
Strata: A Multi-Layer Communications Library

Version 2.0 Beta

Eric A. Brewer and Robert Blumofe�
MIT Laboratory for Computer Science

February 15, 1994

Strata is a multi-layer communications library under development at MIT. Version 2.0
provides safe, high-performance access to the control network and flexible, high-performance
access to the data network.

Strata works correctly on top of CMMD 3.0; both the data- and control-network opera-
tions can be mixed with Strata calls. However, Strata forms a complete high-performance
communication system by itself, with substantial support for degugging and monitoring.

Strata provides several advantages over CMMD 3.0 [TMC93]:

Support for split-phase control-network operations. Split-phase operations allow
the processor to perform work while the global operation completes. Strata
provides split-phase barriers, segmented scans, and reductions.

Support for debugging and monitoring. Strata provides versions of printf that
do not poll and can be used within handlers. This allows users to insert print
statements for debugging without changing the atomicity of the surrounding
code. Strata also provides routines for accurately timing short events, and
for clean assertion checking and error handling. Finally, Strata provides sup-
port for automatic generation of state graphs, which depict the state of each
processor versus time.

Support for developing high-performance data-communication protocols. Strata
provides a rich and flexible set of data-network procedures that can be used to
implement complex data-communication protocols. By understanding certain
potential pitfalls, the Strata user can implement protocols that are more com-
plex, are more robust, and achieve higher performance than those that can be
implemented with the procedures and usage-rules of CMMD 3.0.

Higher performance. Table 1 compares the performance of Strata with that of
CMMD 3.0. Strata’s control-network procedures are considerably faster than
CMMD’s (though these operations rarely dominate execution time).�E-mail: brewer@lcs.mit.edu or rdb@lcs.mit.edu. This work is supported by Project SCOUT

(ARPA Contract MDA972-92-J-1032); by the National Science Foundation, grant CCR-8716884; by ARPA, Contract
N00014-91-J-1698; by an equipment grant from Digital Equipment Corporation; and by grants from AT&T and IBM.
Eric Brewer received support from an Office of Naval Research Fellowship. Robert Blumofe is supported by an
ARPA High-Performance Computing Graduate Fellowship. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either expressed or
implied, of the U.S. government.

1



CMMD 3.0 Strata

Primitive Time Primitive Time

CMMD_sync_with_nodes 170 cycles Barrier 140 cycles

CMMD_scan_int 380 cycles CombineInt 150 cycles

CMMD_scan_v 241 cycles/word CombineVector 49 cycles/word

CMMD Broadcast, 1 word 230 cycles Broadcast 90 cycles

CMMD Broadcast, double 380 cycles BroadcastDouble 90 cycles

CMMD Broadcast, vector 150 cycles/word BroadcastVector 49 cycles/word

CMAML_request 67 cycles SendLeftPollBoth 43 cycles

CMAML_poll 45 cycles PollBothTilEmpty 22 cycles

bzero 36 cycles/word ClearMemory 21 cycles/word

Table 1: Relative performance of Strata. The cycles counts for the active message proce-
dures (CMAML_request and SendLeftPollBoth) as well as for the polling procedures
(CMAML_poll and PollBothTilEmpty) are for the case when no messages arrive.

Contents

1 Using Strata 4

2 Strata Functionality 4

3 Strata Basics 6

3.1 Type Qualifiers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

3.2 Globals : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

3.3 Types : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

3.4 Macros : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

3.5 Procedures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

3.6 Random-Number Generator : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

4 Control-Network Primitives 8

4.1 Barriers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

4.2 Global OR : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

4.3 Combine Operations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

4.3.1 Segmented Scans : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

4.3.2 Combine Procedures : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

4.4 Broadcast Operations : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

5 Composite Reductions 12

6 Data-Network Primitives 13

6.1 Sending Active Messages : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

6.2 Receiving messages : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 14

2



7 Block Transfers 16

7.1 For the curious : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

8 Multi-Block Transfer 20

9 Debugging Operations 20
9.1 Printing in Handlers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20
9.2 Assertion Checking : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21
9.3 Debugging Mode and Logging : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21
9.4 Timing Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

10 Graphics 23

11 Acknowledgments 25

A Prototype Summary 26

3



1 Using Strata

Strata programs have their own default host program and are linked with the Strata library.
The Strata directory includes an example program (radix sort) that uses many of the Strata
procedures.1 Primary files:

File Description

README Installation notes

INSTALL Installation script

strata.h Defines all of the prototypes, typedefs and macros

libstrata.a The Strata library, linked in with -lstrata

libstrataD.a The Strata debugging library, linked in with -lstrataD

strata_host.o The default host program object file

Makefile The make file for the radix-sort application

radix.c Radix-sort source code

do-radix The DJM script for running radix sort

control_net_inlines.c Inline control-net procedures, included by strata.h

data_net_inlines.c Inline data-net procedures, included by strata.h

strata_inlines.c Basic inline procedures, included by strata.h

src Directory containing the Strata source code

strata.ps The PostScript for this document.

See README for installation notes. After installation, users should be able to copy Make-
file, radix.c, and do-radix into their own directory and build the example application.
Makefile contains the necessary options to include strata.h and to link with the Strata
library.

2 Strata Functionality

The rest of this document covers the current set of Strata routines. Figure 1 shows the structure
of the Strata layering; each block corresponds to one of the following sections. Appendix A
lists the prototypes for reference. There are several groups of Strata routines:

1For MIT Scout users, the Strata library and include files are currently in /u/brewer/strata.

