On-the-Fly Maintenance of Series-Parallel Relationships
in Fork-Join Multithreaded Programs

Michael A. Bender Seth Gilbert

Computer Science and Atrtificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

Jeremy T. Fineman Charles E. Leiserson

Abstract General Terms

A key capability of data-race detectors is to determine whether one Algorithms, Theory, Verification.
thread executes logically in parallel with another or whether the
threads must operate in series. This paper provides two algorithms
one serial and one parallel, to maintain series-para8é) ¢ela-
tionships “on the fly” for fork-join multithreaded programs. The

'Keywords

serial SP-orderalgorithm runs inO(1) amortized time per opera- Amortized analysis, algorithm, Cilk, data race, data structure, dy-
namic set, fork-join, graph, least common ancestor, locking, multi-

tion. In contrast, the previously best algorithm requires a time per ; . ;
operation that is proportional to Tarjan’s functional inverse of Ack- threading, mutual exclusion, on the fly, order maintenance, parallel
computing, parse tree, race detection, series-parallel, SP-bags, SP-

ermann’s function. SP-order employs an order-maintenance data, : :
structure that allows us to impleﬁwe)r/\t a more efficient “English- hybrid, SP-order, thread, trace, tree, work stealing.
Hebrew” labeling scheme than was used in earlier race detectors,
which immediately yields an improved determinacy-race detector. 1
In particular, any fork-join program running ifi; time on a sin-

gle processor can be checked on the fly for determinacy races inThis paper shows how to maintain the series-para8€) ¢elation-
O(T1) time. Corresponding improved bounds can also be obtained ships between logical threads in a multithreaded program “on the
for more sophisticated data-race detectors, for example, those thafly.” This problem arises as the principal data-structuring issue in

Introduction

use locks.
By combining SP-order with Feng and Leiserson’s se8B}t

dynamic data-race detectors [13, 19, 20, 26, 27]. In this paper, we
show that for fork-join programming models, such as MIT’s Cilk

bagsalgorithm, we obtain a parallel SP-maintenance algorithm, system [11, 21, 28], this data-structuring problem can be solved

calledSP-hybrid Suppose that a fork-join program hashreads,
T: work, and a critical-path length of ... When executed
on P processors, we prove that SP-hybrid runsG(7,/P +

asymptotically optimally. We also give an efficient parallel solu-
tion to the problem.
The execution of a multithreaded program can be viewed as a

PT..)lgn) expected time. To understand this bound, consider that directed acyclic graph, @omputation dagwhere nodes are either

the original program obtains linear speed-up ovésmocessor ex-
ecution whenP = O(T1 /7). In contrast, SP-hybrid obtains lin-
ear speed-up wheR = O(4/T1/T), but the work is increased
by a factor ofO(1g n).

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming—
parallel programming D.2.5 [Software Engineering]: Testing
and Debugging-debugging aids E.1 [Data Structures]: dis-
tributed data structures; G.Discrete Mathematics]: Graph The-
ory—graph algorithms

This research was supported in part by the Singapore-MITarde,
Sandia National Laboratories, and NSF grants ACI-03249%5(E12849,
CCR-0208670, ITR-0121277, and AFOSR #F49620-00-1-0097.

Michael Bender is a Visiting Scientist at MIT CSAIL and Adsist Pro-
fessor at the State University of New York at Stony Brook.

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SPAA'04 June 27-30, 2004, Barcelona, Spain.

Copyright 2004 ACM 1-58113-840-7/04/000655.00.

forks or joins and edges arthreads Such a dag is illustrated in
Figure 1. A fork node has a single incoming edge and multiple
outgoing edges. A join node has multiple incoming edges and a
single outgoing edge. Threads (edges) represent blocks of serial
execution.

For fork-join programming models, where every fork has a cor-
responding join that unites the forked threads, the computation
dag has a structure that can be represented efficientlydeyies-
parallel (SP) parse tre¢20]. In the parse tree each internal node is
either anS-nodeor aP-nodeand each leaf is a thread of the dag.
Figure 2 shows the parse tree corresponding to the computation
dag from Figure 1. If two subtrees are children of the same S-node,
then the parse tree indicates that (the subcomputation represented
by) the left subtree executes before (that of) the right subtree. If
two subtrees are children of the same P-node, then the parse tree
indicates that the two subtrees execute logically in parallel.

An SP parse tree can be viewed asaaposterioriexecution of
the corresponding computation dag, but “on-the-fly” data-race de-
tectors must operate while the dag, and hence the parse tree, is un-
folding dynamically. The way that the parse tree unfolds depends
on a scheduler, which determines which threads execute where and
when on a finite number of processors. A partial execution corre-
sponds to a subtree of the parse tree that obeys the series-parallel
relationships, namely, that a right subtree of an S-node cannot be

IWe assume without loss of generality that all SP parse treefudir
binary trees, that is, each internal node has exactly twidrem.

Algorithm Space Time per

pernode| Thread Query
creation
English-Hebrew [27]] ©(f) o(1) o(f)
Offset-Span [26] o(d) o(1) O(d)
SP-Bags [20] o(1) O(a(v,v)) | B(a(v,v))
SP-Order o(1) o(1) o(1)

f = number of forks in the program
d = maximum depth of nested parallelism

Figure 1. A dag representing a multithreaded computation. The edges v = number of shared locations being monitored

represent threads, labeled, u1,...ug. The diamonds represent forks,
and the squares indicate joins.

P, Figure 3: Comparison of serial, SP-maintenance algorithms. The run-
/ \ ning times of the English-Hebrew and offset-span algorithraswrst-case

bounds, and the SP-bags and SP-order algorithms are amoffttzedunc-
S, S; tion « is Tarjan’s functional inverse of Ackermann'’s function.
U S, Us S, of shared-memory locations used by the program. As a conse-
/ \ / \ guence, the asymptotic running time of the Nondeterminator is
P p O(Tia(v,v)), whereT; is the running time of the original pro-
2
Uy L&}

Figure 2: The parse tree for the computation dag shown in Figure 1. The
leaves are the threads in the dag. The S-nodes indicats selationships,
and the P-nodes indicate parallel relationships.

Uy 3 ug gram onl processor.

/ \ The SP-bags data structure has two shortcomings. The first is
" " that it slows the asymptotic running time by a factorcdfv, v).

6 7 This factor is nonconstant in theory but is nevertheless close enough
to constant in practice that this deficiency is minor. The second,
more important shortcoming is that the SP-bags algorithm relies
heavily on the serial nature of its execution, and hence it appears
difficult to parallelize.

Some early SP-maintenance algorithms use labeling schemes

present unless the corresponding left subtree has been fully elaboWithout centralized data structures. These labeling schemes are
rated. Both subtrees of a P-node, however, can be partially elabo-€asy to parallellzg but unfortunately are much_ less eﬁ|C|en_t than
rated. In a language like Cilk, a serial execution unfolds the parse the SP-bags algorithm. Examples of such labeling schemes include
tree in the manner of a left-to-right walk. For example, in Figure 2, th€English-Hebrewscheme [27] and theffset-spanscheme [26].

a serial execution executes the threads in the order of their indices. These algorithms generate labels for each thread on the fly, but once

A typical serial, on-the-fly data-race detector simulates the exe- 9enerated, the labels remain static. By comparing labels, these SP-
cution of the program as a left-to-right walk of the parse tree while maintenance a_lgorlth_ms can determine whether two threads_ope(ate
maintaining various data structures for determining the existence l09ically in series or in parallel. One of the reasons for the ineffi-
of races. The core data structure maintains the series-parallel re-ciéncy of these algorithms is that label lengths increase linearly
lationships between the currently executing thread and previously With the number of forks (English-Hebrew) or with the depth of
executed threads. Specifically, the race detector must determing/ork nesting (offset-span).
whether the current thread is operating logically in series or in
parallel with certain previously executed threads. We call a dy- Results
namic data structure that maintains the series-parallel relationship
between threads @P-maintenancelata structure. The data struc-
ture supports insertion, deletion, a&P queries queries as to
whether two nodes are logically in series or in parallel.

The Nondeterminator [13,20] race detectors use a variant of Tar-
jan’s [30] least-common-ancestor algorithm, as the basis of their
SP-maintenance data structure. To determine whether a thfead
logically precedes a thread;, denoteds; < w;, their SP-bags al-
gorithm can be viewed intuitively as inspecting their least common
ancestotca(u;, u;) in the parse tree to see whether it is an S-node

with u; in its left subtree. Similarly, to determine whether a thread . .) S "

us operates logically in parallel w)i/th a threag, denotedu; | u, OurSP-hybrldaIgorlthm consists of two tiers: global tier based

the SP-bags algorithm checks whethei(u;, u _’) is 2 P-node. Ob- ©Onour SP-order algorithm, andacal tier based on the Nondeter-

serve that an SP relationship exists between any two nodes in theTiNator's SP-bags algorithm. Suppose that a fork-join program has
arse tree, not just between threads (leaves) n threadsT; work, and a critical-path length @f... Whereas the

P For exa,mplej in Figure 2, we have < u4 becauseS; — Cilk scheduler executes a computation with wa@tkand critical-

lea(ur, uq) is an S-node and, appears ins’s left subtree. We ~ Path lengthls in asymptotically optimal’» = O(T'/P + Tw)

also haveu; || us, becausePy — lca(ui, ug) is a P-node. The gxpepted time orP processors, SP-hybrid executes thg computa-

(serially executing) Nondeterminator race detectors perform SP- :I:igilr? Os(é,Trl e/léljti—(’)—n]sj ﬁ;o"s) lgl'rrll)ugmv(\a/hoenrf: azr?ﬁgsusnodr:r‘l’vmle (?Z)il‘ln-uta-

maintenance operations whenever the program being tested forks ion a?:hieves linear sp éedu v;/héh — O(T./T %/P—gh bridp

joins, or accesses a shared-memory location. The amortized Cosgachieves linear s eed-Fl)J wi p@ O(_/T—/(T—1Z) ‘B’Jt the W())/I’k is

for each of these operations 3(a(v, v)), wherea is Tarjan’s increased b afae:tor aﬂ)pl L/ Soo)s

functional inverse of Ackermann’s function andis the number y (Ign).

