A Type-checking Preprocessor for Cilk 2,
a Multithreaded C Language

by
Robert C. Miller

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Bachelor of Science in Computer Science and Engineering
and
Master of Engineering in Electrical Engineering and Computer Science
at the
Massachusetts Institute of Technology
May 1995

Copyright 1995 Massachusetts Institute of Technology. All rights reserved.

Ao .
Department of Electrical Engineering and Computer Science

May 12, 1995

Certified Dy ..o
Charles E. Leiserson
Thesis Supervisor

Accepted Dy ..o
F. R. Morgenthaler

Chairman, Department Committee on Graduate Theses

A Type-checking Preprocessor for Cilk 2,
a Multithreaded C Language
by
Robert C. Miller

Submitted to the Department of Electrical Engineering and Computer Science
on May 12, 1995, in partial fulfillment of the
requirements for the degrees of
Bachelor of Science in Computer Science and Engineering
and
Master of Engineering in Electrical Fngineering and Computer Science

Abstract

This thesis describes the type-checking, optimizing translator that translates Cilk (a C ex-
tension language for multithreaded parallel programming) into C. The Cilk-to-C translator
is based on C-to-C, a tool I developed that parses, type checks, analyzes, and regenerates
a C program. With a translator based on C-to-C, developers and users of C extension
languages can enjoy the benefits of a type-checking, optimizing compiler without the at-
tendant development and porting costs. Like a compiler, the Cilk-to-C translator runs
quickly, does static checking, and generates efficient code, making it fit for everyday use
by ordinary programmers. Unlike a compiler, however, the Cilk-to-C translator is easy to
develop, extend, and port to other platforms. About 90% of the development effort was
devoted to Cilk semantics (translating Cilk into C), which is where a language developer
wants to focus. Only a small amount of work was spent extending C-to-C’s parsing, type
checking, and data-flow analysis to recognize Cilk. In return for a few weeks of full-time
effort, I obtained a type-checking, optimizing translator for Cilk that targets any platform
with an ANSI C compiler. With C-to-C, other C extension language developers can obtain
the same benefits.

C-to-C has a number of special features that make it a good framework for C extension
language translators. First, its C output is human-readable, so that a language developer or
programmer can read and debug it. C-to-C also provides operational transparency (repro-
ducing nonsyntactic source features like line numbering and indentation), which contributes
to the readability and portability of its C output and assists debuggers and profilers. C-to-
C performs data-flow analysis directly on the high-level abstract syntax tree of the source
program, so that its C output is also high-level, not unreadable “assembly language written
in C.” Finally, C-to-C provides a generic data-flow analysis abstraction, in which any mono-
tonic data-flow problem needed for optimization can be specified and solved automatically.
These features greatly simplify the task of writing a type-checking, optimizing translator
for an arbitrary C extension language.

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering

Contents

1 Introduction

1.1 One alternative: a macro preprocessor v v v v v v ..
1.2 Another alternative: a full compiler
1.3 Related work oL
1.4 Outline . . . 0. o

2 The Cilk Programming Language

2.1 Anexample of Cilk: £ib o L
2.2 Typechecking e
2.3 Type-directed translations o o oo
2.4 Optimizations L e e e e e

3 The C-to-C Type-checking Preprocessor

3.1 The abstract syntax tree Lo L0 o
3.2 Phases e e
3.2.1 Macro preprocessing (CPp) . « « « « « v v v e e e
3.22 Parsing
3.2.3 Typechecking
3.24 Analysis e
3.2.5 Transform e
3.26 Unparsing o e
4 Transparency in C-to-C
4.1 Pragma directives Lo e
4.2 Line numbering and indentation oL oL
4.3 Constant expressions v . v i i et e e e e e e e e

5 Data-flow Analysis in C-to-C

5.1 Representing control flow in the AST
5.2 Data-flow analysis frameworks o o oo
5.3 The iterative algorithmo oL

6 Conclusions
6.1 Future work on C-to-C e
6.2 Getting C-to-C L

17
17
19
19
20
20
20
21
21

23
24
25
26

29
30
31
32

Acknowledgements

This research was supported in part by the Advanced Research Projects Agency under
Grant N00014-94-1-0985.

I am indebted to my advisor Charles F. Leiserson. Yuli Zhou provided advice and
support throughout the development of the Cilk preprocessor. Thanks to Laura Cassenti,
Charles Leiserson, Anil Somayaji, and Yuli Zhou, who were generous with their time in
agreeing to proofread this thesis; any glaring errors that remain are solely the responsibility
of the author. Thanks also to the entire Cilk team for support and suggestions: Bobby
Blumofe, Matteo Frigo, Chris Joerg, Bradley Kuszmaul, Irena Kveraga, Charles Leiserson,
Howard Lu, Phil Lisiecki, Keith Randall, Richard Tauriello, Daricha Techopitayakul, and
Yuli Zhou.

I gratefully acknowledge the warm support of Laura Cassenti and my parents, Larry
and Marian Miller.

Chapter 1

Introduction

Cilk (pronounced “silk”) is a parallel programming language under development at MIT
Laboratory for Computer Science [5]. Cilk provides syntax for expressing control paral-
lelism, allowing a programmer to specify that certain procedure calls should be spawned, or
run in parallel with the current thread of execution. Cilk is an example of a C extension lan-
guage — a programming language that extends C with new keywords, syntax, or semantics.
C extension languages have lately become popular in parallel and distributed computing
research [5, 7, 8, 9, 15], because of the wide portability of ANSI C, the large population of
C programmers, and the extensive base of C applications and library software.

Like many C extension languages, Cilk is not translated directly into object code. In-
stead, Cilk is translated into C, with extension language features mapped into calls to a
runtime system. Figure 1-1 shows the translation process schematically. The translator
that converts a C extension language into C is called a preprocessor, because its output
is a high-level language rather than machine language. The C postsource produced by the
preprocessor is compiled into object code by the target machine’s C compiler, also called the
back-end compiler. This compilation system — a preprocessor pipelined with a compiler —
yields portability and ease of development, because the extension language developer need
not build a full compiler for every platform on which the language will run.

In fact, simple C extension languages can be translated into C by local, syntactic trans-
formations, using a macro preprocessor. Cilk 1, the first incarnation of the Cilk language,
was translated by a macro preprocessor. Though easy to write and debug, macro preproces-
sors suffer a serious flaw, which manifested itself in Cilk 1. A macro preprocessor relies on
the back-end C compiler’s type checking to detect and report common programmer errors.
Unfortunately, type errors in Cilk 1 programs are often missed by the back-end compiler,
because the C postsource contains low-level code that overrides type checking. Even when
type errors are detected, the C compiler’s error messages refer to the postsource, which is

Cilk C
™ | preprocessor ™ | compiler
source postsource object

Figure 1-1: The mechanism for compiling a Cilk program. Cilk is preprocessed into C,
which is then compiled into object code.

unhelpful to a Cilk programmer trying to find and fix the error in the source.

In addition, macro preprocessors are insufficient for more abstract C extension languages
that require their translators to gather semantic information about the program. Cilk 2,
the latest version of the Cilk language, includes features whose translation depends on the
types of the objects involved, so the Cilk 2 preprocessor must determine those types. An
ordinary macro preprocessor has no access to type information.

