Executing Multithreaded Programs Efficiently

by
Robert D. Blumofe

Sc.B., Brown University (1988)
S.M., Massachusetts Ingtitute of Technology (1992)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirementsfor the degree of

Doctor of Philosophy
at the
MASSACHUSETTSINSTITUTE OF TECHNOLOGY

September 1995
(© Robert D. Blumofe, MCMXCV. All rights reserved.

The author hereby grantsto MIT permission to reproduce and distribute publicly paper
and electronic copies of thisthesis document in whole or in part, and to grant others the
right to do so.

AULNOT . .
Department of Electrical Engineering and Computer Science

August 18, 1995

Certified Dyo
CharlesE. Leiserson

Professor

Thesi's Supervisor

Accepted DY

Frederic R. Morgenthaler
Chairman, Departmental Committee on Graduate Students

Executing M ultithreaded Programs Efficiently

by
Robert D. Blumofe

Submitted to the Department of Electrical Engineering and Computer Science
on August 18, 1995, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

Thisthesis presents the theory, design, and implementation of Cilk (pronounced “silk”) and
Cilk-NOW. Cilk is a C-based language and portable runtime system for programming and
executing multithreaded parallel programs. Cilk-NOW is an implementation of the Cilk
runtime system that transparently managesresourcesfor parallel programsrunning on anet-
work of workstations.

Cilk isbuilt around a provably efficient algorithm for scheduling the execution of fully
strict multithreaded computations. Based on the technique of work stealing, this algorithm
achievestime, space, and communication boundsthat are all within asmall constant factor
of optimal. Using these performance guarantees, Cilk provides asimple abstraction of per-
formance that alows programmers to predict accurately how program changes will affect
execution time.

Cilk-NOW provideshigh-level resource management services so that Cilk programscan
run efficiently on a network of workstations. These services include adaptive parallelism
and fault tolerance. With adaptive parallelism, programs execute on a pool of workstations
that dynamically grows and shrinks in response to both the availability of “idle” machines
and the availability of parallelismwithinthe program. Cilk-NOW &l so provides transparent
fault tolerance with afully distributed checkpointing mechanism.

Keywords: paralel computing, distributed computing, dataflow, multithreaded programs,
parallel languages, paralel runtime systems, Cilk, strict execution, stack memory, thread
scheduling, scheduling algorithms, randomized algorithms, delay sequence, work stealing,
computer chess, massively parallel supercomputer, network of workstations, adaptive par-
alelism, fault tolerance.

Thesis Supervisor: CharlesE. Leiserson
Title: Professor

Acknowledgments

| remember thefirst timel met Charles Leiserson and discussed possible research projects.
He spoke of some grand ideas, and he waved hisarms alot. Something about trees. We
were going to solve some important problems together. Only one difficulty: | had no idea
what he was talking about. For better or worse, | now seem to understand him, and our
collaboration did produce some results that | am very proud of. Charles has aterrific sense
of research direction, and rather than push mein any direction, he pulled. Rather than tell
me where to go, he showed the way. All the while, Charles left me room to be creative
and pursue paths that | found myself. He supported me in al my research pursuits with
his own enthusiasm and with a generous all ocation of resources, both human and machine.
Charles also has a great sense of humor, and we had fun, even giggling like children one
afternoon as we imagined how much more fun we would have playing the recycling game
(see Section 4.2) instead of hockey. Charlestells me that now | speak in grand ideas and
wave my armsalot. Could be worse.

Besides serving as my advisor, collaborator, and friend, Charles also showed me how
to clarify my writing with focused work and patience. It did not come easy. After one par-
ticularly long and grueling session of writing (Charles has infinite patience), | left Charles
office and the first person | stumbled upon was Tom Cormen. With a sigh, | asked him,
“have you ever written a paper with Charles?” He just looked at me like that is the stupi-
dest question I’ ve ever asked him (see [33]). Itisn't.

Much of the work in this thesis could not have been done without the collaboration
of the entire Cilk team. Led by Charles, this crackerjack team includes or has included
Shail Aditya now of Hewlett Packard, Matteo Frigo, Michael Halbherr now of the Boston
Consulting Group, Chris Joerg, Bradley Kuszmaul now of Yale University, Phil Lisiecki,

The research reported in this thesis was supported in part by the Advanced Research Projects Agency
(ARPA) under Grants N00014-94-1-0985 and N00014-92-J-1310. In addition, | was generously supported
throughout my graduate career by aNationa Science Foundation (NSF) Graduate Student Fellowship and an
ARPA High-Performance Computing Graduate Fell owship administered through the University of Maryland
Ingtitutefor Advanced Computer Study.

iv

Howard Lu, Rob Miller now of Carnegie Mellon University, David Park, Keith Randall,
Larry Rudolph, Sivan Toledo now of IBM, and Yuli Zhou now of AT& T Bell Laboratories.

Many peopleat MIT have made significant contributionsto thework inmy thesis. Much
of thecombinatorial technique and the delay-sequence argument used in Chapter 4, | learned
from Tom Leighton. Bonnie Berger helped with some of my early probabilistic analysis.
Esther Jesurum and Ethan Wolf helped with the lower bound. Eric Brewer now of the Uni-
versity of Californiaat Berkeley was my collaborator in some of my early foraysinto sys-
tem building. Otherswho have lent inspiration and ideasinclude Arvind, Tom Cormen now
of Dartmouth College, Frans Kaashoek, Arthur Lent, Greg Papadopoul os now of Sun, and
Bill Weihl. Scott Blomquist kept the CM5 and our network of workstations up and running.
David Jones provided extensive hel p with some of the subtleties of IATEX. Otherswho have
helped make my life easy (and fun) include Be Hubbard, Irena Kveraga, and Chery! Patton.

Several peoplefrom outside MIT aso made significant contributionsto thework in this
thesis. Bruce Maggs of Carnegie Mellon University outlined the delay sequence argument,
and Greg Plaxton of the University of Texasat Austin gavetechnica commentson therecy-
cling game analysis. Others who contributed ideas include Guy Blelloch of Carnegie Mel-
lon University, Warren Burton of Simon Fraser University, and Yanjun Zhang of Southern
Methodist University.

| would not have made it to MIT from Brown (where | was an undergraduate) had it
not been for some of the inspiring professors in Brown’'s math and computer science de-
partments. Tom Banchoff first turned me on to computer graphics; Jeff Vitter, now of Duke
University, first turned me on to theory and algorithms; John Savage first turned me on to
parallel computation; and Andy van Dam first turned me on to my future in computation. |
took my first computer science class from Andy, and | took my first adventureinto research
in Andy’s graphics group. From this beginning, Andy infected me with his exuberant sense
of excitement and wonder over a future in which anything can happen when computation
meets imagination. | was alessthan model student in my early yearsat Brown, and | know
| let him down on more than one occasion, but Andy must have seen something that nobody
else could, because he continued to take risks with me, presenting me with one opportunity
after another. When | took ayear off from Brown, Andy got me agreat job at asmall startup
company called Cadre Technologies, and later it was Andy who first suggested that | apply
to graduate school and then backed up the suggestion with a strong letter of recommenda-

tion. On thoselast two opportunities, | think | finally camethrough. | don’t know why Andy
took such a personal interest in me or why he was so unwaivering in his confidence, but |
think about him often and with gratitude and affection.

My yearsto date have been filled with humor, adventure, satisfaction, and fun, because
| have had the good fortune of good friends, some of whom | shall now mention ordered
from oldest to most recent. Danny Klein: Danny was my summer brother and best friend for
many years. The gang out at Horton Lakes, including the Horton family—Jack, Gretchen,
and John—Greg Cooper, and many others who have come and gone: It has been my privi-
lege and joy to waterski with thesefolksat their world-classsite. Max Kennedy: |’ ve never
met anyone with more energy, lessfear, or abigger heart, and hey man, Max and | had some
seriousfun. Jeff Cutler: Jeff and | drove cross country four times, discovered the precipice,
watched for suicide deer, went to Pete Freehafer’s wedding as the Goldberg brothers, and
had countless other silly adventures. | can’'t even write this without laughing. Liz Cohen:
Liz and | seem to have an unbreakable bond forged through some strange days and stranger
nights. AnnaHedly: Everyone who knows me well knows how important Annawasand is
to me. Werarely talk or see each other, but | still think about her often. Also, Annagot me
started as a pilot. Janet Barber: Janet is probably my best friend and the person | most en-
joy talking to and hanging around with. Going to Dead shows and living large with Janet in
Vegas was surely the best possible way to turn thirty. The gang from Motion Dynamics—
Slim, Dave, Mike, and Leo: These guys fixed my little race car whenever | wadded it up
in abal (often), and they were ahell of alot of fun to hang with. Former and present-day
Cadroids—Lou Bershad, Reed Flemming, Alan Hecht, Lou Mazzuchelli, Lou Reynolds,
and others: They wereand still are atalented and fun group of peopletowork and play with.
The entire Bar-Yam family—Miriam, Zvi, Yaneer, Aureet, and Sageet: The Bar-Yamsfirst
were my landlords in Cambridge but foremost are my cherished friends. Esther Jesurum:
Esther got me started playing hockey and was a fun waterskiing partner. Helen Greiner:
Helen was aways up for some fun. She would do anything except wear asilly hat.

My family is somewhat distant and rather peculiar but also quite wonderful, and | thank
them for their support and tolerance. My older brother Michael wasmy role model growing
up, and he inspired my interest in math and science. Michael is now an emergency room
doctor and saves lives every day. (On agood day, | can improve an algorithm.) My older
sister Mariafirst showed me the adventurous, and occasionally dangerous, side of life. My

vi

younger sister Joannais my closest relative spatially (she lives nearby in the Boston area),
temporally (we are one year and six days apart in age), and emotionally. Joannais married
to Brad Meiseles and has two sons Benjamin and Brandon. | have really enjoyed having
family, especially Benjamin and Brandon, nearby. My mother gave me tremendous con-
fidence and high expectations, and these qualities have brought me through some difficult
times. | think | get therational side of my character fromher. My father came to parenthood
rather latein life, but | don’t know that anyone ever worked at it harder or enjoyed it more.
| think I get the emotional side of my character from him. | hope | can be aswell liked and
well respected in my profession as he seems to have been in his.

ROBERT D. BLUMOFE
Cambridge, Massachusetts
August 18, 1995

Contents

1 Executing multithreaded programs efficiently
1.1 Scheduling multithreaded programs
1.2 Previousresultsandrelatedworko
1.3 Contributionsof thisthesis

2 A model of multithreaded computation
2.1 Multithreaded computation
22 Executiontime
23 EXECUliONSPACE v o e e

3 Strict multithreaded computations
3.1 Alowerboundforthegeneralcase
3.2 Thedrictnesscondition
3.3 Thebusy-leavesproperty

4 Work stealing
4.1 A randomized work-stealing algorithm oL
4.2 Atomic messages and therecyclinggame
4.3 Anayssof thework-stealing algorithm

5 Parallel programmingin Cilk
51 TheCilklanguageandruntimesystem
511 SpawnsandsynCs
5.1.2 Continuation-passingthreads.
513 TheCilk work-stealingscheduler
5.2 Performanceof Cilk applications
521 Cilkapplications e
522 Applicationperformance oL
523 Peformancemodelingo
5.3 A theoreticd analysisof the Cilk scheduler

6 Cilk on anetwork of workstations
6.1 Systemarchitecture
6.2 Adaptivepardlelism
6.3 Faulttolerance

7 Conclusions

100

105

A Proof of lower bound 107
B Cilk project status 114

Bibliography 115

List of Figures

11
12

21
22
2.3
24
2.5
2.6
2.7
2.8
29
2.10

31
3.2
3.3
3.4
3.5

41
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

Computing Fibonacci numbersinCandCilk 2
Measured Cilk applicationspeedups 4
A multithreaded computation 12
A 3-processor executionscheduleo oL 13
Acomputationdag 15
Aninfinite-processor executionschedule 16
Doingwork 18
Making progressonthecriticalpath 18
Anactivationtree L 20
Anactivationsubtree 20
A non-depth-firstcomputation, 21
Linear expansonof space 22
A strict multithreaded computation oL 28
Passing argumentsinto asubcomputation 29
Strict computationsaredepth-first oL 29
Depth-first computationscan be strictified 30
A 2-processor busy-leavesexecutionschedule 33
The structure of aprocessor'sreadydeque 39
Theready deque beforeand afteraspawn 40
Theready deque beforeand afteradeath 40
TheCilk procedureFib oo 55
Thecilk mainprocedure 56
ACilkspawntree 56
Cilkthreadsfibandsum i i ittt e 57
Successor and childthreads L. 57
Closuresand continuations 58
A closureforthefibthread 59
Thefibthread spawnsasuccessor o v v v v i v v oo u 59
The fib thread spawnstwochildren 60
ACilkdag 61
Thescheduler'sready pool 64
Thework performedinraytracing 67
Performanceof Cilk applications 69
Measured speedups for theknary benchmark 73

5.15 Measured speedups for the xSocrates chessprogram. 74

516 Aspeedupanomaly 75
517 ACilkcomputation L 77
5.18 Augmenting the Cilk computationdag 78
5.19 The structure of aprocessor’'sready pool 79
6.1 ACilkjobstarts. 91
6.2 AnidlemachinejoinsaCilkjob 92
6.3 A no-longer-idlemachineleavesaCilkjob 93
6.4 Assgning aclosureto athief subcomputation 97
6.5 Altering the continuationsinastolenclosure. 98
6.6 Thenumber of idle machinesinthenetwork 100
6.7 Theefficiency of adaptiveparallelism 101
A.1 Constructing a computation with no efficient execution schedule 108
A.2 Scheduling thecomputation’'schains 109

A.3 Laying out the computation’'schainsintothreads 111

Chapter 1

Executing multithreaded programs
efficiently

Inwriting aparallel applicationinamultithreaded language, aprogrammer expresses paral -
lelism by coding instructionsin a partial execution order, and the programmer or the com-
piler partitions these instructions into totally ordered sequences called threads. The pro-
grammer need not specify which processors of a parallel computer execute which threads
nor exactly when each thread should be executed. These scheduling decisions are made
automatically by the runtime system’s scheduler, and the program only requires that each
instruction of each thread is executed by some processor at atime consistent with the par-
tial order. Nevertheless, if the programmer is to relinquish control over these scheduling
decisions to the runtime system, then the runtime system must guarantee that it will make
good scheduling decisions to execute the program efficiently and with predictable perfor-
mance. In thisthess, we develop algorithmic foundations for the efficient scheduling of
multithreaded programs, and we build a multithreaded language and runtime system on top
of this foundation. In both agorithmic and empirical work, we show that for a large and
important class of multithreaded programs, a runtime system can deliver efficient and pre-
dictable performance, guaranteed.

1.1 Scheduling multithreaded programs

A multithreaded language provides programmers with a means to create and synchronize
multiple computational threads, and the runtime system for such a language automatically
schedul esthe execution of these threadson the processors of aparallel computer. To execute
amultithreaded program efficiently, the runtime system’s scheduler must keep the proces-
sors busy doing work in order to realize parallel speedup, and ssimultaneoudly, it must main-
tain memory usage to within reasonable limits and avoid interprocessor communication to
the greatest extent possible. In this section, we give an overview of the Cilk (pronounced
“dglk”) multithreaded language and runtime system. The Cilk runtime system’s scheduler is
built on an agorithmic foundation and is provably efficient with respect to time, space, and
communication. We shall also overview Cilk-NOW, an implementation of the Cilk runtime
system for networks of workstations. Cilk-NOW leverages properties of Cilk’s scheduling

1

2 Chapter 1. Executing multithreaded programs efficiently

algorithm in order to run Cilk programs efficiently in the dynamic and potentially faulty
environment of a network of workstations.

Consider a program that uses double recursion to compute the Fibonacci function. The
Fibonacci function fib(n) for n > 0 isdefined as

fib(n):{ n . ifn<2

fib(n— 1) +fib(n—2) otherwise.

Figure 1.1 shows how thisfunctioniswrittenin C and in Cilk. While doublerecursionisa
terribleway to compute Fibonacci numbers, thistoy example doesillustrate acommon pat-
tern occurring in divide-and-conquer applications. recursive calls solve smaller subcases
and then the partial results are merged to produce the final result. Notice that other than the

int Fib (int n) cilk int Fib (int n)
{ if (n<2) { if (n<2)
return n; return n;
else else
{ int x, y; { int x, y;
x = Fib (n-1); x = spawn Fib (n-1);
y = Fib (n-2); y = spawn Fib (n-2);
sync;
return (x+y); return (x+y);
} }
} }
(a) C function. (b) Cilk procedure.

Figure 1.1: A C function and a Cilk procedure to compute the nth Fibonacci number.

cilk keyword which identifies a Cilk procedure, the Cilk version differs fromits C coun-
terpart only initsuse of spawn and sync. The spawn keywords turn the recursivecallsinto
recursive spawns. A spawn isthe parallel analogue of aprocedurecall. Theinstructionsex-
ecuted by Fib form athread, and a spawn creates a new child thread that may execute con-
currently with its parent. Thus, when Fib performsthe two recursive spawns, the spawned
child threads may execute concurrently. After performing the spawns, Fib doesa sync to
synchronize with its children. When Fib gets to the sync statement, it must suspend and
wait until its two spawned children return. Only then may Fib proceed to add the return
values. Thus, the spawns and synchronizations specify apartial execution order on the pro-
gram’sinstructions.

The spawned threads must be executed by the processors of aparallel machineinaman-
ner consistent with the program-specified partial order, and in genera, the scheduling of
threadsto processors must be done at runtime. For many programs, the spawning of threads
depends on the input data, and for these programs the threads cannot even be identified un-
til runtime. Furthermore, even if the threads can be statically identified, determining the
execution time of any given thread may be as difficult as actualy running the thread, so
load-balancing considerations may dictate runtime scheduling. For these types of applica-
tions, we must separate the static expression of parallelismin the program fromthedynamic

1.1. Scheduling multithreaded programs 3

scheduling of threads at runtime. A multithreaded language permits this separation by in-
corporating a thread scheduler in its runtime system.

The Cilk language supports this separation with a set of extensions to the C language
for expressing parallelism and a runtime system that automatically exploits the program’s
parallelism on aparalel computer. Cilk applications coded to date include protein folding,
graphic rendering, backtrack search, and the xSocrates chess program, which won second
prize in the 1995 ICCA World Computer Chess Championship. The Cilk runtime system
is particularly easy to implement and easily portable. In fact, in several cases, individu-
als unfamiliar with Cilk have ported the runtime system to new machinesin under 1 week.
Currently, the Cilk runtime system runs on the Connection Machine CM5 MPP, the Intel
Paragon MPP, the Sun SparcStation SMP, the Silicon Graphics Power Challenge SMP, and
the Cilk-NOW network of workstations, discussed below.

The Cilk runtime system automatically manages the low-level details of thread schedul -
ing, and it does so with a “work-stealing” scheduler that is provably efficient. Writing a
high-performance parallel application in Cilk, the programmer can focus on expressing the
parallelismin the algorithm, insulated from scheduling details and secure in the knowledge
that the runtime system delivers guaranteed efficient performance. Figure 1.2 plots mea-
sured speedup values for alarge number of runs of the xSocrates chess program on the
CM5. Both axesarenormalized aswe shall explainwhen werevisit thisspeedup plot in Sec-
tion 5.2. For now, we think of the normalized machine size as the number P of processors
increasing from left to right, and we think of the normalized speedup smply as speedup—
theratio of the 1-processor execution timeto the P-processor executiontime. The45-degree
line and the horizontal line at 1.0 are upper bounds on the achievable speedup. This plot
shows that every run achieved near optimal speedup. This performanceis not the good for-
tune of a single application. Rather, we prove that for alarge and important class of pro-
grams, the Cilk runtime system achieves near optimal performance, guaranteed. Moreover,
Cilk givesthe user an agorithmic model of application performance based on the measures
of work—the total number of instructions executed—and critical path length—the length
of alongest path in the partia order of instructions—which can be used to predict the run-
timeof aCilk program accurately. Noticethat the measured speedup valuesin Figure 1.2 all
cluster on acurve. Aswe shall seein Section 5.2, this curveis defined as afunction of only
three parameters. work, critical path length, and the number of processors. Consequently,
a Cilk programmer can tune the performance of his or her application by focusing on the
work and critical path, unworried about machine specific performance details.

In order to execute Cilk programs efficiently on a network of workstations, the Cilk-
NOW runtime system implements “adaptive parallelism” and transparent fault tolerance.
Adaptive parallelism allows a Cilk program to take advantage of otherwise-idle machines
whether or not they are idle when the program starts running and whether or not they will
remain otherwiseidlefor the duration of therun. When agiven workstationisleftidleby its
owner, it automatically joinsin and helps out with the execution of a Cilk program. When
the owner returnsto work, the machine automatically retreats from the Cilk program. The
criteriato determine when a machine isidle can be customized for each machine. We be-
lieve that maintaining the owner’s sovereignty is essential if we want ownersto alow their
machines to be used for parallel computation. With transparent fault tolerance built into
the Cilk-NOW runtime system, Cilk jobs may survive machine crashes or network outages

4 Chapter 1. Executing multithreaded programs efficiently

17
%‘%Fﬁ* T+
B
= +
o A
@Mﬁ
+
& f'ﬂ
=
E
g
) 0.1 1 ﬁg
= [&
g zé#* Measured Value: +
—
o]
z &
&
4
BT
%
Vs
0.01+ &
T
0.01 0.1 1

Normalized Machine Size

Figure 1.2: Measured speedupsfor the xSocrates chess program.

despite the fact that Cilk programs are fault oblivious, having been coded with no special
provision for handling machine or network failures. If aworker crashes, then other workers
automatically redo any work that was lost in the crash. In the case of a more catastrophic
failure, such as a power outage or atotal network failure in which all workers may crash,
Cilk-NOW provides automatic checkpointing, so when serviceisrestored, the Cilk job may
be restarted with minimal lost work.

Recently, we ran a Cilk protein-folding application using Cilk-NOW on a network of
about 50 Sun SparcStations connected by Ethernet to solve alarge-scale problem. The pro-
gramranfor 9 days, survived several machine crashes and reboots, utilized 6566 processor-
hours of otherwise-idle cycles, with no administrative effort on our part, while other users
of the network went about their business unaware of the program’s presence. Adaptive par-
alelism and fault tolerance were invauable. In contrast, running the same experiment on
the CM5 required manually breaking the job into pieces small enough to complete in the
interval of time between repartitioningsand failuresof the machine and then manually com-
bining results. These pieceswere fed to the machine through shell scriptsto ensurethat the
machine executed these pieces even when we were not around to perform manual feeding.

The efficient and predictable performance of the Cilk runtime system and the adaptive
parallelism and fault tolerant features of Cilk-NOW are possible because Cilk is built on a
theoretically sound foundation. In particular, the Cilk programming model is highly struc-

1.2. Previous results and related work 5

tured and the Cilk runtime system’s scheduler employs a provably efficient scheduling al-
gorithm.

In establishing an agorithmic foundation for scheduling multithreaded computations,
we have proven a lower bound showing that in general there exist multithreaded compu-
tations for which efficient scheduling is impossible, and we have proven an upper bound
showing that for an important class of computations, efficient scheduling is possible. We
show that in general, there exist multithreaded computations with vast amounts of provably
useless parallelism. For such a computation, any execution schedule attempting to exploit
this parallelism must use an amount of space per processor vastly in excess of that required
by a 1-processor execution. On the other hand, we show that for the class of strict computa-
tions, al of the parallelism can beexploited. Intuitively, astrict computationisoneinwhich
threads only return values and synchronize with their ancestor threads. Computations, such
as those derived from divide-and-conquer, backtracking search, branch-and-bound, game-
tree search, and many other programs, are naturally strict and have large amounts of paral-
lelism. We show that for any strict computation and any number of processors, there exists
an execution schedule with execution time that is within a factor of 2 of optimal while us-
ing No more space per processor than that required by a 1-processor execution. We give a
simple, though impractical and nonscal able, algorithm to compute such efficient schedules.

For practical and scalable application, we giveasmpleand fully distributed online a go-
rithm for scheduling the execution of multithreaded computations. This algorithmis based
on the technique of random work stealing in which processors needing work steal threads
from other processors chosen at random. We show that for “fully strict” (well-structured)
computations, this algorithm is simultaneoudly efficient with respect to time, space, and
communication. In particular, this work-stealing algorithm achieves execution timethat is
universally optimal to within a constant factor, execution space that is existentially optimal
to within a constant factor, and communication that is also existentially optimal to within
a constant factor. This communication bound confirms the folk wisdom that work-stealing
algorithmsrequire much less communication than their “work-sharing” counterparts. Inour
analysis, we conservatively assume that when multiple processors simultaneously attempt
to access asingle data structure, then their accesses are serialized in an order determined by
an adversary. These bounds are the first proven bounds for the case of computations with
synchronization. The Cilk runtime system’s schedul er implementsthis work-stealing algo-
rithm.

1.2 Previous results and related work

The Cilk runtime system differs from other systems for parallel multithreaded program-
ming primarily in its algorithmic foundation and its ability to deliver performance guaran-
tees. Nevertheless, the algorithmic work builds on earlier work focused on morerestrictive
models of multithreaded computation. Likewise, the Cilk programming model and runtime
system—including Cilk-NOW—build onideasfound in earlier systems. Inthissection, we
look at other theoretical resultsand systems that address scheduling issues for dynamic par-
alel computation. We shall not look at data-parallel systems|[8, 53] nor at systems focused

6 Chapter 1. Executing multithreaded programs efficiently

oninfrastructure such as distributed shared memory [4, 6, 29, 39, 59, 60, 66, 73, 87, 92, 93]
or message passing [43, 96, 104, 105].

Substantial research has been reported in the theoretical literature concerning the sched-
uling of dynamic computations. In contrast to our research on multithreaded computations,
however, other theoretical research has tended to ignore space requirements and communi-
cation costs. Related work in this area includes a randomized work-stealing algorithm for
load balancing independent jobs[89]; algorithmsfor dynamically embedding treesin fixed-
connection networks [5, 71]; and algorithms for backtrack search and branch-and-bound
[61, 65, 75, 86, 109]. Backtrack search can be viewed as a multithreaded computation with
no synchronization, and in the work just cited, the only algorithm with reasonable space
bounds is the random work-stealing algorithm of Karp and Zhang [65, 109], though they
did not make this observation until the later work of Zhang and Ortynski [108]. Our results
specialize to match theirs.

Likewise, most of the systems-oriented work on multithreading has ignored the space
issue. Notable exceptions include the k-bounded loops of Culler and Arvind [34, 35, 36]
and the throttling mechanism of Ruggiero and Sargeant [90]. These techniques and others
[56, 57] have met with some success, though none have any algorithmic foundation.

In algorithmic work that considers space requirements or communication costs, most
prior work has focused on cases like backtrack search with no synchronization or has fo-
cused on time and space to the exclusion of communication costs. Besides the work of
Karp, Zhang, and Ortynski already mentioned, Wu and Kung [107] proved a lower bound
on communication requirements in parallel divide-and-conquer programs, and Wu [106]
givesadistributed algorithmfor scheduling parallel divide-and-conquer programs on fixed-
connection networks. These analysesfocuson thetree-growing stage of divide-and-conquer
programs, so they do not consider the case when synchronizationisinvolved. For programs
with nested fine-grained paralelism, Blelloch, Gibbons, and Matias [9] give a scheduling
algorithm and prove that it is efficient with respect to both time and space. Burton [18]
shows how to limit space in certain parallel computations without causing deadlock, and
Burton and Simpson [19] give an offline algorithm that is efficient with respect to time and
gpacein avery general model of multithreaded computation. In contrast, our work presents
ascheduling algorithmthat isdistributed and online and is provably efficient with respect to
time, space, and communication for alarge class of multithreaded computations. Like the
algorithm of Karp and Zhang, our algorithm uses the technique of random work stealing.

The work-stealing idea is not a new one, but until our results, studies of work stealing
have been based on heuristic notions and the algorithmic work has focused on particularly
simple types of computations, such as the backtrack search already discussed. The work-
stealing idea dates back at least as far as Burton and Sleep’s research [20] on parallel exe-
cution of functional programs and Halstead's implementation of Multilisp [51, 52]. These
researchers observed that heuristically, by having each processor work asif it is the only
one (i.e, in serial, depth-first order) and having idle processors steal threads from others,
space requirements and communication requirements should be curbed. Since then, many
researchers have implemented variants on this strategy [41, 42, 44, 50, 67, 70, 77, 81, 84,
94, 103]. Cilk’swork-stealing scheduler is very similar to the schedulers in some of these
other systems, though Cilk’s algorithm uses randomness and is provably efficient.

Many multithreaded programminglanguages and runtime systems are based on heuristic

1.3. Contributions of this thesis 7

scheduling techniques. Though systems such as Charm [91], COOL [27, 28], Id [3, 37, 80],
Olden[22], and others[29, 31, 38, 44, 54, 55, 63, 88, 98] are based on sound heuristicsthat
seem to performwell in practice and generally have wider applicability than Cilk, none are
ableto provide any sort of performance guarantee or accurate machine-independent perfor-
mance model. These systems require that performance-minded programmers become inti-
mate with acollection of scheduling heuristics and, in some cases, machine-specific details.
In contrast, Cilk delivers guaranteed performance and provides a machine-independent per-
formance abstraction based on work and critical path length.

The use of work and critical path length to analyze parallel algorithms and model ap-
plication performanceis aso not new. Work and critical path have been used in the theory
community for yearsto analyze parallel agorithms[64]. Blelloch [8] has devel oped a per-
formance model for data-parallel computations based on these same two abstract measures.
He cites many advantages to such a model over machine-based models. Cilk provides a
similar performance model for the domain of multithreaded computation.

Adaptive parallelism, as implemented in Cilk-NOW, finds earlier incarnations, though
most parallel runtime systems employ static job-scheduling strategies. Massively parallel
supercomputers such as the Cray Research T3D or the Thinking Machines CM5, for ex-
ample, either dedicate themselves to asingle user at atime or gang-timeshare within fixed
size partitions[72]. Systems such as Charm [91], the Parform [21], PV M/Hence [96], and
others[29, 42, 44, 97] support paralel computing on a network of workstations. In these
systems, the set of machines on which the program runs is chosen statically by the user.
Distributed operating systems [30, 82, 98, 99] and other systems[32, 40, 68, 74, 79, 110]
provide transparent process placement and (in some cases) migration, but these systems are
geared towards large serial programs or coarse-grain distributed programs. A system that
doesprovide adaptive parallelismisPiranha[23, 46, 62]. (The creatorsof Piranhaappear to
have coined the term “adaptive parallelism.”) Based on Linda [24], Piranha s adaptive par-
allelismleverages structurein the Linda programming model much as Cilk-NOW leverages
structurein the Cilk programmingmodel. Adaptiveparallelismisalso presentinthe Benev-
olent Bandit Laboratory (BBL) [40], a PC-based system. The BBL system architectureis
closely related to Cilk-NOW'’s. The Prospero resource manager [78] also employsasmilar
system architecture. Runtime systems for the programming language COOL [28] running
on symmetric multiprocessors [101, 102] and cache-coherent, distributed, shared-memory
machines [26, 69] use process control to support adaptive parallelism. These systems rely
on specia-purpose operating system and hardware support. In contrast, Cilk-NOW sup-
ports adaptive parallelism entirely in user-level software on top of commercial hardware
and operating systems.

We are currently aware of no other runtime system for a multithreaded programming
language that provides transparent fault tolerance.

1.3 Contributions of this thesis

This thesis shows that with a well-structured programming model built on an algorithmic
foundation, multithreaded programs can be executed efficiently with guaranteed and pre-

8 Chapter 1. Executing multithreaded programs efficiently

dictable performance. The principal contributions of thisthesis are the following:

e Alower bound that shows that without some kind of structure, it is possible to write
multithreaded programs that are impossible to schedule efficiently for parallel exe-
cution. We give the first proof that parallelism obtained by nonstrict execution order
may be chimerical. In these cases, any attempt to exploit this parallelism requires
vastly more space per processor than required for a 1-processor execution.

e An upper bound that shows that strictness is sufficient structure for efficient parallel
execution of multithreaded programs. We show that any parallelism obtainable with
strict execution order can be exploited without using any more space per processor
than required for a 1-processor execution.

e A provably efficient scheduling algorithm for multithreaded programs. This online
and distributed agorithm is based on the popular technique of work stealing. We
prove that for the case of fully strict computations, this algorithm is simultaneously
efficient with respect to space, time, and communication. This is the first provably
efficient algorithm for scheduling multithreaded computations with synchronization.

e Cilk: alanguage and runtime system for multithreaded programming. The Cilk lan-
guage is based on C, and the Cilk runtime system uses the provably efficient work-
stealing scheduler. Using severa applications, we show empirically that Cilk’swork-
stealing scheduler is efficient in practice. We further show that the performance of
Cilk applications can be predicted accurately using a simple model based on two ab-
stract measures. work and critical path length.

e Cilk-NOW an implementation of the Cilk runtime system on a network of worksta-
tions. Cilk-NOW leverages the structure in Cilk’s programming model in order to
implement adaptive paralelism and fault tolerance. These features allow Cilk pro-
gramsto run efficiently on anetwork of workstations. With adaptive parallelism, Cilk
programs can run on a set of workstations that grows and shrinks dynamically. With
fault tolerance, Cilk programs continueto run even if some of the workstations crash.

The remainder of thisthesisis organized as follows. In Chapter 2, we present a graph-
theoretic model of multithreaded computation. Thismodel formsthe basisfor our analysis.
In Chapter 3, we present thelower bound showing that in general, there exist multithreaded
computations for which efficient scheduling isimpossible. We defer the proof of thislower
bound to Appendix A. Additionally, in Chapter 3, we define strictness and we show that
strictness is a sufficient structure to guarantee the existence of efficient execution sched-
ules. In Chapter 4, we present and analyze the work-stealing scheduling algorithm. The
essential ideas of thisagorithm are implemented in the runtime system for the Cilk multi-
threaded language. In Chapter 5, we present the Cilk language and the implementation of
the Cilk runtime system. We aso show both empirically and analytically that the Cilk run-
time system delivers efficient and predictabl e performance. The anaysisbuildson thework
of Chapter 4. In Chapter 6, we present the implementation of adaptive parallelism and fault
tolerancein Cilk-NOW. Finally, in Chapter 7, we conclude and discuss current and planed
work to add distributed shared memory to Cilk using “dag consistency” [11]. The reader

1.3. Contributions of this thesis 9

interested only in the system-building contributions of this thesis may safely skip ahead to
Chapter 5 and pass over Section 5.3. Information about the current and forthcoming Cilk
software releases can be found in Appendix B.

