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Chapter 1
Introduction
Multiprocessor shared-memory machines (SMP's) are rapidly becoming commodityitems in the computer industry. Despite the prevalence of such machines, exploit-ing their computing power remains di�cult because programming environments arecumbersome or ine�cient.I am a principal designer of Cilk (pronounced \silk"), a parallel multithreadedlanguage being developed at MIT, which is designed to make high-performance par-allel programming easier. This thesis describes the Cilk language, its programmingenvironment, and its implementations. The Cilk language is a simple extension toC that provides constructs for easily expressing parallelism in an application. Cilkinsulates the programmer from many low-level implementation details, such as loadbalancing and communication. Nevertheless, the Cilk compiler and runtime systemwork together to execute Cilk code e�ciently on an SMP, typically with only a fewpercent overhead and near linear speedup.1.1 PerformanceFigure 1-1 gives some performance numbers for some sample applications written inCilk, run on a Sun Enterprise 5000 with 8 167MHz UltraSPARC processors. Threemetrics for each application are measured. The metric T1 is the running time of theCilk program on 1 processor, and the metric T8 is the running time of the Cilk program9



Program Size T1=TS T1=T8 TS=T8fib 35 3.63 8.0 2.2blockedmul 1024 1.05 7.0 6.6notempmul 1024 1.05 7.6 7.2strassen 1024 1.01 5.7 5.6*cilksort 4; 100; 000 1.21 6.0 5.0yqueens 22 0.99 8.0 8.0yknapsack 30 1.03 8.0 7.7lu 2048 1.02 7.7 7.5*cholesky BCSSTK32 1.25 6.9 5.5heat 4096� 512 1.08 6.6 6.1fft 220 0.93 5.6 6.0barnes-hut 216 1.02 7.2 7.1Figure 1-1: The performance of some example Cilk programs. Times are are accurateto within about 10%. T1 and T8 are the running times of the Cilk program on 1 and 8processors, respectively (except for the nondeterministic programs, labeled by a dagger (y),where T1 is the actual work of the computation on 8 processors, and not the running timeon 1 processor). TS is the running time of the serial algorithm for the problem, which isthe C elision for all programs except those that are starred (*), where the parallel programimplements a di�erent algorithm than the serial program. The quantity T1=TS gives theoverhead incurred in parallelizing the program. The quantity T1=T8 represents the speedupon 8 processors relative to the 1 processor run, and the quantity TS=T8 represents thespeedup relative to the serial program.on 8 processors. The metric TS is the running time of the best serial program for theapplication. For applications which did not have to be reorganized to expose theirparallelism, the best serial program is just the C elision of the Cilk program, theCilk program with all of the Cilk keywords deleted. Cilk's semantics guarantee thatthe C elision is a semantically correct implementation of the Cilk program. For otherapplications, namely cilksort and cholesky, the best serial program implements adi�erent algorithm than the parallel Cilk code.The column T1=TS in Figure 1-1 gives the ratio of the running time of the Cilkprogram on 1 processor to the running time of the best serial program. The quantityT1=TS represents the work overhead , or the extra work required when convertingfrom a serial program to a parallel program. For most applications, the work overheadis only a few percent. Only fib, a program to compute Fibonacci numbers, experi-ences a high work overhead because of its extremely short threads. Even programsthat were reorganized to expose parallelism have small work overheads, despite the10



Original Cilk SPLASH-2lines 1861 2019 2959� lines 0 158 1098diff lines 0 455 3741T1=TS 1 1.024 1.099T1=T8 N/A 7.2 7.2TS=T8 N/A 7.1 6.6Figure 1-2: Comparision of codes for the Barnes-Hut algorithm. The three codeslisted include the original Barnes-Hut C code, the Cilk parallelization, and theSPLASH-2 parallelization. The row \� lines" counts the number of lines of codethat were added to the original code to parallelize it. The row \diff lines" countsthe number of lines the diff utility outputs when comparing the original and par-allel versions of the code, a rough measure of the number of lines of code that werechanged. The last three lines show a comparison of the performance of the two paral-lel codes. The quantity TS for the Cilk code is just the running time of the original CBarnes-Hut code. The quantity TS for the SPLASH-2 code was obtained by remov-ing the parallel constructs from the SPLASH-2 code by hand. (The SPLASH-2 codecannot be directly compared to the original C code because it contains some (serial)optimizations which are not present in the original C code.)fact that the best serial program is more e�cient than the C elision.The example Cilk programs get good speedup. The quantity T1=T8 is the speedupobtained by running the Cilk program on 8 processors. The important metric TS=T8measures the end-to-end application speedup that a programmer can expect whenparallelizing his serial application for use on an 8 processor machine. Figure 1-1shows that Cilk gives good end-to-end speedup for a wide variety of applications.1.2 ProgrammibilityProgramming in Cilk is simple. To back up this claim, Figure 1-2 presents somecomparisions among three versions of Barnes-Hut (the last application listed in Fig-ure 1-1), an application which simulates the motion of galaxies under the inuenceof gravity. The three versions are the serial C version obtained from Barnes's webpage [5], the Cilk parallelization of that code, and the SPLASH-2 parallelization [101].SPLASH-2 is a standard parallel library similar to POSIX threads developed at Stan-11