In this paper we introduce a new SP-maintenance algorithm, called
the SP-orderalgorithm, which is more efficient than the SP-bags
algorithm. This algorithm is inspired by the English-Hebrew
scheme, but rather than using static labels, the labels are maintained
by an order-maintenance data structure [10, 15, 17, 33]. Figure 3
compares the serial space and running times of SP-order with the
other algorithms. As can be seen from the table, SP-order attains
asymptotic optimality.

We also present a parallel SP-maintenence algorithm which is
designed to run with a Cilk-like work-stealing scheduler [12, 21].

The remainder of this paper is organized as follows. We present Py
the SP-order algorithm in Section 2. Section 3 presents an overview / \
of the parallel SP-hybrid algorithm. Section 4 describes the orga-

L) - . g S S
nization of SP-hybrid’s global tier in more detail, and Section 5 ! 3
describes the local tier. Section 6 provides a proof of correctness, / \ / \
and Section 7 analyzes the performance of SP-hybrid. Finally, Sec- u S, us S,
tion 8 reviews related work, and Section 9 offers some concluding 15 5.1
remarks. (1.3) / \ ©.D) / \
P, Uy P, Ug
. 4,8 8,4
2 The SP-order algorithm / \ (48) / \ &4
.)) .) Uy U3 Us U
This section presents the serial SP-order algorithm. We begin by @7 (3.,6) (6,3) (7.2)

discussing how an SP parse tree, provided as input to SP-order, is

created. We then review the concept of an English-Hebrew order- Figure4: An English orderingtZ and a Hebrew orderingf for the threads
Ing [_27]' Showmg that two linear ord_ers_are suffl(_:lent to capture SP in%he parse treg from Figur%EZ. Under each threa’dgan ordered pair
relationships. We show how to maintain these linear orders on the ([, F[u)) giving its index in each of the two orders.

fly using order-maintenance data structures [10,15,17,33]. Finally,

we give the SP-order algorithm itself. We show that if a fork-join

multithreaded program has a parse tree witleaves, then the to- ~Lemmal. Let E be an English ordering of the threads of an SP-
tal time for on-the-fly construction of the SP-order data structure parse tree, and lef/ be a Hebrew ordering. Then, for any two
is O(n) and each SP query takeX1) time. Thus, any fork-join ~ threadsu; andw;, in the parse tree, we have < u; in the parse
program running irf; time on a single processor can be checked tree if and only ifE[u;] < Efu;] and H[w;] < H[uy].

on the fly for determinacy races (7}) time. Proof. (=) Suppose that;; < u;, and letX = lca(u;,u;).
Then,X is an S-node in the parse tree, the threadesides inX's
The input to SP-order left subtree, and; resides inX's right subtree. In both orders, the
threads in theX''s left subtree precede those if's right subtree,
gnd hence, we havB[u;] < E[u;] andH [u;] < H[u;].
(<) Suppose thaF[u;] < Efu;] andH[u;] < H[u;], and let

SP-order takes as input a fork-join multithreaded program ex-

pressed as an SP parse tree. In a real implementation, such as

race detector, the parse tree unfolds dynamically and implicitly as ,,* ~ v ; ' _

the multithreaded program executes, and the particular unfolding X = lea(us, u;). Since we havéBu;] < Efuy], threadu; must
appear inX'’s left subtree, and» must appear iX'’s right subtree.

depends on how the program is scheduled on the multiprocessor, L)
computer. For ease of presentation, however, we assume that th gniee::mio;c’f a Hebrew orderingX’ must be an S-node,Dand
T g

program’s SP parse tree unfolds according to a left-to-right tree
walk. During this tree walk, SP-order maintains the SP relation- ~ We can restate Lemma 1 as follows.

ships “on the fly” in the sense that it can immediately respond to Corollary 2. Let E be an English ordering of the threads of an
SP queries between any two executed threads. At the end of thesp-parse tree, and Igif be a Hebrew ordering. Then, for any two
section, we relax the assumption of left-to-right unfolding, at which threadsu; andw; in the parse tree wittE[u;] < E[u;], we have
point it becomes apparent that no matter how the parse tree unfolds,,, || w; if and only if H[u;] > Hlu,]
SP-order can maintain SP relationships on the fly.

Labeling a static SP parse tree with an English-Hebrew ordering
is easy enough. To compute the English ordering, perform a depth-

English and Hebrew orderings first traversal visiting left children of both P-nodes and S-nodes
SP-order uses two total orders to determine whether threads areP€fore visiting right children (aknglish walk). Assign label to
logically parallel, anEnglish order and aHebrew order In the theith thread visited. To compute the Hebrew ordering, perform

English order, the nodes in tHeft subtree of a P-node precede @ depth-first traversal visiting right children of P-nodes before vis-
those in theright subtree of the P-node. In the Hebrew order, the iting left children but left children of S-nodes before visiting right

order is reversed: the nodes in thight subtree of a P-node precede children (aHebrew wall. Assign labels to threads as beIore. i
those in theeft. In both orders, the nodes in the left subtree of an [N race-detection applications, one must generate “on-the-fly

S-node precede those in the right subtree of the S-node. orderings as the parse tree unfolds. If the parse tree unfolds ac-
Figure 4 shows English and Hebrew orderings for the threads ¢ording to an English walk, then computing an English ordering
in the parse tree from Figure 2. Notice thatif belongs to the IS €asy. Unfortunately, computing a Hebrew ordering on the fly
left subtree of an S-node angd belongs to the right subtree of the ~ during an English walk is problematic. In the Hebrew ordering the
same S-node, then we hal#éu,] < E[u;] andH[u;] < H]u;]. In label of a thread in the left subtree of a P-node depends on the num-
contrast, ifu; belongs to the left subtree of a P-node andelongs ber of threads in the right subtree. In an English walk, however, this
to the right subtree of the same P-node, ti&n,] < E[u;] and number is unknown until the right subtree has unfolded.
Hlui] > Hlu;). Nudler and Rudolph [27], who introduced English-Hebrew la-

The English and Hebrew orderings capture the SP relationshipsPeling for race detection, addressed this problem by using large
in the parse tree. Specifically, if one threadprecedes another thread labels. In particular, the number of bits in a label in their
threadu; in both orders, then thread < w; in the parse tree (or scheme can grow linearly in the number of P-nodes in the SP parse

multithreaded dag). Ifi; precedes; in one order but:; follows tree. Although they gave a heuristic for reducing the size of labels,
u; in the other, then; || u;. For example, in Figure 4, we have ~Manipulating large labels is the performance bottleneck in their al-
w1 < u4, becausd = Efui] < Eud] = 4 and5 = Hlui] < gorithm.

Hlus4] = 8. Similarly, we can deduce that, || ug, becausd =
Elu1] < Elug] = 6 and5 = H[ui] > Hus] = 3. The following The SP-order data structure

lemma shows that this property always holds. Our solution is to employ order-maintenance data structures [10,15,

17,33] to maintain the English and Hebrew orders rather than using

the static labels described above. In order-maintenance data struc-
tures, the labels inducing the order change during the execution of | Sp.QrpER(X)
the program. An order-maintenance data structure is an abstract

data type that supports the following operations: 1 if ISLEAF(X)
e OM-PRECEDESL, X,Y): ReturnTRUE if X preceded’” in 2 then EXECUTETHREAD(X)
the orderingL. Both X andY must already exist in the or- 3 return
deringL. > X is an internal node
e OM-INSERT(L, X, Y1,Y>,...,Y%): Inthe orderingl, insert .)
new element§7, Ys, ..., Y}, in that order, immediately after 4 OM-INSERT(Eng, X, left[X], right[X])
the existing eIemenK._ 5 if 1SSNODE(X)
The OM-RRECEDESOperation can be supported (1) worst- 6 then OM-INSERT(Heb, X, left[X], right[X])
case time. The OM®NSERT operation can be inserted (1) 7 dse OM-INSERT(Heb, X. right[X], left[X])

worst-case time for each node inserted.
The SP-order data structure consists of two order-maintenance |g SP-QRDER(left[X))

data structures to maintain English and Hebrew orderiny¥ith 9 SP-ORDER(right[X])

the SP-order data structure, the implementation of SP-order is re-

kably simple.
markably simple SP-RECEDESX,Y)
Pseudocode for SP-order 10 if OM-PRECEDES Eng, X,Y) and
OM-PRECEDES Heb, X,Y)

then return TRUE

return FALSE

Figure 5 gives C-like pseudocode for SP-order. The code pesform 11
a left-to-right tree walk of the input SP parse tree, executing threads | 15
on the fly as the parse tree unfolds. In lines 1-3, the code handles
a leaf in the SP parse tree. In a race-detection application, queries
of the two order-maintenance data structures are performed in the _]]))
EXECUTETHREAD function, which represents the computation of ~Figure 5: The SP-order algorithm written in C-like pseudocode. The SP
the program under test. Typically, a determinacy-race detector per_ORDER procedure maintains the relationships between thread riodes

f o(1 ies f h fth d SP parse tree which can be queried using the 8PeRDESprocedure.
tg;rtns (1) queries for each memory access of the program under An internal nodeX in the parse tree has a left chiltgf¢t[X], and a right