Finally, macro preprocessors offer no opportunity for global optimization. The back-end
C compiler performs global optimization when it generates object code, but the compiler’s
optimizations are necessarily conservative, missing potential optimizations that the prepro-
cessor can perform. Again Cilk 2 serves as an example. Gathering data-flow information
enables the Cilk 2 preprocessor to emit faster code than a macro preprocessor could.

This thesis studies type-checking, optimizing preprocessors for C extension languages,
using the Cilk 2 preprocessor as an example. In the course of building the Cilk 2 prepro-
cessor, | have developed a generic preprocessor framework for C extension languages called
C-to-C. C-to-C parses a C program into an abstract syntax tree (AST) representation,
performs type checking, data-flow analysis, and tree transformations directly on the AST,
then unparses the AST to recover the original C program. To build a C extension language
preprocessor based on C-to-C, a developer modifies the front-end to recognize the extension
language, then adds transformations that convert extension syntax into ordinary C syntax.
The Cilk 2 preprocessor was built in precisely this manner.

1.1 One alternative: a macro preprocessor

One goal of this thesis is to show that writing a type-checking, optimizing preprocessor
based on C-to-C is a reasonable alternative to using a macro preprocessor. As the preceding
discussion demonstrated, type checking and optimization increase the usability, abstraction
level, and performance of Cilk, so the Cilk 2 type-checking preprocessor is superior to
the Cilk 1 macro preprocessor. With C-to-C, these benefits were achieved at low cost.
Our experience with the Cilk preprocessor suggests that extending C-to-C to build a type-
checking preprocessor is only a little more difficult than writing macros. In fact, only a
small fraction of the development time for the Cilk 2 preprocessor was spent extending
C-to-C’s type checking and data-flow analysis. Most of the development time was devoted
to translating Cilk into C — essentially the same work that would be required for a macro
preprocessor. C-to-C translations are somewhat harder to write than macros, since they
involve tree manipulations instead of textual substitutions, but I believe that the extra
effort is more than justified by the rewards.

1.2 Another alternative: a full compiler

The second goal of this thesis is to argue that writing a preprocessor based on C-to-C is an
attractive alternative to another common approach to translating experimental C extension
languages — extending a full compiler. This approach begins with a standard C compiler and
extends its front end to recognize the new extensions [2, 16]. Compared to a full compiler,
however, a translator based on C-to-C is portable and extensible — highly desirable qualities
for language research. In addition, the output of a C-to-C translator is readable, high-level
C, not assembly language, nor even “assembly language written in C” as might be expected
from an optimizing translator. This section will examine these arguments in more depth.

First, a translator based on C-to-C is easier to port than a full compiler. C-to-C itself is
written in portable ANSI C, and extension language features are translated into high-level
C, which can be made portable. For example, the Cilk preprocessor generates portable
C containing calls to a runtime system, so moving Cilk to a new architecture entails no
changes to the preprocessor whatsoever. Only the relatively small runtime system must be
ported.

Next, a translator based on C-to-C is easier to extend than existing public-domain
C compilers. Its lexical scanner and parser are automatically generated from lex/yacc
specifications, which are easier to change than the hand-coded front-ends of lcc [10] and
the SUIF compiler framework [2]. C-to-C’s type checking and data-flow analysis are table-
driven, so that new statements and expressions can be specified by just a few method
functions. Transformations are expressed as operations directly on the high-level abstract
syntax tree, which we found easier to manipulate than the intermediate representation
of compilers like gce [16]. Also, unlike most compilers, C-to-C provides an abstraction for
data-flow analysis which can be extended to solve any monotonic data-flow analysis problem
needed for translation or optimization.

Finally, a translator based on C-to-C produces output that is high-level, readable, and
readily compared with its input, since only extension language features are translated. C-to-
C provides “operational transparency,” preserving all high-level C syntax, line numbering,
indentation, and constant expressions used in the original program. The readability of C-
to-C’s output simplifies the process of checking that extension language constructs have
been translated correctly.

1.3 Related work

The Sage++ preprocessor framework [6] is similar to C-to-C in that it provides a rich
toolkit for program analysis and transformation, including source transparency and data-
flow analysis. Although the Sage4++ front-end supports C, C+4, and Fortran, it is more
difficult to extend to new languages. Its lexical scanner is hand-coded, and its parser and
type-checker use optimized, low-level interfaces to the AST rather than the high-level C4++
classes. Also, Sage++ is written in C++4, which is less widespread than ANSI C.

1.4 Outline

The remainder of this thesis is organized as follows. Chapter 2 describes the Cilk 2 language
and explains why it requires type checking and data-flow analysis from its preprocessor.
Chapter 3 introduces the C-to-C preprocessor framework and describes its architecture.
Chapter 4 explains how C-to-C preserves nonsyntactic information, like line numbering
and indentation, from the source to the postsource. Chapter 5 describes how C-to-C per-
forms data-flow analysis directly on the source program. Chapter 6 offers some conclusions
contrasting C-to-C-based preprocessors with other alternatives for translating C extension
languages, and describes our plans for future work.

10

Chapter 2

The Cilk Programming Language

This chapter describes the parallel C extension language Cilk. The discussion below is
neither a complete specification of the language nor a detailed description of how Cilk
extensions are translated into C. That information is available elsewhere [4]. Rather, the
first section of this chapter will present an example of Cilk and describe its special features,
and the remaining sections will show how those features are translated into C, in order to
explain why Cilk requires type checking and data-flow analysis from its preprocessor.

2.1 An example of Cilk: fib

Cilk programs are run in parallel on multiple processors. The basic unit of parallel compu-
tation in a Cilk program is a procedure, which is similar to a C function except that it can
run in parallel with other Cilk procedures.

The best way to explain Cilk is by example. The Cilk procedure fib shown in
Figure 2-1 computes Fibonacci numbers recursively, with the recursive calls proceeding
in parallel. Most of the code is ordinary C, which is passed through the Cilk preprocessor
unchanged, except for the statements and declarations containing keywords in boldface,
which must be translated into C. These keywords are briefly explained below:

¢ procedure identifies £ib as a Cilk procedure. Only Cilk procedures can be spawned,
or called in parallel.

procedure int fib(int n)
{
if (n <2
return n;
el se {
int x, y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync;
return x+y;

Figure 2-1: The Fibonacci function computed by a recursive Cilk procedure. Features in
boldface must be translated by the Cilk-to-C preprocessor.

11

X

¢ spawn calls a Cilk procedure in parallel with the current thread of execution. The
procedure initiating the spawn is the parent, and the procedure spawned is its child.
A spawn statement must assign the child’s return value to a local variable, whose
value is undefined until the parent executes a sync statement to wait for the child to
return.

e sync waits for all children started with spawn to return. After a sync statement, the
return values of all previously-spawned children are computed and available.

e return returns a value to the procedure’s parent. A Cilk procedure’s return state-
ment differs from the ordinary C return statement, since the Cilk procedure may
need to communicate the return value to a different processor.

Cilk includes other features that provide the programmer with greater control over
synchronization and scheduling of parallel procedures, which are described elsewhere [4].

The remaining sections of this chapter will use the fib example to illustrate the fol-
lowing claims. First, the back-end C compiler’s type checking fails to detect some static
type errors in Cilk programs and reports unhelpful error messages for others, so the pre-
processor must perform Cilk-specific type checking. Second, some Cilk extensions require
type-directed translations, in which the C translation depends on the types involved. Thus,
the preprocessor must determine and store type information. Third and finally, some Cilk
extensions cannot be optimized by the back-end C compiler, so the preprocessor needs
global flow analysis to generate optimized C code.