ford. The SPLASH-2 Barnes-Hut code, derived from the serial C code [92], is part ofthe SPLASH-2 parallel benchmark suite.Figure 1-2 shows some rough measures of the e�ort required to parallelize theoriginal C code using both Cilk and SPLASH-2. One simple measure of e�ort is thenumber of lines that were added to the code. The entry \� lines" counts the numberof lines that were added to the original code to parallelize it using both parallelizationtechniques. This measure shows that Cilk requires almost an order of magnitude lessadditional code than SPLASH-2. The entry \diff lines" gives the number of linesthat were changed, measured by counting the number of lines that the UNIX diffutility1 outputs when comparing the original C code to each of the parallel codes.Again, there is an order of magnitude di�erence between the changes required for theCilk parallelization versus the SPLASH-2 parallelization. In fact, almost all lines ofthe C code had to be changed for the SPLASH-2 parallelization. The changes requiredin order to parallelize the application using SPLASH-2 include explicit load balancing(requiring additional indirections and load-balancing phases), passing a thread ID toevery function, and using the thread ID as an index for every private variable access.Automatic load balancing and linguistic support for private variables eliminate allof this programmer overhead in the Cilk parallelization. Although the measures ofcoding e�ort used here are arguably imprecise, they nevertheless suggest that lesse�ort is required to parallelize the original C code using Cilk than using a threadlibrary like SPLASH-2, and the resulting parallelization obtains better end-to-endspeedup.1.3 DebuggingParallel codes are notoriously hard to debug [80]. Much of this di�culty arises fromeither intentional or unintentional nondeterministic behavior of parallel programs.Unintentional nondeterminism often occurs because of a \data race", when two par-allel threads holding no locks in common access the same memory location and at least1diff -w is used to eliminate any di�erences in whitespace.12



one of the threads modi�es the location. In order to help Cilk programmers debugtheir parallel code, Cilk provides a parallel debugger called the Nondeterminator-2 to identify possible unintentional nondeterminism caused by data races. TheNondeterminator-2 provides two algorithms, called All-Sets and Brelly, thatcheck a Cilk computation , the result of executing a Cilk program on a particu-lar input, for data races. The All-Sets algorithm is exact but may be too ine�cientin the worst case. The Brelly algorithm, by imposing a simple locking discipline onthe programmer, can detect data races or violations of the discipline in nearly lineartime. For a program that runs serially in time T , accesses V shared memory locations,and holds at most k locks simultaneously, Brelly runs in O(kT �(V; V )) time andO(kV ) space, where � is Tarjan's functional inverse of Ackermann's function. Like itspredecessor, the Nondeterminator (which checks for simple \determinacy" races) theNondeterminator-2 is a debugging tool, not a veri�er, since it checks for data racesonly in a single computation, and a program can generate many computations.For the class of \abelian" programs, ones whose critical sections commute, how-ever, the Nondeterminator-2 can provide a guarantee of determinacy. We prove thatany abelian Cilk program produces a determinate �nal state if it is deadlock freeand if it generates any computation which is data-race free. Thus, either of theNondeterminator-2's two algorithms can verify the determinacy of a deadlock-freeabelian program running on a given input.1.4 Distributed implementationFor Cilk programs that require more computing power than one SMP can provide, wegive a distributed version of Cilk that can run on multiple SMP's. We de�ne a weakconsistency model for shared memory called \dag consistency" and a correspondingconsistency protocol called Backer. We argue that dag consistency is a natural con-sistency model for Cilk programs, and we give both theoretical and empirical evidencethat the Backer algorithm e�ciently implements dag consistency. In particular, weprove strong bounds on the running time and number of page faults (cache misses)13



of Cilk running with Backer. For instance, we prove that the number of page faults(cache misses) incurred by Backer running on P processors, each with a shared-memory cache of C pages, is the number of page faults of the 1-processor executionplus at most 2C \warm-up" faults for each procedure migration. We present empiri-cal evidence that this warm-up overhead is actually much smaller in practice than thetheoretical bound, as typically less than 3% of the possible 2C faults actually occur.We de�ne the MultiBacker algorithm, an extension of Backer for clusters ofSMP's. The MultiBacker algorithm modi�es Backer by using a uni�ed shared-memory cache for each SMP and implements a \local bias" scheduling policy forimproving scheduling locality. We have implementations of Backer on the Connec-tion Machine CM5 and MultiBacker on clusters of Sun and Digital SMP's.1.5 Contributions of this thesisThis thesis advocates the use of Cilk as a programming environment for parallelcomputers. This thesis supports this advocacy through the following contributions:� The Cilk language. Cilk provides simple yet powerful constructs for express-ing parallelism in an application. Important concepts like the C elision andnovel features like \implicit atomicity" provide the programmer with parallelsemantics that are easy to understand and use.� An e�cient implementation of the Cilk language on an SMP. A principled com-pilation and runtime strategy is proposed and used to guide the implementationof Cilk-5, our latest Cilk release. Figure 1-1 shows that a wide range of applica-tions obtain good performance when written in Cilk. Speedups relative to thebest serial programs are quite good, reecting both the low work overhead andgood speedup of the parallel program.� Demonstrated performance of Cilk on a variety of realistic parallel applications.This thesis presents a set of interesting applications in Cilk to show Cilk's appli-cability and e�ciency across a variety of problem domains. These applications14



