] = (s, v) forall v € algorithm exeeutes, o[v] = a(s. v) forall v € I
s Mo 3204 L1526 UV CSE L bmsddienn Agy Mo 3204 L1526
« » W[ 0 ? [T « » [ 1o s0E “ . Ez> [ Normal]
0:16:14 Slow E 0:17:39 Slow E
03 01611 01614 04739 02356 026:35  0:3406  0:39:30 04620 04740 04840 05000 052 03 01611 01614 04739 02356 026:35  0:3406  0:39:30 04620 04740 04840 05000 052
0 & 7 I 0 o 7 I

(c) (d)

Figure 4-4: Advancing a slide. (a) Student clicks the Nexzt Slide button. (b) ControlPanel sends NextSlide events to JMFMedia (video)
and SlideMedia. (c) SlideMedia advances to the next slide and sends MediaTimeChanged events to JMFMedia and ControlPanel.
(d) JMFMedia advances to the new time. ControlPanel updates its seek time and slider.



JMFMedia (video and audio) and SlideMedia (slides). Figure 4-4(b) depicts, with
red arrows, ControlPanel sending NEXT_SLIDE events to JMFMedia and SlideMedia.

Third, SlideMedia advances the slide (Figure 4-4(c)). To maintain synchroniza-
tion, SlideMedia broadcasts a MEDIA_TIME_CHANGED event. As shown by red arrows
in Figure 4-4(c), SlideMedia’s listeners are JMFMedia and ControlPanel.

Finally, JMFMedia and ControlPanel receive the MEDIA_TIME_CHANGED events
(Figure 4-4(d)). JMFMedia advances the video to the new time, and ControlPanel
adjusts the seek slider and time display. The slide advance is now complete, and the

lecture presentation remains synchronized.

4.2.5 Lecture Description

LecTix 2.0’s lecture description format contributes to interfaceability by providing
a textual format for describing lecture-multimedia presentations. The lecture de-
scription serves as the interface for lecture-multimedia producers—human users or
software—to target. The lecture description interfaces to and builds on top of the
extensibility of the media-event system, media-class hierarchy, and Java programming
language.

A lecture description file specifies:

e The filenames of individual media files, such as video and image files.
e The media time at which each media file is to be displayed (for synchronization).

e The concrete media classes that should be instantiated to display the media

files.

To see what a lecture description looks like, look at the sample one shown in
Figure 4-5. The lecture is encoded in the Extensible Markup Language (XML) [3].
In general, XML consists of nested elements, each with zero or more attributes. For
example, the root element of the lecture description shown in Figure 4-5 is lecture.
It has the attribute version which specifies the earliest version of LecTix that can

understand this lecture description.

o4



<?xml version="1.0"7>

<lecture version="2.0">

<media type="JMF">
<file name="lecturel5.mpg"/>

</media>

<media type="Slide">
<file time="00:00:00" name="slides/S1ide001.png"/>
<file time="00:01:24" name="slides/S1ide002.png"/>
<file time="00:02:59" name="slides/S1ide003.png"/>

<file time="01:16:06" name="slides/Slide045.png"/>
</media>
</lecture>

Figure 4-5: A lecture description file

Two media elements nest inside the lecture element. Each of the two media
elements specify a name attribute. LecTix 2.0 will append the suffix -Media to get the
name of the media class to instantiate for each media element. In this case, LecTix 2.0
will instantiate a JMFMedia object and a SlideMedia object.

Nested inside the media elements are file elements. Each file element specifies
the name of a media file, and optionally, the time at which to display it. If no time
attribute is given, LecTix 2.0 assumes a default time of 0. In this case, the video file,
lecturel5.mpg, will start at 0, the beginning of media time.

The simple encoding of a lecture description in a simple XML text file contributes
to LecTix 2.0’s interfaceability. Both humans and software can easily modify a lecture-
multimedia presentation. Of course, if a developer wishes to add new media types
or change the internals of LecTix 2.0, he or she is free to do so. LecTix 2.0 makes
this freedom possible by offering five layers of features that contribute to its extensib-
lity: the GNU GPL, the Java programming language, a media-class hierarchy, media

events, and a lecture description file format.

95



o6



Chapter 5

Related Work

This chapter introduces seven lecture-multimedia players, describes their user inter-
faces and features, and compares them and LecTix 2.0 in terms of usability, availabil-
ity, and extensibility.

I only consider players here that can present at least one additional media stream
besides audio and video. All the players reviewed here fulfill this requirement by
presenting a scheduled stream of static images—typically PowerPoint-style slides or
snapshots of the blackboard.!

The players reviewed are:

1. Columbia Video Network

2. IIT Online

3. Microsoft Producer

4. Singapore-MIT Alliance

5. Stanford Online

6. UNITE (University of Minnesota)

7. LecTix 1.3

1One player I do not review, the NET Show [30], presents audio, video, and a transcript.