. child, right[X]. Whether a node is an S-node or a P-node can be queried
As the tree walk encounters each internal node of the SP parseyith |sSSNobE. Whether the node is a leaf can be queried withHAF.

tree, it performs OM-NSERT operations into the English and He- The English and Hebrew orderings being constructed aresepted by
brew orderings. In line 4, we update the English ordering for the the order-maintenance data structufesy and Heb, respectively.
children of the nodeX and insertX'’s (left and right) children after
X with X's left child appearing first. Similarly, we update the He-
brew ordering in lines 5-7. For the Hebrew ordering, we in&est

left[X] andright[X] also precede all the nodes ¥fis right

children in different orders depending on whett¥iis an S-node subtre_e.))
or a P-node. IfX is an S-node, handled in line 6, we inséfts 3. X reS|d§s in the right subtree &f: The same argument ap-
left child and thenX's right child afterX in the Hebrew order. If plies as in Case 2.
X is a P-node, on the other hanti’s left child follows X's right 4. X lies outside of the subtree rooted¥at InsertingX's chil-
child. In lines 8-9, the code continues to perform the left-to-right dren anywhere in the data structure cannot affect the invariant.
tree walk. We determine whethéf precedes”, shown in lines The argument for thé/eb data structure is analogous, except that
10-11, by querying the two order-maintenance structures using theone must consider the arguments ¥6ibeing a P-node or S-node
order-maintenance query OMRBCEDES separately. O

The following lemma demonstrates that SRR produces The next theorem shows that SRECEDESWorks correctly.

English and Hebrew orderings correctly.
Theorem 4. Consider any point during the execution of t8&-

Lemma 3. Atany point during the execution &P-CRDERON an ORDER procedure on an SP parse tree, and tet and u; be

SP parse tree, the order-maintenance data structiéiheg and Heb two threads that have already been visited. Then, the procedure
maintain English and Hebrew, respectively, orderings of the nodes SP-RRECEDESu;, u;) correctly returnsTRUE if u; < wu; and

of the parse tree that have been visited thus far. FALSE otherwise.

Proof. Consider an internal nodé in the SP parse tree, and con- Proof. The SP-QDERprocedure inserts a node into the Eng
sider first theEng data structure. We must prove that all the nodes and Heb linear orders when it visits('s parent and before exe-

in Y’s left subtree precede all the nodesYirs right subtree inthe ~ cuting SP-@QDER(X). Thus, any thread is already in the order-
Eng ordering. We do so by showing that this property is main- maintenance data structures by the time it is visited. Combining
tained as an invariant during the execution of the code. The only Lemma 1 and Lemma 3 completes the proof. O
place that theFng data structure is modified is in line 4. Suppose We now analyze the running time of the SP-order algorithm.

that the invariant is maintained before SREER is invoked on a . .))
nodeX. There are four cases: Theorem 5. Consider a fork-join multithreaded program having a

1. X =Y Trivial parse tree withn leaves. Then, the total time for on-the-fly con-

i . struction of the SP-order data structure .
2. X resides in the left subtree &f: We already assume that uett ucturedi(n)

X precedes all the nodes ¥n's right subtree. In line 4X’s Proof. A parse tree withn leaves has at mos(n) nodes, caus-
children are inserted immediately aft&f in Eng. Hence, ing O(n) calls to OM-INSERT. Since each of these operations can
be supported i (1) amortized time, the theorem follows. [

2|n fact, the English ordering can be maintained implicitlyidgra left- . .
to-right tree walk. For conceptual simplicity, howeversthaper uses order- The following corollary explains that SP-order can be used to
maintenance data structures for both orderings. make an efficient, on-the-fly race detector.

a) S b) Enelish Q@@ SP-order from Section 2 and SP-bags from [20]. We investigate the
nghs synchronization issues that must be faced in order to parallelize SP-
/ \ order and why a naive parallelization does not yield good bounds.

L R Hebrew Q_,@_@ We then overview SP-hybrid itself and present pseudocode for its
implementation.

SP-hybrid’s input and Cilk

c)
English Q@—*@—*@—@ Like the SP-order algorithm, the SP-hybrid algorithm accepts as

input a fork-join multithreaded program expressed as an SP parse
tree. The algorithm SP-hybrid provides weaker query semantics
Hebrew Q"@_'G)_'@_’Q than the serial SP-order algorithm; these semantics are exactly what
is required for on-the-fly determinacy-race detection. Whereas SP-
Figure 6: An illustration of how SP-order operates at an S-node. (a) A Order allows queries of any two threads that have been unfolded
simple parse tree with an S-nodeand two childrenZ and R. (b) The in the parse tree, SP-hybrid requires that one of the threads be a
order structures before traversingdo The clouds represent the rest of the ~ currently executing thread. For a fork-join program witkthreads,

order structure, which does not change when traversiigj (@) The result T, work, and a critical path of lengtfi, the parallel SP-hybrid
of the inserts after traversing 8. The left childZ and then the right child algorithm can be made to run (in Cilk) @((71/P + PTx)lgn)

R are inserted afte$ in both lists. expected time.
Although SP-hybrid provides these performance bounds for any
a) p b) Enelish Q@_@ fork-join program, it can only operate “on the fly” for programs
& whose parse trees unfold in a Cilk-like manner. Specifically, SP-
/ \ hybrid is described and analyzed as a Cilk program, and as such,
L R Hebrew Q—’@—@ it takes advantage of two properties of the Cilk scheduler to ensure

efficient execution. First, any single processor unfolds the parse
tree left-to-right. Second, it exploits the properties of Cilk’s “work-
stealing” scheduler, both for correctness and efficiency. Although
c) . SP-hybrid operates correctly and efficiently on ¢hposterioriSP
English {::3_’@_’@_’@@ parse tree for any fork-join program, it only operates “on-the-fly”
when the parse tree unfolds similar to a Cilk computation.
Hebrew Q_,@_,@)q@_@ Cilk employs a “work-stealing” scheduler, which executes any
multithreaded computation having wdfk and critical-path length
Tw in O(T1 /P + Tw) expected time orP processors, which is
Figure 7: An illustration of how SP-order operates at a P-node. (a) A asymptotically optimal. The idea behind work stealing is that when
simple parse tree with an P-nodeand two childrenZ and R. (b) The a processor runs out of its own work to do, it “steals” work from
order structures before traversing/o The clouds are the rest of the order gnother processor. Thus, the steals that occur during a Cilk com-
structure, which does not change when traversing’to(c) The result of - tation break the computation, and hence the computation's SP
the inserts after traversing . The left child L then the right childz are parse tree, into a set of “traces,” where each trace consists of a set
Itrr:zelfit:grg\f:tvegdg_me English order, ant then L are Inserted aftef” in of threads all executed by the same processor. These traces have ad
ditional structure imposed by Cilk’s scheduler. Specifically, when-
ever a thief processor steals work from a victim processor, the work
Corollary 6. Consider a fork-join multithreaded program with stolen corresponds to the right subtree of the P-node that is highest

running time7} on a single processor. Then, a determinacy-race inthe SP-parse tree walked by the victim. Cilk’s scheduler provides
detector using SP-order runs @(74) time. O an upper bound oD (PT) steals with high probability.

