
Scheduling Cilk Multithreaded Parallel Programs
on Processors of Different Speeds

Michael A. Bender
�

Department of Computer Science
State University of New York at Stony Brook

Stony Brook, NY 11794-4400 USA

bender@cs.sunysb.edu

Michael O. Rabin
Division of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138 USA

rabin@deas.harvard.edu

ABSTRACTWe study the problem of exe
uting parallel programs, inparti
ular Cilk programs, on a 
olle
tion of pro
essors of dif-ferent speeds. We 
onsider a model in whi
h ea
h pro
essormaintains an estimate of its own speed, where 
ommuni
a-tion between pro
essors has a 
ost, and where all s
hedulingmust be online. This problem has been 
onsidered previ-ously in the �elds of asyn
hronous parallel 
omputing ands
heduling theory. Our model is a bridge between the as-sumptions in these �elds. We provide a new more a

urateanalysis of an old s
heduling algorithm 
alled the maximumutilization s
heduler . Based on this analysis, we generalizethis s
heduling poli
y and de�ne the high utilization s
hed-uler . We next fo
us on the Cilk platform and introdu
ea new algorithm for s
heduling Cilk multithreaded parallelprograms on heterogeneous pro
essors. This s
heduler is in-spired by the high utilization s
heduler and is modi�ed to�t in a Cilk 
ontext. A 
ru
ial aspe
t of our algorithm isthat it keeps the original spirit of the Cilk s
heduler. In fa
t,when our new algorithm runs on homogeneous pro
essors, itexa
tly mimi
s the dynami
s of the original Cilk s
heduler.
1. INTRODUCTIONIn this paper we study the problem of exe
uting parallelprograms, in parti
ular Cilk programs, on pro
essors thatrun at di�erent and possibly 
hanging speeds. We develops
heduling algorithms that are designed to run eÆ
iently ina parallel 
omputing environment.In order to run eÆ
iently, our s
heduling algorithms mustobey the 
omputational 
onstraints imposed by the paral-lel setting. For example, the s
hedulers should make rapidde
isions about how to assign tasks to pro
essors be
auseotherwise the time to run the s
heduler may a
tually de-�Supported in part by ISX Corporation and Hughes Re-sear
h Laboratories.

lay the exe
ution of the parallel program. Furthermore, thes
heduling de
isions must be made with only partial knowl-edge of the a
tual s
heduling problem. This is be
ause boththe stru
ture of the parallel program and the speeds of thepro
essors are only known online, that is, as the 
omputa-tion unfolds. In addition, the entire state of the system isnot automati
ally visible to any pro
essor; ea
h pro
essor iis only aware of its own lo
al state; in order to determinethe state of another pro
essor j, pro
essor i must expli
itly
ommuni
ate with j and this 
ommuni
ation has a 
ost.Consequently, a 
entralized s
heduler that repeatedly gath-ers all the information about the states of the pro
essorsmay be too expensive. This paper des
ribes a s
hedulingalgorithm that is distributed.We 
all pro
essors of di�erent speeds heterogeneous, and we
all identi
al pro
essors homogeneous. In order to obtaineÆ
ient algorithms for heterogeneous pro
essors, we mustunderstand the pattern of speed 
hanges so that we 
an op-timize for the 
ommon 
ase. Our algorithms are optimizedfor the following setting, whi
h is 
ommon in many parallel
omputing environments.1. Most of the time the pro
essor speeds are fairly 
on-sistent, and therefore a pro
essor 
an maintain a goodestimate of its own speed. This estimate naturally isnot 
ompletely a

urate, but most of the time it willbe mostly a

urate.2. Pro
essor speeds may o

asionally 
hange dramati-
ally, but these 
hanges are limited. The eÆ
ien
yof our s
heduler is allowed to degrade gradually aspro
essors be
ome more errati
.The general problem of exe
uting parallel programs on het-erogeneous pro
essors been studied previously in the �eldsof asyn
hronous parallel 
omputing and s
heduling theory.However both of these �elds typi
ally assume models thatdi�er dramati
ally from the parallel setting des
ribed above.For example, in the area of asyn
hronous parallel 
omput-ing, the pro
essor speeds are assumed to 
hange arbitrarilyand adversarially. Unfortunately, this worst-
ase assump-tion may be too pessimisti
 and may lead to ineÆ
ient s
hed-ules. In the area of s
heduling theory, the pro
essor speedsare assumed to remain 
onstant, and the s
heduler is al-lowed to have global knowledge of the state of the system,