57



A screenshot of each player is given along with a description of its interface and

features.

5.1 Columbia Video Network

The Columbia Video Network (CVN) [8] is Columbia University’s distance education
program, offering university credit and degree programs online.

Figure 5-1 depicts the player for the Columbia Video Network playing sample
lecture available online. As is common in many lecture-multimedia players, the player
is embedded in a web page. Shown in the upper left corner, a Windows Media plug-
in plays a streaming lecture video. In the upper right, a high-quality close-up of the
blackboard displays writing otherwise hidden by the lecturer in the video. The bottom
panel contains an index of various points in time of the lecture. Unfortunately, the
names given for the index entries, such as Image 59, probably do not help the student
much.

Directly under the VCR-style controls presented by the Windows Media plug-in
are controls for adding custom index entries. To add an entry, the student clicks on
the T'me button when the presentation is at the desired point in time. The player
then displays the time in the text box to the right of the Time button. Next, the
user enters a name for the entry, and clicks on Add marker. By delaying entering
the entry’s name until after capturing the time, the user obtains an accurate timing

without much advance notice.

5.2 IIT Online

IIT Online [19] is the Illinois Institute of Technology’s distance education program,
offering university credit and degree programs online.

Figure 5-2 shows the player for IIT Ounline [19]. The player consists of Synchro-
nized Multimedia Integration Language (SMIL) [1] presentation inside RealPlayer.

The upper-left hand portion of the player shows a video of the lecturer writing notes

o8



Controls Video High-Quality Blackboard Image

2 http:/iw B .cvn.columbia,edu - Online - Microsoft Internet Explorer

= ———
=DOUDD D DD
|DD:DD:DD |Name: | | [ Add marker ]
<
[0:17:41] [0:18:18] [0:18:53] [0:19:7] [0:19:25] [0:19:37] [0:18:57] [0:20:7] A

Image-49 Image-50 Image-51 Image-52 Image-53 Image-54 Image-55 Image-56
[20:35]  [O20:51] 02123 [D2128] [02141]  [02158]  [0222E] 02209
Image-57 Image-58 Image-59 Image-60 Image-61 Image-62 Image-63 Image-64
[22:44]  [0234]) [02324]  [D2355]  [D2412]  [D2421] 02833 [0-24:56)
Image-65 Image-66 Image-67 Image-68 Image-69 [mage-70 Image-71 Image-72
025141 [025:28] (02535 (02555 D267 [26:38] 027561 [0280]
Tmage-73 Image-74 Image-75 Image-76 Image-77 Image-78 Image-79 Image-80
[0:28:9] 028271 [0:28:59] [023:57]  [03029]  [030:35]  [0:30:58]
Image-81 Image-82 Image-83 Image-85 Image-86 Image-87 Image-28
03110]  [@3139]  [D3210] 03238 03313  [D3345]  [0340]

Image-89 Image-90 Image-91 Inage-93 Image-94 Dmage-95 Image-96
13417 M-34-571 IM-35-61 MARZ] T3ad1 N-7-91 IM-%7-4#1 o

@ javascript:_parent.Frames{ﬂ].SetPosit\on(IIISSS_) ‘ 8 Internet

Index / Bookmarks

Figure 5-1: Columbia Video Network

29



on the paper. The right half of the player zooms in on the notes and previews what
the lecturer will write. Directly under the video sits an index. Contrary to the index
found in the CVN player (Section 5.1), this player’s index has meaningful entries that
help students find the part of the lecture that interests them.

The controls for the II'T Online player sit along the bottom of the player. These
controls consist of typical VCR-style controls. As with the SMA player (Section 5.4),
the previous-clip and next-clip buttons (sitting to the right of the stop button) appear
useless in the context of a single lecture-multimedia presentation. If held down,

however, the buttons rewind or fast-forward the presentation.

5.3 Microsoft Producer

Microsoft Producer [29] is an add-on to Microsoft’s PowerPoint software. From an
encoded video and PowerPoint slides, Microsoft Producer produces multimedia pre-
sentations playable inside Microsoft’s Internet Explorer browser. The presentations
integrate the video, slides, and an index. While not exclusively for lecture-multimedia
presentations, the player shares features commonly found in lecture-multimedia play-
ers.

Figure 5-3 depicts a sample multimedia presentation made by Microsoft Producer.
The layout is similar to that of IIT Online: video sits in the upper left, an index
appears below it, and a slide displays in the right half of the screen. Unlike I[IT Online,
however, Microsoft Producer’s controls sit between the video and index. Also, despite
the adequate empty space next to the time display, the player does not provide a seek
slider. The player compensates, however, by featuring buttons for skipping back and

forward 10 seconds.

5.4 Singapore-MIT Alliance

The Singapore-MIT Alliance (SMA) [42] is a joint educational and research collab-

oration among three universities: the National University of Singapore (NUS), the

60



Video Slide

' (Eealﬂfayer \l Flle Wiew Play Fg\rarites\ ols  Help @ : ‘

thw-‘u\ n l““‘"'
Ry - 015 ke - 3.3F
kh- '-5" *D e 8 %4
_l‘.:untents
Start 8 B o

e Critical Pair?