2.2 Type checking

This section shows why the type checking provided by the back-end C compiler is insufficient
for Cilk, considering as an example the spawn statement. A type-incorrect spawn statement
translates into type-correct C code, so the type error cannot be detected by the back-end
C compiler. As a result, the Cilk preprocessor must perform type checking directly on the
Cilk source.

The C code corresponding to one of the spawn statements in the Fibonacci example is
shown in Figure 2-2. This fragment of C code calls the runtime system function NewFrame to
construct a frame, which is a migratable activation record for the procedure being spawned.
A frame is a C structure containing slots for the procedure’s formal arguments and local
variables, along with some housekeeping information required by the runtime system. The
frame is initialized with the procedure’s single argument n and a special pointer called a
continuation. The continuation points to the slot in the parent procedure’s frame which

struct fib_frame *new fp;
newfp = NewFranme(fib, fib_fsize);

= spawn fib(n-1); (— newf p->n = n-1;
newf p->ret = MakeContinuation(fp, offsetof (fp, x));
Post Fr ame(newf p) ;

Figure 2-2: Translation of Cilk spawn statement into C (details omitted for clarity).

12

should receive the child’s return value — in this case, the slot representing the local variable
x. The continuation is constructed from a pointer to the parent procedure’s frame structure
and the byte offset of x in that structure. Finally, PostFrame places the new frame in the
scheduler’s work queue. It may be executed later on the current processor or migrated to
another processor that needs work to do.

Observe that the C code deals with x on a low level, using its byte offset in the frame to
construct a continuation. Thus, if the programmer accidentally assigns a spawn to a local
variable of incorrect type, the back-end C compiler will fail to detect the type error. As a
result, a mistake that was statically detectable can slip through to runtime, resulting in a
runtime error, or worse, an incorrect answer.

2.3 Type-directed translations

This section gives an example of a type-directed translation to show why the Cilk prepro-
cessor must collect type information from the Cilk source. The example is the Cilk return
statement, whose translation into C depends on the return type of the procedure in which
it appears. The return statement is also used to illustrate that, even when the back-end C
compiler succeeds in detecting a type error in a Cilk program, it often reports an unhelpful,
confusing error message. This example reaffirms the need for type checking in the Cilk
preprocessor.

The C translation of one of £ib’s return statements is shown in Figure 2-3. A Cilk
procedure returns a value to its parent using one of a family of runtime system primitives
Send TypeArgument, where Type can be any C arithmetic type (Char, Int, Float, Double,
etc.). In order to choose the appropriate runtime system primitive to replace the return
statement, the preprocessor must determine the return type of the enclosing procedure.

The return statement also illustrates how relying on the back-end C compiler for type
checking can result in unhelpful error messages, since the messages describe the C post-
source rather than the original Cilk source. If the expression in the return statement is
incompatible with the return type of the procedure, then the back-end C compiler reports
an error message like “type mismatch in argument 1 of call to SendIntArgument.”
This message makes no reference to the fact that the real problem was a type error in the
Cilk return statement. Admittedly, even the simplest Cilk preprocessor can cause the line
number of the SendIntArgument call in the postsource to correspond with the line number
of the return statement in the source, so at least the error message correctly identifies
the offending line in the source. But a Cilk programmer unfamiliar with the output of the
preprocessor is likely to be confused by the reference to SendIntArgument, and may have
difficulty figuring out what is wrong with the offending line and how the mistake should be

{
Sendl nt Argunment (fp->ret, x+y);

return x+y; —> FreeFrame(fp);
return;

Figure 2-3: Translation of a Cilk return statement into C. This statement appeared in the
fib procedure of Figure 2-1.

13

fp->x = x;
fp->y =vy;
fp->n = n; /* UNNEEDED! */

fp->entry = 1;

sync; |:> return;

syncl:
x = fp->x;
y = fp->y;
n = fp->n; /* UNNEEDED! */

Figure 2-4: Unoptimized translation of Cilk sync statement into C (some details omitted for
clarity). This sync appeared in the £ib procedure shown in Figure 2-1. In that procedure,
n is not used after the sync, so it does not need to be saved and restored.

corrected.

2.4 Optimizations

This section shows why data-flow analysis is important to the Cilk preprocessor, using
the sync statement as an example. Since the back-end C compiler must be conservative
in its optimizations, it misses an important optimization opportunity in the translation
of the sync statement. With data-flow analysis, the Cilk preprocessor can perform the
optimization itself.

A naive (unoptimized) translation of the sync statement in £ib is shown in Figure 2-4.
The sync statement suspends £ib until its spawned children have returned. To wait for its
children, £ib must return control to the scheduler, which it does with an ordinary C return
statement. The scheduler works on other parallel procedures until the children return, at
which point the scheduler calls £ib in such a way that control resumes at the label synci.
In order to preserve its state of execution, £ib saves its local variables before returning to
the scheduler, and restores them after resuming.

The C code shown in Figure 2-4 is not efficient, because it saves and restores all local
variables. In particular, it unnecessarily saves and restores the formal parameter n. A
glance at Figure 2-1 confirms that n will not be used after the sync, so its value need not
be preserved.

Normally, the Cilk preprocessor is not concerned with generating carefully optimized C
code, as long as it can rely on the back-end C compiler to generate optimized object code.
In fact, an optimizing C compiler can remove the restoring assignment n = fp->n, because
the local variable n is not used subsequently. But no C compiler in existence can optimize
out the saving assignment fp->n = n. A general-purpose compiler cannot assume that the
frame slot £p->n will not be needed later, because the frame is stored in ordinary memory,
possibly aliased by other pointers in runtime system data structures, and manipulated at
the byte level by the runtime system. The frame can even be migrated from processor to
processor, in which case all bets are off as far as the C compiler is concerned.

The Cilk preprocessor, on the other hand, knows that the runtime system does not use

14

fp->n or any local variable slot in the frame. Only the Cilk procedure’s code reads or writes
those slots. Knowledge of this invariant about Cilk allows the preprocessor to remove the
saving assignment as well, an optimization that is impossible for the C compiler.

In order to perform the optimization, the preprocessor must use data-flow analysis to
determine which variables may be live, or needed later, and emit C code that saves and
restores only those variables.

15

16

Chapter 3

The C-to-C Type-checking
Preprocessor

The preceding chapter motivated the need for type checking and data-flow analysis in the
Cilk preprocessor. To partition the development process and increase the potential for code
reuse, I first built a model preprocessor called C-to-C that translates C into C, and then
I extended it to recognize and translate Cilk. This chapter describes the architecture of
C-to-C, focusing on how it can be extended to build a type-checking preprocesor for an
arbitrary C extension language.

C-to-C encapsulates the organization of a generic type-checking preprocessor. It consists
of a sequence of phases operating on a shared data structure, called an abstract syntax tree
(AST). Each phase annotates or transforms the AST. The AST is constructed from a C
program by a parser, annotated by type checking and data-flow analysis, transformed by tree
operations, and finally unparsed to produce the original C program. To build a C extension
language preprocessor based on C-to-C, a developer modifies the parser, type-checker, and
data-flow analyzer to recognize the extension language, then adds transformations that
convert extensions into C. The Cilk preprocessor, “Cilk-to-C.” was built in precisely this
manner.