4



Data Reordering

Multi-block Transfer
Graphics

Block Transfer

Data-Network

Primitives

Control-Network

Primitives

Debugging

Monitoring

Composite Control-
Network Operations

(e.g. Median)

Figure 1: The layering of Strata.

Section Description

3 Basics Initialization, error handling, basic macros and globals

4 Control Network Primitive control-network operations

5 Composite Reductions Higher-level reductions

6 Data Network Sending and receiving short data messages

7 Block Transfers Sending and receiving blocks of data

8 Multi-Block Transfer Higher-level data movement

9 Debugging Support for debugging and timing

10 Graphics Support for state graphs

5



3 Strata Basics

3.1 Type Qualifiers

ATOMIC Used in function prototypes indicate that the procedure does
not poll. This in only a convention; it has no effect on the
procedure.

NORETURN Used in function prototypes to indicate that the procedure
never returns (like exit).

HANDLER Used in function prototypes to indicate that the procedure is
a handler. This in only a convention; it has no effect on the
procedure.

3.2 Globals

int Self Local node number

int PartitionSize Current partition size

int logPartitionSize The log (base two) of the partition size

int PartitionMask Mask for legal node bits

char *StrataVersion String: version number and date

float StrataVersionNumber The version number

3.3 Types

Word A generic 32-bit quantity (unsigned)

DoubleWord A generic 64-bit quantity (unsigned)

Bool Used for booleans; can be set to True (1) or False (0)

3.4 Macros

LEFTMOST Defined as (Self==0)

RIGHTMOST Defined as (Self==PartitionSize-1)

3.5 Procedures

void StrataInit(void)

This procedure initializes Strata. In particular, it:

1. Enables CMMD,

6



2. Disables interrupts,

3. Initializes the Strata global variables,

4. Sets stdout and stderr to independent append mode, and

5. Enables broadcasting.

NORETURN StrataExit(int code)

Exits the application after cleaning up. It is an error to exit without going through
StrataExit, so Strata redefines exit and assert to exit through StrataExit.
If code is non-zero, the entire application will exit immediately. If it is zero,
then the node idles until all processors reach StrataExit, at which point the
entire application exits normally. During the idle time, the node handles incoming
messages (by polling).

NORETURN StrataFail(const char *fmt, ...)

The arguments work like printf. After printing the message to stderr, it exits
through StrataExit with error code -1.

ATOMIC void ClearMemory(void *region, unsigned length_in_bytes)

This procedure zeroes out the region. It is functionally equivalent to bzero, but is
faster because it uses double-word writes exclusively. It is provided primarily as
an example of how to use double-word accesses from Gnu C. (Source code is in
memory.c.)

3.6 Random-Number Generator

ATOMIC unsigned Random(void)

Returns a pseudo-random 32-bit value. This is the “minimal standard” random-
number generator described by Park and Miller [PM88]. The default seed is Self+1
(set during StrataInit), which gives each processor a unique but repeatable
sequence.

ATOMIC unsigned SetRandomSeed(unsigned seed)

Sets the random seed for this node toseed. Ifseed is the special valueTIME_BASED_SEED,
then the seed is set based on the cycle counter and the processor number. This re-
sults in different seeds for different runs (as well as for different nodes). The return
value is the seed actually used, which can be used later to repeat the sequence.

7



4 Control-Network Primitives

4.1 Barriers

void Barrier(void)

Returns when all nodes reach the barrier. It is equivalent to GlobalOR(False).

ATOMIC void StartBarrier(void)

Starts a split-phase barrier.

ATOMIC Bool QueryBarrier(void)

Returns true if and only if the last barrier has completed.

void CompleteBarrier(void)

Returns when the last barrier has completed, possibly blocking.

4.2 Global OR

Bool GlobalOR(Bool not_done)

Returns the OR of the not_done argument of each PE. All nodes must participate.

ATOMIC void StartGlobalOR(Bool not_done)

Starts a global OR operations, but returns immediately.

ATOMIC Bool QueryGlobalOR(void)

Returns true if and only if the last global OR has completed.

Bool CompleteGlobalOR(void)

Returns the result of the last global OR; blocks until the result is available.

ATOMIC void SetAsyncGlobalOR(Bool not_done)

This is an asynchronous version of the global-OR operation. This procedure sets
this processor’s contribution. During StrataInit, each node’s value is set to
True.

ATOMIC Bool GetAsyncGlobalOR(void)

Reads the asynchronous global OR bit. Returns true if and only if at least one node
has its asynchronous-global-OR bit set to true.

8



4.3 Combine Operations

The control network provides five associative functions for combine operations: signed add,
or, xor, unsigned add, and signed max. Thus, there are fifteen primitive combine operations:

ScanAdd BackScanAdd ReduceAdd
ScanOr BackScanOr ReduceOr
ScanXor BackScanXor ReduceXor
ScanUadd BackScanUadd ReduceUadd
ScanMax BackScanMax ReduceMax

The Scan variants perform a forward scan (by processor number), the BackScan variants
perform a backward scan, and the Reduce variants perform a reduction. Together these fifteen
variants form the enumerated type CombineOp, which is used by all of the Strata combine
primitives.

4.3.1 Segmented Scans

Strata also offers segmented scans. The segments are global state maintained by the hardware;
Strata scans implicitly use the current segments. Initially, the partition is set up as one large
segment covering all nodes. Note that reduction operations ignore the segments (this is a
property of the hardware), but segmented reductions can be built out of two segmented scans.
Normally, a segmented scan involves calling SetSegment followed by one of the combine
functions, but the call to SetSegment is often left out, since segments are typically used more
than once. Finally, segments are determined at the time the scan starts (on this node); changing
the segments after that has no effect.

