
A Type-checking Preprocessor for Cilk 2,a Multithreaded C LanguagebyRobert C. MillerSubmitted to the Department of Electrical Engineering and Computer Sciencein partial ful�llment of the requirements for the degrees ofBachelor of Science in Computer Science and EngineeringandMaster of Engineering in Electrical Engineering and Computer Scienceat theMassachusetts Institute of TechnologyMay 1995Copyright 1995 Massachusetts Institute of Technology. All rights reserved.Author :Department of Electrical Engineering and Computer ScienceMay 12, 1995Certi�ed by :Charles E. LeisersonThesis SupervisorAccepted by :F. R. MorgenthalerChairman, Department Committee on Graduate Theses

A Type-checking Preprocessor for Cilk 2,a Multithreaded C LanguagebyRobert C. MillerSubmitted to the Department of Electrical Engineering and Computer Scienceon May 12, 1995, in partial ful�llment of therequirements for the degrees ofBachelor of Science in Computer Science and EngineeringandMaster of Engineering in Electrical Engineering and Computer ScienceAbstractThis thesis describes the type-checking, optimizing translator that translates Cilk (a C ex-tension language for multithreaded parallel programming) into C. The Cilk-to-C translatoris based on C-to-C, a tool I developed that parses, type checks, analyzes, and regeneratesa C program. With a translator based on C-to-C, developers and users of C extensionlanguages can enjoy the bene�ts of a type-checking, optimizing compiler without the at-tendant development and porting costs. Like a compiler, the Cilk-to-C translator runsquickly, does static checking, and generates e�cient code, making it �t for everyday useby ordinary programmers. Unlike a compiler, however, the Cilk-to-C translator is easy todevelop, extend, and port to other platforms. About 90% of the development e�ort wasdevoted to Cilk semantics (translating Cilk into C), which is where a language developerwants to focus. Only a small amount of work was spent extending C-to-C's parsing, typechecking, and data-
ow analysis to recognize Cilk. In return for a few weeks of full-timee�ort, I obtained a type-checking, optimizing translator for Cilk that targets any platformwith an ANSI C compiler. With C-to-C, other C extension language developers can obtainthe same bene�ts.C-to-C has a number of special features that make it a good framework for C extensionlanguage translators. First, its C output is human-readable, so that a language developer orprogrammer can read and debug it. C-to-C also provides operational transparency (repro-ducing nonsyntactic source features like line numbering and indentation), which contributesto the readability and portability of its C output and assists debuggers and pro�lers. C-to-C performs data-
ow analysis directly on the high-level abstract syntax tree of the sourceprogram, so that its C output is also high-level, not unreadable \assembly language writtenin C." Finally, C-to-C provides a generic data-
ow analysis abstraction, in which any mono-tonic data-
ow problem needed for optimization can be speci�ed and solved automatically.These features greatly simplify the task of writing a type-checking, optimizing translatorfor an arbitrary C extension language.Thesis Supervisor: Charles E. LeisersonTitle: Professor of Computer Science and Engineering

Contents1 Introduction 71.1 One alternative: a macro preprocessor : 81.2 Another alternative: a full compiler : 81.3 Related work : 91.4 Outline : 92 The Cilk Programming Language 112.1 An example of Cilk: fib : 112.2 Type checking : 122.3 Type-directed translations : 132.4 Optimizations : 143 The C-to-C Type-checking Preprocessor 173.1 The abstract syntax tree : 173.2 Phases : 193.2.1 Macro preprocessing (cpp) : 193.2.2 Parsing : 203.2.3 Type checking : 203.2.4 Analysis : 203.2.5 Transform : 213.2.6 Unparsing : 214 Transparency in C-to-C 234.1 Pragma directives : 244.2 Line numbering and indentation : 254.3 Constant expressions : 265 Data-
ow Analysis in C-to-C 295.1 Representing control
ow in the AST : 305.2 Data-
ow analysis frameworks : 315.3 The iterative algorithm : 326 Conclusions 356.1 Future work on C-to-C : 356.2 Getting C-to-C : 363

4

AcknowledgementsThis research was supported in part by the Advanced Research Projects Agency underGrant N00014-94-1-0985.I am indebted to my advisor Charles E. Leiserson. Yuli Zhou provided advice andsupport throughout the development of the Cilk preprocessor. Thanks to Laura Cassenti,Charles Leiserson, Anil Somayaji, and Yuli Zhou, who were generous with their time inagreeing to proofread this thesis; any glaring errors that remain are solely the responsibilityof the author. Thanks also to the entire Cilk team for support and suggestions: BobbyBlumofe, Matteo Frigo, Chris Joerg, Bradley Kuszmaul, Irena Kveraga, Charles Leiserson,Howard Lu, Phil Lisiecki, Keith Randall, Richard Tauriello, Daricha Techopitayakul, andYuli Zhou.I gratefully acknowledge the warm support of Laura Cassenti and my parents, Larryand Marian Miller.

5

6

Chapter 1IntroductionCilk (pronounced \silk") is a parallel programming language under development at MITLaboratory for Computer Science [5]. Cilk provides syntax for expressing control paral-lelism, allowing a programmer to specify that certain procedure calls should be spawned, orrun in parallel with the current thread of execution. Cilk is an example of a C extension lan-guage | a programming language that extends C with new keywords, syntax, or semantics.C extension languages have lately become popular in parallel and distributed computingresearch [5, 7, 8, 9, 15], because of the wide portability of ANSI C, the large population ofC programmers, and the extensive base of C applications and library software.Like many C extension languages, Cilk is not translated directly into object code. In-stead, Cilk is translated into C, with extension language features mapped into calls to aruntime system. Figure 1-1 shows the translation process schematically. The translatorthat converts a C extension language into C is called a preprocessor, because its outputis a high-level language rather than machine language. The C postsource produced by thepreprocessor is compiled into object code by the target machine's C compiler, also called theback-end compiler. This compilation system | a preprocessor pipelined with a compiler |yields portability and ease of development, because the extension language developer neednot build a full compiler for every platform on which the language will run.In fact, simple C extension languages can be translated into C by local, syntactic trans-formations, using a macro preprocessor. Cilk 1, the �rst incarnation of the Cilk language,was translated by a macro preprocessor. Though easy to write and debug, macro preproces-sors su�er a serious
aw, which manifested itself in Cilk 1. A macro preprocessor relies onthe back-end C compiler's type checking to detect and report common programmer errors.Unfortunately, type errors in Cilk 1 programs are often missed by the back-end compiler,because the C postsource contains low-level code that overrides type checking. Even whentype errors are detected, the C compiler's error messages refer to the postsource, which is
Cilk

preprocessor
C

compiler

source postsource object

Cilk C objFigure 1-1: The mechanism for compiling a Cilk program. Cilk is preprocessed into C,which is then compiled into object code. 7