* 15 swallest
gﬂ“" ‘L-L t?'l'l£l'i".'l.l

Fu'-

CHEMSOT 205

o] taw o} b P chemS0L.rm i chemS1301 - IIT ORLINE it online 3 (=) | GG |92 kbos nonpizas || &

(0)— —

1] ) (e w)

2z

i 2 My Library 71 Mlusic Store ‘

Index Controls

Real Guide

Figure 5-2: II'T Ounline

61



Controls

tes - Microsoft Internet Exp

e Favorites  Tools  Help

Exploring earthquakes

= What is an earthquake?
Will a large one hit California?
How often do they oceur in the world?

‘What are the impacts
of earthquakes?

Index

Figure 5-3: Microsoft Producer

62



Video Slide

P n o —
@alwayw wiew Play Favortes Tools Help @ = 7 X @ http:/ 'smcs-webserver-smal.mit.edu/sm 03/03n0v04/1/img031.jpg -J{0) {x)

LR agdvess s /srk buebserver-smat mit edufsma/S503/D3nevd/ 1 Amalit ng v | (ED

e Linear-programming
~*" algorithms

Algorithms for the general problem

* Simplex methods — practical, but worst-case
exponential time.

¢ Interior-point methods — polynomial time and
competes with simplex.

S| Mo Playing || B Services  SMASS03- AcademicMediaF [ 220 khps 59 Lzl | |

~
1 (y——
Eafid b

uide (1) Music f My Library £ Music Stare

Controls

Figure 5-4: Singapore-MIT Alliance

Nanyang Technological University (NTU), and MIT. SMA offers classes in Singapore
at NUS or NTU, as well as in Cambridge, Massachusetts at MIT.

Figure 5-4 shows a screenshot of the SMA player. Similar to IIT Ounline (Sec-
tion 5.2), the SMA player is based on RealPlayer. The SMA player differs from the
IIT Online player, however, in that it does not use SMIL, and in that its interface
consists of two windows: a main RealPlayer window on the left, and a window on the
right that displays slides. The main RealPlayer window devotes most of its space to
the video. Underneath the video are the same controls found in the IIT Online player,
including the previous-clip and next-clip buttons that also rewind and fast-forward.
The slide window on the right features controls along the top for browsing the history
of slides already seen—unlike other lecture-multimedia players which have previous-

and next-slide buttons for browsing slides in presentation order.

63



5.5 Stanford Online

Stanford Online offers Stanford University graduate programs and courses over the

Internet.

Figure 5-5 depicts the Stanford Online player. Like the CVN player, the Stanford
Online delivers its player through a web page. A Windows Media plug-in sits on
the left side of the browser, and a slide displays in the center. Two sets of controls
appear in this player. A set of VCR-style controls sits below the video as part of the
Windows Media plug-in. Another set of controls for navigating slides sit below the

slide.

5.6 University of Minnesota UNITE

Figure 5-6 shows the player offered by the University of Minnesota’s UNITE pro-
gram [46]. The player positions the multimedia like the rest of the players: video
on the left and static image on the right. At the point in time shown in Figure 5-6,
however, the player has swapped the types of content typically presented by the video
and image streams. The image shows a still-frame shot of the whiteboard, and the
video shows a PowerPoint-style slide. This technique allows a user to still see the

slide while the player presents the whiteboard as a high-quality static image.

Similar to Microsoft Producer and Stanford Online, this player features slide-
navigation controls. A user can navigate to the first, previous, next, or last slide. In
addition, the UNITE player features a scrollable strip of slide thumbnails (miniature
renderings of the slides). Clicking on a thumbnails brings up the full slide. Unfortu-

nately, the video does not synchronize with the new slide.

64



Video Slide

nford.edufscpdistudents/Video/embed.asp?Stre @@ -http:/flang.stanford.edufspring/m - Micros... Efﬁng

. I

File Edit Ve avorites  Tools  Help

rd Center for Professional Development

ORD UNIVERSITY

0 Quaslions? Conlacl us

There used to be dot matrices.

* Put onesequence alongthe top row of a matrix.

* Put the other sequence along the left column of the
matrix.

* Plot a dot everytime there is a match between an ™ Qnine Courses
element of row sequence and an element of the " Tech Center

column sequence.
* Diagonal lines indicate areas of match. Gt IIJ
Media Player

-\NE o g - E -//E A A

Shde 3 of 48

\
i

Controls

Figure 5-5: Stanford Online

65



2l UNITE Video Demonstration -  §8 isoft Internet Explorer
UN § E Video Demonstration Featuring:
5 UNITE BME §i501: Biology for Biomedical Engineers

EE 5:§ 5: Robust Control System Design
Stréaming\Videa Program EFE 5¢ | 1: Biological System Modeling and Analysis

File Edit ‘iew Favorites Tools

Point Spread Function (PSF)

« A point source of light is spread via
diffraction through a circular apertura

+ Madeling needs to account for PSF
= First Slide Previous
’ [CORRCH

o (o0 [ e [ oamaeeazms

it a Trouble Report

UNITE program, Spring 20003 semester.

urposes only.