a large amount of time to run, and o�ine knowledge of thestru
ture of the 
omputation. Based on these assumptions,the system is unrealisti
ally predi
table and the s
heduler isunrealisti
ally powerful. The model is this paper is a bridgebetween the assumptions of asyn
hronous parallel 
omput-ing and those of s
heduling theory. We further des
ribethese �elds and then pro
eed to des
ribe the main results inthis paper.
1.1 Asynchronous Parallel ComputationExe
uting parallel programs on heterogeneous pro
essors isstudied intensely in the area of asyn
hronous parallel 
om-putation [16, 15, 29, 28, 24, 5, 3, 2℄. In this �eld, the goal isto run a parallel program written assuming syn
hronizationbarriers, on a 
olle
tion of asyn
hronous pro
essors that donot have a syn
hronization primitive.Pro
essors are assumed to be arbitrarily errati
. That is,a pro
essor may initially run so slowly that it is essentiallystopped, 
hange speed abruptly so that it runs extremely(even in�nitely) fast, and then stop on
e more. Corre
t-ness proofs typi
ally assume that pro
essor speeds are deter-mined by an adversary, whose goal is to prevent the parallelprogram from exe
uting 
orre
tly or eÆ
iently. Be
ause pro-
essors may 
hange speeds to an arbitrary degree, pro
essorsare not assumed to have knowledge of their own speed.This ma
hinery is useful for mission 
riti
al appli
ations, inwhi
h a program must run 
orre
tly and steadily, regardlessof the errati
 behaviors of the individual pro
essors. Onthe other hand, it may not be worth paying the overheadthat these s
hemes entail if (1) the appli
ation is not mission
riti
al, or (2) if the pro
essors are not arbitrarily errati
,that is, if they 
hange speeds, but most of the time by toomu
h.
1.2 Scheduling on Related ProcessorsExe
uting a parallel program on heterogeneous pro
essors isa 
ommon problem in s
heduling theory. In this �eld thereis an underlying assumption that pro
essors may have dif-ferent speeds but that the speeds do not 
hange. The goalis to s
hedule a parallel program represented as a dire
teda
y
li
 graph (dag) to minimize the makespan, that is, themaximum 
ompletion time of the jobs. Using terminologyfrom s
heduling theory, the problem is that of s
hedulingpre
eden
e-
onstrained tasks on related pro
essors to mini-mize the makespan.Be
ause this problem is NP-hard [30℄ even when all pro
es-sors have the same speed, the s
heduling 
ommunity has
on
entrated on developing approximation algorithms forthe makespan. Early papers introdu
e 0(pp)-approximationalgorithms [19, 20℄, and more re
ent papers propose O(log p)-approximation algorithms [13, 12℄. Unfortunately, some 
om-mon assumptions from s
heduling theory often do not applyto parallel 
omputing, and 
onsequently many s
hedulingalgorithms from this �eld are not usable in our setting. Forexample, many of these s
heduling algorithms run o�ine,that is, after seeing the entire stru
ture of the parallel pro-gram. In addition, the s
hedulers usually have full knowl-edge about the state of the system and have the unlimitedability to apply the s
heduling de
isions.

Finally the quality of many of the s
heduling algorithms aremeasured using the approximation ratio. Even in the ho-mogeneous setting, it is known that the approximation ratiomay be misleading [10℄ by a fa
tor as large as 2. The ap-proximation ratio is dramati
ally less reliable when pro
es-sors are heterogeneous for several reasons that we des
ribeshortly.
1.3 The Heterogeneous SettingTo develop intuition about the heterogeneous setting, 
on-sider the natural 
lass of greedy s
hedules, in whi
h no pro-
essor is allowed to stay idle if there is a task that 
an beassigned to it. When pro
essors are homogeneous, all greedys
hedules have essentially 
omparable makespans (within afa
tor of 2 of ea
h other). However, when pro
essors are het-erogeneous there may be an unbounded ratio between themakespan of the best greedy s
hedule and the makespan ofthe worst greedy s
hedule. To obtain a s
hedule having agood makespan, fast pro
essors should be assigned to longerpaths in the dag and slower pro
essors should be assignedto shorter paths. This assignment pro
ess is 
omputation-ally diÆ
ult be
ause nodes in the dag may belong to manyinterleaving paths of di�erent lengths.Thus, for any p homogeneous pro
essors, 
onsider p het-erogeneous pro
essors that have the same average speed.The optimal makespan in the heterogeneous setting may bemu
h smaller than in the homogeneous setting. However,pra
ti
al and 
omputational limitations usually prevent thiselusive s
hedule from being found. On the other hand, itis easy to en
ounter a poor s
hedule, espe
ially when thepro
essors' speeds 
an 
hange. This is why users prefer ho-mogeneous pro
essors to heterogeneous ones, even thoughin ideal 
onditions the heterogeneous pro
essors may allowshorter s
hedulers. Thus, in this paper the obje
tive of aneÆ
ient s
heduler is to use its heterogeneous pro
essors aseÆ
iently as if they were homogeneous.
1.4 ResultsWe present the following results.1. We provide a new analysis of of an old s
heduling al-gorithm 
alled the maximum utilization s
heduler [19℄.In parti
ular, we prove a bound on the makespan andon the number of preemptions. Based on this analysis,we generalize this s
heduling poli
y and de�ne the highutilization s
heduler . We explain why these s
hedulingpoli
ies have 
lose to optimal makespans on dags thatrepresent most parallel programs.The algorithms presented so far are not dire
tly im-plementable be
ause the s
hedulers require too mu
h
entralized 
ontrol. However, they provide insight intohow to s
hedule parallel programs on heterogeneoussystems.2. We next fo
us on the Cilk platform and present themain result of the paper. We introdu
e a new algo-rithm for s
heduling Cilk multithreaded parallel pro-grams on heterogeneous pro
essors. This s
heduler isinspired by the high utilization s
heduler, modi�ed to�t in a Cilk 
ontext. A 
ru
ial aspe
t of our algorithm



