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ABSTRACT

We study the problem of executing parallel programs, in
particular Cilk programs, on a collection of processors of dif-
ferent speeds. We consider a model in which each processor
maintains an estimate of its own speed, where communica-
tion between processors has a cost, and where all scheduling
must be online. This problem has been considered previ-
ously in the fields of asynchronous parallel computing and
scheduling theory. Our model is a bridge between the as-
sumptions in these fields. We provide a new more accurate
analysis of an old scheduling algorithm called the mazimum
utilization scheduler. Based on this analysis, we generalize
this scheduling policy and define the high utilization sched-
uler. We next focus on the Cilk platform and introduce
a new algorithm for scheduling Cilk multithreaded parallel
programs on heterogeneous processors. This scheduler is in-
spired by the high utilization scheduler and is modified to
fit in a Cilk context. A crucial aspect of our algorithm is
that it keeps the original spirit of the Cilk scheduler. In fact,
when our new algorithm runs on homogeneous processors, it
exactly mimics the dynamics of the original Cilk scheduler.

1. INTRODUCTION

In this paper we study the problem of executing parallel
programs, in particular Cilk programs, on processors that
run at different and possibly changing speeds. We develop
scheduling algorithms that are designed to run efficiently in
a parallel computing environment.

In order to run efficiently, our scheduling algorithms must
obey the computational constraints imposed by the paral-
lel setting. For example, the schedulers should make rapid
decisions about how to assign tasks to processors because
otherwise the time to run the scheduler may actually de-
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lay the execution of the parallel program. Furthermore, the
scheduling decisions must be made with only partial knowl-
edge of the actual scheduling problem. This is because both
the structure of the parallel program and the speeds of the
processors are only known online, that is, as the computa-
tion unfolds. In addition, the entire state of the system is
not automatically visible to any processor; each processor ¢
is only aware of its own local state; in order to determine
the state of another processor 7, processor ¢ must explicitly
communicate with j and this communication has a cost.
Consequently, a centralized scheduler that repeatedly gath-
ers all the information about the states of the processors
may be too expensive. This paper describes a scheduling
algorithm that is distributed.

We call processors of different speeds heterogenecous, and we
call identical processors homogeneous. In order to obtain
efficient algorithms for heterogeneous processors, we must
understand the pattern of speed changes so that we can op-
timize for the common case. Our algorithms are optimized
for the following setting, which is common in many parallel
computing environments.

1. Most of the time the processor speeds are fairly con-
sistent, and therefore a processor can maintain a good
estimate of 1its own speed. This estimate naturally is
not completely accurate, but most of the time it will
be mostly accurate.

2. Processor speeds may occasionally change dramati-
cally, but these changes are limited. The efficiency
of our scheduler is allowed to degrade gradually as
processors become more erratic.

The general problem of executing parallel programs on het-
erogeneous processors been studied previously in the fields
of asynchronous parallel computing and scheduling theory.
However both of these fields typically assume models that
differ dramatically from the parallel setting described above.
For example, in the area of asynchronous parallel comput-
ing, the processor speeds are assumed to change arbitrarily
and adversarially. Unfortunately, this worst-case assump-
tion may be too pessimistic and may lead to inefficient sched-
ules. In the area of scheduling theory, the processor speeds
are assumed to remain constant, and the scheduler is al-
lowed to have global knowledge of the state of the system,



a large amount of time to run, and offline knowledge of the
structure of the computation. Based on these assumptions,
the system is unrealistically predictable and the scheduler is
unrealistically powerful. The model is this paper is a bridge
between the assumptions of asynchronous parallel comput-
ing and those of scheduling theory. We further describe
these fields and then proceed to describe the main results in
this paper.

1.1 Asynchronous Parallel Computation
Executing parallel programs on heterogeneous processors is
studied intensely in the area of asynchronous parallel com-
putation [16, 15, 29, 28, 24, 5, 3, 2]. In this field, the goal is
to run a parallel program written assuming synchronization
barriers, on a collection of asynchronous processors that do
not have a synchronization primitive.