There are three kinds of segment boundaries; they form SegmentType:

typedef enum {

NoBoundary, ElementBoundary, ArrayBoundary

} SegmentType;

The difference between ElementBoundary and ArrayBoundary requires an example. As-
sume that there are 16 processors (0 on the left), the operation is ScanAdd, and that segment
boundaries are marked as N, E, or A:

Case 1:

Value: 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

Segment: E N N N E N N N E N N N E N N N

Output: 0 1 2 3 0 2 4 6 0 3 6 9 0 4 8 12

Case 2:

Value: 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

Segment: A N N N A N N N A N N N A N N N

Output: 0 1 2 3 4 2 4 6 8 3 6 9 12 4 8 12

9



Case 1 outputs the expected answer; the first node in a segment receives the identity value.
However, case 2 is also useful (and matches the hardware). In case 2, the first node of a segment
receives the value of the previous segment, which in this example is the sum of the previous
segment. Thus, ArrayBoundary essentially means “give me the value from the previous
processor, but don’t forward that value to the next processor”. This semantics is required
when performing a scan on a “vector” that is wider than the partition and thus uses multiple
elements per node. For example, a scan of a 64-element wide vector on 16 processors uses 4
elements per node. If the intended boundary is between the 2nd and 3rd elements, then the first
two elements depend on the value from the previous node, and only the third element gets the
identity value. The test code, test-all.c, uses both forms of segments.

ATOMIC void SetSegment(SegmentType boundary)

Sets the segment status for this node to boundary. If all nodes execute SetSeg-
ment(NoBoundary), then the nodes form one large segment; this is the initial
segment setting. It is fine for only a subset of the nodes to call SetSegment. Note
that reductions (both regular and composite) ignore segment boundaries.

ATOMIC SegmentType CurrentSegment(void)

Returns the current segment setting for this node.

4.3.2 Combine Procedures

int CombineInt(int value, CombineOp kind)

Performs a global combine operation using variant kind; each PE contributes
value. The return value is the result of the combine operation. This implicitly
uses the current segment settings.

ATOMIC void StartCombineInt(int value, CombineOp kind)

Starts a split-phase combine operation. This implicitly uses the current segment
settings.

ATOMIC Bool QueryCombineInt(void)

Returns true if and only if the last combine operation has completed.

int CompleteCombineInt(void)

Returns the result of the pending split-phase combine operation, possibly blocking.

void CombineVector(int to[], int from[],
CombineOp kind, int num_elements)

10



Performs a vector combine operation. The input vector is from and the result is
placed into to, which may be the same as from. This implicitly uses the current
segment settings. (The order of from and to matches that of memcpy and its
variants.)

void StartCombineVector(int to[], int from[],
CombineOp kind, int num_elements)

Starts a split-phase vector combine operation. This implicitly uses the current
segment settings.

void CompleteCombineVector(void)

Blocks until the pending split-phase vector combine operation completes. There is
currently no QueryCombineVector.

4.4 Broadcast Operations

ATOMIC void Broadcast(Word value)

Broadcasts one word to all nodes.

ATOMIC Bool QueryBroadcast(void)

Returns true if and only if the pending broadcast has completed. This works with
BroadcastDouble as well.

Word ReceiveBroadcast(void)

Returns the broadcast word. Should be called on all nodes except for the one that
performed the broadcast.

ATOMIC void BroadcastDouble(double value)

Broadcast a double to all nodes.

double ReceiveBroadcastDouble(void)

Return the broadcast double. Should be called on all nodes except for the one that
performed the broadcast.

void BroadcastVector(Word to[], Word from[], int num_elements)

11



Broadcast a vector of words. Fills in to as the words are received. Returns when
all words are sent; not all may have been received.

void ReceiveBroadcastVector(Word to[], int num_elements)

Receive a vector of words into array to. Should be called on all nodes except for
the one that performed the broadcast. For the broadcaster, the to array should be
same as the call to BroadcastVector. Returns when all of the words have been
received.

5 Composite Reductions

There are many useful operations that can be built on top of the CM-5’s control-network
hardware. Currently, Strata provides five such operations for three basic types: integers,
unsigned integers, and single-precision floating-point numbers. These operations form the
enumerated type CompositeOp:

typedef enum {

Min, Max, Average, Variance, Median

} CompositeOp;

As with CMMD and the Strata control-network primitives, these reductions ignore the segment
boundaries: all nodes form one large segment.2 Min, Max, and Average are straightforward
reductions. Median computes the median of the values contributed by the nodes. If there are
an even number of values, then it returns the smaller of the two middle values.

Variance computes the sample variance of the values:�2 = 1n� 1

nXi=1

(xi � x̄) = 1n � 1

" nXi=1

x2i � (Pni=1 xi)2n #
where n is the size of the partition, x̄ is the average, and xi is the value contributed by the ith
node. The latter form is the one actually used. If the partition size is one, the reduction returns
zero. The sample standard deviation is square root of the returned value.

There are three composite reduction procedures, one for each basic type:

int CompositeInt(int value, CompositeOp op)

This procedure applies the composite operation to integer values. The Average
operation has the same overflow properties as a ReduceAdd of the same values.
Variance is limited to the same precision as float.

unsigned CompositeUint(unsigned value, CompositeOp op)

2Future versions of Strata may provide segmented reductions; let us know if it is important to you.

12



This procedure applies the composite operation to unsigned integer values. The
Average operation has the same overflow properties as aReduceUadd of the same
values. Variance is limited to the same precision as float.

float CompositeFloat(float value, CompositeOp op)

This procedure applies the composite operation to single-precision floating point
values. It uses the CMMD procedureCMMD_reduce_float to ensure IEEE floating-
point compatibility, and is provided primarily for completeness.

