
Computation-Centric Memory Models

Matteo Frigo�
MIT Laboratory for Computer Science

545 Technology Square NE43-203
Cambridge, MA 02139

athena@theory.lcs.mit.edu

Victor Luchangcoy
Massachusetts Institute of Technology

545 Technology Square NE43-369
Cambridge, MA 02139

victor l@theory.lcs.mit.edu

Abstract

We present acomputation-centric theory of memory
models. Unlike traditional processor-centric models,
computation-centric models focus on the logical dependen-
cies among instructions rather than the processor that hap-
pens to execute them. This theory allows us to define what
a memory model is, and to investigate abstract properties of
memory models. In particular, we focus onconstructibility,
which is a necessary property of those models that can be
implemented exactly by an online algorithm. For a noncon-
structible model, we show that there is a natural way to define
theconstructible versionof that model. We explore the im-
plications of constructibility in the context ofdag-consistent
memory models, which do not require that memory locations
be serialized. The strongest dag-consistent model, called
NN-dag consistency, is not constructible. However, its con-
structible version is equivalent to a model that we callloca-
tion consistency, in which each location is serialized inde-
pendently.

1 Introduction

A memory model specifies the values that may be returned
by the memory of a computer system in response to in-
structions issued by a program. In this paper, we develop
a computation-centric theoryof memory models in which
we can reason about memory models abstractly. We define
formally what a memory model is, and we investigate the
implications ofconstructibility, an abstract property which
is necessary for a model to be maintainable exactly by an�Supported in part by the Defense Advanced Research ProjectsAgency
(DARPA) under Grant N00014-94-1-0985, and by a Digital Equipment Cor-
poration Fellowship.ySupported by AFOSR-ONR contract F49640-94-1-0199, by AFOSR
contract F49640-97-1-0337, by ARPA contracts N00014-92-J-4033 and
F19628-95-C-0118, and by NSF grant 9225124-CCR.

To appear inProceedings of the 10th ACM Symposium
on Parallel Algorithms and Architectures (SPAA), June
28-July 2, 1998

online algorithm. The computation-centric theory is based
on the two concepts of acomputationand anobserver func-
tion.

Most existing memory models [DSB86, AH90, Goo89,
GLL+90, KCZ92, BZS93, ISL96] are expressed in terms of
processorsacting onmemory. We call these memory models
processor-centric; the memory model specifies what hap-
pens when a processor performs some action on memory. In
contrast, the philosophy of this paper is to separate the logi-
cal dependencies among instructions (the computation) from
the way instructions are mapped to processors (the sched-
ule). For example, in a multithreaded program, the program-
mer specifies several execution threads and certain depen-
dencies among the threads, and expects the behavior of the
program to be specified independently of which processor
happens to execute a particular thread. Computation-centric
memory models focus on the computation alone, and not on
the schedule. While the processor-centric description has the
advantage of modeling real hardware closely, our approach
allows us to define formal properties of memory models that
are independent of any implementation.

A computationis an abstraction of a parallel instruction
stream. The computation specifies machine instructions and
dependencies among them. A computation does not model
a parallel program, but rather the way a program unfolds in
a particular execution. (A program may unfold in different
ways because of input values and nondeterministic or ran-
dom choices.) We model the result of this unfolding pro-
cess by a directed acyclic graph whose nodes represent in-
stances of instructions in the execution. For example, a com-
putation could be generated using a multithreaded language
with fork/join parallelism (such as Cilk [BJK+95]). Compu-
tations are by no means limited to modeling multithreaded
programs, however. In this paper, we assume that the com-
putation is given, and defer the important problem of deter-
mining which computations a given program generates. We
can view computations as providing a means forpost mortem
analysis, to verify whether a system meets a specification by
checking its behavior after it has finished executing.

To specify memory semantics, we use the notion of anob-

server functionfor a computation. Informally, for each node
of the computation (i.e., an instance of an instruction) that
reads a value from the memory, the observer function spec-
ifies the node that wrote the value that the read operation
receives. Computation-centric memory models are defined
by specifying a set of valid observer functions for each com-
putation. A memory implements a memory model if, for
every computation, it always generates an observer function
belonging to the model.

Within the computation-centric theory, we define a prop-
erty we callconstructibility. Informally, a nonconstructible
memory model cannot be implemented exactly by an on-
line algorithm; any online implementation of a noncon-
structible memory must maintain a strictly stronger con-
structible model. We find constructibility interesting because
it makes little sense to adopt a memory model if any imple-
mentation of it must maintain a stronger model. One im-
portant result of this paper is that such a stronger model is
unique. We prove that for any memory model�, the class of
constructible memory models stronger than� has a unique
weakest element, which we call theconstructible version��
of �.

We discuss two approaches for specifying memory mod-
els within this theory. In the first approach, a memory model
is defined in terms of topological sorts of the computation.
Using this approach, we generalize the definition ofsequen-
tial consistency[Lam79], and definelocation consistency,1

a memory model in which every location is serialized in-
dependently of other locations. In the second approach, a
memory model is defined by imposing certain constraints on
the value that the observer function can assume on paths in
the computation dag. Using this approach, we explore the
class ofdag-consistentmemory models, a generalization of
the dag consistencyof [BFJ+96b, BFJ+96a, Joe96]. Such
models do not even require that a single location be serial-
ized, and are thus strictly weaker than the other class of mod-
els. Nonetheless, we found an interesting link between loca-
tion consistency, dag consistency and constructibility. The
strongest variant of dag consistency (calledNN-dag consis-
tency) is not constructible, and is strictly weaker than loca-
tion consistency. Its constructible version, however, turns out
to be the same model as location consistency.