Processors are assumed to be arbitraridy erratic. That is,
a processor may initially run so slowly that it is essentially
stopped, change speed abruptly so that it runs extremely
(even infinitely) fast, and then stop once more. Correct-
ness proofs typically assume that processor speeds are deter-
mined by an adversary, whose goal is to prevent the parallel
program from executing correctly or efficiently. Because pro-
cessors may change speeds to an arbitrary degree, processors
are not assumed to have knowledge of their own speed.

This machinery is useful for mission critical applications, in
which a program must run correctly and steadily, regardless
of the erratic behaviors of the individual processors. On
the other hand, it may not be worth paying the overhead
that these schemes entail if (1) the application is not mission
critical, or (2) if the processors are not arbitrarily erratic,
that is, if they change speeds, but most of the time by too
much.

1.2 Scheduling on Related Processors
Executing a parallel program on heterogeneous processors is
a common problem in scheduling theory. In this field there
is an underlying assumption that processors may have dif-
ferent speeds but that the speeds do not change. The goal
is to schedule a parallel program represented as a directed
acyclic graph (dag) to minimize the makespan, that is, the
maximum completion time of the jobs. Using terminology
from scheduling theory, the problem is that of scheduling
precedence-constrained tasks on related processors to mini-
mize the makespan.

Because this problem is NP-hard [30] even when all proces-
sors have the same speed, the scheduling community has
concentrated on developing approximation algorithms for
the makespan. Early papers introduce 0(,/p)-approximation
algorithms [19, 20], and more recent papers propose O(log p)-
approximation algorithms [13, 12]. Unfortunately, some com-
mon assumptions from scheduling theory often do not apply
to parallel computing, and consequently many scheduling
algorithms from this field are not usable in our setting. For
example, many of these scheduling algorithms run offline,
that is, after seeing the entire structure of the parallel pro-
gram. In addition, the schedulers usually have full knowl-
edge about the state of the system and have the unlimited
ability to apply the scheduling decisions.

Finally the quality of many of the scheduling algorithms are
measured using the approximation ratio. Even in the ho-
mogeneous setting, it is known that the approximation ratio
may be misleading [10] by a factor as large as 2. The ap-
proximation ratio is dramatically less reliable when proces-
sors are heterogeneous for several reasons that we describe
shortly.

1.3 The Heterogeneous Setting

To develop intuition about the heterogeneous setting, con-
sider the natural class of greedy schedules, in which no pro-
cessor is allowed to stay idle if there is a task that can be
assigned to it. When processors are homogeneous, all greedy
schedules have essentially comparable makespans (within a
factor of 2 of each other). However, when processors are het-
erogeneous there may be an unbounded ratio between the
makespan of the best greedy schedule and the makespan of
the worst greedy schedule. To obtain a schedule having a
good makespan, fast processors should be assigned to longer
paths in the dag and slower processors should be assigned
to shorter paths. This assignment process is computation-
ally difficult because nodes in the dag may belong to many
interleaving paths of different lengths.

Thus, for any p homogeneous processors, consider p het-
erogeneous processors that have the same average speed.
The optimal makespan in the heterogeneous setting may be
much smaller than in the homogeneous setting. However,
practical and computational limitations usually prevent this
elusive schedule from being found. On the other hand, it
is easy to encounter a poor schedule, especially when the
processors’ speeds can change. This is why users prefer ho-
mogeneous processors to heterogeneous ones, even though
in ideal conditions the heterogeneous processors may allow
shorter schedulers. Thus, in this paper the objective of an
efficient scheduler is to use its heterogeneous processors as
efficiently as if they were homogeneous.

1.4 Results

We present the following results.

1. We provide a new analysis of of an old scheduling al-
gorithm called the mazimum utilization scheduler [19].
In particular, we prove a bound on the makespan and
on the number of preemptions. Based on this analysis,
we generalize this scheduling policy and define the high
utilization scheduler. We explain why these scheduling
policies have close to optimal makespans on dags that
represent most parallel programs.

The algorithms presented so far are not directly im-
plementable because the schedulers require too much
centralized control. However, they provide insight into
how to schedule parallel programs on heterogeneous
systems.