6 Data-Network Primitives

On the CM-5, an active message is a single-packet message in which the first word of the
message specifies a procedure on the receiving processor. This procedure is called a handler
and the handler’s job is to remove the message from the network and incorporate it into the
ongoing computation[vCGS92]. A CM-5 active-message packet consists of five words.

handler arg1 arg2 arg3 arg4

When the receiving node polls the network and discovers an active message, the polling
procedure invokes the handler with the four arguments arg1, arg2, arg3, and arg4 as
parameters.

6.1 Sending Active Messages

The CM-5 data network actually consists of two separate networks: the right network and the
leftnetwork. Strata provides procedures to send and receive active messages on either network.

void SendBothRLPollBoth(int proc, void (*handler)(), ...)

Send an active message to processor proc using either network, and polling both
networks. The active message is formed with handler as the first word and the
remaining (up to) four parameters as arg1, arg2, arg3, and arg4. This procedure
starts by trying to send the message on the right network and polling the right
network. If the message does not get out, then it tries to send on the left network
and polls the left network. This procedure continues this cycle until the message
gets sent.

void SendBothLRPollBoth(int proc, void (*handler)(), ...)

This procedure starts by trying to send its message on the left network and polling
the left network. If unsuccessful, it tries to send on the right network and polls the
right network. This procedure repeats this cycle until the message gets sent.

13



void SendBothRLPollRight(int proc, void (*handler)(), ...)

This procedure sends an active message using either network, but it only polls the
right network. It starts by trying to send its message on the right network and
polling the right network. If the message doesn’t get sent, then it tries to send on
the left network (but doesn’t poll the left network). This procedure repeats this
cycle until the message gets sent.

void SendBothLRPollRight(int proc, void (*handler)(), ...)

This procedure starts by trying to send its message on the left network (but it doesn’t
poll the left network). If unsuccessful, it tries to send on the right network and polls
the right network. This procedure repeats this cycle until the message gets sent.

void SendLeftPollBoth(int proc, void (*handler)(), ...)

This procedure sends an active message on the left network and polls both networks.
It starts by trying to send its message on the left network and polling the left network.
If the message does not get sent, then it polls the right network. This procedure
repeats this cycle until the message gets sent.

Roughly, these procedures have the following CMMD 3.0 equivalents.

CMMD 3.0 Strata

CMAML_request SendLeftPollBoth
CMAML_reply SendBothRLPollRight
CMAML_rpc SendBothRLPollBoth

(Actually CMAML_reply will only send its message on the right network.) When using any
of the SendBoth variants, the choice between SendBothRL and SendBothLR can be made
arbitrarily, but if these procedures are being called many times (especially in a tight loop), then
higher performance is achieved by alternating between them.

6.2 Receiving messages

Messages are removed from the network and appropriate handlers are invoked by the following
polling procedures.

void PollLeft(void)

This procedure checks the left network, and if there is a pending message, it removes
the message and calls the appropriate handler.

void PollRight(void)

14



This procedure checks the right network, and if there is a pending message, it
removes the message and calls the appropriate handler.

void PollBoth(void)

This procedure checks both networks and pulls out at most one message from each.
It is equivalent to PollLeft followed by PollRight.

void PollLeftTilEmpty(void)

This procedure keeps removing messages from the left network and invoking the
appropriate handlers until it finds that no further messages are pending.

void PollRightTilEmpty(void)

This procedure keeps removing messages from the right network and invoking the
appropriate handlers until it finds that no further messages are pending.

void PollBothTilEmpty(void)

This procedure keeps removing messages from both networks and invoking the
appropriate handlers until it finds that no further messages are pending on either
network.

void PollLeftThenBothTilEmpty(void)

This procedure begins by polling the left network. If it finds no message pending,
then it returns. If it finds a pending message, then it continues polling both networks
until it finds no further messages are pending on either network.

void PollRightThenBothTilEmpty(void)

This procedure begins by polling the right network. If it finds no message pending,
then it returns. If it finds a pending message, then it continues polling both networks
until it finds no further messages are pending on either network.

In general, frequent polling with PollBothTilEmpty is recommended. In a loop, how-
ever, higher-performance is achieved by alternating between PollLeftThenBothTilEmpty
and PollRightThenBothTilEmpty.

15



7 Block Transfers

Block transfers are performed by sending special messages called Xfer messages special data
structures called ports at the receiving processor. A port is a structure defined in Strata as
follows.

typedef struct {

Word *base;

int count;

void (*handler)();

int user1;

int user2;

int user3;

int user4;

int user5;

} StrataPort;

Strata provides each processor with a global array of STRATA_NUM_PORTS ports (currently
4096). This array is called the StrataPortTable and is defined as

StrataPort StrataPortTable[STRATA_NUM_PORTS];

Ports are designated by number, that is, by index into the StrataPortTable. To receive a
block transfer at a port, the port’s base field must be initialized to point to a block of memory
into which the block transfer data can be stored. Also, the port’s count field must be set to the
number of words to be received in the block transfer. As the block transfer data arrives, the
count value gets decremented, and when the count reaches zero, the procedure specified by
the handler field (if not NULL) gets invoked with the port number as its single parameter. The
other five fields in the port structure, user1 through user5, are available for arbitrary use.

Block transfer data is received by the same polling procedures that receive active messages
as described in the previous section.