Chapter 2

A model of multithreaded
computation

The execution of amultithreaded program grows adirected, acyclic graph of “instructions”
and atree of “threads.” The size and longest path length of the graph provide bounds on
the achievable execution time. The height of the tree provides a bound on the achievable
execution space. In this chapter, we shall introduce our graphical model of multithreaded
computation and then use it to derive smple bounds on execution time and space. Sec-
tion 2.1 presents the model. We then use this model in Section 2.2 to derive time bounds
and in Section 2.3 to derive space bounds. This model and associated bounds equip uswith
an algorithmic foundation for analyzing scheduling algorithms (Chapters 3 and 4) and pre-
dicting Cilk application performance (Chapter 5).

2.1 Multithreaded computation

A multithreaded computation models the time and space resource requirementsin the exe-
cution of amultithreaded program. Thismodel containsagraph of instructionsand atree of
threads that unfold dynamically during program execution. In this section, we present this
model and definewhat it meansfor aparallel computer to execute amultithreaded computa-
tion. Inthe next two sections we shall quantify and bound the time and space requirements.

A multithreaded computation is composed of a set of threads, each of which is a se-
guential ordering of unit-size instructions. A processor takes one unit of time to execute
one instruction. In the example computation of Figure 2.1, each shaded block is a thread
with circles representing instructions and the horizontal edges, called continue edges, rep-
resenting the sequential ordering. Thread I's of this example contains 3 instructions. vy,
V11, and vio. Theinstructions of athread must executein this sequential order from thefirst
(leftmost) instruction to the last (rightmost) instruction. In order to execute athread, we al-
locatefor it ablock of memory, called an activation frame, that theinstructions of the thread
can use to store the values on which they compute.

The research reported in this chapter isjoint work with Charles Leiserson of MIT’s Laboratory for Com-
puter Science and was first published in [13].

11

12 Chapter 2. A model of multithreaded computation

Figure 2.1: A multithreaded computation. Thiscomputation contains 20 instructionsvy, Vo, . . ., Vog
and 6 threads 1, o,..., 6.

An execution schedule for amultithreaded computati on determines which processors of
aparallel computer execute which instructions at each step. In any given step of an execu-
tion schedule, each processor either executes asingle instruction or sitsidle. A 3-processor
execution schedule for our example computation (Figure 2.1) is shown in Figure 2.2. At
step 3 of this example, processors p; and p, each execute an instruction while processor
ps Sitsidle. An execution schedule depends on the particular multithreaded computation,
sinceit must observethe sequential ordering of theinstructionsin each thread. Specificaly,
if an instruction has a predecessor—that is, an instruction that connectsto it viaacontinue
edge—initsthread, then no processor may execute that instruction until after the predeces-
sor has been executed.

During the course of itsexecution, athread may create, or spawn, other threads. Spawn-
ing athread is like a subroutine call, except that the spawning thread can operate concur-
rently with the spawned thread. We consider spawned threads to be children of the thread
that did the spawning, and a thread may spawn as many children asit desires. In thisway,
the threads are organized into a spawn tree as indicated in Figure 2.1 by the downward-
pointing, shaded edges, called spawn edges, that connect threadsto their spawned children.
The spawn treeisthe parallel analog of acall tree. In our example computation, the spawn
tree’sroot thread "1 hastwo children, ', and g, and thread I, has three children, '3, 4,
and 5. ThreadsT 3, 4, I's, and g, which have no children, are leaf threads.

Each spawn edge goes from a specific instruction—the instruction that actually doesthe
spawn operation—in the parent thread to the first instruction of the child thread. An exe-
cution schedule must obey this edge in that no processor may execute an instruction in a
spawned child thread until after the spawning instruction in the parent thread has been exe-
cuted. In our example computation (Figure 2.1), due to the spawn edge (g, V7), instruction
v cannot be executed until after the spawning instruction vg. Consistent with our unit-time
model of instructions, a single instruction may spawn at most one child. When the spawn-

2.1. Multithreaded computation 13

processor activity
step living threads P1 P2 D3
1T, | o
2| Iy Vg
3|1 It Iy U3 V14
4 I I', I's L' U4 Ve V1s
517 I'y, T's Ty I's Us Vg V16
6| I I ry I's Iy U7 V10 v17
71 Iy ', Ds vg v18
8|I't Iy I's V19 V11
9| I, Iy Ir';s V12
10| Iy Iy V13
11|14 V20

Figure 2.2: A 3-processor execution schedule for the computation of Figure 2.1. This schedule
liststheliving threads at the start of each step, and theinstruction (if any) executed by each of the 3
processors, p1, P2, and ps, a each step. Living threads that are ready are listed in bold. The other
living threads are stalled.

ing instruction is executed, we allocate an activation frame for the new child thread. Once
a thread has been spawned and its frame has been allocated, we say the thread is alive or
living. When the last instruction of athread gets executed, the thread dies and we dedllo-
cate itsframe. In our 3-processor execution schedule (Figure 2.2), thread I'5 is spawned at
step Sand diesat step 9. Therefore, it isliving a steps 6, 7, 8, and 9.

Spawns introduce parallelism, but a given execution schedule may or may not exploit
this parallelism. For example, when thread I, spawns children I3 and I 4, these two child
threads may be executed concurrently on different processors. Alternatively, asingle pro-
cessor may execute both threads, possibly interleaving their instructionsin some way.

In addition to the continue and spawn edges, amultithreaded computation may al so con-
tain dependency edges, asillustrated in Figure 2.1 by the curved edges. Dependency edges
model the data and control dependencies between threads. As an example of a data depen-
dency, consider an instruction that produces a data value consumed by another instruction.
Such aproducer/consumer rel ationshi p precludesthe consuming instruction from executing
until after the producing instruction. A dependency edge from the producing instruction to
the consuming instruction enforces this ordering. An execution schedule must obey this
edge in that no processor may execute the consuming instruction until after the producing
instruction has been executed. For example, due to the dependency edge (vs, v11), instruc-
tion vy, cannot be executed until after vs.

Dependency edges allow threads to synchronize. Consider again the case of a depen-
dency edge that models a producer/consumer data dependency. If the execution of the con-
suming thread arrives at the consuming instruction before the producing instruction has ex-
ecuted, then execution of the consuming thread cannot continue—thethread stallsand must
suspend itsexecution. Oncethe producinginstruction executes, the dependency isresolved,

14 Chapter 2. A model of multithreaded computation

thereby enabling the consuming thread to resume with its execution—the thread becomes
ready. Thus, the dependency edge allowsthe consuming thread to synchronizewith the pro-
ducing thread. For example, at step 4 of our 3-processor execution schedule (Figure 2.2),
thread I'; is stalled at instruction vqg, because instruction vg has not yet been executed. At
step 5 instruction vg is executed by processor p,, thereby enabling thread M. At step 6,
thread I ; isready at instructionvyg. A multithreaded computation does not model the mech-
anism by which dependencies get resolved or unresolved dependencies get detected. In
Chapter 5 we present Cilk’s implementation of such a mechanism.

An execution schedule must obey the constraints given by the dependency, spawn, and
continue edges of the computation. These edges form a directed graph of instructions, and
NO processor may execute an instruction until after all of the instruction’s predecessors in
thisgraph have been executed. So that execution schedules exist, thisgraph must beacyclic.
That is, it must be adirected acyclic graph, or dag. At any given step of an execution sched-
ule, an instruction isready if all of its predecessors in the dag have been executed. Only
ready instructions may be executed.

The notion of an execution schedule isindependent of any real machine characteristics.
An execution schedule smply requires that no processor executes more than one instruc-
tion per time step and every instruction is executed at atime step after all of its predecessor
instructions (which connect to it via continue, spawn, or dependency edges) have been ex-
ecuted. A given execution schedule may not be viable for areal machine, since the sched-
ule may not account for properties such as communication latency. For example, in our 3-
processor execution schedule (Figure 2.2), instruction vy1 isexecuted at step 8 by processor
p3 exactly one step after vg is executed by processor p;, even though there is adependency
between them that surely requiressomelatency to beresolved. Inlater chapterswewill turn
attention to computing execution schedules for real machines.

To summarize, amultithreaded computation can be viewed as a dag of instructions con-
nected by continue, spawn, and dependency edges. The instructions are connected by con-
tinue edges into threads, and the threads form a tree with the spawn edges. When athread
is spawned, an activation frameis allocated and this frame remains allocated aslong as the
thread remains alive. A living thread may be either ready or stalled due to an unresolved
dependency.

It isimportant to note the difference between what we are calling a multithreaded com-
putation and a program. A multithreaded computation is the “parallel instruction stream”
resulting from the execution of amultithreaded programwith agiven set of inputs. Unlikea
serial computation in which the instruction stream is totally ordered, a multithreaded com-
putation only partialy orders its instructions. In general, a multithreaded computation is
not a statically determined object, rather the computation unfolds dynamically during exe-
cution as determined by the program and the input data. For example, aprogram may have
conditionals, and therefore, the order of instructions (or even the set of instructions) exe-
cuted in athread may not be known until the thread is actually executed. We can think of a
multithreaded computation as encapsul ating both the program and the input data. The com-
putation then revealsitself dynamically during execution.

We shall characterizethe time and space of an execution of amultithreaded computation
in terms of three fundamental parameters. work, critical path length, and stack depth. We
first introducework and critical path length, which relate to the execution time, and then we

2.2. Execution time 15

critical
path
length

Figure 2.3: The dag corresponding to the computation of Figure 2.1. The critical paths, each 10
instructionslong, are shown bold.

focus on stack depth, which relates to the storage requirements.

2.2 Execution time

Execution timerequirementsare captured intwo fundamental measures of the multithreaded
computation’sgraph of instructions: work and critical path length. In thissection, wedefine
thework and critical path length of amultithreaded computation, and we use these measures
to derive ssimple bounds on execution time.

If we ignore the shading in Figure 2.1 that organizes instructionsinto threads, our mul-
tithreaded computation isjust a dag of instructions. The dag corresponding to the example
computation of Figure 2.1 isshown in Figure 2.3. We define the work of the computation to
be the total number of instructionsand the critical path length to be the length of alongest
directed path in the dag. In the case of our example, the work is 20 instructions and the
critical path length is 10 instructions.

We quantify and bound the execution time of a computation in terms of the computa-
tion’swork and critical path length. For a given computation, let T(X) denote the time to

16 Chapter 2. A model of multithreaded computation

processor activity

step living threads PL P2 Pp3s pa Ps Perc-
11y | v1

2| Iy Vg

3| I Iy U3 V14
4114 I'y I's I | vy vs V1s
5/ I's T's Ty I's | vs v vg s
6|T; I, ry s Iy Vg Vo V17 Vig
71T, Ty I's V11 V19
8| It Iy I's V12

9|17 I V13

10 | I'y V20

Figure 2.4: Aninfinite-processor execution schedulefor thedag of Figure 2.3. The maximum num-
ber of instructionsexecuted at any time step is4 (steps 5 and 6), and the average number of instruc-
tions executed per time step is 2 (20 total instructionsdivided by 10 steps).

execute the computation using a given P-processor execution schedule X, and let
Tp= mi nT(X)

denote the minimum execution time over all P-processor execution schedules X. Then Ty is
the work of the computation, since a 1-processor computer can only execute oneinstruction
at each step, and T, isthe critical path length, since even with arbitrarily many processors,
each instruction on apath must execute serialy. Inour exampledag (Figure2.3), T, = 20(a
single processor can execute the instructionsin the order vy, Vs, . . ., Vpg Since thisis atopo-
logical sort of thedag), and T = 10 (an infinite-processor execution schedul e that achieves
thistimeis shown in Figure 2.4).

Thework Ty and critical path length T, are not intended to denote the execution timeon
any real single-processor or infinite-processor machine. These quantities are abstractions
of a computation and are independent of any real machine characteristics such as commu-
nication latency. We can think of T; and T, as execution times on an ideal machine with
no scheduling overhead. Nevertheless, we show in Chapter 5 that despite their abstract na-
ture, with agood scheduling algorithm, work and critical path length have alot to say about
actual execution time of actual programson actual machines.

Still viewing the computation as a dag, we borrow some basic results on dag scheduling
to bound Tp. A computer with P processors can execute at most P instructions per step,
and since the computation has T; instructions, we have the lower bound Tp > T, /P. And,
of course, we also have the lower bound Tp > T.. Early independent work by Brent [16,
Lemma 2] and Graham [48, 49] yields the upper bound Tp < T;/P+ Te. The following
theorem extendsthese results minimally to show that thisupper bound on Tp can be obtained
by any greedy schedule: oneinwhich at each step of the execution, if at least P instructions
are ready, then P instructions execute, and if fewer than P instructions are ready, then all
execute. Both of our example schedules (Figures 2.2 and 2.4) are greedy.

2.2. Execution time 17

Theorem 2.1 (The greedy-scheduling theorem) For any multithreaded computation
with work T; and critical path length T., and for any number P of processors, any greedy
P-processor execution schedule X achieves T(X) < T1/P + Tw.

Proof: Let G = (V,E) denotetheunderlying dag of the computation. Thus, we have |V| =
Ty, and alongest directed path in G haslength T... Consider agreedy P-processor execution
schedule X, wherethe set of instructionsexecuted at timestept, fort = 1,2, . .., k, isdenoted
N, withk=T(X). The 14 form a partition of V.

We shall consider the progression (Gg, G1, G, ..., Gy) of dags, where Gy = G, and for
t=12....k, wehave \} = V,_1 — U and G is the subgraph of G;_; induced by V4. In
other words, G; is obtained from G;_, by removing from G,_; al theinstructions that are
executed by X at step t and all edges incident on these instructions. We shall show that
each step of the execution either decreases the size of the dag or decreases the length of the
longest path in the dag.

We account for each step t according to |74|. Consider astep t with | 74| = P. (Such
a step of our example 3-processor execution (Figure 2.2) is shown in Figure 2.5.) In this
case, M| = [Vi_1] — P, so since |V| = Ty, there can be at most | T, /P| such steps. Now
consider a step t with |74] < P. (Such a step of our 3-processor execution is shown in
Figure 2.6.) Inthis case, since X is greedy, 74 must contain every vertex of G;_1 with in-
degree 0. Therefore, thelength of alongest pathin G; isonelessthan the length of alongest
path in G;_1. Since the length of alongest path in G is T, there can be no more than T,
stepst with | 4| < P.

Consequently, the time it takes the P-processor schedule X to execute the computation
iIST(X) < |T1/P| 4 T < T1/P+ To. m

The greedy-scheduling theorem (Theorem 2.1) can beinterpreted in two important ways.
First, thetimebound given by thetheorem saysthat any greedy scheduleyieldsan execution
timethat iswithin afactor of 2 of an optimal schedule, which follows because Ty /P4 Teo <
2max{T;/P, T} and Tp > max{T;/P, T }. This observation was first made by Graham
[48]. Second, the greedy-scheduling theorem tells us when we can obtain linear speedup,
that is, when we can find a P-processor execution schedule X such that T(X) = ©(Ty/P).
Specifically, when the number P of processors is no more than T;/Tw, then Ty /P > T,
which implies that for a greedy schedule X, we have T(X) < 2T, /P. Theratio T1/Tw iS
called the average parallelism. Looking at the example dag of Figure 2.3, if wethink of the
work T, astheareaof thedag and thecritical path length T, asthe height of the dag, thenthe
average parallelism T,/ To, is the average width of the dag. Our example has average par-
alelism T; /T = 20/10 = 2. We can aso think of the average parallelism as the average
number of instructions executed per step of a greedy, infinite-processor execution schedule
(Figure 2.4). We shall be especially interested in the regime where P = O(T;/To) and lin-
ear speedup is possible, since outside this regime, linear speedup isimpossible to achieve
because Tp > Tw.

These results on dag scheduling have been known for years. A multithreaded computa-
tion, however, adds further structure to the dag: the partitioning of instructions into atree
of threads. This additional structure allows us to quantify the space required in executing
a multithreaded computation. Once we have quantified space requirements, we will look

18 Chapter 2. A model of multithreaded computation

°
/Z\ -
X2

Figure 2.5: Step 6 inthe 3-processor execution of our example computation. The faint instructions
have aready been executed. The white-on-black instructions are the ones actually executed at this
step. All 3 processors do work at this step.

@\@\/@

Figure 2.6: Step 7inthe 3-processor execution of our examplecomputation. At thisstep aprocessor
sitsidle. Nevertheless, every instruction with in-degree 0 get executed, and consequently, the length
of the critical path isreduced by 1.

2.3. Execution space 19

back at the greedy-scheduling theorem and consider whether there exist execution sched-
ules that achieve similar time bounds while also making efficient use of space. Of course,
wewill haveto quantify a space bound to capture what we mean by “ efficient use of space.”

2.3 Execution space

A multithreaded computation models execution space requirements in the spawn tree of
threads. In this section, we shall focus on a single measure of thistree: stack depth. We
use this measure to derive ssmple bounds on execution space, and then we formalize our
goal to achieve “efficient use of space.”

In our analysis of space requirements, we shall only analyze “stack-like” memory. We
say that memory is stack-likeif itsallocation and deall ocation obey the following rules. No
instruction allocates memory if its thread could possibly have a living child when the in-
struction is executed, and all memory allocated for athread is deallocated before or when
the thread dies. For now, we shall smplify our notion of stack-like memory by assuming
that all memory for athread is allocated in an activation frame when the thread is spawned
and deallocated when the thread dies. With this assumption, the space being used at any
time step t is equal to the sum of the sizes of the activation frames of the threads that are
living at step t, and the total space used in executing a computation is the maximum such
value over the course of the execution. For now, we shall also assumethat aparent thread re-
mainsaliveuntil all itschildrendie. Though these assumptionsare not absol utely necessary,
they ssimplify our analysis of space utilization by giving the execution anatural structure. In
the next chapter, we shall see how these assumptions can be relaxed to account for arbitrary
stack-like memory.

The multithreaded computation’s spawn tree of threads naturally givesrise to a corre-
sponding tree of activation frames. We call thistree the activation tree. The activation tree
corresponding to the example computation of Figure 2.1 isshown in Figure 2.7. Each node
of the activation treeisan activation frame drawn as a block with height equal to the size of
the frame. We define the stack depth of athread to be the sum of the sizes of the activation
framesof al itsancestors, including itself. The stack depth of amultithreaded computation
isthe maximum stack depth of any thread. In Figure 2.7, each child frame hasitstop aligned
with its parent’s bottom. Thus, we can view the computation’s stack depth as the depth of
the activation tree.

We define the spawn subtree at any time step t to be the portion of the spawn tree con-
sisting of just those threads that are alive at step t. Analogously, we define the activation
subtree. The activation subtree at step 7 of our example 3-processor execution (Figure 2.2)
isshownin Figure2.8. The space used at timestep t equalsthe size of the activation subtree
at step t, and thetotal space used in executing acomputation isthe maximum such valueover
the course of the execution. In our example 3-processor execution, this maximum space us-
age occursat step 5 when the activation subtree containsaframefor every thread except I's.

We shall denote the space required by a P-processor execution schedule X of a multi-
threaded computation by S X). Sincewe can aways simulate aP-processor execution with

20 Chapter 2. A model of multithreaded computation

M
Mo—— Fg—— stack
-
I 3 I 4 I 5

Figure 2.8: The activation subtree at step 7 in the 3-processor execution of our example computa-
tion. Threads not currently living are faint.

a 1-processor execution that uses no more space, we have §; < S(X), where
=min
S1 = minS(X)

denotes the minimum space used over all 1-processor execution schedules X.
The following simple theorem shows that the stack depth of a computation is a lower
bound on the space required to execute it.

Theorem 2.2 Let S be the stack depth of a multithreaded computation, and let X be a
P-processor execution schedule of the computation. Then, we have S X) > §, and more
specifically, we have S; > .

Proof: In any schedule, the leaf thread with greatest stack depth must be aive at some
timestep. Sincewe assumethat if athread isalive, its parent isalive, when the deepest |eaf
thread is alive, al its ancestors are alive, and hence, al its ancestors' frames are allocated.
But, the sum of the sizes of its ancestors activation framesis just the stack depth. Since
S(X) > $ holdsfor any P-processor schedule X and all P, it holds for the minimum-space
execution schedule, and hence, we have S; > S. n

Given thelower bound of stack depth on the space used by a P-processor schedule, itis
natural to ask whether the stack depth can be achieved as an upper bound. In genera, the

2.3. Execution space 21

answer isno, sinceall thethreadsin acomputation may contain acycle of dependenciesthat
forceall of themto besimultaneoudy livinginany execution schedule. Figure2.9illustrates
such acomputation. For the class of “depth-first” computations, however, space equal to the
stack depth can be achieved by a 1-processor schedule.

Figure 2.9: The dependency edgesin this computation form cyclesthrough all of the child threads,
though they do not create any cycle of instructions. Any execution schedule must have al 4 of this
computation’ sthreads simultaneously living at some step. Thiscomputation isnot depth-first, since
the dependency edges, (v7,vs) and (v11,Vv7), violate the left-to-right depth-first order, vi,vs, ..., vi3.

A depth-first multithreaded computation is a multithreaded computation in which the
“left-to-right depth-first” search of instructions in the computation aways visits al of any
giveninstruction’spredecessorsin the dag beforeit visitsthe giveninstruction. Specificaly,
we define the left-to-right depth-first order of instructions as follows. If we ignore the de-
pendency edgesinthedag and just |ook at theinstructions connected by continue and spawn
edges, we have abinary treerooted at thefirst instruction of theroot thread. Any instruction
with 2 children in this tree must connect to one child by a spawn edge and the other child by
acontinue edge. We consider a child connected to its parent by a spawn edge to be the left
child and a child connected to its parent by a continue edge to be the right child. The left-
to-right depth-first order is then the order of instructions visited by a preorder walk of this
tree[33]. For example, theleft-to-right depth-first order for the computation of Figure2.9is
vy, Vo, ..., V13. Now considering the dependency edges again, a multithreaded computation
isdepth-first if thisleft-to-right depth-first order yieldsa 1-processor execution schedule. In
other words, the computation is depth-first if none of its dependency edges violate its | eft-
to-right depth-first order. The computation of Figure 2.9 is not depth-first, since the depen-
dency edges, (v7,Vv3) and (v11,Vv7), violate the left-to-right depth-first order, vi, v, .. ., vi3.
On the other hand, our example computation of Figure 2.1 is depth-first: 1 processor exe-
cuting instructionsin the order vi, v, . . ., Vo iIsa valid execution schedule.

In fact, for depth-first computations, this left-to-right depth-first order produces a 1-
processor execution schedule which is just the familiar seria stack-based execution. This
execution begins with the root thread and executes its instructions until it either spawns a
child thread or dies. If the thread spawns a child, the parent thread is suspended to be re-
sumed only after the child thread dies; the scheduler then beginswork on the child, execut-
ing the child until it either spawns or dies.

Theorem 2.3 For any depth-first multithreaded computation with stack depth §, we have
S =S

22 Chapter 2. A model of multithreaded computation

Proof: At any timein a serial depth-first execution of the computation, the set of living
threads always forms a path from the root. Therefore, the space required is just the stack
depth of the computation. By Theorem 2.2, we have S; > §, and thus the space used isthe
minimum possible. m

For the remainder of this thesis, we shall focus on depth-first multithreaded computa-
tions, and therefore, we shall use S; to denote stack depth.

We now turn our attention to determining how much space S .X') a P-processor execution
schedule X can use and still be considered efficient with respect to space usage. Our strategy
is to compare the space used by a P-processor schedule with the space S; required by an
optimal 1-processor schedule. Of course, we can alwaysignore P — 1 of the processorsto
match the single-processor space bounds, and therefore, our goal isto use small spacewhile
obtaining linear speedup. We argue that a P-processor execution schedule X that uses space
S X) = O(SP) isefficient.

There exist very simple multithreaded computations that require ©(S;P) space in order
to achieve linear speedup. Consider the following computation. The root thread is aloop
that spawnsachildthread for each iteration, and each child thread isaleaf. The computation
has the activation tree shown in Figure 2.10. The root activation frameis negligiblein size
compared with theleaves (itschildren). A single processor executing thiscomputation uses
only the space needed for a single iteration (plus the space used by the root), since upon
completionof aniteration, all the memory can befreed and then reused for the next iteration.
Thus, S; isdightly larger than the size of asingle leaf activation frame. In genera, with P
processors, obtaining linear speedup requires executing O(P) iterations concurrently. Such
aP-processor execution schedule X has ©(P) leaf threadsliving at some step, and therefore,
it uses space S X) = O(S,P).

§

Figure 2.10: The activation tree for a multithreaded computation that requires linear expansion of
spacein order to achieve linear speedup.

A P-processor execution schedule X for which S(X) = ©(S,P) is said to exhibit lin-
ear expansion of space. “Reasonable” example computations such as the one just consid-
ered show that for some computations, obtaining linear speedup requiresalinear expansion
of space. For other computations we would like to do better. Nevertheless, a P-processor
schedule X for which S(X) = O(S$;P) isarguably efficient, since on average, each of the P
processors needs no more memory than is used by the optimal 1-processor execution.

Recalling that any greedy execution schedul e achieves linear speedup (provided that the
number of processorsisat most proportional to the average parallelism), searching for exe-
cution schedules that ssmultaneoudly achieve linear speedup and linear expansion of space
appears as a reasonable and maybe even modest endeavor. In the next chapter, however,

2.3. Execution space 23

we shall show that for some multithreaded computations—even depth-first multithreaded
computations—this search must fail. On the other hand, we aso show in the next chapter
that for the class of strict (a subclass of depth-first) multithreaded computations, such effi-
cient execution schedules do exist and they are easy to find.

Chapter 3

Strict multithreaded computations

Does every depth-first multithreaded computation have an execution schedul e that is ssimul-
taneousdly efficient with respect to time and space? And if not, what necessary and sufficient
conditions can we place on computations to guarantee the existence of such a schedule? In
this chapter, we show that the answer to the first of these questionsis no, and we partially
answer the second. In Section 3.1, we present the lower bound that answers the first ques-
tion. Then in Section 3.2, we define a condition called “strictness,” and in Section 3.3, we
show that strictnessis asufficient condition to guarantee the existence of efficient execution
schedules. We leave necessary conditions as an open question. Strictness provides impor-
tant structure to computationsthat we leverage in a provably efficient scheduling algorithm
(Chapter 4) employed by the Cilk runtime system (Chapter 5) and in the implementation of
adaptive parallelism and fault tolerance on a network of workstations (Chapter 6).

3.1 A lower bound for the general case

In a study of resource requirements for dataflow programs published in 1988, Culler and
Arvind [36] observed applications with parallelism that they conjectured to be “useless.”
Useless parallelismis parallelism that requires excessive amounts of space resource to ex-
ploit. While Culler and Arvind argued convincingly that the observed useless parallelism
isin fact useless, they came short of a proof, and they |eft open the possibility of a clever
scheduler that might be able to exploit this parallelism without using excessive amounts of
gpace. With “loop-bounding” [34, 35, 36] techniques, they were able to eliminate the use-
less parallelism with only a small decrease in the average parallelism. Their applications
had only small amounts of useless parallelism.

In this section we show that multithreaded computations may contain vast quantities
of provably useless parallelism. In particular, we show that there exist depth-first multi-
threaded computations with large amounts of average parallelism such that any execution
schedule attempting to exploit this parallelism must use excessive amounts of space—that
IS, much more space per processor than required by a 1-processor execution. This lower

Some of the research reported in this chapter isjoint work with Charles Leiserson of MIT’s Laboratory
for Computer Science and was first published in [13] and [14].

25

26 Chapter 3. Strict multithreaded computations

bound motivates our consideration, in later sections, of computations with more structure,
namely, strict multithreaded computations.

Before going on to a more formal statement of the lower bound, it is worth noting the
difference between useless and “excess’ parallelism. If we have a computation with aver-
age paralelism equal to one million and we are executing this computation on a parallel
computer with two processors, then the computation has excess parallelism. Excess para-
lelism is not necessarily useless. If our computer actually had one million processors, we
might be ableto exploit al of the parallelism while using only modest amounts of space per
processor.

For any amount of serial space S; and any (reasonably large) serial execution time Ty,
we can exhibit a depth-first multithreaded computation with work T; and stack depth S§;
but with provably bad time/space tradeoff characteristics. Being depth-first, we know from
Theorem 2.3 (page 21) that our computation can be executed using 1-processor space S;.
Furthermore, we know from the greedy-scheduling theorem (Theorem 2.1, page 17) that
for any number P of processors, any greedy P-processor execution schedule X achieves
T(X) <Ty/P+ Te. Our computation has critical path length Te, &~ /T1, and consequently,
for P = O(/T1), agreedy schedule X yields T(X) = O(T,/P)—linear speedup. We show,
however, that any P-processor execution schedule X achieving T(.X) = O(Ty/P) must use
space S(X) = Q(+/T1(P—1)). Of course, /Ty may be much larger than S;, and hence, this
space bound isnowherenear linear inits space expansion. A proof of the following theorem
is presented in Appendix A.

Theorem 3.1 Forany S; > 4andany T; > 168%, there exists a depth-first multithreaded
computation with work T;, average parallelism Ty /T > +/T1/8, and stack depth S; such
that the following holds. For any number P of processors and any value p in the range
1<p< %Tl /Tw, if X isa P-processor execution schedule that achieves speedup p—that is,

T(X) <T1/p—then SX) > Z(p—1)vT1+ S o

A word about units. Space, S; and S X), ismeasured in bytes. Time, Ty, T, and T(X),
ismeasured in microseconds. Theinequalitiesrelating spacetotimeall carry constantswith
appropriate conversion units.

To seewhat thistheoremis saying, consider two possible values of p. Think of thework
T, asavery largevalue sothat theaverage parallelism Ty /T > T1/(8/T1) = Q(1/Ty) isalso
reasonably large. Achieving a speedup of 2 should be easy. But if we plug p = 2 into our
bound, we get S(X) > /T1/4+ S for any execution schedule X. Thus, with 2 processors
we have the space-per-processor growing proportional to /T, despitethefact the S; may be
asmall constant. And suppose we want to realize speedup out of al of the \/T; parallelism.
Plugging p = Q(/Ty) into our lower bound, we get S(X) = Q(T;). With /T, processors,
we again have the space-per-processor growing proportional to /T;.

In more recent work, Frigo, using a somewhat more general model of multithreaded
computation coupled with the same technique as used in the proof of Theorem 3.1, has ob-
tained the following stronger result [45].

Theorem 3.2 (Frigo) For any sufficiently large T; and any p > 2, there exists a multi-
threaded computation with work T; and 1-processor space requirement S; = O(1) such that
any execution schedule X that achieves speedup p must use space S(X) = Q(Ty). m

3.2. The strictness condition 27

With Frigo’s construction, just realizing a speedup of 2 requires space-per-processor that
grows linearly with the work.

We provethislower bound by constructing adepth-first multithreaded computation with
the desired properties and then proving that it has no efficient execution schedule. Though
we defer the proof of Theorem 3.1 to Appendix A, the idea embodied in the constructed
computation is asfollows. Each processor working on athread of the computation spawns
several child threads all of which subsequently stall on unresolved dependencies. In order
to achieve speedup, a scheduler cannot allow al of these processorsto sit idle, so some of
them must find other ready threadsto work on. Again, these threads spawn several children
and then they all stall. This process repeats. Thus, to realize any speedup, the scheduler
must allow processorsto continually spawn new threads even though these newly spawned
threads quickly stall still holding their space resources.

A good scheduler should not allocate resources until it isready to utilize those resources,
and amultithreaded computation should not be structured in such away asto force a sched-
uler into such an overcommitted situation in order to achieve speedup.

3.2 The strictness condition

A strict multithreaded computation contains dependency edges that, as we shall see, for-
bid the allocation of resources until those resources can be utilized. Specifically, in astrict
multithreaded computation, every dependency edge goesfromathread to one of itsancestor
threads. For example, the computation shown in Figure 3.1(a) is nonstrict, since the bold
dependencies, which we refer to as nonstrict dependencies, violate the strictness condition.
But by replacing these nonstrict dependencieswith new strict ones, we obtain the strict com-
putation shown in Figure 3.1(b).

This strictness condition has the following interpretation in terms of argument passing
in functional programs. For any thread I', we define the subcomputation rooted at ' as I’
and all of itsdescendant threads. See Figure 3.2. Wethink of the subcomputation asafunc-
tion invocation. For any subcomputation, we can think of each edge from a thread outside
the subcomputation to athread inside the subcomputation as passing arguments to the func-
tion invocation. In the case of a strict computation, each subcomputation has exactly one
such edge—the spawn edge from its parent. Thus, in a strict computation, no function can
be invoked until al of its arguments have been evaluated, although the arguments can be
evauated in parallel. In other words, a strict computation requires a strict evaluation order
(as opposed to a lenient evaluation order) [100].

In later chapterswewill aso consider fully strict multithreaded computations. Inafully
strict computation, every dependency goes from athread to its parent. The strict compu-
tation in Figure 3.1(b) is also fully strict. Fully strict computations are “well-structured”
in that all dependencies from a subcomputation emanate from the subcomputation’s root
thread.

In the remainder of this section, we show that strict computations are depth-first and
that any depth-first computation can be made strict (though possibly at a huge cost in lost
parallelism). We begin by showing that strict computations are depth-first.

28 Chapter 3. Strict multithreaded computations

(a) Nonstrict

Figure 3.1: (a) This multithreaded computation (the same as Figure 2.1 on page 12) is nonstrict
since it has nonstrict dependencies, shown bold, that go to non-ancestor threads. (b) If we replace
the nonstrict dependencieswith new strict ones, shown bold, we obtain astrict computation sinceall

dependencies go from a child thread to an ancestor thread.

3.2. The strictness condition 29

Figure 3.2: The spawn edge (Vvs,Vs) and the dependency edges, (vy4,V12) and (vs, Vg), pass argu-
ments into the subcomputation rooted at thread I ;3. This computation isnot strict.

Theorem 3.3 Every strict multithreaded computation is a depth-first computation.

Proof: Consider any strict multithreaded computation and let vy, Vo, ..., vy (Withn = Ty)
denote the left-to-right, depth-first ordering of the instructions. To prove that the computa-
tionisdepth-first, we must show that every dependency edgeisconsi stent with thisordering.
In other words, we must show that for every dependency edge (vj, Vi), we have j < k.

Consider such an edge, and let I denote the thread containing instruction vi. See Fig-
ure 3.3. The strictness conditions says that the thread containing vj must be a descendant
of I', solet v; betheinstruction of I" that spawnsthe subcomputation containing v;. Observe
that the left-to-right depth-first order numbers every instruction in this subcomputation less
than every instruction to the right of v; inI". Thus, since v; isin this subcomputation, we
only need to show that v istotheright of v; inT.

Figure 3.3: Every strict computation is depth-first since a strict dependency edge such as (vj, V)
must go to an instruction after instructionv; in ™ to avoid introducing a cycle.

Now observethat thereisapath from every instructionin to theleft of (and including)
v; tov: the path followscontinueedgesin I to v;; then it follows spawn and continue edges

30 Chapter 3. Strict multithreaded computations

down to vj; and then it follows our dependency edge (vj, k). Thus, to prevent acycle, vi
must be to the right of v;.]