We believe that the advantages of the computation-centric
framework transcend the particular results mentioned so far.
First, we believe that reasoning about computations is eas-
ier than reasoning about processors. Second, the framework
is completely formal, and thus we can make rigorous proofs
of the correctness of a memory. Third, our approach allows
us to generalize familiar memory models, such as sequen-
tial consistency. Most of the simplicity of our theory comes
from ignoring the fundamental issue of how programs gen-
erate computations. This simplification does not come with-

1Location consistency is often called coherence in the literature [HP96].
It is not the model with the same name introduced by Gao and Sarkar
[GS95]. See [Fri98] for a justification of this terminology.

out cost, however. The computation generated by a program
may depend on the values received from the memory, which
in turn depend on the computation. It remains important to
account for this circularity within a unified theory. We be-
lieve, however, that the problem of memory semantics alone
is sufficiently difficult that it is better to isolate it initially.

The rest of this paper is organized as follows. In Section 2,
we present the basic computation-centric theory axiomati-
cally. In Section 3, we define constructibility, prove the
uniqueness of the constructible version, and establish nec-
essary and sufficient conditions for constructibility to hold.
In Section 4, we discuss models based on a topological sort,
and give computation-centric definitions of sequential con-
sistency [Lam79] and location consistency. In Section 5, we
define the class of dag-consistent memory models and inves-
tigate the relations among them. In Section 6, we prove that
location consistency is the constructible version of NN-dag
consistency. Finally, we situate our work in the context of
related research in Section 7.

2 Computation-centric memory models

In this section, we define the basic concepts of the
computation-centric theory of memory models. The main
definitions are those of acomputation(Definition 1), anob-
server function(Definition 2), and amemory model(Defi-
nition 3). We also define two straightforward properties of
memory models calledcompletenessandmonotonicity.

We start with a formal definition of memory. Amemory
is characterized by a setL of locations, a setO of abstract
instructions (such as read and write), and a set ofvaluesthat
can be stored at each location. In the rest of the paper, we
abstract away the actual data, and consider a memory to be
characterized byL andO, using values only for concrete
examples.

For a setO of abstract instructions, we formally define a
computation as follows.

Definition 1 A computationC = (G; op) is a pair of a finite
directed acyclic graph (dag)G = (V;E) and a functionop :V 7! O.

For a computationC, we useGC , VC , EC andopC to indi-
cate its various components. The smallest computation is the
empty computation", which has an empty dag. Intuitively,
each nodeu 2 V represents an instance of the instruction
op(u), and each edge indicates a dependency between its
endpoints.

The way a computation is generated from an actual exe-
cution depends on the language used to write the program.
For example, consider a program written in a language with
fork/join parallelism. The execution of the program can be
viewed as a set of operations on memory that obey the de-
pendencies imposed by the fork/join constructs. Although

2

the issues of how the computation is expressed and sched-
uled are extremely important, they are outside the scope of
this paper. The reader is referred to [Blu95, Joe96] for one
way to deal with these issues. In this paper, we consider the
computation as fixed and givena priori.

In this paper, we consider only read-write memories. We
denote reads and writes to locationl by R(l) andW (l) re-
spectively. For the rest of the paper, the set of instructions is
assumed to beO = fR(l) : l 2 Lg[fW (l) : l 2 Lg[fNg,
whereN denotes any instruction that does not access the
memory (a “no-op”).

We now define some terminology for dags and computa-
tions. If there is a path from nodeu to nodev in the dagG,
we say thatu precedesv in G, and we writeu �G v. We
may omit the dag and writeu � v when it is clear from con-
text. We often need to indicate strict precedence, in which
case we writeu � v. A relaxation of a dagG = (V;E)
is any dag(V;E0) such thatE0 � E. A prefix of G is any
subgraphG0 = (V 0; E0) of G such that if(u; v) 2 E andv 2 V 0, thenu 2 V 0 and(u; v) 2 E0.

A topological sortT of G = (V;E) is a total order onV consistent with the precedence relation, i.e.,u �G v im-
plies thatu precedesv in T . The precedence relation of the
topological sort is denoted withu �T v. We represent topo-
logical sorts as sequences, and denote byTS(G) the set of all
topological sorts of a dagG. Note that for anyV 0 � V , if G0
is the subgraph ofG induced byV 0 andG00 is the subgraph
induced byV � V 0, andT 0 andT 00 are topological sorts ofG0 andG00 respectively, then the concatenation ofT 0 andT 00
is a topological sort ofG if and only if for all u 2 V 0 andv 2 V � V 0, we havev 6�G u.

For a computationC = (G; op), if G0 is a subgraph ofG
andop0 is the restriction ofop toG0, thenC 0 = (G0; op0) is a
subcomputationof C. We also callop0 therestriction of op
to C 0, and denote it byopjC0 , i.e.,opjC0(u) = op(u) for allu 2 VC0 . We abuse notation by using the same terminology
for computations as for dags. For example,C 0 is aprefix ofC if GC0 is a prefix ofGC andopC0 = opC jC0 . Similarly,TS(C) = TS(GC). In addition,C is anextensionof C 0
by o 2 O if C 0 is a prefix ofC, VC = VC0 [fug for someu =2 VC0 andopC(u) = o. Note that ifC 0 is a prefix ofC with jVC j = jVC0 j + 1 thenC is an extension ofC 0 by
opC(u), whereu 2 VC � VC0 .

We imagine a computation as being executed in some way
by one or more processors, subject to the dependency con-
straints specified by the dag, and we want to define precisely
the semantics of the read and write operations. For this pur-
pose, rather than specifying the meaning of read and write
operations directly, we introduce a technical device called
anobserver function. For every nodeu in the computation
and for every locationl, the value of the observer functionv = �(l; u) is another node that writes tol. The idea is thatu “observes” the write performed byv, so that ifu readsl,
it receives the value written byv. The observer function can
assume the special value?, indicating that no write has been

observed, in which case a read operation receives an unde-
fined value. Note that? is not a value stored at a location,
but an element of the range of the observer function similar
to a node of the computation. For notational convenience,
we extend the precedence relation so that? � u for every
nodeu of any computation, and we also include? as a node
in the domain of observer functions.