2. We next focus on the Cilk platform and present the
main result of the paper. We introduce a new algo-
rithm for scheduling Cilk multithreaded parallel pro-
grams on heterogeneous processors. This scheduler is
inspired by the high utilization scheduler, modified to
fit in a Cilk context. A crucial aspect of our algorithm



is that 1t retains the original spirit of the Cilk sched-
uler. In fact, when our new algorithm runs on homo-
geneous processors, it exactly mimics the dynamics of
the original Cilk scheduler.

1.5 Definitions and Notation

There are p processors labeled 1, ... , p where processor ¢ has
speed 7; steps/time. For the sake of convenience, we assume
that 7 > w2 > ... > mp. In much of the paper we assume
that the processor speeds do not change. Let ¢+ steps/time
be the total computing power of all of the processors, that
Is, Mot = » o, Ti. Let mave steps/time be the average speed
of the processors, that is, Tave = Ttot/p.

A directed acyclic graph (dag) G = (V, E) describes the
structure of a parallel program. The nodes of the dag repre-
sent tasks that the processors must complete, and the edges
represent dependencies between the tasks. Thus, if there is
an edge (u,v) € E, then v cannot be executed until after u
completes. In this case, we say that u is a parent of v. Tasks
are grouped into larger segments of code called threads; a
thread is a length path in the dag.

A series parallel dag G = (V, E) is a directed acyclic graph
with two distinguished vertices, a source s and a sink t.
The family of series parallel graphs are described using the
following grammar. A series parallel dag G = (V, E) is one
of the following: (1) A single edge extending from s to ¢,
that is, V' = {s,t} and E = {(s,t)}. (2) Two series parallel
graphs G and G2 composed in parallel. The sources s; and
s2 of G1 and G2 respectively are merged into a single source
s and the sinks ¢; and t2 of G1 and G2 are merged into
a single sink t. (3) Two series parallel graphs G; and G»
composed in series. The sink ¢, of G; and the source sz of
G> are merged into a single node.

Cilk parallel programs are modeled by fully strict dags. A
fully strict dag is series parallel, all of the nodes in the dag
have outdegree at most 2, and there is one node with inde-
gree 0 and one node with outdegree 0. The root thread is
a path extending from the first node in the dag to the last
node. A node in the root thread with outdegree 2 spawns
another thread, which continues until it joins the root thread
once more. This thread may spawn child threads, which may
in turn spawn child threads.

Let W, represent the total work, that is the total number
of nodes in the dag G. Let W represent the critical path
length of the graph, that is, the number of nodes in the
longest chain in . Consider a modified dag G’ in which
all nodes that do not have indegree > 2 or outdegree > 2
are removed. Let Si represent the total number of edges in
G’ in the dag, and let S be the critical path in G'. Let
T}, represent the time to execute G on p processors. A task
or thread is ready if all of its predecessors in GG have been
executed.

We say that a thread is preempted if it is interrupted and
later resumed, possibly on a different processor. We say
that there is a migration whenever the state of the system
is moved from one processor to a different processor. Thus,
there may be a migration if a previously idle processor begins
executing a thread because the processor may have obtained

the thread from another processor. There is not a migration
if a processor finished executing a thread and then executes a
successor thread in the dag. Thus, there may be a migration
without a preemption, or a preemption without a migration.
All migrations entail an additional cost, which we take into
account.

We say that an event E occurs with high probability (w.h.p.)
if for any ¢ > 0 there exists a proper choice of constants such

that Pr{E} >1—n"¢.

1.6 Related Work

Graham [17, 18] proved that a list schedule is a (2 — 1/p)-
approximation to the optimal makespan, and this result
holds for any greedy schedule. (In a list schedule, the jobs
have fixed priorities and the processors execute the ready
tasks in the system with the highest priorities.) This results
derives from the following theorem:

THEOREM 1 ([17, 18, 11]). A greedy schedule (or list
schedule) has makespan

T, < %4_ <p;1> W,
P P

Jaffe [19] shows that the following preemptive scheduling
policy, called a mazimum utilization schedule is a O(,/p)-
approximation algorithm. At all times, maintain the follow-
ing invariant: if there are i, ¢+ < p, ready threads, assign
these threads to the ¢ fastest processors. Note that threads
may be preempted; that is, in the middle of the execution of a
thread, a faster processor may take up the responsibility for
executing the thread. Jaffe [20] then showed that the follow-
ing nonpreemptive is also a O(,/p)-approximation algorithm
for the makespan. Consider the following two schedules and
select the one having the better makespan: (1) assign all
jobs to the fastest processor, and (2) assign all jobs greed-
ily to processors having speed faster than half the average.
More recently, Chudak and Shmoys [13] obtained a O(log p)-
approximation by using a linear programming relaxation to
decide at which speed each task should run. Chekuri and
Bender [12] developed a combinatorial approximation algo-
rithm having the same asymptotic approximation ratio.