The transformation, illustrated in Figure 3.1, from a depth-first multithreaded computa-
tion to astrict multithreaded computation is called strictifying, and we say that the resulting
computation isthe strictification of the original. For a given computation G, the computa-
tion G isthe strictification of G if G’ isastrict computation differing from G only in its
dependency edges and for every dependency edge (vi,Vj) in G, thereisapath fromv; tov;
inthedag of G'. Thislatter condition ensuresthat G’ isat least as“strong” as G inthe sense
that any execution schedule for G’ isalso an execution schedule for G. We now show that
for any depth-first computation G, its strictification G’ exists.

Theorem 3.4 Every depth-first multithreaded computation can be strictified.

Proof: We strictify adepth-first computation by replacing each nonstrict edge with astrict
one. Specifically, let (vj,v) denote a nondtrict edge. See Figure 3.4. Let I' be the least-
common ancestor thread of the threads containing v; and vi. Then let v; denote the instruc-
tion of I that spawns the subcomputation containing vj, and let vy denote the instruction
of I that spawns the subcomputation containing v;. Note that v; and v must be different
since we only alow a single instruction to perform a single spawn and I is defined as the
least-common ancestor of two different threads. To strictify the computation, we replace
dependency edge (vj,Vv;) with a new dependency edge (vj, Vi) and repeat for every such
nonstrict edge. Such areplacement strengthens the dag since there is a path of spawn and
continue edges from vy to v, .

Figure 3.4: Every depth-first computation can bestrictified by replacing every nonstrict edge (vj, vi)
with a strict edge (v}, Vi).

We must show that this transformation produces a strict computation. After the trans-
formation every dependency edge satisfies the strictness condition: every dependency edge
goes from a thread to one of its ancestors. Thus, we only need to show that each replace-
ment does not introduce any cyclesin the dag. In fact, we show the stronger property that
each replacement preserves the depth-first property. Recall that the left-to-right depth-first
order, vq, Vs, ..., Vp, isdefined only in terms of the continue and spawn edges, so it does not
change when we replace a dependency edge. When we replace dependency edge (vj, V)

3.3. The busy-leaves property 31

with (vj, vi), we must show that j < | implies j < k. With j < I, we must have vy (thein-
struction that spawns the subcomputation containing v;) to the right of v; (the instruction
that spawns the subcomputation containing v;) in . And thus, we have j < k. m

In some cases, strictification may reduce the parallelism by increasing the critical path
length. For example, the strictified computation of Figure 3.1(b) has a critical path length
of 12 instructions, whereas our origina example (nonstrict) computation has a critical path
length of 10 instructions. On the other hand, many computations, such as those derived
from divide-and-conquer, game-tree search, and many other programs, are naturaly strict
and still have very short critical paths. 1n Chapter 5, when we look at the Cilk language and
runtime system, we shall see programsthat give rise to strict computations with more than
ten-thousand-fold parallelism. For now, we focus on exploiting the beneficial structure of
strict computations to compute efficient execution schedules.

3.3 The busy-leaves property

Onceathread I' has been spawned in a strict computation, a single processor can complete
the execution of the entire subcomputation rooted at I' even if no other progress is made
on other parts of the computation. In other words, from the time the thread I' is spawned
until the time ™ dies, there is always at least one thread from the subcomputation rooted
a I that is ready. In particular, no leaf thread in a strict multithreaded computation can
stall. Aswe shall see, this property allows an execution schedul e to keep the leaves* busy.”
By combining this “busy-leaves’ property with the greedy property, we derive execution
schedules that ssimultaneoudly exhibit linear speedup and linear expansion of space.

In thissection, we show that for any number P of processorsand any strict multithreaded
computation with work Ty, critical path length T, and stack depth S;, there exists a P-
processor execution schedule X that achievestime T(X) < T;/P+ T, andspace S X) < §P
simultaneously. We give asimple online P-processor parallel algorithm—the Busy-L eaves
Algorithm—to compute such a schedule.

The Busy-L eaves Algorithm operates onlinein the following sense. Before thetth step,
the algorithm has computed and executed the first t — 1 steps of the execution schedule.
At the tth step, the algorithm uses only information from the portion of the computation
revealed so far in the execution to compute and execute the tth step of the schedule. In
particular, it does not use any information from instructions not yet executed or threads not
yet spawned.

The Busy-Leaves Algorithm, maintains al living threads in a single thread pool which
is uniformly available to all P processors. When spawns occur, new threads are added to
thisglobal pool, and when a processor needs work, it removesaready thread from the pool.
Though we describe the algorithm as a P-processor parallel algorithm, we shall not analyze
it as such. Specifically, in computing the tth step of the schedule, we allow each processor
to add threads to the thread pool and delete threads from it. Thus, we ignore the effects of
processors contending for access to the pool. In fact, we shall only analyze properties of

32 Chapter 3. Strict multithreaded computations

the scheduleitself and ignore the cost incurred by the algorithm in computing the schedule.
Scheduling overheads comeinto play in the next chapter.

The Busy-Leaves Algorithm operates as follows. The agorithm begins with the root
thread in the global thread pool and all processorsidle. At the beginning of each step, each
processor either isidle or has athread to work on. Those processorsthat are idle, begin the
step by attempting to remove any ready thread from the pool. If there are sufficiently many
ready threadsin the pool to satisfy all of the idle processors, then every idle processor gets
aready thread to work on. Otherwise, some processors remain idle. Then each processor
that has athread to work on executes the next instruction from that thread. In general, once
a processor has athread, cal it 5, to work on, it executes an instruction from I'; at each
step until the thread either spawns, stalls, or dies, in which case, it performs according to
the following rules.

[0 Spawns: If the thread I'; spawns a child Iy, then the processor finishes the current
step by returning I 5 to the thread pool. The processor begins the next step working
only.

0 Stalls: If thethread I ; stalls, then the processor finishes the current step by returning
Ia to the thread pool. The processor begins the next step idle.

[0 Dies. If thethread I' 5 dies, then the processor finishes the current step by checking to
seeif I'y'sparent thread I, currently hasany living children. If ', hasno livechildren
and no other processor isworking on I, then the processor takes I'y, from the pool
and beginsthe next step working on I',. Otherwise, the processor beginsthe next step
idle.

Figure 3.5 illustrates these three rulesin a 2-processor execution schedule computed by
the Busy-L eaves Algorithm on the strict computation of Figure 3.1(b). Rule [J: At step 2,
processor p; working on thread I'; executes v, which spawns the child I',, so p; places
M, back in the pool (to be picked up at the beginning of the next step by the idle p,) and
begins the next step working on I'». Rule [: At step 11, processor p, working on thread
M1 executesvig and I stalls, so p, returnsT 4 to the pool and begins the next step idle (and
remainsidle since the thread pool contains no ready threads). Rule [J: At step 5, processor
p1 working on I3 executes vs and I3 dies, so p; retrievesthe parent I, from the pool and
begins the next step workingon I'».

Besides being greedy, for any strict computation, the schedule computed by the Busy-
Leaves Algorithm maintains the busy-leaves property: at every time step during the exe-
cution, every leaf in the spawn subtree has a processor working on it. In other words, at
every time step, every living thread that has no living descendants has a processor working
onit. We shall now prove this fact and show that it implies linear expansion of space. We
begin by showing that any schedule that maintains the busy-leaves property exhibits linear
expansion of space.

The space bound of the following lemmaaccountsfor any stack-like memory. In partic-
ular, wealow any instruction to allocate memory for itsthread provided that theinstruction
cannot be executed at atimestep whenitsthread hasaliving child. Weallow any instruction
to deallocate memory for itsthread. Additionally, werequirethat all memory allocated for a

3.3. The busy-leaves property 33

processor activity

step | thread pool 1 Do
1 I'i: v

2 Vg

3 | A I'i: vy
4 Iy I, r's: vy Is: vs
5 Iy I’y Us V1s
6 I'y I';: we v17
7 I'y I's 'y, o

8 Iy I'y Vg

9 Iy I'y: vy

10 I'y I's: vy I'i: wvis
11 I’y V11 V19
12 Iy I'y V12

13 Iy I'y: vy

14‘ ‘ I'i: vy

Figure 3.5: A 2-processor execution schedule computed by the Busy-L eaves Algorithm for the
strict computation of Figure 3.1(b). This schedule lists the living threads in the global thread pool
at each step just after each idle processor has removed aready thread. It aso liststhe ready thread
being worked on and the instruction executed by each of the 2 processors, p; and p,, at each step.
Living threadsin the pool that are ready are listed in bold. The other living threads are stalled.

thread isdeall ocated beforethe thread dies. At any given time step during the execution, the
amount of memory currently allocated for agiven living thread is the net memory allocated
for thethread by all instructionsthat have been executed. The memory for athread need not
be alocated in a single contiguous chunk. Nevertheless, we may continue to think of the
memory allocated for athread as being part of an activation frame, though now the frame
may grow and shrink as the thread executes. The memory is still stack-like, because we
allow the frame to grow only when the thread cannot have any living children. The stack
depth S; of a computation is the amount of memory used by the 1-processor |eft-to-right
depth-first execution.

Lemma 3.5 For any multithreaded computation with stack depth S;, any P-processor ex-
ecution schedule X that maintainsthe busy-leaves property uses space bounded by S(.X) <

S,P.

Proof: The busy-leaves property impliesthat at al time stepst, the spawn subtree has at
most P leaves. We bound the space in use at time step t by assigning every living thread
to aleaf thread and then showing that the total space currently allocated for al the threads
assignedtoagivenleaf isat most S;. For each living thread, weassignit to aleaf asfollows.
If thethread isaleaf thenitisassignedtoitself. Otherwise, thethread isassigned tothe same
leaf asitsrightmost living child (though actually, we can choose any living child). Thus, the
threads assigned to any given leaf are all ancestors of that |eaf.

34 Chapter 3. Strict multithreaded computations

Now, consider any leaf thread I and any ancestor thread I’ that is assigned to I'. Let
v denote the ingtruction of ' executed at thistime step t (recall that I is busy), and let V
denote the instruction of I’ that spawned the subcomputation containing I'. We claim that
the amount of memory currently allocated for I’ is no more than the amount of memory
alocated for I’ at the time step in the 1-processor |eft-to-right depth-first execution when
the processor executes instruction v of thread I'. We verify the claim by observing that ev-
ery instructionin '’ to the | eft of V' has been executed, and though there may also be some
instructions to the right of V' that have been executed, none of these | atter instructions may
allocate memory, since they must have been executed while I’ had a living child. As for
thread I itself, the amount of memory currently allocated for it is equa to the amount of
memory allocated for it a the time step in the 1-processor execution when the processor
executes instruction v.

Thus, the total memory currently allocated for all threads assigned to agiven leef is at
most equal to the amount of memory in use by a 1-processor execution when the processor
is executing the given leaf, and this amount of memory is at most S;. With a maximum of
P leaf threads, the total memory currently in use is at most S;P, and this bound holds for
every time step. n

The bound $; P for schedul es that maintain the busy-leaves property is conservative. By
charging S; space for each busy leaf, we may be overcharging. For some computations, by
knowing that the schedule preserves the busy-leaves property, we can appeal directly to the
fact that the spawn subtree never has more than P leaves to obtain tight bounds on space
usage [11].

We finish this chapter by showing that for strict computations, the Busy-L eaves Algo-
rithm computesa schedul e that isboth greedy and maintainsthe busy-leaves property. Thus,
we show that every strict computation has execution schedules that are ssimultaneoudly ef-
ficient with respect to time and space.

Theorem 3.6 For any number P of processors and any strict multithreaded computation
with work Ty, critical path length T, and stack depth S;, the Busy-Leaves Algorithm com-
putes a P-processor execution schedule X whose execution time satisfies T(X) < Ty /P+ T
and whose space satisfies S X) < §;P.

Proof: Thetimeboundfollowsdirectly fromthe greedy-scheduling theorem (Theorem 2.1,
page 17), since the Busy-L eaves Algorithm computes a greedy schedule. The space bound
follows from Lemma 3.5 if we can show that the Busy-Leaves Algorithm maintains the
busy-leaves property. We prove this fact by induction on the number of steps. At thefirst
step of the algorithm, the spawn subtree contains just the root thread which is a leaf, and
some processor isworking on it. We must show that all of the algorithm rules preserve the
busy-leaves property. When aprocessor hasathread I3 to work on, it executes instructions
fromthat thread until it either spawns, stalls, or dies. Rule : If I3 spawnsachild Iy, then
aisnot aleaf (evenif it was before) and 'y isaleaf. In this case, the processor works on
Iy, so the new leaf isbusy. Rule [I: If [, stalls, then 'y cannot be aleaf since in astrict
computation, the unresolved dependency must come from adescendant. Rule [J: If 5 dies,

3.3. The busy-leaves property 35

then its parent thread ', may turninto aleaf. Inthiscase, the processor workson 'y unless
some other processor already is, so the new leaf is guaranteed to be busy.]

We now know that every strict multithreaded computatation has an efficient execution
schedule and we know how to find it. But these facts take us only so far. Execution sched-
ulesmust be computed efficiently online, and though the Busy-L eaves Algorithm does com-
pute efficient execution schedules and does operate onling, it surely does not do so effi-
ciently, except possibly in the case of small-scale symmetric multiprocessors. This lack of
scalability is aconsequence of employing asingle centralized thread pool at which all pro-
cessors must contend for access. Inthe next chapter we present a distributed online schedul -
ing algorithm, and we prove that it is both efficient and scalable.

Chapter 4
Work stealing

To execute amultithreaded computation on aparallel computer efficiently, ascheduler must
simultaneously keep the processors busy doing work, maintain memory usage within rea-
sonable limits, and avoid communication to the greatest extent possible. In this chapter,
we givethefirst provably efficient online scheduling algorithm for multithreaded computa-
tions with dependencies. This agorithm is based on the technique of random “work steal-
ing,” in which processors needing work steal computational threads from other processors
chosen at random. We show analytically that for fully strict computations, thisalgorithmis
simultaneousdly efficient with respect to time, space, and communication. In Section4.1, we
present the randomized work-stealing algorithm, give an important structural lemma, and
bound the space used by the algorithm. In Section 4.2, we give the model that we use to
analyze access contention in the algorithm, and we give a bound on the delay incurred by
random accesses inthismodel. We use the structural lemmaof Section 4.1 and the bound of
Section 4.2 in Section 4.3 to prove anaytically that for fully strict multithreaded computa-
tions, this work-stealing algorithm achieves linear speedup with little communication. The
Cilk runtime system (Chapter 5) implements this work-stealing algorithm and empirically
demonstratesiits efficiency.

4.1 A randomized work-stealing algorithm

In this section, we present an online, randomized work-stealing algorithm for scheduling
multithreaded computations on a parallel computer. Also, we present an important struc-
tural lemmawhich is used at the end of this section to show that for fully strict computa-
tions, this algorithm causes at most a linear expansion of space. Thislemma reappearsin
Section 4.3 to show that for fully strict computations, this algorithm achieveslinear speedup
and generates existentially optimal amounts of communication.

In the Work-Stealing Algorithm, the centralized thread pool of the Busy-Leaves Algo-
rithm is distributed across the processors. Specifically, each processor maintains a ready
deque data structure of threads. The ready deque hastwo ends. atop and abottom. Threads
can be inserted on the bottom and removed from either end. A processor treats its ready

The research reported in this chapter isjoint work with Charles Leiserson of MIT’s Laboratory for Com-
puter Science and was first published in [14].

37

38 Chapter 4. Work stealing

deque likeacall stack, pushing and popping from the bottom. Threads that are migrated to
other processors are removed from the top.

In general, a processor obtains work by removing the thread at the bottom of its ready
deque. It starts working on the thread, call it I 5, and continues executing I' 3’ s instructions
until I 3 spawns, stalls, dies, or enablesastalled thread, in which casg, it performsaccording
to the following rules.

[0 Spawns: If thethread I'; spawns a child 'y, then I is placed on the bottom of the
ready deque, and the processor commences work on I'y,.

[0 Stalls: If thethread I' 5 stalls, its processor checks the ready deque. If the deque con-
tains any threads, then the processor removes and begins work on the bottommost
thread. If the ready deque is empty, however, the processor begins work stealing: it
steals the topmost thread from the ready deque of a randomly chosen processor and
beginswork on it. (Thiswork-stealing strategy is elaborated below.)

[0 Dies. If the thread "5 dies, then the processor follows rule [0 asin the case of 4
stalling.

[0 Enables. If the thread I'; enables a stalled thread I',,, the now-ready thread Iy, is
placed on the bottom of the ready deque of I ;'s processor.

A thread can simultaneously enable a stalled thread and die, in which case wefirst perform
rule J for enabling and then rule [J for dying. Except for rule (] for the case when athread
enablesastalled thread, theserules areanal ogousto therulesof the Busy-L eaves Algorithm,
and aswe shall see, rule [J is needed to ensure that the algorithm maintainsimportant struc-
tural properties, including the busy-leaves property.

The Work-Stealing Algorithm begins with all ready deques empty. The root thread of
the multithreaded computation is placed in theready deque of one processor, whilethe other
processors start work stealing.

When a processor begins work stealing, it operates as follows. The processor becomes
athief and attemptsto steal work from avictim processor chosen uniformly at random. The
thief queries the ready deque of the victim, and if it is nonempty, the thief removes and
beginswork on the top thread. If the victim’sready deque is empty, however, thethief tries
again, picking another victim at random.

We now state and prove an important lemma on the structure of threads in the ready
deque of any processor during the execution of afully strict computation. This lemmais
used later in this section to analyze execution space and in Section 4.3 to analyze execution
time and communication. Figure 4.1 illustrates the lemma.

Lemma 4.1 In the execution of any fully strict multithreaded computation by the Work-
Sealing Algorithm, consider any processor p and any given time step at which pisworking
on a thread. Let ' be the thread that p is working on, let k be the number of threads in
p'sready deque, and let "1, »,. .., denote the threads in p’s ready deque ordered from
bottomto top, so that " ; isthe bottommost and Iy isthe topmost. If we have k > 0, then the
threads in p’sready deque satisfy the following properties:

4.1. A randomized work-stealing algorithm 39

ready
deque

currently
executing
thread

Figure 4.1: The structure of a processor’s ready deque. The black instruction in each thread indi-
cates the thread’s currently ready instruction. Only thread 'y, may have been worked on sinceit last
spawned a child. The dashed edges are the “ deque edges” introduced in Section 4.3.

0 Fori=12,....k thread I';_1 isachild of [';.

O Ifwehavek > 1, thenfori=1,2,...,k—1, thread I'; has not been worked on since
it spawned IMj_1.

Proof: The proof isastraightforwardinduction on execution time. Execution beginswith
the root thread in some processor’s ready deque and all other ready deques empty, so the
lemma vacuously holds at the outset. Now, consider any step of the algorithm at which
processor p executesaninstructionfromthreadlMg. Letl 1,5, ..., denotethekthreadsin
p’sready deque beforethe step, and suppose that either k = 0 or both propertieshold. Let 'y,
denote the thread (if any) being worked on by p after the step, and let '}, T, ..., T}, denote
the k' threadsin p’s ready deque after the step. We now ook at the rules of the algorithm
and show that they all preserve the lemma. That is, either k' = 0 or both properties hold
after the step.

Rule 00: If 'y spawns a child, then p pushes 'y onto the bottom of the ready deque
and commences work on the child. Thus, ' isthe child, we have k' = k+ 1 > 0, and for
j=1212....K, wehave F’j =Ij_1. SeeFigure4.2. Now, we can check both properties.
Property 0: If k' > 1, thenfor j = 2.3,....K| thread ["j_; is achild of I}, since before
the spawn we have k > 0, which meansthat fori = 1,2,....k, thread I';_; isachild of T;.
Moreover, 'y isobvioudly achild of I'}. Property O: If k' > 2, thenfor j =2,3,...,K —1,
thread I'’. has not been worked on since it spawned F’j _ 1, because before the spawn we have
k > 1, which meansthat fori = 1,2,....k— 1, thread I'; has not been worked on since it
spawned I";_1. Finally, thread I} has not been worked on since it spawned Iy, because the
spawn only just occurred.

Rules 0 and O: If 'y stalls or dies, then we have two cases to consider. If k = 0, the
ready deque is empty, so the processor commences work stealing, and when the processor

40 Chapter 4. Work stealing

M @

(a) Before spawn. (b) After spawn.

Figure 4.2: The ready degue of a processor before and after the thread ' that it is working on
spawnsa child.

stealsand beginswork on athread, we havek’ = 0. If k > 0, theready dequeis not empty, so
the processor pops the bottommost thread off the deque and commences work on it. Thus,
we have ', = "1 (the popped thread) and k' = k—1,and for j = 1,2,K, we have F’j =
[j+1. SeeFigure4.3. Now, if k' > 0, we can check both properties. Property O: For | =
1,2,...,K, thread F’j_l isachild of F’j, sincefori=1,2,....k, thread I';_; isachild of T;.
Property O0: If K > 1, thenfor j =1,2,...,k'— 1, thread F’j has not been worked on sinceiit
spawned F’j_l, because beforethe deathwe havek > 2, whichmeansthatfori=2.3,...,k—
1, thread I'; has not been worked on since it spawned I _1.

M

(a) Before death. (b) After death.

Figure 4.3: Theready deque of aprocessor before and after thethread Iy that it isworking on dies.

Rule [I: If 'y enables a stalled thread, then due to the fully strict condition, that pre-
vioudy stalled thread must be I'y’s parent. There are two cases to consider. If k > 0, then
the processor’s ready deque is not empty, and this parent thread must be bottommost in the

4.2. Atomic messages and the recycling game 41

ready deque. Inthiscase, the processor doesnothing. If k = 0, thentheready dequeisempty
and the processor places the parent thread on the bottom of the ready deque. In this case,
we havel'y = INp and k' = k+ 1 = 1 with I} denoting the newly enabled parent. We only
have to check the first property. Property O: Thread 'y is obviously a child of I'}.

If some other processor steals athread from processor p, then we must havek > 0, and
after the steal we havek’ = k— 1. If k' > 0 holds, then both propertiesare clearly preserved.
All other actionsby processor p—such aswork stealing or executing aninstruction that does
not invoke any of the above rules—clearly preserve the lemma.]

Before moving on, it is worth pointing out how it may happen that thread ', has been
worked on sinceit spawned IM,_1, sSince Property [excludesTy. This Situation ariseswhen
I isstolen from processor p and then stalls on itsnew processor. Later, Iy isreenabled by
IM«_1 and brought back to processor p’sready deque. Thekey observationisthat whenly is
reenabled, processor p’sready dequeisempty and pisworking onI,_1. The other threads
M_2,Mk_3,...,[gshown in Figure4.1 were spawned after I, was reenabled.

We conclude this section by bounding the space used by the Work-Stealing Algorithm
executing a fully strict computation. This bound accounts for all stack-like memory.

Theorem 4.2 For anyfully strict multithreaded computationwith stack depth S, the Work-
Sealing Algorithm run on a computer with P processors uses at most S;P space.

Proof: LiketheBusy-LeavesAlgorithm, the Work-Stealing Algorithm maintainsthe busy-
leaves property: at every time step of the execution, every leaf in the current spawn subtree
has a processor working on it. If we can establish thisfact, then Lemma 3.5 (page 33) com-
pletes the proof.

That the Work-Stealing Algorithm maintains the busy-leaves property is a ssimple con-
sequence of Lemma4.1. At every time step, every leaf in the current spawn subtree must
be ready and therefore must either have a processor working on it or be in the ready deque
of some processor. But Lemma 4.1 guaranteesthat no leaf thread sitsin a processor’sready
deque while the processor works on some other thread.]

With the space bound in hand, we now turn attention to analyzing the time and commu-
nication boundsfor the Work-Stealing Algorithm. Beforewe can proceed withthisanalys's,
however, we must take care to define a model for coping with the contention that may arise
when multiple thief processors ssmultaneoudly attempt to steal from the same victim.

4.2 Atomic messages and the recycling game

This section presents the “atomic-access’ model that we use to anayze contention during
the execution of a multithreaded computation by the Work-Stealing Algorithm. We intro-
duce a combinatorial “balls and bins’ game, which we use to bound the total amount of
delay incurred by random, asynchronous accesses in thismodel. We shall use the results of
this section in Section 4.3, where we anayze the Work-Stealing Algorithm.

42 Chapter 4. Work stealing

The atomic-access model is the machine model we use to analyze the Work-Stealing
Algorithm. We assume that the machine is an asynchronous parallel computer with P pro-
cessors, and its memory can be either distributed or shared. Our analysis assumes that con-
current accesses to the same data structure are serialy queued by an adversary, as in the
atomic message-passing model of [75]. This assumption is more stringent than that in the
model of Karp and Zhang [65]. They assume that if concurrent steal requests are madeto a
deque, in one time step, onerequest is satisfied and all the others are denied. In the atomic-
access model, we also assume that one request is satisfied, but the others are queued by an
adversary, rather than being denied. Moreover, from the collection of waiting requests for
agiven degue, the adversary getsto choose which is serviced and which continue to wait.
The only constraint on the adversary isthat if thereisat least one request for adeque, then
the adversary cannot choose that none be serviced.

Themainresult of thissectionisto show that if requests are made randomly by P proces-
sorsto P deques with each processor allowed at most one outstanding request, then the total
amount of time that the processors spend waiting for their requeststo be satisfied islikely to
be proportional to the total number M of requests, no matter which processors make the re-
guests and no matter how the requestsare distributed over time. Inorder to provethisresult,
we introduce a“ballsand bins’ game that model s the effects of queueing by the adversary.

The (P, M)-recycling game is a combinatorial game played by the adversary, in which
balls are tossed at random into bins. The parameter P is the number of ballsin the game,
which is equal to the number of bins. The parameter M is the total number of ball tosses
executed by the adversary. Initidly, al P balls are in areservoir separate from the P bins.
At each step of the game, the adversary executes the following two operationsin sequence:

1. The adversary chooses some of the balls in the reservoir (possibly al and possibly
none), and then for each of these balls, the adversary removes it from the reservoir,
selects one of the P bins uniformly and independently at random, and tosses the ball
intoit.

2. The adversary ingpects each of the P bins in turn, and for each bin that contains at
least one ball, the adversary removes any one of the ballsin the bin and returnsit to
the reservoir.

The adversary is permitted to make a total of M ball tosses. The game ends when M ball
tosses have been made and al balls have been removed from the bins and placed back in
thereservoir.

The recycling game models the servicing of stea requests by the Work-Stealing Algo-
rithm. We can view each ball and each bin as being owned by adistinct processor. If aball
isin the reservoir, it means that the ball’s owner is not making a steal request. If aball is
in abin, it means that the ball’s owner has made a steal request to the deque of the bin’s
owner, but that the request has not yet been satisfied. When a ball is removed from a bin
and returned to the reservair, it means that the request has been serviced.

After each step t of the game, there are some number n; of ballsleft in the bins, which
correspond to steal requests that have not been satisfied. We shall be interested in the total
delayD = th: 1Nt, where T isthe total number of stepsin the game. The goal of the adver-
sary isto make the total delay as large as possible. The next lemma shows that despite the

4.2. Atomic messages and the recycling game 43

choices that the adversary makes about which balls to toss into bins and which to returnto
thereservoir, the total delay isunlikely to belarge.

Lemma 4.3 For any € > 0, with probability at least 1 — €, the total delay in the (P,M)-
recycling gameisO(M -+ PlgP+ Plg(1/¢)). The expected total delayisat most M. In other
words, the total delay incurred by M random requests made by P processors in the atomic-
access model isO(M + PIgP -+ PlIg(1/¢g)) with probability at least 1 — €, and the expected
total delay is at most M.

Proof: We first make the observation that the strategy by which the adversary chooses a
ball from each binisimmaterial, and thus, we can assume that balls are queued in their bins
in afirst-in-first-out (FIFO) order. The adversary removesballsfrom the front of the queue,
and when the adversary tosses a ball, it is placed on the back of the queue. If several balls
aretossed into the same bin at the same step, they can be placed on the back of the queuein
any order. The reason that assuming a FIFO discipline for queuing ballsin a bin does not
affect the total delay isthat the number of ballsinagiven bin at agiven step isthe same no
matter which ball is removed, and where balls are tossed has nothing to do with which ball
iStossed.

For any given ball and any given step, the step either finishes with the the ball in abin
or inthereservoir. Define the delay of ball r to be the random variable &, denoting the total
number of steps that finish with ball r in abin. Then, we have

P
D= r;ar . (4.1)

Definetheith cycle of aball to be those steps in which the ball remainsin abinfrom theith
timeit istossed until it is returned to the reservoir. Define also the ith delay of a ball to be
the number of stepsinitsith cycle.

We shall analyze the total delay by focusing, without loss of generality, on the delay
0= 04 of ball 1. If welet mdenotethe number of timesthat ball 1 istossed by theadversary,
andfori =12, ...,m,let d; betherandom variable denoting theith delay of ball 1, then we
haved =3y, d,.

We say that the ith cycle of ball 1 is delayed by another ball r if the ith toss of ball 1
placesitin somebin k and ball r isremoved from bin k during the ith cycle of ball 1. Since
the adversary follows the FIFO rule, it follows that the ith cycle of ball 1 can be delayed
by another ball r either once or not at all. Consequently, we can decompose each random
variable d; into asum d; = Xj2 + X3+ - - - + Xim Of indicator random variables, where

| 1 iftheithcycleof ball 1isdelayed by ball r;
"7 1 0 otherwise,

Thus, we have

0= i:irixir : (4.2

1Greg Plaxton of the University of Texas, Austin hasimproved thisbound to O(M) for the case when 1/¢
isat most polynomia in M and P [85].

44 Chapter 4. Work stealing

We now prove an important property of these indicator random variables. Consider any
set Sof pairs (i,r), each of which corresponds to the event that the ith cycle of ball 1 is
delayed by ball r. For any such set S we claim that

Pr{ /\ (Xir — 1)} S p—|5| . (43)
(

i,r)es

The crux of proving the claim isto show that

I:)r{xir]-

where S = S—{(i, r)}, whence the claim (4.3) follows from Bayes's Theorem.

We can derive Inequality (4.4) from acareful analysis of dependencies. Because the ad-
versary followsthe FIFO rule, we havethat x;, = 1 only if, when the adversary executesthe
ithtossof ball 1, it fallsinto whatever bin containsball r, if any. A priori, thisevent happens
with probability either 1/P or 0, and hence, with probability at most 1/P. Conditioning on
any collection of events relating which balls delay this or other cycles of ball 1 cannot in-
crease this probability, as we now argue in two cases. Inthefirst case, theindicator random
variables x;;/, wherei’ # i, tell whether other cyclesof ball 1 aredelayed. Thisinformation
tells nothing about where the ith toss of ball 1 goes. Therefore, these random variables are
independent of x;;, and thus, the probability 1/P upper bound is not affected. In the sec-
ond case, the indicator random variables x;, tell whether the ith toss of ball 1 goes to the
bin containing ball r’, but this information tells us nothing about whether it goesto the bin
containing ball r, because theindicator random variablestell us nothing to relate where ball
r and ball r’ are located. Moreover, no “collusion” among the indicator random variables
provides any more information, and thus Inequality (4.4) holds.

Equation (4.2) shows that the delay & encountered by ball 1 throughout all of its cycles
can be expresses as a sum of m(P — 1) indicator random variables. In order for & to equal
or exceed a given value A, there must be some set containing A of these indicator random
variables, each of which must be 1. For any specific such set, Inequality (4.3) says that
the probability is at most P~2 that all random variables in the set are 1. Since there are
(MP=1) < (emP/A)2 such sets, we have

Pr{d>A} < (ﬂpyp—ﬂ

A G =1) } <1/P, (4.4)

(i"r"es

A

(3

< ¢/P,

whenever A > max {2em, IgP+1g(1/¢)}.

Although our analysiswas performedfor ball 1, it appliesto any other ball aswell. Con-
sequently, for any given ball r which istossed my times, the probability that its delay o, ex-
ceeds max {2emy,IgP +19(1/¢)} isat most /P. By Boole'sinequality and Equation (4.1),

4.3. Analysis of the work-stealing algorithm 45
it follows that with probability at least 1 — €, thetotal delay D isat most

D = imax{Zern,lgP+lg(1/s)}
r=1
= OM-+PIgP+PIg(1/e)),

snceM = 5F_ m.

The upper bound E D] < M can be obtained asfollows. Recall that each &, isthe sum of
(P —1)my indicator random variables, each of which has expectation at most 1/P. There-
fore, by linearity of expectation, E[&] < my. Using Equation (4.1) and again using linearity
of expectation, we obtain E[D] < M. n

With this bound on the total delay incurred by M random requests now in hand, we turn
back to the Work-Stealing Algorithm.

4.3 Analysis of the work-stealing algorithm

In this section, we analyze the time and communication cost of executing afully strict mul-
tithreaded computation with the Work-Stealing Algorithm. For any fully strict computation
withwork T; and critical path length T, we show that the expected running timewith P pro-
cessors, including scheduling overhead, isO(T; /P + Te). Moreover, for any € > 0, the exe-
cutiontimeon P processorsisO(Ty /P+ T + IgP+19(1/€)), with probability at least 1 — €.
We a'so show that the expected total communication during the execution of afully strict
computationisO(PTe (14 Ny) Snax), Where ng isthe maximum number of dependency edges
from athread to its parent and Sy IS the largest size of any activation frame.

Unlikein the Busy-Leaves Algorithm, the“ready pool” in the Work-Stealing Algorithm
isdistributed, and so there is no contention at a centralized data structure. Nevertheless, it
isstill possible for contention to arise when several thieves happen to descend on the same
victim simultaneously. In this case, as we have indicated in the previous section, we make
the conservative assumption that an adversary serially queues the work-stealing requests.

To analyzethe running timeof the Work-Stealing Algorithm executing afully strict mul-
tithreaded computation with work T, and critical path length T., on a computer with P pro-
Cessors, we use an accounting argument. At each step of the algorithm, we collect P dollars,
onefrom each processor. At each step, each processor placesitsdollar in one of three buck-
ets according to its actions at that step. If the processor executes an instruction at the step,
then it placesits dollar into the WoORK bucket. If the processor initiates a steal attempt at
the step, then it placesits dollar into the STEAL bucket. And, if the processor merely waits
for aqueued steal request at the step, then it placesitsdollar into the WAIT bucket. We shall
derive the running time bound by bounding the number of dollarsin each bucket at the end
of the execution, summing these three bounds, and then dividing by P.

We first bound the total number of dollarsin the WoRK bucket.

46 Chapter 4. Work stealing

Lemma 4.4 The execution of a fully strict multithreaded computation with work T, by the
Work-Sealing Algorithm on a computer with P processors terminates with exactly T, dol-
larsin the WORK bucket.