The following two procedures are used to send a block transfer.

void SendBlockXferPollBoth(int proc, unsigned port_num,
int offset, Word *buffer, int size)

Sends size words starting at buffer to the port port_num at the destination
processor proc and stores the data in the destination processor’s memory starting
at the address given by adding offset (in words) to the port’s base value, that is,
at address (StrataPortTable[port_num].base + offset). The data is sent
on both networks, and this procedure will poll both networks.

void SendBlockXferPollRight(int proc, unsigned port_num,
int offset, Word *buffer, int size)

Sends size words starting at buffer to the port port_num at the destination
processor proc and stores the data in the destination processor’s memory starting

16



at the address given by adding offset (in words) to the port’s base value, that is,
at address (StrataPortTable[port_num].base + offset). The data is sent
on both networks, but this procedure only polls the right network.

The port number, port_num, must be between 0 and STRATA_NUM_PORTS - 1. The
offset is a signed value and must be at least STRATA_MIN_XFER_OFFSET (currently �219),
and the sum offset + size must be no larger than STRATA_MAX_XFER_OFFSET (currently
219�1). Thus, a block transfer can consist of up to 220 words (with the port’s base field pointing
to the middle of the destination block). (To send a larger block, use more than one port.)

Notice that all quantities are in terms of words not bytes.
The block transfer is most efficient when the source block address (given by buffer) and

the destination block address (given by adding offset to the port’s base value) have the
same alignment. That is, when both are DoubleWord aligned or both are not DoubleWord
aligned (but are, of course, Word aligned).

Before sending a block transfer, the receiver must have set the base field of the target
port, but the count and handler fields can be set by the sending processor before, after, or
during the block transfer. The sending processor sets these fields by sending an ordinary active
message (as described in the previous section) that invokes a handler on the target processor
to set these fields. Strata provides just such a handler.

HANDLER void StrataXferHeaderHandler(int port_num, int size,
void (*handler)())

This handler increments the count field of port port_num by size, and if the
port’s handler field is NULL, sets the handler field to handler. It then checks
to see if the count field is zero, and if so, it invokes the procedure given by the
handler field (if not NULL) with port_num as its single parameter.

If the sending processor is going to set the port’s handler field, then the destination pro-
cessor should initialize the port’s handler field toNULL. And if the sending processor is going
to set the port’s count field, then the destination processor should initialize the port’s count
field with zero. The sending processor then, in addition to calling SendBlockXferPollBoth
or SendBlockXferPollRight to send the actual data block, must send an active message
that invokes StrataXferHeaderHandler. Some of the block data may arrive at the des-
tination processor before this active message, and in this case, the count field will actually
go negative (it is initialized at zero). Then when the active message arrives, the count field
gets incremented — hopefully to some non-negative value. Of course, the active message may
arrive even after all of the block transfer data; in this case, incrementing the count field should
bring it to zero, and for this reason, StrataXferHeaderHandler checks to see if the count
field is zero and takes appropriate action.

As a typical example, a receiving processor might set the base field of a port to point to a
(suitably large) buffer, dest_buffer, and initialize the port’scount field to 0 and itshandler
field to NULL. Then the sending processor can send size words from its source_buffer to
the receiving processor’s dest_buffer (assuming the sending processor knows that the port
is number port_num) and cause the procedure handler to be invoked on the receiver when
the transfer is complete with the following pair of procedures.

17



SendBothRLPollBoth(dest_proc, StrataXferHeaderHandler, port_num,

size, handler);

SendBlockXferPollBoth(dest_proc, port_num, 0, source_buffer, size);

7.1 For the curious

The proceduresSendBlockXferPollBoth andSendBlockXferPollRight send their data
through a sequence of single-packet Xfer messages. An Xfer message manages to pack 4 words
of payload data into the 5 word CM-5 data-network packet.

port_and_offset data1 data2 data3 data4

The port number and offset values are packed into a single word port_and_offset. When
such an Xfer message arrives at its destination processor (and the destination processor
receives it by polling), a special Xfer handler routine is invoked. This routine splits the
port_and_offset into its two components: port_num and offset. Then it stores the
four data words, data1 through data4, at consecutive addresses starting at the address given
by adding offset (in words) to the port’s base address, that is, at address StrataPort-
Table[port_num].base + offset. It then subtracts 4 from the port’s count field, and
takes appropriate action if the count is zero.

Port number and offset values are packed into and unpacked from a single word with the
following functions.

ATOMIC unsigned PortAndOffsetCons(unsigned port_num, int offset)

Packsport_num andoffset into a single word. Theport_nummust be between 0
andSTRATA_NUM_PORTS - 1, and theoffsetmust be betweenSTRATA_MIN_XFER_OFFSET
and STRATA_MAX_XFER_OFFSET. (Currently, port_num lives in the low 12 bits
andoffset lives in the high 20 bits ofport_and_offset, soSTRATA_NUM_PORTS
equals 4096,STRATA_MIN_XFER_OFFSET equals�219 , andSTRATA_MAX_XFER_OFFSET
equals 219 � 1.

ATOMIC unsigned PortAndOffsetPort(unsigned port_and_offset)

Extracts the port_num from port_and_offset.

ATOMIC int PortAndOffsetOffset(unsigned port_and_offset)

Extracts the offset from port_and_offset.