Cilk Scheduler. Cilk is a parallel system with a sched-
uler that has provable performance guarantees. The Cilk
scheduling algorithm is entirely distributed and uses the idea
of work stealing. Namely, if a processor is idle, it randomly
chooses another processor, checks if the processor has extra
work, and if so, steals some. The work is stolen in a way that
avoids a large increase in memory usage or in running time.
The Cilk scheduler works as follows. Each processor main-
tains a double-ended queue, which is called a ready deque.
Threads can be inserted and removed from either end of the
ready deque. If a processor has no local work to do, it be-
gins work stealing. The processor uses its own ready deque
as a stack but other processors’ deques as queues. Each
processor 1 operates as shown in Figure 1.



CILK SCHEDULER

on thread T until one of three situations:

work on thread T".

busy, the processor attempts to work steal.

the deque is empty.)

1. The processor chooses a victim processor 7 uniformly at random.
2. If the victim j3’s ready deque is empty, processor ¢ attempts to steal again.

3. Otherwise, it steals the thread 7" from the top of the deque and begins executing it. The processor begins working

(a) Thread T spawns a thread 7’. In this case, the processor puts 7' on the bottom of the ready deque and starts

(b) The thread T returns or terminates. If the deque is not empty, the processor begins working on the bottom
thread. If the deque is empty, it tries to steal and execute thread T’s parent. Otherwise, if the parent is

(c) The thread reaches a synchronization point. In this case, the processor attempts to work steal. (Note that

Figure 1: The Cilk Scheduler.

2. HIGH UTILIZATION SCHEDULES

We now provide a new analysis of the maximum utilization
scheduling policy. This scheduler maintains the following
invariant. During each time interval in which there are ex-
actly ¢ ready threads, for each ¢ < p, the fastest ¢ processors
execute these tasks. If there are ¢ > p ready threads, then
all of the processors work. Beyond this basic restriction,
any processor may execute any task. Note that in order
to maintain this invariant, the scheduling policy must allow
preemptions.

The maximum utilization scheduling policy is a O(,/p)-
approximation algorithm but there are other scheduling al-
gorithms that have comparable approximation ratios and
that do not even require preemptions. As a result, the max-
imum utilization strategy has languished in relative obscu-
rity. However, many of the other scheduling strategies suffer
from the following drawbacks: either (1) they are too com-
plicated to be implemented efficiently, or (2) they produce
schedules that are qualitatively unsatisfactory.

The maximum utilization schedule has a straightforward
generalization, which we call a high utilization schedule. In
this scheduler we relax the invariant so that at all times: if
there are ¢, ¢+ < p, ready threads, the fastest idle processor
is at most 3 times faster than the slowest busy processor.
Thus, when 8 = 1, we obtain a maximum utilization sched-
ule. This makespan of a high utilization schedule may be
inferior to the makespan of a maximum utilization schedule,
but may have the advantage of fewer preemptions.

We will demonstrate two advantages of high utilization sched-
ules: (1) in the common case in parallel computing, high uti-
lization schedules are almost optimal, and (2) they convey
a straightforward message to practitioners, run your paral-
lel program on the fastest processors that you can find, and
this may be all the optimization that is required. On actual
system such as the Cilk platform, the unembellished high
utilization schedule may be too complicated to implement.
However, the straightforward concept of using the fastest
processors that you can find can be generalized so that it

is practical. Thus, high utilization strategies are important
because of the guidance that they give in actual situations.