Proof: A processor places adollar in the WORK bucket only when it executes an instruc-
tion. Thus, since there are T; instructions in the computation, the execution ends with ex-
actly T, dollarsin the WORK bucket.

|

Bounding the total dollarsin the STEAL bucket requires a significantly more involved
“delay-sequence” argument. We first introduce the notion of a “round” of work-steal at-
tempts, and we must also define an augmented dag that we then use to define “critical” in-
structions. Theideaisasfollows. If, during the course of the execution, a large number of
steals are attempted, then we can identify a sequence of instructions—the delay sequence—
inthe augmented dag such that each of these steal attemptswasinitiated while someinstruc-
tion from the sequence was critical. We then show that a critical instruction is unlikely to
remain critical across a modest number of steal attempts. We can then conclude that such a
delay sequenceisunlikely to occur, and therefore, an execution is unlikely to suffer alarge
number of steal attempts.

A round of work-steal attemptsis a set of at least 3P but fewer than 4P consecutive
steal attemptssuch that if asteal attempt that isinitiated at time step t occursin aparticular
round, then all other steal attemptsinitiated at time stept arealso in the sameround. We can
partition al the steal attempts that occur during an execution into rounds as follows. The
first round containsall steal attemptsinitiatedat timesteps 1,2,t;, wheret, istheearliest
time such that at least 3P steal attempts were initiated at or beforet;. We say that the first
round starts at time step 1 and ends at time step t;. In general, if theith round ends at time
step t;, then the (i + 1)st round begins at time step t; + 1 and ends at the earliest time step
ti 1 > tj+ 1 such that at least 3P steal attempts were initiated at time steps between t; + 1
and tj, 1, inclusive. These steal attempts belong to round i + 1. By definition, each round
contains at least 3P consecutive stea attempts, and since at most P — 1 steal attempts can
beinitiated in a single time step, each round contains fewer than 4P — 1 steal attempts.

The sequence of instructions that make up the delay sequence is defined with respect to
an augmented dag obtained by dightly modifyingtheoriginal dag. Let G denotetheoriginal
dag, that is, the dag consisting of the computation’sinstructions asvertices and its continue,
spawn, and dependency edgesasedges. Theaugmented dag G’ istheoriginal dag G together
with some new edges, asfollows. For every set of instructionsu, v, and wsuch that (u, v) isa
spawn edge and (u, w) isacontinue edge, the deque edge (w, v) isplaced in G'. These deque
edges are shown dashed in Figure 4.1. We make the technical assumption that instruction
w has no incoming dependency edges, and so G' isadag. (If acycleiscreated, anew in-
struction between u and w can be created, which does not affect our asymptotic bounds.) If
T isthelength of alongest pathin G, then the longest path in G’ haslength at most 2Te.. It
isworth pointing out that G’ is only an analytical tool. The deque edges have no effect on
the scheduling and execution of the computation by the Work-Stealing Algorithm.

The deque edges are the key to defining critical instructions. At any time step during
the execution, we say that an instruction v is critical if every instruction that precedes v

4.3. Analysis of the work-stealing algorithm 47

(either directly or indirectly) in G’ has been executed, that is, if for every instruction w such
that there is a directed path fromwto vin G/, instruction w has been executed. A critical
instruction must be ready, since G’ contains every edge of G, but a ready instruction may
or may not be critical. Intuitively, the structural properties of aready deque enumerated in
Lemma 4.1 guarantee that if athread is deep in a ready deque, then it cannot be critical,
because the predecessor of the thread's current instruction across the deque edge has not
yet been executed.

We say that agiven round of steal attempts occurs while instruction v iscritical if each
of the steal attempts that comprisethe round isinitiated at atime step when viscritical but
IS not executed.

We now formalize our definition of adelay sequence.

Definition 4.5 Adelay sequenceisa3-tuple(U, R, M) satisfying the following conditions:

e U=(up,Up,...,u)isamaximal directed pathin G'. Specifically, fori=1,2,...,L—
1, the edge (u;, Ui 1) belongsto G, instruction u; has no incoming edgesin G’ (in-
struction u; must be thefirst instruction of the root thread), and instruction u. hasno
outgoing edgesin G’ (instruction u. must be the last instruction of the root thread).

e Risapostiveinteger.
e = (my,Tp,...,Tq) isapartition of theinteger R.

The delay sequence (U, R, M) is said to occur during an executioniif for eachi=1,2,...,L,
at least 1 steal-attempt rounds occur while instruction u; iscritical.

Thefollowing lemmastatesthat if alarge number of steal attemptstake place during an
execution, then adelay sequence with large R must occur.

Lemma 4.6 Consider the execution of a fully strict multithreaded computation with crit-
ical path length Te by the Work-Sealing Algorithm on a computer with P processors. |If
at least 4P(2T. + R) steal attempts occur during the execution, then some (U, R,) delay
sequence must occur.

Proof: For agiven execution in which at least 4P(2T. + R) steal attempts take place, we
construct adelay sequence (U, R, M) and show that it occurs. With at least 4P(2T., 4+ R) steal
attempts, there must be at least 2T, + Rroundsof steal attempts. We construct the delay se-
guence by identifying a set of instructions on adirected path in G’ such that for every time
step during the execution, one of theseinstructionsiscritical. Thereareat most 2T, instruc-
tions on the delay sequence, so at most 2T, steal-attempt rounds could overlap atime step
at which one of these instructions gets executed. Therefore, there must be at least R steal-
attempt rounds that occur while an instruction from the delay sequenceiscritical. Tofinish
the proof, we need only produce the directed path U = (up, Uy, ..., u.) such that for every
time step during the execution, one of the u; iscritical. The partition N = (T4, T, ..., Tq)
can bederived by simply letting 15 equal the number of steal -attempt roundsthat occur while
u; iscritical.

We work backwards from the last instruction of the root thread, which we denote by v, .
Let wy denote the (not necessarily immediate) predecessor instruction of v4 in G’ with the

48 Chapter 4. Work stealing

latest execution time. Let (v, ..., V2, V1) denote adirected path fromw; = v, tovy inG'.
We extend this path back to the first instruction of the root thread by iterating this construc-
tion asfollows. At theith iteration we have an instruction vi. and a directed pathin G’ from
v, tovi. Welet w1 denote the predecessor of v, in G’ with the latest execution time, and
let (Vi .-+ Vii41, Vi), wherev, , = wi, 1, denoteadirected path fromw; 5 toy;, in G. We
finish iterating the construction when we get to an iterationk inwhich v;,_isthefirst instruc-
tion of the root thread. Our desired sequenceisthenU = (ug, Uy, ..., u), whereL = I, and
u =V _jrp fori=12, ... L. Onecan verify that at every time step of the execution, one
of the v, iscritical, and therefore, the sequence has the desired property.]

We now establish that a critical instruction isunlikely to remain critical across a modest
number of steal-attempt rounds. Specifically, we first show that a critical instruction must
be the ready instruction of athread that is one of the top 2 in its processor’s ready deque.
We then use this fact to show that after O(1) steal-attempt rounds, a critical instruction is
very likely to be executed.

Lemma 4.7 At every time step during the execution of a fully strict multithreaded compu-
tation by the Work-Stealing Algorithm, each critical instruction must be the ready instruc-
tion of a thread that is one of the top 2 in its processor’s ready deque.

Proof: Consider any time step, and let ug be the critical instruction of athread I'g. Since
Ugiscritical, I'g must beready, and therefore, I' o must be in the ready deque of some proces-
sor p. If g isnot one of thetop 2 threadsin p’s ready deque, then Lemma 4.1 guarantees
that each of the at least 2 threads above g in p’s ready deque is an ancestor of g, Let
M,Mo,..., g denote I'y’s ancestor threads, where "1 isthe parent of I'g and ' isthe root
thread. Further, fori =1,2,... Kk, let u; denote the instruction of thread I'; that spawned
thread I';_1, and let w; denote u;’s successor instructioninthread . Inthedag G, we have
dequeedges(w;,u;_1) fori=1,2, ... k. Conseguently, sinceupiscritical,fori=1,2,...,Kk,
each instruction w; must have been executed, sinceit isapredecessor of ugin G'. Moreover,
because each w; isthe successor of the spawn instruction u; in thread I, each thread I'; for
i=1,2,...,kmust have been worked on since thetime step at which it spawned thread I';_; .
But Lemma 4.1 guarantees that only the topmost thread in p’'s ready deque can have this
property. Thus, I 1 isthe only thread that can possibly be abovelgin p'sready deque. =

Lemma 4.8 Consider the execution of any fully strict multithreaded computation by the
Work-Sealing Algorithm on a parallel computer with P > 2 processors. For any instruction
v and any number r > 4 of steal -attempt rounds, the probability that r rounds occur whilethe
instructioniscritical isat most the probability that only O or 1 of the steal attemptsinitiated
in the r rounds choose V's processor, which is at most e=2'.

Proof: Lett, denotethefirst timestep at which instructionviscritical, and let p denotethe
processor in whose ready deque v's thread resides at time step t;. Supposer steal-attempt
rounds occur while instruction v is critical, and consider the steal attempts that comprise
theserounds, of whichtheremust beat least 3rP. Lett, denotethetime step at which thelast
of these steal attemptsisinitiated, which must occur beforethetimestep at whichinstruction

4.3. Analysis of the work-stealing algorithm 49

visexecuted. Atleast 3rP— P = (3r — 1)P of these steal attemptsmust beinitiated at atime
step beforety, since fewer than P stea attempts can be initiated at time step tp,.

We shall first show that of these (3r — 1)P steal attemptsinitiated whileinstruction v is
critical and at least 2 time steps before visexecuted, at most 1 of them can choose processor
pasitstarget, for otherwise, vwould beexecuted at or beforety,. Recall fromLemma4.7 that
instruction v is the ready instruction of athread I', which must be among the top 2 threads
in p’'sready deque aslong asv iscritical.

If " istopmost, then another thread cannot become topmost until after instruction v is
executed, since only by processor p executing instructions from I' can another thread be
placed on the top of its ready deque. Consequently, if a steal attempt targeting processor
pisinitiated at sometimestept > t,, we are guaranteed that instruction v is executed at a
time step no later than t, either by thread I being stolen and executed or by p executing the
thread itself.

Now, suppose I is second from the top in p's ready deque with thread " on top. In
this case, if asteal attempt targeting processor pisinitiated at time step t > t;, then thread
I’ gets stolen from p's ready deque no later than time step t. Suppose further that another
steal attempt targeting processor pisinitiated at timestept’, wherety <t <t’ < t,. Then, we
know that asecond steal will be serviced by p at or beforetimestept’ + 1. If thissecond steal
getsthread I, then instruction v must get executed at or beforetimestept’ + 1 < t,, whichis
impossible, since v is executed after time step ty,. Consequently, this second steal must get
thread '—the same thread that thefirst steal got. But this scenario can only occur if in the
intervening time period, thread '’ stalls and is subsequently reenabled by the execution of
some instruction from thread I, in which case instruction v must be executed before time
stept’ + 1 < t,, which isonce again impossible.

Thus, we must have (3r — 1)P steal attempts, each initiated at a time step t such that
ta <t < ty, and a most 1 of which targets processor p. The probability that either O or 1 of
(3r — 1)P steal attempts chooses processor pis

1\ (3r-1P 1 1\ (3r-1)P-1
(1-5) +e-wr(5)(1-5)

1 1\ (3r-1)P-1
(1-5+3-1) (1-5)

3re—3r—|—3/2

<
< e—2r

IA

forr > 4. n

We now compl etethe del ay-sequence argument and bound thetotal dollarsinthe STEAL
bucket.

Lemma 4.9 Consider theexecution of any fully strict multithreaded computation with crit-
ical path length T, by the Work-Stealing Algorithm on a parallel computer with P proces-
sors. For any € > 0, with probability at least 1 — €, at most O(P(Te + 1g(1/€))) work-steal
attempts occur. The expected number of steal attempts is O(PT). In other words, with

50 Chapter 4. Work stealing

probability at least 1 — €, the execution terminates with at most O(P(Te. +19(1/¢€))) dollars
inthe STEAL bucket, and the expected number of dollarsin this bucket is O(PT.,).

Proof: From Lemma4.6, we know that if at least 4P(2T., + R) steal attempts occur, then
some delay sequence (U, R,) must occur. Consider a particular delay sequence (U, R, M)
havingU = (ug,Up,...,u) and M = (T4, 1o, ..., T) where g, + T + - - -+ 1. = Rand L <
2Tw. We shall compute the probability that (U, R 1) occurs.

Such a sequence occursif, foreachi=1.2,....L, at least 15 steal-attempt rounds occur
while instruction y; is critical. From Lemma 4.8, we know that the probability of at least
TG rounds occurring while a given instruction u; is critical is at most the probability that
only O or 1 steal attemptsinitiated in the 15 rounds choose V's processor, which is at most
e?™ provided 15 > 4. (For those values of i with T§ < 4, we use 1 as an upper bound on
this probability.) Moreover, since the targets of the work-steal attemptsin the g roundsare
chosen independently from the targets chosen in other rounds, we can bound the probability
of the particular delay sequence (U, R,) occurring as follows:

Pr{(U,R M) occurs} = |‘| Pr{m rounds occur while u; iscritical }
1<i<L
< e
1<i<L
>4
= &p|-2) T
1SZ§
L T
= exp|-2 TG — TS
1<4=L 1suzsL
L <4
< 2R3

To bound the probability of some (U, R, M) delay sequence occurring, we need to count the
number of such delay sequences and multiply by the probability that a particular such se-
guence occurs. Thedirected pathU inthemodified dag G’ startsat thefirst instruction of the
root thread and endsaat the last instruction of theroot thread. If theoriginal dag hasdegreed,
then G’ hasdegree at most d + 1. Consistent with our unit-time assumption for instructions,
we assume that the degree d isaconstant. Since thelength of alongest pathin G’ isat most
2T, there are at most (d + 1)2™= ways of choosing the path U = (ug, U, ..., u.). Thereare

at most (“17) < (°™®) waysto choose M, since I partitions Rinto L pieces. Aswe have

just shown, a given delay sequence has a most an e 2R-3L) < @=2(R-6T) chance of oc-
curring. Multiplying these three factors together bounds the probability that any (U, R, M)
delay sequence occurs by

2T+ R
(d+ 1)2Tw< R+)e—2R+12T°o 7 (4.5)

whichisat most € for R= O(T lgd+1g(1/¢€)). Thus, the probability that at |east 4P(2Te, +

4.3. Analysis of the work-stealing algorithm 51

R) = O(P(Twlgd+1g(1/€))) = O(P(Te +19(1/€))) stedl attempts occur isat most €. The
expectation bound follows, because thetail of the distribution decreases exponentially. m

With bounds on the number of dollarsin the WoRK and STEAL buckets, we now state
the theorem that boundsthe total execution timefor afully strict multithreaded computation
by the Work-Stealing Algorithm, and we complete the proof by bounding the number of
dollarsin the WAIT bucket.

Theorem 4.10 Consider the execution of any fully strict multithreaded computation with
work T; and critical path length T, by the Work-Sealing Algorithm on a parallel computer
with P processors. The expected running time, including scheduling overhead, isO(T;/P+
Tw). Moreover, for any € > 0, with probability at least 1 — €, the execution time on P pro-
cessorsis O(Ty /P+ T + IgP 4 1g(1/€)) .2

Proof: Lemmas 4.4 and 4.9 bound the dollars in the WORK and STEAL buckets, so we
now must bound the dollarsin the WAIT bucket. Thisbound isgiven by Lemma4.3 which
bounds the total delay—that is, the total dollarsin the WAIT bucket—as a function of the
number M of steal attempts—that is, the total dollarsin the STEAL bucket. Thislemma
says that for any € > 0, with probability at least 1 — €, the number of dollarsin the WAIT
bucket isat most aconstant timesthe number of dollarsinthe STEAL bucket plusO(PIgP +
Plg(1/¢)), and the expected number of dollarsin the WAIT bucket is at most the number in
the STEAL bucket.
We now add up the dollarsin the three buckets and divide by P to complete this proof.
|

The next theorem bounds the total amount of communication that a multithreaded com-
putation executed by the Work-Stealing Algorithm performs in a distributed model. The
anaysis makes the assumption that at most a constant number of bytes need be communi-
cated along a dependency edge to resolve the dependency.

Theorem 4.11 Consider the execution of any fully strict multithreaded computation with
critical path length T., by the Work-Stealing Algorithm on a parallel computer with P pro-
cessors. Then, thetotal number of bytes communi cated has expectation O(PTe (14 Ng) Srax)
where ny is the maximum number of dependency edges from a thread to its parent and Sqax
is the size in bytes of the largest activation frame in the computation. Moreover, for any
€ > 0, the probability is at least 1 — € that the total communication incurred is O(P(Te +

19(1/€))(1+ Ng) Sax)-

Proof: We provethe bound for the expectation. The high-probability bound is analogous.
By our bucketing argument, the expected number of steal attemptsisat most O(PT.,). When
athread is stolen, the communication incurred is at most Sy.x. Communication also occurs
whenever a dependency edge enters a parent thread from one of its children and the parent
has been stolen, but since each dependency edge accounts for at most a constant number of

2With Plaxton’s bound [85] for Lemma 4.3, this bound becomes Tp = O(T;/P+ T.), whenever 1/¢is a
most polynomial in M and P.

52 Chapter 4. Work stealing

bytes, the communication incurred is at most O(ny) per steal. Finally, we can have com-
munication when a child thread enables its parent and puts the parent into the child’s pro-
cessor’s ready deque. This event can happen at most ng times for each time the parent is
stolen, so the communication incurred is at most NgSnax per steal. Thus, the expected total
communication cost is O(PTe (14 Ng)Snax)- n

The communication boundsin thistheorem areexistentialy tight, in that thereexist fully
strict computationsthat require Q(PTe (14 nNg) Snax) total communication for any execution
schedule that achieves linear speedup. This result follows directly from a theorem of Wu
and Kung [107], who showed that divide-and-conquer computations—aspecial caseof fully
strict computations with ng = 1—require this much communication.

Inthe case when we have ng = O(1) and the algorithm achieves linear expected speedup
—that is, when P = O(Ty/Te)—the total communication is at most O(Ty Syax). Moreover,
if P < T1/Tw, thetotal communication is much less than T; Syax, which confirms the folk
wisdom that work-stealing algorithms require much less communication than the possibly
O(T1Snax) communication of work-sharing algorithms.

Chapter 5

Parallel programming in Cilk

Writing a high-performance parallel application in Cilk, the programmer can focus on ex-
pressing theparallelism inthe algorithm, insulated from communi cation protocol s, |oad bal -
ancing, and other runtime scheduling issues. The Cilk language is an explicitly parallel,
multithreaded extension of the C language. The Cilk runtime system automatically man-
ages the low-level detailsinvolved in executing a Cilk program on a parallel machine, and
it does so with a work-stealing scheduler that is efficient in theory as well as in practice.
Moreover, Cilk gives the user an agorithmic model of application performance based on
the measures of “work” and “critical path length” which can be used to predict the runtime
of a Cilk program accurately. Consequently, a Cilk programmer can tune the performance
of hisor her application by focusing onthework and critical path, unworried about machine
specific performance details.

In this chapter, we explain the Cilk language and runtime system, and then we demon-
strate the efficiency of Cilk’s scheduler both empirically and anaytically. Thelanguage and
runtime system are covered in Section 5.1. In Section 5.2 we use severa applications to
demonstrate empirically the efficiency of the Cilk runtime system. These applications in-
clude protein folding, graphic rendering, backtrack search, and the xSocrates chess pro-
gram, which won second prize in the 1995 |CCA World Computer Chess Championship.
We also show in Section 5.2 how work and critical path length can be used to model accu-
rately the parallel runtimeof Cilk applications. Analytically, we provein Section 5.3 that for
“fully strict” (well-structured) programs, Cilk’s work-stealing scheduler uses space, time,
and communication all within a constant factor of optimal. To date, al of the applications
that we have coded are fully strict.

5.1 The Cilk language and runtime system

The Cilk language [10] extends C with primitivesto express parallelism, and the Cilk run-
time system maps the expressed parallelism into parallel execution. A Cilk programis pre-

Some of the research reported in this chapter isjoint work with members of the Cilk team: Matteo Frigo,
Michael Halbherr, Chris Joerg, Bradley Kuszmaul, Charles Leiserson, Rob Miller, Keith Randall, and Yuli
Zhoual currently or formerly of MIT’sLaboratory for Computer Science. Some of the material inthischapter
was previously publishedin [12].

53

54 Chapter 5. Parallel programming in Cilk

processed to C using the cilk2c trandator! [76] and then compiled and linked with arun-
time library to run on the target platform. Currently supported targets include the Connec-
tion Machine CM5 MPR, the Intel Paragon MPP, the Sun SparcStation SMP, the Silicon
Graphics Power Challenge SMP, and the Cilk-NOW network of workstations (Chapter 6).
In this section, we shall discuss the Cilk language primitives for expressing parallelism as
well as the runtime system mechanisms that implement these primitives. Beginning with
two simple high-level language primitives, “ spawn” and “sync,” we shall then diveinto the
lower-level primitives, based on “continuation-passing threads,” that are supported directly
by the runtime system. We conclude this section by discussing the work-stealing schedul er
employed by the runtime system to execute a Cilk program in paralel.

5.1.1 Spawns and syncs

A Cilk program contains one or more “Cilk procedures,” and Cilk procedures can “spawvn’
children for parallel execution. A Cilk procedure is the parallel equivalent of a C function,
and aspawn isthe parallel equivalent of afunction call. A spawn differsfromacall inthat
when a procedure spawns a child, the parent and child may execute concurrently. The Cilk
language provides a mechanism to define Cilk procedures, a primitive that procedures may
use to spawn children, and a primitive that procedures may use to synchronize with their
spawned children.

To illustrate these Cilk constructs, we shall use the double recursive implementation of
the Fibonacci function as arunning example. Recall that the Fibonacci function fib(n) for
n > Oisdefined as

b — n ifn<2
(n) = fib(n—1) +fib(n—2) otherwise.

Figure 5.1 shows how this function is written as a Cilk procedure. Thistoy exampleillus-
trates a common pattern occurring in (parallel) divide-and-conquer applications. recursive
calls (spawns) solve smaller subcases and then the partial results are merged to produce the
final result.

The keyword cilk identifiesa Cilk procedure. The definition of a procedure P includes
areturn type, an argument list, and a body just like a C function:

cilk type P (arg-decls ...) { stmts ...}

The actual work in a Cilk procedureis performed by ordinary C code in the body, whichis
executed serially. To express parallelism, a procedure may spawn children using the spawn
keyword, and it may contain synchronization pointsidentified by the sync statement. No-
tice that besides the keywords cilk, spawn, and sync, the Cilk procedure Fib isidentical
to its C counterpart (Figure 1.1, page 2).

Cilk programs create parallelism at runtime when a procedure spawns children. A Cilk
procedure may spawn achild P asfollows:

1The cilk2c trandator was written by Rob Miller formerly of MIT’s Laboratory for Computer Science
and now of the School of Computer Science at Carnegie Mellon University. Rob’s implementation builds
on earlier work by Yuli Zhou formerly of MIT’s Laboratory for Computer Science and now of AT& T Bell
Laboratories.

5.1. The Cilk language and runtime system 55

cilk int Fib (int n)
{ if (n<2)
return n;
else
{ int x, y;
x = spawn Fib (n-1);
y = spawn Fib (n-2);
sync;
return (x+y);

}

}

Figure 5.1: A Cilk procedure to compute the nth Fibonacci number.

[var =] spawn P (args ...)

Besides the keyword spawn, this construct is identical to a C function call. Semantically,
the differenceis as follows. When a C function calls a child, the parent immediately sus-
pends executing and waits for the child to return beforeresuming. A Cfunction call issyn-
chronous. On the other hand, when a Cilk procedure spawns a child, the parent need not
immediately wait for its child to return. A spawn is asynchronous. For example, when the
Fib procedure spawnsitsfirst child, the parent may continue on to the second spawn while
the child may execute concurrently on some other processor. The programmer specifiesnel-
ther where nor exactly when the spawned child will execute. The scheduler makes these
decisions.

A Cilk procedure cannot use the return values of the children it has spawned until those
children return. For example, the Fib procedure cannot add the return values x and y until
its spawned children have completed computing and returned those values. Therefore, Fib
usesthe sync statement after the spawns and beforethe addition. The sync statement forces
the procedure to suspend executing and wait until all of its spawned children return. Once
all of itschildrenreturn, the procedure may resume. Thus, the sync statement synchronizes
the parent with al of its children.

Cilk program execution beginsat the Cilk procedurecilk main. Likethe Cmain func-
tion, cilk main hasthe prototype

cilk int cilkmain (int argc, char *xargv[]);

and receives the command-line arguments asits parameters. For example, Figure 5.2 gives
the definition of cilk main for the Fibonacci program. The Cilk procedures cilk main
and Fib together constitute a complete Cilk Fibonacci program.

At runtime, a Cilk program grows a spawn tree of procedures that unfolds dynamically
as procedures spawn children. The spawn treeisrooted at cilk main and in genera con-
nects procedures to the children they spawn. For example, Figure 5.3 shows the spawn tree
grown by an execution of the Fibonacci program. Notice that we use the term “ procedure”
to denote both the static Cilk procedure (identified by the keyword cilk) that is part of a
Cilk program and the dynamic procedure that (as a consequence of a spawn occurring at
runtime) is a node in the spawn tree. The spawn tree is analogous to a conventional call

56 Chapter 5. Parallel programming in Cilk

cilk int cilkmain (int argc, char xargv[])
{ int n, result;
n = atoi (argv[1]);
result = spawn Fib (n);
sync;
printf ("Fib (%d) = %d.\n", n, result);
return O;

Figure 5.2: Thecilk main procedure for the Fibonacci program.

cilk_main
|
Fib (3)
AN
Fib (1) Fib (2)
/ N\
Fib (0) Fib (1)

Figure 5.3: The spawn tree grown by an execution of the Fibonacci program.

tree, and it is equivalent to the spawn tree described in Chapter 2 except that in Cilk we
use the term “procedure” instead of “thread.” In Cilk terminology, “thread” has a different
meaning.

5.1.2 Continuation-passing threads

Rather than work with procedures that may suspend waiting to synchronize with their chil-
dren, the Cilk runtime system manipulates and schedules nonsuspending pieces of proce-
durescalled Cilk threads. Also, Cilk threadsdo not interact with each other in spawn/return
style as procedures do. Instead, as we shall explain shortly, Cilk threads interact in the
“continuation-passing style” supported by the runtime system.

To be executed by the Cilk runtime system, each procedure must be partitioned into one
or morethreads. Thefirst thread executed as part of a procedureis called theinitial thread,
and subsequent threads are called successor threads.

For a Cilk procedure defined with the keyword cilk, the cilk2c trandator automati-
cally partitions the procedure into continuation-passing threads using the sync statements
asthedividing points. For example, cilk2c partitionsthe Fib procedure of Figure5.1 into
two Cilk threads: the initial thread before the sync statement and the successor thread af -
ter. Currently, cilk2cisableto performthisautomatic partitioning only for proceduresthat

5.1. The Cilk language and runtime system 57

synchronize exclusively viathe sync statement which waitsfor all spawned children.

For proceduresthat require more complex synchronization, Cilk provides primitives so
that the programmer can explicitly define Cilk threads in continuation-passing style. Fig-
ure 5.4 showsthe Fibonacci function written explicitly astwo continuation-passing threads,
theinitial thread £ib and its successor sum. Essentially, cilk2c trandates the Fib proce-
dure of Figure 5.1 asif it had been written asin Figure 5.4.

thread fib (cont int k, int n)
{ if (n<2)
send_argument (k, n);
else
{ cont int x, y;
spawn next sum (k, 7x, 7y);
spawn fib (x, n-1);
spawn fib (y, n-2);

¥
¥

thread sum (cont int k, int x, int y)
{ send_argument (k, x+y);

}

Figure 5.4: A Cilk procedure, written in explicit continuation-passing style, to compute the nth
Fibonacci number. This procedure contains two threads, £ib and its successor sum.

The Cilk keyword thread identifies a Cilk thread. The definition of a Cilk thread T
includes an argument list and a body similar to a C function definition:

thread T (arg-decls ...) { stmts ...}

The actual work in a Cilk thread is performed by ordinary C codein the body, whichisexe-
cuted serially and without suspending. Threads are not allowed to contain sync statements.

spawn_

next | successor
“| thread

send_ar gunent
or
accurul ate

spawn

Figure 5.5: A thread spawnschild threadsto create parallelism and asuccessor thread to wait for the
values “returned” by the children. The background shading denotes procedures. The child threads
each start anew child procedure, and the successor thread is part of the same procedure asits prede-
Cessor.

58 Chapter 5. Parallel programming in Cilk

A Cilk thread generates parallelism at runtime by spawning a child thread that becomes
the initial thread of a child procedure. After spawning one or more children, the parent
thread cannot then wait for its children to return—in Cilk, threads never suspend. Rather,
asillustrated in Figure 5.5, the parent thread must additionally spawn a successor thread to
wait for the values “returned” from the children. The spawned successor is part of the same
procedure asits predecessor. The child procedures return valuesto the parent procedure by
sending those valuesto the parent’ swaiting successor. Thus, athread may wait to begin exe-
cuting, but once it begins executing, it cannot suspend. Notice that we use the term “thread”
to denote both the static Cilk thread (identified by the keyword thread) that ispart of aCilk
program and the dynamically spawned thread that occurs at runtime. Spawning successor
and child threads is done with the spawn next and spawn keywords respectively. Sending
avalueto awaiting thread isdonewith the send_argument or accumulate statement. The
Cilk runtime system implements these primitives using two basic data structures, closures
and continuations, asillustrated in Figure 5.6.

waiting closure code

/z*}i*\’i

join
counters

6

ready closure

arguments

I
-
[
I
continuation [

Figure 5.6: Closures and continuations.

Closures are data structures employed by the runtime system to keep track of and sched-
ule the execution of spawned threads. Whenever a thread is spawned, the runtime system
alocatesaclosurefor it fromasimpleheap. A closurefor athread T consists of apointer to
the code for T, adot for each of T’s specified arguments, and a join counter indicating the
number of missing argumentsthat need to be supplied before T isready to run. The closure,
or equivalently the spawned thread, isready if it has obtained all of itsarguments, and itis
waiting if some arguments are missing. Figure 5.7 shows a closure for the £ib thread: its
join counter is zero, so thethread is ready, and it contains two arguments, a continuation k
(asexplained below) and an integer n. Notice that these two argumentsare the formal argu-
ments declared in the definition of thefib thread. To runaready closure, the Cilk scheduler
invokes the thread using the values in the closure as arguments. When the thread dies, the
closureisfreed.

A continuationisaglobal referenceto an empty argument ot of aclosure, implemented
as a compound data structure containing a pointer to aclosure and an offset that designates
one of the closure' sargument dots (see Figure5.6). Continuationsaretyped withthe C data

5.1. The Cilk language and runtime system 59

|/

Figure 5.7: A closurefor the £ib thread.

type of the dot in the closure. Inthe Cilk language, continuations are declared by the type
modifier keyword cont. For example, the fib thread declares two integer continuations, x
andy.

A thread spawns a successor thread by creating aclosure for the successor. The succes-
sor thread is part of the same procedure as its predecessor. Spawning a successor thread T
is specified in the Cilk language as follows:

spawnnext T (args ...)

Thisstatement allocatesaclosurefor thread T, fillsin al availablearguments, andinitializes
the join counter to the number of missing arguments. Available arguments are specified as
in C. To specify a missing argument, the user specifies a continuation variable preceded
by a question mark. For example, in the £ib thread, the statement spawn next sum (k,
7x, 7y) alocates a closure with sum as the thread and three argument dots as shown in
Figure5.8. Thefirst dotisinitialized with the continuationk and the last two slotsareempty.
The continuation variablesx and y are initialized to refer to these two empty dots, and the
join counter is set to 2. This closure is waiting. In general, if the closure is ready, then
spawn_next causes the closure to be immediately posted to the scheduler for execution. In
typical applications, successor threads are spawned waiting for some missing arguments.

fib sum

0
—1 > [—e
9

Figure 5.8: When the £ib thread spawns its successor sum, it creates a new closure with sum as
the thread and two empty argument slots referred to by the continuationsx and y. The background
shading denotesthat both threads are part of the same procedure.

A thread spawnsachild thread by creating aclosurefor the child. Thechild threadisthe
initial thread of a newly spawned child procedure. Spawning a child thread T is specified
in the Cilk language as follows:

spawn T (args ...)

60 Chapter 5. Parallel programming in Cilk

This statement is semantically identical to spawn next, but it informsthe scheduler that the
new closure should be treated as a child, as opposed to a successor. (Thisdifferencewill be
explained when wediscussthescheduler.) For example, the £ ib thread spawnstwo children
asshownin Figure5.9. The statement spawn fib (x, n-1) allocatesaclosurewith fib
as the thread and two argument dots. The first dot is initialized with the continuation x
which, as a consegquence of the previous statement, refersto adot in its parent’s successor
closure. The second dot isinitialized with thevalue of n-1. Thejoin counter is set to zero,
sothethread isready, and it is posted to the scheduler for execution. Intypical applications,
child threads are spawned with no missing arguments,

fib sum
0 2
9

fib fib

0

0
—
8

Figure 5.9: When the £ib thread spawns children, it creates for each child anew closurewith£ib
as the thread and no empty argument slots. Each child closure has a continuation referring to an
empty slot in the parent’s successor closure. Each child thread is the initial thread of a new child
procedure.

A thread sends avalueto awaiting thread by placing the value into an argument dot of
thewaiting thread’s closure. Cilk providesthefollowing primitivesto send valuesfrom one
thread to another:

send_argument (k, value)
accumulate (k, op, wvalue)

The send_argument statement sendsthevalue value to theempty argument slot of await-
ing closure specified by the continuation k. The types of the continuation and the value
must be compatible. The join counter of the waiting closure is decremented, and if it be-
comes zero, then the closure is ready and is posted to the scheduler. For example, when the
fib thread reaches the boundary case, the statement send_argument (k, n) writes the
value of n into an empty argument sot in the parent procedure’s waiting sum closure and
decrements its join counter. When the sum closure' sjoin counter reaches zero, it is posted
to the scheduler. When the sum thread gets executed, it adds its two arguments, x and y,

5.1. The Cilk language and runtime system 61

Y

A\

fib

sum

fib fib

Y

sum

fib fib

Figure 5.10: The dag grown by an execution of the Fibonacci program. Dag edges crested by
spawn next are horizontal; dag edges created by spawn are straight, shaded, and point downward,;
and dag edges created by send_argument are curved and point upwards. The background shading
groups the threads into procedures.

and then uses send_argument to “return” this result up to its parent procedure's waiting
sum thread. Cilk aso provides a specia type of continuation called a signal that can be
used in asend_argument without any value. The accumulate statement is the same as
send_argument except that it usesthefunction op to accumulate value into the argument
dot.