To conclude this section, we observe that SP-order can be madeA naive parallelization of SP-order

to work on the fly no matter how the input SP parse tree unfolds. A straightf d ¢ llelize the SP-ord lqorithm is t
Not only can lines 8-9 of Figure 5 be executed in either order, the straightforward way to parallelize the Sr-order algorithm IS to
share the SP-order data structure among the processors that are ex-

basic recursive call could be executed on nodes in any order that ting the inout fork-ioi Th blem that ari h
respects the parent-child and SP relationships. For example, oneScUting the Input fork-join program. The problém that arises, how-

could unfold the parse tree in essentially breadth-first fashion at P- ?k:/ eg 'St tha}t pr(t)cessorz r;;]ay interfere V\{'Izh gaﬁh oth(;r as.thet.y mod|fyt
nodes as long as the left subtree of an S-node is fully expanded € data structure, and thus some method of synchronization mus

before its right subtree is processed. An examination of the proof be:mployed to pr(t)wlsle rglutual teX(l:Iusu?n._ is th hth f
of Lemma 3 shows why we have this flexibility. The invariant in common way to handie mutual exclusion IS through the use o

the proof considers only a node and its children. If we expand any :gg:zs' r.z?rtgéargrpleé :ﬁ%@f&?ﬁ;ﬁ;ﬂ;;@ggség %?;et‘.'gﬁ gnglobal
single node, its children are inserted into the order-maintenance pri very P !

data structures in the proper place independent of what other node§he gha(ed SP-order data structure, releasing th_e lock when the‘op-
have been expanded. eration is complete. Although this parallel version of SP-order is

correct, the locking can introduce significant performance penal-
ties.
3 The SP-hybrid algorithm Consider a parallel execution of this naive parallel SP-order al-
gorithm onP processors. During a single operation by a processor
This section describes the structure of the SP-hybrid parallel SP-on the shared SP-order data structure,Falt- 1 other processors
maintenance algorithm. We begin by discussing how an SP parsemay stall while waiting for the lock required to perform their own
tree is provided as input to SP-hybrid and explaining some of the operations. Let us assume, as is reasonable, that no processor waits
properties of Cilk that SP-hybrid exploits. We then describe the on a lock unless another processor owns the lock. Thus, if we at-
two-tier structure of the algorithm, which combines elements of tribute the cost of waiting for a lock to the processor that owns the

lock (rather than to the processor doing the waiting), the amortized
cost of a single operation could be as larg®&#’). Since as many SP-HYBRID(X, U)
as©(T1) operations could occur during an execution of a fork-join)
program with workT3, the apparent work— the real work plus > X is a SP-parse-tree node, aliids a trace
any time spent by processors waiting for locks — could expand to | 1 if ISLEAF(X)
O(PTy), thereby negating any benefits Bfway parallelism. 2 thenp> Xisathread

Of course, this scenario provides a worst-case example, and| 3 U—Uu{X}
common programs may not realize such a pessimistic bound. Nev-| 4 EXECUTE-THREAD(X)
ertheless, locking can significantly inhibit the scalability of a paral- | 5 return U
lel algorithm, and we would like provable guarantees on scalability.

6 if ISSNODE(X)

. . 7 then > X is an S-node
Overview of SP-hybrid 8 U’ « spawn SP-HvBRID (left[X], U)
The SP-hybrid algorithm uses a two-tiered hierarchy with a global | 9 sync
tier and a local tier in order to overcome the scalability problems | 10 U"” + spawn SP-HyBRID (left[X],U")
with lock synchronization. As SP-hybrid performs a parallel walk |11 sync
of the input SP parse tree, it partitions the threads into traces on| 12 return U"”
the fly, where each trace consists of threads that execute on the
same processor. Much as in the naive parallelization of SP-order, > X is a P-node

the global tier of SP-hybrid uses a shared SP-order algorithm to | 13 U’ < spawn SP-HyBRID (left[X],U)
maintain the relationships between threads belonging to different | 14 if SyNcHED()
traces. The local tier uses the serial SP-bags algorithm to maintain| 15 then > the recursive call on line 13 has completed

the relationships between threads belonging to the same trace. 16 U"” + spawn SP-HyBRID (left[X],U")
The goal of this two-tier structure is to reduce the synchroniza- |17 sync

tion delays for shared data structures, that is, processors wasting 18 return U"

their time by waiting on locks. SP-hybrid’s shared global tier

minimizes synchronization delays in two ways. First, a lock-free > A steal has occurred

scheme is employed so that OMRECEDEScan execute on the 19 create new tracds™, U, U™, andU®

shared data structure without locking. Second, the number of in- | 20 AcQUIRE(lock)
sertions is reduced t®(PTs), thereby reducing the maximum 21 OM-MULTI-INSERT(Eng, UM, U@ U, U™ Uu®

apparent work for insertions 0 (P>T..), since at most — 1 22 OM-MULTI-INSERT(Heb, UV, UM U, U, U®)
processors need to wait during the work of any insertion. 23 ReLEASE(lock)
For the purposes of explaining how SP-hybrid works, we main- |24 SLT(U, X, UM, U®)
tain traces explicitly. Formally, we defineteace U to be a (dy- 25 spawn SP-HvBRID(left[X], U<4>)
namic) set of threads that have been executed on a single proces: 26 sync
sor. ThecomputationC is a dynamic collection of disjoint traces, 27 returnU®
C = {Uy,U,,...,U}. Initially, the computation consists of a

single empty trace. As the computation unfolds, each thread is in-
serted into a trace.

Wf;}engver C"k$ scheduler caushes f’? stealt! from a \/f[ctlm proces- Figure 8: The SP-hybrid algorithm written in Cilk-like pseudocodeP-S
sor that 'Esl)exe(%l;tm 3? tra(agé, %5?' ybrld_ SP it into five Su_b- HYBRID accepts as arguments an SP-parse-tree Xodad a tracé/, and
traces(U'", U™, U™, U™, U"), modifying the computation it returns a trace. The algorithm is essentially a tree wallictv carries

C as follows: along with it a tracel/ into which encountered threads are inserted. The
spawn keyword is a Cilk linguistic construct to indicate the fargiof a
C—C-Uu{uM u® u® uWw y®y} subprocedure, and trggnc keyword indicates a join of the procedure with
all of the children it has spawned. Th«ECUTE-THREAD procedure exe-
Consequently, if the Cilk scheduler performsteals‘lq =4s+1. cutes the thread and handles all local-tier operations.S¥neCHED proce-
Since the Cilk scheduler provides a boundtfPT..) steals with dure determines whether the current procedure is synctetifizhether a
high probability, the expected size 6fis O(PT.). The principal sync would cause the procedure to block), which indicates whiedtsteal

i - h : - has occurred. The OM-M.TI-INSERT(L, A, B, U, C, D) inserts the ob-
use of the SP-bags algorithm from [20] is that it enables efficient jects A, B, C, and D before and aftef/ in the order-maintenance data

spllttlng, as will be explalned In Sectlc_)n 5'. . structureL. The Eng and Heb data structures maintain the English and
_ Details of the two tiers of SP-hybrid will be presented in Sec- eprew orderings of traces. TheST procedure uses node to partition
tions 4 and 5. For now, it is sufficient to understand the opera- the existing threads in tradé into three sets, leaving one of the setgin

tions each tier supports. The global tier supports the operations and placing the other two into (1) andU (2).
OM-INSERT and OM-RRECEDESON English and Hebrew order-
ings. In addition, the global tier supports a OMuMrI-INSERT
operation, which inserts several items into an order-maintenancelanguage.) As in the SP-order algorithm, SP-hybrid performs a left-
data structure. The local tier supportstAL-INSERTand LOCAL- to-right walk of the SP parse tree, executing threads as the parse
PRECEDESON a local (SP-bags) data structure. It supports an op- tree unfolds. Each thread is inserted into a trace, which is local to
eration $LIT, which partitions the threads in a trace when a steal the processor executing the thread. The structure of the trace forms
occurs. It also supports an operatiomnB-TRACE, which returns the local tier of the SP-hybrid algorithm and is described further in
the current trace to which a thread belongs. The implementation of Section 5.
all the local-tier operations must be such that manyoFTRACE SP-hybrid associates each node in the SP parse tree with a single
operations can execute concurrently. trace by accepting a tradé as a parameter in addition to a node

Figure 8 presents the Cilk-like pseudocode for the SP-hybrid al- X, indicating that the descendant threadsXoghould be inserted
gorithm. (See [28] for a more complete presentation of the Cilk into the tracel/. When SP-HBRID(X, U) completes, it returns

the trace with which to associate the next node in the walk of the

4 The global tier

SP-FRECEDEYX,Y) As introduced in Section 3, the global tier is essentially a shared
28 U; «+ FINDTRACE(X) SP-order data structure, and locking is used to mediate concurrent
29 U «— FINDTRACE(Y) operations. This section describes the global tier in more detail. We
30 ifUy =Us show how to support concurrent queries without locking, leaving
31 then return LOCAL-PRECEDES X, Y) only insertions as requiring locking.
32 if OM-PRECEDES Eng, X,Y) and We focus on making OM-RECEDESoperations on the global

OM-PRECEDES Heb, X,Y) tier run efficiently without locking, because the number of concur-
33 then return TRUE rent queries may be large. If we were to lock the data structure
34 return FALSE for each of@ queries, each query might be forced to wait for in-

sertions and other queries, thereby increasing the apparent work
by as much a®(QP) and nullifying the advantages dP-way
Figure 9: The SP-Precedes precedure for the SP-Hybrid algorithrm give parallellsm. Thus, we lock thg entire Q'Obf?" tier when an inser-
Figure 8. SP-RECEDESaccepts two threadX andY and returnsrRUE tion occurs, but use a_Iock-free implementation for the presumably
if X < Y. FINDTRACE and LOCAL-PRECEDESare local-tier operations ~ MOr€-NUMErous queries.
to determine what trace a thread belongs to and the relatiphstween The global tier is implemented using &»(1)-amortized-time
threads in the same trace, respectively. order-maintenance data structure such as those described in [10,
17,33]. The data structure keeps a doubly linked bétitems and
assigns an integer label to each inserted item. The labels are used
parse tree. In particular, for an S-nodg the tracelU’ returned to implement OM-RECEDES to compare two items in the linear

from the walk of the left subtree is passed to the wallXd$ right order, we compare their labels. When OMSERT adds a new
subtree; see Lines 6-12. The same is true for P-nodes, unless a thigem to the dynamic set, it assigns the item a label that places the
right subtree has been stolen; see lines lines 13-18. item into its proper place in the linear order.