is that it retains the original spirit of the Cilk s
hed-uler. In fa
t, when our new algorithm runs on homo-geneous pro
essors, it exa
tly mimi
s the dynami
s ofthe original Cilk s
heduler.
1.5 Definitions and NotationThere are p pro
essors labeled 1; : : : ; p where pro
essor i hasspeed �i steps/time. For the sake of 
onvenien
e, we assumethat �1 � �2 � : : : � �p. In mu
h of the paper we assumethat the pro
essor speeds do not 
hange. Let �tot steps/timebe the total 
omputing power of all of the pro
essors, thatis, �tot =Ppi=1 �i: Let �ave steps/time be the average speedof the pro
essors, that is, �ave = �tot=p:A dire
ted a
y
li
 graph (dag) G = (V; E) des
ribes thestru
ture of a parallel program. The nodes of the dag repre-sent tasks that the pro
essors must 
omplete, and the edgesrepresent dependen
ies between the tasks. Thus, if there isan edge (u; v) 2 E, then v 
annot be exe
uted until after u
ompletes. In this 
ase, we say that u is a parent of v. Tasksare grouped into larger segments of 
ode 
alled threads; athread is a length path in the dag.A series parallel dag G = (V; E) is a dire
ted a
y
li
 graphwith two distinguished verti
es, a sour
e s and a sink t.The family of series parallel graphs are des
ribed using thefollowing grammar. A series parallel dag G = (V; E) is oneof the following: (1) A single edge extending from s to t,that is, V = fs; tg and E = f(s; t)g. (2) Two series parallelgraphs G1 and G2 
omposed in parallel. The sour
es s1 ands2 of G1 and G2 respe
tively are merged into a single sour
es and the sinks t1 and t2 of G1 and G2 are merged intoa single sink t. (3) Two series parallel graphs G1 and G2
omposed in series. The sink t1 of G1 and the sour
e s2 ofG2 are merged into a single node.Cilk parallel programs are modeled by fully stri
t dags. Afully stri
t dag is series parallel, all of the nodes in the daghave outdegree at most 2, and there is one node with inde-gree 0 and one node with outdegree 0. The root thread isa path extending from the �rst node in the dag to the lastnode. A node in the root thread with outdegree 2 spawnsanother thread, whi
h 
ontinues until it joins the root threadon
e more. This thread may spawn 
hild threads, whi
h mayin turn spawn 
hild threads.Let W1 represent the total work , that is the total numberof nodes in the dag G. Let W1 represent the 
riti
al pathlength of the graph, that is, the number of nodes in thelongest 
hain in G. Consider a modi�ed dag G0 in whi
hall nodes that do not have indegree � 2 or outdegree � 2are removed. Let S1 represent the total number of edges inG0 in the dag, and let S1 be the 
riti
al path in G0. LetTp represent the time to exe
ute G on p pro
essors. A taskor thread is ready if all of its prede
essors in G have beenexe
uted.We say that a thread is preempted if it is interrupted andlater resumed, possibly on a di�erent pro
essor. We saythat there is a migration whenever the state of the systemis moved from one pro
essor to a di�erent pro
essor. Thus,there may be a migration if a previously idle pro
essor beginsexe
uting a thread be
ause the pro
essor may have obtained

the thread from another pro
essor. There is not a migrationif a pro
essor �nished exe
uting a thread and then exe
utes asu

essor thread in the dag. Thus, there may be a migrationwithout a preemption, or a preemption without a migration.All migrations entail an additional 
ost, whi
h we take intoa

ount.We say that an event E o

urs with high probability (w.h.p.)if for any 
 > 0 there exists a proper 
hoi
e of 
onstants su
hthat Pr fEg � 1� n�
.
1.6 Related WorkGraham [17, 18℄ proved that a list s
hedule is a (2� 1=p)-approximation to the optimal makespan, and this resultholds for any greedy s
hedule. (In a list s
hedule, the jobshave �xed priorities and the pro
essors exe
ute the readytasks in the system with the highest priorities.) This resultsderives from the following theorem:Theorem 1 ([17, 18, 11℄). A greedy s
hedule (or lists
hedule) has makespanTp � W1p +�p� 1p � W1:Ja�e [19℄ shows that the following preemptive s
hedulingpoli
y, 
alled a maximum utilization s
hedule is a O(pp)-approximation algorithm. At all times, maintain the follow-ing invariant: if there are i, i < p, ready threads, assignthese threads to the i fastest pro
essors. Note that threadsmay be preempted ; that is, in the middle of the exe
ution of athread, a faster pro
essor may take up the responsibility forexe
uting the thread. Ja�e [20℄ then showed that the follow-ing nonpreemptive is also a O(pp)-approximation algorithmfor the makespan. Consider the following two s
hedules andsele
t the one having the better makespan: (1) assign alljobs to the fastest pro
essor, and (2) assign all jobs greed-ily to pro
essors having speed faster than half the average.More re
ently, Chudak and Shmoys [13℄ obtained a O(log p)-approximation by using a linear programming relaxation tode
ide at whi
h speed ea
h task should run. Chekuri andBender [12℄ developed a 
ombinatorial approximation algo-rithm having the same asymptoti
 approximation ratio.Cilk S
heduler. Cilk is a parallel system with a s
hed-uler that has provable performan
e guarantees. The Cilks
heduling algorithm is entirely distributed and uses the ideaof work stealing. Namely, if a pro
essor is idle, it randomly
hooses another pro
essor, 
he
ks if the pro
essor has extrawork, and if so, steals some. The work is stolen in a way thatavoids a large in
rease in memory usage or in running time.The Cilk s
heduler works as follows. Ea
h pro
essor main-tains a double-ended queue, whi
h is 
alled a ready deque.Threads 
an be inserted and removed from either end of theready deque. If a pro
essor has no lo
al work to do, it be-gins work stealing. The pro
essor uses its own ready dequeas a sta
k but other pro
essors' deques as queues. Ea
hpro
essor i operates as shown in Figure 1.