Single-packet Xfer messages are sent with the following procedures.

void SendXferBothRLPollBoth(int proc, unsigned port_and_offset,
Word data1, Word data2, Word data3, Word data4)

18



void SendXferBothLRPollBoth(int proc, unsigned port_and_offset,
Word data1, Word data2, Word data3, Word data4)

void SendXferBothRLPollRight(int proc, unsigned port_and_offset,

Word data1, Word data2, Word data3, Word data4)

void SendXferBothLRPollRight(int proc, unsigned port_and_offset,

Word data1, Word data2, Word data3, Word data4)

Each single-packet Xfer message carries exactly four words of payload. For a block transfer
with a number of words that is not a multiple of four, extra messages must be sent. These extra
messages can be sent with ordinary active messages since they only need 1, 2, or 3 words of
payload. Strata provides handlers to deal with these active messages.

HANDLER StrataXferPut3Handler(unsigned port_and_offset,
Word data1, Word data2, Word data3)

HANDLER StrataXferPut2Handler(unsigned port_and_offset,
Word data1, Word data2)

HANDLER StrataXferPut1Handler(unsigned port_and_offset,
Word data1)

These handlers store the data words into the appropriate location, subtract the appropriate
value from the port’s count field, and take appropriate action if the count is zero.

None of these functions, procedures, or handlers are needed if you use SendBlockXfer-
PollBoth or SendBlockXferPollRight. These two procedures do it all for you.

19



8 Multi-Block Transfer

Strata provides an asynchronous block-transfer protocol to support multiple block transfers.
This interface allows Strata to interleave packets from several different block transfers, which
improves the efficiency of the network and increases the net effective bandwidth.

Pending transfers are identified with handles of type ABXid.

ABXid AsyncBlockXfer(int proc, unsigned port,
int offset, Word *buffer, int size,
void (*complete)(ABXid id, Word *buffer))

Initiate an asynchronous block transfer to port port of processor proc. The ar-
gument correspond to normal block-transfer routines, except for the additional
argument complete. This function, if non-NULL, is called upon completion of the
sending of this transfer. The return value is an identifier that is used by the following
routines.

void ServiceAllTransfers(int rounds)

This procedure services all of the pending asynchronous block transfers, send-
ing 2*rounds packets for each transfer. If rounds is -1, then this procedures
synchronously completes all pending transfers. The preferred use of this rou-
tine is to set up all of the transfers (or a reasonable size subset), and then to call
ServiceAllTransfers(-1) to actually send them. For target distributions that
prevent explicit scheduling of transfers, this technique provides about doubles the
performance of just sending the transfers synchronously.

void CompleteTransfer(ABXid id)

This synchronously completes the named transfer.

int GetABXproc(ABXid id)
unsigned GetABXport(ABXid id)
int GetABXoffset(ABXid id)
Word *GetABXbuffer(ABXid id)
int GetABXremaining(ABXid id)

These routines access the corresponding information regarding the named transfer.

9 Debugging Operations

9.1 Printing in Handlers

ATOMIC int Qprintf(const char *format, ...)

20



Queue up a printf to stdout. This can be used anywhere, including within han-
dlers, because it does not poll and does not allocate memory. The return value is
the number of characters in the message. Qprintf allows you to insert debugging
statements without changing the atomicity of the surrounding code.

ATOMIC int Qfprintf(FILE *out, const char *format, ...)

Queue up an fprintf to file out. Otherwise identical to Qprintf.

int EmptyPrintQ(void)

Outputs the queued messages. This does poll and thus should not be called from
within a handler. The return value is the number of messages that had been queued
up.

A Note On pndbx

When using pndbx to debug a Strata application, it is often useful to read the queued-up
print calls. Strata provides two global variables to help with this. First, the variable char
*StrataQueue points to the buffer containing the queued-up text. The strings are null-
terminated and packed continuously. Executing print StrataQueue from pndbx prints the first
string (only). The variable int StrataQueueLength contains the number of queued-up
strings. To see all of the strings, first use print &StrataQueue[0] to get an address, say 0x1cb4a0,
then use 0x1cb4a0/256c to dump the buffer as list of 256 characters (the 256 is arbitrary —
large queues may require a larger number). Finally, if the program is active, it is often safe to
execute call EmptyPrintQ() to output the strings; this is less useful if the output is going to a file
rather than the terminal.

9.2 Assertion Checking

Macro assert(x)

Calls StrataFail with a nice error message if x evaluates to 0. This replaces the
normal assert macro both to improve the message and to ensure a clean exit.

9.3 Debugging Mode and Logging

Strata provides a debugging mode that performs safety checks and atomic logging. To use
debugging mode, you must compile with the-DSTRATA_DEBUG flag and link with-lstrataD
instead of -lstrata. Debugging mode uses several global variables:

Bool StrataLogging True iff linked with the debugging library.

Bool LogBarrier Log barrier info, default is False
Bool LogBroadcast Log broadcast info, default is False
Bool LogCombine Log combine info, default is False
Bool LogQprintf Log Qprintf info, default is False

21



The log appears in file CMTSD_printf.pn.number, where number is the process id of the
host. Strata programs print out the exact name on exit (unless killed). The log is always up
to date; for example, when a program hangs, the last log entry for each node often reveals the
nature of the problem. Strata comes with a perl script called loglast that outputs the last
entry for each node.

Users may log their own messages in addition to those provided by the debugging library:

ATOMIC void StrataLog(const char *fmt, ...)

The printf-style message is added to the log. Note that all log entries are prepended
with the processor number, so there is no need explicitly print it. StrataLog may
be used anywhere, even when not using the debugging library. It should be viewed
as an expensive function.

9.4 Timing Functions

ATOMIC INLINE unsigned CycleCount(void)

Returns the value of the cycle counter.