This style of linking Cilk threads is called continuation-passing style [2] and contrasts
with the spawn/return style that links procedures. In spawn/return style, a spawned child
awaysreturnstoits parent, and the parent, after performing the spawn, can suspend, waiting
for thechildto return. That the child should return values and control toits parent isimplicit
in the spawn/return style. In continuation-passing style, a spawned child never returnsto its
parent. Cilk threadsnever return, and they never sync. Instead, aspawned child ispassed
a continuation as an explicit argument that specifies where values and control should go
when it dies.

At runtime, a Cilk program grows adag (directed, acyclic graph) of threadsthat unfolds
dynamically as threads spawn successors and children. For example, Figure 5.10 shows
the dag grown by an execution of the Fibonacci program. The dag contains an edge from
one thread to another if either the first thread spawned the second (with spawn next or
spawn) or the first thread sends a value (or signal) to the second (with send_argument or
accumulate). We can think of closures and continuations as the data structures employed
by the runtime system to keep track of the dag asit grows. Thisdag is analogousto the dag
described in Chapter 2 except that rather than having unit-size instructions as dag nodes,
thisdag has arbitrary-sizethreads. We shall examine the consequences of thisdifferencein
Section 5.3.

62 Chapter 5. Parallel programming in Cilk

To summarize the Fibonacci procedure, it consists of two threads, £ib and its successor
sum. Reflecting the explicit continuation passing style, the first argument to each thread is
the continuation specifying wherethe“return value’ should be placed. Whenthefib thread
isinvoked, it first checksto seeif the boundary case has been reached, in which case it uses
send_argument to send the value of n as an argument to the waiting thread specified by
continuation k. Otherwise, it spawns the successor thread sum, as well as two children to
compute the two subcases. Each of these two children is given a continuation specifying to
which argument in the sum thread it should send itsresult. The sum thread ssimply adds the
two arguments when they arrive and sends this result to the waiting thread designated by k.

Althoughwriting in explicit continuation passing style is somewhat onerousfor the pro-
grammer, the decision to break proceduresinto separate nonsuspending threads with heap-
allocated closures simplifies the Cilk runtime system. Each Cilk thread runsto completion
without suspending and leaves the C runtime stack empty when it dies. A common alter-
native [22, 47, 52, 63, 77, 81] is to directly support spawn/return threads (or procedures)
in the runtime system, possibly with stack-allocated activation frames. In such a system,
threads can suspend waiting for synchronization and leave temporary values on the calling
stack. Consequently, this alternative strategy requires that the runtime system either em-
ploys multiple stacks or a mechanism to save these temporariesin heap-allocated storage.
Another advantage of Cilk’s strategy is that it allows multiple children to be spawned from
asingle nonsuspending thread, which saves on context switching. In Cilk, r children can be
spawned and executed with only r + 1 context switches, whereasthe aternative of suspend-
ing whenever athread is spawned causes 2r context switches. Since our primary interest is
in understanding how to build runtime systems that efficiently schedule multithreaded pro-
grams, we chose the aternative of burdening the programmer with arequirement which is
perhaps less elegant linguistically, but which yields a smple and portable runtime system
implementation.

Cilk supportsavariety of additional primitivesthat give the programmer greater control
over runtime performance. For example, whenthelast action of athreadisto spawn achild,
the programmer can use the keyword call instead of spawn to call the new thread imme-
diately without invoking the scheduler. Additionally, if the called thread is the same as the
callee, then the programmer can usethe tail call keyword that produces a“tail call” to
avoid both the scheduler overhead and the C function call overhead. Cilk aso allowsarrays
and subarrays to be passed as argumentsto threads. Other featuresinclude various abilities
to overridethe scheduler’ sdecisions, including how to pack and unpack datawhen aclosure
ismigrated from one processor to another.

5.1.3 The Cilk work-stealing scheduler

Cilk’s scheduler uses the technique of work stealing in which a processor (the thief) who
runs out of work selects another processor (the victim) from whom to steal work, and then
stealsthe shallowest ready thread in the victim’s spawn tree. Cilk’s strategy isfor thievesto
choosevictimsat random. Essentially, Cilk implementsthe scheduling algorithm described
and analyzed in Chapter 4. We shall now present Cilk’s implementation of this agorithm.

At runtime, each processor maintains a local ready pool to hold ready closures. Each
closure has an associated level, which corresponds to the thread's depth in the spawn tree.

5.1. The Cilk language and runtime system 63

The closures for the threads in the cilk main procedure have level O; the closures for the
threadsincilk main’schild procedureshavelevel 1; and so on. Theready pool isan array,
illustrated in Figure5.11, inwhich the Lth element containsalinked list of all ready closures
having level L.

Cilk begins executing the user program by initializing al ready poolsto be empty, plac-
ing theinitial thread of cilk main intothelevel-0list of Processor 0's pool, and then start-
ing a scheduling loop on each processor.

At each iteration through the scheduling loop, a processor first checks to see whether its
ready pool isempty. Ifitis, the processor commenceswork stealing, whichwill bedescribed
shortly. Otherwise, the processor performs the following steps.

1. Removethe closure at the head of thelist of the deepest nonempty level in the ready
pool.

2. Extract the thread from the closure, and invoke it.

As a thread executes, it may spawn or send arguments to other threads. When the thread
dies, control returns to the scheduling loop which advances to the next iteration.

When athread at level L performsa spawn of achild thread T, the processor executes
the following operations:

1. Allocate and initializea closurefor T.

2. Copy the available argumentsinto the closure, initialize any continuationsto point to
missing arguments, and initializethejoin counter to the number of missing arguments.

3. Labd theclosurewith level L + 1.

4. If there are no missing arguments, post the closure to the ready pool by inserting it at
the head of thelevel-(L+ 1) list.

Execution of spawn next issimilar, except that the closureislabeled with level L and, if it
isready, posted to the level-L list.

When a thread performs a send_argument (k, wvalue), the processor executes the
following operations:

1. Find the closure and argument dot referenced by the continuation .
2. Place value inthe argument dot, and decrement the join counter of the closure.

3. If thejoin counter goes to zero, post the closure to the ready pool at the appropriate
level.

Execution of accumulate issimilar, except that the value is accumulated into the argu-
ment slot with a combining function. When the continuation & refersto aclosureon are-
mote processor, network communication ensues. In this case, the processor that initiated
the send_argument function sends a message to the remote processor to perform the op-
erations. The only subtlety occursin step 3. If the closure must be posted, it is posted to
the ready pool of the initiating processor, rather than to that of the remote processor. This

64 Chapter 5. Parallel programming in Cilk

av] head

next closure

/tosteal
=] head j<>
2 | tail J

head [<>

level head

N
1

tail

A
Y
A

level

tail

head <>

A
Y
A

level

A

tail

head

;
=

tail

head

tail

level head next closure
7 tail to execute

Figure 5.11: A processor’sready pool. At each iteration through the scheduling |l oop, the processor
executes the closure at the head of the deepest nonempty level in the ready pool. If the ready pool
isempty, the processor becomes athief and stealsthe closure at thetail of the shallowest nonempty
level in the ready pool of avictim processor chosen uniformly at random.

5.2. Performance of Cilk applications 65

policy is necessary for the scheduler to be provably efficient, but as a practical matter, we
have also had success with posting the closure to the remote processor’s pool.

If a processor begins an iteration of the scheduling loop and finds that its ready pool is
empty, the processor becomes athief and commences work stealing as follows:

1. Select avictim processor uniformly at random.
2. If thevictim’sready pool is empty, go back to step 1.

3. If thevictim's ready pool is nonempty, extract the closure from the tail of thelist in
the shallowest nonempty level of the ready pool, and execute it.

Work stealing isimplemented with asimple request-reply communication protocol between
the thief and victim.

Why steal work from the shallowest level of the ready pool? The reason is two-fold—
one heuristic and one algorithmic. First, to lower communication costs, we would like to
steal large amounts of work, and in atree-structured computation, shallow threads arelikely
to spawn morework than deep ones. Thisheuristic notionisthejustification cited by earlier
researchers [20, 42, 52, 77, 103] who proposed stealing work that is shallow in the spawn
tree. We cannot, however, prove that shallow threads are more likely to spawn work than
deep ones. What we provein Section 5.3 isthe following agorithmic property. The threads
that are on the “ critical path” in the dag, are dways at the shallowest level of a processor’s
ready pool. Consequently, if processors are idle, the work they steal makes progress along
the critical path.

5.2 Performance of Cilk applications

The Cilk runtime system executes Cilk applications efficiently and with predictable perfor-
mance. Specifically, for dynamic, asynchronous, tree-like applications, Cilk’ swork-stealing
scheduler produces near optimal parallel speedup while using small amounts of space and
communication. Furthermore, Cilk application performance can be modeled accurately asa
simplefunction of “work” and “ critical path length.” Inthissection, weempirically demon-
strate these factsby experimenting with several applications. Thissection beginswithalook
at these applicationsand then proceeds with alook at the performance of these applications.
We close this section with alook at application performance modeling. The empirical re-
sults of this section confirm the analytical results of the next section.

5.2.1 Cilk applications

We experimented with the Cilk runtime system using several applications, some synthetic
and somereal. The applications are described below:

e fib is the same as was presented in Section 5.1, except that the second recursive
spawnisreplaced by atail call that avoidsthe scheduler. This program isagood
measure of Cilk overhead, because the thread length is so small.

66

Chapter 5. Parallel programming in Cilk

queens IS a backtrack-search program that solves the problem of placing N queens
onaN x N chessboard so that no two queens attack each other. The Cilk programis
based on seria code by R. Sargent of MIT’s Media Laboratory. Thread length was
enhanced by serializing the bottom 7 levels of the search tree.

pfoldisaprotein-foldingprogramthat finds hamiltonian pathsin athree-dimensional
grid using backtrack search [83]. Written by Chris Joerg of MIT’s Laboratory for
Computer Scienceand V. Pande of MIT’s Center for Material Sciences and Engineer-
ing, pfold wasthefirst programto enumerateall hamiltonian pathsina3 x 4 x 4grid.
We timed the enumeration of all paths starting with a certain sequence.

ray isaparallel programfor graphicsrendering based ontheserial POV-Ray program,
which uses aray-tracing algorithm. The entire POV-Ray System contains over 20, 000
lines of C code, but the core of POV-Ray isasmple doubly nested loop that iterates
over each pixel in atwo-dimensiona image. For ray we converted the nested |oops
into a 4-ary divide-and-conquer control structure using spawns.> Our measurements
do not includethe approximately 2.4 seconds of startup timerequired to read and pro-
cess the scene description file.

knary(n,k,r) is asynthetic benchmark whose parameters can be set to produce a
variety of values for work and critical path length. It generates atree of depthn and
branching factor k inwhichthefirst r children at every level are executed serially and
the remainder are executed in parallel. At each node of the tree, the program runs an
empty “for” loop for 400 iterations.

*Socrates isaparalle chess program that uses the Jamboree search algorithm [58,
70] to parallelize a minmax tree search. The work of the algorithm varies with the
number of processors, because it does speculative work that may be aborted during
runtime. xSocrates was written by a team of engineers headed by Charles Leiser-
sonof MIT’sLaboratory for Computer Sciencewith Don Dailey formerly of Heuristic
Software and Chris Joerg of MIT’s Laboratory for Computer Science asthe lead pro-
grammers.2 «Socrates won second prize in the 1995 |CCA World Computer Chess
Championship running on the 1824-node Intel Paragon at Sandia National Laborato-
ries.

Many of these applications place heavy demands on the runtime system due to their dy-

namic and irregular nature. For example, in the case of queens and pfold, the size and
shape of the backtrack-search tree cannot be determined without actually performing the

2|nitially, the Cilk ray programwas about 5 percent faster than the serial POV-Ray program running on one

processor. The reason was that the divide-and-conquer decomposition performed by the Cilk code provides
better locality than the doubly nested loop of the serial code. Modifying the seria code to imitate the Cilk
decomposition improved its performance. Timingsfor the improved version are given in Figure 5.13.

3The other members of the xSocrates team are |.M. Larry Kaufmann formerly of Heuristic Software,

Robert Blumofeof MIT'sLaboratory for Computer Science, Bradley Kuszmaul formerly of MIT’sLaboratory
for Computer Science and now of the Computer Science Department at Yale University, Rolf Riesen of Sandia
National Laboratories, and Yuli Zhou formerly of MIT’s Laboratory for Computer Science and now of AT& T
Bell Laboratories.

5.2. Performance of Cilk applications 67

search, and the shape of the tree often turns out to be highly irregular. With speculative
work that may be aborted, the xSocrates minmax tree carries this dynamic and irregular
structureto the extreme. Inthe case of ray, the amount of timeit takes to compute the color
of apixel inanimageis hard to predict and may vary widely from pixel to pixel, asillus-
trated in Figure 5.12. In all of these cases, high performance demands efficient, dynamic
load balancing at runtime.

(a) Ray-traced image. (b) Work at each pixel.

Figure 5.12: (a) Animage rendered with the ray program. (b) Thisimage shows the amount of
time ray took to compute each pixel value. Thewhiter the pixel, thelonger ray worked to compute
the corresponding pixel value.

All experiments were run on a CM5 supercomputer. The CM5 is amassively parallel
computer based on 32MHz SPARC processorswith afat-treeinterconnection network [72].
The Cilk runtime system on the CM5 performs communi cation among processors using the
Strata[17] active-message library.

5.2.2 Application performance

By running our applications and measuring a suite of performance parameters, we empiri-
cally answer a number of questions about the effectiveness of the Cilk runtime system. We
focus on the following questions. How efficiently does the runtime system implement the
language primitives? Aswe add processors, how much faster will the program run? How
much more space will it require? And how much more communication will it perform?
We show that, for dynamic, asynchronous, tree-like programs, the Cilk runtime system ef-
ficiently implements the language primitives, and is smultaneoudly efficient with respect
to time, space, and communication. In Section 5.3, we reach the same conclusion by ana-
lytic means, but in this section we focus on empirical data from the execution of our Cilk
programs.

68 Chapter 5. Parallel programming in Cilk

The execution of aCilk programwith agiven set of inputsgrowsa Cilk computation that
consists of atree of procedures and a dag of threads. These structures were introduced in
the previous section. We benchmark our applications based on two fundamental measures
of the computation: work and critical path length.

The work, denoted by Ty, is the time to execute the Cilk computation on one proces-
sor, which corresponds to the sum of the execution times of al the threadsin the dag. The
method used to measure T; depends on whether the program is deterministic. For determin-
istic programs, the computation only depends on the program and its inputs, and hence, it
is independent of the number of processors and runtime scheduling decisions* All of our
applications, except xSocrates, aredeterministic. For these deterministic applications, the
work performed by any P-processor run of the programis equal to thework performed by a
1-processor run (with the same input values), so we measure the work T; directly by timing
the 1-processor run. The xSocrates program, on the other hand, uses speculative execu-
tion, and therefore, the computation depends on the number of processors and scheduling
decisions made at runtime. In this case, timing a 1-processor runis not a reasonable way to
measure the work performed by arun with more processors. We must realize that the work
T, of an execution with P processors is defined as the time it takes 1-processor to execute
the same computation, not the same program (with the same inputs). For xSocrates we
estimate the work of a P-processor run by performing the P-processor run and timing the
execution of every thread and summing. This method yields an underestimate since it does
not include scheduling costs. In either case, a P-processor execution of a Cilk computation
with work T; must take time at least T /P.% A P-processor execution that takes time equal
to this T /P lower bound is said to achieve perfect linear speedup.

Thecritical path length, denoted by T, isthe timeto execute the Cilk computation with
infinitely many processors, which correspondsto the largest sum of thread execution times
along any path in the dag. We measure critical path length by timestamping each thread in
the dag with the earliest time at which it could have been executed. Specifically thistimes-
tamp is the maximum of the earliest time that the thread could have been spawned and, for
each argument, the earliest time that the argument could have been sent. These values, in
turn, are computed from the timestamp of the thread that performed the spawn or sent the
argument. In particular, if athread performs a spawn, then the earliest time that the spawn
could occur is equal to the earliest time at which the thread could have been executed (its
timestamp) plus the amount of time the thread ran for until it performed the spawn. The
same property holds for the earliest time that an argument could be sent. The initial thread
of cilk main istimestamped zero, and thecritical path length isthen computed asthe maxi-
mum over al threadsof itstimestamp plusthe amount of timeit executesfor. The measured
critical path length does not include scheduling and communication costs. A P-processor
execution of a Cilk computation must take at least as long as the computation’s critical path
length To.. Thus, if Te, exceeds Ty /P, then perfect linear speedup cannot be achieved.

Figure 5.13 is atable showing typical performance measures for our Cilk applications.
Each column presents data from a single run of abenchmark application. We adopt the fol-

4Randomized programs are deterministic if we consider the sequence of val ues generated by the source of
randomness to be inputsto the program.

SIn practice, we sometimes beat the T; /P lower bound. Such superlinear speedup is a consequence of the
fact that aswe add processors, we al so add other physical resources such asregisters, cache, and main memory.

fib queens pfold ray knary knary *xSocrates *xSocrates
(33) (15) (3,3,4) (500,500) (10,5,2) (10,4,1) (depth 10) (depth 10)
(32 proc.) (256 proc)
(computation parameters)
Tearia 8.487 252.1 615.15 729.2 288.6 40.993 1665 1665
T 73.16 254.6 647.8 732.5 314.6 45.43 3644 7023
Tewia/T1 0.116 0.9902 0.9496 0.9955 0.9174 0.9023 0.4569 0.2371
Too 0.000326 0.0345 0.04354 0.0415 4.458 0.255 3.134 3.24
T/ Te 224417 7380 14879 17650 70.56 178.2 1163 2168
threads 17,108,660 210,740 9,515,098 424,475 5,859,374 873,812 26,151,774 51,685,823
thread length 4276us 1208us 68.08us 1726s 53.69us 51.99us 139.3pus 135.9us
(32-processor experiments)
Tp 2.298 8.012 20.26 21.68 15.13 1.633 126.1 -
T /P+Te 2.287 7.991 20.29 22.93 14.28 1.675 117.0 -
Ti/Tp 31.84 31.78 31.97 33.79 20.78 27.81 28.90 -
T1/(P-Tp) 09951 0.9930 0.9992 1.0558 0.6495 0.8692 0.9030 -
space/proc. 70 95 47 39 41 42 386 -
requests/proc. 185.8 48.0 88.6 2181 92639 3127 23484 -
steal s/proc. 56.63 18.47 26.06 79.25 18031 1034 2395 -
(256-processor experiments)
Tp 0.2892 1.045 2.590 2.765 8.590 0.4636 - 34.32
T1/P+Te 0.2861 1.029 2574 2.903 5.687 0.4325 - 30.67
T/Tp 253.0 243.7 250.1 265.0 36.62 98.00 - 204.6
T1/(P-Tp) 0.9882 0.9519 09771 1.035 0.1431 0.3828 - 0.7993
space/proc. 66 76 47 32 48 40 - 405
requests/proc. 73.66 80.40 97.79 82.75 151803 7527 - 30646
steal s/proc. 24.10 21.20 23.05 18.34 6378 550 - 1540

Figure 5.13: Performance of Cilk on various applications. All times are in seconds, except where noted.

70 Chapter 5. Parallel programming in Cilk

lowing notations. For each application, we have an efficient seria C implementation, com-
piled using gcc -02, whose measured runtime is denoted Teia. The Cilk computation’s
work Ty and critical path length T, are measured on the CM5 as described above. The mea-
sured execution timeof the Cilk program running on P processorsof the CM5isgivenby Tp.
Therow labeled “threads’ indicates the number of threads executed, and “thread length” is
the average thread length (work divided by the number of threads).

Certain derived parameters are also displayed in the table. Theratio Teyiq /Ty iS the ef-
ficiency of the Cilk program relative to the C program. Theratio Ty / T, iSthe average par-
allelism. The value T;/P + T, isa simple model of the runtime, which will be discussed
later. The speedup is T1/Tp, and the parallel efficiency is Ty/(P- Tp). The row labeled
“gpace/proc.” indicates the maximum number of closures allocated at any time on any pro-
cessor. The row labeled “requestg/proc.” indicates the average number of steal requests
made by a processor during the execution, and “ steals/proc.” gives the average number of
closures actually stolen.

The datain Figure 5.13 shows two important relationships. one between efficiency and
thread length, and another between speedup and average parallelism.

Considering the relationship between efficiency Teia/T1 and thread length, we see that
for programswith moderately long threads, the Cilk runtime system induceslittle overhead.
The queens, pfold, ray, and knary programs have threads with average length greater
than 50 microseconds and have efficiency greater than 90 percent. On the other hand, the
fib program haslow efficiency, because the threads are so short: £ib does almost nothing
besides spawn and send_argument.

Despiteit’slong threads, the xSocrates programhaslow efficiency, becauseitsparallel
Jamboree search algorithmisbased on specul atively searching subtreesthat are not searched
by a serial algorithm. Consequently, as we increase the number of processors, the program
executes more threads and, hence, does morework. For example, the 256-processor execu-
tion did 7023 seconds of work whereas the 32-processor execution did only 3644 seconds
of work. Both of these executions did considerably more work than the seria program’s
1665 seconds of work. Thus, although we observe low efficiency, it is due to the parallel
algorithm and not to Cilk overhead.

Looking at the speedup T1/Tp measured on 32 and 256 processors, we see that when
the average parallelism T, / T, islarge compared with the number P of processors, Cilk pro-
grams achieve nearly perfect linear speedup, but when the average parallelism is small, the
speedupismuchless. Thefib, queens, pfold, andray programs, for example, havein ex-
cess of 7000-fold parallelism and achieve morethan 99 percent of perfect linear speedup on
32 processors and more than 95 percent of perfect linear speedup on 256 processors.® The
*Socrates program exhibits somewhat less parallelism and also somewhat |ess speedup.
On 32 processorsthexSocrates program has 1163-fold parallelism, yielding 90 percent of
perfect linear speedup, while on 256 processorsit has 2168-fold parallelism yielding 80 per-
cent of perfect linear speedup. With even less parallelism, as exhibited in theknary bench-
marks, less speedup is obtained. For example, the knary(10,5,2) benchmark exhibits
only 70-fold parallelism, and it realizes barely more than 20-fold speedup on 32 processors

6|n fact, the ray program achieves superlinear speedup even when comparing to the efficient serial imple-
mentation. We suspect that cache effects cause this phenomenon.

5.2. Performance of Cilk applications 71

(lessthan 65 percent of perfect linear speedup). With 178-foldparalelism, knary (10,4,1)
achieves 27-fold speedup on 32 processors (87 percent of perfect linear speedup), but only
98-fold speedup on 256 processors (38 percent of perfect linear speedup).

Although these speedup measures reflect the Cilk scheduler’s ability to exploit paral-
lelism, to obtain application speedup, we must factor in the efficiency of the Cilk program
compared with the serial C program. Specifically, the application speedup Teia/Tp iSthe
product of efficiency Teria/T1 and speedup T, /Tp. For example, applications such as £fib
and xSocrates with low efficiency generate correspondingly low application speedup. The
*Socrates program, with efficiency 0.2371 and speedup 204.6 on 256 processors, exhibits
application speedup of 0.2371-204.6 = 48.51. For the purpose of understanding schedul er
performance, we prefer to decouple the efficiency of the application from the efficiency of
the scheduler.

Looking more carefully at the cost of a spawn in Cilk, wefind that it takes a fixed over-
head of about 50 cyclesto allocateand initializeaclosure, plusabout 8 cyclesfor each word
argument. In comparison, a C function call on aCM5 SPARC processor takes 2 cycles of
fixed overhead (assuming no register window overflow) plus 1 cycle for each word argu-
ment (assuming al argumentsaretransferred inregisters). Thus, aspawn in Cilk isroughly
an order of magnitude moreexpensivethan aC functioncall. ThisCilk overhead isquiteap-
parent in the £ib program, which does almost nothing besides spawn and send_argument.
Based on £ib’s measured efficiency of 0.116, we can conclude that the aggregate average
cost of a spawn/send_argument in Cilk is between 8 and 9 times the cost of a function
call/returnin C.

Efficient execution of programs with short threads requires a low-overhead spawn op-
eration. As can be observed from Figure 5.13, the vast mgjority of threads execute on the
same processor on which they are spawned. For example, the £ib program executed over
17 million threads but migrated only 6170 (24.10 per processor) when run with 256 pro-
cessors. Taking advantage of this property, other researchers [47, 63, 77] have devel oped
techniques for implementing spawns such that when the child thread executes on the same
processor asitsparent, the cost of the spawn operationisroughly equal the cost of afunction
call. We hope to incorporate such techniques into future implementations of Cilk.

Finaly, we make two observations concerning the space and communication measures
in Figure 5.13.

Looking at the “space/proc.” rows, we observe that the space per processor is generally
quite small and does not grow with the number of processors. For example, xSocrates on
32 processors executes over 26 million threads, yet no processor ever has more than 386
allocated closures. On 256 processors, the number of executed threads nearly doubles to
over 51 million, but the space per processor barely changes. In Section 5.3 we show for-
mally that for an important class of Cilk programs, the space per processor does not grow
as we add processors.

Looking at the “requests/proc.” and “ steals/proc.” rowsin Figure 5.13, we observe that
the amount of communication grows with the critical path length but does not grow with
the work. For example, £ib, queens, pfold, and ray all have critical path lengths under
atenth of a second long and perform fewer than 220 requests and 80 steals per processor,
whereas knary (10,5,2) and xSocrates have critical path lengths more than 3 seconds
long and perform more than 20, 000 requests and 1500 steals per processor. The table does

72 Chapter 5. Parallel programming in Cilk

not show any clear correlation between work and either requests or steals. For example,
ray does more than twice as much work asknary (10,5,2), yet it performs two orders of
magnitude fewer requests. In Section 5.3, we show that for a class of Cilk programs, the
communication per processor grows at most linearly with the critical path length and does
not grow as afunction of the work.

5.2.3 Performance modeling

We further document the effectiveness of the Cilk scheduler by showing empirically that
Cilk application performance can be modeled accurately with asimple function of work T;
and critical path length T.,. Specifically, we use the knary synthetic benchmark to show
that the runtime of an application on P processors can be modeled as Tp & Ty /P + Coo Two,
where C, isasmall constant (about 1.5 for knary) determined by curvefitting. Thisresult
shows that we obtain nearly perfect linear speedup when the critical path is short compared
with the average amount of work per processor. We also show that amodel of thiskind is
accurate even for xSocrates, whichis our most complex application programmed to date.

Wewould like our scheduler to executea Cilk computationwith T; work in T, /P timeon
P processors. Such perfect linear speedup cannot be obtained whenever the computation’s
critical path length T, exceeds T, /P, since we alwayshave Tp > T., or moregeneraly, Tp >
max{T1/P, Tw}. The critical path length T, is the stronger lower bound on Tp whenever P
exceeds the average parallelism T; / T, and Ty /P isthe stronger bound otherwise. A good
scheduler should meet each of these bounds as closely as possible.

In order to investigate how well the Cilk scheduler meets these two lower bounds, we
used our synthetic knary benchmark, which can grow computations that exhibit a range of
values for work and critical path length.

Figure 5.14 shows the outcome from many experiments of running knary with various
input values (n, k, and r) on various numbers of processors. The figure plots the measured
speedup T/ Tp for each run against the machine size P for that run. In order to compare
the outcomes for runs with different input values, we have normalized the plotted value for
each run asfollows. Inaddition to the speedup, we measure for each runthework T, and the
critical pathlength T, aspreviously described. Wethen normalize the machine size and the
speedup by dividing these values by the average parallelism T, / To.. For each run, the hor-
izontal position of the plotted datumis P/(T1/Tw), and the vertical position of the plotted
datumis(Ty1/Tp)/(T1/Tew) = Te/Tp. Consequently, on the horizontal axis, the normalized
machine-sizeis 1.0 when the average parallelism is equal to the number of processors. On
the vertical axis, the normalized speedup is 1.0 when the runtime equals the critical path
length. We can draw the two lower bounds on time as upper bounds on speedup. The hori-
zontal lineat 1.0isthe upper bound on speedup obtained fromthe critical path, Tp > Te, and
the 45-degree lineis the linear speedup bound, Tp > T;/P. Ascan be seen from the figure,
ontheknary runsfor which the average parallelism exceeds the number of processors (nor-
malized machine size lessthan 1), the Cilk scheduler obtains nearly perfect linear speedup.
In the region where the number of processorsis large compared to the average paralelism
(normalized machine size greater than 1), the datais more scattered, but the speedup is al-
ways within afactor of 4 of the critical-path upper bound.

The theoretical results from Section 5.3 show that the expected running time of a Cilk

5.2. Performance of Cilk applications 73

Critical Path Bound

1+ S
g e T N
et e
0.1
o
=
ae]
3]
S 0011
N [
ae]
3
g Measured Value: +
= 0001+
L ’ Model 1: 1.000 - 71 /P + 1.000 - Thg
Model 2: 1.000- 77 /P +2.000 - Toe — — —
0.0001 Curve Fit: 0.954-T1 /P +1.540 - Too -
0.0001 0.001 0.01 0.1 1 10

Normalized Machine Size

Figure 5.14: Normalized speedupsfor theknary synthetic benchmark using from 1 to 256 proces-
sors. The horizontal axisisthe number P of processors and the vertical axisisthe speedup Ty /Tp,
but each data point has been normalized by dividing by T; / T.

computation on P processorsis Tp = O(T1/P+ Tw). Thus, it makes sense to try to fit the
knary datato a curve of the form Tp = ¢1(T1/P) + Cwo(Tw). A least-squares fit to the data
to minimize the relative error yields ¢, = 0.9543 + 0.1775 and ¢ = 1.54 £ 0.3888 with
95 percent confidence. The R? correlation coefficient of the fit is 0.989101, and the mean
relative error is 13.07 percent. The curvefit is shown in Figure 5.14, which aso plots the
smpler curves Tp = Ty /P+ T, and Tp = Ty /P + 2- T, for comparison. As can be seen
from the figure, littleis lost in the linear speedup range of the curve by assuming that the
coefficient ¢, on the Ty /P term equals 1. Indeed, afit to Tp = T1/P + Co(Too) Yi€lds Co =
1.509+ 0.3727 with R? = 0.983592 and a mean relative error of 4.04 percent, which isin
some ways better than the fit that includes a c; term. (The R2 measureis alittle worse, but
the mean relative error is much better.)

It makes sense that the data points become more scattered when P is close to or exceeds
the average paralelism. In thisrange, the amount of time spent in work stealing becomes
a significant fraction of the overall execution time. The real measure of the quality of a
scheduler ishow much larger than P the average parallelism T, / T, must be before Tp shows
substantial influence fromthe critical path. One can see from Figure5.14 that if the average
parallelism exceeds P by afactor of 10, thecritical path has amost noimpact on therunning
time.

74 Chapter 5. Parallel programming in Cilk

Critical Path Bound

0.1 |

Measured Value: +

Model 1: 1.000 - 71 /P 4+ 1.000 - Toe -

Normalized Speedup

Model 2: 1.000- 71 /P +2.000 - Too — —
Curve Fit: 1.067-T1/P+1.042 - Too ------

0.01 1

0.01 0.1 1
Normalized Machine Size

Figure 5.15: Normalized speedupsfor the xSocrates chess program.

To confirm our ssimple model of the Cilk scheduler’s performance on areal application,
we ran xSocrates 0On a variety of chess positions using various numbers of processors.
Figure 5.15 shows the results of our study, which confirm the results from the knary syn-
thetic benchmark. The best fit to Tp = ¢1(Ty/P) + Cw(To) Yi€lds ¢; = 1.067 + 0.0141 and
Coo = 1.0424 0.0467 with 95 percent confidence. The R? correlation coefficient of thefit is
0.9994, and the mean relative error is 4.05 percent.

By using work and critical path length to model the performance of an application un-
der development, we can avoid being trapped by the following interesting anomaly. After
making an “improvement” to the program, we find that, in test runs on a small-scale par-
allel machine, the program runs faster. Lacking any other information, we may conclude
that the“improved” program isindeed superior to the original. But by measuring work and
critical path length, we model our program’s performance and predict that, on alarge-scale
machine, the “improved” program is actually slower than the original. Of course, we then
confirm this prediction by performing atest on the large machine.

This speedup anomaly occurs because the “improved” program does less work at the
cost of alonger critical path. Figure 5.16 illustrates this phenomenon with synthetic num-
bers. In thisexample, the “improved” program runs 38 percent faster than the origina (40
seconds versus 65 seconds) on 32 processors. But on 512 processors, the “improved” pro-
gramisactually twice as dow asthe original.

5.3. A theoretical analysis of the Cilk scheduler 75

original program “improved” program
T1 = 2048 seconds T1 = 1024 seconds
To = 1second T = 8seconds

T3 = T1/32—|—Too

T3, = 2048/32+1 T3, = 1024/32+8
= 65 seconds = 40 seconds

Ts10 = T1/512—|— Too

Ts;p = 2048/512+1 Ts;p = 1024/512+8
= 5 seconds = 10 seconds

Figure 5.16: A speedup anomaly. We use the simple model Tp = T; /P + Te. On 32 processors,
the “improved” program runs 38 percent faster than the original, taking 40 seconds compared to the
original’s 65 seconds. But it does so with lesswork at the cost of alonger critical path, and on 512
processors, the “improved” program is actually twice as slow asthe original.

Indeed, as some of uswere devel oping and tuning heuristicsto increase the performance
of xSocrates, we used work and critical path length as our measures of progress. At that
time, our platform for competition was the entire 512-node CM5 in dedicated mode at the
National Center for Supercomputing Applications (NCSA) at the University of Illinois at
Urbana-Champaign. Unable to use this machine in our day-to-day work, we did develop-
ment and testing on a 32-node time-shared partition of a CM5 that we have in house. More
than once, by using work and critical path measurements taken from our 32-processor runs
to predict theruntime of our program on the 512-processor machine, we avoided fallinginto
the trap of the speedup anomaly just described.

5.3 A theoretical analysis of the Cilk scheduler

Cilk’s work-stealing scheduler executes any “fully strict” Cilk program using space, time,
and communication all within a constant factor of optimal. In previous chapters, we proved
analogousresultsusing amodel of multithreaded computationthat issomewhat ssimpler than
Cilk’'s model. Rather than use the more complex Cilk model in these previous proofs, we
chose to use the smpler model in order to make the proofs more tractable and keep from
obscuring the essential ideas. In this section, we show how these proofs must be modified

Some of theresearch reported in thissection isjoint work with Charles Leiserson and Keith Randall both
of MIT’s Laboratory for Computer Science. The material in this section generalizes results previously pub-
lished in[12].

76 Chapter 5. Parallel programming in Cilk

to account for the Cilk model.