C-to-C is based on c-parser, an ANSI C static checker written by Eric A. Brewer and
Michael D. Noakes at the MIT Laboratory for Computer Science, with a yacc grammar
for ANSI C written by James A. Roskind. This package is designed to parse a C source
file, convert it into an abstract syntax tree, and perform static type checking on the tree.
C-to-C’s parsing and type checking phases and the structure of its abstract syntax tree are
inherited from c-parser.

The first section of this chapter describes the structure of the abstract syntax tree. The
remaining sections describe the phases of translation in C-to-C.

3.1 The abstract syntax tree

This section describes the abstract syntax tree, explains why it is a good representation for
extension language preprocessing, and points out the special features of C-to-C’s abstract
syntax tree that enable type checking, data-flow analysis, and type-directed translation.
An abstract syntax tree (AST) represents the syntactic structure of a computer pro-
gram in a tree data structure [1]. Each tree node in an AST represents a declaration,
statement, or expression operator. Its children are the operands or syntactic components

17

whi(li)((x+<1;10) e e
ONONORO

Figure 3-1: An abstract syntax tree (AST) for a C program fragment.

of the declaration, statement, or expression. Some examples of AST nodes are shown in
Figure 3-1.

Abstract syntax trees are an ideal representation for syntax-directed macro preproces-
sors. The AST allows a preprocessor to perform translations locally, converting an extension
statement or expression node into C while treating its operands as black boxes. For instance,
the Cilk 1 macro preprocessor could transform a spawn statement, which is represented in
the AST by a node with one child for each argument of the spawned procedure, by gen-
erating a replacement tree for the spawn with the argument expressions substituted (see
Figure 3-2).

Since the AST representation is so convenient for C extension language translation, C-
to-C also uses an AST, but extends the representation to include additional information.
In order to perform type checking and semantics-directed translation, C-to-C annotates
the AST with use-declaration pointers that point from identifier uses to their declarations,
control flow pointers that identify the destination of nonlocal jumps like goto, variable and
expression types, constant expression values, and data-flow analysis results. These semantic
annotations are used to transform the source AST into an ordinary C AST.

- iy

argl argN

argl argN

Figure 3-2: Translating a Cilk spawn statement into C by operations on the abstract syntax
tree. The spawn arguments, shown here as gray circles, are substituted directly into the
tree of C code that replaces the spawn node.

18

4> bP preprocessed | Parse ek AST

Cilk source Cilk source

£ £

. —» type - 1 — ...
check cilk AST | Y% cilk asT
. —| transform C‘)f\S.T »| unparse |—» :é

C postsource

Figure 3-3: Translation phases of the Cilk preprocessor based on C-to-C.

3.2 Phases

This section describes the phases of translation in the C-to-C architecture, shown schemat-
ically in Figure 3-3. Actually, the figure shows the Cilk preprocessor based on C-to-C, in
order to clearly distinguish the front-end phases, which operate on a C extension language
like Cilk, from the back-end phases, which operate on C. (In the unextended version of
C-to-C, the front-end and back-end languages are both C, so it would be hard to find the
dividing line.) The purpose of each phase is summarized below. The remaining sections of
this chapter will describe each phase of C-to-C in more detail, using the Cilk preprocessor
to illustrate how to extend each phase.

Cpp performs standard C macro preprocessing on the source file, producing a file with no
preprocessor directives or comments.

Parse parses the source program into an AST.

Type check performs type checking on the AST. annotating every declaration and ex-
pression node with type information.

Analyze performs data-flow analysis on the AST, annotating every statement and expres-
sion node with data-flow information.

Transform performs tree transformations that convert the annotated source-language AST
into a pure C AST. (In C-to-C, this phase does nothing, because the source language
and target language are both C.)

Unparse unparses the AST into text.

3.2.1 Macro preprocessing (cpp)

The cpp phase performs standard C macro preprocessing [13]. During this phase, macro
definitions are interpreted and expanded, conditional compilation directives are recognized,
and comments are removed from the source. The output of preprocessing is a file of text
with no preprocessor directives or comments.

19

The current implementation of C-to-C invokes the back-end compiler to perform C macro
preprocessing. One consequence of this decision is that the cpp phase cannot be extended. It
also limits the portability of C-to-C: since ANSI did not standardize the connection between
the C macro preprocessor and the C compiler, some back-end compilers may not offer a way
to invoke their macro preprocessing pass by itself. Even a compiler that allows separate
invocation of its macro preprocessor may emit private, non-standard compiler directives in
the preprocessor output. To remedy these and other deficiencies, a future implementation
of C-to-C may include its own cpp macro preprocessor.

3.2.2 Parsing

The parsing phase consists of a lexical analyzer (generated automatically by lex) and an
LR(1) parser (generated automatically from an LR(1) grammar by yacc) that together
parse the source program and construct an AST representing it. If any syntax errors occur
in the source, they are reported by the parsing phase. The parsing phase also connects
identifier uses to their declarations by use-declaration pointers, and nonlocal jumps to their
destinations by control-flow pointers. The result of parsing is an AST annotated with
declaration and control-flow pointers.

To extend the parsing phase to recognize Cilk, the Cilk preprocessor adds new tokens,
described by regular expressions, to the lexical analyzer, and new syntax, described by
context-free productions, to the grammar.

The parsing phase is based on the Brewer-Noakes ANSI C static checker. The lex/yacc
parser is based on the ANSI C parser by James A. Roskind.

3.2.3 Type checking

The type checking phase makes a pass over the AST, determining types for expressions
and computing values for constant expressions. During the same pass, it looks for type
mismatches and makes other static semantic checks required by ANSI C, and reports any
errors to the user. The result of type checking is an AST annotated with types and constant
values.

Type checking is driven by a table of method functions, one for each kind of AST node.
The checks required for a new statement or expression can be defined by adding a method
to the table. The Cilk preprocessor adds methods that type-check its unique statements,
like spawn and sync. In a C extension language that defines new types, like the Cilk
procedure type, it may also be necessary to modify the type-checking methods of ordinary
C statements and expressions. For instance, Cilk allows a Cilk procedure to be called like a
C function. In order to allow this usage, the Cilk preprocessor extends the type-checking of
an ordinary C function call to accept a Cilk procedure as well a C function in the operator
position.

The type checking phase is also based originally on the Brewer-Noakes static checker,
though significant changes have been made.

3.2.4 Analysis

The analysis phase performs intraprocedural data-flow analysis on every procedure in the
AST. The analysis phase can compute the solution of any data-flow problem that can be
represented in a monotonic data-flow analysis framework, including live variables, reaching
definitions, and constant propagation. The algorithm is iterative, making repeated passes

20

over a procedure until the data-flow equations converge to a solution. Monotonic frameworks
and the iterative algorithm are discussed in detail in Chapter 5.

The analysis phase also makes some semantic checks, warning the user about unreachable
statements and functions which do not return a value. The result of data-flow analysis
is an AST annotated with data-flow analysis information, such as live variables at every
statement.

Like type checking, data-flow analysis is also table-driven. In the Cilk preprocessor, the
control flow of Cilk statements was defined by adding methods to the table. In addition,
a developer can extend the analysis to solve additional data-flow problems, by defining
the problems as monotonic frameworks. The Cilk preprocessor, for instance, defines two
data-flow problems: live variable analysis, which determines whether a variable may be
used before its next assignment, and “dirty variable” analysis, which determines whether a
variable has been assigned since it was last saved to the frame.

3.2.5 Transform

The transform phase makes zero or more passes over the AST to convert C extensions into
pure C. In C-to-C, this phase does nothing, since no C extensions are recognized by the
front-end. In the Cilk preprocessor, however, the transform phase converts the Cilk syntax
tree into a C syntax tree. The output of the transform phase is a C AST.