Controls

Figure 5-6: UNITE

66



f fTix ST
File ind Edij de Look & Feel Hel
] jble ncf Fel [ ] Media ANl sF BB ransa N fo 0 e B Esnapshes | b E
CEp U Epep a0 gERE LR viShow  Rex (¥ Show Snapsho ¥ Sync Vi
[0:93:54.5 e mi e of the g = b fi 5 W
[1:08:13.8¢ Fhe e if the Le [0:00;00.48] [0:08:23.92] —-ndtitle— - -
= soiam erick demaind new professor here -
[0:00:22.62]
and its really exceitin gto be here coz one of my favorite
things in
the waorld is algorithms
[0:17:00.2]
ill write down the induction hypothesis.
[0:40:48.56]
iz o | T = \[Aémscg :]sspgg;v general
Emefamae]) 7 B ~ 40U WANT 0. UM, Now we're in case three
[0:00:4§.25] inff fduction ol i B e e i |
[0:17:4F.11] Ergdgng the boan « HlO ) ‘l » | 0.5% 2.0x ‘l 1.0x |
[0:43:46.94] th COMMon ca;
[1:00:26.77] scfBtion of case TIME 0:17:08 29
| Full Scresn ‘ [Capture | ‘Caplure 2.0 |secs - [0:3:41.63] -—no Utle--
EnNotes 72 o'l B
Blsnves S i i iR LoadE e
[¥] Show Index ] Sync | Pre Next 0:0013.06]
o llf rrry notes 1
[0:00:18.68]
FTR A tighter upper bound? i
e ] < Sl notes
(0:06.50] Ex:Rriple.of subst We shall prove that 7{s) — O(x%), [1:06:10.65]
[0:12:45] Example (continue = i hotes
[0:17:00.0] A tighter upper Aseums that 1 14) < of for £ < ——
[0:23:17] A tighter upper b =428
[0:31:58.0] Recursion-tree 1f* Sdentta '
(0:33:05:0] Excample ot recu =) wrong! Wemust prove the TIT o -
[0:34:30] Example of recurs N 4 X ! [0:37:22.43] ——no title——
[0:34:45] Example of recurs| =en?—(—n) | desired - residnal |
[0:35:10] Example of recursi S’
[0:36:20] Example of recursi_ for wo clicics of c [} U, Losc!
N y = -i

Figure 5-7: LecTix 1.3

5.7 LecTix 1.3

LecTix 1.3 is the predecessor to LecTix 2.0.2 Shown in Figure 5-7, LecTix 1.3 supports

many features not available in LecTix 2.0 such as multiple text indices, transcript,

user-editable notes,

and bookmarks.

Along the left side of the player lie multiple text indices called the table of contents,

media index, and slide index. Selecting an entry in any of the indices jumps the

presentation to the point in time relevant to the entry.

To the right of the controls lie the video and slides. A variety of controls sit

below the video and above the slides. Besides the usual play, pause, and seek slider

controls, LecTix 1.3 has a skip-back, skip-forward, variable-speed slider, full-screen

2LecTix has been known by several names. Here they are in time order from earliest to latest:
Lecture Viewer [18], EVES [27], LecTix 1.3, and LecTix 2.0.

67



button, and a capture button for setting bookmarks. LecTix 1.3 calls its bookmarks
snapshots because they not only mark a label and time, but snapshots of the video
as well.

To the right of the video and slides lie the transcript and user-editable notes. Both
appear similar, but have different uses. The transcript serves to help students who
have difficulty understanding the lecturer’s speech. In the notes area, the student
can take down notes that are synchronized to the presentation. The notes can be
considered another form of bookmarks.

To the very right lies a scrollable pane of snapshots taken by the student. This
feature provides a way for the student to keep parts of the blackboard on display after

the video has moved elsewhere.

5.8 Comparison of Players to LecTix 2.0

This section compares the seven players just described to LecTix 2.0. I compare the
players in terms of the properties of usability, availability, and extensibility. With the
possible exception of LecTix 2.0’s incompatibility with contemporary state-of-the-art
video codecs and its affect on availability, I show that LecTix 2.0 fares better than

the seven other players in all three properties.

Usability Comparison

LecTix 2.0 contains more features that contribute to usability than the other seven
players. Of the features I consider here, LecTix 2.0 lacks only bookmarks.

