
Scheduling Cilk Multithreaded Parallel Programs
on Processors of Different Speeds

Michael A. Bender
�

Department of Computer Science
State University of New York at Stony Brook

Stony Brook, NY 11794-4400 USA

bender@cs.sunysb.edu

Michael O. Rabin
Division of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138 USA

rabin@deas.harvard.edu

ABSTRACTWe study the problem of exeuting parallel programs, inpartiular Cilk programs, on a olletion of proessors of dif-ferent speeds. We onsider a model in whih eah proessormaintains an estimate of its own speed, where ommunia-tion between proessors has a ost, and where all shedulingmust be online. This problem has been onsidered previ-ously in the �elds of asynhronous parallel omputing andsheduling theory. Our model is a bridge between the as-sumptions in these �elds. We provide a new more aurateanalysis of an old sheduling algorithm alled the maximumutilization sheduler . Based on this analysis, we generalizethis sheduling poliy and de�ne the high utilization shed-uler . We next fous on the Cilk platform and introduea new algorithm for sheduling Cilk multithreaded parallelprograms on heterogeneous proessors. This sheduler is in-spired by the high utilization sheduler and is modi�ed to�t in a Cilk ontext. A ruial aspet of our algorithm isthat it keeps the original spirit of the Cilk sheduler. In fat,when our new algorithm runs on homogeneous proessors, itexatly mimis the dynamis of the original Cilk sheduler.
1. INTRODUCTIONIn this paper we study the problem of exeuting parallelprograms, in partiular Cilk programs, on proessors thatrun at di�erent and possibly hanging speeds. We developsheduling algorithms that are designed to run eÆiently ina parallel omputing environment.In order to run eÆiently, our sheduling algorithms mustobey the omputational onstraints imposed by the paral-lel setting. For example, the shedulers should make rapiddeisions about how to assign tasks to proessors beauseotherwise the time to run the sheduler may atually de-�Supported in part by ISX Corporation and Hughes Re-searh Laboratories.

lay the exeution of the parallel program. Furthermore, thesheduling deisions must be made with only partial knowl-edge of the atual sheduling problem. This is beause boththe struture of the parallel program and the speeds of theproessors are only known online, that is, as the omputa-tion unfolds. In addition, the entire state of the system isnot automatially visible to any proessor; eah proessor iis only aware of its own loal state; in order to determinethe state of another proessor j, proessor i must expliitlyommuniate with j and this ommuniation has a ost.Consequently, a entralized sheduler that repeatedly gath-ers all the information about the states of the proessorsmay be too expensive. This paper desribes a shedulingalgorithm that is distributed.We all proessors of di�erent speeds heterogeneous, and weall idential proessors homogeneous. In order to obtaineÆient algorithms for heterogeneous proessors, we mustunderstand the pattern of speed hanges so that we an op-timize for the ommon ase. Our algorithms are optimizedfor the following setting, whih is ommon in many parallelomputing environments.1. Most of the time the proessor speeds are fairly on-sistent, and therefore a proessor an maintain a goodestimate of its own speed. This estimate naturally isnot ompletely aurate, but most of the time it willbe mostly aurate.2. Proessor speeds may oasionally hange dramati-ally, but these hanges are limited. The eÆienyof our sheduler is allowed to degrade gradually asproessors beome more errati.The general problem of exeuting parallel programs on het-erogeneous proessors been studied previously in the �eldsof asynhronous parallel omputing and sheduling theory.However both of these �elds typially assume models thatdi�er dramatially from the parallel setting desribed above.For example, in the area of asynhronous parallel omput-ing, the proessor speeds are assumed to hange arbitrarilyand adversarially. Unfortunately, this worst-ase assump-tion may be too pessimisti and may lead to ineÆient shed-ules. In the area of sheduling theory, the proessor speedsare assumed to remain onstant, and the sheduler is al-lowed to have global knowledge of the state of the system,