Lines 1-5 deal with the case whekeis a leaf and therefore a Sometimes, however, an item must be placed between two items

thread. As in SP-@DER, the queries to the SP-maintenance data labeled; andi+ 1, in which case this simple scheme does not work.
structure occur in the ECUTE-THREAD procedure. In our anal- At this point, the data structure relabels some items so that room
ysis in Section 7, we shall assume that the number of queries is atcan be made for the new item. We refer to the dynamic relabeling
most the number of instructions in the thread. The thread is insertedthat occurs during an insertion asebalance Depending on how
into the provided tracé/ in line 3 before executing the thread in “bunched up” the labels of existing items are, the algorithm may
line 4. Lines 6-12 and lines 13-27 handle the cases wiKeig need to relabel different numbers of items during one rebalance
an S- or P-Node, respectively. For both P-nodes and S-nodes, Thehan another. In the worst case, nearly all of the items may need to
procedure walks t&’s left then right subtree. For an S-node, how- be relabeled.
ever, the left subtree must be fully expanded before walking to the When implementing a rebalance, therefore, the data structure
right subtree. may stay locked for an extended period of time. The goal of the
During the time that a P-node is being expanded, a steal may lock-free implementation of OM-RECEDESIS to allow these op-
occur. Specifically, while the current processor walks the left sub- erations to execute quickly and correctly even in the midst of rebal-
tree of the P-node, another processor may steal (the walking of) theancing. The implementation of a rebalance for the global tier there-

right subtree. When a steal is detected (line 1444SHED returns fore maintains two properties which are not usually implemented in
F'“E'-)SE)' the c%rrent trace is split into five tracesr?), U, U®), a serial order-maintenance data structure:

3 . . .
U™, andU® —with a call to the $LIT procedure. This SLIT e Aconcurrent query can detect whether a rebalance in progress
procedure, and the partitioning into subtraces, is described further has corrupted its view of the linear order.

in Section 5. The SP-hybrid algorithm proceeds to order the traces,

inserting the five new traces into the global SP-maintenance data * Throughout the rebalance, the relative order of the items does

structures. The&ng order maintains the English ordering of the _not change. . -
traces, as follows: The first of these properties is enforced by associatitigestamp
with each item which is incremented during a rebalance. The sec-
(W y® u® y® y®y . ond is enforced by performing the rebalance in two passes.

The algorithm actually proceeds in five passes, two of which im-
Similarly, the Heb order maintains the Hebrew ordering of the ~plement the rebalande:

traces: 1. Determine the range of items to rebalance.
W, W u® U u®). 2. Increment the timestamp of every item in the range to indicate

If steal does not occur, we execute lines 16-18. Notice that if a the beginning of the rebalance.
steal does not occur anywhere in the subtree rooted at some node 3. Assign each item its minimum possible label in the range,
X, then we execute only lines 1-18 for the walk of this subtree. starting with the smallest item and proceeding to the largest,
Thus, all descendant threadsXfoelong to the same trace, thereby thereby maintaining the correct linear order.
satisfying the requirement that a trace be a set of threads that exe- 4. Increment the timestamp of every item in the range to indicate
cute on the same processor. that the second pass has begun.

The pseudocode for SPRECEDESIs shown in Figure 9. A SP- 5. Assign the desired final label to each item, starting with the
PRECEDEsquery for threads,; andu; first examines the order of largest item and proceeding to the smallest, thereby maintain-
their respective traces. If the two threads belong to the same trace, ing the correct linear order.
the local-tier (SP-bags) data structure determines whethpre-
cedesu;. If the two threads belong to different traces, the global- 3Actually, a two-level hierarchy of lists is maintained, bhistdetail is

i N i unnecessary to understand the basic workings of lock-fueeies, and the
tier SP-order data structure determines the order of the two traces. one-level scheme we describe can be easily extended.

4The number of passes can be reduced, but this presentatians aar-
ity.

This rebalancing strategy modifies each itértimes while guar- F /
anteeing that the correct linear ordering of items is maintained S

throughout. | \
OM-PRECEDESuUses the timestamps to determine whether a re- S S

balance is in progress. To compare itekisndY’, it examines the 7/ \ | SR

label and timestamp oX, then ofY’, then of X again, and finally P‘ S el S
of Y again. If the second readings of labels and timestamps pro- 5 7/ \ |
duce the same values as the first readings, then the query attempt Y, u P S
succeedsind the order of labels determines the ordeKo&ndY . v

\
. . . : . u P S 7N\
Otherwise, the query attemfatils and is repeatedly retried until it \ VA u P‘
/ ¥ - E
\ /N

u
succeeds.
Given that queries attempts can fail, they may increase the appar-
ent work and the apparent critical-path length of the computation. F u o P
Section 7 bounds these increases. F / \
F u

5 The local tier F

F

This section describes the local tier of the SP-hybrid algorithm. We

show how a trace running locally on a processor can be split when Figure 10;: The canonical parse tree for a generic Cilk procedure. The no
a steal occurs. By using the SP-bags algorithm to implement the tation F represents the parse tree of a spawned procedure, eqpiesents
trace data structure, a split can be implemente@ (i) time. Fi- a thread. All the nodes in the shaded area belong to the ggmededure,
nally, we show that these data structures allow the series-parallelwhile all the nodes in the ovals belong to a single sync block.
relationship between a currently running thread and any other pre-

viously executed or currently executing thread to be determined. N))
U™ have been executed, no more changes to this subtrace will oc-

- cur. Similarly, the threads containedif? have already been ex-
Splitting traces ecuted. The subtradé®® is partially populated, and the processor
Besides maintaining the SP relationships within a single trace, the executing the walk of/ will continue to put threads intt ®). The

local tier of the SP-hybrid algorithm supports the splitting of a trace subtrace/®), which is initially empty, corresponds to the threads
into subtraces. A split of a tradé occurs when the processor ex- encountered during the thief processor's tree walk. The subtrace
ecutingU becomes the victim of a steal. The work stolen corre- U®, which is also initially empty, represents the start of the next
sponds to the right subtree of the P-naliethat is highest in the sync block in the procedure.

SP-parse tree walked by the victim. When a tréicis split around When the subtraces are created, they are placed into the global
a P-nodeX, the local tier creates five subtraces: tier using the concurrent SP-order algorithm. The ordering of the
1. UM = {u € U : u < X}, the threads that precede. traces resulting from the steal in Figure 11 is shown in Figure 12.

All the threads i/ (!) precede those itr®, U®), andU®. Sim-
iIa(rlly, al(l2t>he t(f;gead(sj (t&)be \;]isited) iﬁ:"’) se(rligalfly foIIO\(/jv tﬂgsle in
UD U@ U® andu™. Thus, we placé/ (V) first andU ® last
3. .U<3>, = {u € U:u e descendants(left[X])}, the threads iy hoth the English and Hebrew orders. Since any pair of threads
in Xs left subtree. drawn from distinct subtracgg®, U®), andU“® operate logi-
4. U™ = {u € U : u € descendants(right[X])}, the threads cally in parallel, we placé/®, U®), andU® in that order into
in X’s (stolen) right subtree. This set is initially empty. the English ordering and @, U®, andU® in that order into the
5. U® = {u € U: X < u}, the threads that followk. This Hebrew ordering.
set is also initially empty.
We call these properties tiseibtrace propertiesf U. SP-bags

The SPLIT procedure from Figure 8 implements the split. Since . . o .
U@ andU® are initially empty, they are not provided as param- 1he SP-bags algorithm [20] provides an efficient means for imple-

eters to the BLIT procedure in line 24 of the SPMBRID pseu- menting the Iocal'tier using a disjo!nt-set data structure [14,29]. In
docode from Figure 8. The sét® is simply those threads that ~ SP-bags, each Cilk procedure maintains bags(sets) of threads
remain inU after those fronU (") andU® have been split off. with the following contents at any given tinfe:

Let us look at these subtraces in terms of the parse tree. Fig- e TheS-bagof a procedurd” contains the descendant threads

2.U? = {uelU:u| X andu ¢ descendants(X)}, the
threads parallel t&X that do not belong to a subtree &f.

ure 10 shows the canonical Cilk parse fras taken from [20]. A of F' that logically precede the currently executing thread
Cilk procedure is composed of a series of sync blocks, which are in F. (The descendant threadsi@finclude the threads af'.)
implemented through a series of spawn statements followed by a e TheP-bagof a procedure” contains the descendant threads
single join. The form of a Cilk parse tree is slightly more restric- of child procedures of” that have returned t6' and that op-

tive than that of a generic fork-join program in Figure 2: at any erate logically in parallel with the currently executing thread
given time, all the outstanding children of a procedure share the in F.

same join point. As SP-bags walks the parse tree of the computation, it inserts

Figure 11 shows the subtraces formed when a processor stealghreads into the bags, unions the bags, and queries as to what
to implement the local-tier operationsOCAL-INSERT, LOCAL-
PRECEDES FIND-TRACE, and $LIT required by SP-hybrid. All

5In fact, the subtrace&’(2) andU(3®) can be combined, but we keep
them separate to simplify the proof of correctness.