Definition 2 An observer functionfor a computationC is
a function� : L � VC [f?g 7! VC [f?g satisfying the
following properties for alll 2 L andu 2 VC[f?g:
2.1. If�(l; u) = v 6= ? thenopC(v) =W (l).
2.2. u 6� �(l; u).
2.3. If u 6= ? andopC(u) =W (l) then�(l; u) = u.

Informally, every observed node must be a write (part 2.1),
and a node cannot precede the node it observes (part 2.2).
Furthermore, every write must observe itself (part 2.3). Note
that Condition 2.2 implies�(l;?) = ? for all l 2 L. The
empty computation has a unique observer function, which
we denote by�".

The observer function allows us to abstract away from
memory values, and to give memory semantics even to nodes
that do not perform memory operations. In other words, our
formalism may distinguish two observer functions that pro-
duce the same execution. We choose this formalism because
it allows a computation node to denote some form of syn-
chronization, which affects the memory semantics even if
the node does not access the memory.

A memory model� is a set of pairs of computations and
observer functions, including the empty computation and its
observer function,2 as stated formally by the next definition.

Definition 3 A memory modelis a set� such thatf(";�")g � � � f(C;�) : � is an observer function forCg
The next definition is used to compare memory models.

Definition 4 A model� is strongerthan a model�0 if � ��0. We also say that�0 is weakerthan�.

Notice that the subset, not the superset, is said to be stronger,
because the subset allows fewer memory behaviors.

A memory model may provide an observer function only
for some computations. It is natural to restrict ourselves to
those models that define at least one observer function for
each computation. We call such models complete. Formally,
a memory model� is completeif, for every computationC,
there exists an observer function� such that(C;�) 2 �.

From the definitions of weaker and complete, it follows
that any model weaker than some complete model is also

2This is a technical requirement to simplify boundary cases.

3

complete. Formally, if� is complete and�0 � �, then�0
is also complete.

Another natural property for memory models to satisfy is
that relaxations of a computation should not invalidate ob-
server functions for the original computation. We call this
property monotonicity.

Definition 5 A memory model� is monotonic if for all(C;�) 2 �, we also have(C 0;�) 2 �, for all relaxationsC 0 of C.

Monotonicity is a technical property that simplifies certain
proofs (for example, see Theorem 12), and we regard it as a
natural requirement for any “reasonable” memory model.

3 Constructibility

In this section, we define a key property of memory mod-
els that we callconstructibility. Constructibility says that
if we have a computation and an observer function in some
model, it is always possible to extend the observer function
to a “bigger” computation. Not all memory models are con-
structible. However, there is a natural way to define a unique
constructible versionof a nonconstructible memory model.
At the end of the section, we give a necessary and suffi-
cient condition for the constructibility of monotonic memory
models.

The motivation behind constructibility is the following.
Suppose that, instead of being given completely at the be-
ginning of an execution, a computation is revealed one node
at a time by an adversary.3 Suppose also that there is an al-
gorithm that maintains a given memory model online. In-
tuitively, the algorithm constructs an observer function as
the computation is revealed. Suppose there is some observer
function for the part of the computation revealed so far, but
when the adversary reveals the next node, there is no way
to assign a value to it that satisfies the memory model. In
this case, the consistency algorithm is “stuck”. It should
have chosen a different observer function in the past, but that
would have required some knowledge of the future. Con-
structibility says that this situation cannot happen: if� is a
valid observer function in a constructible model, then there
is always a way to extend� to a “bigger” computation as it
is revealed.

Definition 6 A memory model� is constructibleif the fol-
lowing property holds: for all computationsC 0 and for all
prefixesC of C 0, if (C;�) 2 � then there exists an observer
function�0 for C 0 such that(C 0;�0) 2 � and the restriction
of �0 toC is�, i.e.,�0jC = �.

Completeness follows immediately from constructibility,
since the empty computation is a prefix of all computations

3This is the case with multithreaded languages, such as Cilk [Blu95,
Joe96].

and, together with its unique observer function, belongs to
every memory model.

Not all memory models are constructible; we shall dis-
cuss some nonconstructible memory models in Section 5.
However, a nonconstructible model� can be strengthened
in an essentially unique way until it becomes constructible.
More precisely, the set of constructible models stronger than� contains a unique weakest element��, which we call the
constructible versionof �. To prove this statement, we first
prove that the union of constructible models is constructible.

Lemma 7 Let S be a (possibly infinite) set of constructible
memory models. Then

S�2S � is constructible.

Proof: Let C 0 be a computation andC be a prefix ofC 0.
We must prove that, if(C;�) 2 S�2S �, then an extension�0 of the observer function� exists such that(C 0;�0) 2S�2S �.

If (C;�) 2 S�2S � then(C;�) 2 � for some� 2 S.
Since� is constructible, there exists an observer function�0
for C 0 such that(C 0;�0) 2 � and�0jC = �0. Thus,(C 0;�0) 2 S�2S �, as required.

We now define the constructible version of a model�, and
prove that it is the weakest constructible model stronger than�.

Definition 8 The constructible version�� of a memory
model� is the union of all constructible models stronger
than�.

Theorem 9 For any memory model�,

9.1. �� � �;

9.2. �� is constructible;

9.3. for any constructible model�0 such that�0 � �, we
have�0 � ��.

Proof: �� satisfies Conditions 9.1 and 9.3 by construction,
and Condition 9.2 because of Lemma 7.