unhelpful to a Cilk programmer trying to �nd and �x the error in the source.In addition, macro preprocessors are insu�cient for more abstract C extension languagesthat require their translators to gather semantic information about the program. Cilk 2,the latest version of the Cilk language, includes features whose translation depends on thetypes of the objects involved, so the Cilk 2 preprocessor must determine those types. Anordinary macro preprocessor has no access to type information.Finally, macro preprocessors o�er no opportunity for global optimization. The back-endC compiler performs global optimization when it generates object code, but the compiler'soptimizations are necessarily conservative, missing potential optimizations that the prepro-cessor can perform. Again Cilk 2 serves as an example. Gathering data-
ow informationenables the Cilk 2 preprocessor to emit faster code than a macro preprocessor could.This thesis studies type-checking, optimizing preprocessors for C extension languages,using the Cilk 2 preprocessor as an example. In the course of building the Cilk 2 prepro-cessor, I have developed a generic preprocessor framework for C extension languages calledC-to-C. C-to-C parses a C program into an abstract syntax tree (AST) representation,performs type checking, data-
ow analysis, and tree transformations directly on the AST,then unparses the AST to recover the original C program. To build a C extension languagepreprocessor based on C-to-C, a developer modi�es the front-end to recognize the extensionlanguage, then adds transformations that convert extension syntax into ordinary C syntax.The Cilk 2 preprocessor was built in precisely this manner.1.1 One alternative: a macro preprocessorOne goal of this thesis is to show that writing a type-checking, optimizing preprocessorbased on C-to-C is a reasonable alternative to using a macro preprocessor. As the precedingdiscussion demonstrated, type checking and optimization increase the usability, abstractionlevel, and performance of Cilk, so the Cilk 2 type-checking preprocessor is superior tothe Cilk 1 macro preprocessor. With C-to-C, these bene�ts were achieved at low cost.Our experience with the Cilk preprocessor suggests that extending C-to-C to build a type-checking preprocessor is only a little more di�cult than writing macros. In fact, only asmall fraction of the development time for the Cilk 2 preprocessor was spent extendingC-to-C's type checking and data-
ow analysis. Most of the development time was devotedto translating Cilk into C | essentially the same work that would be required for a macropreprocessor. C-to-C translations are somewhat harder to write than macros, since theyinvolve tree manipulations instead of textual substitutions, but I believe that the extrae�ort is more than justi�ed by the rewards.1.2 Another alternative: a full compilerThe second goal of this thesis is to argue that writing a preprocessor based on C-to-C is anattractive alternative to another common approach to translating experimental C extensionlanguages { extending a full compiler. This approach begins with a standard C compiler andextends its front end to recognize the new extensions [2, 16]. Compared to a full compiler,however, a translator based on C-to-C is portable and extensible | highly desirable qualitiesfor language research. In addition, the output of a C-to-C translator is readable, high-levelC, not assembly language, nor even \assembly language written in C" as might be expectedfrom an optimizing translator. This section will examine these arguments in more depth.8

First, a translator based on C-to-C is easier to port than a full compiler. C-to-C itself iswritten in portable ANSI C, and extension language features are translated into high-levelC, which can be made portable. For example, the Cilk preprocessor generates portableC containing calls to a runtime system, so moving Cilk to a new architecture entails nochanges to the preprocessor whatsoever. Only the relatively small runtime system must beported.Next, a translator based on C-to-C is easier to extend than existing public-domainC compilers. Its lexical scanner and parser are automatically generated from lex/yaccspeci�cations, which are easier to change than the hand-coded front-ends of lcc [10] andthe SUIF compiler framework [2]. C-to-C's type checking and data-
ow analysis are table-driven, so that new statements and expressions can be speci�ed by just a few methodfunctions. Transformations are expressed as operations directly on the high-level abstractsyntax tree, which we found easier to manipulate than the intermediate representationof compilers like gcc [16]. Also, unlike most compilers, C-to-C provides an abstraction fordata-
ow analysis which can be extended to solve any monotonic data-
ow analysis problemneeded for translation or optimization.Finally, a translator based on C-to-C produces output that is high-level, readable, andreadily compared with its input, since only extension language features are translated. C-to-C provides \operational transparency," preserving all high-level C syntax, line numbering,indentation, and constant expressions used in the original program. The readability of C-to-C's output simpli�es the process of checking that extension language constructs havebeen translated correctly.1.3 Related workThe Sage++ preprocessor framework [6] is similar to C-to-C in that it provides a richtoolkit for program analysis and transformation, including source transparency and data-
ow analysis. Although the Sage++ front-end supports C, C++, and Fortran, it is moredi�cult to extend to new languages. Its lexical scanner is hand-coded, and its parser andtype-checker use optimized, low-level interfaces to the AST rather than the high-level C++classes. Also, Sage++ is written in C++, which is less widespread than ANSI C.1.4 OutlineThe remainder of this thesis is organized as follows. Chapter 2 describes the Cilk 2 languageand explains why it requires type checking and data-
ow analysis from its preprocessor.Chapter 3 introduces the C-to-C preprocessor framework and describes its architecture.Chapter 4 explains how C-to-C preserves nonsyntactic information, like line numberingand indentation, from the source to the postsource. Chapter 5 describes how C-to-C per-forms data-
ow analysis directly on the source program. Chapter 6 o�ers some conclusionscontrasting C-to-C-based preprocessors with other alternatives for translating C extensionlanguages, and describes our plans for future work.9

10

Chapter 2The Cilk Programming LanguageThis chapter describes the parallel C extension language Cilk. The discussion below isneither a complete speci�cation of the language nor a detailed description of how Cilkextensions are translated into C. That information is available elsewhere [4]. Rather, the�rst section of this chapter will present an example of Cilk and describe its special features,and the remaining sections will show how those features are translated into C, in order toexplain why Cilk requires type checking and data-
ow analysis from its preprocessor.2.1 An example of Cilk: fibCilk programs are run in parallel on multiple processors. The basic unit of parallel compu-tation in a Cilk program is a procedure, which is similar to a C function except that it canrun in parallel with other Cilk procedures.The best way to explain Cilk is by example. The Cilk procedure fib shown inFigure 2-1 computes Fibonacci numbers recursively, with the recursive calls proceedingin parallel. Most of the code is ordinary C, which is passed through the Cilk preprocessorunchanged, except for the statements and declarations containing keywords in boldface,which must be translated into C. These keywords are brie
y explained below:� procedure identi�es fib as a Cilk procedure. Only Cilk procedures can be spawned,or called in parallel.
procedure int fib(int n)
{
 if (n < 2)
 return n;
 else {
 int x, y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return x+y;
 }
}Figure 2-1: The Fibonacci function computed by a recursive Cilk procedure. Features inboldface must be translated by the Cilk-to-C preprocessor.11

� spawn calls a Cilk procedure in parallel with the current thread of execution. Theprocedure initiating the spawn is the parent, and the procedure spawned is its child.A spawn statement must assign the child's return value to a local variable, whosevalue is unde�ned until the parent executes a sync statement to wait for the child toreturn.� sync waits for all children started with spawn to return. After a sync statement, thereturn values of all previously-spawned children are computed and available.� return returns a value to the procedure's parent. A Cilk procedure's return state-ment di�ers from the ordinary C return statement, since the Cilk procedure mayneed to communicate the return value to a di�erent processor.Cilk includes other features that provide the programmer with greater control oversynchronization and scheduling of parallel procedures, which are described elsewhere [4].The remaining sections of this chapter will use the fib example to illustrate the fol-lowing claims. First, the back-end C compiler's type checking fails to detect some statictype errors in Cilk programs and reports unhelpful error messages for others, so the pre-processor must perform Cilk-speci�c type checking. Second, some Cilk extensions requiretype-directed translations, in which the C translation depends on the types involved. Thus,the preprocessor must determine and store type information. Third and �nally, some Cilkextensions cannot be optimized by the back-end C compiler, so the preprocessor needsglobal
ow analysis to generate optimized C code.2.2 Type checkingThis section shows why the type checking provided by the back-end C compiler is insu�cientfor Cilk, considering as an example the spawn statement. A type-incorrect spawn statementtranslates into type-correct C code, so the type error cannot be detected by the back-endC compiler. As a result, the Cilk preprocessor must perform type checking directly on theCilk source.The C code corresponding to one of the spawn statements in the Fibonacci example isshown in Figure 2-2. This fragment of C code calls the runtime system function NewFrame toconstruct a frame, which is a migratable activation record for the procedure being spawned.A frame is a C structure containing slots for the procedure's formal arguments and localvariables, along with some housekeeping information required by the runtime system. Theframe is initialized with the procedure's single argument n and a special pointer called acontinuation. The continuation points to the slot in the parent procedure's frame which
x = spawn fib(n-1);