a large amount of time to run, and o�ine knowledge of thestruture of the omputation. Based on these assumptions,the system is unrealistially preditable and the sheduler isunrealistially powerful. The model is this paper is a bridgebetween the assumptions of asynhronous parallel omput-ing and those of sheduling theory. We further desribethese �elds and then proeed to desribe the main results inthis paper.
1.1 Asynchronous Parallel ComputationExeuting parallel programs on heterogeneous proessors isstudied intensely in the area of asynhronous parallel om-putation [16, 15, 29, 28, 24, 5, 3, 2℄. In this �eld, the goal isto run a parallel program written assuming synhronizationbarriers, on a olletion of asynhronous proessors that donot have a synhronization primitive.Proessors are assumed to be arbitrarily errati. That is,a proessor may initially run so slowly that it is essentiallystopped, hange speed abruptly so that it runs extremely(even in�nitely) fast, and then stop one more. Corret-ness proofs typially assume that proessor speeds are deter-mined by an adversary, whose goal is to prevent the parallelprogram from exeuting orretly or eÆiently. Beause pro-essors may hange speeds to an arbitrary degree, proessorsare not assumed to have knowledge of their own speed.This mahinery is useful for mission ritial appliations, inwhih a program must run orretly and steadily, regardlessof the errati behaviors of the individual proessors. Onthe other hand, it may not be worth paying the overheadthat these shemes entail if (1) the appliation is not missionritial, or (2) if the proessors are not arbitrarily errati,that is, if they hange speeds, but most of the time by toomuh.
1.2 Scheduling on Related ProcessorsExeuting a parallel program on heterogeneous proessors isa ommon problem in sheduling theory. In this �eld thereis an underlying assumption that proessors may have dif-ferent speeds but that the speeds do not hange. The goalis to shedule a parallel program represented as a diretedayli graph (dag) to minimize the makespan, that is, themaximum ompletion time of the jobs. Using terminologyfrom sheduling theory, the problem is that of shedulingpreedene-onstrained tasks on related proessors to mini-mize the makespan.Beause this problem is NP-hard [30℄ even when all proes-sors have the same speed, the sheduling ommunity hasonentrated on developing approximation algorithms forthe makespan. Early papers introdue 0(pp)-approximationalgorithms [19, 20℄, and more reent papers propose O(log p)-approximation algorithms [13, 12℄. Unfortunately, some om-mon assumptions from sheduling theory often do not applyto parallel omputing, and onsequently many shedulingalgorithms from this �eld are not usable in our setting. Forexample, many of these sheduling algorithms run o�ine,that is, after seeing the entire struture of the parallel pro-gram. In addition, the shedulers usually have full knowl-edge about the state of the system and have the unlimitedability to apply the sheduling deisions.

Finally the quality of many of the sheduling algorithms aremeasured using the approximation ratio. Even in the ho-mogeneous setting, it is known that the approximation ratiomay be misleading [10℄ by a fator as large as 2. The ap-proximation ratio is dramatially less reliable when proes-sors are heterogeneous for several reasons that we desribeshortly.
1.3 The Heterogeneous SettingTo develop intuition about the heterogeneous setting, on-sider the natural lass of greedy shedules, in whih no pro-essor is allowed to stay idle if there is a task that an beassigned to it. When proessors are homogeneous, all greedyshedules have essentially omparable makespans (within afator of 2 of eah other). However, when proessors are het-erogeneous there may be an unbounded ratio between themakespan of the best greedy shedule and the makespan ofthe worst greedy shedule. To obtain a shedule having agood makespan, fast proessors should be assigned to longerpaths in the dag and slower proessors should be assignedto shorter paths. This assignment proess is omputation-ally diÆult beause nodes in the dag may belong to manyinterleaving paths of di�erent lengths.Thus, for any p homogeneous proessors, onsider p het-erogeneous proessors that have the same average speed.The optimal makespan in the heterogeneous setting may bemuh smaller than in the homogeneous setting. However,pratial and omputational limitations usually prevent thiselusive shedule from being found. On the other hand, itis easy to enounter a poor shedule, espeially when theproessors' speeds an hange. This is why users prefer ho-mogeneous proessors to heterogeneous ones, even thoughin ideal onditions the heterogeneous proessors may allowshorter shedulers. Thus, in this paper the objetive of aneÆient sheduler is to use its heterogeneous proessors aseÆiently as if they were homogeneous.
1.4 ResultsWe present the following results.1. We provide a new analysis of of an old sheduling al-gorithm alled the maximum utilization sheduler [19℄.In partiular, we prove a bound on the makespan andon the number of preemptions. Based on this analysis,we generalize this sheduling poliy and de�ne the highutilization sheduler . We explain why these shedulingpoliies have lose to optimal makespans on dags thatrepresent most parallel programs.The algorithms presented so far are not diretly im-plementable beause the shedulers require too muhentralized ontrol. However, they provide insight intohow to shedule parallel programs on heterogeneoussystems.2. We next fous on the Cilk platform and present themain result of the paper. We introdue a new algo-rithm for sheduling Cilk multithreaded parallel pro-grams on heterogeneous proessors. This sheduler isinspired by the high utilization sheduler, modi�ed to�t in a Cilk ontext. A ruial aspet of our algorithm