To an extension language developer, the transform phase is the most important and most
interesting phase, since it specifies how extensions are translated into C. The transform
phase accounted for more than 60% of the new code needed to extend C-to-C into the Cilk
preprocessor, and about 90% of the development time.

3.2.6 Unparsing

The last phase, the unparsing phase, walks over the C AST and emits C code corresponding
to it. The unparsing phase is designed to be the inverse of the parsing phase, so that re-
parsing the output with C-to-C produces an identical AST.

Since the Cilk preprocessor generates ANSI C, it does not need to extend the unparsing
phase. Other extension language preprocessors might extend the unparsing phase, if the
target language is a language other than ANSI C.

21

22

Chapter 4

Transparency in C-to-C

This chapter describes the special care taken by C-to-C to imitate one of the strengths of
simple macro preprocessors: transparency. We say a translator is transparent to a feature
of the source program if the translator copies the feature unchanged from input to output,
preserving it through any intermediate program representations. Transparency is good for
three reasons. First, a transparent translator is more portable, because it avoids making
changes that could produce unportable code. Second, a transparent translator interacts
well with other programming tools that rely on nonsyntactic features of the source, like
line-oriented debuggers and profilers. Finally, transparent translators are easier to debug,
because the postsource is high-level and readable, and extension translations appear in
context in the postsource. Text-based macro preprocessors are transparent to all features,
since they deal directly with the text of the program. C-to-C, however, converts the program
text to and from an abstract syntax tree representation, which is not ideal for representing
all features of the source. Nevertheless, our implementation of C-to-C is transparent to
#pragma directives, line numbering, indentation, and constant expressions.

On a high-level, C-to-C converts a C program (the source) into an AST, then converts
the AST back to a C program (the postsource). In principle, the postsource should be
identical to the source — a goal we call complete transparency. Unfortunately, the current
implementation of C-to-C cannot satisfy complete transparency, because an external macro
preprocessor removes comments and macros from the source before it reaches C-to-C.

In practice, however, the back-end C compiler is the only consumer of the postsource,
so not all information in the source is important. Whitespace and comments, intended for
human users, are ignored by the back-end compiler, and macros and preprocessor directives
can be interpreted early without affecting the final object code. For the purpose of extension
language preprocessing, it is unnecessary to capture and maintain all this extra information

in the AST.

Thus, C-to-C meets a weaker specification, which we call operational transparency: if
the source is a C program with no syntactic or semantic errors, then the postsource is
a C program with no errors that is compiled to identical object code by the back-end
compiler. If the input contains errors, then C-to-C should issue appropriate error messages
without emitting the postsource. Happily, this specification is as easy to test as complete
transparency: we can compile the source and the postsource separately, then perform a
byte-by-byte comparison of their object code files.

Operational transparency gives more freedom to an implementor of C-to-C, but it should
not give so much freedom that C-to-C is useless as a preprocessor framework. C-to-C should

23

still be transparent to features of the source that do not affect object code, such as line
numbering and high-level syntax. In particular, we note the following desiderata for a good
implementation of C-to-C:

e The postsource should be portable. In particular, if the source is a strictly conforming
ANSI C program, then the postsource should also be a strictly conforming ANSI C
program [3]. Thus, C-to-C should not perform transformations that depend on a
particular target platform or back-end C compiler. An example of an unacceptable
transformation is constant expression folding, which will be discussed further below.
Portability allows a C-to-C-based preprocessor to target any platform with a standard
ANSI C compiler.

e The postsource should have the same line numbering as the source, so that debuggers
and profilers that rely on matching line numbers in the object code to line numbers
in the source can function correctly.

¢ The postsource should be high-level. C-to-C should not, for instance, transform while
loops into labels and goto statements, nor should it flatten nested expressions into
sequences of simple operations with temporaries. Preserving the high-level features
of the source contributes to the readability of the postsource, and allows an extension
language developer to view extension translations in the context of the original source.

e The postsource should be formatted for reading, since human programmers have to
read and debug it while developing a C-to-C-based preprocessor. Rather than emit
all the postsource on one incredibly long line, for instance, C-to-C follows the line
breaks and indentation style of the source as closely as possible.

The remainder of this chapter examines how these transparency requirements affect the
manner in which C-to-C handles #pragma directives, line numbering and indentation, and
constant expressions, all of which must be preserved in the AST. The next chapter will
explain how transparency requirements affect data-flow analysis.

4.1 Pragma directives

The ANSI standard permits a compiler to recognize private compiler directives preceded by
#pragma. This section describes how C-to-C preserves unrecognized #pragma directives from
the source to the postsource, so that the source can include compiler directives intended for
the back-end C compiler.

C-to-C itself recognizes two #pragma directives: #pragma lang +C, which puts the lex-
ical analyzer into a special C-only mode, and #pragma lang -C which ends the special
mode. Of course, these directives have no effect in the unextended version of C-to-C, since
C-to-C recognizes only C anyway. They are provided in anticipation that a C extension
preprocessor based on C-to-C would need a way to turn off its special reserved words and
treat part of the input program as strict C. Many Cilk programs, for example, are mixes of
existing C code and new Cilk code. With these #pragma directives, the Cilk preprocessor
can accept existing C code that happens to use Cilk reserved words as ordinary identifiers,
without forcing all such identifiers to be manually renamed.

Other #pragma directives in the source are assumed to be intended for the back-end
compiler, and C-to-C attempts to preserve them. Unfortunately, since #pragma directives

24

stnt ::=1if (expr) stnt else stnt

Figure 4-1: A grammar production for the if-else statement in C.

are like preprocessor directives, they are not constrained by the ANSI C grammar and
may appear between any pair of tokens in the input program. As a result, they cannot be
expressed in the grammar. C-to-C handles this problem by collecting #pragma directives in
the lexical analyzer. Then, before starting a new statement or declaration, the parser inserts
any waiting directives into the AST. The drawback of this simple scheme is that #pragma
directives that appeared within a statement or declaration are pushed to the end of the
statement or declaration, possibly changing their meaning. (C-to-C generates a warning
message when a pragma directive must be moved in this manner.) In our experience,
however, these directives are generally used at the file level or statement level, and rarely
appear in the middle of a statement or declaration.

4.2 Line numbering and indentation

C-to-C preserves line numbering and indentation from the source to the postsource by
storing line numbers and character offsets in the AST. Preserving line numbering enables
line-oriented debuggers and profilers to match object code with original source lines, and
preserving indentation makes the postsource easier to read.

When it constructs the AST, the parsing phase annotates each node of the tree with
the source file, line number, and character offset within the line where the syntax construct
appeared. Such a triple (file, line, offset) is referred to as the node’s source coordinates.
Source coordinates are useful not only for identifying the offending source line in C-to-
C’s error messages, but also for providing the output phase with enough information to
reconstruct the line numbering and indentation of the source, for the benefit of debuggers,
profilers, and human programmers using the postsource.