THEOREM 2. Any maximum utilization schedule has makespan
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Proor. We introduce an accounting tool. We postulate
p—1 disjoint shadow threads ST>,5T5, ... 5T,. Each shadow
thread is an imaginary chain of tasks. When a processor
is unable to do any work on an actual thread, we say that
the processor begins working on its shadow thread ST;.

Consider any time interval in which processor ¢ is idle and
thus working on its shadow thread S7T;. Since not all proces-
sors have actual work, we are assured that progress is being
made on the critical path at the rate of the slowest working
processor. That is, since only faster processors 1...1—1
may be working on the computation, the critical path is
advancing at a rate of at least 7;—; steps/time.

Because the critical path has length W, processor ¢ can
work on ST; for m; /mi—1 W time units. Processor 1 is never
idle. Therefore the total amount of work the processors
dedicate to actual and shadow threads is at most W; +
(mo/m1+ma/m2+...+7p/7p—1) Woo. Because the processors
operate at 7ot steps/time we obtain the desired bound. [

Note that from the Theorem 2, we obtain Theorem 1 as
a corollary. The makespan can be marginally improved by
more strategically placing processors on threads. Namely,
put the i-th fastest processor on the i-th longest critical
path. This policy guarantees that the critical path always
progresses at least at the average speed of the working pro-
cessors.




CLAIM 3. Suppose that the maximum utilization strategy
additionally maintains the invariant that the o-th fastest pro-
cessor executes the thread that is i-th farthest from the end
of the dag. This amounts to putting the fastest processor on
the critical path. Then the computation has makespan.

Wi 4 T2 273 37y
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Unfortunately, this gain in makespan seems small in com-
parison to the potentially infinite number of additional pre-
emptions that this policy entails.

The proof of Theorem 2 extends to prove the following the-
orem that provides a bound on the makespan of a high uti-
lization schedule.

THEOREM 4. Any high utilization schedule has makespan

PTave P

Tp <

Tave

We now provide a bound on the number of migrations in a
high utilization schedule. of the execution from another

THEOREM 5. Consider a high or maximum utilization sched-

ule of an arbitrary dag. If there are a total of S1 threads,
then there are at most 25, migrations.

Proor. We divide the computation into phases, S1, S1 —
1,...,2, 1, where in phase II the computation has IT (in-
complete) threads. Within a phase, a computation has no
migrations at all. A phase begins when the number of active
threads (e.g., threads currently being executed by proces-
sors) changes.

Assume without loss of generality (w.l.o.g.) that at most
one thread completes at any time. (If two threads complete
simultaneously, we break the tie arbitrarily.) There are two
cases for the dynamics of the schedule when a thread com-
pletes. (1) When a thread T, completes, no new threads
active become active. Then the slowest currently-active pro-
cessor k migrates to the idle pool, and the processor 5 on
T, migrates to k’s thread. (If we are lucky, the slowest
currently-active processor k is already on thread T..) (2)
When a thread T, completes,  new threads become active.
Then x —1 processors migrate from the idle pool to a new ac-
tive thread and one processor migrates from the completed
thread 7, to a new active thread. [J

Thus, if there is a bound M on the time to migrate, then we
have a bound on the increase in makespan from Theorem 6
when migrations have a cost, namely 2M S1 /p. The quantity
M may include the cost to send the system state from one
processor to another or even may include the cost to restart
a thread from some previous checkpoint. One could balance
the parameters M and @ to optimize the makespan, e.g.,
only preempt and migrate if there is a substantial gain.

2.1 Performance in the Common Case

Even though the high utilization schedule is a O(,/p) ap-
proximation algorithm for general dags, on dags that rep-
resent most parallel programs, the algorithm has a sub-
stantially better performance. In most parallel programs
Wi/p > W [10]. An interpretation of this inequality is
that the parallel program has enough inherent parallelism
to justify the use of p processors. Observe that in Theo-
rems 2 and 4, Wi /mio: is a lower bound on the makespan,
and when 8 > 1 is sufficiently close to 1, this quality dwarfs
BWeo/ave. Therefore, even though the high utilization
schedule is a O(,/p) approximation for general dags, in the
case of dags representing typical parallel programs, it is al-
most optimal. This is not true of the nonpreemptive O(,/p)
approximation algorithm.