Recall that aCilk computation model sthe execution of aCilk program asatreeof proce-
duresand adag of threads that unfold dynamically during program execution. For analysis,
we refine the dag of threads into a dag of unit-size instructions as follows. Each thread is
broken intoinstructions connected by continue edgesinto alinear sequence fromthefirstin-
struction of thethread to thelast. Intheexample Cilk computationillustratedin Figure5.17,
thread T, contains 3 instructions: vs, Vg, and v;. If athread T spawns a child T’ with the
spawn primitive, then the dag has a spawn edge from the appropriate instruction of t to the
firstinstruction of 1. Recall that the child thread 1’ istheinitial thread of a child procedure.
In our example computation, thread 1, spawns the child thread 1, (theinitial thread of pro-
cedure I,) as represented by the spawn edge (vg4, vs). If T spawns a successor T’ with the
spawn_next primitive, then the dag has a spawn-next edge from the appropriate instruction
of T to thefirst instruction of T'. Recall that the successor thread T’ isin the same procedure
as 1. In our example computation, thread 1, spawns the successor thread tg as represented
by the spawn-next edge (v, Vo2). Procedure I, contains 3 threads: 14, Tg, and T19. In gen-
eral, theinstructions are formed into threads by continue edges; the threads are formed into
procedures by spawn-next edges; and the procedures are formed into a spawn tree by the
spawn edges. In our example computation, the root procedurel™ ; has 2 children, ', and I,
and procedurel , has 3 children: I3, 4, and I's. Proceduresl s, 4, 's, and ", which have
no children, are leaf procedures. If athread T sends avalue (or signal) to another thread t/
with the send_argument Or accumulate statement, then the dag has a dependency edge
from the appropriate instruction of T to thefirst instruction of T’. In our example computa-
tion, thread 13 sendsavalue (or signal) to 15 asrepresented by the dependency edge (vg, Vo).
Notice that only aninstruction that isthefirst instruction of itsthread can have an incoming
edge that is not a continue edge. Consistent with our unit-time model of instructions, we
assume that the out-degree of each instruction is at most some constant. The work T; isthe
number of instructionsin the dag, and the critical path length T is the length of alongest
path in the dag. In our example computation, we have T; = 24 and T, = 17.

Notice the difference between the 1-processor execution order vy, Vo, . . ., Voq Of OUr €x-
ample Cilk computation (Figure5.17) and the 1-processor | eft-to-right depth-first execution
order vy, Vs, .. ., Vg Of the similar multithreaded computation shownin Figure 3.1 (page 28).

In order to discuss the execution of Cilk computations, we borrow and adapt some of
the terminology developed in Chapter 2. When athread is spawned, we allocate a closure
for it, and we say the thread is alive or living. At any given time step during the execu-
tion, an instruction is ready if all of its predecessors in the dag have been executed, and a
living thread is ready if itsfirst instruction is ready. Ready threads can be executed by the
scheduler. When the last instruction of athread is executed, the thread dies, and we freeits
closure. When theinitial thread of aprocedureis spawned, we say the procedureisalive or
living, and when the procedure no longer has any living threads, then the procedure dies.

A Cilk computation is fully strict if every dependency edge goes from a procedure to
either itself or its parent procedure. Our example computation (Figure 5.17) is fully strict.
Specifically, thefully strict condition requiresthat for every dependency edge (v, V') wherev
isaninstructioninthread T in procedurel” andV isaninstructioninthread 1’ in procedurel”,
wehaveeither ' = T—so 1’ isasuccessor of T—or I’ isthe parent of T—so T isasuccessor
of the thread that spawned T as a child. In other words, in afully strict Cilk computation,

5.3. A theoretical analysis of the Cilk scheduler (&4

M

151
‘_W @ @ @ vV Vv v
> 22 23 24

15 17 Tg

P
T2
ocoolooojolo oo
[
6

re

M3 4 5
I, W 1

Figure 5.17: A Cilk computation. This computation contains 24 instructions vy, Vo, . . ., Vo4 repre-
sented by the circles, and 10 threads 14, T», . . ., T1o represented by the dark-shaded rectangles, and
6 proceduresl™1,I o, ..., g represented by the light-shaded rounded rectangles. The continue edges
are horizontal within athread; the spawn-next edges are dark shaded within a procedure; the spawn
edges are light shaded between procedures; and the dependency edges are curved between proce-
dures. The spawn edges emerging from athread cross each other so that the 1-processor execution
order vy, Vs, . .., Vo proceeds from left to right. This figure does not show the “ghosts” required for
the analysis.

threads only send values (or signals) to their successors or their parent thread’s successors.

For any fully strict Cilk computation with work T, and critical path length T, and for
any number P of processors, we shall prove thefollowing bounds on execution space, time,
and communication.

e Space: The space used to execute the computation is at most S;P where S is the
space used by a 1-processor execution of the Cilk computation.

e Time: The expected time to execute the computation isO(T; /P + N Tw) Whereny is
the maximum number of threads that any procedure can have simultaneoudly living
in the computation.

e Communication: The expected number of bytes communicated during the execu-
tion is O(Pn Tw(Ng + Snax)) Where ng is the maximum number of dependency edges
between any pair of threadsand S, is the size of the largest closure in the computa-
tion.

The expected bounds on both time and communi cation can be converted to high-probability
bounds with the addition of some small extraterms. The reader interested in the proofs of
these bounds should be familiar with the proofsin Chapter 4 before proceeding.

The cornerstonein proving theseresultsisastructural lemma (analogousto Lemma4.1,
page 38) that characterizes the procedures in the ready pool of any processor at any time.

78 Chapter 5. Parallel programming in Cilk

Figure 5.18: For each thread T that spawns children, we augment the computation as follows.
Thread T spawns a successor ghost thread 1" as the last thing it does. Each time 1 spawns a child
procedure I, it also spawns a ghost child ™. The children are ordered from youngest to ol dest go-
ing from left to right. The child procedures are linked by “pool edges’ shown curved and gray.

In Cilk, theready pool actually contains threads, not procedures, but each thread belongsto
a procedure, and we use the procedures to characterize the structure of the ready pool. In
order to state and prove this structural lemma, we first need two technical assumptions and
some new terminol ogy.

Our first technical assumption, illustrated in Figure 5.18, isthat any thread T that spawns
children also, asthelast thing it does before dying, spawns aready successor thread 1. We
call " aghost thread. A ghost thread contains only a single ghost instruction that takes
no time to execute, so it is purely atechnical convenience. Nevertheless, in our analys's,
we shall assume that T* is handled by the scheduler just like any other thread. This ready
successor thread ssmplifiesthe structural lemma. (The example computation of Figure5.17
does not show the required ghost threads.)

Two procedures, ' and I, are tupletsif, in addition to having the same parent proce-
dure, they aso have the same parent thread. Since the instructions in a thread are totally
ordered, the tuplet procedures can be ordered by age: thefirst child spawned is considered
to be older than the second, and so on. In our example Cilk computation (Figure 5.17), the
procedures 3 and I 4 are tuplets with I 4 being the older of the two.

Our second technical assumption, illustrated in Figure 5.18, is that whenever a thread
T spawns a child procedure I', it also spawns a second child procedure I'*, called a ghost
procedure. A ghost procedure contains only aghost thread, and therefore, takes no time to
execute. Wethink of the parent thread T asspawning childreninpairs (I, I'*), with each pair
having one ghost procedure. The scheduler treats I'* (or rather its ghost thread) as having
been spawned just beforel™, and therefore, the ghost is considered to be the older of the pair.
Ghost proceduresare purely atechnical mechanism to facilitate our analysis. (The example
computation of Figure 5.17 does not show the required ghost procedures.)

At any given time step during the execution and for any processor p, we define the
list of procedures at level L as follows. We start with the list of threads at level L. Let
(T1,To,...,Tn) be the list of threads in the level L list of p's ready pool, ordered from 11

5.3. A theoretical analysis of the Cilk scheduler 79
level L-3 | F3q

Y
level L-2 r2,l

AN

level L-1 r]__]_ r]_’z

N

level L Go’l ro,z

level L+1 r-]_,l

Figure 5.19: Thestructure of proceduresin aprocessor’sready pool. The processor p isexecuting
athread of procedure g at level L. In this example, we havel = 3, so for eachi = 0,1,2,3, the
procedures (I"i_1 j) aretuplet children of I'; ;. The procedures g 3 and I'_; » must be ghost proce-
dures.

at the head of the list to 1, at the tail. If processor p is not executing athread at level L,
then thelist of threads at level L is (11, T2,...,Tn). If processor p isexecuting athread T at
level L, then thelist of threads at level L is(T,T1,To,...,Tn). Thelist of proceduresat level
Listhelist (I'1,2,..., k) of proceduresderived from the list of threads by replacing each
thread with its procedure and collapsing adjacent equal entriesinto one entry. We say that
there are k procedures at level L. As shorthand, we shall use the notation (I';) to denote the
list (F1,l2,...,Tk), and when we use double subscripts, we shall use the notation (I’ ;) to
denotethelist (I 1,1 2,...,j k) foragivenvaueof i.

We now state and prove the lemma characterizing the structure of procedures in the
ready pool of any processor during the execution of afully strict Cilk computation. This
lemmaisthe Cilk analog of the structural lemma (Lemma4.1, page 38) in Chapter 4 which
applied to our ssimpler call-return model of multithreaded computation. Figure 5.19 illus-
trates the lemma.

Lemma 5.1 During the execution of any fully strict Cilk computation, consider any pro-
cessor p and any given time step at which p executes an instruction of athread 1. Let Mg g
be U's procedure, and let L be U'slevel. For anyi, let (i 1,Ti2,..., T) denotethe list of
procedures at level L — i where k; is the number of procedures at level L —i. Let | be the
largest integer such that k; > 0 holds. Then these lists of procedures satisfy the following
four properties:

0 Fori=0,1,...,], wehavek > 0; fori = —1, we have k; > O; and for i < —1, we
havek; = 0.

80 Chapter 5. Parallel programming in Cilk

O For every i, the procedures (I j) are tuplets ordered from youngest to oldest. For
i=0,1,...,1, theprocedures (I'i_1 j) arechildren of I'; 1, and the procedures (I'_1 j)
are children of thread t.

0 For everyi, if wehavek > 1, thenfor j =2 3,... kj, procedure I'j j has never been
worked on, and if we have k_; > 0, then"_ ; also has never been worked on.

O Ifl > 1holds, thenfori=—1,0,...,| -3, wehavek; # Landif k # 0, thenT; |, isa
ghost.

Proof: The proof isastraightforwardinduction on execution time. Execution beginswith
the initial thread of the root procedure in some processor’s ready pool and all other ready
pools empty, so the lemma vacuoudy holds at the outset. Now, consider any step of the
execution at which processor p executes an instruction from thread T in procedure g 1 at
level L. Let(l1,T2,...,T) denotethelist of proceduresat level L —i; let | bethelargest
integer such that k; > 0 holds; and assume that all four properties hold. Let T denote the
thread (if any) being worked on by p after the step; let Iy, ; beits procedureand L itslevel;
let (I 1.1 0, |k’> denotethe list of proceduresatlevel L’ —i after the step; and let I’ be

thelargest integer such that after the step, kj, > 0 holds. The proof consists of looking at the
actions of the Cilk scheduler and showing that all four properties hold after the step.

Beforelooking at the Cilk scheduler’s actions, wefirst review the thingsthat athreadin
afully strict computation may do that cause scheduler action. Thread T may spawn achild
with Cilk’s spawn primitive. (Recall that when athread spawns a child, we al'so spawn a
ghost, so spawns occur in pairs) Thread T may enable a successor thread by either per-
forming a spawn next with no missing arguments or by performing a send_argument or
accumulate t0 a previousy spawned successor and having the successor’s join counter
decrement to zero. Thread T may enable a thread in its parent procedure by performing a
send_argument Or accumulate asjust described. For fully strict computations, athread t
may only enable threads in its own procedure or its parent procedure. These enabling ac-
tivities all cause the scheduler to post aready thread to the ready pool. Thread 1 dieswhen
it executesits last instruction, and this event causes the scheduler to start another iteration
of itsloop. We now examine these scheduler actions individually and show that they each
preserve the four properties of the lemma.

If thethread T spawnsapair of children, then p poststhe children at the head of the ready
pool’slevel L+ 1list. Inthiscase, only thelist of proceduresat level L+ 1 changes. Specif-
ically, wehavek! ; =k 1 +2withl";; andI"’_; , being the new child procedures. Proce-
durel'”, , istheghost and isconsidered to be older thanT”_; ;. Also, if k. ; > 2 holds, then
we haver 1j="-1j-2 for j = 3,4,...,K ;. Now we can check that the four properties
till hold. Thefirst property does not apply tothelevel L4 1list, so weonly check the other
three. Property (: The procedures (I 1 J> must be tuplet children, ordered from youngest
to oldest, of thread T in procedure ' ; = g 1, becauise before the spawn, the procedures
(I_q,j) aretuplet children of T ordered from youngest to oldest. Property [1: None of the
procedures(I"”_; ;) have ever been worked on. Property [J: We have K ; > 1becauset just
spawned 2 children. Moreover, if I’ > 1 holds, then " 1K, is a ghost, because before the

spavnwe havel > 1whichmeansthat if k_y # O holds, thenl_1c_, isaghost. Inthiscasg,

5.3. A theoretical analysis of the Cilk scheduler 81

rl—l,k’_l =Tl_1x_, isaghost. Otherwise, wehavek’ ; =k_1+2=2,s0 rl—l,k’_l =I",,is
the newly spawned ghost.

If the thread T enables a successor thread, then p posts the successor at the head of the
ready pool’slevel L list. In thiscase, the list of procedures at level L does not change, be-
cause the successor thread is part of the same procedure g ; as T, and this procedureisal-
ready at the head of thelist. With no change in any of thelists of procedures, al properties
continue to hold.

If the thread T enables athread in its parent procedure, then p posts this newly enabled
thread at the head of the ready pool’slevel L — 1 list. If we have | > 1, then the parent
procedurel s 1 isaready at the head of thelevel L — 1list, and therefore, none of the lists of
procedures change. On the other hand, if we havel = 0, then we updatel’ = | +1 = 1 with
ky = 1, and the list of proceduresat level L — 1isthelist (I' ;) containing only the parent
procedure of r6,1 = g 1. Inthis case, the properties are easily checked. Property [I: We
have ky = 1> 0. Property [J: The procedures (I'g ;) are children of I'; ;, because 'y ; isa
child of F’L 1 and the procedures <F67 j> = ([o,j) aretuplets. Property [I: This property does
not apply to the level L — 1 list, because we have k; = 1. Property (I: Again, this property
does not apply, because we havel’ = 1.

If the thread T dies, then p starts another iteration of the scheduling loop. If the ready
pool is empty, then it commences work stealing, and the properties hold vacuoudy. Oth-
erwise, it removes and executes the thread at the bottommaost nonempty level of the ready
pool. We consider two cases depending on whether the level L + 1 list is nonempty.

If thelevel L+ 1listisnonempty (k_1 > 0), then p removes and executes the thread at
the head of the ready pool’slevel L + 1list. Recall that because thread T of procedure g 1
spawned children, it also spawns aready successor thread t* asthelast thing it does before
dying. Therefore, the ready pool’slist at level L must have athread of g 1 at its head when
Tdies. Wehavel'=L+1andl’=1+41. Weasohavek' ; =0,andfori=0.1,...I", we
have ki = ki_1 with F{J =Tj_q,jfor j=1,2,..., K. Wenow check that the properties till
hold. Properties [and [J: We haven't actually changed any of thelists of procedures, only
renamed them. Property 0: No procedurer ; W|th] > 1 has ever been worked on. Also,
wehavek’ ; = 0. Property 00: Thisproperty only appliestothelevel L' listif wehavel’ > 2.
If I’ > 2 holds, then we havek; > 1 and Fak(,) isaghost, because beforethisstep | > 1 holds,

which means that we havek_; > 1and I'_1)_, isaghost.

Now, suppose that the level L + 1 list is empty when thread t dies. We further break
this situation down into two cases depending on whether the ready pool’s level L list is
nonempty. If the level L list is nonempty, then p removes and executes the thread at the
head of thislist. If thisthreadisin procedurel g 1, then no list of procedures changesand the
properties continueto hold. Otherwise, we must have ky > 1, and we now have ky = ko — 1
and FO =Tojqaforj=1,2... kg IfI 01 isaghost, then we execute it immediately and
advance to the next iteration of the scheduli ng loop. Therefore, we only need to check that
the propertiesstill holdin the case that I'y, 01 isnot aghost. The first three propertiesare eas-
ily checked and they continue to hold. Property (: This property only appliesto the level
L'=Llistif wehavel’ =1> 2. If I’ > 2 holds, then we have ky > 1 and I'y, 0k, Isaghost,

because before this step we havel > 2 and Mg i, isaghost, which means that we must have
ko >2o0r elsel; = o2 would be aghost.

82 Chapter 5. Parallel programming in Cilk

If the level L list is empty but the ready pool as a whole is nonempty, then the ready
pool’slevel L — 1 list must be nonempty, because otherwise we would violate Property [1.
In this case, p removes and executes the thread at the head of the level L — 1 list. We now
havel'=L—1andl’ =1 —1. Wealsohavek’ ; =0,andfori=0,1,...,I"wehavek! =k 1
with I ; =Tigqjfor j=1,2,....k. Inthiscase, al four propertiesare easily checked and
they continue to hold.

Finally, if some other processor steals a thread from processor p, then it removes the
thread from the tail of the topmost nonempty list of p’s ready pool. Suppose that we have
| > 0. Inthis case, the stolen thread isin procedure ' |, , and the list of procedures at level
L — I may be shortened by one. If so, then we have kf = k — 1, and if we also have kj = 0,
thenweupdatel’ = | — 1. Inthese cases, the propertiesare easily checked and they continue
to hold. Now, suppose that we havel = 0. If ky > 1 also holds, then the stolen thread isin
procedure [, and the properties continue to hold as before. On the other hand, if we have
ko = 1, thenthelevel L list of procedures contains only I'g 1 and there are two possibilities
to consider. If the ready pool’s level L list is nonempty, then the stolen thread is a thread
of procedure ' 1. In this case, the list of procedures at level L does not change, and the
properties continue to hold. On the other hand, if the ready pool’slevel L list isempty, then
the stolen thread will be athread from procedurel™_ y_,. Inthiscasg, thelist of procedures
at level L+ 1 shortens, but again, the properties continue to hold.

All other activity by processor p—such aswork stealing or executing an instruction that
does not invoke any of the above actions—clearly preserve the lemma]

Our bound on space accounts for any stack-like memory. Specifically, we allow any in-
struction to alocate memory for itsprocedure provided that the instructionistotally ordered
with respect to every other instruction in its procedure and provided that theinstruction can-
not be executed at atimestep when itsprocedure hasaliving child. Weallow any instruction
to deall ocate memory for its procedure provided that the instruction is totally ordered with
respect to every other instruction inits procedure. Additionally, we requirethat all memory
allocated for a procedure is deallocated before the procedure dies. At any given time step
during the execution, the amount of memory currently allocated for agivenliving procedure
isthe net memory allocated for the procedure by all instructions that have been executed.

The space bound follows from the “busy-leaves’ property which characterizes the liv-
ing procedures at all time steps during the execution. At any given time step during the
execution, we say that aprocedureisalesf if it hasno living children, and we say that aleaf
procedureis aprimary leaf if, in addition, either it has no younger tuplets living or it has
been worked on by some processor. The busy-leaves property statesthat every primary | eaf
procedure has a processor either working on it or working on its parent thread. To provethe
space bound, we show that Cilk’s scheduler maintains the busy-leaves property, and then
we show that the busy-leaves property implies the space bound.

Theorem 5.2 For any fully strict Cilk computation, if S; isthe space used to execute the
computation on 1 processor, then with any number P of processors, Cilk's work-stealing
scheduler uses at most S; P space.

Proof: Wefirst show that Cilk’s work-stealing scheduler maintains the busy-leaves prop-
erty, and then we show that the busy-leaves property implies the space bound.

5.3. A theoretical analysis of the Cilk scheduler 83

To see that Cilk’s scheduler maintains the busy-leaves property, consider any time step
during the execution and any primary leaf procedurel”. Sincel” isaleaf and the computation
isdtrict, theremust be somethread in T that isready. Therefore, I' isinthelist of procedures
at some level of some processor p's ready pool. Suppose processor p isexecuting athread
Tatlevel L, andlet (I j) denote thelist of proceduresat level L —i. From Lemma5.1, we
know that among all of these procedures, the only one that can be a primary leaf is either
Mo (if wehavek_q = 0) or '_q 1 (otherwise). In the former case, wehave ' =g 1, and
p is executing athread of I'. Inthe latter case, we have " = I'_1 1, and p is executing the
thread that spawned I'. In either case, procedurel is busy.

The P-processor space bound, S; P, isobtained by showing that at al time stepst during
the execution, every living procedure can be associated with a primary leaf procedure and
that the total space currently allocated for all procedures assigned to agiven primary leaf is
at most S;. We assign aprocedureto aprimary leaf asfollows. If the procedureisaprimary
leaf, thenweassign it toitself. If the procedureisaleaf but it isnot aprimary leaf, then we
assignit tothesame primary leaf asitsyoungest tuplet. If the procedureisnot aleaf, thenwe
assign it to the same primary leaf as any one of itsliving children. The proceduresassigned
toany given primary leaf I are "’ s ancestors and older tuplets of I’s ancestors.

Now, consider any primary leaf procedurel”. Sincel isbusy, there must be a processor
p that is executing either athread of I" or the thread that spawned I". Let T denote the thread
that pisexecuting, and let v denote theinstruction that p executes at thistime step. For any
other procedure '’ assigned to I, we claim that the amount of memory currently allocated
for I’ in our P-processor execution is no more than the amount of memory allocated for
I’ at the time step in the 1-processor execution when the processor executes instruction v.
To verify this claim, consider the two possible relationships that ' may have with I". Sup-
pose I’ is an ancestor of . Consider the set of alocating or deallocating instructions in
I’ that have been executed in our P-processor execution. This set must be a superset of
theinstructionsin I’ that have been executed in the 1-processor case, because the allocat-
ing and deallocating instructions are totally ordered with respect to every other instruction
in the procedure. Moreover, those alocating or deallocating instructions (if any) that have
been executed in our P-processor case that haven't been executed in the 1-processor case
must, in fact, be deall ocating instructions, since they must have been executed while ™" had
aliving child. Thus the memory allocated for I’ in our P-processor case is no more than
the memory allocated for I’ in the 1-processor case. Now, suppose ' is the older tuplet of
oneof ["sancestors. Inthiscase, sincel isaleaf, we know that ' has never been worked
on. Likewise, in the 1-processor case, I’ must be alive but never worked on. Finally, con-
sider I itself. The set of allocating or deallocating instructionsin I that have been executed
in our P-processor execution must be the same as those executed in the 1-processor case.
Thus, for every procedure assigned to I, the amount of memory currently allocated for it
in our P-processor execution is no more than the amount of memory allocated for it in the
1-processor case. Thus, thetotal space assigned toI' isat most S.

Since Cilk’s scheduler keeps al primary leaves busy, with P processors we are guaran-
teed that at every time step during the execution, at most P primary-leaf procedures can be
living. Every living procedure is assigned to one of these P primary leaves, and the total
gpace of the procedures assigned to a given primary leaf is at most S;. Therefore, the total

84 Chapter 5. Parallel programming in Cilk

gpace of al living proceduresis at most S;P.]

In bounding execution time, we assume that the machine is an asynchronous parallel
computer with P processors, and its memory can be either distributed or shared. We further
assume that concurrent accesses to the same data structure are serially queued by an adver-
sary as in the atomic-access model of Section 4.2. Specifically, if a processor attempts to
steal aclosurefromavictim processor and no other thief isattempting to steal fromthe same
victim, then the steal attempt—successful or not—takesone unit of time. If multiplethieves
simultaneously attempt to steal from the same victim, then their requests are handled one
per time step, in an order determined by an adversary.

In our analysis of execution time, we follow the same accounting argument as in Sec-
tion 4.3. At each time step, we collect P dollars, one per processor. At each time step, each
processor placesitsdollar in one of three buckets according to its actions at that step. If the
processor executes an instruction at the step, then it placesitsdollar into the WoRK bucket.
If the processor initiates a steal attempt at the step, then it places its dollar into the STEAL
bucket. And, if the processor merely waits for a queued steal request at the step, then it
placesitsdollar into the WAIT bucket. We shall derive the running time bound by bound-
ing the number of dollarsin each bucket at the end of the execution, summing these three
bounds, and then dividing by P.

The boundson thedollarsinthe WORK and WAIT buckets are exactly asin Section 4.3.
Execution ends with T; dollarsin the WORK bucket, since there are T, instructions in the
computation (Lemma 4.4, page 45). Lemma 4.3 (page 43) bounds the number of dollars
inthe WAIT bucket as a function of the number of dollarsin the STEAL bucket. With high
probability, the number of dollarsin the WAIT bucket isat most aconstant timesthe number
of dollarsin the STEAL bucket.

To bound thedollarsinthe STEAL bucket, we use a delay-sequence argument very sim-
ilar the onewe used in Section 4.3, but we must modify thisargument slightly to account for
the Cilk model of multithreaded computation. Asin Section 4.3, thework-steal attemptsare
partitioned into rounds of at least 3P but fewer than 4P consecutive steal attempts. Also as
in Section 4.3, the delay sequenceisdefined intermsof an augmented dag G’ of instructions,
obtained from the original dag G by adding some new edges. For a Cilk computation, these
new edges are called pool edges, and for each thread T that spawns children, we add pool
edges asfollows. Let 1,5, ..., denote the spawned child procedures, and recall that,
we must have n > 1, since we require the spawns to occur in pairs with ghost procedures.
Then, asillustrated in Figure 5.18, for eachi = 2, 3, ..., n, we add apool edge from the first
instruction of I to the first instruction of I';_4. If Te isthe length of alongest path in G,
then thelongest path in the augmented dag G’ haslength at most 2T.,. At any giventimestep
during the execution, an instructioniscritical if al of its predecessorsin G' have been exe-
cuted. If, during the course of the execution, alarge number of stealsare attempted, thenwe
can identify a sequence of instructions—the delay sequence—in this augmented dag such
that alarge number of rounds of stea attempts were initiated while an instruction from the
sequence was critical. We show that such delay sequences are unlikely to occur, because
acritical instruction is unlikely to remain critical across a modest number of steal-attempt
rounds.

5.3. A theoretical analysis of the Cilk scheduler 85

The delay sequenceis defined exactly asin Definition 4.5 (page 47). We repeat the def-
inition here.

Definition 5.3 Adelay sequenceisa3-tuple (U, R, M) satisfying the following conditions:

e U=(up,Up,...,u)isamaximal directed pathin G'. Specifically, fori=1,2,...,L—
1, the edge (u;, Ui 1) belongsto G/, instruction u; has no incoming edgesin G’ (in-
struction u; must be the first instruction of the initial thread of the root procedure),
and ingtruction u. has no outgoing edgesin G'.

e Risapostiveinteger.
e M= (my,Tp,...,Tq) isapartition of theinteger R.

The delay sequence (U, R, M) is said to occur during an executioniif for eachi=1,2,...,L,
at least 15 steal-attempt rounds occur while instruction u; iscritical.

The following lemma states that if a large number of steal attempts take place during
an execution, then adelay sequence with large R must occur. Thislemmaand its proof are
identical to Lemma 4.6 (page 47).

Lemma 5.4 Consider the execution of a fully strict Cilk computation with critical path
length T, on a computer with P processors. |If at least 4P(2T. + R) steal attempts occur
during the execution, then some (U, R,) delay sequence must occur. m

We now establish that a critical instruction isunlikely to remain critical across a modest
number of steal-attempt rounds. Specifically, we first show that if no procedure can ever
have more than n; smultaneously living threads, then after O(n;) steal-attempt rounds, a
critical instructionisvery likely to be executed. Thefollowinglemmaestablishesfactsanal-
ogous to those established in Lemma 4.7 (page 48) and Lemma 4.8 (page 438).

Lemma 5.5 Consider the execution of any fully strict Cilk computation on a parallel com-
puter with P > 2 processors. If no procedure of the computation can ever have more than n
simultaneously living threads, then for any instruction v and any number r > 12n; of steal-
attempt rounds, the probability that r rounds occur while viscritical isat most e~ ".

Proof: Wefirstuseour structural lemma, Lemmab.1, to show that if instructionviscritical
at some time step, then it must be the ready instruction of athread that either is currently
being executed or is at thetail of alist near the top of some processor’sready pool. We then
use thisfact to establish the probabilistic bound.

Consider any time step at which instruction viscritical. 1f some processor is executing
V' sthread, then v will be executed at thistime step, and thelemmaholds. Therefore, suppose
that v is the first instruction of athread T in procedure I', and T is in the ready pool of a
processor p. Sinceviscritical, every one of I''s older tuplets must have been worked on at
someearlier timestep, so by Property [1 of Lemmab.1, procedurel” must be at thetail of the
list of proceduresat some level. By the same reasoning, every nonempty list of procedures
abovethislevel must contain only one procedure. Then, Property [J of Lemma5.1 ensures

86 Chapter 5. Parallel programming in Cilk

that this level is a most 3 from the top. Thus, since each procedure can have at most n,
simultaneously living threads, once processor p has satisfied 3n, work-steal requests, we
are guaranteed that v has been executed.

Mimicking the proof of Lemma 4.8, we observe that if instruction v remains critical
acrossr steal-attempt rounds, then of theat least (3r — (3n; — 1))P steal attemptsinitiated at
least 3n; time steps before v is executed, fewer than 3n; of them choose a particular proces-
sor p asthevictim. Letting the random variable X denote the number of these steal attempts
that do choose processor p, we bound the probability that X islessthan 3n, by using a Cher-
noff bound [1] on the lower tail of abinomia distribution with mean p:

Pr{X < p—a} < e/

for any a> 0. In our case, we have L = 3r — 3n, + 1, and to bound Pr {X < 3n; }, we have
a=p—3n, =3r—6n,+ 1. Thus, theprobability that vremainscritical acrossr steal-attempt
roundsis at most

Pr{X<3n} < exp|(3r—6n-+1)2/2(3r—3n+1)
< e’
forr > 12n. n

We now compl etethe del ay-sequence argument and bound thetotal dollarsinthe STEAL
bucket. The proof of the following lemmais nearly identical to the proof of Lemma 4.9
(page 49). The only changeis that we use the probabilistic bound of Lemma5.5 instead of
the bound given by Lemma 4.8.

Lemma 5.6 Consider the execution of any fully strict Cilk computation with critical path
length T, on a parallel computer with P processors. If no procedure ever has more than n,
simultaneously living threads, then for any € > 0, with probability at least 1 — €, the exe-
cution terminates with at most O(P(n T 4 1g(1/€))) dollarsin the STEAL bucket, and the
expected number of dollarsin this bucket is O(Pn Te). "

With bounds on all three buckets, we now state and prove the theorem that bounds the
total execution timefor afully strict Cilk computation.

Theorem 5.7 Consider any fully strict Cilk computation with work T, and critical path
length T., such that no procedure can ever have more than n; simultaneously living threads.
With any number P of processors, Cilk's work-stealing scheduler runs the computation in
expected time O(Ty /P + N T). Moreover, for any € > O, with probability at least 1 — €, the
execution time on P processorsis O(Ty /P + nTe + IgP + 1g(1/€)).

Proof: Add up the dollarsin the three buckets and divide by P.]

The next theorem bounds the total amount of communication that a Cilk computation
performsin a distributed model. The analysis assumes that at most a constant number of
bytes need to be communicated to perform a send_argument Or accumulate in the case
when the join counter does not go to zero. In the case when the join counter does go to
zero, then an entire closure may need to be communicated.

5.3. A theoretical analysis of the Cilk scheduler 87

Theorem 5.8 Consider any fully strict Cilk computation with work T, and critical path
length Te, such that no procedure ever has more than n; simultaneoudly living threads. With
any number P of processors, thetotal number of bytes communicated by Cilk'swork-stealing
scheduler hasexpectation O(Pn; Te,(Ng + Srax)), Where ng isthe maximumnumber of depen-
dency edges between any pair of threads and Sy iS the size in bytes of the largest closure
in the computation. Moreover, for any € > 0, the probability is at least 1 — € that the total
communication incurred is O(P(n T + 19(1/€)) (Ng + Srax))-

Proof: We provethe bound for the expectation. The high-probability bound is anal ogous.
By our bucketing argument, the expected number of steal attemptsis at most O(Pn, Te).
When athread is stolen, the communication incurred isat most Syac. We aso have commu-
ni cation when a processor executing athread performsasend _argument Or accumulateto
athread whose closure is on another processor. If the join counter does not go to zero, then
the amount of communication is O(1), and this event can occur at most ng times per steal.
If the join counter does go to zero, then the amount of communication is at most Spax, and
this event can occur at most once per steal. Thus, the expected total communication cost is
O(Pn|Too(nd‘|‘Snax))- [

Chapter 6

Cilk on a network of workstations

In order to execute Cilk programs efficiently on a network of workstations, the Cilk-NOW
runtime system implements “adaptive parallelism” and transparent fault tolerance. Adap-
tive parallelismallows a Cilk application to run on a set of workstationsthat may grow and
shrink dynamically during program execution. When a given workstation is not being used
by its owner, the workstation automatically joins in and helps out with the execution of a
Cilk program. When the owner returnsto work, the machine automatically retreatsfromthe
Cilk program. Fault tolerance allows a Cilk application to continue execution even in the
face of individual workstation crashes or reboots. Applications may take advantage of this
feature despite being fault oblivious. The application iswritten as an ordinary Cilk program
with no special provision for handling faults. Recently, we ran the Cilk protein-folding ap-
plicationpfold (seepage 66) using Cilk-NOW on anetwork of about 50 Sun SparcStations
connected by Ethernet to solve alarge-scal e protein-folding problem. The program ran for
9 days, surviving several machine crashes and reboots, utilizing 6566 processor-hours of
otherwise-idle cycles, with no administrative effort on our part (besides typing pfold at
the command-line to begin execution), while other users of the network went about their
business unaware of the program’s presence. In this chapter, we show how the Cilk-NOW
runtime system leveragesthe structurein Cilk’s programming model to implement adaptive
parallelism and fault tolerance. In Section 6.1, we present the architecture of Cilk-NOW.
Then in Sections 6.2 and 6.3, we present the implementation of adaptive parallelism and
fault tolerance.

6.1 System architecture

The Cilk-NOW runtime system consists of several component programsthat work together
recruiting idle machinesin the network to work on the execution of Cilk programs, schedul-
ing these idle machinesamong all the Cilk programsthat are running, and managing the ex-
ecution of each individual Cilk program. In this section, we shall cover the architecture of

Some of theresearch reported in thischapter isjoint work with David Park formerly of MIT’s Laboratory
for Computer Science and now of McKinsey & Company and Phil Lisiecki of MIT’sLaboratory for Computer
Science. Some of the material in thischapter was previously published in [15]. At that time, Cilk-NOW was
in the prototype stage and was called Phish.