is that it retains the original spirit of the Cilk shed-uler. In fat, when our new algorithm runs on homo-geneous proessors, it exatly mimis the dynamis ofthe original Cilk sheduler.
1.5 Definitions and NotationThere are p proessors labeled 1; : : : ; p where proessor i hasspeed �i steps/time. For the sake of onveniene, we assumethat �1 � �2 � : : : � �p. In muh of the paper we assumethat the proessor speeds do not hange. Let �tot steps/timebe the total omputing power of all of the proessors, thatis, �tot =Ppi=1 �i: Let �ave steps/time be the average speedof the proessors, that is, �ave = �tot=p:A direted ayli graph (dag) G = (V; E) desribes thestruture of a parallel program. The nodes of the dag repre-sent tasks that the proessors must omplete, and the edgesrepresent dependenies between the tasks. Thus, if there isan edge (u; v) 2 E, then v annot be exeuted until after uompletes. In this ase, we say that u is a parent of v. Tasksare grouped into larger segments of ode alled threads; athread is a length path in the dag.A series parallel dag G = (V; E) is a direted ayli graphwith two distinguished verties, a soure s and a sink t.The family of series parallel graphs are desribed using thefollowing grammar. A series parallel dag G = (V; E) is oneof the following: (1) A single edge extending from s to t,that is, V = fs; tg and E = f(s; t)g. (2) Two series parallelgraphs G1 and G2 omposed in parallel. The soures s1 ands2 of G1 and G2 respetively are merged into a single soures and the sinks t1 and t2 of G1 and G2 are merged intoa single sink t. (3) Two series parallel graphs G1 and G2omposed in series. The sink t1 of G1 and the soure s2 ofG2 are merged into a single node.Cilk parallel programs are modeled by fully strit dags. Afully strit dag is series parallel, all of the nodes in the daghave outdegree at most 2, and there is one node with inde-gree 0 and one node with outdegree 0. The root thread isa path extending from the �rst node in the dag to the lastnode. A node in the root thread with outdegree 2 spawnsanother thread, whih ontinues until it joins the root threadone more. This thread may spawn hild threads, whih mayin turn spawn hild threads.Let W1 represent the total work , that is the total numberof nodes in the dag G. Let W1 represent the ritial pathlength of the graph, that is, the number of nodes in thelongest hain in G. Consider a modi�ed dag G0 in whihall nodes that do not have indegree � 2 or outdegree � 2are removed. Let S1 represent the total number of edges inG0 in the dag, and let S1 be the ritial path in G0. LetTp represent the time to exeute G on p proessors. A taskor thread is ready if all of its predeessors in G have beenexeuted.We say that a thread is preempted if it is interrupted andlater resumed, possibly on a di�erent proessor. We saythat there is a migration whenever the state of the systemis moved from one proessor to a di�erent proessor. Thus,there may be a migration if a previously idle proessor beginsexeuting a thread beause the proessor may have obtained

the thread from another proessor. There is not a migrationif a proessor �nished exeuting a thread and then exeutes asuessor thread in the dag. Thus, there may be a migrationwithout a preemption, or a preemption without a migration.All migrations entail an additional ost, whih we take intoaount.We say that an event E ours with high probability (w.h.p.)if for any > 0 there exists a proper hoie of onstants suhthat Pr fEg � 1� n�.
1.6 Related WorkGraham [17, 18℄ proved that a list shedule is a (2� 1=p)-approximation to the optimal makespan, and this resultholds for any greedy shedule. (In a list shedule, the jobshave �xed priorities and the proessors exeute the readytasks in the system with the highest priorities.) This resultsderives from the following theorem:Theorem 1 ([17, 18, 11℄). A greedy shedule (or listshedule) has makespanTp � W1p +�p� 1p � W1:Ja�e [19℄ shows that the following preemptive shedulingpoliy, alled a maximum utilization shedule is a O(pp)-approximation algorithm. At all times, maintain the follow-ing invariant: if there are i, i < p, ready threads, assignthese threads to the i fastest proessors. Note that threadsmay be preempted ; that is, in the middle of the exeution of athread, a faster proessor may take up the responsibility forexeuting the thread. Ja�e [20℄ then showed that the follow-ing nonpreemptive is also a O(pp)-approximation algorithmfor the makespan. Consider the following two shedules andselet the one having the better makespan: (1) assign alljobs to the fastest proessor, and (2) assign all jobs greed-ily to proessors having speed faster than half the average.More reently, Chudak and Shmoys [13℄ obtained a O(log p)-approximation by using a linear programming relaxation todeide at whih speed eah task should run. Chekuri andBender [12℄ developed a ombinatorial approximation algo-rithm having the same asymptoti approximation ratio.Cilk Sheduler. Cilk is a parallel system with a shed-uler that has provable performane guarantees. The Cilksheduling algorithm is entirely distributed and uses the ideaof work stealing. Namely, if a proessor is idle, it randomlyhooses another proessor, heks if the proessor has extrawork, and if so, steals some. The work is stolen in a way thatavoids a large inrease in memory usage or in running time.The Cilk sheduler works as follows. Eah proessor main-tains a double-ended queue, whih is alled a ready deque.Threads an be inserted and removed from either end of theready deque. If a proessor has no loal work to do, it be-gins work stealing. The proessor uses its own ready dequeas a stak but other proessors' deques as queues. Eahproessor i operates as shown in Figure 1.