6Any SP parse tree can be represented as a Cilk parse treehsith t
same work and critical path by adding additional S- and P-sade empty
threads.

"This version of SP-bags uses bags containing threads tatrebags
containing procedures, as was done in [13, 20]. This modificais
straightforward to implement, and we do not dwell on the detail

S
|
S S
/7 \
5 5)
. / \ U(
/ /S\ u P
Foow P E
/ v "%
u
F \S Y
F
UM /7 \ ,§
F u P
U / \
u®
v !

Figure 11: The split of a tracé/ around a P-nod& in terms of a canon-
ical Cilk parse tree. The tree walk &f is executing inlef¢[X] when the
subtree rooted atight[X] is stolen by a thief processor. The shaded re-
gions contain the nodes belonging to each of the subtracelsiped by the
split. The two circles not enclosing any text indicate pors of the parse
tree that have not yet been visited by the tree walk/ of

- @-@-E-0-®
o (o

Figure 12: An ordering of the new traces resulting from a steal as shown i
Figure 11. Each circle represents a trace.

these operations, exceptNb-TRACE, are executed only by the
single processor working on a trace. ThelB-TRACE operation,
however, may be executed by any processor, and thus the imple
mentation must operate correctly in the face of multipleid~
TRACE operations.

The implementation of SP-bags proposed in [20] uses the classi-
cal disjoint-set data structure with “union by rank” and “path com-
pression” heuristics [14, 29, 31]. On a single processor, this data
structure allows all local-tier operations to be supported in amor-
tized O(a(m,n)) time, wherea is Tarjan’s functional inverse of
Ackermann’s functionyn is the number of local-tier operations,
andn is the number of threads. Moreover, the worst-case time for
any operation i©)(lgn).

The classical disjoint-set data structure does not work “out of
the box” when multiple F\D-TRACE operations execute concur-
rently. The reason is that although these operations are queries, th
path-compression heuristic modifies the data structure, potentially
causing concurrent operations to interfér€onsequently, our im-
plementation of the local tier uses the disjoint-set data structure
with union by rank only, which supports each operatioWifig n)
worst-case time.

The SP-bags implementation used by SP-hybrid follows that of
[20], except that we must additionally support theL8 operation.

8In fact, concurrent path compression does not affect thectress of
the algorithm, assuming that reads and writes execute atdyi¢ale per-
formance analysis become more complicated. We conjecture thetter
running time can be obtained using the classical data steictu

At the time of a split, the subtracés™), U, andU® may all
contain many threads. Thus, splitting them off from the tr&ce
may take substantial work. Fortunately, SP-bags overcomes this
difficulty by allowing a split to be performed i@(1) time.

Consider the S- and P-bags at the time a thread in the procedure
Fis stolen and the five subtrace$®, U, U®, U@ andU®
are created. The S-bag Bfcontains exactly the threads in the sub-
traceU®. Similarly, the P-bag of” contains exactly the threads
in the subtracé/(?). The SP-bags data structure is such that mov-
ing these two bags to the appropriate subtraces requiresly
pointer updates. The subtradé® owns all the other S- and P-bags
that belonged to the original traéé, and thus nothing more need
be done, sincé/® directly inheritsU’s threads. The subtraces
U® andU® are created with empty S- and P-bags. Thus, the
split can be performed i®(1) time, since onlyO(1) bookkeeping
needs to be done including updating pointers.

6 Correctness of SP-hybrid

This section proves the correctness of the SP-hybrid algorithm. We
begin by showing that the traces maintained by SP-hybrid are con-
sistent with the subtrace properties defined in Section 5. We then
prove that the traces are ordered correctly to determine SP relation-
ships. Finally, we conclude that SP-hybrid works.

Due to the way the splits work, we can no longer prove a theo-
rem as general as Lemma 1. That is to say, we can only accurately
derive the relationship between two threads if one of them is a cur-
rently executing threadAlthough this result is weaker than for the
serial algorithm, we do not need anything stronger for a race detec-
tor. Furthermore, these are exactly the semantics provided by the
lower-tier SP-bags algorithm.

The following lemma shows that when a split occurs, the sub-
traces are consistent with the subtraces properties given in Sec-
tion 5.

Lemma?7. LetU; be atrace thatis split around a P-nodé. Then,
the subtrace properties @f; are maintained as invariants byP-
HYBRID.

Proof. The subtrace properties 6f hold at the time of the split
around the P-nod&’, when the subtraces were created, by defini-
tion. If a subtrace is destroyed by splitting, the property holds for
that subtrace vacuously.

Consider any thread at the time it is inserted into some tralde
EitherU is a subtrace of/; or not. If not, then the properties hold
for the subtracé/; vacuously. Otherwise, we have five cases.

Casel: U = U;". This case cannot occur. Sinég&" is
mentioned only in lines 19-27 of Figure 8, it follows tHa{Y is
never passed to any call of SP¥BRID. Thus, no threads are ever
inserted inta; (V.

Case2: U = U;¥. Like Case 1, this case cannot occur.

Case3: U = U;®. We must show thal/;® = {u : u € de-
scendants(left[X])}. The difficulty in this case is that when the
traceU; is split, we havel; = U;®, that is,U; andU;®) are
aliases for the same set. Thus, we must show that the invariant

$olds for all the already spawned instances of SEBRID that

took U, as a parameter, as well as those new instances that take
;3 as a parameter. As it turns out, however, no new instances
take U;® as a parameter, because (like Cases 1 and;?) is
neither passed to SP¥8RID nor returned.
Thus, we are left to consider the already spawned instances
of SP-HyBRID that tookU; as a parameter. One such instance
is the outstanding SPBRID(left[X],U;) in line 13. Ifu €

9Specifically, we cannot determine the relationship betwaesets in
U™ andU)] but we can determine the relationship between any other

two traces.

descendants(left[X]), then we are done, and thus, we only need
consider the spawns SPYHRID (Y, U;), whereY is an ancestor
of the P-nodeX. We use induction on the ancestorsXf starting
atY = parent(X) to show that SP-MBRID (Y, U;) does not pass
U, to any other calls, nor does it retutfn. For the base case, we
see that SP-MBRID (X, U;) returnsl;® # U;®,

For the inductive case, consider SF#RID(Y,U;). We ex-

Case(1,3): U; = UM andU; = U®). We apply Lemma 7
to conclude that:; < X for some P-nodeX andu; € descen-
dants(left| X]), which implies that; < u;. We also have that
EnglUM] < Eng[U®)] and Heb[UM] < Heb[U®], which
matches the claim.

Case(2,3): U; = U® andU; = U®. Lemma 7 allows us to
conclude thatu; € {u € U :u || X andu & descendants(X)}

amine the locations in the pseudocode where this procedure carfor some P-nodeX and thatu; € descendant%gleft[XD, which

resume execution. ¥ is an S-node, then this procedure can be
waiting for the return from SP-¥BRID(left[Y], U;) in line 9 or
SP-HyBRID(right[Y],U;) in line 11. In the first situation, our
inductive hypothesis states that SR-8RID (left[Y], U;) does not
returnU;, and hence, we neither pa&s to the right child nor do
we return it. The second situation is similar.

Instead, suppose thaf is a P-node. Since steals occur from

means thai; || u;. We also have thabBng[U?)] < Eng[U®)]
and Heb[U®] > Heb[U®)], which matches the claim.
The other ten cases are similar to these two. t

We are now ready to prove that SP-hybrid returns the correct
result for an SP-RECEDESOperation run on a currently executing
thread and any other thread.

the top of the tree, we cannot resume execution at line 16, or elseTheorem 9. Consider any point during the execution &P-

SP-HyBRID(right[Y], U;) would have already been stolen. We
can be only at either line 17 or line 26. If we're at line 17, our
inductive assumption states that SR##ID(right[Y], U;) does
not returnU;, and thus we do not returlii; either. Otherwise, we
are at line 26, and we return th&® resulting from some split.

Case4: U = U;'Y. We must show thal’;'Y) = {u : u € de-
scendants(right[X])}. The only place wher&; ¥ is passed to
another SP-MBRID call, and hence used to insert a thread, is
line 25. No matter what SP-¥BRID(right[X], U;*) returns,
SP-HvBRID(X, U;) does not returit/; *); it returnsU;®). Thus,
the only threads that can be inserted ibtd®) are descendants of
right[X], which matches the semanticsif* .

Case5: U = U;®. We must show that/;® = {u € U; :
X < u)}. The subtracd/;® is used only in the return from
SP-HyBRID(X,U;) on line 27. As seen in lines 6-12 and lines
16-18, SP-HBRID passes the trace returned from a left subtree
to a right subtree. Thus, the only SP¢BRID calls that have any
possibility of inserting intdJ;® are the right descendants &fs

ancestors. When a split occurs (and hence when a steal occurs), b
the properties of the Cilk scheduler, it occurs at the topmost P-node

of a trace. Thus, the only ancestorsXfwith unelaborated right
subtrees are S-nodes. It follows thed(u, X) is an S-node, and
henceX < u. U

The following lemma shows that thBng and Heb orderings

HYBRID on an SP parse tree. Let; be a thread that has been
visited, and letu; be a thread that is currently executing. Then,
the procedureSP-RRECEDESu;,u;) correctly returnsTRUE if

u; < u; and FALSE otherwise.