ATOMIC INLINE unsigned ElapsedCycles(unsigned start_count)

Returns the elapsed time in cycles given the starting time. The intended use is:

start = CycleCount();
...
elapsed = ElapsedCycles(start);

The routines are calibrated so that if used in an application compiled with -O,
the overhead of the two calls is exactly subtracted out. Thus if the two calls are
adjacent, the elapsed time is zero.3 These routines will break if the code is time sliced
between the calls, but this is extremely unlikely for (the intended) short timings.
For example, a 10,000 cycle event has roughly a 1 in 330 chance of being time sliced
given the usual time-slice interval of 0.1 seconds (and zero chance if the machine is
in dedicated mode).

ATOMIC INLINE double CyclesToSeconds(unsigned cycles)

Converts a time in cycles into seconds (not microseconds).

DoubleWord CurrentCycle64(void)

3With -O, the null timing case compiles to two consecutive reads of the cycle counter; the subtraction assumes
this case and the result is almost always zero. The exception is when the two reads are in different cache lines and
the cache line of the second read is not loaded. In this case, the timing includes the cache miss and typically returns
28 or 29 cycles. The point of all this is that you should be aware of cache behavior for short timings.

22



Returns the number of cycles elapsed since initialization (via StrataInit). This
is not as accurate as ElapsedCycles, but it works across time slices (modulo
some OS bugs) and provides 64-bit resolution. The implementation uses the same
underlying code as the CMMD timers and is thus exactly as accurate.

ATOMIC INLINE unsigned CurrentCycle(void)

Same as CurrentCycle64 except that it returns the elapsed cycles since the ini-
tialization or the last call to ResetCurrentCycle. Like ElapsedCycles this
procedure includes cycles due to time slicing; it is thus primarily useful in dedi-
cated mode.

void ResetCurrentCycle(void)

This sets the CurrentCycle base time to zero. It is a synchronous operation and
must be called on all nodes. The primary use of this routine is to get 32 bits of
useful times in the middle of a program that runs for more the 232 cycles. It affects
the timestamps used by the graphics module, which allows users to get a 232-cycle
state-graph of their long-running program for any single such continuous interval.

10 Graphics

Version 2.0 supports a subset of the PROTEUS graphics capabilities. The primary form of graph
currently supported by Strata is the state graph, which plots the state of each processor (as a
color) versus time (in cycles). There are several limitations on state graphs: 1) there can be at
most 16 states, 2) the program can run for at most 232 cycles after the call to InitTrace, and 3)
there is a limit on the number of state changes per processor (although there are workarounds
for this one).

The graphics module creates a trace file that is read by the program stats. The interpre-
tation of the file is determined by a graph-file specification that specifies the names of states and
how to build each graph (normally there is only one graph for Strata).

The easiest way to understand Strata’s graphics is to play with the example radix-sort
program (radix.c). It generates a trace file called radix.sim that can be examined with:

stats -f radix.sim -spec cmgraph

The second pair of arguments identifies the graph-specification file. Figure 2 shows the state
graph for radix sort. A seperate document covers the use of stats and the graph-specification
language; stats -help provides some information as well.

State 0 always means “idle” and state 1 always means “busy”, although the real meaning
of these states is up to the application. In debugging mode, Strata uses states 2 through 7 as
follows:

23



Time x 1000

P
ro

ce
ss

o
r 

N
u

m
b

er

Idle
Busy
Qprintf
Combine

EmptyQ
Broadcast
Logging
Barrier

Init
Local Count
Compute Offsets
Reorder Data

0 10 20 30 40 50 60 70 80 90
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32

Figure 2: The state graph for radix sort.

State Meaning

2 Logging

3 Qprintf

4 EmptyPrintQ

5 Broadcasting

6 Combine Operation

7 Barrier

These states can be redefined via strata.h and may even be combined if the user needs more
application-specific states.

Generating the trace file involves only three procedures:

void InitTrace(const char *file, const char *title)

This initializes the graphics module; it must be called before StrataInit and it
must be called on all processors. It is a global operation. The first argument is the
name of trace file. The second argument is the title of the simulation; if non-NULL,
this title will appear as a subtitle on the graphs (the primary title is determined by
the graph-specification file).

ATOMIC int SetState(int state)

This changes the state of this processor to state and returns the old state. The
state change is timestamped with the current cycle time.

24



Bool RecordStates(Bool on)

Turns state recording (via SetState) on or off (for the local node only). This is
primarily useful for turning off state generation after the interesting part of the
program completes. For example, to record states for one section in the middle of a
long-running program, use ResetCurrentCycle() to mark the beginning of the
section, and RecordStates(False) to mark the end.

void OutputStateLog(void)

Normally, the state changes are kept in local memory until the program exits, at
which point they are moved to disk. Currently, the buffering allows at most 2048
state changes. OutputStateLog empties the buffer so that more events can be
generated. This is a synchronous operation and must be executed on all nodes; it
should be viewed as a very expensive barrier. Most programs do not need to call
this procedure.

11 Acknowledgments

Thanks to Mike Halbherr, Chris Joerg, Ulana Legedza, Tom Leighton, Charles Leiserson, Arthur
Lent, Frans Kaashoek, Bradley Kuszmaul, Dave Park, Ryan Rifkin, Carl Waldspurger, Bill Weihl,
and Yuli Zhou.

References

[PM88] S. K. Park and K. W. Miller. Random number generators: Good ones are hard to
find. CACM, 31(10), October 1988.

[TMC93] Thinking Machines Corporation. CMMD Reference Manual, Version 3.0, May 1993.

[vCGS92] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages:
a mechanism for integrated communication and computation. In Proceedings of the
19th International Symposium on Computer Architecture (ISCA ’92), pages 256–266, May
1992.