Cilk Sheduler1. The proessor hooses a vitim proessor j uniformly at random.2. If the vitim j's ready deque is empty, proessor i attempts to steal again.3. Otherwise, it steals the thread T from the top of the deque and begins exeuting it. The proessor begins workingon thread T until one of three situations:(a) Thread T spawns a thread T 0. In this ase, the proessor puts T on the bottom of the ready deque and startswork on thread T 0.(b) The thread T returns or terminates. If the deque is not empty, the proessor begins working on the bottomthread. If the deque is empty, it tries to steal and exeute thread T 's parent. Otherwise, if the parent isbusy, the proessor attempts to work steal.() The thread reahes a synhronization point. In this ase, the proessor attempts to work steal. (Note thatthe deque is empty.) Figure 1: The Cilk Sheduler.
2. HIGH UTILIZATION SCHEDULESWe now provide a new analysis of the maximum utilizationsheduling poliy. This sheduler maintains the followinginvariant. During eah time interval in whih there are ex-atly i ready threads, for eah i < p, the fastest i proessorsexeute these tasks. If there are i � p ready threads, thenall of the proessors work. Beyond this basi restrition,any proessor may exeute any task. Note that in orderto maintain this invariant, the sheduling poliy must allowpreemptions.The maximum utilization sheduling poliy is a O(pp)-approximation algorithm but there are other sheduling al-gorithms that have omparable approximation ratios andthat do not even require preemptions. As a result, the max-imum utilization strategy has languished in relative obsu-rity. However, many of the other sheduling strategies su�erfrom the following drawbaks: either (1) they are too om-pliated to be implemented eÆiently, or (2) they produeshedules that are qualitatively unsatisfatory.The maximum utilization shedule has a straightforwardgeneralization, whih we all a high utilization shedule. Inthis sheduler we relax the invariant so that at all times: ifthere are i, i < p, ready threads, the fastest idle proessoris at most � times faster than the slowest busy proessor.Thus, when � = 1, we obtain a maximum utilization shed-ule. This makespan of a high utilization shedule may beinferior to the makespan of a maximum utilization shedule,but may have the advantage of fewer preemptions.We will demonstrate two advantages of high utilization shed-ules: (1) in the ommon ase in parallel omputing, high uti-lization shedules are almost optimal, and (2) they onveya straightforward message to pratitioners, run your paral-lel program on the fastest proessors that you an �nd, andthis may be all the optimization that is required. On atualsystem suh as the Cilk platform, the unembellished highutilization shedule may be too ompliated to implement.However, the straightforward onept of using the fastestproessors that you an �nd an be generalized so that it

is pratial. Thus, high utilization strategies are importantbeause of the guidane that they give in atual situations.Theorem 2. Any maximum utilization shedule has makespanTp � W1p �ave +��2�1 + �3�2 + � � �+ �p�p�1� W1p �ave� W1p �ave +�p� 1p � W1�ave :Proof. We introdue an aounting tool. We postulatep�1 disjoint shadow threads ST2; ST3 ; : : : STp. Eah shadowthread is an imaginary hain of tasks. When a proessor iis unable to do any work on an atual thread , we say thatthe proessor begins working on its shadow thread STi.Consider any time interval in whih proessor i is idle andthus working on its shadow thread STi. Sine not all proes-sors have atual work, we are assured that progress is beingmade on the ritial path at the rate of the slowest workingproessor. That is, sine only faster proessors 1 : : : i � 1may be working on the omputation, the ritial path isadvaning at a rate of at least �i�1 steps/time.Beause the ritial path has length W1, proessor i anwork on STi for �i=�i�1W1 time units. Proessor 1 is neveridle. Therefore the total amount of work the proessorsdediate to atual and shadow threads is at most W1 +(�2=�1+�3=�2+ : : :+�p=�p�1)W1: Beause the proessorsoperate at �tot steps/time we obtain the desired bound.Note that from the Theorem 2, we obtain Theorem 1 asa orollary. The makespan an be marginally improved bymore strategially plaing proessors on threads. Namely,put the i-th fastest proessor on the i-th longest ritialpath. This poliy guarantees that the ritial path alwaysprogresses at least at the average speed of the working pro-essors.

Claim 3. Suppose that the maximum utilization strategyadditionallymaintains the invariant that the i-th fastest pro-essor exeutes the thread that is i-th farthest from the endof the dag. This amounts to putting the fastest proessor onthe ritial path. Then the omputation has makespan.Tp � W1p �ave + ��2�1 + 2 �3�1 + �2 + 3�4�1 + �2 + �3 + � � �+ (p� 1)�p�1 + �2 + : : :+ �p�1 � W1p�ave :Unfortunately, this gain in makespan seems small in om-parison to the potentially in�nite number of additional pre-emptions that this poliy entails.The proof of Theorem 2 extends to prove the following the-orem that provides a bound on the makespan of a high uti-lization shedule.Theorem 4. Any high utilization shedule has makespanTp � W1p�ave +� p� 1p � �W1�aveWe now provide a bound on the number of migrations in ahigh utilization shedule. of the exeution from anotherTheorem 5. Consider a high or maximum utilization shed-ule of an arbitrary dag. If there are a total of S1 threads,then there are at most 2S1 migrations.Proof. We divide the omputation into phases, S1; S1�1; : : : ; 2; 1, where in phase � the omputation has � (in-omplete) threads. Within a phase, a omputation has nomigrations at all. A phase begins when the number of ativethreads (e.g., threads urrently being exeuted by proes-sors) hanges.Assume without loss of generality (w.l.o.g.) that at mostone thread ompletes at any time. (If two threads ompletesimultaneously, we break the tie arbitrarily.) There are twoases for the dynamis of the shedule when a thread om-pletes. (1) When a thread T� ompletes, no new threadsative beome ative. Then the slowest urrently-ative pro-essor k migrates to the idle pool, and the proessor j onT� migrates to k's thread. (If we are luky, the slowesturrently-ative proessor k is already on thread T�.) (2)When a thread T� ompletes, x new threads beome ative.Then x�1 proessors migrate from the idle pool to a new a-tive thread and one proessor migrates from the ompletedthread T� to a new ative thread.Thus, if there is a bound M on the time to migrate, then wehave a bound on the inrease in makespan from Theorem 6when migrations have a ost, namely 2MS1=p. The quantityM may inlude the ost to send the system state from oneproessor to another or even may inlude the ost to restarta thread from some previous hekpoint. One ould balanethe parameters M and � to optimize the makespan, e.g.,only preempt and migrate if there is a substantial gain.