89

90 Chapter 6. Cilk on a network of workstations

the Cilk-NOW runtime system, explaining the operation of each component program and
thelr interactions.

In Cilk-NOW terminology, we refer to an executing Cilk program as a Cilk job. Since
Cilk programs are parallel programs, a Cilk job consists of several processes running on
several machines. One process, called the clearinghouse, in each Cilk job runs a program
calledCilkChouse. CilkChouseisasystem-supplied programthat isresponsiblefor keep-
ing track of all the other processes that comprise a given job. These other processes are
called workers. A worker isa process running the actual executable of a Cilk program such
aSray or pfold. Since Cilk jobs are adaptively parallel, the set of workersis dynamic. At
any given time during the execution of ajob, a new worker may join the job or an existing
worker may leave. Thus, each Cilk job consists of one or more workersand aclearinghouse
to keep track of them.

The Cilk-NOW runtime system contains two additional components to keep track of
the Cilk jobs and the individual workstationsin the network. Thejob broker is a processes
running asystem-supplied programcalled CilkJobBroker. Thejob broker runsonasingle
machine in the network and keeps track of the set of Cilk jobs running in the network. A
node manager isaprocessrunning asystem-supplied programcalled CilkNodeManager. A
node manager runsasabackground daemon on every machinein thenetwork. 1t continually
monitorsits machine to determine when the machineisidle and when it is busy. When the
node manager findsthat its machineisidle, it contacts the job broker to find arunning Cilk
job that the machine can work on.

To see how all of these components work together in managing the execution of Cilk
jobs, we shall run though an example. Suppose that the job broker is running on a machine
caledVulture,and auser stsdown at amachinecalled Penguintorunthepfold program.
In our example, the user types

pfold 3 7

at the shell, thereby launching a Cilk job to enumerate all protein foldings using 3 initial
folding sequences and starting with the 7th one.

The new Cilk job beginsexecution asillustrated in Figure 6.1. The new processrunning
the pfold executable is the first worker and begins execution by forking a clearinghouse
with the command line

CilkChouse -- pfold 3 7.

Thus, theclearinghouseknowsthat it isin charge of ajob whoseworkersarerunning“pfold
3 7.” The clearinghouse begins execution by sending a job description to the job broker.
The job description is a record containing several fields. Among these fields is the name
of the Cilk program executable—in this case pfo1d—and the clearinghouse’s network ad-
dress. The clearinghouse also sends its network address through a pipe back to the first
worker, theworker that forked the clearinghouse. The clearinghousethengoesintoaservice
loop waiting for messages from its workers. After receiving the clearinghouse's address
fromthe pipe, thefirst worker registerswith the clearinghouse by sending the clearinghouse
a message containing its own network address. Now the clearinghouse knows about one
worker, and it responds to that worker by assigning it a unigue name. Workers are named

6.1. System architecture 91

Job broker
> < >
@ Clearinghouse
submitsjob to
job broker. Vulture

Clearinghouse

(1) First worker forks a
clearinghouse and

.w then registers.

\
Pengui n

Figure 6.1: A Cilk job starts. The first worker forks a clearinghouse, and then the clearinghouse
submitsthe job to the job broker.

with numbers, starting with number 0. The first worker to register is named with number 0,
the second worker to register isnamed with number 1, and so on. Having registered, worker
0 begins executing the Cilk program as described in the previous chapter. We now have a
running Cilk job with one worker.

A second worker joins the Cilk job when some other workstation in the network be-
comes idle, asillustrated in Figure 6.2. Suppose the node manager on a machine named
Sparrow detects that the machine isidle. The node manager sends a message to the job
broker, informing the job broker of theidle machine. The job broker responds with the job
description of aCilk job for the machineto work on. In this case, the job description speci-
fiesour pfold job by giving the name of the executable—pf o1d—and the network address
of the clearinghouse. The node manager then uses thisinformation to fork anew worker as
achild with the command line

pfold -NoChouse -Address=clearinghouse-address --.

The-NoChouseflag onthecommand linetellstheworker that it isto bean additiona worker
in an aready existing Cilk job. (Without this flag, the worker would fork a new clearing-
house and start anew Cilk job.) The -Address field on the command line tells the worker
wherein the network to find the clearinghouse. The worker uses this addressto send areg-
istration message, containing its own network address, to the clearinghouse. The clearing-
house responds with the worker’s assigned name—in this case, number 1—and the job’s
command-line arguments—in thiscase, “pfold 3 7.” Additionaly, the clearinghouse re-
sponds with alist of the network addresses of all other registered workers. Now the new

92 Chapter 6. Cilk on a network of workstations

Job broker
| Wlture] (4) Node manager obtains
job from job broker.
@ N « Y N

@ haode manager Node manager
Clearinghouse detectsidle.
@ Node manager
@ Worker

forks worker.
registers with
clearinghouse.

A

\M‘ @ Worker steals work \M

from another.

Figure 6.2: Anidle machine joins a Cilk job. When the node manager detects that its machine
isidle, it obtainsajob from the job broker and then forks a worker. The worker registers with the
clearinghouse and then begins work stealing.

worker knows the addresses of the other workers, so it can commence execution of the Cilk
program and steal work as described in the previous chapter. We now have arunning Cilk
job with two workers.

Now, suppose that someone touches the keyboard on Sparrow. In this case, the node
manager detects that the machineis busy, and the machineleaves the Cilk job asillustrated
in Figure 6.3. After detecting that the machineis busy, the node manager sends akill signd
to its child worker. The worker catches this signal and prepares to leave the job. First, the
worker offloads al of its closures to other workers as explained in more detail in the next
section. Next, the worker sends a message to the clearinghouse to unregister. Finally, the
worker terminates. When the node manager detects that its child worker has terminated, it
notifies the job broker, so that the job broker can keep track of the number of workersin
each Cilk job.

When a Cilk job is running, each worker checks in with the clearinghouse once every
2 seconds. Specifically, each worker, every 2 seconds, sends a message to the clearing-
house. The clearinghouse responds with an update message informing the worker of any
other workers that have left the job and any new workers that have joined the job. For
each new worker that has joined, the clearinghouse aso provides the network address. If
the clearinghouse does not receive any messages from a given worker for over 30 seconds,
then the clearinghouse determinesthat theworker has crashed. Inlater update messages, the
clearinghouseinformsthe other workersof the crash, and the other workerstake appropriate

6.1. System architecture 93

Job broker
[Vulture | (12) Node manager
notifies job broker.
4 h @ \

Node manager Nod
lode manager
Clearinghouse detects busy. g
@ Node manager

sends kill signal
to worker.

(11) Worker
unregisters.

(o

\M‘ @ Worker offloads \M‘

work to others.

Figure 6.3: A no-longer-idle machine leaves a Cilk job. When the node manager detects that its
machineisno-longeridle, it sendsakill signal to theworker. Theworker catchesthissignal, offloads
itswork to other workers, unregisters with the clearinghouse, and then terminates.

remedial action asdescribed in Section 6.3. If the clearinghouse incorrectly determinesthat
aworker has crashed and then receives a message from that worker, then the clearinghouse
refuses to reply with update messages. A worker that receives no update messages from
the clearinghouse for over 30 seconds commits suicide. Thus, a worker incorrectly deter-
mined to be crashed will eventually crash, and the communi cation protocol s ensure correct
operation in this event. With each worker communicating with the clearinghouse once to
register, once to unregister, and once every 2 seconds for an update, we expect that a clear-
inghouse can service up to 1000 workers. Beyond thislevel and in awide-areanetwork, we
may require multiple clearinghouses configured in a hierarchy.

All of the communication between workers and between workers and the clearinghouse
isimplemented with UDPF/IP[95]. UDP/IPisan unreliabledatagram protocol built on top of
the internet protocol [25]. The protocolsimplemented in the Cilk-NOW runtime system all
use UDP/IPto perform split-phase communication, so except in the case of work stealing, a
worker never sitsidlewaiting for areply or an acknowledgment. Knowing that UDP data-
gramsare unreliable, the Cilk-NOW protocol sincorporate appropriate mechanisms, such as
acknowledgments, retries, and timeouts, to ensure correct operation when messages get | ost.
We shall not discuss these mechanismsin any detail, and in order to simplify our exposition
of Cilk-NOW, we shall often speak—and indeed we already have spoken—of messages be-
ing sent and received asif they are reliable. What we will say about these mechanismsis
that they are not built on top of UDP in any effort to create areliable message-passing layer.
Rather these mechanisms are built directly into the runtime system’s split-phase protocols,

94 Chapter 6. Cilk on a network of workstations

so in the common case when a message does get through, Cilk-NOW pays no overhead to
make the message reliable.

We chose to build Cilk-NOW’s communi cation protocols using an unreliable message-
passing layer instead of areliable one for two reasons. First, reliable layers such as TCP/IP
[95], PVM [96], and MPI [43] al performimplicit acknowledgments and retriesto achieve
reliability. Therefore, such layers either preclude the use of split-phase communication or
require extra buffering and copying. A layer such as UDP which provides minimal service
guarantees can be implemented with considerably |ess software overhead than alayer with
more service features. In the common case when the additional service is not needed, the
minimal layer can easily outperformits fully-featured counterpart. Second, in an environ-
ment where machines can crash and networks can break, the notion of a“reliable” message-
passing layer is somewhat suspect. A runtime system operating in an inherently unreliable
environment cannot expect the message-passing layer to make the environment reliable.
Rather, the runtime system must incorporate appropriate mechanisms into its protocols to
take action when a communication endpoint or link fails. For these reasons, we chose to
build the Cilk-NOW runtime system on top of aminimal layer of message-passing service
and incorporate mechanismsdirectly into the runtime system’s protocolsin order to handle
issues of reliability. The downside to this approach is complexity. The protocols imple-
mented in the Cilk-NOW runtime system are complex: the code for these protocols takes
amost 20 percent of the total runtime system code, and the programming effort was prob-
ably near half of thetotal. Nevertheless, thiswas a one-time effort that we expect will reap
performance rewards for along time to come.

The job broker, CilkJobBroker, and node manager, CilkNodeManager, are imple-
mented using remote procedure cals (RPC) [7] in the standard client/server configuration
with the job broker as the server. When the node manager on a machine finds that its ma-
chineisidle, it makes aremote procedure call to the job broker to obtain a Cilk job descrip-
tion. We shall finish this section by explaining the operation of the node manager and the
job broker in their current incarnations.

Each machine in the network runs a node manager in the background. In general, when
the machine is being used, the node manager wakes up every 5 seconds to determine if
the machine has goneidle. It looks at how much time has elapsed since the keyboard and
mouse have been touched, the number of userslogged in, and the processor |oad averages.
The node manager then passes these values through a predicate to decide if the machineis
idle. This predicate can be customized for each machine. A typical predicate might require
that the keyboard and mouse have not been touched for at least 2 minutes and the 1-minute
processor load average is below 0.3. Alternatively, the owner of a machine might set the
predicate to require that no users are logged in. We believe that maintaining the owner’s
sovereignty is essential if we want owners to allow their machines to be used for parallel
computation. When the predicate is satisfied, the machine is idle, and the node manager
obtains a Cilk job description from the job broker and forks a worker. The node manager
then monitorstheworker and continuesto monitor the machine. With aworker running, the
node manager wakes up once every second to determineif the machineis till idle (adding
1.0to any processor |oad-average threshold). If the machineis no longer idle, then the node
manager sends akill signal to theworker as previously described. When the worker process
diesfor any reason, the node manager takes one of two possible actions. If the machineis

6.2. Adaptive parallelism 95

still idle, then it goes back to the job broker for another job to work on. If the machineisno
longer idle, then it returns to monitoring the machine once every 5 seconds.

The job broker determines which idle machines work on which Cilk jobs. Inits current
implementation, the job broker uses a ssmple nonpreemptive, round-robin scheduling pol-
icy. Thispolicy isextremely unfair inthat it allowsasinglejobto hold all theidle machines
to the exclusion of all other jobs. For example, if onejob isrunning and using al theidle
machines, then when a second job starts, it will get none. Not until some machines leave
the first job and then later get reassigned by the job broker, will machines join the second
job. Wearecurrently analyzing and experimenting with asimpl e probabilistic scheme based
on random preemptive reassignments in order to obtain “fair” scheduling. Our proposed
scheme uses the work-steal rates of individual workers to govern the reassignment proba-
bilities. Each job should get its fair share of the idle machines, but no job should get more
machinesthan it can efficiently utilize. In thisproposed scheme, the functionality of thejob
broker isimplemented in atotally distributed manner instead of in the current client/server
manner.

6.2 Adaptive parallelism

Adaptive paralelism alows a Cilk job to take advantage of idle machines whether or not
they are idle when the job starts and whether or not they will remain idle for the duration
of the job. In order to efficiently utilize machines that may join and leave a running job,
the overhead of supporting this feature must not excessively sow down the work of any
worker at atimewhen it isnot joining or leaving. Aswe saw in the previous section, anew
worker joinsajob easily enough by stealing aclosure. A worker leaves ajob by migrating
all of itsclosuresto other workers, and here the danger lies. Whenwe migrateawaiting clo-
sure, other closures with continuationsthat refer to this closure must somehow update these
continuations so they can find the waiting closure at itsnew location. (Without adaptive par-
allelism, waiting closures never move.) Naively, each migrated waiting closure would have
to inform every other closure of its new location. In this section, we show how we can take
advantage of strictness and the work-stealing scheduler to make this migration extremely
simple and efficient.

Our approach isto impose additional structure on the organization of closures and con-
tinuations, such that the structure is cheap to maintain while smplifying the migration of
closures. Specifically, we maintain closures in “subcomputations’ that migrate en masse,
and every continuation in aclosure refersto aclosure in the same subcomputation. In order
to send a value from a closure in one subcomputation to a closure in another, we forward
the value through intermediate “result closures,” and give each result closure the ability to
send the value to precisely one other closure in one other subcomputation. With this struc-
ture and these mechanisms, all of the overhead associated with adaptive parallelism (other
than the actual migration of closures) occurs only when closures are stolen, and as we saw
in Chapter 5, the number of steals grows at most linearly with the critical path of the com-
putation but isnot afunction of thework. The bulk of this section’s exposition concernsthe
organi zation of closuresin subcomputationsand theimplementation of continuations. After

96 Chapter 6. Cilk on a network of workstations

covering these topics, the mechanism by which closures are migrated to facilitate adaptive
parallelism is quite straightforward.

In Cilk-NOW, every closureis maintained in one of three pools associated with a data
structure called a subcomputation. A subcomputation is a record containing (among other
things) three pools of closures. The ready pool is the leveled lists of ready closures de-
scribed in Section 5.1. The waiting pool is alist of waiting closures. The assigned pool
isalist of ready closures that have been stolen away. Program execution begins with one
subcomputation—the root subcomputation—allocated by worker 0 and containing asingle
closure—the initial thread of cilk main—intheready pool. In general, a subcomputation
with any closures in its ready pool is said to be ready, and ready subcomputations can be
executed by the scheduler as described in Section 5.1 with the additional provision that each
waiting closure is kept in the waiting pool and then moved to the ready pool when itsjoin
counter decrementsto zero. Theassigned pool isused in work stealing aswe shall now see.

When aready closure is stolen from the ready pool of a victim worker’s subcomputa-
tion, theclosureismovedto the assigned pool, and assigned to athief subcomputation newly
allocated by the thief worker. The assignment is recorded by giving the thief subcomputa-
tion a unique name and storing that name in a record of assignment information attached
to the assigned closure, asillustrated in Figure 6.4. The subcomputation’s name is formed
by concatenating the worker’s name and a number uniqueto that worker. The first subcom-
putation allocated by aworker r isnamed r: 1, the second is named r: 2, and so on. The
root subcomputation is named 0 : 1. The thief subcomputation stores its own name and the
name of itsvictimworker. The victim’sassigned closure storesthe name of the thief worker
and the name of the thief subcomputation in its assignment information. We refer to the as-
signed closure as the thief subcomputation’s victim closure. Thus, the victim closure and
thief subcomputation can refer to each other via the thief subcomputation’s name which is
stored both in the victim closure’s assignment information and in the thief subcomputation.

This link between a victim closure and a thief subcomputation is created during work
stealing as follows. If aworker needs to steal work, then before sending a steal request to a
victim, it allocates a new thief subcomputation from a simple runtime heap. The thief sub-
computation’snameis contained in the steal request message. When the victim worker gets
therequest message, if it has any ready subcomputations, then it chooses aready subcompu-
tation in round-robin fashion, removesthe closure at thetail of the topmost nonempty level
in the subcomputation’sready pool, and placesthisvictim closurein the assigned pool. The
victim worker then assigns the closure to the thief subcomputation by adding to the closure
an assignment information record allocated from a simple runtime heap, and then storing
the name of the thief worker and the name of the thief subcomputation (as contained in the
steal request message) in the assignment information. Finally, the victim worker sends a
copy of the closure to the thief. When the thief receives the stolen closure, it records the
name of the victim worker in its thief subcomputation, and it places the closure in the sub-
computation’sready pool. Now thethief subcomputation isready, and the thief worker may
commence executing it.

When aworker finishes executing athief subcomputation, thelink between thethief sub-
computation and its victim closure is destroyed. Specifically, when a subcomputation has
no closuresin any of its three pools, then the subcomputation is finished. A worker with a
finished thief subcomputati on sends amessage contai ning the subcomputation’snameto the

6.2. Adaptive parallelism 97

Worker s Worker r

Subcomputation

s:i [
Assigned
pool
Closure :
Assignment information Subcorgﬁ%an on Victim worker
— | r:j] (\ \ name
/ \ . r:j S
Thief worker Thief L
name subcomputation
name

Figure 6.4: A victim closure stolen from the subcomputation s : i of victimworker s isassigned to
thethief subcomputationr: j. Thevictim closureis placed in the assigned pool and augmented with
assignment information that records the name of the thief worker and the name of the thief subcom-
putation. The thief subcomputation recordsits own name and the name of the victim worker. Thus,
the victim closure and thief subcomputation can refer to each other viathe thief subcomputation’s
name.

subcomputation’s victim worker. Using this name, the victim worker finds the victim clo-
sure. Thisclosureisremoved from its subcomputation’s assigned pool and then the closure
and its assignment information are freed. The victim worker then acknowledges the mes-
sage, and when the thief worker receives the acknowledgment, it freesthe subcomputation.
When the root subcomputation is finished, the entire Cilk job is finished.

In addition to allocating a new subcomputation, whenever aworker steals a closure, it
altersany continuationsin the closure so that they all refer to closures within the same sub-
computation. Consider a thief stealing a closure, and suppose the victim closure contains
a continuation referring to a closure that we call the target. The victim and target closures
must bein the same subcomputationinthevictimworker. Continuationsareimplemented as
the address of thetarget closure concatenated with theindex of an argument ot inthetarget
closure. Therefore, the continuation in the victim closure contains the address of the target
closure, and this address is only meaningful to the victim worker. When the thief worker
receives the stolen closure, it replaces the continuation with a new continuation referring
to anew “result” closure, as follows. First, the thief must locate the continuation with the
aid of athread signature. For each thread in the program, the cilk2c trandator creates a
signature which specifies the thread address (a pointer to the thread’s code) and the type of
each argument to the thread. All of the thread signatures are stored in atable. To find the

98 Chapter 6. Cilk on a network of workstations

continuations in a closure, the worker uses the closure’s thread to lookup the signature in
the table. Then the worker uses the signature to locate which arguments are continuations.
Having located the continuation in the stolen closure, the thief allocates a new result clo-
sure and replaces the continuation with a new continuation referring to a sot in the result
closure, asillustrated in Figure 6.5. The result closure's thread is a special system thread
whose operation we shall explain shortly. Thisthread takes two arguments: a continuation
index and aresult value. The continuation index is supplied as the continuation’s argument
dot number in the stolen closure. The result value is missing, and the continuation in the
stolen closureis set to refer to this argument sot. The result closure iswaiting and itsjoin
counter is 1. In general, the thief alocates aresult closure and performsthis alteration for
each continuation in the stolen closure. The stolen and result closures are part of the same
subcomputation.

Worker r
Result
o S closure _ _
J | b: R Continuation

Waiting i index
Ready pool - /

pool

1 Solen Empty slot
u closure for

N . result value
| b: 1

|| Argument

|| slot 0

Figure 6.5: When thethief worker r steal saclosure a which containsacontinuationin itsargument
dlot 0, the thief replaces this continuation with a new continuation referring to an empty slot in a
newly alocated result closureb. Additionally, thethief storesthe continuation’sslot number 0 inan
argument slot of the result closure.

Using continuations to send values from one thread to another operates as described
in Section 5.1, but when a value is sent to a result closure, communication between dif-
ferent subcomputations occurs. When aresult closure receives its result value, it becomes
ready, and when itsthread executes, it forwardsthe result valueto another closure in another
subcomputation as follows. When a worker executing a subcomputation executes a result
closure's thread, it sends a message to the subcomputation’s victim worker. This message
contains the subcomputation’s name as well as the continuation index and result value that
are the thread's arguments. When the victim worker receives this message, it uses the sub-
computation name to find the victim closure. Then it uses the continuation index to find a
continuation in the victim closure. Finaly, it uses this continuation to send the result value
to the target.

To summarize, each subcomputation containsacollection of closuresand every continu-
ationinaclosurerefersto another closurein the same subcomputation. To send avaluefrom
aclosurein one subcomputation to aclosurein another, the value must be forwarded through

6.2. Adaptive parallelism 99

intermediate result closures passing from subcomputation to subcomputation by way of the
links between thief subcomputations and victim closures. All relations between different
subcomputations are confined to these links.

With this structure, migrating a subcomputation from one worker x to another worker
y isfairly straightforward. First, all of the subcomputation’s closures are swizzed in order
to replace addresses with values that have meaning independent of any particular worker’s
address space asfollows. Thethreadfield in each closureistrandated from an addressto an
index in the table of thread signatures, and each closure is assigned a unique index. Then,
using the thread signatures again, for each continuation in each closure, the pointer portion
of the continuation isreplaced with thetarget closure’sindex. Having swizzled al of itsclo-
sures, the subcomputation and the closures are sent in messages from worker x toworker y.
The subcomputation keeps its name. When the entire subcomputation and all of its closures
have been migrated to worker y, the closuresare unswizzed to replace thethread and closure
indices with actual addresses. Finally, worker y sends a message to the subcomputation’s
victim worker to inform the victim closure of its thief subcomputation’s new thief worker.
Additionally, for each of the subcomputation’s assigned closures, it sends a message to the
thief worker to inform the thief subcomputation of its victim closure’s new victim worker.
Thus, al of the links between victim closures and thief subcomputations are preserved.

Adaptive parallelism proved extremely valuable in the protein-folding experiment de-
scribed at the top of this chapter. Figure 6.6 plots the number of machinesthat wereidle at
each point in time over the course of atypical week for our network of 50 SparcStations.*
As can be seen from this plot, though many more machines are idle at night, a significant
number of machines are idle at various times throughout the day. Therefore, by adaptively
using idle machines both day and night, we can take advantage of significantly more ma-
chine resources than if we run our parallel jobs as batch jobs during the night. During the
day, however, a given machineislesslikely to remainidlie for an extended period of time.
Thus, in order to efficiently use machines adaptively during the day, the runtime system
must be able to utilize potentially short intervals of idle time.

To document the efficiency with which Cilk-NOW can utilize short periods of idletime,
we ran the following experiment. We used 8 SparcStation 1+ workstations connected by
Ethernet, and werantheknary (11,6,2) program (see page 66) severa timeswith varying
degrees of adaptiveness. We controlled the amount of adaptiveness by killing each worker
and then starting a new worker at fixed intervals on each machine. Figure 6.7 shows the
results of this experiment. The horizontal position of each plotted datum is the amount of
adaptivenessin the run as measured by the average execution time for each worker. For ex-
ample, adatum plotted at a horizontal position of 50 seconds represents a run in which the
average worker running on each of the 8 machinesworked for 50 seconds beforeleaving the
job. Theknary(11,6,2) program performsapproximately 2600 seconds of work, so such
arun involves at least 2600/50 = 52 total workers. The vertical position of each plotted
datum isthe efficiency of the run as measured by taking the ratio of the work in the compu-
tation (or execution time with one worker and no adaptiveness) to the sum of the execution

1The node manager’sidleness predicate on all 50 machines was conservatively set to require that the key-
board and mouse have not been touched for 15 minutes and the 1, 5, and 15 minute processor load averages
are below 0.35, 0.30, and 0.25 respectively.

100 Chapter 6. Cilk on a network of workstations

40

35

N w
)] o

Number of Workers
& S

[any
o
T

I

Sun Mon Tue Wed Thu Fri Sat

3 4
Time (days)

Figure 6.6: This plot shows the number of machines, out of the 50 machines in our network, that
areidle over the course of onetypical week in March, 1995.

timesof each worker intherun. If theefficiency is 1.0, then the total worker execution time
equalsthework of the computation and every worker isutilized with perfect efficiency. This
plot shows that even when the average worker stays with the job for only 5 seconds, the ef -
ficiency is still over 85 percent, and if the average worker stays with the job for 1 minute,
then the efficiency isgenerally over 95 percent.

6.3 Fault tolerance

With transparent fault tolerance built into the Cilk-NOW runtime system, Cilk jobs may
survive machine crashes or network outages despite the fact that Cilk programs are fault
oblivious, having been coded with no special provision for handling machine or network
failures. If aworker crashes, then other workersautomatically redo any work that waslostin
the crash. Inthe case of amore catastrophic failure, such as apower outage, atotal network
failure, or a crash of thefile server, then all workers may crash. For this case, Cilk-NOW
provides automatic checkpointing, so when serviceisrestored, the Cilk job may berestarted
with minimal lost work. Inthis section, we show how the structure used to support adaptive
parallelism—which leverages strictness and the work-stealing scheduler—may be further
leveraged to build these fault tolerant capabilitiesin Cilk-NOW.

Given adaptive parallelism, fault toleranceisonly ashort step away. With adaptive par-
allelism, aworker may leave a Cilk job, but before doing so, it first migrates all of its sub-
computations to other workers. In contrast, when aworker crashes, al of its subcomputa-

6.3. Fault tolerance 101

1
+
+
+ * * jrr tr ++
+ T N ’ *
+ + + +
0.95 A 1
+ o+
+
9 .
+ + e
o) +
S} .
—
fram +
w +
st +
0.9 +t+ 4 B
+
n
n
+
+
0.85 L L
0 50 100 150

Average participation time (in seconds)

Figure 6.7: Thisplot shows the efficiency of 8-processor executions of the knary(11,6,2) pro-
gram as a function of the amount of adaptiveness. The adaptiveness is measured as the average
amount of time each worker participated in the job. The efficiency is measured as the ratio of the
work in the computation to the total worker execution time.

tionsarelost. To support fault tolerance, we add amechanism that allowssurviving workers
to redo any work that was done by the lost subcomputations. Such a mechanism must ad-
dresstwo fundamental issues. First, not all work isnecessarily idempotent, so redoing work
may present problems. We address this issue by ensuring that the work done by any given
subcomputation does not affect the state of any other subcomputations until the given sub-
computation finishes. Thus, from the point-of-view of any other subcomputation, the work
of a subcomputation appears as atransaction: either the subcomputation finishes and com-
mits its work by making it visible to other subcomputations, or the subcomputation never
happened. Second, thelost subcomputations may have done alarge amount of work, and we
would liketo minimizethe amount of work that needsto beredone. We addressthisissue by
incorporating atransparent and fully distributed checkpointing facility. This checkpointing
facility aso allows a Cilk job to be restarted in the case of atota system failurein which
every worker crashes.

To makethework of asubcomputation appear from the outside asatransaction, we mod-
ify the behavior of the subcomputation’sresult closures by delaying their execution until the
subcomputation finishes. Rather than set the join counter in each result closureto 1, we set
thejoin counter to 2, so theresult closurewill never beready and alwayswait. Additionaly,
rather than keep the result closures in the subcomputation’s waiting pool, we keep themin
aspecial result pool. When the subcomputation’sready, waiting, and assigned poolsare all
empty, then the subcomputation is finished, and the result closures may be executed. The

102 Chapter 6. Cilk on a network of workstations

thread executed by each of these closures sends a message to the subcomputation’s victim
worker. Also, the fact that the subcomputation is finished warrants a message to the vic-
tim worker. We bundle all of these messages into asingle larger message sent to the victim
worker. When the victim worker receives this message, it commits all of the thief subcom-
putation’ swork by sending the appropriate result values from the victim closure, freeing the
victim closure, and sending an acknowledgment back to the thief worker.

By delaying the execution of the result closures, we have a very simple technique for
making the work of a subcomputation appear as a transaction, but on the negative side, this
delaying technique may result in alonger critical path. So far, none of our applications suf-
fer from this effect, because all of our applicationsare fully strict and each procedure sends
avaluetoits parent only asthelast thing it does. Should the need arise, we may allow sub-
computationsto perform commits beforethey finish by tying these commitsto checkpoints.

With subcomputations having this transactional nature, a Cilk job can tolerate individ-
ual worker crashes as follows. Suppose a worker crashes. Eventually, the clearinghouse
will detect the crash, and the other living workerswill learn of the crash at the next update
from the clearinghouse. When aworker learns of a crash, it goes through all of its subcom-
putations, checking each assigned closureto seeif it isassigned to the crashed worker. Each
such closureis moved from the assigned pool back to the ready pool (and its assignment in-
formationisfreed). Thus, all of thework done by the closure’sthief subcomputation which
has been lost in the crash will eventually be redone. Additionally, when aworker learns of
acrash, it goes through all of its subcomputationsto seeif it has any that record the crashed
worker as the subcomputation’s victim. For each such subcomputation, the worker aborts
it asfollows. The worker goes through al of the subcomputation’s assigned closures send-
ing to each thief worker an abort message specifying the name of the thief subcomputation.
Then the worker frees the subcomputation and all of its closures. When a worker receives
an abort message, it finds the thief subcomputation named in the message and recursively
abortsit. All of thework done by these aborted subcomputations must eventually be redone.
In order to avoid aborting all of these subcomputations (which may comprisethe entire job
in the case when the root subcomputation is lost) and redoing potentially vast amounts of
work, and in order to alow restarting when the entire job is lost, we need checkpointing.

Cilk-NOW performs automatic checkpointing without any synchronization among dif-
ferent workers and without any notion of global state. Specifically, each subcomputation
is periodically checkpointed to a file named with the subcomputation’s name. For exam-
ple, a subcomputation named r: i would be checkpointed to a file named scomp r_i. We
assume that all workersin the job have access to a common file system (through NFS or
AFS, for example), and al checkpoint files are written to a common checkpoint directory.?
To write a checkpoint file for a subcomputation r: 1, the worker first opens a file named
scomp_r_i.temp. Then it swizzles all of the subcomputation’s closures, as described in
the previous section; writes the subcomputation record and al of the closures—including
the assignment information for the assigned closures—into thefile; and unswizzles the clo-
sures. Finally, it atomically renames the file scomp_r_i.temp t0 scomp_r_i, overwriting
any previous checkpoint file. A checkpoint file can be read to recover the subcomputa-

2\We have not yet implemented any sort of distributed file system. In the current implementation, workers
implicitly synchronize when they write checkpoint files, since they all access a common file system.

6.3. Fault tolerance 103

tion by ssimply unswizzling the closures, as described in the previous section. On writing
a checkpoint file, the worker additionally prunes any no-longer-needed checkpoint files as
follows. Suppose that when the previous checkpoint file was written, the subcomputation
had a closure assigned to a thief subcomputation s: j, but since then, the thief subcompu-
tation has finished and the assigned closure has been freed. In this case, as soon as the new
checkpoint file scomp_r_i is written, the checkpoint file scomp_s_j is no longer needed.
The worker deletes the checkpoint file scomp_s_j as follows. It first reads the file, and for
each of the subcomputation’s assigned closures, it recursively deletes the thief subcompu-
tation’s checkpoint file, asthis checkpoint fileis also no longer needed. Finaly, the worker
actually removesthefile.

If workers crash, the lost subcomputations can be recovered from checkpoint files. In
the case of asingle worker crash, the lost subcomputations can be recovered automatically.
When a surviving worker finds that it has a subcomputation with a closure assigned to the
crashed worker, then it can recover the thief subcomputation by reading the checkpoint file.
Itispossible that the checkpoint file may not exist, but in this case, the thief subcomputation,
having not written a checkpoint file, cannot have done very much work, so littleislost by
redoing thework as previously described. Inthe case of alarge-scalefailurein which every
worker crashes, the Cilk job can be restarted from checkpoint files by setting the -Recover
flag on the command line. Recovery beginswith the root subcomputation whose checkpoint
fileis scomp_0_1. After recovering the root subcomputation, then every other subcompu-
tation can be recovered by recursively recovering the thief subcomputation for each of the
root subcomputation’s assigned closures.

Without checkpointing, we could not have completed the protein-folding experiment
described at the top of this chapter. In addition to several single-machine crashes (mostly
dueto power cycling), we experienced atotal system failurewhen our network’sNFSserver
was down for maintenance. When the server came back on line, we were able to restart the
program from where it left off.

Chapter 7

Conclusions

Though thisthesis has established an algorithmic foundation on which to build parallel mul-
tithreaded systems, much work remainsto be done. We have shown that strictnessis a suf-
ficient condition for efficient scheduling, though surely it is not a necessary condition. If
we can identify useful forms of nonstrictness and develop provably efficient scheduling al-
gorithms for these cases, then we can generalize the applicability of Cilk. Some forms of
nonstrictness, for example, might alow Cilk to efficiently execute more synchronoustypes
of applications.

Our current work isfocused on incorporating in Cilk adistributed shared memory using
dag consistency [11]. A distributed shared memory providesaglobal virtual address space,
S0 an instruction may load from or store to a virtual address that has meaning independent
of which processor executes the instruction. With deterministic dag consistency, we spec-
ify the value returned when an instruction performsaload as follows. All of the stores to
any given virtual address must be totally ordered with respect to each other in the compu-
tation’s dag of instructions. Additionally, each individual load from a virtual address must
be totally ordered with respect to al of the stores to that address. Then, the value returned
by aload instruction is the value stored by the immediately preceding store instruction in
this total order. Dag consistency can be generalized to the case when no such total order
exists by introducing nondeterministic execution. Dag consistency builds upon our algo-
rithmic foundations, and for the case of fully strict computations, we can prove bounds on
the number of page (or object) faults. We have recently implemented dag consistency and
asimple “ cactus-stack” memory allocator on the CM5, and we have coded several divide-
and-conquer applicationsincluding blocked matrix multiply, Strassen’ smatrix multiply, and
a Barnes-Hut N-body simulation. Cilk together with dag consistency makes coding these
applications particularly smple. Strassen’s algorithm was coded in one evening. Prelimi-
nary results with these applications is extremely encouraging, though we do not have num-
bers to report here. We further plan to add dag consistent shared memory to Cilk-NOW.
We have proven that dag consistency can be maintained using a simple and efficient check-
out/commit algorithm, and the nature of thisalgorithm dovetails perfectly into Cilk-NOW'’s
implementation of adaptive parallelism and fault tolerance.