Cilk S
heduler1. The pro
essor 
hooses a vi
tim pro
essor j uniformly at random.2. If the vi
tim j's ready deque is empty, pro
essor i attempts to steal again.3. Otherwise, it steals the thread T from the top of the deque and begins exe
uting it. The pro
essor begins workingon thread T until one of three situations:(a) Thread T spawns a thread T 0. In this 
ase, the pro
essor puts T on the bottom of the ready deque and startswork on thread T 0.(b) The thread T returns or terminates. If the deque is not empty, the pro
essor begins working on the bottomthread. If the deque is empty, it tries to steal and exe
ute thread T 's parent. Otherwise, if the parent isbusy, the pro
essor attempts to work steal.(
) The thread rea
hes a syn
hronization point. In this 
ase, the pro
essor attempts to work steal. (Note thatthe deque is empty.) Figure 1: The Cilk S
heduler.
2. HIGH UTILIZATION SCHEDULESWe now provide a new analysis of the maximum utilizations
heduling poli
y. This s
heduler maintains the followinginvariant. During ea
h time interval in whi
h there are ex-a
tly i ready threads, for ea
h i < p, the fastest i pro
essorsexe
ute these tasks. If there are i � p ready threads, thenall of the pro
essors work. Beyond this basi
 restri
tion,any pro
essor may exe
ute any task. Note that in orderto maintain this invariant, the s
heduling poli
y must allowpreemptions.The maximum utilization s
heduling poli
y is a O(pp)-approximation algorithm but there are other s
heduling al-gorithms that have 
omparable approximation ratios andthat do not even require preemptions. As a result, the max-imum utilization strategy has languished in relative obs
u-rity. However, many of the other s
heduling strategies su�erfrom the following drawba
ks: either (1) they are too 
om-pli
ated to be implemented eÆ
iently, or (2) they produ
es
hedules that are qualitatively unsatisfa
tory.The maximum utilization s
hedule has a straightforwardgeneralization, whi
h we 
all a high utilization s
hedule. Inthis s
heduler we relax the invariant so that at all times: ifthere are i, i < p, ready threads, the fastest idle pro
essoris at most � times faster than the slowest busy pro
essor.Thus, when � = 1, we obtain a maximum utilization s
hed-ule. This makespan of a high utilization s
hedule may beinferior to the makespan of a maximum utilization s
hedule,but may have the advantage of fewer preemptions.We will demonstrate two advantages of high utilization s
hed-ules: (1) in the 
ommon 
ase in parallel 
omputing, high uti-lization s
hedules are almost optimal, and (2) they 
onveya straightforward message to pra
titioners, run your paral-lel program on the fastest pro
essors that you 
an �nd, andthis may be all the optimization that is required. On a
tualsystem su
h as the Cilk platform, the unembellished highutilization s
hedule may be too 
ompli
ated to implement.However, the straightforward 
on
ept of using the fastestpro
essors that you 
an �nd 
an be generalized so that it

is pra
ti
al. Thus, high utilization strategies are importantbe
ause of the guidan
e that they give in a
tual situations.Theorem 2. Any maximum utilization s
hedule has makespanTp � W1p �ave +��2�1 + �3�2 + � � �+ �p�p�1� W1p �ave� W1p �ave +�p� 1p � W1�ave :Proof. We introdu
e an a

ounting tool. We postulatep�1 disjoint shadow threads ST2; ST3 ; : : : STp. Ea
h shadowthread is an imaginary 
hain of tasks. When a pro
essor iis unable to do any work on an a
tual thread , we say thatthe pro
essor begins working on its shadow thread STi.Consider any time interval in whi
h pro
essor i is idle andthus working on its shadow thread STi. Sin
e not all pro
es-sors have a
tual work, we are assured that progress is beingmade on the 
riti
al path at the rate of the slowest workingpro
essor. That is, sin
e only faster pro
essors 1 : : : i � 1may be working on the 
omputation, the 
riti
al path isadvan
ing at a rate of at least �i�1 steps/time.Be
ause the 
riti
al path has length W1, pro
essor i 
anwork on STi for �i=�i�1W1 time units. Pro
essor 1 is neveridle. Therefore the total amount of work the pro
essorsdedi
ate to a
tual and shadow threads is at most W1 +(�2=�1+�3=�2+ : : :+�p=�p�1)W1: Be
ause the pro
essorsoperate at �tot steps/time we obtain the desired bound.Note that from the Theorem 2, we obtain Theorem 1 asa 
orollary. The makespan 
an be marginally improved bymore strategi
ally pla
ing pro
essors on threads. Namely,put the i-th fastest pro
essor on the i-th longest 
riti
alpath. This poli
y guarantees that the 
riti
al path alwaysprogresses at least at the average speed of the working pro-
essors.



Claim 3. Suppose that the maximum utilization strategyadditionallymaintains the invariant that the i-th fastest pro-
essor exe
utes the thread that is i-th farthest from the endof the dag. This amounts to putting the fastest pro
essor onthe 
riti
al path. Then the 
omputation has makespan.Tp � W1p �ave + ��2�1 + 2 �3�1 + �2 + 3�4�1 + �2 + �3 + � � �+ (p� 1)�p�1 + �2 + : : :+ �p�1 � W1p�ave :Unfortunately, this gain in makespan seems small in 
om-parison to the potentially in�nite number of additional pre-emptions that this poli
y entails.The proof of Theorem 2 extends to prove the following the-orem that provides a bound on the makespan of a high uti-lization s
hedule.Theorem 4. Any high utilization s
hedule has makespanTp � W1p�ave +� p� 1p � �W1�aveWe now provide a bound on the number of migrations in ahigh utilization s
hedule. of the exe
ution from anotherTheorem 5. Consider a high or maximum utilization s
hed-ule of an arbitrary dag. If there are a total of S1 threads,then there are at most 2S1 migrations.Proof. We divide the 
omputation into phases, S1; S1�1; : : : ; 2; 1, where in phase � the 
omputation has � (in-
omplete) threads. Within a phase, a 
omputation has nomigrations at all. A phase begins when the number of a
tivethreads (e.g., threads 
urrently being exe
uted by pro
es-sors) 
hanges.Assume without loss of generality (w.l.o.g.) that at mostone thread 
ompletes at any time. (If two threads 
ompletesimultaneously, we break the tie arbitrarily.) There are two
ases for the dynami
s of the s
hedule when a thread 
om-pletes. (1) When a thread T� 
ompletes, no new threadsa
tive be
ome a
tive. Then the slowest 
urrently-a
tive pro-
essor k migrates to the idle pool, and the pro
essor j onT� migrates to k's thread. (If we are lu
ky, the slowest
urrently-a
tive pro
essor k is already on thread T�.) (2)When a thread T� 
ompletes, x new threads be
ome a
tive.Then x�1 pro
essors migrate from the idle pool to a new a
-tive thread and one pro
essor migrates from the 
ompletedthread T� to a new a
tive thread.Thus, if there is a bound M on the time to migrate, then wehave a bound on the in
rease in makespan from Theorem 6when migrations have a 
ost, namely 2MS1=p. The quantityM may in
lude the 
ost to send the system state from onepro
essor to another or even may in
lude the 
ost to restarta thread from some previous 
he
kpoint. One 
ould balan
ethe parameters M and � to optimize the makespan, e.g.,only preempt and migrate if there is a substantial gain.