2.1 Performance in the Common CaseEven though the high utilization shedule is a O(pp) ap-proximation algorithm for general dags, on dags that rep-resent most parallel programs, the algorithm has a sub-stantially better performane. In most parallel programsW1=p � W1 [10℄. An interpretation of this inequality isthat the parallel program has enough inherent parallelismto justify the use of p proessors. Observe that in Theo-rems 2 and 4, W1=�tot is a lower bound on the makespan,and when � > 1 is suÆiently lose to 1, this quality dwarfs�W1=�ave. Therefore, even though the high utilizationshedule is a O(pp) approximation for general dags, in thease of dags representing typial parallel programs, it is al-most optimal. This is not true of the nonpreemptive O(pp)approximation algorithm.
3. AN ENHANCED CILK SCHEDULERDiret implementation of the the sheduling poliies in theprevious setion are impratial beause they rely on globalontrol. However, the general design priniple of high uti-lization is ritial, and we apply this onept in Cilk shedul-ing. In this setion we desribe an enhaned Cilk shed-uler that runs orretly and robustly even when proessorshave di�erent speeds. Moreover, when the proessors runat similar speeds, our new shedule behaves identially tothe standard Cilk sheduler. Thus, an important feature ofour sheduler is that it is extremely similar to the originalsheduler at a small ost in algorithmi omplexity.In this algorithm there are two kinds of migrations: (1) stealsand (2) muggings. In a steal, a proessor does not interrupta thread. Instead, a proessor begins working on a thread atthe top of another proessor's ready deque. In a mugging,there is no work on another proessor's ready deque, andso the proessor \mugs" a slower proessor and takes thethread that the slower proessor was working on.Thus, if all proessors operate at speeds within an � fatorof eah other, then there are no muggings and the shedulerbehaves like the standard Cilk sheduler. The parameter �an be tuned to optimize system performane.
3.1 Design AssumptionsWe make the following additional assumptions: (1) Eahproessor steals at a rate proportional to its speed. (2) Stealsand steal attempts are ompleted in an amount of time thatis proportional to the speed of the proessor doing the steal-ing/mugging. It is important to have a platform so that thesteal responses do not depend on the speed of the vitimproessor beause otherwise the slowest proessor an delaythe entire system.1 There are several ways to ensure thisdesign priniple. For example, if there are at most two mag-nitudes of di�erene between the fastest and slowest proes-sor speeds, then the times for steal attempts, muggings, andsteals an be alulated aordingly. We ould also requiresome mehanism for ommuniating steal attempts, suh asa shared memory, that allows one proessor to look diretly1If the steal attempts run at the speed of the vitim proes-sor then the work-stealing approah may not have guaran-teed good performane. This is beause the root thread ofthe omputation may reside on a proessor that is entirelystopped, and the omputation annot proeed.

Enhaned Cilk Sheduler1. Proessor i hooses a vitim proessor j uniformly at random.2. If the vitim j's deque is not empty, it steals the thread T from the top of the deque.3. If the vitim j's deque is empty, but the vitim is working on a thread T and its speed is � times slower thanproessor i, then i mugs j, that is, i interrupts j and takes the thread T .4. If proessor i has loated a thread T , i works on T until one of four situations:(a) Thread T spawns a thread T 0. In this ase, the proessor puts T on the bottom of the ready deque and startswork on thread T 0.(b) The thread T returns or terminates. If the deque is not empty, the proessor begins working on the bottomthread. If the deque is empty, it tries to steal and exeute thread T 's parent. Otherwise, if the parent isbusy, the proessor attempts to work steal.() The thread reahes a synhronization point. In this ase, the proessor attempts to work steal. (Note thatthe deque is empty.)(d) Proessor i is mugged and the thread T is migrated to another proessor. In this ase, proessor i attemptsto work steal.5. Otherwise, there is a failed steal attempt; proessor i tries to steal again.Figure 2: The Enhaned Cilk Sheduler.into the deques of other proessors. The pseudoode for theEnhaned Cilk Sheduler appears in Figure 2.
3.2 AnalysisWe now analyze the running time of the Enhaned CilkSheduler. We prove the following performane guarantee.Theorem 6. W.h.p., the exeution time Tp of the en-haned Cilk Sheduler is bounded as follows.Tp � W1p �ave +O�W1�ave� :We use an aounting argument to prove Theorem 6. Ob-serve that at all times a proessor is either (1) exeuting aninstrution, or (2) attempting to steal (and perhaps atuallystealing or mugging). For simpliity of analysis, we assumethat eah of these operations requires one unit of work. (Infat, exeuting an instrution is likely to be muh fasterand so in our analysis we an group multiple instrutionstogether.)We postulate two bukets that we use for aounting, a workbuket and a steal buket . Eah time a proessor ompletesa unit of work on the dag it puts one dollar into the workbuket; eah time a proessor ompletes a steal attempt(suessful or not) it puts one dollar into the steal buket.(This approah was used in the original paper of [10℄ andin muh of the subsequent work on Cilk.) There are �totdollars that enter the bukets per unit of time. Therefore, ifat the end of the omputation, there are a total of D dollarsin both bukets, then the omputation ran in time D=�tot.Computing the number of dollars in the work buket isstraightforward, beause eah time the proessor ompletesone unit of work, it puts a dollar in the work buket.