3. AN ENHANCED CILK SCHEDULER

Direct implementation of the the scheduling policies in the
previous section are impractical because they rely on global
control. However, the general design principle of high uti-
lization is critical, and we apply this concept in Cilk schedul-
ing. In this section we describe an enhanced Cilk sched-
uler that runs correctly and robustly even when processors
have different speeds. Moreover, when the processors run
at simelar speeds, our new schedule behaves identically to
the standard Cilk scheduler. Thus, an important feature of
our scheduler is that it is extremely similar to the original
scheduler at a small cost in algorithmic complexity.

In this algorithm there are two kinds of migrations: (1) steals
and (2) muggings. In a steal, a processor does not interrupt
a thread. Instead, a processor begins working on a thread at
the top of another processor’s ready deque. In a mugging,
there is no work on another processor’s ready deque, and
so the processor “mugs” a slower processor and takes the
thread that the slower processor was working on.

Thus, if all processors operate at speeds within an 3 factor
of each other, then there are no muggings and the scheduler
behaves like the standard Cilk scheduler. The parameter 3
can be tuned to optimize system performance.

3.1 Design Assumptions

We make the following additional assumptions: (1) Each
processor steals at a rate proportional to its speed. (2) Steals
and steal attempts are completed in an amount of time that
is proportional to the speed of the processor doing the steal-
ing/mugging. It is important to have a platform so that the
steal responses do not depend on the speed of the victim
processor because otherwise the slowest processor can delay
the entire system.! There are several ways to ensure this
design principle. For example, if there are at most two mag-
nitudes of difference between the fastest and slowest proces-
sor speeds, then the times for steal attempts, muggings, and
steals can be calculated accordingly. We could also require
some mechanism for communicating steal attempts, such as
a shared memory, that allows one processor to look directly

If the steal attempts run at the speed of the victim proces-
sor then the work-stealing approach may not have guaran-
teed good performance. This is because the root thread of
the computation may reside on a processor that is entirely
stopped, and the computation cannot proceed.



EnHANCED CILK SCHEDULER

work on thread T".

busy, the processor attempts to work steal.
the deque is empty.)

to work steal.

1. Processor ¢ chooses a victim processor j7 uniformly at random.
2. If the victim 7’s deque is not empty, it steals the thread T from the top of the deque.

3. If the victim j’s deque is empty, but the victim is working on a thread T" and its speed is 3 times slower than
processor i, then ¢ mugs 7, that is, ¢ interrupts 7 and takes the thread T

4. If processor ¢ has located a thread T, ¢ works on T until one of four situations:

(a) Thread T spawns a thread 7". In this case, the processor puts T' on the bottom of the ready deque and starts

(b) The thread T returns or terminates. If the deque is not empty, the processor begins working on the bottom
thread. If the deque is empty, it tries to steal and execute thread T’s parent. Otherwise, if the parent is

(c) The thread reaches a synchronization point. In this case, the processor attempts to work steal. (Note that

(d) Processor i is mugged and the thread T is migrated to another processor. In this case, processor i attempts

5. Otherwise, there is a failed steal attempt; processor i tries to steal again.

Figure 2: The Enhanced Cilk Scheduler.

into the deques of other processors. The pseudocode for the
Enhanced Cilk Scheduler appears in Figure 2.

3.2 Analysis
We now analyze the running time of the Enhanced Cilk
Scheduler. We prove the following performance guarantee.

THEOREM 6. W.h.p., the execution time T, of the en-
hanced Cilk Scheduler is bounded as follows.

T, < £+0<W“’>.

PTave Tave

We use an accounting argument to prove Theorem 6. Ob-
serve that at all times a processor is either (1) executing an
instruction, or (2) attempting to steal (and perhaps actually
stealing or mugging). For simplicity of analysis, we assume
that each of these operations requires one unit of work. (In
fact, executing an instruction is likely to be much faster
and so in our analysis we can group multiple instructions
together.)

We postulate two buckets that we use for accounting, a work
bucket and a steal bucket. Each time a processor completes
a unit of work on the dag it puts one dollar into the work
bucket; each time a processor completes a steal attempt
(successful or not) it puts one dollar into the steal bucket.
(This approach was used in the original paper of [10] and
in much of the subsequent work on Cilk.) There are mior
dollars that enter the buckets per unit of time. Therefore, if
at the end of the computation, there are a total of ID dollars
in both buckets, then the computation ran in time D/mic:.