Line numbering and indentation are preserved by saving the coordinates of tokens in the
input program. Every token in the input program is a terminal in some production in the
grammar, which is represented by a node in the AST. Consider, for instance, the produc-
tion in Figure 4.2, which shows the if-else statement. An if node in the AST actually
represents four input tokens, shown in boldface in the figure: if, (,), and else. We could
reproduce the input perfectly if we stored the coordinates of every one of these tokens in the
if-else node. Such precision is overkill, however, since our goal is not exact reproduction
of the input program, but approximate reproduction (with identical meaning). In typical C
formatting styles, the positions of semicolons, commas, and parentheses are fixed relative to
their neighbor tokens (always immediately following or immediately preceding), so C-to-C
saves storage space in the AST by throwing away the coordinates of these tokens.

As a result, for most AST nodes, C-to-C saves the coordinates of only one token. For
statement nodes, the coordinates of the statement keyword are saved. For operators, the
coordinates of the operator token are saved. For two-keyword statements or operators, like
if-else and do-while, the coordinates of both keywords are saved. For a block (a list of
statements enclosed in curly braces), the coordinates of both curly braces are stored, since
different programmers prefer their braces in different places.

Using the token coordinates stored in the AST by the parsing phase, the unparsing
phase attempts to reconstruct the line numbering and indentation of the input. Since the

25

parsing phase didn’t save coordinates for every input token, but only selected tokens, the
reconstructed C code is not identical to the input, but it is close enough to meet the needs
of line-oriented debugging and readability.

The transform phase of C-to-C may have added and deleted parts of the AST and moved
other parts around. As a result, the unparsing phase cannot be guaranteed that the token
coordinates in the AST are in their original order. Given a token 7', its source coordinates
(file,line,offset), and the coordinates of the current output position (File, Line, Offset), C-to-
C must be able to emit T in an output position as close as possible to its source coordinates,
which may have a completely different filename or line number. Fortunately, C provides
a preprocessing directive that sets the filename and line number arbitrarily: #line line
"filename". In order to prevent excessive #line directives from obscuring the readability
of the postsource, C-to-C uses the following heuristic. A #line directive is emitted if and
only if one of the following conditions is true:

e file # File, to change the output filename;
o line < Line, to back up to an earlier line in the output;

o line > Line+ 6, to advance a large distance in the output. The value 6 is a small
constant, typically 5. This heuristic compresses the large runs of empty lines usually
left by the C macro preprocessor after removing comments and conditionally compiled
code. With this heuristic, runs of more than é empty lines are replaced by a #line
directive jumping immediately to the end of the run.

After possibly emitting a #line directive, C-to-C inserts sufficient lines and spaces in the
output to make Line = line and Offset > offset. This simple algorithm suffices to match
the line numbering and indentation of the original source.

4.3 Constant expressions

C-to-C preserves all constant expressions from the source to the postsource. For the sake of
portability, it performs no constant folding, even though it must evaluate constant expres-
sions for semantic checking. This section examines the problems with constant expressions
evaluation more closely.

C-to-C must evaluate constant expressions to perform a variety of static semantic checks.
For instance, in ANSI C, all array dimensions must be positive, the case expressions in a
switch must have distinct constant values, and two array types are the same only if they
have the same dimensions.

Evaluating constant expressions in C-to-C is complicated by the fact that many constant
expressions in ANSI C are implementation-dependent: their values depend strongly on the
back-end compiler and the target architecture. For example, sizeof expressions depend on
the machine word size, and sizeof (struct foo) depends on how the back-end compiler
chooses to arrange the foo structure in memory. Arithmetic on constant expressions can
also return implementation-dependent results. One example is “0 (the one’s complement of
0), whose value depends on how many bits are in a machine word. For maximum portability
to different back-end compilers, C-to-C should not make any assumptions about the values
of such expressions.

Still, C-to-C cannot simply omit semantic checks involving implementation-dependent
constant expressions, since the checks are important for discriminating strictly conforming

26

ANSI C programs from definitely erroneous inputs. For instance, all conforming ANSI C
compilers accept int fool[sizeof (int)], in which the array dimension is certainly posi-
tive, and reject (or warn about) int foo[sizeof (int)-sizeof (int)],in which the array
dimension is always zero. In order to conform to the ANSI standard, C-to-C must make
the same discrimination.

C-to-C solves this problem by computing a value for every constant expression, using
reasonable word sizes and structure packing rules, solely for the purpose of such semantic
checks. The computed value is stored in the AST node of the expression for later use, but it
does not replace the expression, nor is it used in the unparsing phase to perform constant-
expression folding. Although C-to-C could conceivably recognize that an expression has a
well-defined, implementation-independent value and fold the expression down to that value,
this optimization is not worth the trouble, since the back-end C compiler is equally capa-
ble of constant folding. Furthermore, folding constant expressions reduces the abstraction
level of the program, converting a high-level expression into a low-level expression. C-to-C
delegates constant folding to the back-end compiler, where it belongs.

27

28

Chapter 5

Data-flow Analysis in C-to-C

This chapter describes C-to-C’s data-flow analysis algorithm, which works directly on the
high-level abstract syntax tree. C-to-C implements a standard iterative algorithm [1], but
with performance improvements enabled by the AST representation, which include depth-
first order and testing for convergence only at loops and jumps. It also provides an abstrac-
tion for monotonic data-flow analysis problems, so that an extension language developer can
simply define the data-flow problem that needs to be solved, and C-to-C’s data-flow anal-
ysis algorithm automatically solves it. The Cilk preprocessor uses this data-flow analysis
framework to determine the live variables at a sync statement.

C-to-C performs data-flow analysis directly on the high-level AST, using an “implicit
control flow graph” defined by the semantics of the C language. Because of the requirement
of transparency described in the previous chapter, C-to-C cannot reduce the AST to a sim-
pler intermediate language that contains no nested expressions. C-to-C cannot even treat
a nested expression as a “basic block” of straight-line code, because many C expressions
do not have straight-line control flow. Expressions can contain conditional operators or
short-circuiting Boolean operators which may not evaluate their second operand. Worse,
the GNU extensions to C allow arbitrary statements to appear inside expressions, so jumps
into and out of the middle of an expression are possible [16]. (C-to-C supports this “state-
ment expression” extension, because it is occasionally useful in Cilk programs.) To avoid
these complications, C-to-C treats every AST node as a basic block, so its control flow
graph (CFQG) contains many more nodes than a typical compiler’s control flow graph. Each
iteration of C-to-C’s data-flow analysis algorithm must propagate information through more
nodes.

C-to-C offsets this performance hit by taking advantage of properties of the implicit
CFG. First, the iterative algorithm converges fastest if the nodes of the CFG are visited
in depth-first order on each iteration [11]. Since the AST is a depth-first spanning tree
of its implicit CFG, we can visit CFG nodes in depth-first order by simply walking the
tree, so fast convergence is automatic. Second, C-to-C tests for convergence only at nodes
corresponding to jumps and labels, rather than at all nodes of the CFG as would a standard
algorithm based directly on control-flow graphs.

The iterative algorithm coded in C-to-C applies to a variety of data-flow analysis prob-
lems, described in general as monotonic frameworks. Following the suggestions made by
Kildall [14], C-to-C defines a monotonic framework abstraction which enables an extension
language developer to define a data-flow analysis problem declaratively. The monotonic
framework abstraction is described in detail below.

29

I f-el se
entry exit

—» expr ———» €l S‘GD
\‘then-stm

Figure 5-1: The implicit control flow of an if-else node. The node corresponds to the C
code if (expr) then-stmt else else-stmit.

5.1 Representing control flow in the AST

C-to-C performs data-flow analysis on a control flow graph (CFG) represented implicitly in
the AST. Representing the control flow graph implicitly rather than explicitly saves storage
and makes C-to-C easier to extend.