To better compare the features across all eight players, we must first expand
the list of features found in Table 2.1 (page 20) that we identified contributed to
LecTix 2.0’s usability. Table 5.1 lists the expanded set of features and which of the
five attributes of usability they contribute to. The navigation feature from Table 2.1
has been broken up into bookmarks, index, previous and next slide, and seek slider.
Table 5.1 also adds a new feature, tooltips.

Table 5.8 shows which of the features from the expanded list that each of the eight

68



Table 5.1: Expanded list of features that contribute to usability

Feature Learnability Efficiency Memorability Few Errors Satisfaction
Controls
Bookmarks — v — — v
Index — v — — v
Prev/Next Slide — v — — v
Seek Slider — v — — v
Variable Speed — v — v v
Controls’ Properties
Large — v — v —
Real World v — v v —
Tooltips v — v v —
Visible v v v — —
Synchronization — v — v v

players implement. LecTix 2.0 comes out ahead with 8 of the 9 features implemented.
Columbia Video Network and LecTix 1.3 tie for second place with 6 of 9 features

implemented.

Availability Comparison

In terms of availability, LecTix 1.3 and LecTix 2.0 compare favorably to the other
six players due to their open-source code base and high portability. The other six
players, however, can play contemporary formats such as Windows Media (ASF) and
RealMedia.

Table 5.8 shows which of the features that affect availability each player imple-
ments. While not shown here, LecTix 1.3 and LecTix 2.0 can run on more platforms
than just the ones listed in Table 5.8. See Section 3.2.2 on page 33 for a discussion
on the high portability of the Java language.

Extensibility Comparison

In terms of the three attributes of extensibility—modifiability, modularity, and inter-
faceability—LecTix 2.0 rates better than any of the other seven players by contribut-
ing to all three attributes (see Chapter 4).

LecTix 1.3 is modifiable (open-source), but lacks somewhat in interfaceability,

69



Table 5.2: Reviewed players’ features that affect usability

Columbia Singapore-
Video T Microsoft MIT Stanford LecTix LecTix

Feature Network Online Producer Alliance Online UNITE 1.3 2.0
Controls

Bookmarks v X X X X X v X

Index v v v X X® v v v

Prev/Next Slide x x v x© v v v v

Seek Slider v v X v v v v v

Variable Speed v X v X v v v
Controls’ Properties

Large X X X X X X X v

Real World v v X X v v X v

Tooltips v v v v v X X v

Visible® X X X X X v v v
Synchronization Segment Segment  Segment Segment Trigger Manual Segment Segment

a All of the sample lectures available on CVN’s website had useless index entries of the form Image n
where n is a positive integer.

b Stanford Online provides an index, but the user cannot click on the entries, and scrolling is broken.

¢ SMA provides previous- and next-slide buttons, but they only serve to browse through the history
of the lecture as it has already been played.

4 Not synchronized.

¢ A player fails here if it has hidden controls other than the volume slider.

Table 5.3: Reviewed players’ availability

Columbia Singapore-
Video IIT Microsoft MIT Stanford LecTix LecTix

Feature Network Online  Producer Alliance Online UNITE 1.3 2.0
Open Source X X X X X X v v
Video Format? WM Real WM Real WM Real MPEG-1°> MPEG-1P
Streaming/Local S S S S S S L L
Platform

Windows® v v v v v v v v

Mac OS X4 e v x v e e Ve Ve

Linux® x S x Y x & 7 7

& WM stands for Windows Media. Real stands for RealMedia.

b Both LecTix versions can also play Cinepak and H.263 codecs.
¢ Intel x86.

4 PowerPC.

¢ Audio and video only.

f Slide index not available.

& Cannot play MPEG-1, but can play Cinepak and H.263 codecs.
b Using the slide index crashes RealPlayer.

70



and especially in modularity. Media objects in LecTix 1.3 make explicit calls to
each other. To add a new media type requires careful consideration of many lines of
code. LecTix 1.3 does, however, have a lecture description format which contributes
somewhat to its interfaceability.

While Windows Media has an API available for it, the players based on it—such
as CVN, Microsoft Producer, and Stanford Online—do not reexport the interface.
Furthermore, Windows Media scores poorly on modifiability because of its proprietary
code.

The rest of players—IIT Online, SMA, and UNITE—which are based on Re-
alPlayer, are not extensible. All have proprietary code, and no API is available.
Even if they may be designed in modular fashion, external developers cannot modify

or interface to the code.

71



72



Chapter 6

LecTix 1.3 Case Study

In the fall of 2004, the course 6.046: Introduction to Algorithms, taught at the Mas-
sachusetts Institute of Technology, made LecTix 1.3 (see Section 5.7, page 67) avail-
able for student use. This chapter looks at the methods used for producing the lecture

multimedia for the course, and the students’ overall reaction to LecTix 1.3.

6.1 Production of Lecture Multimedia

To try out LecTix 1.3, it was offered as an experimental player in addition to the
Singapore-MIT Alliance (SMA) player (see Section 5.4 on page 60). Production costs
were kept down by only preparing slides, a slide index, and a lecture video for each
lecture. A table of contents, media index, and transcript were not included.