Computing the number of dollars in the work bucket is
straightforward, because each time the processor completes
one unit of work, it puts a dollar in the work bucket.

Observation 1. At the end of the computation there are
a total of exactly W1 dollars in the work bucket.

We now use a potential-function argument to prove a bound
on the number of dollars in the steal bucket. This argument
is an extension of the result in [1, 7] and begins with some
definitions.

Definitions. For any (nonroot) node v, suppose that node
u is the last of v’s parents to be executed. Then we say that
the execution of node u enables node v. Node u is called the
designated parent of v and edge (u,v) is called the enabling
edge. The graph composed of all the enabling edges is called
the enabling tree. The node that is being executed at time ¢
by processor ¢ is called the assigned node of processori. We
assign weights to all of the nodes, so that we can use these
weights in a potential function argument. Let d(u) denote
the depth of node u in the dag. Each node u has weight
w(u) = Woo — d(u).

Now supplied with these definitions, we describe the Struc-
tural Lemma of the deques. This lemma guarantees that
for any deque at all times during the execution if the work
stealing algorithm, the designated parents of the nodes in
the deque lie on the root-to-leaf path in the enabling tree.

LEMMA 7 ([1, 7]). Letk be the number of (ready) nodes
i a given deque at any time t, and let vi,v2, ..., vy denote
these nodes ordered from bottom to top. Let vy be the as-
stgned node. In addition, for 1 = 1...k, let u; be the des-
tgnated parent of vi. Then for 1 = 1...k, node u; is an
ancestor of u;—1 in the enabling tree. Moreover, although it
may be that uo = w1, forv =2...k, ui—1 # u;. Thus, the
weights of the nodes increase from bottom to top, that is,
w(vg) < w(vr) < wlve) < ... < w(wg).




Proof sketch: The proof is by induction on times in which
the structure of the deque changes, as in [1, 7]. There are
five possible ways that the deque may change: (S) The top
node of the deque is stolen; (E0) The assigned node enables
0 children; (E1) The assigned node enables 1 children; (E2)
The assigned node enables 2 children; (M) The processor is
mugged and the assigned node is moved to a faster processor.

The first four cases are described and analyzed in the proof
in [1, 7]. However, the case of muggings is unique to the
heterogeneous setting. This case can be integrated into the
correctness proof using arguments similar to those used in

the cases of (S) and (E0). [

We now present the potential function that we will use [1,
7]. Let R: be the set of ready nodes at time ¢. Each node is
either in some deque or assigned to and executed on some
processor. For each ready node v € R, we define its poten-

tial ¢¢(v) as
32~w(v)—1

¢t(U) = { 32~w(v)

We let ®¢(1) denote the sum of the potentials of the nodes
on processor ¢ at time t. We let ®, = >°7_ ®,(¢) be the
value of the potential function at time ¢. Thus, the initial
potential is 327 because the root node has depth 0 and
is initially unassigned. The final potential is 0 because all
nodes have been completed.

if v 1s assigned;
otherwise.

Observation 2. For any processor at time t during the
execution of the scheduling algorithm, the potential of the
topmost nodes in the deques contributes at least 3/4 of the
potential associated with the processors that have nonempty
deques.

We now divide the computation into phases, which are de-
fined inductively by when steal attempts occur. The first
phase begins at time ¢ = 0, the start of the computation,
and it ends after (3 + 2)p steal attempts have occurred.
The i-th phase begins at the end of the (i — 1)-th phase and
completes, as before, after (3+2)p additional steal attempts
have been made.

THEOREM 8. There is at least a constant probability that
within each phase, the potential drops by at least a constant
factor. Therefore, there are at most O(logn) phases, both
expected and with high probability.

PrOOF. At any time ¢t we partition the potential ¢, =
Dy + St + F¢ into 3 disjoint components. The component D
is assoclated with processors whose deque contains nodes.
The rest of the potential is associated with processors that
have empty deques, but which may have assigned nodes. We
divide this remaining potential into components associated
with processors we define as slow and fast respectively. A
processor ¢ is called slow in phase ¢, if during phase ¢, the
processor does not have time to finish executing the node
that it was working on when the phase began. A processor
¢ is called fast otherwise.