In two theorems, we establish conditions that guaran-
tee constructibility. Theorem 10 gives a sufficient condi-
tion for the constructibility of general memory models. For
monotonic memory models, the condition is simpler (Theo-
rem 12).

Theorem 10 A memory model� is constructible if for any(C;�) 2 �, o 2 O, and extensionC 0 of C by o, there exists
an observer function�0 for C 0 such that(C 0;�0) 2 � and� = �0jC .

4

Proof:We must prove that ifC is a prefix ofC 0 and(C;�) 2�, then there exists an observer function�0 for C 0 such that(C 0;�0) 2 � and�0jC = �.

SinceC is a prefix ofC 0, there exists a sequence of com-
putationsC0; C1; : : : ; Ck such thatC0 = C, Ck = C 0,
andCi is an extension ofCi�1 by someoi 2 O for alli = 1; : : : ; k, wherek = jVC0 j � jVC j.

The proof of the theorem is by induction onk. The base
casek = 0 is trivial sinceC 0 = C. Now, suppose induc-
tively that there exists�k�1 such that(Ck�1;�k�1) 2 �.
SinceC 0 is an extension ofCk�1 by ok, the theorem hy-
pothesis implies that an observer function�0 exists such that(C 0;�0) 2 �, as required to complete the inductive step.

For monotonic memory models, we do not need to check
every extension of a computation to prove constructibility,
but rather only a small class of them, which we call theaug-
mented computations. An augmented computation is an ex-
tension by one “new” node, where the “new” node is a suc-
cessor of all “old” nodes.

Definition 11 Let C be a computation ando 2 O be any
operation. Theaugmented computationof C by o, denoted
augo(C), is the computationC 0 such thatVC0 = VC [ffinal(C)gEC0 = EC [f(v; final(C)) : v 2 VCg

opC0(v) = �
opC(v) for v 2 VCo for v = final(C) ;

wherefinal(C) =2 VC is a new node.

The final theorem of this section states that if a mono-
tonic memory model can extend the observer function for
any computation to its augmented computations, then the
memory model is constructible.

Theorem 12 A monotonic memory model� is con-
structible if and only if for all(C;�) 2 � ando 2 O, there
exists an observer function�0 such that(augo(C);�0) 2 �
and�0jC = �.

Proof: The “)” part is obvious, sinceC is a prefix of
augo(C).

For the “(” direction, suppose(C;�) 2 � ando 2 O.
By hypothesis, there exists�0 such that(augo(C);�0) 2 �.
For any extensionC 0 ofC byo, note thatC 0 is a relaxation of
augo(C). Since� is monotonic, we also have(C 0;�0) 2 �.
Thus, by Theorem 10,� is constructible.

One interpretation of Theorem 12 is the following. Con-
sider an execution of a computation. At any point in time
some prefix of the computation will have been executed.
If at all times it is possible to define a “final” state of the
memory (given by the observer function on the final node
of the augmented computation) then the memory model is
constructible.

4 Models based on topological sorts

In this section, we define two well known memory models in
terms of topological sorts of a computation. The first model
is sequential consistency[Lam79]. The second model is
sometimes calledcoherencein the literature [GS95, HP96];
we call it location consistency. Both models are complete,
monotonic and constructible. Because we define these mod-
els using computations, our definitions generalize traditional
processor-centric ones without requiring explicit synchro-
nization operations.

It is convenient to state both definitions in terms of the
“last writer preceding a given node”, which is well defined if
we superimpose a total order on a computation, producing a
topological sort.

Definition 13 Let C be a computation, andT 2 TS(C) be
a topological sort ofC. The last writer function according
to T is WT : L � VC[f?g 7! VC [f?g such that for alll 2 L andu 2 VC[f?g:
13.1. IfWT (l; u) = v 6= ? thenopC(v) =W (l).
13.2. WT (l; u) �T u.

13.3. WT (l; u) �T v �T u =) opC(v) 6= W (l) for allv 2 VC .

We state without proof two straightforward facts about last
writer functions. The first states that Definition 13 is well de-
fined. The second states that ifw is the last writer preceding
a nodeu, then it is also the last writer preceding any node
betweenw andu.

Theorem 14 For any topological sortT , there exists a
unique last writer function according toT .

Proof: Omitted.

Theorem 15 For any computationC, if WT is the last writer
function according toT for someT 2 TS(C) then for allu; v 2 VC and l 2 L such thatWT (l; u) �T v �T u, we
haveWT (l; v) =WT (l; u).
Proof: Omitted.

We use the last writer function for defining memory mod-
els, which is possible because the the last writer function is
an observer function, as stated in the next theorem.

Theorem 16 Let C be a computation, andT 2 TS(C) be
a topological sort ofC. The last writer functionWT is an
observer function forC.

5

Proof: Condition 13.1 is the same as Condition 2.1 and Con-
dition 2.2 is implied by Condition 13.2. Finally, note that
the contrapositive of Condition 13.3 withv = u 6= ?
is opC(u) = W (l) =) WT (l; u) 6�T u. Using
Condition 13.2, this simplifies toopC(u) = W (l) =)WT (l; u) = u, thus proving Condition 2.3.

We define sequential consistency using last writer func-
tions.

Definition 17 Sequential consistencyis the memory model

SC= f(C;WT) : T 2 TS(C)g
This definition captures the spirit of Lamport’s original

model [Lam79], that there exists a global total order of
events observed by all nodes. However, unlike Lamport’s
definition, it does not restrict dependencies to be sequences
of operations at each processor, nor does it depend on how
the computation is mapped onto processors.