Observation 1. At the end of the omputation there area total of exatly W1 dollars in the work buket.We now use a potential-funtion argument to prove a boundon the number of dollars in the steal buket. This argumentis an extension of the result in [1, 7℄ and begins with somede�nitions.De�nitions. For any (nonroot) node v, suppose that nodeu is the last of v's parents to be exeuted. Then we say thatthe exeution of node u enables node v. Node u is alled thedesignated parent of v and edge (u; v) is alled the enablingedge. The graph omposed of all the enabling edges is alledthe enabling tree. The node that is being exeuted at time tby proessor i is alled the assigned node of proessor i. Weassign weights to all of the nodes, so that we an use theseweights in a potential funtion argument. Let d(u) denotethe depth of node u in the dag. Eah node u has weightw(u) = W1 � d(u).Now supplied with these de�nitions, we desribe the Stru-tural Lemma of the deques. This lemma guarantees thatfor any deque at all times during the exeution if the workstealing algorithm, the designated parents of the nodes inthe deque lie on the root-to-leaf path in the enabling tree.Lemma 7 ([1, 7℄). Let k be the number of (ready) nodesin a given deque at any time t, and let v1; v2; : : : ; vk denotethese nodes ordered from bottom to top. Let v0 be the as-signed node. In addition, for i = 1 : : : k, let ui be the des-ignated parent of vi. Then for i = 1 : : : k, node ui is ananestor of ui�1 in the enabling tree. Moreover, although itmay be that u0 = u1, for i = 2 : : : k, ui�1 6= ui. Thus, theweights of the nodes inrease from bottom to top, that is,w(v0) � w(v1) < w(v2) < : : : < w(wk).

Proof sketh: The proof is by indution on times in whihthe struture of the deque hanges, as in [1, 7℄. There are�ve possible ways that the deque may hange: (S) The topnode of the deque is stolen; (E0) The assigned node enables0 hildren; (E1) The assigned node enables 1 hildren; (E2)The assigned node enables 2 hildren; (M) The proessor ismugged and the assigned node is moved to a faster proessor.The �rst four ases are desribed and analyzed in the proofin [1, 7℄. However, the ase of muggings is unique to theheterogeneous setting. This ase an be integrated into theorretness proof using arguments similar to those used inthe ases of (S) and (E0).We now present the potential funtion that we will use [1,7℄. Let Rt be the set of ready nodes at time t. Eah node iseither in some deque or assigned to and exeuted on someproessor. For eah ready node v 2 Rt, we de�ne its poten-tial �t(v) as�t(v) = � 32�w(v)�1 if v is assigned;32�w(v) otherwise.We let �t(i) denote the sum of the potentials of the nodeson proessor i at time t. We let �t = Ppi=0 �t(i) be thevalue of the potential funtion at time t. Thus, the initialpotential is 32�W1 beause the root node has depth 0 andis initially unassigned. The �nal potential is 0 beause allnodes have been ompleted.Observation 2. For any proessor at time t during theexeution of the sheduling algorithm, the potential of thetopmost nodes in the deques ontributes at least 3=4 of thepotential assoiated with the proessors that have nonemptydeques.We now divide the omputation into phases, whih are de-�ned indutively by when steal attempts our. The �rstphase begins at time t = 0, the start of the omputation,and it ends after (� + 2)p steal attempts have ourred.The i-th phase begins at the end of the (i� 1)-th phase andompletes, as before, after (�+2)p additional steal attemptshave been made.Theorem 8. There is at least a onstant probability thatwithin eah phase, the potential drops by at least a onstantfator. Therefore, there are at most O(log n) phases, bothexpeted and with high probability.Proof. At any time t we partition the potential �t =Dt+St+Ft into 3 disjoint omponents. The omponent Dtis assoiated with proessors whose deque ontains nodes.The rest of the potential is assoiated with proessors thathave empty deques, but whih may have assigned nodes. Wedivide this remaining potential into omponents assoiatedwith proessors we de�ne as slow and fast respetively. Aproessor i is alled slow in phase `, if during phase `, theproessor does not have time to �nish exeuting the nodethat it was working on when the phase began. A proessori is alled fast otherwise.