Proof. The SP-HBRID procedure inserts a threadnto a trace

U before executing:, and therefore when a thread executes, it be-
longs to some trace. Furthermore, the English and Hebrew order-
ings Eng and Heb, respectively, contain all traces that contain any
threads. Ifu; andwu; belong to the same trace, then SREREDES
returns the correct result as the result of a query on the local tier. If
u; andu; belong to different traces, then Lemma 8 shows that the
correct result is returned. Ul

7 Performance analysis

This section analyzes the SP-hybrid algorithm run on a fork-join
rogram. Suppose that the program hatreads; 75 work, and a
ritical-path length off.,. When executed o processors using

the Cilk scheduler, we prove that SP-hybrid rung((T: /P +

PT..)lgn) expected time.

Theorem 10. Suppose that a fork-join program hasthreads,T;
work, and a critical-path length df'... When executed oR pro-

maintained by SP-hybrid are sufficient to determine the relationship cessors using the Cilk scheduler, SP-hybrid rungif(Ty /P +

between traces.

Lemma8. Let Eng and Heb be the English and Hebrew order-
ings, respectively, maintained by the global tier of SP-hybrid. Let
u; be a currently executing thread in the tratg, and letu; be
any thread in a different trac&; # U;. Thenu; < u; if and only

if Eng|U;] < Eng|U;] and Heb[U;] < Heb[U;].

Proof. The proof is by induction on the number of splits during
the execution of SP-hybrid. Consider the time that a tfadesplit
into its five subtraces. If neithd¥; nor U; is one of the resulting
subtrace/M, U@ .. U® then the split does not affett; or
U;, and the lemma holds holds trivially.

Suppose that/; € {UD, U@, ... U}, butU; ¢ {UW,
U® ... ,U®}. Then,U; andU; have the same reIationshiP they
did before the split, because we insert the subtrdéds, U?,
U@ andU® contiguously withyU = U® in the English and
Hebrew orderings. Similarly, if we have; ¢ {UW, ..., U®},
butU; € {UM, U@ ... U®}, then the lemma holds symmet-
rically.

Thus, we are left with the situation whetg ¢ {U™, U®),
L, UDY andU; € (UMW, U@ ... U}, We can ignore the
case wherlU; = Uj, because the lemma assumes tiat# Uj,
as well as the cases whéi, € {U®M U®}, becausey; is a

PT..)lgn) expected time.

Proof. ~ We use an accounting argument similar to [12], except
with seven buckets, instead of three. Each bucket corresponds to
a type of task that a processor can be doing during a step of the
algorithm. For each time step, each processor places one dollar in
exactly one bucket. If the execution takes tiffie, then at the end

the total number of dollars in all of the buckets?§'». Thus, if we

sum up all the dollars in all the buckets and divide/dywe obtain

the running time.

The analysis depends on the numbef successful steals during
the execution of the SP-hybrid algorithm. We shall show that the
expected value of is O(PTw lgn). The seven buckets are as
follows:

B1: The work of the original computation excluding costs added
by SP-hybrid. We have thaB:| = O(71), because a processor
places one dollar in the work bucket whenever it performs work on
the input program.

Ba2: The work for global-tier insertions, including the cost for
splits. SP-hybrid performs an OMNEERT operation, serially, for
each steal. The amortized time required to perferoperations in
the order-maintenance data structur®is). Thus,|Bz| = O(s).

Bg: All the other SP-maintenance operations not includelin

currently executing thread. We consider the remaining twelve cases ' Nis work is dominated by the local-tier SP-bags operations. Be-

in turn.

cause there ar@(1) SP-bags operations for each instruction in the

computation and each SP-bags operation cOgign) time, we Nudler and Rudolph [27] introduced the English-Hebrew label-
have|Bs| = O(T1 1gn). ing scheme for SP-maintenance. Each thread is assigned two la-
B4: The work wasted on synchronization delays waiting for bels, similar to the labeling in this paper. They do not, however, use
the global lock on global-tier OMNSERT operations. When one a centralized data structure to reassign labels. Instead, label sizes
processor holds the lock, at maS{P) processors can be wait- grow proportionally to the maximum concurrency of the program.
ing. SinceO(1) insertions occurs for each steal, we halga| = Mellor-Crummey [26] proposed an “offset-span labeling” scheme,
O(Ps). which has label lengths proportional to the maximum nesting depth
Bs: The work wasted on failed and retried global-tier queries. of forks. Although it uses shorter label lengths than the English-
Since a single insertion into the order-maintenance structure canHebrew scheme, the size of offset-span labels is not bounded by a
cause at mosD(1) queries to fail on each processor and the number constant as it is in our scheme.
of insertions i0(s), we conclude thgtBs| = O(Ps). The first order-maintenance data structure was published by Di-
Bg: Steal attempts while the global lock is not held by any etz two decades ago [15]. It supports insertions and deletions in
processors. We use the potential argument from [9] to argue thatO(lgn) amortized time and queries (1) time. Tarjan observed
|Bs|] = O(PTslgn), but with one slight variation. We do [17] that updates could be supportedi1) amortized time, and
not present the full argument here, because most of it is identi- the same result was obtained independently by Tsakalidis [33]. Di-
cal, but we do highlight the difference. The crux of their argu- etz and Sleator [17] proposed two data structures, one that sup-
ment is that whenever a thief processor tries to steal from a vic- ports insertions and deletions @n(1) amortized time and queries
tim processor, the victim loses a constant factor of its potential. in O(1) worst-case time and a another that supports all operations
In our variation, imagine blowing up each instruction in the orig- in O(1) worst-case time. Bender, Cole, Demaine, Farach-Colton,
inal computation by a factor of = O(lgn) to account for the and Zito [10] gave two simplified data structures whose asymptotic
worst-case bound on the disjoint-set data structure, thereby pro-performance matches the data structures from [17]. Their paper

ducing a new computation with total wotR(7; 1gn) and critical also presents an implementation study of the amortized data struc-
pathO(To.r) = O(Twlgn). In this new computation, a pro- ture.

cessor may “accelerate” and execute up tteps, corresponding A special case of the order-maintenance problem is theihe

to when the bookkeeping takes less thatime, but that only de- line list-labeling problem[7,16,18, 23], also called tHde mainte-

creases the potential even more. The same argument bounding th@ance probleni34—37]. In online list labeling, we maintain a map-
number of steals still applies, but to a computation with critical ping from a dynamic set of elements to the integers in the range
pathT..r rather tharl',. Thus, the expected number of steals is from 1 to u (tag9, such that the order of the elements matches the
O(PTor) = O(PTx 1gn). order of the corresponding tags. Any solution to the online list-

B~ Steal attempts while the global lock is held by some pro- labeling problem yields an order-maintenance data structure. The
cessor. The global lock is held f@?(s) time in total, and in the reverse is not true, however, because there exist3(hmn) lower
worst case, all processors try to steal during this time. Thus, we bound on the list-labeling problem [16, 18]. In file maintenance,
have|B7| = O(Ps). we require that: = O(n), since this restriction corresponds to the

To conclude the proof, observe tha |Bg|, because the num- problem of maintaining a file densely packed and defragmented on
ber of successful steals is less than the number of steal attemptsdisk.

Summing up all the buckets yield¥((T: + P*>T..) lgn) expected Labeling schemes have been used for other combinatorial prob-
dollars at the end of the computation, and hence, dividing e lems such as answering least-common-ancestor queries [1, 3,5, 24]
obtain an expected running time 6f((71/P + PTw)lgn). In and distance queries used for routing [2, 4, 8,22, 25, 32]. Although

fact, this bound holds with high probability. O these problems are reminiscent of the order-maintenance problem,

For race-detection applications, this running time can be reduced Most solutions focus on reducing the number of bits necessary to
to O((Ty /P + PTw)lg(min {v,n}), wherev is the number of represent the labels in a static (offline) setting.

shared-memory locations used by the program. Anderson and Woll [6] discuss concurrent union-find opera-
We suspect that the running time of SP-hybrid can be can be re-tions using path compression (with path halving) and union by
duced t0O((T1/P)a(Ti,n) + PTx lgn), wherea is Tarjan’s rank. Whereas they consider multiple finds and multiple unions

functional inverse of Ackermann’s function. The idea is to use Occurring concurrently, however, our problem is confined to single
the classical disjoint-set data structure with both union-by-rank Unions and multiple finds occurring concurrently.