include a Barnes-Hut algorithm, sparse and dense matrix algorithms includingLU decomposition and Cholesky factorization, and the world's fastest Rubik'scube solver.� A parallel debugging tool called the Nondeterminator-2. The Nondeterminator-2checks a parallel program for data races, which are a potential source of un-wanted nondeterminism. We present two algorithms, All-Sets and Brelly,used by the Nondeterminator-2 for �nding data races in a Cilk computation.The All-Sets algorithm is exact but can sometimes have poor performance;the Brelly algorithm, by imposing a locking discipline on the programmer, isguaranteed to run in nearly linear time.� A proof that the Nondeterminator-2 can guarantee determinacy for the class ofabelian program. Although the Nondeterminator-2 is guaranteed to �nd anydata races in a Cilk computation, di�erent runs of a Cilk program on the sameinput may generate di�erent computations, and thus the Nondeterminator-2cannot in general guarantee determinacy of the program on that input. Weprove, however, that for the class of abelian programs, the Nondeterminator-2can provide a guarantee. Speci�cally, if the Nondeterminator-2 does not �nda data race in a single execution of a deadlock-free abelian program run on agiven input, then that progrm is determinate (always generates the same �nalmemory state) for that input.� A weak memory-consistency model called \dag consistency" and Backer, aprotocol that implements dag consistency. Dag consistency is a novel memorymodel that escapes from the standard \processor-centric" style of de�nitionto a more general \computation-centric" de�nition. Dag consistency providesa natural consistency model for use with multithreaded languages like Cilk.Backer, the protocol that implements dag consistency, is a simple protocolthat nevertheless provides good performance on the Connection Machine CM5for a variety of Cilk applications. 15



� A proof that Backer, together with the work-stealing scheduler from [16], givesprovably good performance. By weakening the memory consistency model todag consistency, we are able to use Backer, a memory consistency protocolthat we can analyze theoretically. We are able to prove bounds on the runningtime and communication use of a Cilk program executed on top of Backer,with all the costs of the protocol for maintaining memory consistency included.We believe this proof is the �rst of its kind in this regard.� An extension of Backer, called MultiBacker, for multi-level memory hier-archies like those found in clusters of SMP's. The MultiBacker protocol ex-tends Backer to take advantage of hardware support for shared memory withinan SMP while still using the theoretically and empirically e�cient Backer pro-tocol between SMP's. MultiBacker is implemented in our latest distributedversion of Cilk for clusters of SMP's.The remainder of this thesis is logically composed of three parts. The �rst part,Chapter 2, describes the Cilk language. We describe how parallelism and synchro-nization are expressed using spawn and sync statements, and we show how nonde-terminism can be expressed using inlets and an abort mechanism. We describe aperformance model for Cilk programs in terms of \work" and \critical path" thatallows the user to predict the performance of his programs on a parallel computer.The second part of the thesis, Chapters 3, 4, and 5, describes our Cilk-5 systemfor contemporary shared-memory SMP's. Chapter 3 describes our implementationof the Cilk language and the techniques we use to reduce the scheduling overhead.In Chapter 4 we describe some realistic applications that we have coded in Cilk andshow how these applications illuminate many of Cilk's features. Lastly, in Chapter 5,we describe the Nondeterminator-2 debugging tool for Cilk programs.In the third part of the thesis, Chapters 6, 7, and 8, we describe the implementa-tion of Cilk on distributed platforms. In Chapter 6 we describe dag consistency, ourmemory model, and Backer, its implementation. In Chapter 7, we prove bounds onthe running time and communication used by Cilk programs running with Backer.16