2.1 Performance in the Common CaseEven though the high utilization s
hedule is a O(pp) ap-proximation algorithm for general dags, on dags that rep-resent most parallel programs, the algorithm has a sub-stantially better performan
e. In most parallel programsW1=p � W1 [10℄. An interpretation of this inequality isthat the parallel program has enough inherent parallelismto justify the use of p pro
essors. Observe that in Theo-rems 2 and 4, W1=�tot is a lower bound on the makespan,and when � > 1 is suÆ
iently 
lose to 1, this quality dwarfs�W1=�ave. Therefore, even though the high utilizations
hedule is a O(pp) approximation for general dags, in the
ase of dags representing typi
al parallel programs, it is al-most optimal. This is not true of the nonpreemptive O(pp)approximation algorithm.
3. AN ENHANCED CILK SCHEDULERDire
t implementation of the the s
heduling poli
ies in theprevious se
tion are impra
ti
al be
ause they rely on global
ontrol. However, the general design prin
iple of high uti-lization is 
riti
al, and we apply this 
on
ept in Cilk s
hedul-ing. In this se
tion we des
ribe an enhan
ed Cilk s
hed-uler that runs 
orre
tly and robustly even when pro
essorshave di�erent speeds. Moreover, when the pro
essors runat similar speeds, our new s
hedule behaves identi
ally tothe standard Cilk s
heduler. Thus, an important feature ofour s
heduler is that it is extremely similar to the originals
heduler at a small 
ost in algorithmi
 
omplexity.In this algorithm there are two kinds of migrations: (1) stealsand (2) muggings. In a steal, a pro
essor does not interrupta thread. Instead, a pro
essor begins working on a thread atthe top of another pro
essor's ready deque. In a mugging,there is no work on another pro
essor's ready deque, andso the pro
essor \mugs" a slower pro
essor and takes thethread that the slower pro
essor was working on.Thus, if all pro
essors operate at speeds within an � fa
torof ea
h other, then there are no muggings and the s
hedulerbehaves like the standard Cilk s
heduler. The parameter �
an be tuned to optimize system performan
e.
3.1 Design AssumptionsWe make the following additional assumptions: (1) Ea
hpro
essor steals at a rate proportional to its speed. (2) Stealsand steal attempts are 
ompleted in an amount of time thatis proportional to the speed of the pro
essor doing the steal-ing/mugging. It is important to have a platform so that thesteal responses do not depend on the speed of the vi
timpro
essor be
ause otherwise the slowest pro
essor 
an delaythe entire system.1 There are several ways to ensure thisdesign prin
iple. For example, if there are at most two mag-nitudes of di�eren
e between the fastest and slowest pro
es-sor speeds, then the times for steal attempts, muggings, andsteals 
an be 
al
ulated a

ordingly. We 
ould also requiresome me
hanism for 
ommuni
ating steal attempts, su
h asa shared memory, that allows one pro
essor to look dire
tly1If the steal attempts run at the speed of the vi
tim pro
es-sor then the work-stealing approa
h may not have guaran-teed good performan
e. This is be
ause the root thread ofthe 
omputation may reside on a pro
essor that is entirelystopped, and the 
omputation 
annot pro
eed.



Enhan
ed Cilk S
heduler1. Pro
essor i 
hooses a vi
tim pro
essor j uniformly at random.2. If the vi
tim j's deque is not empty, it steals the thread T from the top of the deque.3. If the vi
tim j's deque is empty, but the vi
tim is working on a thread T and its speed is � times slower thanpro
essor i, then i mugs j, that is, i interrupts j and takes the thread T .4. If pro
essor i has lo
ated a thread T , i works on T until one of four situations:(a) Thread T spawns a thread T 0. In this 
ase, the pro
essor puts T on the bottom of the ready deque and startswork on thread T 0.(b) The thread T returns or terminates. If the deque is not empty, the pro
essor begins working on the bottomthread. If the deque is empty, it tries to steal and exe
ute thread T 's parent. Otherwise, if the parent isbusy, the pro
essor attempts to work steal.(
) The thread rea
hes a syn
hronization point. In this 
ase, the pro
essor attempts to work steal. (Note thatthe deque is empty.)(d) Pro
essor i is mugged and the thread T is migrated to another pro
essor. In this 
ase, pro
essor i attemptsto work steal.5. Otherwise, there is a failed steal attempt; pro
essor i tries to steal again.Figure 2: The Enhan
ed Cilk S
heduler.into the deques of other pro
essors. The pseudo
ode for theEnhan
ed Cilk S
heduler appears in Figure 2.
3.2 AnalysisWe now analyze the running time of the Enhan
ed CilkS
heduler. We prove the following performan
e guarantee.Theorem 6. W.h.p., the exe
ution time Tp of the en-han
ed Cilk S
heduler is bounded as follows.Tp � W1p �ave +O�W1�ave� :We use an a