Thisthesis has shown that by building amultithreaded |anguage and runtime system on
top of an algorithmic foundation, programmers can focus on expressing the paralelismin
their algorithm and leave the runtime system’s scheduler to manage the low-level details
of scheduling, secure and confident in the scheduler’s ability to deliver performance. Cilk

105

106 Chapter 7. Conclusions

IS just such alanguage and runtime system. In Cilk we can delineate a specific class of
programs—fully strict programs—and for this class, we can guarantee efficient execution
and performance that is predictable with a ssmple model based on work and critical path
length. Thus, besides the programming abstractions provided by the language, Cilk pro-
vides a performance abstraction. We argue that rather than think about machine-specific
guantities such as execution time and communication costs, the performance-minded pro-
grammer should instead think about program abstractions such as work and critical path
length and then rely on the runtime system’s performance model to trand ate these abstract
guantities into real quantities. The value of Cilk’s performance abstraction is intimately
linked to its provable efficiency. Abstraction requires guarantees.

Appendix A

Proof of lower bound

Theorem 3.1 Forany S; > 4andany T; > 168%, there exists a depth-first multithreaded
computation with work T, average parallelism T, /T, > 1/T1/8, and stack depth S; such
that the following holds. For any number P of processors and any value p in the range
1<p< %Tl /Tw, if X isa P-processor execution schedule that achieves speedup p—that is,

T(X) <Ti/p—then S(X) > 3(p— 1)yT1+ S

Proof: To exhibit the desired depth-first multithreaded computation with work Ty, criti-
cal path length T, and stack depth S;, we first ignore the partitioning of instructions into
threads and consider just the dag structure of the computation. Minusafew instructionsand
dependencies, the dag appears asin Figure A.1(a). The instructions are organized into

m=/T;/8

separate components (y, (i, - - ., Cm_1 that we call chains.! Each chain begins with

A=T/S

instructions that we call headers (vertical hashed in Figure A.1(a)). After the headers, each

chain contains
V = 64/ Ty

instructions (plain white in Figure A.1(a)) that form the trunk. At the end of each chain,
there are A blockers (horizontal hashed in Figure A.1(a)). Each chain, therefore, consists
of 2\ +v = 2(/T1/S1) + 64/Ty instructions. Since there are m = /T;/8 chains, the total
number of instructions accounted for by themchainsis (2y/T1/S; +6y/T1)y/T1/8= 3T; +
2T1/Sy, and this number is no more than 13T, since S; > 4. The remaining (at least) =Ty
instructions form the parts of the computation not shown in Figure A.1(a).

There are no dependencies between different chains so the average parallelisn T,/ To, iS
at least m= /T, /8 and the critical path length T is no more than 8,/T; as promised.

Now consider the partitioning of theinstructionsfrom each chain into the actual threads.
As aluded to in Figure A.1(b), the root thread has m— 1 child threads, each of which is

1In what follows, we refer to a number x of objects (such as instructions) when x may not be integral.
Rounding these quantitiesto integers does not affect the correctness of the proof. For ease of exposition, we
shall not consider theissue.

107

108 Appendix A. Proof of lower bound

trunk

} blockers

ith
outer
iteration

(b) Outer iterations

Figure A.1: Constructing a computation with no efficient execution schedule. The header instruc-
tions of chain ¢ and the blocker instructions of chain G_; are both placed in the threads of theith
outer iteration.

109

0———
¢
o K
g |
T, !
¢ | i
0l W e
f |
tl(i_ T3:
T () .
tz(s) | 4;[4 e o o t(S)l
| M-
f |
L L0,
Tilp =

Figure A.2: Schedulingtheexecutionof thechains. A solidvertical interval fromt(® tot " indicates
the time during which the trunk of chain ¢ is being executed. When ti(s) < ti(i)l, we can define an
interval, shown dashed, of length 7; = t"’, — ¥, during which chain ¢ is exposed.

the root of a subcomputation that we call an outer iteration. (The outer iterations contain
inner iterationsthat will be discussed later.) Each of these outer iterations contains /T, /2
threads. Asindicated by theshadinginFigureA.1, theithouteriterationfori=1,2 ..., m—
1 containsboth the header instructionsof chain ¢ and the blocker instructionsof chain G_.
These instructions are organized into the threads of the outer iteration so as to ensure that
chain G cannot begin executing itstrunk instructions until all /T /2 of the outer iteration’s
threads have been spawned, and none of these threads can die until chain G_1 begins ex-
ecuting its blocker instructions. (We will exhibit this organization later.) Thus, if chain G
begins executing itstrunk instructions before chain ¢_4 finishesits, then the execution will
require at least \/T; /2 space.

For any number P of processors, consider any valid P-processor execution schedule .
For each chain (G, let ti(s) denote thetime step at which X executes thefirst trunk instruction

of G, and let ti(f) denote the first time step at which X executes a blocker instruction of G.
Since the trunk has length v and no blocker instruction of ¢ can execute until after the last

trunk instruction of ¢, we have ti(f) — ti(s) > V.

Now consider two chains, ¢ and G_1, and suppose ti(s) < ti(i)l; thisis the scenario we

described as using at least \/T;/2 space. In this case, we consider the time interval from
ti(s) (inclusive) to ti(i)l (exclusive) during which we say that chain G is exposed, and we let

110 Appendix A. Proof of lower bound

T = ti(i)l - ti(s) denote the amount of time chain ¢ isexposed. SeeFigure A.2. If ti(s) > ti(i)l
then chain G is never exposed and we let T; = 0. Aswe have seen, over the time interval
duringwhich achainisexposed, it usesat least /T /2 space. Wewill show that in order for
an execution schedule X to achieve speedup p—that is T(X) < T;/p—there must be some

time step during the execution at which at least [3p| — 1 chains are exposed.

If schedule X issuch that T(X) < T;/p, then we must havetr(rf])_l—tés) <Ti/p. Wecan
expand thisinequality to yield

Ti/p > -t

m—1
m—1 m—1
= 3" -t%)- 5 (-1, (A1)
1= 1=
Considering the first sum, we recall that ti(f) - ti(s) > v, hence,
m—1
S ("=t > (A2)

Considering the second sum of Inequality (A.1), when ti(i)l > ti(s) (s0 G isexposed), we have

T = ti(i)l — ti(s), and otherwise, T; = 0 > ti(i)l — ti(s). Therefore,

m—1

m-1
Zl (1M —t9) < Zl T (A.3)

Substituting Inequality (A.2) and Inequality (A.3) back into Inequality (A.1), we obtain

m—1

> uiz=mv-Ty/p.
i=1

Let exposed(t) denote the number of chains exposed at time step t, and observe that

Ti/p m—1
t; exposed(t) = Z T .

Then the average number of exposed chainsper time step is

1 Ti/p 1 m-1
— exposed(t) = —) T
1
> —(Mmv-T
- Tl/p(1/p)
3

since, m= /T;/8 and v = 6,/T;. There must be some time step t* for which exposed(t*)
isat least the average, and consequently,

exposed(t*) > Ep} -1.

Figure A.3: Laying out the chainsinto the threads of a multithreaded computation. As before, the header instructions are vertical hashed, and the
blocker instructionsare horizontal hashed. In thisexample, each activation frame has unit size so § = 6. Also, inthisexampleA = 2,v =5, and only
thefirst 2 out of the minstructionsin the root thread are shown. Each instruction of the root thread spawns a child (an outer iteration), and each child
thread contains A + 1 = 3 instructions; thefirst A of these spawn a child thread which is the root of an inner iteration with stack depth § — 2 = 4, and

the last one spawns aleaf thread with the v = 5 trunk instructions of a single chain.

112 Appendix A. Proof of lower bound

Now, recalling that each exposed chain uses space /T1/2, we have
3 1
w0 > ([3]-2)5vm
1
> -Vt

for S < \/T1/4 (whichistruesince T, > 16S2).

All that remains is exhibiting the organization of the instructions of each chain into a
depth-first multithreaded computation with work Ty, critical path length T, < 8,/T;, and
stack depth $ = S; in such away that each exposed chain uses /T;/2 space. There are
actually many ways of creating such a computation. One such way, that uses unit size acti-
vation framesfor each thread, is shown in Figure A.3.

For the multithreaded computation of Figure A.3, theroot thread contains minstructions,
each of which spawns a child thread (an outer iteration). Each child thread contains A + 1
instructions; the first A of these spawn a child thread which is the root of a subcomputation
that we call an inner iteration. Each inner iteration has stack depth S — 2 > S;/2 (since
S > 4), and the last one spawns aleaf thread with the v trunk instructions of asingle chain.
Each of these inner iterations contains a single header from one chain and a single blocker
from the previous chain (except in the case of thefirst group of A) as shown in Figure A.3.
The header and blocker in an inner iteration are organized such that in order to execute the
header, all S; — 2 of thethreadsin theinner iteration must be spawned, and none of them can
die until the blocker executes. Thus, when achain isexposed, all A of theseinner iterations
have al of their threadsliving, thereby using spaceA(S; — 2) > (vVT1/S1)(S1/2) = v T1/2.

We can verify from Figure A.3 and from the given values of m, A, and v that this con-
struction actually has work dightly less than Ty; in order to make the work equal to T; we
can just add the extra instructions evenly among the threads that contain the trunk of each
chain (thereby increasing v by abit). Also, we can verify that T, < 8,/T;. Finally, looking
at Figure A.3 we can see that this computation is indeed depth-first.]

The construction of a multithreaded computation with provably bad time/space char-
acteristics as just described can be modified in various ways to accommodate various re-
strictions to the model while still obtaining the same result. For example, some real multi-
threaded systems requirelimitson the number of instructionsin athread, dependencies that
only go to thefirst instruction of athread, limited fan-in for dependencies, or alimit on the
number of children athread can have. Simple changesto the construction just described can
produce multithreaded computations that accommodate any or all of these restrictions and
still have the same provably bad time/space tradeoff. Thus, the lower bound of Theorem 3.1
holds even for multithreaded computations with any or all of these restrictions.

Appendix B

Cilk project status

Up to date Cilk information, papers, and software rel eases are avail able on the World Wide
Web (WWW) at the following two locations:

[http://theory.lcs.mit.edu/"cilk
[http://www.cs.utexas.edu/users/cilk

The Cilk team can be contacted by electronic mail at the following location:
U cilk-developers@theory.lcs.mit.edu

Contact the team to get on the cilk-users mailing list.

The current software release is version 2.0. Thisrelease is essentially as described in
Chapter 5. The Cilk 2.0 release includes the Cilk-to-C trandator cilk2c, a collection of
example programs, areference manual, and runtime system support for two multiprocessor
platforms—the Thinking Machines CM5 and the Sun SparcStation SM P—and uniprocessor
platforms running SunOS or Linux. Cilk has also been ported to PVM, the Intel Paragon
MPP, and the Silicon Graphics Power Challenge SMP, but these ports are not included in
the current release. For ports to other machines, the Cilk Reference Manual includes an
Implementor’s Guide. Contact the Cilk team for help porting Cilk to a new platform.

The next major release, Cilk 3.0, will include distributed shared memory.

A release of the Cilk-NOW runtime system is planned for the near future. Thisrelease
will support Cilk 2.0. A release supporting Cilk 3.0 will come sometime later. Watch the
web pages or get on the cilk-users mailing list to keep abreast of forthcoming software
releases.

August, 1995

114

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Noga Alon and Joel H. Spencer. The Probabilistic Method. John Wiley & Sons,
1992.

Andrew W. Appel. Compiling with Continuations. Cambridge University Press, New
York, 1992.

Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures. Data structures for
parallel computing. ACM Transactions on Programming Languages and Systems,
11(4):598-632, October 1989.

Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. The Midway dis-
tributed shared memory system. In Digest of Papers from the Thirty-Eighth IEEE
Computer Society International Conference (Sporing COMPCON), pages 528-537,
San Francisco, California, February 1993.

Sandeep Bhatt, David Greenberg, Tom Leighton, and Pangfeng Liu. Tight bounds
for on-line tree embeddings. In Proceedings of the Second Annual ACM-SIAM Sym+
posium on Discrete Algorithms, pages 344—-350, San Francisco, California, January
1991.

Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network objects.
In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles
(SOSP 14), pages 217-230, Asheville, North Carolina, December 1993.

Andrew D. Birrell. An introduction to programming with threads. Technical Re-
port 35, Digital Equipment Corporation Systems Research Center, January 1989.

Guy E. Blelloch. Programming parallel agorithms. In Proceedings of the 1992
Dartmouth I nstitute for Advanced Graduate Studies (DAGS) Symposiumon Parallel
Computation, pages 11-18, Hanover, New Hampshire, June 1992.

Guy E. Bléloch, Phillip B. Gibbons, and Yoss Matias. Provably efficient schedul-
ing for languages with fine-grained parallelism. 1n Proceedings of the Seventh An-
nual ACM Symposium on Parallel Algorithms and Architectures, pages 1-12, Santa
Barbara, California, July 1995.

Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Rob Miller, Keith H. Randall, and Yuli Zhou. Cilk 2.0 Ref-
erence Manual. MIT Laboratory for Computer Science, 545 Technology Square,
Cambridge, Massachusetts 02139, June 1995.

115

116

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Bibliography

Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, and
Keith H. Randall. Dag-consistent distributed shared memory. In Proceedings of the
10th International Parallel Processing Symposium (IPPS), April 1996. to appear.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiser-
son, Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime sys-
tem. In Proceedings of the Fifth ACM SIGPLAN Symposiumon Principles and Prac-
tice of Parallel Programming (PPoPP), pages 207-216, Santa Barbara, California,
July 1995.

Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of multi-
threaded computations. In Proceedings of the Twenty Fifth Annual ACM Symposium
on Theory of Computing (STOC), pages 362—371, San Diego, California, May 1993.

Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computa-
tions by work stealing. In Proceedings of the 35th Annual Symposium on Founda-
tions of Computer Science (FOCYS), pages 356—-368, Santa Fe, New Mexico, Novem-
ber 1994.

Robert D. Blumofe and David S. Park. Scheduling large-scale paralel computa
tions on networks of workstations. In Proceedings of the Third International Sym-
posium on High Performance Distributed Computing (HPDC), pages 96-105, San
Francisco, California, August 1994.

Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal
of the ACM, 21(2):201-206, April 1974.

Eric A. Brewer and Robert Blumofe. Strata: A multi-layer communications library.
Technical Report to appear, MIT Laboratory for Computer Science. Available as
ftp://ftp.lcs.mit.edu/pub/supertech/strata/strata.tar.Z.

F. Warren Burton. Storage management in virtual tree machines. | EEE Transactions
on Computers, 37(3):321-328, March 1988.

F. Warren Burton and David J. Simpson. Space efficient execution of deterministic
parallel programs. Unpublished manuscript, 1994.

F. Warren Burton and M. Ronan Sleep. Executing functional programs on a vir-
tual tree of processors. In Proceedings of the 1981 Conference on Functional Pro-
gramming Languagesand Computer Architecture, pages 187-194, Portsmouth, New
Hampshire, October 1981.

Clemens H. Cap and Volker Strumpen. Efficient parallel computing in distributed
workstation environments. Parallel Computing, 19:1221-1234, 1993.

Martin C. Carlide, Anne Rogers, John H. Reppy, and Laurie J. Hendren. Early ex-
periences with Olden. In Proceedings of the Sxth Annual Workshop on Languages
and Compilersfor Parallel Computing, Portland, Oregon, August 1993.

Bibliography 117

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Nicholas Carriero, Eric Freeman, and David Gelernter. Adaptive parallelism on mul-
tiprocessors: Preliminary experience with Piranha on the CM-5. In Proceedings of
the Sxth Annual Workshop on Languages and Compilers for Parallel Computing,
Portland, Oregon, August 1993.

Nicholas Carriero and David Gelernter. Linda in context. Communications of the
ACM, 32(4):444-458, April 1989.

Vint Cerf and Robert Kahn. A protocol for packet network intercommunication.
| EEE Transactions on Computers, 22(5):637—648, May 1974.

Rohit Chandra, Scott Devine, Ben Verghese, Anoop Gupta, and Mendel Rosenblum.
Scheduling and page migration for multiprocessor compute servers. In Proceed-
ingsof the Sxth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 12—24, San Jose, California, October 1994.

Rohit Chandra, Anoop Gupta, and John L. Hennessy. Data locality and load balanc-
ing in COOL. In Proceedings of the Fourth ACM S GPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP), pages 249259, San Diego,
California, May 1993.

Rohit Chandra, Anoop Gupta, and John L. Hennessy. COOL: An object-based lan-
guage for paralel programming. |EEE Computer, 27(8):13-26, August 1994.

Jeffrey S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, and
Richard J. Littlefield. The Amber system: Parallel programming on a network
of multiprocessors. In Proceedings of the Twelfth ACM Symposium on Operating
Systems Principles (SOSP 12), pages 147-158, Litchfield Park, Arizona, December
19809.

David R. Cheriton. The V distributed system. Communications of the ACM,
31(3):314-333, March 1988.

Andrew A. Chien and William J. Dally. Concurrent Aggregates (CA). In Proceed-
ings of the Second ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming (PPoPP), pages 187-196, Sesttle, Washington, March 1990. Also:
MIT Artificial Intelligence Laboratory Technical Report MIT/AI/TR-1248.

Henry Clark and Bruce McMillin. DAWGS—a distributed compute server utilizing
idle workstations. Journal of Parallel and Distributed Computing, 14(2):175-186,
February 1992.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. The MIT Press, Cambridge, Massachusetts, 1990.

David E. Culler. Resource management for the tagged token dataflow architecture.
Master’'sthesis, Department of Electrical Engineering and Computer Science, Mass-
achusetts Ingtitute of Technology, January 1980. Also: MIT Laboratory for Com-
puter Science Technical Report MIT/LCS/TR-332.

118

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Bibliography

David E. Culler. Managing Parallelism and Resources in Scientific Dataflow Pro-
grams. PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts I nstitute of Technology, March 1990. Also: MIT Laboratory for Com-
puter Science Technical Report MIT/LCS/TR-446.

David E. Culler and Arvind. Resource requirements of dataflow programs. In Pro-
ceedings of the 15th Annual International Symposium on Computer Architecture,
pages 141-150, Honolulu, Hawaii, May 1988. Also: MIT Laboratory for Computer
Science, Computation Structures Group Memo 280.

David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von Eicken, and John
Wawrzynek. Fine-grain parallelism with minimal hardware support: A compiler-
controlled threaded abstract machine. In Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 164175, Santa Clara, California, April 1991.

William J. Dally, Linda Chao, Andrew Chien, Soha Hassoun, Waldemar Horwat, Jon
Kaplan, Paul Song, Brian Totty, and Scott Wills. Architecture of a message-driven
processor. In Proceedings of the 14th Annual International Symposium on Computer
Architecture, pages 189-196, Pittsburgh, Pennsylvania, June 1987.

Babak Falsafi, Alvin R. Lebeck, Steven K. Reinhardt, 1oannis Schoinas, Mark D.
Hill, James R. Larus, Anne Rogers, and David A. Wood. Application-specific pro-
tocols for user-level shared memory. In Supercomputing ’ 94, pages 380389, Wash-
ington, D.C., November 1994.

Robert E. Felderman, Eve M. Schooler, and Leonard Kleinrock. The Benevolent
Bandit Laboratory: A testbed for distributed algorithms. 1EEE Journal on Selected
Areas in Communications, 7(2):303-311, February 1989.

Rainer Feldmann, Peter Mydiwietz, and Burkhard Monien. Studying overheads
in massively paralel min/max-tree evaluation. In Proceedings of the Sxth Annual
ACM Symposium on Parallel Algorithms and Architectures, pages 94-103, Cape
May, New Jersey, June 1994.

Raphael Finkel and Udi Manber. DIB—a distributed implementation of backtrack-
ing. ACM Transactions on Programming Languages and Systems, 9(2):235-256,
April 1987.

The MPI Forum. MPI: A message passing interface. In Supercomputing ’ 93, pages
878-883, Portland, Oregon, November 1993.

Vincent W. Freeh, David K. Lowenthal, and Gregory R. Andrews. Distributed Fila-
ments. Efficient fine-grain parallelismon acluster of workstations. In Proceedings of
the First Symposium on Operating Systems Design and I mplementation, pages 201—
213, Monterey, California, November 1994.

Matteo Frigo, June 1995. Private communication.

Bibliography 119

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

David Gelernter and David Kaminsky. Supercomputing out of recycled garbage: Pre-
l[iminary experience with Piranha. In Proceedings of the 1992 ACM International
Conference on Supercomputing, pages 417-427, Washington, D.C., July 1992.

Seth Copen Goldstein, Klaus Erik Schauser, and David Culler. Enabling primitives
for compiling parallel languages. In Third Workshop on Languages, Compilers, and
Run-Time Systems for Scalable Computers, Troy, New York, May 1995.

R. L. Graham. Boundsfor certain multiprocessing anomalies. The Bell System Tech-
nical Journal, 45:1563-1581, November 1966.

R. L. Graham. Bounds on multiprocessing timing anomalies. S AM Journal on Ap-
plied Mathematics, 17(2):416-429, March 1969.

Michael Halbherr, Yuli Zhou, and ChrisF. Joerg. MIMD-style parallel programming
with continuation-passing threads. 1n Proceedings of the 2nd International \ork-
shop on Massive Parallelism: Hardware, Software, and Applications, Capri, Italy,
September 1994.

Robert H. Halstead, Jr. Implementation of Multilisp: Lisp on a multiprocessor. In
Conference Record of the 1984 ACM Symposium on Lisp and Functional Program-
ming, pages 9-17, Austin, Texas, August 1984.

Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation.
ACM Transactionson Programming Languagesand Systems, 7(4):501-538, October
1985.

W. Hillisand G. Steele. Data parallel algorithms. Communications of the ACM,
29(12):1170-1183, December 1986.

Waldemar Horwat, Andrew A. Chien, and William J. Dally. Experience with CST:
Programming and implementation. In Proceedings of the ACM S GPLAN ’89 Con-
ference on Programming Language Design and Implementation, pages 101-109,
Portland, Oregon, June 1989.

Wilson C. Hsieh, Paul Wang, and William E. Weihl. Computation migration: En-
hancing locality for distributed-memory paralel systems. In Proceedings of the
Fourth ACM SIGPLAN Symposiumon Principles and Practice of Parallel Program-
ming (PPoPP), pages 239-248, San Diego, Caifornia, May 1993.

Suresh Jagannathan and Jim Philbin. A customizable substrate for concurrent lan-
guages. In Proceedings of the ACM S GPLAN ’92 Conference on Programming
Language Design and I mplementation, pages 5567, San Francisco, California, June
1992.

Suresh Jagannathan and Jm Philbin. A foundation for an efficient multi-threaded
Scheme system. In Proceedings of the 1992 ACM Conference on Lisp and Functional
Programming, pages 345-357, San Francisco, California, June 1992,

120

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Bibliography

Chris Joerg and Bradley C. Kuszmaul. Massively parallel chess. In Proceed-
ings of the Third DIMACS Parallel Implementation Challenge, Rutgers Univer-
sty, New Jersey, October 1994. Available as ftp://theory.lcs.mit.edu/
pub/cilk/dimacs94.ps.Z.

Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wallach. CRL: High-
performance all-software distributed shared memory. In Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles, pages 213-228, Copper Moun-
tain Resort, Colorado, December 1995.

Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-grained mo-
bility in the Emerald system. ACM Transactions on Computer Systems, 6:109-133,
February 1988.

Christos Kaklamanis and Giuseppe Persano. Branch-and-bound and backtrack
search on mesh-connected arrays of processors. In Proceedings of the Fourth An-
nual ACM Symposiumon Parallel Algorithmsand Architectures, pages 118-126, San
Diego, California, June 1992.

David Louis Kaminsky. Adaptive Parallelism with Piranha. PhD thesis, Yale Uni-
versity, May 1994.

Vijay Karamcheti and Andrew Chien. Concert—efficient runtime support for concur-
rent object-oriented programming languages on stock hardware. In Supercomputing
'93, pages 598-607, Portland, Oregon, November 1993.

Richard M. Karp and Vijaya Ramachandran. Parallel algorithmsfor shared-memory
machines. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science—
\Volume A: Algorithmsand Complexity, chapter 17, pages 869-941. MIT Press, Cam-
bridge, Massachusetts, 1990.

Richard M. Karp and Yanjun Zhang. Randomized parallel algorithmsfor backtrack
search and branch-and-bound computation. Journal of the ACM, 40(3):765-789, July
1993.

Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. Tread-
Marks. Distributed shared memory on standard workstations and operating systems.
In USENIX Winter 1994 Conference Proceedings, pages 115-132, San Francisco,
California, January 1994.

David A. Kranz, Robert H. Halstead, Jr., and Eric Mohr. Mul-T: A high-performance
parallel Lisp. In Proceedings of the S GPLAN ’ 89 Conference on Programming Lan-
guage Design and I mplementation, pages 81-90, Portland, Oregon, June 1989.

Phillip Krueger and Rohit Chawla. The Stealth distributed scheduler. 1n Proceedings
of the 11th International Conference on Distributed Computing Systems, pages 336—
343, Arlington, Texas, May 1991.

Bibliography 121

[69] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni,

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter, Mark Horowitz,
Anoop Gupta, Mendel Rosenblum, and John Hennessy. The Stanford Flash multi-
processor. In Proceedings of the 21st Annual International Symposium on Computer
Architecture, pages 302—313, Chicago, Illinois, April 1994.

Bradley C. Kuszmaul. Synchronized MIMD Computing. PhD thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, May 1994. Available as MIT Laboratory for Computer Science Tech-
nical Report MIT/LCS/TR-645 or ftp://theory.lcs.mit.edu/pub/bradley/
phd.ps.Z.

Tom Leighton, Mark Newman, Abhiram G. Ranade, and Eric Schwabe. Dynamic
tree embeddings in butterflies and hypercubes. In Proceedings of the 1989 ACM
Symposiumon Parallel Algorithmsand Architectures, pages 224-234, SantaFe, New
Mexico, June 1989.

CharlesE. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman, Ma-
hesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul, Margaret
A. St. Pierre, David S. Wells, Monica C. Wong, Shaw-Wen Yang, and Robert Zak.
The network architecture of the Connection Machine CM-5. In Proceedings of the
Fourth Annual ACM Symposium on Parallel Algorithms and Architectures, pages
272-285, San Diego, California, June 1992.

Kal Li and Paul Hudak. Memory coherencein shared virtual memory systems. ACM
Transactions on Computer Systems, 7(4):321-359, November 1989.

Michael J. Litzkow, Miron Livny, and Matt W. Mutka. Condor—a hunter of idle
workstations. In Proceedings of the 8th International Conference on Distributed
Computing Systems, pages 104-111, San Jose, California, June 1988.

Pangfeng Liu, William Aiello, and Sandeep Bhatt. An atomic model for message-
passing. In Proceedings of the Fifth Annual ACM Symposiumon Parallel Algorithms
and Architectures, pages 154-163, Velen, Germany, June 1993.

Robert C. Miller. A type-checking preprocessor for Cilk 2, a multithreaded C lan-
guage. Master’sthesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, May 1995.

Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy task creation: A tech-
niquefor increasing the granularity of parallel programs. |EEE Transactions on Par-
allel and Distributed Systems, 2(3):264—280, July 1991.

B. Clifford Neuman and Santosh Rao. The Prospero resource manager: A scalable
framework for processor alocation in distributed systems. Concurrency: Practice
and Experience, 6(4):339-355, June 1994.

122

[79]

[80]

[81]

[82]

[83]

[84]

[85]
[86]

[87]

[88]

[89]

[90]

Bibliography

David A. Nichols. Using idle workstations in a shared computing environment.
In Proceedings of the Eleventh ACM Symposium on Operating Systems Principles
(SOSP 11), pages 5-12, Austin, Texas, November 1987.

Rishiyur S. Nikhil. A multithreaded implementation of 1d using P-RISC graphs. In
Proceedings of the Sxth Annual Wbrkshop on Languages and Compilers for Paral-
lel Computing, number 768 in Lecture Notes in Computer Science, pages 390405,
Portland, Oregon, August 1993. Springer-Verlag.

Rishiyur S. Nikhil. Cid: A parallel, shared-memory C for distributed-memory ma-
chines. In Proceedings of the Seventh Annual Workshop on Languages and Compil-
ersfor Parallel Computing, August 1994.

John K. Ousterhout, Andrew R. Cherenson, Frederick Douglis, Michael N. Nel-
son, and Brent B. Welch. The Sprite network operating system. |EEE Computer,
21(2):23-36, February 1988.

Vijay S. Pande, Christopher F. Joerg, Alexander Yu Grosberg, and Toyoichi Tanaka.
Enumerations of the hamiltonian walks on a cubic sublattice. Journal of Physics A,
27,1994,

Joseph D. Pehoushek and Joseph S. Weening. Low-cost process creation and dy-
namic partitioning in Qlisp. In Parallel Lisp: Languages and Systems. Proceedings
of the US Japan Workshop, number 441 in Lecture Notesin Computer Science, pages
182-199, Sendai, Japan, June 1989. Springer-Verlag.

C. Gregory Plaxton, August 1994. Private communication.

Abhiram Ranade. Optimal speedup for backtrack search on a butterfly network. In
Proceedings of the Third Annual ACM Symposium on Parallel Algorithms and Ar-
chitectures, pages 4048, Hilton Head, South Carolina, July 1991.

Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon:
User-level shared memory. In Proceedings of the 21st Annual International Sympo-
sium on Computer Architecture, pages 325-336, Chicago, Illinois, April 1994.

Martin C. Rinard, Daniel J. Scales, and MonicaS. Lam. Jade: A high-level, machine-
independent languagefor parallel programming. Computer, 26(6):28—-38, June 1993.

Larry Rudolph, Miriam Slivkin-Allalouf, and Eli Upfal. A ssmple load balancing
scheme for task allocation in paralel machines. In Proceedings of the Third Annual
ACM Symposium on Parallel Algorithms and Architectures, pages 237245, Hilton
Head, South Carolina, July 1991.

Carlos A. Ruggiero and John Sargeant. Control of parallelism in the Manchester
dataflow machine. In Functional Programming Languages and Computer Archi-
tecture, number 274 in Lecture Notes in Computer Science, pages 1-15. Springer-
Verlag, 1987.

Bibliography 123

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

Vikram A. Saletore, J. Jacob, and M. Padala. Parallel computations on the CHARM
heterogeneous workstation cluster. In Proceedings of the Third I nternational Sympo-
sium on High Performance Distributed Computing, pages 203-210, San Francisco,
California, August 1994.

Daniel J. Scaesand Monica S. Lam. The design and evaluation of a shared object
system for distributed memory machines. In Proceedings of the First Symposiumon
Operating Systems Design and I mplementation, pages 101-114, Monterey, Califor-
nia, November 1994.

Daniel J. Scalesand Monica S. Lam. An efficient shared memory system for dis-
tributed memory machines. Technical Report CSL-TR-94-627, Computer Systems
Laboratory, Stanford University, July 1994.

Jaswinder Pal Singh, Anoop Gupta, and Marc Levoy. Paralel visualization algo-
rithms. Performance and architectural implications. |EEE Computer, 27(7):45-55,
July 1994.

W. Richard Stevens. UNIX Network Programming. Prentice-Hall, Englewood Cliffs,
New Jersey, 1990.

V. S. Sunderam. PVM: A framework for parale distributed computing. Concur-
rency. Practice and Experience, 2(4):315-339, December 1990.

V. S. Sunderam and Vernon J. Rego. EcliPSe: A system for high performance concur-
rent simulation. Software—Practice and Experience, 21(11):1189-1219, November
1991.

Andrew S. Tanenbaum, Henri E. Bal, and M. Frans Kaashoek. Programming adis-
tributed system using shared objects. In Proceedings of the Second International
Symposium on High Performance Distributed Computing, pages 5-12, Spokane,
Washington, July 1993.

Andrew S. Tanenbaum, Robbert van Renesse, Hans van Staveren, Gregory J. Sharp,
Sape J. Mullender, Jack Jansen, and Guido van Rossum. Experiences with the
Amoeba distributed operating system. Communications of the ACM, 33(12):46-63,
December 1990.

Kenneth R. Traub. Implementation of Non-Srict Functional Programming Lan-
guages. The MIT Press, Cambridge, Massachusetts, 1991.

Andrew Tucker. Efficient Scheduling on Multiprogrammed Shared-Memory Multi-
processors. PhD thesis, Stanford University, December 1993.

Andrew Tucker and Anoop Gupta. Process control and scheduling issues for mul-
tiprogrammed shared-memory multiprocessors. 1n Proceedings of the Twelfth ACM
Symposium on Operating Systems Principles (SOSP 12), pages 159-166, Litchfield
Park, Arizona, December 1989.

124

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

Bibliography

Mark T. Vandevoorde and Eric S. Roberts. WorkCrews. An abstraction for control -
ling parallelism. International Journal of Parallel Programming, 17(4):347-366,
August 1988.

Thorsten von Eicken, Anindya Basu, and Vineet Buch. Low-latency communica
tion over ATM networks using active messages. |EEE Micro, 15(1):46-53, February
1995.

Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik
Schauser. Active messages. a mechanism for integrated communication and com-
putation. In Proceedings of the 19th Annual International Symposium on Computer
Architecture, pages 256—266, Gold Coast, Australia, May 1992.

I-Chen Wu. Efficient paralel divide-and-conquer for a class of interconnection
topologies. In Proceedings of the 2nd International Symposiumon Algorithms, num-
ber 557 in Lecture Notes in Computer Science, pages 229240, Taipei, Republic of
China, December 1991. Springer-Verlag.

[-Chen Wu and H. T. Kung. Communication complexity for parallel divide-and-
conguer. In Proceedings of the 32nd Annual Symposium on Foundationsof Computer
cience, pages 151-162, San Juan, Puerto Rico, October 1991.

Y. Zhang and A. Ortynski. The efficiency of randomized parallel backtrack search.
In Proceedings of the 6th IEEE Symposium on Parallel and Distributed Processing,
Dadllas, Texas, October 1994. To appear.

Yanjun Zhang. Parallel Algorithmsfor Combinatorial Search Problems. PhD thesis,
Department of Electrical Engineering and Computer Science, University of Califor-
niaat Berkeley, November 1989. Also: University of Californiaat Berkeley, Com-
puter Science Division, Technical Report UCB/CSD 89/543.

Songnian Zhou, Jingwen Wang, Xiaohu Zheng, and Pierre Delise. Utopia A load
sharing facility for large, heterogeneous distributed computer systems. Software—
Practice and Experience, 23(12):1305-1336, December 1993.