{
 struct fib_frame *new_fp;
 newfp = NewFrame(fib, fib_fsize);
 newfp->n = n-1;
 newfp->ret = MakeContinuation(fp, offsetof(fp, x));
 PostFrame(newfp);
}Figure 2-2: Translation of Cilk spawn statement into C (details omitted for clarity).12

should receive the child's return value { in this case, the slot representing the local variablex. The continuation is constructed from a pointer to the parent procedure's frame structureand the byte o�set of x in that structure. Finally, PostFrame places the new frame in thescheduler's work queue. It may be executed later on the current processor or migrated toanother processor that needs work to do.Observe that the C code deals with x on a low level, using its byte o�set in the frame toconstruct a continuation. Thus, if the programmer accidentally assigns a spawn to a localvariable of incorrect type, the back-end C compiler will fail to detect the type error. As aresult, a mistake that was statically detectable can slip through to runtime, resulting in aruntime error, or worse, an incorrect answer.2.3 Type-directed translationsThis section gives an example of a type-directed translation to show why the Cilk prepro-cessor must collect type information from the Cilk source. The example is the Cilk returnstatement, whose translation into C depends on the return type of the procedure in whichit appears. The return statement is also used to illustrate that, even when the back-end Ccompiler succeeds in detecting a type error in a Cilk program, it often reports an unhelpful,confusing error message. This example rea�rms the need for type checking in the Cilkpreprocessor.The C translation of one of fib's return statements is shown in Figure 2-3. A Cilkprocedure returns a value to its parent using one of a family of runtime system primitivesSendTypeArgument, where Type can be any C arithmetic type (Char, Int, Float, Double,etc.). In order to choose the appropriate runtime system primitive to replace the returnstatement, the preprocessor must determine the return type of the enclosing procedure.The return statement also illustrates how relying on the back-end C compiler for typechecking can result in unhelpful error messages, since the messages describe the C post-source rather than the original Cilk source. If the expression in the return statement isincompatible with the return type of the procedure, then the back-end C compiler reportsan error message like \type mismatch in argument 1 of call to SendIntArgument."This message makes no reference to the fact that the real problem was a type error in theCilk return statement. Admittedly, even the simplest Cilk preprocessor can cause the linenumber of the SendIntArgument call in the postsource to correspond with the line numberof the return statement in the source, so at least the error message correctly identi�esthe o�ending line in the source. But a Cilk programmer unfamiliar with the output of thepreprocessor is likely to be confused by the reference to SendIntArgument, and may havedi�culty �guring out what is wrong with the o�ending line and how the mistake should be
return x+y;

{
 SendIntArgument(fp->ret, x+y);
 FreeFrame(fp);
 return;
}Figure 2-3: Translation of a Cilk return statement into C. This statement appeared in thefib procedure of Figure 2-1. 13

sync;

{
 fp->x = x;
 fp->y = y;
 fp->n = n; /* UNNEEDED! */
 fp->entry = 1;
 return;
sync1:
 x = fp->x;
 y = fp->y;
 n = fp->n; /* UNNEEDED! */
}Figure 2-4: Unoptimized translation of Cilk sync statement into C (some details omitted forclarity). This sync appeared in the fib procedure shown in Figure 2-1. In that procedure,n is not used after the sync, so it does not need to be saved and restored.corrected.2.4 OptimizationsThis section shows why data-
ow analysis is important to the Cilk preprocessor, usingthe sync statement as an example. Since the back-end C compiler must be conservativein its optimizations, it misses an important optimization opportunity in the translationof the sync statement. With data-
ow analysis, the Cilk preprocessor can perform theoptimization itself.A naive (unoptimized) translation of the sync statement in fib is shown in Figure 2-4.The sync statement suspends fib until its spawned children have returned. To wait for itschildren, fib must return control to the scheduler, which it does with an ordinary C returnstatement. The scheduler works on other parallel procedures until the children return, atwhich point the scheduler calls fib in such a way that control resumes at the label sync1.In order to preserve its state of execution, fib saves its local variables before returning tothe scheduler, and restores them after resuming.The C code shown in Figure 2-4 is not e�cient, because it saves and restores all localvariables. In particular, it unnecessarily saves and restores the formal parameter n. Aglance at Figure 2-1 con�rms that n will not be used after the sync, so its value need notbe preserved.Normally, the Cilk preprocessor is not concerned with generating carefully optimized Ccode, as long as it can rely on the back-end C compiler to generate optimized object code.In fact, an optimizing C compiler can remove the restoring assignment n = fp->n, becausethe local variable n is not used subsequently. But no C compiler in existence can optimizeout the saving assignment fp->n = n. A general-purpose compiler cannot assume that theframe slot fp->n will not be needed later, because the frame is stored in ordinary memory,possibly aliased by other pointers in runtime system data structures, and manipulated atthe byte level by the runtime system. The frame can even be migrated from processor toprocessor, in which case all bets are o� as far as the C compiler is concerned.The Cilk preprocessor, on the other hand, knows that the runtime system does not use14

fp->n or any local variable slot in the frame. Only the Cilk procedure's code reads or writesthose slots. Knowledge of this invariant about Cilk allows the preprocessor to remove thesaving assignment as well, an optimization that is impossible for the C compiler.In order to perform the optimization, the preprocessor must use data-
ow analysis todetermine which variables may be live, or needed later, and emit C code that saves andrestores only those variables.

15

16

Chapter 3The C-to-C Type-checkingPreprocessorThe preceding chapter motivated the need for type checking and data-
ow analysis in theCilk preprocessor. To partition the development process and increase the potential for codereuse, I �rst built a model preprocessor called C-to-C that translates C into C, and thenI extended it to recognize and translate Cilk. This chapter describes the architecture ofC-to-C, focusing on how it can be extended to build a type-checking preprocesor for anarbitrary C extension language.C-to-C encapsulates the organization of a generic type-checking preprocessor. It consistsof a sequence of phases operating on a shared data structure, called an abstract syntax tree(AST). Each phase annotates or transforms the AST. The AST is constructed from a Cprogram by a parser, annotated by type checking and data-
ow analysis, transformed by treeoperations, and �nally unparsed to produce the original C program. To build a C extensionlanguage preprocessor based on C-to-C, a developer modi�es the parser, type-checker, anddata-
ow analyzer to recognize the extension language, then adds transformations thatconvert extensions into C. The Cilk preprocessor, \Cilk-to-C," was built in precisely thismanner.C-to-C is based on c-parser, an ANSI C static checker written by Eric A. Brewer andMichael D. Noakes at the MIT Laboratory for Computer Science, with a yacc grammarfor ANSI C written by James A. Roskind. This package is designed to parse a C source�le, convert it into an abstract syntax tree, and perform static type checking on the tree.C-to-C's parsing and type checking phases and the structure of its abstract syntax tree areinherited from c-parser.The �rst section of this chapter describes the structure of the abstract syntax tree. Theremaining sections describe the phases of translation in C-to-C.3.1 The abstract syntax treeThis section describes the abstract syntax tree, explains why it is a good representation forextension language preprocessing, and points out the special features of C-to-C's abstractsyntax tree that enable type checking, data-
ow analysis, and type-directed translation.An abstract syntax tree (AST) represents the syntactic structure of a computer pro-gram in a tree data structure [1]. Each tree node in an AST represents a declaration,statement, or expression operator. Its children are the operands or syntactic components17

while (x < 10)
 x = x + 1;