ounting argument to prove Theorem 6. Ob-serve that at all times a pro
essor is either (1) exe
uting aninstru
tion, or (2) attempting to steal (and perhaps a
tuallystealing or mugging). For simpli
ity of analysis, we assumethat ea
h of these operations requires one unit of work. (Infa
t, exe
uting an instru
tion is likely to be mu
h fasterand so in our analysis we 
an group multiple instru
tionstogether.)We postulate two bu
kets that we use for a

ounting, a workbu
ket and a steal bu
ket . Ea
h time a pro
essor 
ompletesa unit of work on the dag it puts one dollar into the workbu
ket; ea
h time a pro
essor 
ompletes a steal attempt(su

essful or not) it puts one dollar into the steal bu
ket.(This approa
h was used in the original paper of [10℄ andin mu
h of the subsequent work on Cilk.) There are �totdollars that enter the bu
kets per unit of time. Therefore, ifat the end of the 
omputation, there are a total of D dollarsin both bu
kets, then the 
omputation ran in time D=�tot.Computing the number of dollars in the work bu
ket isstraightforward, be
ause ea
h time the pro
essor 
ompletesone unit of work, it puts a dollar in the work bu
ket.

Observation 1. At the end of the 
omputation there area total of exa
tly W1 dollars in the work bu
ket.We now use a potential-fun
tion argument to prove a boundon the number of dollars in the steal bu
ket. This argumentis an extension of the result in [1, 7℄ and begins with somede�nitions.De�nitions. For any (nonroot) node v, suppose that nodeu is the last of v's parents to be exe
uted. Then we say thatthe exe
ution of node u enables node v. Node u is 
alled thedesignated parent of v and edge (u; v) is 
alled the enablingedge. The graph 
omposed of all the enabling edges is 
alledthe enabling tree. The node that is being exe
uted at time tby pro
essor i is 
alled the assigned node of pro
essor i. Weassign weights to all of the nodes, so that we 
an use theseweights in a potential fun
tion argument. Let d(u) denotethe depth of node u in the dag. Ea
h node u has weightw(u) = W1 � d(u).Now supplied with these de�nitions, we des
ribe the Stru
-tural Lemma of the deques. This lemma guarantees thatfor any deque at all times during the exe
ution if the workstealing algorithm, the designated parents of the nodes inthe deque lie on the root-to-leaf path in the enabling tree.Lemma 7 ([1, 7℄). Let k be the number of (ready) nodesin a given deque at any time t, and let v1; v2; : : : ; vk denotethese nodes ordered from bottom to top. Let v0 be the as-signed node. In addition, for i = 1 : : : k, let ui be the des-ignated parent of vi. Then for i = 1 : : : k, node ui is anan
estor of ui�1 in the enabling tree. Moreover, although itmay be that u0 = u1, for i = 2 : : : k, ui�1 6= ui. Thus, theweights of the nodes in
rease from bottom to top, that is,w(v0) � w(v1) < w(v2) < : : : < w(wk).



Proof sket
h: The proof is by indu
tion on times in whi
hthe stru
ture of the deque 
hanges, as in [1, 7℄. There are�ve possible ways that the deque may 
hange: (S) The topnode of the deque is stolen; (E0) The assigned node enables0 
hildren; (E1) The assigned node enables 1 
hildren; (E2)The assigned node enables 2 
hildren; (M) The pro
essor ismugged and the assigned node is moved to a faster pro
essor.The �rst four 
ases are des
ribed and analyzed in the proofin [1, 7℄. However, the 
ase of muggings is unique to theheterogeneous setting. This 
ase 
an be integrated into the
orre
tness proof using arguments similar to those used inthe 
ases of (S) and (E0).We now present the potential fun
tion that we will use [1,7℄. Let Rt be the set of ready nodes at time t. Ea
h node iseither in some deque or assigned to and exe
uted on somepro
essor. For ea
h ready node v 2 Rt, we de�ne its poten-tial �t(v) as�t(v) = � 32�w(v)�1 if v is assigned;32�w(v) otherwise.We let �t(i) denote the sum of the potentials of the nodeson pro
essor i at time t. We let �t = Ppi=0 �t(i) be thevalue of the potential fun
tion at time t. Thus, the initialpotential is 32�W1 be
ause the root node has depth 0 andis initially unassigned. The �nal potential is 0 be
ause allnodes have been 
ompleted.Observation 2. For any pro
essor at time t during theexe
ution of the s
heduling algorithm, the potential of thetopmost nodes in the deques 
ontributes at least 3=4 of thepotential asso
iated with the pro
essors that have nonemptydeques.We now divide the 
omputation into phases, whi
h are de-�ned indu
tively by when steal attempts o

ur. The �rstphase begins at time t = 0, the start of the 
omputation,and it ends after (� + 2)p steal attempts have o

urred.The i-th phase begins at the end of the (i� 1)-th phase and
ompletes, as before, after (�+2)p additional steal attemptshave been made.Theorem 8. There is at least a 
onstant probability thatwithin ea
h phase, the potential drops by at least a 
onstantfa
tor. Therefore, there are at most O(log n) phases, bothexpe
ted and with high probability.Proof. At any time t we partition the potential �t =Dt+St+Ft into 3 disjoint 
omponents. The 
omponent Dtis asso
iated with pro
essors whose deque 
ontains nodes.The rest of the potential is asso
iated with pro
essors thathave empty deques, but whi
h may have assigned nodes. Wedivide this remaining potential into 
omponents asso
iatedwith pro
essors we de�ne as slow and fast respe
tively. Apro
essor i is 
alled slow in phase `, if during phase `, thepro
essor does not have time to �nish exe
uting the nodethat it was working on when the phase began. A pro
essori is 
alled fast otherwise.