We also demonstrate how these bounds can be applied to many of the Cilk appli-cations. Finally, in Chapter 8 we describe the latest distributed version of Cilk forclusters of SMP's, and outline MultiBacker, our multilevel consistency protocol.
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Chapter 2
The Cilk language
This chapter presents a overview of the Cilk extensions to C as supported by Cilk-5.(For a complete description, consult the Cilk-5 manual [24].) The key features of thelanguage are the speci�cation of parallelism and synchronization, through the spawnand sync keywords, and the speci�cation of nondeterminism, using inlet and abort.In this chapter, we also describe a simple performance model based on \work" and\critical path" which allows a Cilk programmer to predict the performance of his Cilkprograms on parallel machines.2.1 The history of CilkCilk is a multithreaded language for parallel programming that generalizes the se-mantics of C by introducing linguistic constructs for parallel control. The originalCilk-1 release [11, 14, 58] featured a provably e�cient, randomized, \work-stealing"scheduler [11, 16], but the language was clumsy, because parallelism was exposed \byhand" using explicit continuation passing. The Cilk-2 language provided better lin-guistic support by allowing the user to write code using natural \spawn" and \sync"keywords, which the compiler then converted to the Cilk-1 continuation-passing formautomatically.With the introduction of Cilk-3, shared memory was added to the Cilk language.Shared memory was provided by our Backer algorithm between processors on the18



Connection Machine CM5. The shared memory support in Cilk-3 was explicit, requir-ing the user to denote which pointers referenced shared objects and which pointersreferenced private objects. Only explicitly allocated memory (from the stack or heap)could be shared in Cilk-3.The Cilk-4 and Cilk-5 languages witnessed the transition from the ConnectionMachine CM5 as our main development platform to an Enterprise 5000 UltraSPARCSMP. With shared memory provided in hardware, much of the explicit shared mem-ory support could be made implicit, simplifying the language and enabling sharing ofall memory, including global and stack variables.The Cilk language implemented by our latest Cilk-5 release [24] still uses a the-oretically e�cient scheduler, but the language has been simpli�ed considerably. Itemploys call/return semantics for parallelism and features a linguistically simple \in-let" mechanism for nondeterministic control. Cilk-5 is designed to run e�ciently oncontemporary symmetric multiprocessors (SMP's), which feature hardware supportfor shared memory. We have coded many applications in Cilk, including scienti�capplications like Barnes-Hut, dense and sparse linear algebra, and others. We havealso coded non-scienti�c applications including a Rubik's cube solver, raytracing andradiosity programs, and the ?Socrates and Cilkchess chess-playing programs whichhave won prizes in international competitions.The philosophy behind Cilk development has been to make the Cilk languagea true parallel extension of C, both semantically and with respect to performance.On a parallel computer, Cilk control constructs allow the program to execute inparallel. When we elide the Cilk keywords for parallel control to create the C elision,however, a syntactically and semantically correct C program results. Cilk is a faithfulextension of C, because the C elision of a Cilk program is a correct implementationof the semantics of the program. Moreover, on one processor, a parallel Cilk program\scales down" to run nearly as fast as its C elision.The remainder of this chapter describes the features of the Cilk-5 language anda simple performance model which allows programmers to reason about the perfor-mance of their program. The intent of this chapter is to give a feel for the simplicity19



of the Cilk language. Readers familiar with the Cilk language and its performancemodel of \work" and \critical path" can skip to Chapter 3.2.2 Spawn and syncThe basic Cilk language can be understood from an example. Figure 2-1 shows aCilk program that computes the nth Fibonacci number.1 Observe that the programwould be an ordinary C program if the three keywords cilk, spawn, and sync areelided.The type quali�er cilk identi�es fib as a Cilk procedure, which is the parallelanalog to a C function. Parallelism is introduced within a Cilk procedure when thekeyword spawn preceeds the invocation of a child procedure. The semantics of a spawndi�ers from a C function call only in that the parent procedure instance can continueto execute in parallel with the child procedure instance, instead of waiting for the childto complete as is done in C. Cilk's scheduler takes the responsibility of schedulingthe spawned procedure instances on the processors of the parallel computer.A Cilk procedure cannot safely use the values returned by its children until itexecutes a sync statement. The sync statement is a local \barrier," not a global oneas, for example, is used in message-passing programming. In the Fibonacci example, async statement is required before the statement return (x+y) to avoid the anomalythat would occur if x and y are summed before they are computed. In addition toexplicit synchronization provided by the sync statement, every Cilk procedure syncsimplicitly before it returns, thus ensuring that all of its children terminate before itdoes.Cilk imposes the following restrictions on the appearance of the keywords cilk,spawn, and sync in a Cilk program. The spawn and sync keywords can appear onlyin Cilk procedures, that is C functions annotated with the cilk keyword. A spawnstatement can spawn only Cilk procedures, not C functions, and Cilk procedures can1This program uses an ine�cient algorithm which runs in exponential time. Althoughlogarithmic-time methods are known [26, p. 850], this program nevertheless provides a good di-dactic example. 20