and path-compression heuristics. Since union operations are only
performed on a processor’s own local-tier data structure, the only 9 Concluding remarks
concurrency issues arise with path compressions, but these can bé

p.erggrmed safely using the lock-free “compare-and-swap” primi- This paper has focused on provably efficient parallel algorithms for
tive™ [6]. This implementation achieves the same bounds as those Sp-maintenance. As a practical matter, our algorithms are likely
in Theorem 10, but we conjecture that the coefficien’of P can to perform faster than the worst-case bounds indicate, because it is
be reduced ta(T1, n), which it achieves whe® = 1. In addi- rare that every lock access sees contention proportional to the num-
tion, this implementation would seem to achieve close to this bound per of processors. This observation can be used in practical imple-
in practice, because processors are unlikely to contend as stronglymentations to simplify the coding of the algorithms and yield some-
as the worst-case bounds suggest. what better performance in the common case. Nevertheless, we
contend that the predictability of provably efficient software gives
users less-frustrating experiences. Giving up on provable perfor-
8 Related work mance is an engineering decision that should not be taken lightly.
This section summarizes related work on SP-maintenance andYVe also believe that provably efficient algorithms are scientifically

order-maintenance data structures. interesting in their own right. _
_ _ As we were writing this paper, we repeatedly confronted the is-
*°In fact, path compression can be performed safely with onlyathe sue of how an amortized data structure interacts with a parallel

sumption of atomic reads and writes, but one may need a stroagemp- ; ; ; _
tion about the performance model to analyze this synchrdoizdtee strat- scheduler. Standard amortized analysis could be applied to ana

egy than one does when using compare-and-swap. lyze the work of a computation, but we could not use amortiza-
tion to analyze the critical path and had to settle for worst-case

bounds. Moreover, we were surprised that we needed to reprise thg15]
elaborate work-stealing analysis from [12] (with seven buckets, no
less!) in order show that SP-hybrid was efficient. Are there general
techniques that can allow us to develop provably good parallel al- [16]
gorithms without repeatedly subjecting ourselves (and readers) to
such intricate and difficult mathematical arguments?

With respect to the results themselves, we have left many tech-
nical questions unanswered. Does a linear-work parallel algorithm
for SP-maintenance exist? Can parallelism closeftd7.., be
achieved? Are our bounds actually tighter than what we have been 18]
able to show? Are there better data structures for SP-maintenance‘.L

In future work, we plan to implement the SP-order and SP-hybrid
algorithms and to evaluate their performance in a race-detection ;g
tool for Cilk programs.

[17]

Acknowledgments [20]
Thanks to Bradley Kuszmaul of MIT CSAIL for numerous helpful
discussions.

[21]
References

[1] S. Abiteboul, H. Kaplan, and T. Milo. Compact labeling saires for
ancestor queries. IRroceedings of the ACM-SIAM Symposium on
Discrete Algorithmspages 547-556, 2001.

S. Alstrup, P. Bille, and T. Rauhe. Labeling schemes forlkdia-
tances in trees. IRroceedings of the ACM-SIAM Symposium on Dis-
crete Algorithmspages 689-698, 2003.

S. Alstrup, C. Gavoille, H. Kaplan, and T. Rauhe. Neashmon
ancestors: a survey and a new distributed algorithrRréceedings of
the ACM Symposium on Parallel Algorithms and Architectupegies
258-264, 2002.

S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Rireouting

on trees. InProceedings of the ACM-SIAM Symposium on Discrete
Algorithms pages 342—-349, 1998.

S. Alstrup and T. Rauhe. Improved labeling scheme for aonces
queries. InProceedings of the ACM-SIAM Symposium on Discrete
Algorithms pages 947-953, 2002.

R. J. Anderson and H. Woll. Wait-free parallel algorithfies the
union-find problem. IrProceedings of the ACM Symposium on the
Theory of Computingpages 370-380, 1991.

A. Andersson and O. Petersson. Approximate indexed lixisrnal

of Algorithms 29:256-276, 1998.

M. Arias, L. J. Cowen, and K. A. Laing. Compact roundtriputimg
with topology-independent node names.Froceedings of the ACM
SIGACT-SIGOPS Symposium on Principles of Distributed G@bmp
ing, pages 43-52, 2003.

N. Arora, R. Blumofe, and G. Plaxton. Thread schedulingrfuulti-
programmed multiprocessors. Pioceedings of the ACM Symposium
on Parallel Algorithms and Architecturepages 119-129, 1998.

M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Coltord dnZito.
Two simplified algorithms for maintaining order in a list. Rmoceed-
ings of the European Syposium on Algorithpages 152—-164, 2002.
R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leisergéni.
Randall, and Y. Zhou. Cilk: An efficient multithreaded runtisyes-
tem. InProceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programmingrages 207-216, Santa Bar-
bara, California, July 1995.

R. D. Blumofe and C. E. Leiserson. Scheduling multitheshdom-
putations by work stealingl. ACM 46(5):720-748, 1999.

G.-l. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, an&. Stark.
Detecting data races in Cilk programs that use locks.Pioceed-
ings of the ACM Symposium on Parallel Algorithms and Architees
Puerto Vallarta, Mexico, June 1998.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stéirtroduc-
tion to Algorithms The MIT Press and McGraw-Hill, second edition,
2001.

[22]

(2] 23]

(3]

[24]
(4]
[25]
(3]
[26]
(6]
[27]
(7]
28
8] (28]
[29]
30
(9] [30]
(31]

[11] 33]
[34]

12 [35]

[23] [36]

[14] [37]

P. F. Dietz. Maintaining order in a linked list. Proceedings of the
ACM Symposium on the Theory of Computipgges 122-127, May
1982.

P. F. Dietz, J. |. Seiferas, and J. Zhang. A tight loweutmbfor on-line
monotonic list labeling. IrProceedings of the Scandinavian Work-
shop on Algorithm Theorywolume 824 ol ecture Notes in Computer
Sciencepages 131-142, July 1994,

P. F. Dietz and D. D. Sleator. Two algorithms for maintagorder

in a list. In Proceedings of the ACM Symposium on the Theory of
Computing pages 365-372, May 1987.

P. F. Dietz and J. Zhang. Lower bounds for monotonic &seling.

In Proceedings of the Scandinavian Workshop on Algorithm fjheo
volume 447 ofLecture Notes in Computer Sciendely 1990.

A. Dinning and E. Schonberg. An empirical comparison of itwn
ing algorithms for access anomaly detection. Piloceedings of the
ACM SIGPLAN Symposium on Principles and Practice of Paralle
Programming pages 1-10, 1990.

M. Feng and C. E. Leiserson. Efficient detection of deieacy races

in Cilk programs. InProceedings of the ACM Symposium on Parallel
Algorithms and Architecturegpages 1-11, Newport, Rhode Island,
June 1997.

M. Frigo, C. E. Leiserson, and K. H. Randall. The implenation

of the Cilk-5 multithreaded language. PRroceedings of the ACM
SIGPLAN Conference on Programming Language Design ancekmpl
mentation pages 212—223, 1998.

C. Gavoille, D. Peleg, S.&ennes, and R. Raz. Distance labeling
in graphs. InProceedings of the ACM-SIAM Symposium on Discrete
Algorithms pages 210-219, 2001.

A. Itai, A. G. Konheim, and M. Rodeh. A sparse table impletaéon

of priority queues. In S. Even and O. Kariv, editdPspceedings of the
Colloquium on Automata, Languages, and Programmuodume 115

of Lecture Notes in Computer Scienpages 417-431, Acre (Akko),
Israel, July 1981.

H. Kaplan, T. Milo, and R. Shabo. A comparison of labelgolpemes
for ancestor queries. IRroceedings of the ACM-SIAM Symposium on
Discrete Algorithmspages 954—963, 2002.

M. Katz, N. A. Katz, A. Korman, and D. Peleg. Labeling sofes for
flow and connectivity. IfProceedings of the ACM-SIAM Symposium
on Discrete Algorithmspages 927-936, 2002.

J. Mellor-Crummey. On-the-fly detection of data racespmygrams
with nested fork-join parallelism. IRroceedings of Supercomputing
pages 24-33, 1991.

I. Nudler and L. Rudolph. Tools for the efficient devetopnt of effi-
cient parallel programs. IRroceedings of the First Israeli Conference
on Computer Systems Engineeripy 1986.

Supercomputing Technologies Group, MIT LaboratoryG@mputer
Science Cilk 5.3.2 Reference Manualovember 2001.

R. E. Tarjan. Efficiency of a good but not linear set unégorithm.
Journal of the ACM22(2):215-225, April 1975.

R. E. Tarjan. Applications of path compression on badghtrees.
Journal of the ACM26(4):690-715, October 1979.

R. E. Tarjan. Data Structures and Network AlgorithmSociety for
Industrial and Applied Mathematics, 1983.

M. Thorup and U. Zwick. Compact routing schemes. Pioceed-
ings of the ACM Symposium on Parallel Algorithms and Archites
pages 1-10, 2001.

A. K. Tsakalidis. Maintaining order in a generalizedKed list. Acta
Informaticg 21(1):101-112, May 1984.

D. E. Willard. Inserting and deleting records in blodkeequential
files. Technical Report TM81-45193-5, Bell Laboratorie331.

D. E. Willard. Maintaining dense sequential files in andynic en-
vironment. InProceedings of the ACM Symposium on the Theory of
Computing pages 114-121, San Francisco, California, May 1982.
D. E. Willard. Good worst-case algorithms for insertengd deleting
records in dense sequential files. Rroceedings of the ACM Inter-
national Conference on Management of Dgiages 251-260, Wash-
ington, D.C., May 1986.

D. E. Willard. A density control algorithm for doing iegtions and
deletions in a sequentially ordered file in good worst-case.tinfor-
mation and Computatiqrd7(2):150-204, April 1992.