We �rst 
onsider the potential Dt asso
iated with the set ofpro
essors whose deques are not empty. Re
all that at least3=4-th of the potential from nodes in the deques is exposedat the top of the deques. Consequently, be
ause there are(2+�) steal attempts in any phase, the probability that thereis no steal attempt in a deque is at most e�(2+�). When thenode at the top of the deque is stolen, the potential of thisnode de
reases by a fa
tor of 2=3 be
ause the node is nowassigned to a pro
essor.Let value Q be the sum of the potentials of the nodes at thetop of the deques. Then the expe
ted value of the remain-ing potential of these nodes after the phase ends is at moste�(2+�) Q+ (1� e�(2+�)) 2Q=3. Therefore, by the Markovinequality, there is at least a 
onstant probability that thepotential asso
iated with these nodes de
reases by at leasta 
onstant fa
tor. Consequently, by Corollary 2, with atleast a 
onstant probability the potential asso
iated with allthe nodes in those deques de
reases by at least a 
onstantfa
tor.We now examine the 
omponent Ft of the potential, that is,the potential asso
iated with fast pro
essors having emptydeques at the start of phase `. For any su
h pro
essor i,the 
ompletion of i's assigned node 
auses the potential tode
rease by at least a 
onstant fa
tor be
ause i's originalassigned node will be 
ompleted.Finally, we examine the 
omponent St of the potential, thatis, the potential asso
iated with slow pro
essors having emptydeques at the start of phase `. In order to redu
e the po-tential of a slow pro
essor i that 
ontributes to St, anotherpro
essor j must (1) 
hoose to mug pro
essor i, and (2)
omplete one node of the thread that it obtained from pro-
essor i. In order to mug i, pro
essor j must be more than �times faster than pro
essor i. How many steal attempts arethere in phase ` that satisfy these 
onditions? Any pro
essorthat makes �+ 2 steal attempts in the phase must be morethan � times faster than pro
essor i, whi
h does not even�nish exe
uting one node. Consequently, in (� + 2)p stealattempts, there will be at least p steal attempts that satisfyall of these 
onditions. Therefore, the probability that anygiven slow pro
essor is not mugged is at most 1=e. Let valueQ0 be the sum of the potential of the nodes being exe
utedby the slow pro
essors. Then the expe
ted value of the re-maining potential of these nodes after the phase ends is atmost Q0=e. Therefore, by the Markov inequality, there isat least a 
onstant probability that the potential asso
iatedwith these nodes de
reases by at least a 
onstant fa
tor.By 
onsidering all three 
ases, we 
on
lude that there is atleast a 
onstant probability that the total potential de
reasesby at least a 
onstant fa
tor. Therefore, by applying Cher-no� Bounds, we 
on
lude that after at most O(W1) phasesthe potential has de
reased until it is zero, both expe
tedand with high probability.From Lemma 8, we 
on
lude that there are at most O(�W1p)steal attempts and 
onsequently O(�W1p) dollars in thesteal bu
ket. Therefore, the running time of the algorithmis W1=(p�ave)+O(�W1�ave), whi
h 
on
ludes the proof ofTheorem 6.



Finally, we end this se
tion by observing that it is not evenne
essary in the previous argument to de�ne a parti
ularvalue of �. That is, the argument works if pro
essor i mugsanother pro
essor j as long as �i > �j. The advantage ofintrodu
ing �, is that it redu
es the number of migrations.
4. CHANGING SPEEDS AND DISCUSSIONSo far we have assumed that the pro
essor speeds are �xed.Our algorithms also run 
orre
tly when the speeds 
hange,but possibly at an additional 
ost. To understand why,�rst re
onsider high utilization s
hedules. Even when speeds
hange, the high utilization requirement 
an still be main-tained through additional migrations. The same holds forthe high utilization s
heduler. The value of � 
an be 
hosento smooth out the s
hedule so that small 
u
tuations in pro-
essor speeds do not lead to as many additional migrations.The same advantages apply to our enhan
ed Cilk s
heduler.Our s
heduler uses no global 
ontrol, and in its pla
e onlybrief intera
tions between pairs of pro
essors. Pro
essorsdo not even have to store information about the speeds ofthe other pro
essors, whi
h might qui
kly be
ome out ofdate. Consequently, this algorithm easily adapts to 
hangingspeeds. As speeds are modi�ed, there may be additionalsteal attempts and muggings. As before, the value of �
an be 
hosen to remove unne
essary muggings. Thus, theperforman
e of the s
heduling algorithm degrades gra
efullyas the speeds be
ome more errati
.
5. ACKNOWLEDGMENTSThe �rst author warmly thanks Charles Leiserson for sug-gesting this problem, for enjoyable meetings in the earlierstages of this work, and for mu
h ex
ellent advi
e.
6. REFERENCES[1℄ N. Arora, R. Blumofe, and G. Plaxton. Threads
heduling for multiprogrammed multipro
essors. InSPAA: Annual ACM Symposium on ParallelAlgorithms and Ar
hite
tures, 1998.[2℄ Y. Aumann, M. A. Bender, and L. Zhang. EÆ
ientexe
ution of nondeterministi
 parallel programs onasyn
hronous systems. Information and Computation,139(1):1{16, 25 Nov. 1997. An earlier version of thispaper appeared in the 8th Annual ACM Symposiumon Parallel Algorithms and Ar
hite
tures (SPAA),June 1996.[3℄ Y. Aumann, K. Palem, Z. Kedem, and M. O. Rabin.Highly eÆ
ient asyn
hronous exe
ution of largegrained parallel programs. In Pro
eedings of the 34thAnnual Symposium on the Foundations of ComputerS
ien
e, pages 271{280, November 1993.[4℄ Y. Aumann and M. O. Rabin. Clo
k 
onstru
tion infully asyn
hronous parallel systems and PRAMsimulation. In Pro
eedings of the 33rd AnnualSymposium on the Foundations of Computer S
ien
e,pages 147{156, 1992.[5℄ Y. Aumann and M. O. Rabin. Clo
k 
onstru
tion infully asyn
hronous parallel systems and pramsimulation. Theoreti
al Computer S
ien
e, 128:3{30,1994.