The production of the lecture-multimedia for 6.046: Introduction to Algorithms
involved three parties: the lecturer, teaching assistant (TA), and MIT’s Academic
Media Production Services (AMPS). The lecturer took responsibility for preparing
the lecture slides and giving the lecture. The TA was responsible for capturing slide
timings, and encoding the lecture video to MPEG-1, and fine-tuning the timings to
produce a lecture multimedia presentation. Before giving the lecture video to the TA,
AMPS took responsibility for the lecture’s recording.

Besides recording, AMPS also encoded and hosted lecture media for the SMA

player. Their lecture media consisted of two media streams: lecture video and Pow-

73



erPoint slides.

Due to similar content, some of the production work involved in producing lecture
multimedia for the SMA player and LecTix 1.3 was shared. Both sets of lecture
multimedia required the production of slides, slide timings, and lecture video.

Figure 6-1 details the production work-flow for LecTix 1.3 lecture multimedia
for 6.046: Introduction to Algorithms. The three participants—lecturer, TA, and
AMPS—sit across the top of the diagram.

The work-flow consists of five stages. The first two stages of the work-flow contain
the actions shared between the production of SMA and LecTix multimedia. The last
three stages contain actions only for the production of LecTix multimedia. Further-

more, the TA is the only participant to participate in these last stages.

Stage 1 The lecturer prepares the slides. Once finished, the lecturer gives a copy of
the slides to the TA.

Stage 2 The lecturer gives the lecture. During the lecture, the TA records the times
at which the slides should be shown during lecture multimedia playback, oth-

erwise known as the slide timings. Meanwhile, AMPS records the lecture.

Stage 3 The TA encodes AMPS’s recording of the lecture into MPEG-1 video. While
a computer encodes the lecture, the TA adds slide titles to the slide timings to

produce a slide index.

Stage 4 The TA fine-tunes the lecture timings to the lecture video. If the original
slide timings are accurate, only a small offset to all the timings is necessary to

align each one’s start times.

Stage 5 The TA posts the lecture multimedia to the web.

After the TA posts the lecture to the web, students can then download and watch
it.

74



Lecturer TA AMPS

Prepare slides

Record
lecture

Lecture

Gake slide timinga

Add slide titles
to timings

Encode lecture

Fine-tune timings
to encoded lecture

A4

‘ Publish lecture ’

Figure 6-1: Production work-flow for 6.046: Introduction to Algorithms. Labeled along
the top are the participants in the work-flow. Actions they are responsible for lie in shaded
ovals under each participant. Arrows show the direction of the work-flow. Thick horizontal
bars represent synchronization points. Progress cannot proceed past a synchronization point
until all actions leading up to it finish.

)



Table 6.1: Downloads for LecTix 1.3 and lecture-multimedia

No. downloads Average downloads per lecture

LecTix 1.3 156 —
Full Lecture 610 33.9
Just Video 2,366 131.4

6.2 Student Reaction to LecTix 1.3

Overall, the student reaction to LecTix 1.3 was fair. Table 6.1 shows that LecTix 1.3
was downloaded 156 times (class size was 114). Assuming most of the downloads were
from students of 6.046, this number implies that many ,if not most, of the students
tried the player.

The remaining two lines of Table 6.1, however, tell more. Students downloaded
full lecture-multimedia (video plus slides) 610 times compared to just the video being
downloaded 2,366 times. I hypothesize that the students found the convenience of
having the lecture file locally (an attribute of availability) to trump the higher quality
video streamed by the SMA player.

Informal feedback from some students indicate that I am somewhat correct. But
other feedback says that they did not like LecTix 1.3. The main reason they gave
was that the video was too small, and that LecTix 1.3 wasted a lot of screen space
for features that our production didn’t support.

With this knowledge, I decided that LecTix 1.3 suffered a bit from feature overload,
and that it would be best to redesign it from scratch. And that is how LecTix 2.0

was born.

76



Chapter 7

Conclusion

This chapter concludes with comments on the contributions of LecTix 2.0 and with

some ideas for future work.

7.1 LecTix 2.0 Contributions

LecTix 2.0 aims to be a usable, available, and extensible lecture-multimedia player. In
many aspects, it succeeds. I have shown how its features contribute to the attributes
that compose usability, how its features contribute to all but the compatibility at-

tribute of availability, and how its features contribute to extensibility.

While it’s great that the features of LecTix 2.0 contributes to something, what

exactly does LecTix 2.0 contribute to the world?

In that regard, LecTix 2.0 contributes a free, open-source lecture-multimedia
player that students find easy to use and that runs on their computing platform
of choice. For students and educators familiar with the art of programming, Lec-
Tix 2.0 contributes a player that they can easily extend to better work for them, so

that students can become better learners, and educators can become better teachers.