#include <stdlib.h>#include <stdio.h>#include <cilk.h>cilk int fib (int n){ if (n<2) return n;else {int x, y;x = spawn fib (n-1);y = spawn fib (n-2);sync;return (x+y);}}cilk int main (int argc, char *argv[]){ int n, result;n = atoi(argv[1]);result = spawn fib(n);sync;printf ("Result: %d\n", result);return 0;}Figure 2-1: A simple Cilk program to compute the nth Fibonacci number in parallel(using a very bad algorithm).be invoked only via spawn statements.2 These restrictions ensure that parallel codeis invoked with parallel spawn calls and serial code is invoked with regular C calls.2.3 InletsOrdinarily, when a spawned procedure returns, the returned value is simply storedinto a variable in its parent's frame:x = spawn foo(y);2The keyword cilk enables static checking of this condition. Functions which are spawned musthave the cilk quali�er in their type, and functions which are called must not have the cilk quali�erin their type. 21



cilk int fib (int n){ int x = 0;inlet void summer (int result){ x += result;return;}if (n<2) return n;else {summer(spawn fib (n-1));summer(spawn fib (n-2));sync;return (x);}}Figure 2-2: Using an inlet to compute the nth Fibonnaci number.Occasionally, one would like to incorporate the returned value into the parent's framein a more complex way. Cilk provides an inlet feature for this purpose, which wasinspired in part by the inlet feature of TAM [28].An inlet is essentially a C function internal to a Cilk procedure. In the normalsyntax of Cilk, the spawning of a procedure must occur as a separate statement andnot in an expression. An exception is made to this rule if the spawn is performed as anargument to an inlet call. In this case, the procedure is spawned, and when it returns,the inlet is invoked. In the meantime, control of the parent procedure proceeds tothe statement following the inlet call. In principle, inlets can take multiple spawnedarguments, but Cilk-5 has the restriction that exactly one argument to an inlet maybe spawned and that this argument must be the �rst argument. If necessary, thisrestriction is easy to program around.Figure 2-2 illustrates how the fib() function might be coded using inlets. Theinlet summer() is de�ned to take a returned value result and add it to the variablex in the frame of the procedure that does the spawning. All the variables of fib()
22



are available within summer(), since it is an internal function of fib().3No lock is required around the accesses to x by summer, because Cilk providesatomicity implicitly. The concern is that the two updates might occur in parallel,and if atomicity is not imposed, an update might be lost. Cilk provides implicitatomicity among the \threads" of a procedure instance, where a thread is a maxi-mal sequence of instructions not containing a spawn or sync statement, or a return(either explicit or implicit) from a Cilk procedure. Threads are determined dynam-ically at runtime based on the actual control ow of a procedure instance. An inletis precluded from containing spawn and sync statements (as it is only allowed tocontain C code), and thus it operates atomically as a single thread. Implicit atom-icity simpli�es reasoning about concurrency and nondeterminism without requiringlocking, declaration of critical regions, and the like.Cilk provides syntactic sugar to produce certain commonly used inlets implicitly.For example, the statement x += spawn fib(n-1) conceptually generates an inletsimilar to the one in Figure 2-2.2.4 AbortSometimes, a procedure spawns o� parallel work which it later discovers is unnec-essary. This \speculative" work can be aborted in Cilk using the abort primitiveinside an inlet. A common use of abort occurs during a parallel search, where manypossibilities are searched in parallel. As soon as a solution is found by one of thesearches, one wishes to abort any currently executing searches as soon as possible soas not to waste processor resources. The abort statement, when executed inside aninlet, causes all of the already-spawned children of the enclosing procedure instanceto terminate.3The C elision of a Cilk program with inlets is not ANSI C, because ANSI C does not supportinternal C functions. Cilk is based on Gnu C technology, however, which does provide this support.
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typedef struct{ Cilk_lockvar lock;int count;} entry;cilk void histogram(int *elements, int num, entry *hist){ if (num == 1) {entry *e = &hist[*elements];Cilk_lock(&e->lock);e->count++;Cilk_unlock(&e->lock);}else {spawn histogram(elements, num/2, hist);spawn histogram(elements + num/2, num - num/2, hist);sync;}}Figure 2-3: A Cilk procedure to compute the histogram of an array of elements. Thisprocedure uses locks to protect parallel accesses to the count variables.2.5 LocksRelease 5.1 of Cilk provides the user with mutual-exclusion locks. A lock has typeCilk lockvar. The two operations on locks are Cilk lock to acquire a lock, andCilk unlock to release a lock. Both functions take a single argument which is apointer to an object of type Cilk lockvar. Any number of locks may be held si-multaneously. For a given lock A, the sequence of instructions from a Cilk lock(&A)to its corresponding Cilk unlock(&A) is called a critical section , and we say thatall accesses in the critical section are protected by lock A. Cilk guarantees thatcritical sections locked by the same lock act atomically with respect to each other.Acquiring and releasing a Cilk lock has the memory consistency semantics of releaseconsistency [55, p. 716]. Locks must be initialized using the function Cilk lock init.An example procedure that uses locks is shown in Figure 2-3. This programcomputes a simple histogram of the elements in the array elements. Locks are used24