Sequential consistency requires that the topological sort be
the same for all locations. By allowing a different topolog-
ical sort for each location, we define a memory model that
is often calledcoherence[GS95, HP96]. We believe that
a more appropriate name for this model islocation consis-
tency, even though the same name is used in [GS95] for a
different memory model.4

Definition 18 Location consistencyis the memory model

LC = f(C;�) : 8l 9Tl 2 TS(C) 8u; �(l; u) =WTl(l; u)g
Location consistency requires that all writes to the same

location behaveas if they were serialized. This need not
be the case in the actual implementation. For example, the
BACKER algorithm from [BFJ+96b, BFJ+96a] maintains lo-
cation consistency, even though it may keep several incoher-
ent copies of the same location. In Section 6, we prove that
location consistency is the constructible version of a model
we call NN-dag consistency.

It follows immediately from the definitions that SC is
stronger than LC. In fact, this relation is strict as long as
there is more than one location.

Both SC and LC are complete memory models, because
an observer function can be constructed for any computation
by sorting the dag and using the last writer function. We now
prove that they are also monotonic and constructible.

Theorem 19 SC and LC are monotonic and constructible
memory models.

Proof: The monotonicity of both follows immediately from
the definition sinceTS(C) � TS(C 0) for all relaxationsC 0
of C.

4See [Fri98] for a discussion of this terminology.

For constructibility, we give only the proof for SC; the
proof for LC is similar. Since SC is monotonic, we only need
to prove that it is possible to extend any observer function for
a computation to its augmented computation, and then apply
Theorem 12.

If (C;�) 2 SC then, by definition of SC,� = WT for
some topological sortT 2 TS(C). For eacho 2 O, con-
sider the augmented computationaugo(C), and letT 0 be the
following total order of the nodes ofaugo(C): all the nodes
of C in T order, followed byfinal(C). It is immediate thatT 0 is a topological sort ofaugo(C). Thus,WT 0 is a valid
SC observer function foraugo(C), andWT 0 jC = WT = �.
The conclusion follows by application of Theorem 12.

5 Dag-consistent memory models

In this section, we consider the class ofdag-consistentmem-
ory models, which are not based on topological sorts of the
computation. Rather, dag-consistent models impose condi-
tions on the value that the observer function can assume on
paths in the computation. We focus on four “interesting”
dag-consistent memory models, and investigate their mutual
relations.

In the dag-consistent models the observer function obeys
a restriction of the following form: If a node lies on a path
between two other nodes, and the observer function assumes
the valuex at the two end nodes, and the three nodes satisfy
certain additional conditions, then the observer function also
assumes the valuex at the middle node. The various dag
consistency models differ in the additional conditions they
impose on the nodes.

Definition 20 Let Q be a predicate onL � V � V � V ,
whereV is the set of all nodes of a computation. TheQ-
dag consistencymemory model is the set of all pairs(C;�)
such that� is an observer function forC and the following
condition holds:

20.1. For all locationsl 2 L and nodesu; v; w 2 VC[f?g
such thatu � v � w andQ(l; u; v; w), we have�(l; u) = �(l; w) =) �(l; v) = �(l; u).

Definition 20 is a generalization of the two definitions
of dag consistency that the Cilk group of MIT (includ-
ing one of the authors of the present paper) proposed in
the past [BFJ+96b, BFJ+96a]. Varying the predicateQ in
Condition 20.1 yields different memory models. Note that
strengtheningQ weakens the memory model.

In the rest of the paper, we consider four specific pred-
icates, NN, NW, WN and WW, and the dag consistency
models they define. These predicates do not depend onw,
but only on whetheru andv write to l. The rationale behind
the names is that “W” stands for “write”, and “N” stands for

6

weaker

stronger

WN� NN

WW = WW�
NW�

WN NW

LC = NN�SC= SC�

Figure 1: The relations among (some) dag-consistent models. A
straight line indicates that the model at the lower end of theline is
strictly weaker than the model at the upper end. For example,LC
is strictly weaker than SC. It is known that LC� WN� and that
LC � NW�, but we do not know whether these inclusions are strict.
This situation is indicated with a dashed line.

“do not care”. For example, WN means that the first node is
a write and we do not care about the second. Formally,

NN(l; u; v; w) = true

NW(l; u; v; w) = “opC(v) =W (l)”
WN(l; u; v; w) = “opC(u) =W (l)”
WW(l; u; v; w) = NW(l; u; v; w) ^WN(l; u; v; w)

We use NN as a shorthand for NN-dag consistency, and sim-
ilarly for WN, NW and WW.

The relations among NN, WN, NW, WW, LC and SC
are shown in Figure 1. WW is the original dag consis-
tency model defined in [BFJ+96b, Joe96]. WN is the model
called dag consistency in [BFJ+96a], strengthened to avoid
anomalies such as the one illustrated in Figure 2. NN is the
strongest dag-consistent memory model (as proven in The-
orem 21 below). Symmetry suggests that we also consider
NW.

Theorem 21 NN � Q-dag consistency for any predicateQ.

Proof: The proof is immediate from the definition:
an observer function satisfying Condition 20.1 withQ(l; u; v; w) = truewill satisfy Condition 20.1 for any other
predicateQ.

The rest of the paper is mostly concerned with the proof of
the relations shown in Figure 1. We have already observed in
Section 4 that SC is strictly stronger than LC. In the rest of
this section, we give informal proofs of the relations among

A

B

C D

W0

W1

R0 R1A

B

A B

Figure 2: An example of a computation/observer function pair in
WW and NW but not WN or NN. The computation has four nodes,
A, B, C and D (the name of the node is shown inside the node).
The memory consists of a single location, which is implicit.Every
node performs a read or a write operation on the location, andthis
is indicated above the node. For example, W0 means that the node
writes a 0 to the location, and R1 means that it reads a 1. The
value of the observer function is displayed below each node.For
example, the value of the function for node C is A, which accounts
for the fact that node C reads the value written by node A.