Every statement or expression node in the AST has an implicit CFG. For example,
in the if-else node shown in Figure 5.1, control passes first to the expr child, branches
to either then-stmt or else-stmt, and then rejoins to leave the if-else node. The implicit
control flow graphs for each AST node together specify an implicit control flow graph for
the entire AST.

Most nodes of the AST receive control from the parent initially and return to the
parent after execution. Some nodes, however, represent jumps or labels, such as goto,
break, continue, case, and switch. The parsing phase annotates these nodes with control-
flow pointers, connecting, for example, each goto node with its destination label node
elsewhere in the AST. The implicit control flow graph of jump and label nodes makes use
of these nonlocal links. The parser does not connect function calls with function definitions,
however, and so C-to-C’s flow analysis is presently limited to the scope of a single function.
Intraprocedural analysis is sufficient for Cilk, and thus this restriction is not severe. Other
C extension languages could extend C-to-C for interprocedural data-flow analysis, but the
work required would be nontrivial.

Representing the CFG implicitly saves space. Most control flow follows existing AST
edges, between parents and children in the tree, and an implicit CFG reuses the AST edges
to save space. Only the jump and label statements mentioned in the previous paragraph
have nonlocal control flow that does not follow AST edges, requiring additional space to
store control-flow pointers.

The implicit CFG is also easy to extend, because it is table-driven. Each statement or
expression node’s implicit CFG is defined procedurally by a subroutine that passes data-
flow information among the node’s children, following the implicit CFG edges. The control
flow of a C extension language can be defined simply by writing a new subroutine for each
new statement or expression.

We should make one more observation about implicit control flow through expressions.
C-to-C assumes that expressions and function call arguments are evaluated strictly from left
to right, but the back-end compiler is free to choose any evaluation order when it generates
actual object code. As a result, if the behavior of the source program depends on evalu-
ation order, then C-to-C’s analysis may be incorrect. Fortunately, programs that depend

30

upon evaluation order are rare and inherently unportable, since the order of evaluation of
expressions and side-effects in C has always been undefined [3, 13]. Few programmers write
code that depends on evaluation order, and those that do deserve what they get.

5.2 Data-flow analysis frameworks

This section describes C-to-C’s data-flow analysis abstraction. For the sake of extensibility,
C-to-C provides a “monotonic data-flow analysis framework” abstraction that is applicable
to a wide variety of data-flow problems, including live variables, constant propagation,
reaching definitions, and available expressions. Monotonic data-flow analysis frameworks
were originally proposed by Kildall [14] and developed by Kam and Ullman [12]. C-to-C’s
implementation follows the treatment of monotonic frameworks in the “Dragon Book” ([1],
section 10.11)
A monotonic data-flow analysis framework consists of:

Data type V: aset of values to be propagated. A value in V represents an assertion about
the dynamic state of the program. The data type V must contain a distinguished
element T, which represents “undefined” or “unknown.” The concrete data type used
to implement V must provide an equality operation that tests whether two elements
of V' are the same, so that the iterative algorithm can detect convergence.

Direction of propagation: data-flow information may be propagated either forwards or
backwards through the control flow graph.

Meet operation A: afunction mapping V xV — V which combines assertions about two
paths of execution where the paths join. The meet operation must be commutative,
associative, idempotent, and has T as its identity element. With these properties,
(V, A) is a semilattice. In particular, we can define the partial ordering < on V' by

r<<y<=acsANy==1a
Thus, the distinguished undefined element T is the top of the semilattice, since aAT =

zforallz € V.

Also, the semilattice (V,A) must be bounded: all chains z; < 2, < ---in V must
have finite length. If the set of values V is finite, then this condition is automatically
satisfied.

Transfer functions F: a set of functions mapping V — V, which transform a value in V
as it passes through an AST node. Two functions from F’ are assigned to each node:
one to the entry point and one to the exit point. The set I’ generally should contain
the identity function on V', since many AST nodes have no effect on data flow.

All functions in I" must be monotonic:

fleany) < flz)A f(y) forall fe Fanda,yeV

The monotonicity of F' and boundedness of (V,A) together imply that the iterative
algorithm of successive approximation used by C-to-C eventually converges to a solu-
tion.

31

The functions in F should also satisfy strictness: f(T) = T for all f € F. Unlike
most compilers, C-to-C does not remove obviously unreachable code from its AST
before performing data-flow analysis. As a result, if /' contains nonstrict functions,
unreachable paths in the control flow graph could propagate information to the rest
of the graph, despite the fact that they would never be visited at runtime. Thus,
with nonstrict functions, C-to-C’s data-flow analysis is too conservative. When all
functions in [are strict, however, this problem does not arise. All unreachable paths
remain T (undefined), which cannot affect the reachable paths of the program.

For an example of a data-flow analysis framework, consider the problem of computing
live variables. A variable z is live at a point P in a program if 2 may be used before being
reassigned on some possible path of computation starting at P. Live-variable analysis is
useful to the Cilk preprocessor, because if a variable is dead (i.e., not live) at a sync point,
then the preprocessor need not preserve its value across the sync.

Live-variable analysis fits into the framework as follows. The data type V is a set of
variables, represented by a bit vector. A value of V asserts that the variables it contains are
live at that point in the program. The direction of propagation is backwards, since liveness
is a property determined by the future execution of the program. The meet operation
A is set union, since a variable is live at a point in the program if and only if it is live
on at least one path leaving that point. Finally, the transfer function set F' contains two
monotonic functions: gen,(S5) = S U {z}, which adds z to the set of live variables, and
kill,(S) = S — {z}, which removes z from the set of live variables. Every AST node
representing a use of the variable x has gen, as its exit transfer function, and every node
representing an assignment to z has kill,.

Monotonic data-flow analysis frameworks are important to C-to-C’s extensibility. By
defining a data type for V' and writing subroutines for the meet and transfer operations, an
extension language developer can reuse C-to-C’s iterative algorithm to gather any data-flow
information needed for translation or optimization.

5.3 The iterative algorithm

Given a framework and an AST, which together define a set of data-flow equations, C-to-C
computes a solution to the data-flow equations using the standard iterative algorithm ([1],
algorithm 10.18). The iterative algorithm begins with all edges in the implicit control flow
graph set to T, and iteratively visits nodes satisfying their data-flow equations until the
solution converges to a fixed point. C-to-C’s algorithm differs from the standard algorithm
in two respects: the control flow graph is traversed in depth-first order, and convergence is
only tested at loops and jumps.

Visiting CFG nodes in depth-first order yields the fastest convergence of the standard
iterative algorithm [11]. If the data-flow problem is a distributive framework (or a monotonic
framework satisfying certain assumptions), and if the CFG is reducible (each loop has at
most one entry point), then the number of iterations before convergence is bounded by the
loop-connectedness of the CFG, which is defined as the largest number of back edges on any
cycle-free path of the graph. Intuitively, the loop-connectedness is the nesting level of the
innermost loop in the graph. This result means that for most data-flow frameworks and
well-structured C functions (which have only one entry per loop), the iterative algorithm
requires only a few iterations, roughly as many as the depth of the innermost loop of the
function.

32

To visit CFG nodes in depth-first order, other compilers must build a depth-first span-
ning tree on the CFG. In C-to-C, the AST is automatically a depth-first spanning tree
of its implicit control flow graph, so C-to-C visits CFG nodes in depth-first order just by
walking over the AST.