We first consider the potential DD; associated with the set of
processors whose deques are not empty. Recall that at least
3/4-th of the potential from nodes in the deques is exposed
at the top of the deques. Consequently, because there are
(240) steal attempts in any phase, the probability that there
is no steal attempt in a deque is at most e~ (+0) When the
node at the top of the deque is stolen, the potential of this
node decreases by a factor of 2/3 because the node is now
assigned to a processor.

Let value @ be the sum of the potentials of the nodes at the
top of the deques. Then the expected value of the remain-
ing potential of these nodes after the phase ends is at most
e~ g+ (1- 6_(2+’6))2Q/3. Therefore, by the Markov
inequality, there is at least a constant probability that the
potential associated with these nodes decreases by at least
a constant factor. Consequently, by Corollary 2, with at
least a constant probability the potential associated with all
the nodes in those deques decreases by at least a constant
factor.

We now examine the component F; of the potential, that is,
the potential associated with fast processors having empty
deques at the start of phase £. For any such processor ¢,
the completion of ¢’s assigned node causes the potential to
decrease by at least a constant factor because ¢’s original
assigned node will be completed.

Finally, we examine the component .S; of the potential, that
is, the potential associated with slow processors having empty
deques at the start of phase £. In order to reduce the po-
tential of a slow processor ¢ that contributes to S¢, another
processor j must (1) choose to mug processor iz, and (2)
complete one node of the thread that it obtained from pro-
cessor ¢. In order to mug ¢, processor 5 must be more than 3
times faster than processor ¢. How many steal attempts are
there in phase £ that satisfy these conditions? Any processor
that makes 3 + 2 steal attempts in the phase must be more
than 3 times faster than processor iz, which does not even
finish executing one node. Consequently, in (8 + 2)p steal
attempts, there will be at least p steal attempts that satisfy
all of these conditions. Therefore, the probability that any
given slow processor is not mugged is at most 1/e. Let value
Q' be the sum of the potential of the nodes being executed
by the slow processors. Then the expected value of the re-
maining potential of these nodes after the phase ends is at
most @'/e. Therefore, by the Markov inequality, there is
at least a constant probability that the potential associated
with these nodes decreases by at least a constant factor.

By considering all three cases, we conclude that there is at
least a constant probability that the total potential decreases
by at least a constant factor. Therefore, by applying Cher-
noff Bounds, we conclude that after at most O(W, ) phases
the potential has decreased until it is zero, both expected

and with high probability. [

From Lemma 8, we conclude that there are at most O(SWoop)
steal attempts and consequently O(BW.p) dollars in the
steal bucket. Therefore, the running time of the algorithm
is Wi/(prave) + O(BWoo Tave ), which concludes the proof of
Theorem 6. |



Finally, we end this section by observing that it is not even
necessary in the previous argument to define a particular
value of 3. That is, the argument works if processor ¢ mugs
another processor j as long as #; > ;. The advantage of
introducing 3, is that it reduces the number of migrations.

4. CHANGING SPEEDS AND DISCUSSION

So far we have assumed that the processor speeds are fixed.
Our algorithms also run correctly when the speeds change,
but possibly at an additional cost. To understand why,
first reconsider high utilization schedules. Even when speeds
change, the high utilization requirement can still be main-
tained through additional migrations. The same holds for
the high utilization scheduler. The value of 3 can be chosen
to smooth out the schedule so that small fluctuations in pro-
cessor speeds do not lead to as many additional migrations.

The same advantages apply to our enhanced Cilk scheduler.
Our scheduler uses no global control, and in its place only
brief interactions between pairs of processors. Processors
do not even have to store information about the speeds of
the other processors, which might quickly become out of
date. Consequently, this algorithm easily adapts to changing
speeds. As speeds are modified, there may be additional
steal attempts and muggings. As before, the value of 3
can be chosen to remove unnecessary muggings. Thus, the
performance of the scheduling algorithm degrades gracefully
as the speeds become more erratic.
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