A

B

DC

R0

W0

B

B W1 R0

C B

Figure 3: An example of a computation/observer function pair in
WW and WN but not NW or NN. The conventions used in this
figure are explained in Figure 2.

the dag-consistent models. Proving relations between the
dag-consistent models and the models based on topological
sorts, however, is more involved, and we postpone the proof
that LC(NN and that LC= NN� until Section 6.

That NN � NW � WW and NN � WN � WW fol-
lows immediately from the definitions of these models. To
see that these inclusions are strict and that WN6� NW and
NW 6� WN, consider the computation/observer function
pairs shown in Figures 2 and 3. These examples illustrate
operations on a single memory location, which is implicit. It
is easy to verify that the first pair is in WW and NW but not
WN and NN, and the second is in WW and WN but not NW
and NN. We could also show that NN(NW \ WN and
WW) NW [WN, using similar examples.

To see that NN is not contructible, letC 0 be the compu-
tation in Figure 4, and(C;�) be the computation/observer
function pair to the left of the dashed line. It is easy to verify
thatC is a prefix ofC 0 and that(C;�) 2 NN. However,
unlessF writes to the memory location, there is no way to
extend� to C 0 without violating NN-dag consistency. For-
mally, there is no�0 such that(C 0;�0) 2 NN and�0jC = �.

7

A

B C

D E

F

W0

W1

W2

R2

R1A

B

D

D

B

Figure 4: An example demonstrating the nonconstructibility of
NN. The conventions used in this figure are explained in Figure 2.
A new node F has been revealed by the adversary after the left part
of the computation has been executed. It is not possible to assign a
value to the observer function for node F satisfying NN-dag consis-
tency.

Informally, suppose that we use an algorithm that claims to
support NN-dag consistency. The adversary reveals the com-
putationC, and our algorithm produces the observer func-
tion �, which satisfies NN-dag consistency. Then the ad-
versary reveals the new nodeF . The algorithm is “stuck”;
it cannot assign a value to the observer function forF that
satisfies NN-dag consistency.

The same example shows that WN is not constructible,
and a similar one can be used to show that NW is not con-
structible. WW is constructible, although we do not prove
this fact in this paper.

Historically, we investigated the various dag-consistent
models after discovering the problem with WN illustrated
in Figure 4. Our attempts to find a “better” definition of
dag consistency led us to the notion of constructibility. As
Figure 1 shows, among the four models only WW is con-
structible. A full discussion of these models (including a
criticism of WW) can be found in [Fri98]. At this stage of
our research, little is known about WN� and NW�, which
would be alternative ways of defining dag consistency.

6 Dag consistency and location consistency

In this section, we investigate the relation between NN-dag
consistency and location consistency. We show that loca-
tion consistency is strictly stronger than any dag-consistent
model, and moreover, that it is the constructible version of
NN-dag consistency, i.e., LC= NN�.

We begin by proving that LC is strictly stronger than NN,
which implies that NN� is no stronger than LC, since LC is
constructible.

Theorem 22 LC (NN.

Proof: We first prove that LC� NN. Let (C;�) 2 LC.
We want to prove that(C;�) 2 NN. For each locationl,

we argue as follows: By the definition of LC, there existsT 2 TS(C) such thatWT (l; u) = �(l; u) for all u 2 V .

Suppose thatu � v � w and�(l; u) = �(l; w). ThenWT (l; w) = WT (l; u) �T u �T v �T w. So by Theo-
rem 15,WT (l; v) = WT (l; u). Thus�(l; v) = �(l; u) as
required.

To complete the proof, we only need to note that LC6=
NN since LC is constructible and NN is not.

From Theorems 21 and 22, it immediately follows that LC
is strictly stronger than any dag-consistent memory model.
And since LC is complete, it follows from that all dag-
consistent models are complete.

Finally, we prove that the constructible version of NN-dag
consistency is exactly location consistency.

Theorem 23 LC = NN�.
Proof: We first prove that NN� � LC, and then that NN� �
LC. By Theorem 22, LC� NN, and by Theorem 19, LC
is constructible. Therefore, by Condition 9.3, we have that
NN� � LC. That NN� � LC is implied by the claim that
follows.

Claim: For any nonnegative integerk, suppose(C;�) 2
NN� andjVC j = k. Then for eachl 2 L, there existsT 2TS(C) such that�(l; u) =WT (l; u), for all u 2 VC .

Proof of claim: The proof is by strong induction onk. The
claim is trivially true if k = 0, sinceC = " and� = �" in
this case.

If k > 0, assume inductively that the claim is true for all
computations with fewer thank nodes. We prove it is true
for C. Since NN� is constructible, Theorem 12 implies that
there exists�0 such that(augN (C);�0) 2 NN� and�0jC =�. There are two cases: either�0(l; final(C)) = ? or not.

If �0(l; final(C)) = ? then, by the definition of NN,�(l; u) = ? for all u 2 VC since? � u � final(C). Thus,
by Condition 2.3,opC(u) 6= W (l) for all u 2 VC . Thus, for
anyT 2 TS(C),WT (l; u) = ? for all u 2 VC , as required.

Otherwise, letw = �0(l; final(C)) 2 VC , C 0 be the
subcomputation ofC induced byfu 2 VC : �(l; u) 6= wg,
and C 00 be the subcomputation ofC induced byfu 2 VC : �(l; u) = wg. That is,C 0 consists of nodes that
do not observew andC 00 consists of nodes that observew.