77



7.2 Future Work

All is not done with LecTix 2.0, however. Of course, such is to be expected from a
system designed to be extensible. The two major areas to be addressed in LecTix 2.0
are features missing from LecTix 1.3, and support for a contemporary, state-of-the-art
codec.

While LecTix 1.3 does suffer somewhat from feature bloat, the real problem is not
that there’s too many features, but that LecTix 1.3 presents them all at once. In a
lecture-multimedia players, extra media can mean extra production costs. As was the
case with the production of lecture-multimedia for 6.046: Introduction to Algorithms
(see Chapter 6), extra production costs often means that the extra media do not get
produced. Hence, the students did not care much for a player that devoted over half
of its screen space to features that weren’t being used.

A better approach would be to carefully limit how much the player shows to the
student at once. Students like to watch large video, sometimes to the exclusion of
everything else. Other students, however, may find a transcript essential. It is the
job of the lecture-multimedia player to accommodate several different kinds of users,
possibly including the student that seeks information overload from 10 simultaneous
streams of media.

To address this issue, future work on LecTix 2.0 could include looking at ways
to make the user interface easily customizable. I stress the word easily, because a
hard-to-customize interface is just as bad as an uncustomizable interface. Liu |25]
has suggested preset views similar to those in Eclipse [10].

As for the matter of finding a contemporary, state-of-the-art codec for LecTix 2.0,
we must remember that compatibility in lecture-multimedia players often conflicts
with distributability. Fortunately, however, three new codecs are on the horizon that
will break that conflict: Ogg Theora [47], Dirac [4], and the Snow codec from the
FFmpeg project [11].

With these missing puzzle pieces in place, LecTix 2.0 can become an even more

usable, available, and extensible player.

78



Glossary

codec An acronym for “compressor / decompressor.” A codec is a set of algorithms,
or implementation thereof for (1) reducing the size of (compressing) and encod-
ing a single media signal (such as video or audio) into a stream of bytes; and
for (2) decoding and uncompressing the stream of bytes to reconstruct, if not

the original media signal, a media signal similar to the original.

format A file format that acts as a container for byte streams that are the result of
codecs compressing media signals. Often the byte streams are multiplexed and
synchronized so that they can be presented simultaneously (such as synchro-

nized audio and video).

open source Software, or licenses for software, that conform to the Open Source
Definition (OSD) [32] as specified by the Open Source Initiative (OSI). The OSD
specifies ten criteria that software must comply with in order to be considered

open source. The three criteria important for discussion in this thesis are:
e Free Redistribution: The software must be freely redistributable. The
license must not require a royalty or fee upon resale or redistribution.

e Source Code: The software must include source code, or the source code

must be made available upon request.

e Derived Works: “The license must allow modifications and derived works,
and must allow them to be distributed under the same terms as the license

of the original software” [32].

The remaining seven criteria focus on the redistribution of the license and the

79



allowance of the software for use by anyone and for any purpose. When hyphen-
ated, “open-source” becomes an adjectival noun, as in “open-source software” or

“open-source license.”

platform A combination of a specific operating system and hardware architecture.
For example, Linux/i386 is a different platform than Linux/Alpha despite them

having the same operating system.

80



Bibliography

1]

2|

3]

4]

15]

6]
17l
18]

19]

Jeff Ayars et al. Synchronized Multimedia Integration Language (SMIL 2.0).
http://www.w3.0org/TR/2004/PER-SMIL2-20041105/, Nov 2004. W3C pro-

posed edited recommendation.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-
guage User Guide. Addison-Wesley Object Technology Series. Addison-Wesley,
Reading, Massachusetts, 1999.

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Francois
Yergeau. Extensible Markup Language (XML) 1.0. http://www.w3.org/TR/
2004/REC-xm1-20040204/, Feb 2004. 3rd edition, W3C recommendation.

British Broadcasting Corporation. Dirac. http://www.bbc.co.uk/rd/

projects/dirac/index.shtml.

Stuart K. Card, Thomas P. Moran, and Allen Newell. The Psychology of Human-

Computer Interaction. Lawrence Erlbaum Associates, 1983.
Antoine Cellerier et al. VideoLAN Client. http://www.videolan.org/.
Bernard of Chartres, circa 1126. Quoted in [28|.

Columbia University. Columbia Video Network. http://www2.cvn.columbia.
edu/.

Apple Computer. QuickTime file format license. http://developer.apple.

com/softwarelicensing/agreements/pdf/qtfileformalt.pdf.

81



[10]

[11]

[12]

[13]

[14]

[15]

[16]

17]

18]

[19]

[20]

Eclipse Foundation. Eclipse. http://www.eclipse.org/.

FFmpeg Team. Ffmpeg multimedia system. http://ffmpeg.sourceforge.

net/.

Paul M. Fitts. The information capacity of the human motor system in control-
ling the amplitude of movement. Journal of Experimental Psychology, 47(6):381—
391, June 1954.