1x

x

=

+10

<

x

while

Figure 3-1: An abstract syntax tree (AST) for a C program fragment.of the declaration, statement, or expression. Some examples of AST nodes are shown inFigure 3-1.Abstract syntax trees are an ideal representation for syntax-directed macro preproces-sors. The AST allows a preprocessor to perform translations locally, converting an extensionstatement or expression node into C while treating its operands as black boxes. For instance,the Cilk 1 macro preprocessor could transform a spawn statement, which is represented inthe AST by a node with one child for each argument of the spawned procedure, by gen-erating a replacement tree for the spawn with the argument expressions substituted (seeFigure 3-2).Since the AST representation is so convenient for C extension language translation, C-to-C also uses an AST, but extends the representation to include additional information.In order to perform type checking and semantics-directed translation, C-to-C annotatesthe AST with use-declaration pointers that point from identi�er uses to their declarations,control
ow pointers that identify the destination of nonlocal jumps like goto, variable andexpression types, constant expression values, and data-
ow analysis results. These semanticannotations are used to transform the source AST into an ordinary C AST.
spawn

arg1 argN

...

... arg1 argNFigure 3-2: Translating a Cilk spawn statement into C by operations on the abstract syntaxtree. The spawn arguments, shown here as gray circles, are substituted directly into thetree of C code that replaces the spawn node.18

parse

unparse

type
check

preprocessed
Cilk source

Cilk AST

Cilk AST

transform
C AST

Cilk AST
analyze

Cilk source

C postsource

cpp

...

...

...

...Figure 3-3: Translation phases of the Cilk preprocessor based on C-to-C.3.2 PhasesThis section describes the phases of translation in the C-to-C architecture, shown schemat-ically in Figure 3-3. Actually, the �gure shows the Cilk preprocessor based on C-to-C, inorder to clearly distinguish the front-end phases, which operate on a C extension languagelike Cilk, from the back-end phases, which operate on C. (In the unextended version ofC-to-C, the front-end and back-end languages are both C, so it would be hard to �nd thedividing line.) The purpose of each phase is summarized below. The remaining sections ofthis chapter will describe each phase of C-to-C in more detail, using the Cilk preprocessorto illustrate how to extend each phase.Cpp performs standard C macro preprocessing on the source �le, producing a �le with nopreprocessor directives or comments.Parse parses the source program into an AST.Type check performs type checking on the AST. annotating every declaration and ex-pression node with type information.Analyze performs data-
ow analysis on the AST, annotating every statement and expres-sion node with data-
ow information.Transform performs tree transformations that convert the annotated source-language ASTinto a pure C AST. (In C-to-C, this phase does nothing, because the source languageand target language are both C.)Unparse unparses the AST into text.3.2.1 Macro preprocessing (cpp)The cpp phase performs standard C macro preprocessing [13]. During this phase, macrode�nitions are interpreted and expanded, conditional compilation directives are recognized,and comments are removed from the source. The output of preprocessing is a �le of textwith no preprocessor directives or comments.19

The current implementation of C-to-C invokes the back-end compiler to perform Cmacropreprocessing. One consequence of this decision is that the cpp phase cannot be extended. Italso limits the portability of C-to-C: since ANSI did not standardize the connection betweenthe C macro preprocessor and the C compiler, some back-end compilers may not o�er a wayto invoke their macro preprocessing pass by itself. Even a compiler that allows separateinvocation of its macro preprocessor may emit private, non-standard compiler directives inthe preprocessor output. To remedy these and other de�ciencies, a future implementationof C-to-C may include its own cpp macro preprocessor.3.2.2 ParsingThe parsing phase consists of a lexical analyzer (generated automatically by lex) and anLR(1) parser (generated automatically from an LR(1) grammar by yacc) that togetherparse the source program and construct an AST representing it. If any syntax errors occurin the source, they are reported by the parsing phase. The parsing phase also connectsidenti�er uses to their declarations by use-declaration pointers, and nonlocal jumps to theirdestinations by control-
ow pointers. The result of parsing is an AST annotated withdeclaration and control-
ow pointers.To extend the parsing phase to recognize Cilk, the Cilk preprocessor adds new tokens,described by regular expressions, to the lexical analyzer, and new syntax, described bycontext-free productions, to the grammar.The parsing phase is based on the Brewer-Noakes ANSI C static checker. The lex/yaccparser is based on the ANSI C parser by James A. Roskind.3.2.3 Type checkingThe type checking phase makes a pass over the AST, determining types for expressionsand computing values for constant expressions. During the same pass, it looks for typemismatches and makes other static semantic checks required by ANSI C, and reports anyerrors to the user. The result of type checking is an AST annotated with types and constantvalues.Type checking is driven by a table of method functions, one for each kind of AST node.The checks required for a new statement or expression can be de�ned by adding a methodto the table. The Cilk preprocessor adds methods that type-check its unique statements,like spawn and sync. In a C extension language that de�nes new types, like the Cilkprocedure type, it may also be necessary to modify the type-checking methods of ordinaryC statements and expressions. For instance, Cilk allows a Cilk procedure to be called like aC function. In order to allow this usage, the Cilk preprocessor extends the type-checking ofan ordinary C function call to accept a Cilk procedure as well a C function in the operatorposition.The type checking phase is also based originally on the Brewer-Noakes static checker,though signi�cant changes have been made.3.2.4 AnalysisThe analysis phase performs intraprocedural data-
ow analysis on every procedure in theAST. The analysis phase can compute the solution of any data-
ow problem that can berepresented in a monotonic data-
ow analysis framework, including live variables, reachingde�nitions, and constant propagation. The algorithm is iterative, making repeated passes20

over a procedure until the data-
ow equations converge to a solution. Monotonic frameworksand the iterative algorithm are discussed in detail in Chapter 5.The analysis phase also makes some semantic checks, warning the user about unreachablestatements and functions which do not return a value. The result of data-
ow analysisis an AST annotated with data-
ow analysis information, such as live variables at everystatement.Like type checking, data-
ow analysis is also table-driven. In the Cilk preprocessor, thecontrol
ow of Cilk statements was de�ned by adding methods to the table. In addition,a developer can extend the analysis to solve additional data-
ow problems, by de�ningthe problems as monotonic frameworks. The Cilk preprocessor, for instance, de�nes twodata-
ow problems: live variable analysis, which determines whether a variable may beused before its next assignment, and \dirty variable" analysis, which determines whether avariable has been assigned since it was last saved to the frame.3.2.5 TransformThe transform phase makes zero or more passes over the AST to convert C extensions intopure C. In C-to-C, this phase does nothing, since no C extensions are recognized by thefront-end. In the Cilk preprocessor, however, the transform phase converts the Cilk syntaxtree into a C syntax tree. The output of the transform phase is a C AST.To an extension language developer, the transform phase is the most important and mostinteresting phase, since it speci�es how extensions are translated into C. The transformphase accounted for more than 60% of the new code needed to extend C-to-C into the Cilkpreprocessor, and about 90% of the development time.3.2.6 UnparsingThe last phase, the unparsing phase, walks over the C AST and emits C code correspondingto it. The unparsing phase is designed to be the inverse of the parsing phase, so that re-parsing the output with C-to-C produces an identical AST.Since the Cilk preprocessor generates ANSI C, it does not need to extend the unparsingphase. Other extension language preprocessors might extend the unparsing phase, if thetarget language is a language other than ANSI C.
21