Sincew =2 VC0 , we havejVC0 j < k, so by the inductive
hypothesis, a topological sortT 0 2 TS(C 0) exists such that�(l; u) =WT 0(l; u) for all u 2 VC0 . LetT 00 be any topolog-
ical sort ofC 00 that begins withw; such a topological sort ex-
ists becausev 6� w for all v 2 VC00 by Condition 2.2. Sincew is the only node ofC 00 that writes tol, WT 00(l; v) = w
holds for allv 2 VC00 . LetT be the concatenation ofT 0 andT 00. If we can prove thatT is a legitimate topological sort
of C, then the claim is proven, sinceWT = � by construc-
tion of T .

8

To prove thatT 2 TS(C), we only need to show thatv 6� u for all u 2 VC0 andv 2 VC00 . This property holds,
because otherwisev � u � final(C), and by the NN-dag
consistency property,�0(l; u) = �0(l; v) = w must hold
since�0(l; final(C)) = �0(l; v) = w. But this conclusion
contradicts the assumption thatu 2 VC0 .
7 Discussion

This paper presents a computation-centric formal framework
for defining and understanding memory models. The idea
that the partial order induced by a program should be the
basis for defining memory semantics, as opposed to the se-
quential order of instructions within one processor, already
appears in the work by Gao and Sarkar on their version of
location consistency [GS95]. Motivated by the experience
with dag consistency [BFJ+96b, BFJ+96a, Joe96], we com-
pletely abstract away from a program, and assume the partial
order (the “computation”) as our starting point.Post mortem
analysis has been used by [GK94] to verify (after the fact)
that a given execution is sequentially consistent.

The need for formal frameworks for memory models has
been felt by other researchers. Gibbons, Merrit, and Ghara-
chorloo [GMG91] use the I/O automata model of Lynch and
Tuttle [LT87] to give a formal specification of release con-
sistency [GLL+90]. Later work [GM92] extends the frame-
work to nonblocking memories. The main concern of these
papers is to expose the architectural assumptions that are im-
plicit in previous literature on relaxed memory models. In
the present paper, rather than focusing on the correctness of
specific implementations of a memory model, we are more
interested in the formal properties of models, such as con-
structibility.

A different formal approach has been taken by the propo-
nents of the�S calculus [AMNS96], which is an extension of
the� calculus with synchronization and side-effects. The�S
calculus gives a unified semantics of languageandmemory
which is based on a set of rewriting rules. Preliminary�S
descriptions of sequential consistency [Lam79] and location
consistency (in the sense of Definition 18) exist [Arv98].

Finally, many papers on memory models, starting with the
seminal paper on sequential consistency [Lam79], have been
written from an hardware viewpoint, without a strict formal
framework. The reader is referred to [HP96] and [AG96] for
good tutorials and further references on the subject. Ghara-
chorloo [Gha95] also distinguishessystem-centric models,
which expose the programmer to the details of how a sys-
tem may reorder operations, andprogrammer-centric mod-
els, which require the programmer to provide program-level
information about the intended behavior of shared-memory
operations but then allow the programmer to reason as if the
memory were sequentially consistent. Both types of mod-
els, however, are processor-centric by our definition, since

programs are still assumed to be sequential pieces of code
running concurrently on several processors.

Historically, the abstract theory described in this paper
arose from concrete problems in the context of research on
dag consistency, a memory model for the Cilk multithreaded
language for parallel computing [BJK+95, Blu95, Joe96].
Dag consistency was developed to capture formally the min-
imal guarantees that users of Cilk expected from the mem-
ory. It was formulated to forbid particular behaviors consid-
ered undesirable when programming in Cilk. This point of
view can be thought of as looking for the weakest “reason-
able” memory model. (See [Fri98] for a full discussion of
this theme.) Dag consistency was also attractive because it
is maintained by the BACKER algorithm used by Cilk, which
has provably good performance [BFJ+96a].

Variants of dag consistency were developed to forbid
“anomalies”, or undesirable memory behaviors, as they were
discovered. The papers [BFJ+96b] and [BFJ+96a] give two
different definitions of dag consistency, which we call WW
and WN. We were surprised to discover that WN is not
constructible, and we tried both to find a “better” defini-
tion of dag consistency, and to capture the exact semantics
of BACKER. Both problems have been solved. This paper
presents a more or less complete picture of the various dag-
consistent models and their mutual relationships. In another
paper, Luchangco [Luc97] proves that BACKER supports lo-
cation consistency. Consequently, the algorithmic analysis
of [BFJ+96a] and the experimental results from [BFJ+96b]
apply to location consistency with no change.

There are many possible directions in which this research
can be extended. One obvious open problem is finding a
simple characterization of NW� and WN�. It would also
be useful to investigate whether any algorithm can be found
that is more efficient than BACKER that implements a weaker
memory model than LC. Another direction is to formulate
other consistency models in the computation-centric frame-
work. Some models, such as release consistency [GLL+90],
require computations to be augmented with locks, and how
to do this is a matter of active research. Finally, as mentioned
previously, it is important to develop an integrated theory of
memory and language semantics.

Acknowledgements

We are grateful to the many people who gave us suggestions
and ideas for this paper. Charles Leiserson and Nancy Lynch
gave us continual inspiration, support and encouragement.
Bobby Blumofe, Chris Joerg, Charles Leiserson, and Keith
Randall were part of the group that first tried to define and
implement dag consistency. Bobby invented WW-dag con-
sistency, initiating the whole topic. Observer functions are
a formalization of Keith’s idea to use a function as a device
to force computation nodes to fix their viewpoint on mem-
ory. Finally, this paper benefits from many discussions with
Arvind, Vivek Sarkar and Xiaowei Shen.

9

References

[AG96] Sarita V. Adve and Kourosh Gharachorloo. Shared
memory consistency models: A tutorial.IEEE Com-
puter, pages 66–76, December 1996.