to protect parallel updates to the count �elds of the hist array.Locks were a reluctant addition to the Cilk language. Locks force the programmerto follow a protocol, and therefore they make programming more di�cult. The pro-grammer needs to make sure his locking strategy is deadlock free and that it guards allof the appropriate accesses. The Nondeterminator-2 helps with some of these issues,but it is not a panacea. Unfortunately, we currently have no other mechanism forprogrammers to modify in parallel shared data structures other than with locks. Infuture research, we hope to provide a more principled mechanism to provide atomicoperations on shared data.Also, locks are not yet supported on our distributed implementations of Cilk.The stronger memory semantics of locks, together with the arbitrary nature of theiracquire and release pattern, potentially make locking on a distributed platform verycostly. We are currently investigating techniques to add locks to our distributedversions of Cilk.2.6 Shared and private variablesEach global variable declaration in Cilk is shared by default. That is, all referencesto a global variable in a program refer to the same memory location. This memorylocation's value is maintained by default in a dag-consistent fashion, or in a strongerfashion if the hardware supports it. A shared declaration can be requested explicitlyusing the shared keyword.Sometimes, however, it is useful to declare a variable which is \private". A privatevariable is declared by adding the keyword private to a variable declaration. Eachthread in a Cilk program receives its own logical copy of each private variable. Eachprivate variable is initialized to an unde�ned value when the thread starts. Onceinitialized, however, private variables cannot be changed except by the owning thread(unlike shared variables which can be changed by simultaneously executing threads).Private variables are useful for communicating between a Cilk thread and C functionsit calls, because these C functions are completely contained in the Cilk thread. An25



private char alternates[10][MAXWORDLEN];int checkword(const char *word){ /* Check spelling of <word>. If spelling is correct,* return 0. Otherwise, put up to 10 alternate spellings* in <alternates> array. Return number of alternate spellings.*/}cilk void spellcheck(const char **wordarray, int num){ if (num == 1) {int alt = checkword(*wordarray);if (alt) {/* Print <alt> entries from <alternates> array as* possible correct spellings for the word <*wordarray>.*/}}else {spawn spellcheck(wordarray, num/2);spawn spellcheck(wordarray + num/2, num - num/2);sync;}}Figure 2-4: An example of the use of private variables. The procedure spellcheck checksthe spellings of the words in wordarray and prints alternate spellings for any words thatare misspelled. The private variable alternates is used to pass alternate spellings fromthe C function checkword to the Cilk function spellcheck. If the variable alternateswas shared, one instance of the checkword function could overwrite the alternate spellingsthat another instance had generated.example of the use of private variables is shown in Figure 2-4.2.7 Cactus stackSome means of allocating memory must be provided in any useful implementationof a language with shared memory. We implement a heap allocator along the linesof C's malloc and free, but many times a simpler allocation model su�ces. Cilkprovides stack-like allocation in what is called a cactus-stack [52, 77, 94] to handlethese simple allocations.From the point of view of a single Cilk procedure, a cactus stack behaves much like26
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P1 P2 P3Figure 2-5: A cactus stack. Procedure P1 spawns P2, and P2 spawns P3. Eachprocedure sees its own stack allocations and the stack allocated by its ancestors.The stack grows downwards. In this example, the stack segment A is shared byall procedures, stack segment C is shared by procedures P2 and P3, and the othersegments, B, D, and E, are private.an ordinary stack. The procedure can access memory allocated by any of its ancestorsin the \spawn tree" of the Cilk program. A procedure can itself allocate memory andpass pointers to that memory to its children. The cactus stack provides a naturalplace to allocate procedure local variables as well as memory explicitly allocated witha parallel version of alloca.The stack becomes a cactus stack when multiple procedures execute in parallel,each with its own view of the stack that corresponds to its call history, as shown inFigure 2-5. In the �gure, procedure P1 allocates some memory A before procedureP2 is spawned. Procedure P1 then continues to allocate more memory B. Whenprocedure P2 allocates memory from the cactus stack, a new branch of the stack isstarted so that allocations performed by P2 do not interfere with the stack being usedby P1. The stacks as seen by P1 and P2 are independent below the spawn point, butthey are identical above the spawn point. Similarly, when procedure P3 is spawnedby P2, the cactus stack branches again.Cactus stacks have many of the same limitations as ordinary procedure stacks [77].For instance, a child procedure cannot return to its parent a pointer to an object thatit has allocated from the cactus stack. Similarly, sibling procedures cannot share27