We �rst onsider the potential Dt assoiated with the set ofproessors whose deques are not empty. Reall that at least3=4-th of the potential from nodes in the deques is exposedat the top of the deques. Consequently, beause there are(2+�) steal attempts in any phase, the probability that thereis no steal attempt in a deque is at most e�(2+�). When thenode at the top of the deque is stolen, the potential of thisnode dereases by a fator of 2=3 beause the node is nowassigned to a proessor.Let value Q be the sum of the potentials of the nodes at thetop of the deques. Then the expeted value of the remain-ing potential of these nodes after the phase ends is at moste�(2+�) Q+ (1� e�(2+�)) 2Q=3. Therefore, by the Markovinequality, there is at least a onstant probability that thepotential assoiated with these nodes dereases by at leasta onstant fator. Consequently, by Corollary 2, with atleast a onstant probability the potential assoiated with allthe nodes in those deques dereases by at least a onstantfator.We now examine the omponent Ft of the potential, that is,the potential assoiated with fast proessors having emptydeques at the start of phase `. For any suh proessor i,the ompletion of i's assigned node auses the potential toderease by at least a onstant fator beause i's originalassigned node will be ompleted.Finally, we examine the omponent St of the potential, thatis, the potential assoiated with slow proessors having emptydeques at the start of phase `. In order to redue the po-tential of a slow proessor i that ontributes to St, anotherproessor j must (1) hoose to mug proessor i, and (2)omplete one node of the thread that it obtained from pro-essor i. In order to mug i, proessor j must be more than �times faster than proessor i. How many steal attempts arethere in phase ` that satisfy these onditions? Any proessorthat makes �+ 2 steal attempts in the phase must be morethan � times faster than proessor i, whih does not even�nish exeuting one node. Consequently, in (� + 2)p stealattempts, there will be at least p steal attempts that satisfyall of these onditions. Therefore, the probability that anygiven slow proessor is not mugged is at most 1=e. Let valueQ0 be the sum of the potential of the nodes being exeutedby the slow proessors. Then the expeted value of the re-maining potential of these nodes after the phase ends is atmost Q0=e. Therefore, by the Markov inequality, there isat least a onstant probability that the potential assoiatedwith these nodes dereases by at least a onstant fator.By onsidering all three ases, we onlude that there is atleast a onstant probability that the total potential dereasesby at least a onstant fator. Therefore, by applying Cher-no� Bounds, we onlude that after at most O(W1) phasesthe potential has dereased until it is zero, both expetedand with high probability.From Lemma 8, we onlude that there are at most O(�W1p)steal attempts and onsequently O(�W1p) dollars in thesteal buket. Therefore, the running time of the algorithmis W1=(p�ave)+O(�W1�ave), whih onludes the proof ofTheorem 6.

Finally, we end this setion by observing that it is not evenneessary in the previous argument to de�ne a partiularvalue of �. That is, the argument works if proessor i mugsanother proessor j as long as �i > �j. The advantage ofintroduing �, is that it redues the number of migrations.
4. CHANGING SPEEDS AND DISCUSSIONSo far we have assumed that the proessor speeds are �xed.Our algorithms also run orretly when the speeds hange,but possibly at an additional ost. To understand why,�rst reonsider high utilization shedules. Even when speedshange, the high utilization requirement an still be main-tained through additional migrations. The same holds forthe high utilization sheduler. The value of � an be hosento smooth out the shedule so that small utuations in pro-essor speeds do not lead to as many additional migrations.The same advantages apply to our enhaned Cilk sheduler.Our sheduler uses no global ontrol, and in its plae onlybrief interations between pairs of proessors. Proessorsdo not even have to store information about the speeds ofthe other proessors, whih might quikly beome out ofdate. Consequently, this algorithm easily adapts to hangingspeeds. As speeds are modi�ed, there may be additionalsteal attempts and muggings. As before, the value of �an be hosen to remove unneessary muggings. Thus, theperformane of the sheduling algorithm degrades graefullyas the speeds beome more errati.
5. ACKNOWLEDGMENTSThe �rst author warmly thanks Charles Leiserson for sug-gesting this problem, for enjoyable meetings in the earlierstages of this work, and for muh exellent advie.
6. REFERENCES[1℄ N. Arora, R. Blumofe, and G. Plaxton. Threadsheduling for multiprogrammed multiproessors. InSPAA: Annual ACM Symposium on ParallelAlgorithms and Arhitetures, 1998.[2℄ Y. Aumann, M. A. Bender, and L. Zhang. EÆientexeution of nondeterministi parallel programs onasynhronous systems. Information and Computation,139(1):1{16, 25 Nov. 1997. An earlier version of thispaper appeared in the 8th Annual ACM Symposiumon Parallel Algorithms and Arhitetures (SPAA),June 1996.[3℄ Y. Aumann, K. Palem, Z. Kedem, and M. O. Rabin.Highly eÆient asynhronous exeution of largegrained parallel programs. In Proeedings of the 34thAnnual Symposium on the Foundations of ComputerSiene, pages 271{280, November 1993.[4℄ Y. Aumann and M. O. Rabin. Clok onstrution infully asynhronous parallel systems and PRAMsimulation. In Proeedings of the 33rd AnnualSymposium on the Foundations of Computer Siene,pages 147{156, 1992.[5℄ Y. Aumann and M. O. Rabin. Clok onstrution infully asynhronous parallel systems and pramsimulation. Theoretial Computer Siene, 128:3{30,1994.