22

Chapter 4Transparency in C-to-CThis chapter describes the special care taken by C-to-C to imitate one of the strengths ofsimple macro preprocessors: transparency. We say a translator is transparent to a featureof the source program if the translator copies the feature unchanged from input to output,preserving it through any intermediate program representations. Transparency is good forthree reasons. First, a transparent translator is more portable, because it avoids makingchanges that could produce unportable code. Second, a transparent translator interactswell with other programming tools that rely on nonsyntactic features of the source, likeline-oriented debuggers and pro�lers. Finally, transparent translators are easier to debug,because the postsource is high-level and readable, and extension translations appear incontext in the postsource. Text-based macro preprocessors are transparent to all features,since they deal directly with the text of the program. C-to-C, however, converts the programtext to and from an abstract syntax tree representation, which is not ideal for representingall features of the source. Nevertheless, our implementation of C-to-C is transparent to#pragma directives, line numbering, indentation, and constant expressions.On a high-level, C-to-C converts a C program (the source) into an AST, then convertsthe AST back to a C program (the postsource). In principle, the postsource should beidentical to the source | a goal we call complete transparency. Unfortunately, the currentimplementation of C-to-C cannot satisfy complete transparency, because an external macropreprocessor removes comments and macros from the source before it reaches C-to-C.In practice, however, the back-end C compiler is the only consumer of the postsource,so not all information in the source is important. Whitespace and comments, intended forhuman users, are ignored by the back-end compiler, and macros and preprocessor directivescan be interpreted early without a�ecting the �nal object code. For the purpose of extensionlanguage preprocessing, it is unnecessary to capture and maintain all this extra informationin the AST.Thus, C-to-C meets a weaker speci�cation, which we call operational transparency: ifthe source is a C program with no syntactic or semantic errors, then the postsource isa C program with no errors that is compiled to identical object code by the back-endcompiler. If the input contains errors, then C-to-C should issue appropriate error messageswithout emitting the postsource. Happily, this speci�cation is as easy to test as completetransparency: we can compile the source and the postsource separately, then perform abyte-by-byte comparison of their object code �les.Operational transparency gives more freedom to an implementor of C-to-C, but it shouldnot give so much freedom that C-to-C is useless as a preprocessor framework. C-to-C should23

still be transparent to features of the source that do not a�ect object code, such as linenumbering and high-level syntax. In particular, we note the following desiderata for a goodimplementation of C-to-C:� The postsource should be portable. In particular, if the source is a strictly conformingANSI C program, then the postsource should also be a strictly conforming ANSI Cprogram [3]. Thus, C-to-C should not perform transformations that depend on aparticular target platform or back-end C compiler. An example of an unacceptabletransformation is constant expression folding, which will be discussed further below.Portability allows a C-to-C-based preprocessor to target any platform with a standardANSI C compiler.� The postsource should have the same line numbering as the source, so that debuggersand pro�lers that rely on matching line numbers in the object code to line numbersin the source can function correctly.� The postsource should be high-level. C-to-C should not, for instance, transform whileloops into labels and goto statements, nor should it
atten nested expressions intosequences of simple operations with temporaries. Preserving the high-level featuresof the source contributes to the readability of the postsource, and allows an extensionlanguage developer to view extension translations in the context of the original source.� The postsource should be formatted for reading, since human programmers have toread and debug it while developing a C-to-C-based preprocessor. Rather than emitall the postsource on one incredibly long line, for instance, C-to-C follows the linebreaks and indentation style of the source as closely as possible.The remainder of this chapter examines how these transparency requirements a�ect themanner in which C-to-C handles #pragma directives, line numbering and indentation, andconstant expressions, all of which must be preserved in the AST. The next chapter willexplain how transparency requirements a�ect data-
ow analysis.4.1 Pragma directivesThe ANSI standard permits a compiler to recognize private compiler directives preceded by#pragma. This section describes how C-to-C preserves unrecognized #pragma directives fromthe source to the postsource, so that the source can include compiler directives intended forthe back-end C compiler.C-to-C itself recognizes two #pragma directives: #pragma lang +C, which puts the lex-ical analyzer into a special C-only mode, and #pragma lang -C which ends the specialmode. Of course, these directives have no e�ect in the unextended version of C-to-C, sinceC-to-C recognizes only C anyway. They are provided in anticipation that a C extensionpreprocessor based on C-to-C would need a way to turn o� its special reserved words andtreat part of the input program as strict C. Many Cilk programs, for example, are mixes ofexisting C code and new Cilk code. With these #pragma directives, the Cilk preprocessorcan accept existing C code that happens to use Cilk reserved words as ordinary identi�ers,without forcing all such identi�ers to be manually renamed.Other #pragma directives in the source are assumed to be intended for the back-endcompiler, and C-to-C attempts to preserve them. Unfortunately, since #pragma directives24

stmt ::= if (expr) stmt else stmtFigure 4-1: A grammar production for the if-else statement in C.are like preprocessor directives, they are not constrained by the ANSI C grammar andmay appear between any pair of tokens in the input program. As a result, they cannot beexpressed in the grammar. C-to-C handles this problem by collecting #pragma directives inthe lexical analyzer. Then, before starting a new statement or declaration, the parser insertsany waiting directives into the AST. The drawback of this simple scheme is that #pragmadirectives that appeared within a statement or declaration are pushed to the end of thestatement or declaration, possibly changing their meaning. (C-to-C generates a warningmessage when a pragma directive must be moved in this manner.) In our experience,however, these directives are generally used at the �le level or statement level, and rarelyappear in the middle of a statement or declaration.4.2 Line numbering and indentationC-to-C preserves line numbering and indentation from the source to the postsource bystoring line numbers and character o�sets in the AST. Preserving line numbering enablesline-oriented debuggers and pro�lers to match object code with original source lines, andpreserving indentation makes the postsource easier to read.When it constructs the AST, the parsing phase annotates each node of the tree withthe source �le, line number, and character o�set within the line where the syntax constructappeared. Such a triple h�le; line; o�seti is referred to as the node's source coordinates.Source coordinates are useful not only for identifying the o�ending source line in C-to-C's error messages, but also for providing the output phase with enough information toreconstruct the line numbering and indentation of the source, for the bene�t of debuggers,pro�lers, and human programmers using the postsource.Line numbering and indentation are preserved by saving the coordinates of tokens in theinput program. Every token in the input program is a terminal in some production in thegrammar, which is represented by a node in the AST. Consider, for instance, the produc-tion in Figure 4.2, which shows the if-else statement. An if node in the AST actuallyrepresents four input tokens, shown in boldface in the �gure: if, (,), and else. We couldreproduce the input perfectly if we stored the coordinates of every one of these tokens in theif-else node. Such precision is overkill, however, since our goal is not exact reproductionof the input program, but approximate reproduction (with identical meaning). In typical Cformatting styles, the positions of semicolons, commas, and parentheses are �xed relative totheir neighbor tokens (always immediately following or immediately preceding), so C-to-Csaves storage space in the AST by throwing away the coordinates of these tokens.As a result, for most AST nodes, C-to-C saves the coordinates of only one token. Forstatement nodes, the coordinates of the statement keyword are saved. For operators, thecoordinates of the operator token are saved. For two-keyword statements or operators, likeif-else and do-while, the coordinates of both keywords are saved. For a block (a list ofstatements enclosed in curly braces), the coordinates of both curly braces are stored, sincedi�erent programmers prefer their braces in di�erent places.Using the token coordinates stored in the AST by the parsing phase, the unparsingphase attempts to reconstruct the line numbering and indentation of the input. Since the25