Figure 2-6: Dag of threads generated by the computation fib(3) from Figure 2-1. Thethreads of each procedure instance are ordered by horizontal continue edges. Downwardspawn edges connect a procedure with its spawned child, and upward return edges connectthe last thread of a procedure with the next sync in its parent procedure.storage that they create on the stack. Just as with a procedure stack, pointers toobjects allocated on the cactus-stack can be safely passed only to procedures belowthe allocation point in the call tree.2.8 Computation modelThe computation of a Cilk program on a given input can be viewed as a directedacyclic graph, or dag , in which vertices are instructions and edges denote orderingconstraints imposed by control statements. A Cilk spawn statement generates a vertexwith out-degree 2, and a Cilk sync statement generates a vertex whose in-degree is1 plus the number of subprocedures syncing at that point. Normal execution ofserial code results in a linear chain of vertices, which can be grouped into threads.A computation can therefore be viewed either as a dag of instructions or a dag ofthreads. For example, the computation generated by the execution of fib(3) fromthe program in Figure 2-1 generates the thread dag shown in Figure 2-6.Any computation can be measured in terms of its \work" and \critical-pathlength" [9, 15, 16, 60]. Consider the computation that results when a given Cilkprogram is used to solve a given input problem. The work of the computation, de-noted T1, is the number of instructions in the dag, which corresponds to the amount of
28



time required by a one-processor execution.4 The critical-path length of the com-putation, denoted T1, is the maximum number of instructions on any directed pathin the dag, which corresponds to the amount of time required by an in�nite-processorexecution.The theoretical analysis presented in [11, 16] cites two fundamental lower boundsas to how fast a Cilk program can run. For a computation with T1 work, the lowerbound TP � T1=P must hold, because at most P units of work can be executed in asingle step. In addition, the lower bound TP � T1 must hold, since a �nite numberof processors cannot execute faster than an in�nite number.5Cilk's randomized work-stealing scheduler [11, 16] executes a Cilk computationthat does not use locks6 on P processors in expected timeTP = T1=P +O(T1) ; (2.1)assuming an ideal parallel computer. This equation resembles \Brent's theorem"[19, 48] and is optimal to within a constant factor, since T1=P and T1 are bothlower bounds. We call the �rst term on the right-hand side of Equation (2.1) thework term and the second term the critical-path term. This simple performancemodel allows the programmer to reason about the performance of his Cilk programby examining the two simple quantities, work and critical-path, exhibited by hisapplication. If the programmer knows the work and critical path of his application,he can use Equation (2.1) to predict its performance. Conveniently, the Cilk runtimesystem can measure the work and critical path of an application for the programmer.We shall revisit the running time bound in Equation (2.1) many times in this thesis4For nondeterministic programs whose computation dag depends on the scheduler, we de�ne T1to be the number of instructions that actually occur in the computation dag, and we de�ne othermeasures similarly. This de�nition means, however, that T1 does not necessarily correspond to therunning time of the nondeterministic program on 1 processor.5This abstract model of execution time ignores real-life details, such as memory-hierarchy e�ects,but is nonetheless quite accurate [14].6The Cilk computation model provides no guarantees for scheduling performance when a programcontains lock statements. If lock contention is low, however, the performance bounds stated hereshould still apply. 29



when examining our various Cilk implementations.2.9 Memory modelTo precisely de�ne the behavior of a Cilk program, we must de�ne a \memory model",which speci�es the semantics of memory operations such as read and write. Everyimplementation of Cilk is guaranteed to provide at least dag-consistent shared mem-ory. The de�nition of dag consistency is techical in nature and is discussed in detailin Chapter 6. Intuitively, a read can \see" a write in the dag-consistency model onlyif there is some serial execution order consistent with the dag in which the read seesthe write. Two di�erent locations, however, can observe di�erent orderings of thedag. Dag consistency provides a natural \minimal" consistency model that is usefulfor many programs. As stated in Section 2.5, the use of locks in a Cilk programguarantees the stronger release consistency memory model for locations protected bya lock.Of course, on machines where a stronger memory model is supported, the program-mer may use that stronger consistency. Any program written assuming a strongermemory model than dag consistency, however, may not be portable across all Cilkimplementations.
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Chapter 3
SMP Cilk
This chapter describes our SMP implementation of Cilk-5.1 Cilk-5 uses the sameprovably good \work-stealing" scheduling algorithm found in earlier versions of Cilk,but the compiler and runtime system have been completely redesigned. The e�-ciency of Cilk-5 was aided by a clear strategy that arose from the Cilk performancemodel: concentrate on minimizing overheads that contribute to the work, even atthe expense of overheads that contribute to the critical path. Although it may seemcounterintuitive to move overheads onto the critical path, this \work-�rst" principlehas led to a portable Cilk-5 implementation in which the typical cost of spawninga parallel thread is only between 2 and 6 times the cost of a C function call on avariety of contemporary machines. Many Cilk programs run on one processor withvirtually no degradation compared to their C elision. This chapter describes how thework-�rst principle was exploited in the design of Cilk-5's compiler and its runtimesystem. In particular, we present Cilk-5's novel \two-clone" compilation strategy andits Dijkstra-like mutual-exclusion protocol for implementing the ready deque in thework-stealing scheduler.Unlike in Cilk-1, where the Cilk scheduler was an identi�able piece of code, inCilk-5 both the compiler and runtime system bear the responsibility for scheduling.Cilk-5's compiler cilk2c is a source-to-source translator [74, 24] which converts the1The contents of this chapter are joint work with Matteo Frigo and Charles Leiserson and willappear at PLDI'98 [41]. 31
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Figure 3-1: Generating an executable from a Cilk program. Our compiler cilk2c trans-lates Cilk code into regular C code which we then compile with gcc. The result is linkedwith our runtime system library to create an executable.Cilk constructs into regular C code. As shown in Figure 3-1, a Cilk executable iscreated from a Cilk program by �rst preprocessing the program using cilk2c, com-piling the result with gcc,2 and then linking with our runtime system. Importantly,our cilk2c source-to-source translator is machine independent and does not need tobe changed when porting from one machine to another. Machine dependencies areisolated to one machine-dependent �le in the runtime system.To obtain an e�cient implementation of Cilk, we have, of course, attempted toreduce scheduling overheads. Some overheads have a larger impact on execution timethan others, however. A theoretical understanding of Cilk's scheduling algorithm andthe performance model of work and critical path from Section 2.8 has allowed us toidentify and optimize the common cases. Within Cilk's scheduler, we can identify agiven cost as contributing to either work overhead or critical-path overhead. Muchof the e�ciency of Cilk derives from the following principle, which we shall justify inSection 3.1.The work-�rst principle: Minimize the scheduling overhead borne bythe work of a computation. Speci�cally, move overheads out of the workand onto the critical path.This principle is called the work-�rst principle because it emphasizes the importance ofminimizing the work overhead in relation to other overheads. The work-�rst principleplayed an important role during the design of earlier Cilk systems, but Cilk-5 exploitsthe principle more extensively.2We use some gcc extensions in the output of cilk2c which tie us to the gcc compiler. We hopeto remedy this situation in the future. 32