[6℄ B. Awerbuh, Y. Azar, S. Leonardi, and O. Regev.Minimizing the ow time without migration. InProeedings of the 31st Annual ACM Symposium onTheory of Computing, pages 198{205, May 1999.[7℄ R. Blumofe. Sheduling multithreaded omputationsby work stealing. Seminar Talk. Joint work with N.Arora C. Leiserson, and G. Plaxton, 1998.[8℄ R. D. Blumofe. Exeuting Multithreaded ProgramsEÆiently. PhD thesis, Department of EletrialEngineering and Computer Siene, MassahusettsInstitute of Tehnology, Sept. 1995.[9℄ R. D. Blumofe and C. E. Leiserson. Spae-eÆientsheduling of multithreaded omputations. InProeedings of the Twenty Fifth Annual ACMSymposium on Theory of Computing, pages 362{371,San Diego, California, May 1993.[10℄ R. D. Blumofe and C. E. Leiserson. Shedulingmultithreaded omputations by work stealing. InProeedings of the 35th Annual Symposium onFoundations of Computer Siene, pages 356{368,Santa Fe, New Mexio, Nov. 1994.[11℄ R. P. Brent. The parallel evaluation of generalarithmeti expressions. J. ACM, 21(2):201{206, Apr.1974.[12℄ C. Chekuri and M. A. Bender. An eÆientapproximation algorithm for minimizing makespan onuniformly related mahines. In Integer Programmingand Combinatorial Optimization, volume 1412, pages383{393, 1998.[13℄ F. A. Chudak and D. B. Shmoys. Approximationalgorithms for preedene-onstrained shedulingproblems on parallel mahines that run at di�erentspeeds (extended abstrat). In Proeedings of theEighth Annual ACM-SIAM Symposium on DisreteAlgorithms, pages 581{590, New Orleans, Louisiana,5{7 Jan. 1997.[14℄ E. G. Co�man and P. J. Denning. Operating SystemsTheory. Prentie-Hall, Englewood Cli�s, N.J., 1973.[15℄ R. Cole and O. Zajiek. The expeted advantage ofasynhrony. In Pro. of the ACM Symposium onParallel Arhitetures and Algorithms, pages 85{94,1989.[16℄ P. B. Gibbons. A more pratial PRAM model. InPro. of the 1st ACM Symposium on ParallelArhitetures and Algorithms, pages 158{168, June1989.[17℄ R. L. Graham. Bounds for ertain multiproessinganomalies. The Bell System Tehnial Journal,45:1563{1581, Nov. 1966.[18℄ R. L. Graham. Bounds on multiproessing timinganomalies. SIAM Journal on Applied Mathematis,17(2):416{429, Mar. 1969.[19℄ J. M. Ja�e. An analysis of preemptive multiproessorjob sheduling. Mathematis of Operations Researh,5(3):415{421, Aug. 1980.

[20℄ J. M. Ja�e. EÆient sheduling of tasks without fulluse of proessor resoures. Theoretial ComputerSiene, 12:1{17, Aug. 1980.[21℄ P. Kanellakis and A. Shvartsman. EÆient parallelalgorithms an be made robust. In Proeedings of the8th Annual ACM Symposium on the Priniples ofDistributed Computing, pages 211{221, 1989.[22℄ P. Kanellakis and A. Shvartsman. E�eient parallelalgorothms on restartable fail-stop proessors. InProeedings of the 10th Annual ACM Symposium onthe Priniples of Distributed Computing, pages 23{36,1991.[23℄ P. Kanellakis and A. Shvartsman. Fault-TolerantParallel Computation. Kluwer Aademi Publishers,1997.[24℄ Z. M. Kedem, K. V. Palem, M. O. Rabin, andA. Raghunathan. EÆient program transformation forresilient parallel omputation via randomization. InProeedings of the 24th Annual ACM Symposium onthe Theory of Computing, May 1992.[25℄ Z. M. Kedem, K. V. Palem, A. Raghunathan, andP. G. Spirakis. Combining tentative and de�niteexeutions for very fast dependable parallelomputing. In Proeedings of the 23rd Annual ACMSymposium on Theory of Computing, pages 381{390,May 1991.[26℄ Z. M. Kedem, K. V. Palem, and P. G. Spirakis.EÆient robust parallel omputations. In Proeedingsof the 22rd Annual ACM Symposium on Theory ofComputing, pages 138{148, May 1990.[27℄ J. W. W. Liu and C. L. Liu. Bounds on shedulingalgorithms for heterogeneous omputing systems.North-Holland, pages 349{353, 1974.[28℄ C. Martel, A. Park, and R. Subramonian.Asynhronous PRAMs are (almost) as good assynhronous PRAMs. In Proeedings of the 31stAnnual Symposium on the Foundations of ComputerSiene, pages 590{599, 1990.[29℄ N. Nishimura. Asynhronous shared memory parallelomputation. In Pro. of the 2nd ACM Symposium onParallel Arhitetures and Algorithms, pages 76{84,1990.[30℄ J. Ullman. NP-omplete sheduling problems. JournalComputing System Siene, 10:384{393, 1975.