parsing phase didn't save coordinates for every input token, but only selected tokens, thereconstructed C code is not identical to the input, but it is close enough to meet the needsof line-oriented debugging and readability.The transform phase of C-to-C may have added and deleted parts of the AST and movedother parts around. As a result, the unparsing phase cannot be guaranteed that the tokencoordinates in the AST are in their original order. Given a token T , its source coordinatesh�le,line,o�seti, and the coordinates of the current output position hFile,Line,O�seti, C-to-C must be able to emit T in an output position as close as possible to its source coordinates,which may have a completely di�erent �lename or line number. Fortunately, C providesa preprocessing directive that sets the �lename and line number arbitrarily: #line line"�lename". In order to prevent excessive #line directives from obscuring the readabilityof the postsource, C-to-C uses the following heuristic. A #line directive is emitted if andonly if one of the following conditions is true:� �le 6= File, to change the output �lename;� line < Line, to back up to an earlier line in the output;� line > Line + �, to advance a large distance in the output. The value � is a smallconstant, typically 5. This heuristic compresses the large runs of empty lines usuallyleft by the C macro preprocessor after removing comments and conditionally compiledcode. With this heuristic, runs of more than � empty lines are replaced by a #linedirective jumping immediately to the end of the run.After possibly emitting a #line directive, C-to-C inserts su�cient lines and spaces in theoutput to make Line = line and O�set � o�set. This simple algorithm su�ces to matchthe line numbering and indentation of the original source.4.3 Constant expressionsC-to-C preserves all constant expressions from the source to the postsource. For the sake ofportability, it performs no constant folding, even though it must evaluate constant expres-sions for semantic checking. This section examines the problems with constant expressionsevaluation more closely.C-to-C must evaluate constant expressions to perform a variety of static semantic checks.For instance, in ANSI C, all array dimensions must be positive, the case expressions in aswitch must have distinct constant values, and two array types are the same only if theyhave the same dimensions.Evaluating constant expressions in C-to-C is complicated by the fact that many constantexpressions in ANSI C are implementation-dependent: their values depend strongly on theback-end compiler and the target architecture. For example, sizeof expressions depend onthe machine word size, and sizeof(struct foo) depends on how the back-end compilerchooses to arrange the foo structure in memory. Arithmetic on constant expressions canalso return implementation-dependent results. One example is ~0 (the one's complement of0), whose value depends on how many bits are in a machine word. For maximum portabilityto di�erent back-end compilers, C-to-C should not make any assumptions about the valuesof such expressions.Still, C-to-C cannot simply omit semantic checks involving implementation-dependentconstant expressions, since the checks are important for discriminating strictly conforming26

ANSI C programs from de�nitely erroneous inputs. For instance, all conforming ANSI Ccompilers accept int foo[sizeof(int)], in which the array dimension is certainly posi-tive, and reject (or warn about) int foo[sizeof(int)-sizeof(int)], in which the arraydimension is always zero. In order to conform to the ANSI standard, C-to-C must makethe same discrimination.C-to-C solves this problem by computing a value for every constant expression, usingreasonable word sizes and structure packing rules, solely for the purpose of such semanticchecks. The computed value is stored in the AST node of the expression for later use, but itdoes not replace the expression, nor is it used in the unparsing phase to perform constant-expression folding. Although C-to-C could conceivably recognize that an expression has awell-de�ned, implementation-independent value and fold the expression down to that value,this optimization is not worth the trouble, since the back-end C compiler is equally capa-ble of constant folding. Furthermore, folding constant expressions reduces the abstractionlevel of the program, converting a high-level expression into a low-level expression. C-to-Cdelegates constant folding to the back-end compiler, where it belongs.

27

28

Chapter 5Data-
ow Analysis in C-to-CThis chapter describes C-to-C's data-
ow analysis algorithm, which works directly on thehigh-level abstract syntax tree. C-to-C implements a standard iterative algorithm [1], butwith performance improvements enabled by the AST representation, which include depth-�rst order and testing for convergence only at loops and jumps. It also provides an abstrac-tion for monotonic data-
ow analysis problems, so that an extension language developer cansimply de�ne the data-
ow problem that needs to be solved, and C-to-C's data-
ow anal-ysis algorithm automatically solves it. The Cilk preprocessor uses this data-
ow analysisframework to determine the live variables at a sync statement.C-to-C performs data-
ow analysis directly on the high-level AST, using an \implicitcontrol
ow graph" de�ned by the semantics of the C language. Because of the requirementof transparency described in the previous chapter, C-to-C cannot reduce the AST to a sim-pler intermediate language that contains no nested expressions. C-to-C cannot even treata nested expression as a \basic block" of straight-line code, because many C expressionsdo not have straight-line control
ow. Expressions can contain conditional operators orshort-circuiting Boolean operators which may not evaluate their second operand. Worse,the GNU extensions to C allow arbitrary statements to appear inside expressions, so jumpsinto and out of the middle of an expression are possible [16]. (C-to-C supports this \state-ment expression" extension, because it is occasionally useful in Cilk programs.) To avoidthese complications, C-to-C treats every AST node as a basic block, so its control
owgraph (CFG) contains many more nodes than a typical compiler's control
ow graph. Eachiteration of C-to-C's data-
ow analysis algorithm must propagate information through morenodes.C-to-C o�sets this performance hit by taking advantage of properties of the implicitCFG. First, the iterative algorithm converges fastest if the nodes of the CFG are visitedin depth-�rst order on each iteration [11]. Since the AST is a depth-�rst spanning treeof its implicit CFG, we can visit CFG nodes in depth-�rst order by simply walking thetree, so fast convergence is automatic. Second, C-to-C tests for convergence only at nodescorresponding to jumps and labels, rather than at all nodes of the CFG as would a standardalgorithm based directly on control-
ow graphs.The iterative algorithm coded in C-to-C applies to a variety of data-
ow analysis prob-lems, described in general as monotonic frameworks. Following the suggestions made byKildall [14], C-to-C de�nes a monotonic framework abstraction which enables an extensionlanguage developer to de�ne a data-
ow analysis problem declaratively. The monotonicframework abstraction is described in detail below.29