25



A Prototype Summary

Page Basics

6 void StrataInit(void)
7 NORETURN StrataExit(int code)
7 NORETURN StrataFail(const char *fmt, ...)
7 ATOMIC void ClearMemory(void *region, unsigned length_in_bytes)
7 ATOMIC unsigned Random(void)
7 ATOMIC unsigned SetRandomSeed(unsigned seed)

Timing

22 ATOMIC unsigned CycleCount(void)
22 ATOMIC unsigned ElapsedCycles(unsigned start_count)
22 ATOMIC double CyclesToSeconds(unsigned cycles)
22 DoubleWord CurrentCycle64(void)
23 ATOMIC unsigned CurrentCycle(void)
23 void ResetCurrentCycle(void)

Global OR

8 Bool GlobalOR(Bool not_done)
8 ATOMIC void StartGlobalOR(Bool not_done)
8 ATOMIC Bool QueryGlobalOR(void)
8 Bool CompleteGlobalOR(void)

8 ATOMIC void SetAsyncGlobalOR(Bool not_done)
8 ATOMIC Bool GetAsyncGlobalOR(void)

Barriers

8 void Barrier(void)
8 ATOMIC void StartBarrier(void)
8 ATOMIC Bool QueryBarrier(void)
8 void CompleteBarrier(void)

Combine Operations

10 ATOMIC void SetSegment(SegmentType boundary)
10 ATOMIC SegmentType CurrentSegment(void)
10 int CombineInt(int value, CombineOp kind)
10 ATOMIC void StartCombineInt(int value, CombineOp kind)
10 ATOMIC Bool QueryCombineInt(void)
10 int CompleteCombineInt(void)

10 void CombineVector(int to[], int from[], CombineOp kind,
int num_elements)

11 void StartCombineVector(int to[], int from[], CombineOp kind,
int num_elements)

11 void CompleteCombineVector(void)

26



12 int CompositeInt(int value, CompositeOp op)
12 unsigned CompositeUint(unsigned value, CompositeOp op)
13 float CompositeFloat(float value, CompositeOp op)

Broadcast Operations

11 ATOMIC void Broadcast(Word value)
11 ATOMIC Bool QueryBroadcast(void)
11 Word ReceiveBroadcast(void)
11 ATOMIC void BroadcastDouble(double value)
11 double ReceiveBroadcastDouble(void)

11 void BroadcastVector(Word to[], Word from[], int num_elements)
12 void ReceiveBroadcastVector(Word to[], int num_elements)

Sending Active Messages

13 void SendBothRLPollBoth(int proc, void (*handler)(), ...)
13 void SendBothLRPollBoth(int proc, void (*handler)(), ...)
14 void SendBothRLPollRight(int proc, void (*handler)(), ...)
14 void SendBothLRPollRight(int proc, void (*handler)(), ...)
14 void SendLeftPollBoth(int proc, void (*handler)(), ...)

Polling

14 void PollLeft(void)
14 void PollRight(void)
15 void PollBoth(void)
15 void PollLeftTilEmpty(void)
15 void PollRightTilEmpty(void)
15 void PollBothTilEmpty(void)
15 void PollLeftThenBothTilEmpty(void)
15 void PollRightThenBothTilEmpty(void)

Block Transfers

16 void SendBlockXferPollBoth(int proc, unsigned port_num,
int offset, Word *buffer, int size)

16 void SendBlockXferPollRight(int proc, unsigned port_num,
int offset, Word *buffer, int size)

18 ATOMIC unsigned PortAndOffsetCons(unsigned port, int offset)
18 ATOMIC unsigned PortAndOffsetPort(unsigned port_and_offset)
18 ATOMIC int PortAndOffsetOffset(unsigned port_and_offset)

18 void SendXferBothRLPollBoth(int proc, unsigned port_and_offset,
Word data1, Word data2, Word data3 Word data4)

19 void SendXferBothLRPollBoth(int proc, unsigned port_and_offset,
Word data1, Word data2, Word data3 Word data4)

19 void SendXferBothRLPollRight(int proc, unsigned port_and_offset,

27



Word data1, Word data2, Word data3 Word data4)
19 void SendXferBothLRPollRight(int proc, unsigned port_and_offset,

Word data1, Word data2, Word data3 Word data4)

17 HANDLER void StrataXferHeaderHandler(int port_num, int size,
void (*handler)())

19 HANDLER void StrataXferPut3Handler(unsigned port_and_offset,
Word data1, Word data2, Word data3)

19 HANDLER void StrataXferPut2Handler(unsigned port_and_offset,
Word data1, Word data2)

19 HANDLER void StrataXferPut1Handler(unsigned port_and_offset, Word data1)

Multi-Block Transfers

20 ABXid AsyncBlockXfer(int proc, unsigned port, int offset, Word *buffer,
int size, void (*complete)(ABXid id, Word *buffer))

20 void ServiceAllTransfers(int rounds)
20 void CompleteTransfer(ABXid id)

20 int GetABXproc(ABXid id)
20 unsigned GetABXport(ABXid id)
20 int GetABXoffset(ABXid id)
20 Word *GetABXbuffer(ABXid id)
20 int GetABXremaining(ABXid id)

Debugging

20 ATOMIC int Qprintf(const char *format, ...)
21 ATOMIC int Qfprintf(FILE *out, const char *format, ...)
21 int EmptyPrintQ(void)
21 Macro assert(Bool x)
22 ATOMIC void StrataLog(const char *format, ...)

Graphics

24 void InitTrace(void)
24 ATOMIC int SetState(int state)
25 Bool RecordStates(Bool on)
25 void OutputStateLog(void)

28