Free Software Foundation. GNU General Public License. http://www.gnu.org/
licenses/gpl.html.

David M. Geary. Graphic Java 1.2: Mastering the JFC, volume 1. Sun Microsys-
tems Press, Palo Alto, CA, 3rd edition, 1999.

the GNU Compiler Collection Team. Host/Target specific installation notes for
GCC. http://gcc.gnu.org/install/specific.html.

Adele Goldberg and David Robson. Smalltalk-80: The Language and Its Imple-
mentation. Addison-Wesley Series in Computer Science. Addison-Wesley Profes-

sional, Reading, Massachusetts, 1983.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. The Java Series. Addison-Wesley Professional, 3rd edition, June
2005.

Kai Huang, Charles E. Leiserson, and Luis F. G. Sarmenta. A media player
for use in distance education. http://hdl.handle.net/1721.1/3864, January
2003. Poster presented at the Singapore-MIT Alliance Third Annual Symposium,

Singapore.
[linois Institute of Technology. II'T Online. http://www.iit-online.iit.edu/.

International Telecommunication Union. H.263: Video coding for low bit
rate communication. http://www.itu.int/rec/recommendation.asp?type=

folders&lang=e&parent=T-%REC-H.263, Jan 2005.

82



21]

[22]

23]

24]

[25]

26]

27]

28]

29]

[30]

[31]

32|

3]

ISO/IEC. ISO/IEC 11172-1993: MPEG-1 coding of moving pictures and asso-
ciated audio at up to about 1.5 mbits/second, 1993.

Jikes. http://jikes.sourceforge.net/index.shtml.

Zentaro Kavanagh. Ogg Directshow Filters. http://www.illiminable.com/

ogg/.

Barbara H. Liskov and Jeannette M. Wing. Behavioral subtyping using invariants
and constraints. In Howard Bowman and John Derrick, editors, Formal Methods
for Distributed Processing: A Survey of Object-Oriented Approaches, chapter 12.
Cambridge University Press, Cambridge, 2001.

Vicky Liu. Personal communication, Nov 2004.

[. Scott MacKenzie. A note on the information-theoretic basis for Fitts’ law.

Journal of Motor Behavior, 21:323-330, 1989.

Marco Dolcetto Mate, Darlene Mari Velasquez, and Luis F. G. Sarmenta. An
enhanced lecture viewer for eLearning. In 3rd National Conference on eLearning,

Manila, August 2004. Philippine eLearning Society.

Robert K. Merton. On the Shoulders of Giants: A Shandean Postscript. Uni-

versity of Chicago Press, Post-Italianate edition, 1993.

Microsoft. Microsoft Producer. http://www.microsoft.com/windows/

windowsmedia/technologies/producer.aspx.
Microsoft. The .NET show. http://msdn.microsoft.com/theshow/.

Jacob Nielsen. Usability Engineering. Academic Press, San Diego, CA, USA,
1993.

Open Source Initiative. Open Source Definition. http://www.opensource.org/

docs/definition.php. version 1.9.

Jim Pick. Kaffe.org — ports. http://www.kaffe.org/ports.shtml.

83



[34]

[35]

136]

137]
38

39]

[40]

[41]

[42]

143

|44]

[45]

|46]

The MPlayer Project. MPlayer: The movie player. http://www.mplayerhq.hu.

RealNetworks. Helix Community — RealAudio and RealVideo technology for

Helix. https://helixcommunity.org/realcodecs/.

RealNetworks. Helix Community Project Info — Xiph. https://

helixcommunity.org/projects/xiph/.
RealNetworks. Helix Player. http://player.helixcommunity.org/.
RealNetworks. RealPlayer. http://www.real.com/.

J. Rintala. Computer technology in higher education: An experiment, not a

solution. Quest, 50(4):366-378, 1998.

S. Roucos and A. M. Wilgus. High quality time-scale modification for speech.
In Proceedings ICASSP 86, International Conference on Acoustics, Speech, and
Signal Processing, pages 493-496, Tokyo, March 1985.

Marco Schmidt. Java development kits and Java runtime environments (JDK /
JRE). http://www.geocities.com/marcoschmidt.geo/java-jdk-jre.html,
May 2004.

Singapore-MIT Alliance. http://web.mit.edu/sma/.

Richard M. Stallman. The danger of software patents. In Joshua Gay, editor,
Free Software, Free Society: Selected Fssays of Richard M. Stallman, chapter 16.
GNU Press, Boston, 2002.

Bjarne Stroustrup. What is object-oriented programming? IEEE Software,
5(3):10-20, May 1988.

Sun Microsystems, Inc. JMF 2.1.1 — supported formats. http://java.sun.

com/products/java-media/jmf/2.1.1/formats.html.

University of Minnesota. UNITE Instructional Television. http://www.unite.

umn . edu/streaming-video/index.shtml.

84



[47] Xiph.Org Foundation. Ogg Theora. http://www.theora.org/.

85