if-else

expr

then-stmt

else-stmt
entry exitFigure 5-1: The implicit control
ow of an if-else node. The node corresponds to the Ccode if (expr) then-stmt else else-stmt.5.1 Representing control
ow in the ASTC-to-C performs data-
ow analysis on a control
ow graph (CFG) represented implicitly inthe AST. Representing the control
ow graph implicitly rather than explicitly saves storageand makes C-to-C easier to extend.Every statement or expression node in the AST has an implicit CFG. For example,in the if-else node shown in Figure 5.1, control passes �rst to the expr child, branchesto either then-stmt or else-stmt, and then rejoins to leave the if-else node. The implicitcontrol
ow graphs for each AST node together specify an implicit control
ow graph forthe entire AST.Most nodes of the AST receive control from the parent initially and return to theparent after execution. Some nodes, however, represent jumps or labels, such as goto,break, continue, case, and switch. The parsing phase annotates these nodes with control-
ow pointers, connecting, for example, each goto node with its destination label nodeelsewhere in the AST. The implicit control
ow graph of jump and label nodes makes useof these nonlocal links. The parser does not connect function calls with function de�nitions,however, and so C-to-C's
ow analysis is presently limited to the scope of a single function.Intraprocedural analysis is su�cient for Cilk, and thus this restriction is not severe. OtherC extension languages could extend C-to-C for interprocedural data-
ow analysis, but thework required would be nontrivial.Representing the CFG implicitly saves space. Most control
ow follows existing ASTedges, between parents and children in the tree, and an implicit CFG reuses the AST edgesto save space. Only the jump and label statements mentioned in the previous paragraphhave nonlocal control
ow that does not follow AST edges, requiring additional space tostore control-
ow pointers.The implicit CFG is also easy to extend, because it is table-driven. Each statement orexpression node's implicit CFG is de�ned procedurally by a subroutine that passes data-
ow information among the node's children, following the implicit CFG edges. The control
ow of a C extension language can be de�ned simply by writing a new subroutine for eachnew statement or expression.We should make one more observation about implicit control
ow through expressions.C-to-C assumes that expressions and function call arguments are evaluated strictly from leftto right, but the back-end compiler is free to choose any evaluation order when it generatesactual object code. As a result, if the behavior of the source program depends on evalu-ation order, then C-to-C's analysis may be incorrect. Fortunately, programs that depend30

upon evaluation order are rare and inherently unportable, since the order of evaluation ofexpressions and side-e�ects in C has always been unde�ned [3, 13]. Few programmers writecode that depends on evaluation order, and those that do deserve what they get.5.2 Data-
ow analysis frameworksThis section describes C-to-C's data-
ow analysis abstraction. For the sake of extensibility,C-to-C provides a \monotonic data-
ow analysis framework" abstraction that is applicableto a wide variety of data-
ow problems, including live variables, constant propagation,reaching de�nitions, and available expressions. Monotonic data-
ow analysis frameworkswere originally proposed by Kildall [14] and developed by Kam and Ullman [12]. C-to-C'simplementation follows the treatment of monotonic frameworks in the \Dragon Book" ([1],section 10.11)A monotonic data-
ow analysis framework consists of:Data type V : a set of values to be propagated. A value in V represents an assertion aboutthe dynamic state of the program. The data type V must contain a distinguishedelement >, which represents \unde�ned" or \unknown." The concrete data type usedto implement V must provide an equality operation that tests whether two elementsof V are the same, so that the iterative algorithm can detect convergence.Direction of propagation: data-
ow information may be propagated either forwards orbackwards through the control
ow graph.Meet operation ^: a function mapping V �V ! V , which combines assertions about twopaths of execution where the paths join. The meet operation must be commutative,associative, idempotent, and has > as its identity element. With these properties,(V;^) is a semilattice. In particular, we can de�ne the partial ordering � on V byx � y () x ^ y = xThus, the distinguished unde�ned element > is the top of the semilattice, since x^> =x for all x 2 V .Also, the semilattice (V;^) must be bounded: all chains x1 < x2 < � � � in V musthave �nite length. If the set of values V is �nite, then this condition is automaticallysatis�ed.Transfer functions F : a set of functions mapping V ! V , which transform a value in Vas it passes through an AST node. Two functions from F are assigned to each node:one to the entry point and one to the exit point. The set F generally should containthe identity function on V , since many AST nodes have no e�ect on data
ow.All functions in F must be monotonic:f(x ^ y) � f(x) ^ f(y) for all f 2 F and x; y 2 VThe monotonicity of F and boundedness of (V;^) together imply that the iterativealgorithm of successive approximation used by C-to-C eventually converges to a solu-tion. 31

The functions in F should also satisfy strictness: f(>) = > for all f 2 F . Unlikemost compilers, C-to-C does not remove obviously unreachable code from its ASTbefore performing data-
ow analysis. As a result, if F contains nonstrict functions,unreachable paths in the control
ow graph could propagate information to the restof the graph, despite the fact that they would never be visited at runtime. Thus,with nonstrict functions, C-to-C's data-
ow analysis is too conservative. When allfunctions in F are strict, however, this problem does not arise. All unreachable pathsremain > (unde�ned), which cannot a�ect the reachable paths of the program.For an example of a data-
ow analysis framework, consider the problem of computinglive variables. A variable x is live at a point P in a program if x may be used before beingreassigned on some possible path of computation starting at P . Live-variable analysis isuseful to the Cilk preprocessor, because if a variable is dead (i.e., not live) at a sync point,then the preprocessor need not preserve its value across the sync.Live-variable analysis �ts into the framework as follows. The data type V is a set ofvariables, represented by a bit vector. A value of V asserts that the variables it contains arelive at that point in the program. The direction of propagation is backwards, since livenessis a property determined by the future execution of the program. The meet operation^ is set union, since a variable is live at a point in the program if and only if it is liveon at least one path leaving that point. Finally, the transfer function set F contains twomonotonic functions: genx(S) = S [fxg, which adds x to the set of live variables, andkillx(S) = S � fxg, which removes x from the set of live variables. Every AST noderepresenting a use of the variable x has genx as its exit transfer function, and every noderepresenting an assignment to x has killx.Monotonic data-
ow analysis frameworks are important to C-to-C's extensibility. Byde�ning a data type for V and writing subroutines for the meet and transfer operations, anextension language developer can reuse C-to-C's iterative algorithm to gather any data-
owinformation needed for translation or optimization.5.3 The iterative algorithmGiven a framework and an AST, which together de�ne a set of data-
ow equations, C-to-Ccomputes a solution to the data-
ow equations using the standard iterative algorithm ([1],algorithm 10.18). The iterative algorithm begins with all edges in the implicit control
owgraph set to >, and iteratively visits nodes satisfying their data-
ow equations until thesolution converges to a �xed point. C-to-C's algorithm di�ers from the standard algorithmin two respects: the control
ow graph is traversed in depth-�rst order, and convergence isonly tested at loops and jumps.Visiting CFG nodes in depth-�rst order yields the fastest convergence of the standarditerative algorithm [11]. If the data-
ow problem is a distributive framework (or a monotonicframework satisfying certain assumptions), and if the CFG is reducible (each loop has atmost one entry point), then the number of iterations before convergence is bounded by theloop-connectedness of the CFG, which is de�ned as the largest number of back edges on anycycle-free path of the graph. Intuitively, the loop-connectedness is the nesting level of theinnermost loop in the graph. This result means that for most data-
ow frameworks andwell-structured C functions (which have only one entry per loop), the iterative algorithmrequires only a few iterations, roughly as many as the depth of the innermost loop of thefunction. 32