The standard iterative algorithm visits every node in every iteration, halting if and
only if the data flow at all nodes remains constant across an iteration. Testing all nodes
for changes during the iteration would be more expensive for C-to-C, because it does not
summarize expressions and straight-line code into a single basic block.

C-to-C uses a faster termination condition that takes advantage of the high-level AST.
C-to-C’s algorithm halts if and only if the data flow at “loop nodes” and “confluence nodes”
remains constant. A loop node is an AST node representing a loop in the source langage. In
C, the loop nodes are do-while, for, and while. A confluence node is an AST node that
may receive or pass control nonlocally, with another AST node that is neither its parent
nor one of its children. The confluence nodes in C are goto, switch,' continue, break,
return, label, case, and default. An acyclic node is neither a loop node nor a confluence
node. The acyclic nodes in C are expressions and conditional (if-else) statements.

Because C-to-C visits nodes in depth-first execution order, the data-flow equations at
acyclic nodes are always satisfied after every iteration. As a result, if the data flow at the
loop nodes and confluence nodes remains unchanged across an iteration, then the data flow
at the acyclic nodes also remains unchanged. Thus, it suffices only to test for convergence
at the loop nodes and confluence nodes.

As a consequence of its termination condition, C-to-C performs only a single iteration
if the AST contains no loop nodes or confluence nodes. An AST consisting entirely of
acyclic nodes has an acyclic implicit control flow graph, so a single depth-first pass suffices
to compute the solution to the data-flow equations.

'A switch statement in C is not as structured in C as it is in other languages. In C, switch is actually
a computed jump to a label inside its body. Syntactically, the label is not a direct child of the switch, so
we regard this jump as a nonlocal transfer of control.

33

34

Chapter 6

Conclusions

Using the C-to-C framework, I have written a preprocessor that translates both Cilk 1 and
Cilk 2, performs type checking on the Cilk source, and uses live variable analysis to optimize
saving and restoring local variables across sync statements.

Building the Cilk preprocessor on top of C-to-C required a relatively small amount of
work, the equivalent of a few weeks of effort by a full-time programmer. In fact, about 90%
of the programming effort was spent in figuring out how to transform Cilk extensions into
C. Extending type checking and data-flow analysis to cover Cilk was comparatively simple.
Our experience with the Cilk preprocessor suggests that C-to-C is a good preprocessor
framework, since it allows an extension language developer to focus on the syntax and
semantics of the extension language, rather than on type checking or data-flow analysis.

The type-checking preprocessor is now in everyday productive use by the Cilk group, who
prefer it to the older Cilk 1 macro preprocessor. The type-checking preprocessor translates
Cilk into C slower than the macro preprocessor but just as quickly as our C compiler (gcc)
compiles C into object code. Overall, then, users of the type-checking preprocessor pay
only a factor of two in compile time, in exchange for type-checking, optimization, and the
ability to use Cilk 2 (a higher-level language than Cilk 1).

With an extensible framework like C-to-C, we can afford to contemplate more ambitious
extensions to the Cilk language without cringing at the potential development effort. For
instance, we are experimenting with a distributed shared memory system for Cilk, which is
currently implemented with a low-level runtime library interface. To simplify programming
the interface, we have devised a “global pointer” extension for Cilk which allows a program-
mer to manipulate shared objects with familiar C pointer operations. With the new Cilk
preprocessor, we anticipate that adding global pointers to Cilk will take only a few days of
work.

6.1 Future work on C-to-C

A future version of C-to-C may include its own standard C macro preprocessor. The current
implementation relies on the back-end C compiler to perform macro preprocessing, which
is neither portable (since not all C compilers offer a separate macro preprocessor) nor
extensible.

Once C-to-C performs its own macro preprocessing, it will have access to the original
source program, enabling a more transparent implementation of C-to-C. Enough informa-
tion could be saved in the abstract syntax tree to reproduce the source program precisely,

35

including comments and macros.

Precise source reproduction would make C-to-C applicable to a wider variety of source-
to-source processing applications. In C extension language preprocessing, the only consumer
of C-to-C’s output is a back-end compiler. But in many other applications of source-
to-source translation, a human programmer might be another consumer, in which case
preserving comments is extremely important. Other source-to-source translation problems
that may be solvable with C-to-C include automatic or programmer-directed source-level
optimization, program analysis, source code metrics, error checking (e.g., 1int tools), and
instrumentation for profiling or debugging.

6.2 Getting C-to-C

The source code of C-to-C is freely available from ftp://theory.lcs.mit.edu/pub/c2c.
Building C-to-C requires an ANSI C compiler and the free GNU tools flex and bison.

36

Bibliography

[1]

[2]

[10]

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 1988.

S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng. The SUIF com-
piler for scalable parallel machines. In Proceedings 7th SIAM Conference on Parallel
Processing for Scientific Computing, February 1995.

American National Standards Institute, Inc., NY. American National Standards for
Information Systems, Programming Language C' ANST X3.159-1989. 1990.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Phil Lisiecki, Rob Miller, Keith H. Randall, Andy Shaw, and Yuli Zhou. Cilk 2.0
Reference Manual. MIT LCS, 545 Technology Square, Cambridge, MA 02139, May
1995. Available via ftp://theory.lcs.mit.edu/pub/cilk/manual-2.0.ps.Z.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
In Proceedings 5th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, Santa Barbara, CA, July 1995. To appear.

Francois Bodin, Peter Beckman, Dennis Gannon, Jacob Gotwais, Srinivas Narayana,
Suresh Srinivas, and Beata Winnicka. Sage++: An object-oriented toolkit and class
library for building Fortran and C++ restructuring tools. In Proceedings of OONSKI
’94, 1994. Also available as ftp://ftp.extreme.indiana.edu/pub/sage/oonski94.ps.gz.

Francois Bodin, Peter Beckman, Dennis Gannon, Srinivas Narayana, and Shelby X.
Yang. Distributed pC++: Basic ideas for an object parallel language. Seientific
Programming, 2(3), Fall 1993.

K. Mani Chandy and Carl Kesselman. CC++: A declarative concurrent object ori-
ented programming notation. Technical Report CS-TR-92-01, California Institute of
Technology, Pasadena, CA, 1992.

David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishnamurthy,
Steven Lumetta, Thorsten von Ficken, and Katherine Yelick. Parallel programming in
Split-C. In Proceedings of Supercomputing '93, the ACM/IEEE Conference, Portland,
OR, November 1993.

Chris Fraser and David Hanson. A Retargetable C' Compiler: Design and Implemen-
tation. Benjamin/Cummings, 1995.

37

[11] John B. Kam and Jeffrey D. Ullman. Global data flow analysis and iterative algorithms.
Journal of the ACM, 23:158-171, 1976.

[12] John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frameworks. Acta
Informatica, 7:305-318, 1977.

[13] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, 2nd
Edition. Prentice Hall, 1988.

[14] Gary Kildall. A unified approach to global program optimization. In Proceedings 1st
ACM Symposium on Principles of Programming Languages, pages 194-206, 1973.

[15] J. R. Rose and G. L. Steele Jr. C*: An extended language for data parallel pro-
gramming. In Proceedings 2nd International Conference on Supercomputing, volume 2,
pages 2-16, San Francisco, CA, May 1987.

[16] Richard Stallman et al. GNU C compiler (GCC) version 2. Source code and documen-
tation available from prep.ai.mit.edu via anonymous ftp, in directory /pub/gnu.,
1994.

38