[AH90] Sarita V. Adve and Mark D. Hill. Weak ordering—
a new definition. InProceedings of the 17th Annual
International Symposium on Computer Architecture,
pages 2–14, Seattle, Washington, May 1990.

[AMNS96] Arvind, J. W. Maessen, R. S. Nikhil, and Joe Stoy.
Lambda-S: an implicitly parallel lambda-calculus with
letrec, synchronization and side-effects. Technical
report, MIT Laboratory for Computer Science, Nov
1996. Computation Structures Group Memo 393,
also available athttp://www.csg.lcs.mit.
edu:8001/pubs/csgmemo.html.

[Arv98] Arvind. Personal communication, January 1998.

[BFJ+96a] Robert D. Blumofe, Matteo Frigo, Chrisopher F. Jo-
erg, Charles E. Leiserson, and Keith H. Randall. An
analysis of dag-consistent distributed shared-memory
algorithms. InProceedings of the Eighth Annual ACM
Symposium on Parallel Algorithms and Architectures
(SPAA), pages 297–308, Padua, Italy, June 1996.

[BFJ+96b] Robert D. Blumofe, Matteo Frigo, Christopher F. Jo-
erg, Charles E. Leiserson, and Keith H. Randall. Dag-
consistent distributed shared memory. InProceedings
of the 10th International Parallel Processing Sympo-
sium, Honolulu, Hawaii, April 1996.

[BJK+95] Robert D. Blumofe, Christopher F. Joerg, Bradley C.
Kuszmaul, Charles E. Leiserson, Keith H. Randall, and
Yuli Zhou. Cilk: An efficient multithreaded runtime
system. InProceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP), pages 207–216, Santa Barbara,
California, July 1995.

[Blu95] Robert D. Blumofe. Executing Multithreaded Pro-
grams Efficiently. PhD thesis, Department of Electri-
cal Engineering and Computer Science, Massachusetts
Institute of Technology, September 1995.

[BZS93] Brian N. Bershad, Matthew J. Zekauskas, and
Wayne A. Sawdon. The Midway distributed shared
memory system. InDigest of Papers from the Thirty-
Eighth IEEE Computer Society International Confer-
ence (Spring COMPCON), pages 528–537, San Fran-
cisco, California, February 1993.

[DSB86] Michel Dubois, Christoph Scheurich, and Faye A.
Briggs. Memory access buffering in multiproces-
sors. InProceedings of the 13th Annual International
Symposium on Computer Architecture, pages 434–442,
June 1986.

[Fri98] Matteo Frigo. The weakest reasonable memory model.
Master’s thesis, Massachusetts Institute of Technology,
1998.

[Gha95] Kourosh Gharachorloo.Memory Consistency Models
for Shared-Memory Multiprocessors. PhD thesis, De-
partment of Electrical Engineering, Stanford Univer-
sity, December 1995.

[GK94] P. B. Gibbons and E. Korach. On testing cache-
coherent shared memories. InProceedings of the Sixth

Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 177–188, Cape May, NJ, 1994.

[GLL+90] Kourosh Gharachorloo, Daniel Lenoski, James
Laudon, Phillip Gibbons, Anoop Gupta, and John
Hennessy. Memory consistency and event ordering
in scalable shared-memory multiprocessors. InPro-
ceedings of the 17th Annual International Symposium
on Computer Architecture, pages 15–26, Seattle,
Washington, June 1990.

[GM92] Phillip B. Gibbons and Michael Merritt. Specify-
ing nonblocking shared memories. InProceedings of
the Fourth Annual ACM Symposium on Parallel Algo-
rithms and Architectures, pages 306–315, 1992.

[GMG91] Phillip B. Gibbons, Michael Merritt, and Kourosh
Gharachorloo. Proving sequential consistency of high-
performance shared memories. InProceedings of the
Third Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 292–303, 1991.

[Goo89] James R. Goodman. Cache consistency and sequential
consistency. Technical Report 61, IEEE Scalable Co-
herent Interface (SCI) Working Group, March 1989.

[GS95] Guang R. Gao and Vivek Sarkar. Location consistency:
Stepping beyond memory coherence barrier. InPro-
ceedings of the 1995 International Conference on Par-
allel Processing, pages 73–76, Oconomowoc, Wiscon-
sin, August 1995.

[HP96] John L. Hennessy and David A. Patterson.Computer
Architecture: A Quantitative Approach. Morgan Kauf-
mann, San Francisco, CA, second edition, 1996.

[ISL96] Liviu Iftode, Jaswinder Pal Singh, and Kai Li. Scope
consistency: A bridge between release consistency and
entry consistency. InProceedings of the Eighth Annual
ACM Symposium on Parallel Algorithms and Architec-
tures (SPAA), pages 277–287, Padua, Italy, June 1996.

[Joe96] Christopher F. Joerg.The Cilk System for Parallel
Multithreaded Computing. PhD thesis, Department of
Electrical Engineering and Computer Science, Massa-
chusetts Institute of Technology, January 1996.

[KCZ92] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy re-
lease consistency for software distributed shared mem-
ory. In Proceedings of the 19th Annual International
Symposium on Computer Architecture, May 1992.

[Lam79] Leslie Lamport. How to make a multiprocessor com-
puter that correctly executes multiprocess programs.
IEEE Transactions on Computers, C-28(9):690–691,
September 1979.

[LT87] Nancy Lynch and Mark Tuttle. Hierarchical correct-
ness proofs for distributed algorithms. In6th Annual
ACM Symposium on Principles of Distributed Compu-
tation, pages 137–151, August 1987.

[Luc97] Victor Luchangco. Precedence-based memory models.
In Eleventh International Workshop on Distributed Al-
gorithms, number 1320 in Lecture Notes in Computer
Science, pages 215–229. Springer-Verlag, 1997.

The following space intentionally left blank.

10