[6℄ B. Awerbu
h, Y. Azar, S. Leonardi, and O. Regev.Minimizing the 
ow time without migration. InPro
eedings of the 31st Annual ACM Symposium onTheory of Computing, pages 198{205, May 1999.[7℄ R. Blumofe. S
heduling multithreaded 
omputationsby work stealing. Seminar Talk. Joint work with N.Arora C. Leiserson, and G. Plaxton, 1998.[8℄ R. D. Blumofe. Exe
uting Multithreaded ProgramsEÆ
iently. PhD thesis, Department of Ele
tri
alEngineering and Computer S
ien
e, Massa
husettsInstitute of Te
hnology, Sept. 1995.[9℄ R. D. Blumofe and C. E. Leiserson. Spa
e-eÆ
ients
heduling of multithreaded 
omputations. InPro
eedings of the Twenty Fifth Annual ACMSymposium on Theory of Computing, pages 362{371,San Diego, California, May 1993.[10℄ R. D. Blumofe and C. E. Leiserson. S
hedulingmultithreaded 
omputations by work stealing. InPro
eedings of the 35th Annual Symposium onFoundations of Computer S
ien
e, pages 356{368,Santa Fe, New Mexi
o, Nov. 1994.[11℄ R. P. Brent. The parallel evaluation of generalarithmeti
 expressions. J. ACM, 21(2):201{206, Apr.1974.[12℄ C. Chekuri and M. A. Bender. An eÆ
ientapproximation algorithm for minimizing makespan onuniformly related ma
hines. In Integer Programmingand Combinatorial Optimization, volume 1412, pages383{393, 1998.[13℄ F. A. Chudak and D. B. Shmoys. Approximationalgorithms for pre
eden
e-
onstrained s
hedulingproblems on parallel ma
hines that run at di�erentspeeds (extended abstra
t). In Pro
eedings of theEighth Annual ACM-SIAM Symposium on Dis
reteAlgorithms, pages 581{590, New Orleans, Louisiana,5{7 Jan. 1997.[14℄ E. G. Co�man and P. J. Denning. Operating SystemsTheory. Prenti
e-Hall, Englewood Cli�s, N.J., 1973.[15℄ R. Cole and O. Zaji
ek. The expe
ted advantage ofasyn
hrony. In Pro
. of the ACM Symposium onParallel Ar
hite
tures and Algorithms, pages 85{94,1989.[16℄ P. B. Gibbons. A more pra
ti
al PRAM model. InPro
. of the 1st ACM Symposium on ParallelAr
hite
tures and Algorithms, pages 158{168, June1989.[17℄ R. L. Graham. Bounds for 
ertain multipro
essinganomalies. The Bell System Te
hni
al Journal,45:1563{1581, Nov. 1966.[18℄ R. L. Graham. Bounds on multipro
essing timinganomalies. SIAM Journal on Applied Mathemati
s,17(2):416{429, Mar. 1969.[19℄ J. M. Ja�e. An analysis of preemptive multipro
essorjob s
heduling. Mathemati
s of Operations Resear
h,5(3):415{421, Aug. 1980.



[20℄ J. M. Ja�e. EÆ
ient s
heduling of tasks without fulluse of pro
essor resour
es. Theoreti
al ComputerS
ien
e, 12:1{17, Aug. 1980.[21℄ P. Kanellakis and A. Shvartsman. EÆ
ient parallelalgorithms 
an be made robust. In Pro
eedings of the8th Annual ACM Symposium on the Prin
iples ofDistributed Computing, pages 211{221, 1989.[22℄ P. Kanellakis and A. Shvartsman. E�e
ient parallelalgorothms on restartable fail-stop pro
essors. InPro
eedings of the 10th Annual ACM Symposium onthe Prin
iples of Distributed Computing, pages 23{36,1991.[23℄ P. Kanellakis and A. Shvartsman. Fault-TolerantParallel Computation. Kluwer A
ademi
 Publishers,1997.[24℄ Z. M. Kedem, K. V. Palem, M. O. Rabin, andA. Raghunathan. EÆ
ient program transformation forresilient parallel 
omputation via randomization. InPro
eedings of the 24th Annual ACM Symposium onthe Theory of Computing, May 1992.[25℄ Z. M. Kedem, K. V. Palem, A. Raghunathan, andP. G. Spirakis. Combining tentative and de�niteexe
utions for very fast dependable parallel
omputing. In Pro
eedings of the 23rd Annual ACMSymposium on Theory of Computing, pages 381{390,May 1991.[26℄ Z. M. Kedem, K. V. Palem, and P. G. Spirakis.EÆ
ient robust parallel 
omputations. In Pro
eedingsof the 22rd Annual ACM Symposium on Theory ofComputing, pages 138{148, May 1990.[27℄ J. W. W. Liu and C. L. Liu. Bounds on s
hedulingalgorithms for heterogeneous 
omputing systems.North-Holland, pages 349{353, 1974.[28℄ C. Martel, A. Park, and R. Subramonian.Asyn
hronous PRAMs are (almost) as good assyn
hronous PRAMs. In Pro
eedings of the 31stAnnual Symposium on the Foundations of ComputerS
ien
e, pages 590{599, 1990.[29℄ N. Nishimura. Asyn
hronous shared memory parallel
omputation. In Pro
. of the 2nd ACM Symposium onParallel Ar
hite
tures and Algorithms, pages 76{84,1990.[30℄ J. Ullman. NP-
omplete s
heduling problems. JournalComputing System S
ien
e, 10:384{393, 1975.