To visit CFG nodes in depth-�rst order, other compilers must build a depth-�rst span-ning tree on the CFG. In C-to-C, the AST is automatically a depth-�rst spanning treeof its implicit control
ow graph, so C-to-C visits CFG nodes in depth-�rst order just bywalking over the AST.The standard iterative algorithm visits every node in every iteration, halting if andonly if the data
ow at all nodes remains constant across an iteration. Testing all nodesfor changes during the iteration would be more expensive for C-to-C, because it does notsummarize expressions and straight-line code into a single basic block.C-to-C uses a faster termination condition that takes advantage of the high-level AST.C-to-C's algorithm halts if and only if the data
ow at \loop nodes" and \con
uence nodes"remains constant. A loop node is an AST node representing a loop in the source langage. InC, the loop nodes are do-while, for, and while. A con
uence node is an AST node thatmay receive or pass control nonlocally, with another AST node that is neither its parentnor one of its children. The con
uence nodes in C are goto, switch,1 continue, break,return, label, case, and default. An acyclic node is neither a loop node nor a con
uencenode. The acyclic nodes in C are expressions and conditional (if-else) statements.Because C-to-C visits nodes in depth-�rst execution order, the data-
ow equations atacyclic nodes are always satis�ed after every iteration. As a result, if the data
ow at theloop nodes and con
uence nodes remains unchanged across an iteration, then the data
owat the acyclic nodes also remains unchanged. Thus, it su�ces only to test for convergenceat the loop nodes and con
uence nodes.As a consequence of its termination condition, C-to-C performs only a single iterationif the AST contains no loop nodes or con
uence nodes. An AST consisting entirely ofacyclic nodes has an acyclic implicit control
ow graph, so a single depth-�rst pass su�cesto compute the solution to the data-
ow equations.
1A switch statement in C is not as structured in C as it is in other languages. In C, switch is actuallya computed jump to a label inside its body. Syntactically, the label is not a direct child of the switch, sowe regard this jump as a nonlocal transfer of control.33

34

Chapter 6ConclusionsUsing the C-to-C framework, I have written a preprocessor that translates both Cilk 1 andCilk 2, performs type checking on the Cilk source, and uses live variable analysis to optimizesaving and restoring local variables across sync statements.Building the Cilk preprocessor on top of C-to-C required a relatively small amount ofwork, the equivalent of a few weeks of e�ort by a full-time programmer. In fact, about 90%of the programming e�ort was spent in �guring out how to transform Cilk extensions intoC. Extending type checking and data-
ow analysis to cover Cilk was comparatively simple.Our experience with the Cilk preprocessor suggests that C-to-C is a good preprocessorframework, since it allows an extension language developer to focus on the syntax andsemantics of the extension language, rather than on type checking or data-
ow analysis.The type-checking preprocessor is now in everyday productive use by the Cilk group, whoprefer it to the older Cilk 1 macro preprocessor. The type-checking preprocessor translatesCilk into C slower than the macro preprocessor but just as quickly as our C compiler (gcc)compiles C into object code. Overall, then, users of the type-checking preprocessor payonly a factor of two in compile time, in exchange for type-checking, optimization, and theability to use Cilk 2 (a higher-level language than Cilk 1).With an extensible framework like C-to-C, we can a�ord to contemplate more ambitiousextensions to the Cilk language without cringing at the potential development e�ort. Forinstance, we are experimenting with a distributed shared memory system for Cilk, which iscurrently implemented with a low-level runtime library interface. To simplify programmingthe interface, we have devised a \global pointer" extension for Cilk which allows a program-mer to manipulate shared objects with familiar C pointer operations. With the new Cilkpreprocessor, we anticipate that adding global pointers to Cilk will take only a few days ofwork.6.1 Future work on C-to-CA future version of C-to-C may include its own standard C macro preprocessor. The currentimplementation relies on the back-end C compiler to perform macro preprocessing, whichis neither portable (since not all C compilers o�er a separate macro preprocessor) norextensible.Once C-to-C performs its own macro preprocessing, it will have access to the originalsource program, enabling a more transparent implementation of C-to-C. Enough informa-tion could be saved in the abstract syntax tree to reproduce the source program precisely,35

including comments and macros.Precise source reproduction would make C-to-C applicable to a wider variety of source-to-source processing applications. In C extension language preprocessing, the only consumerof C-to-C's output is a back-end compiler. But in many other applications of source-to-source translation, a human programmer might be another consumer, in which casepreserving comments is extremely important. Other source-to-source translation problemsthat may be solvable with C-to-C include automatic or programmer-directed source-leveloptimization, program analysis, source code metrics, error checking (e.g., lint tools), andinstrumentation for pro�ling or debugging.6.2 Getting C-to-CThe source code of C-to-C is freely available from ftp://theory.lcs.mit.edu/pub/c2c.Building C-to-C requires an ANSI C compiler and the free GNU tools flex and bison.

36

Bibliography[1] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques,and Tools. Addison-Wesley, 1988.[2] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W. Tseng. The SUIF com-piler for scalable parallel machines. In Proceedings 7th SIAM Conference on ParallelProcessing for Scienti�c Computing, February 1995.[3] American National Standards Institute, Inc., NY. American National Standards forInformation Systems, Programming Language C ANSI X3.159-1989. 1990.[4] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,Phil Lisiecki, Rob Miller, Keith H. Randall, Andy Shaw, and Yuli Zhou. Cilk 2.0Reference Manual. MIT LCS, 545 Technology Square, Cambridge, MA 02139, May1995. Available via ftp://theory.lcs.mit.edu/pub/cilk/manual-2.0.ps.Z.[5] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,Keith H. Randall, and Yuli Zhou. Cilk: An e�cient multithreaded runtime system.In Proceedings 5th ACM SIGPLAN Symposium on Principles and Practice of ParallelProgramming, Santa Barbara, CA, July 1995. To appear.[6] Fran�cois Bodin, Peter Beckman, Dennis Gannon, Jacob Gotwais, Srinivas Narayana,Suresh Srinivas, and Beata Winnicka. Sage++: An object-oriented toolkit and classlibrary for building Fortran and C++ restructuring tools. In Proceedings of OONSKI'94, 1994. Also available as ftp://ftp.extreme.indiana.edu/pub/sage/oonski94.ps.gz.[7] Fran�cois Bodin, Peter Beckman, Dennis Gannon, Srinivas Narayana, and Shelby X.Yang. Distributed pC++: Basic ideas for an object parallel language. Scienti�cProgramming, 2(3), Fall 1993.[8] K. Mani Chandy and Carl Kesselman. CC++: A declarative concurrent object ori-ented programming notation. Technical Report CS-TR-92-01, California Institute ofTechnology, Pasadena, CA, 1992.[9] David E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishnamurthy,Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Parallel programming inSplit-C. In Proceedings of Supercomputing '93, the ACM/IEEE Conference, Portland,OR, November 1993.[10] Chris Fraser and David Hanson. A Retargetable C Compiler: Design and Implemen-tation. Benjamin/Cummings, 1995. 37

[11] John B. Kam and Je�rey D. Ullman. Global data
ow analysis and iterative algorithms.Journal of the ACM, 23:158{171, 1976.[12] John B. Kam and Je�rey D. Ullman. Monotone data
ow analysis frameworks. ActaInformatica, 7:305{318, 1977.[13] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, 2ndEdition. Prentice Hall, 1988.[14] Gary Kildall. A uni�ed approach to global program optimization. In Proceedings 1stACM Symposium on Principles of Programming Languages, pages 194{206, 1973.[15] J. R. Rose and G. L. Steele Jr. C*: An extended language for data parallel pro-gramming. In Proceedings 2nd International Conference on Supercomputing, volume 2,pages 2{16, San Francisco, CA, May 1987.[16] Richard Stallman et al. GNU C compiler (GCC) version 2. Source code and documen-tation available from prep.ai.mit.edu via anonymous ftp, in directory /pub/gnu.,1994.

38