The work-�rst principle inspired a \two-clone" strategy for compiling Cilk pro-grams. Our cilk2c source-to-source translator produces two clones of every Cilkprocedure|a \fast" clone and a \slow" clone. The fast clone, which is identical inmost respects to the C elision of the Cilk program, executes in the common casewhere serial semantics su�ce. The slow clone is executed in the infrequent case thatparallel semantics and its concomitant bookkeeping are required. All communicationdue to scheduling occurs in the slow clone and contributes to critical-path overhead,but not to work overhead.The work-�rst principle also inspired a Dijkstra-like [29], shared-memory, mutual-exclusion protocol as part of the runtime load-balancing scheduler. Cilk's scheduleruses a \work-stealing" algorithm in which idle processors, called thieves, \steal"threads from busy processors, called victims. Cilk's scheduler guarantees that thecost of stealing contributes only to critical-path overhead, and not to work overhead.Nevertheless, it is hard to avoid the mutual-exclusion costs incurred by a potential vic-tim, which contribute to work. To minimize work overhead, instead of using locking,Cilk's runtime system uses a Dijkstra-like protocol, which we call the THE protocol,to manage the runtime deque of ready threads in the work-stealing algorithm. Anadded advantage of the THE protocol is that it allows an exception to be signaled toa working processor with no additional work overhead, a feature used in Cilk's abortmechanism.The remainder of this chapter is organized as follows. Section 3.1 justi�es thework-�rst principle. Section 3.2 describes how the two-clone strategy is implemented,and Section 3.3 presents the THE protocol. Section 3.4 gives empirical evidence thatthe Cilk-5 scheduler is e�cient. Finally, Section 3.5 presents related work and o�erssome conclusions.3.1 The work-�rst principleThis section justi�es the work-�rst principle by showing that it follows from threeassumptions. First, we assume that Cilk's scheduler operates in practice according33



to the theoretical model presented in Section 2.8. Second, we assume that in thecommon case, ample \parallel slackness" [99] exists, that is, the average parallelismof a Cilk program exceeds the number of processors on which we run it by a su�cientmargin. Third, we assume (as is indeed the case) that every Cilk program has a Celision against which its one-processor performance can be measured.As shown in Section 2.8, Cilk's randomized work-stealing scheduler executes a Cilkcomputation on P processors in expected time TP = T1=P +O(T1). Importantly, allcommunication costs due to Cilk's scheduler are borne by the critical-path term [11,16], as are most of the other scheduling costs. To make these overheads explicit, wede�ne the critical-path overhead to be the smallest constant c1 such that thefollowing equation holds for all programs:TP � T1=P + c1T1 : (3.1)The second assumption needed to justify the work-�rst principle focuses on the\common-case" regime in which a parallel program operates. De�ne the averageparallelism as P = T1=T1, which corresponds to the maximum possible speedupthat the application can obtain. De�ne also the parallel slackness [99] to be theratio P=P . The assumption of parallel slackness is that P=P � c1, whichmeans that the number P of processors is much smaller than the average parallelismP . Under this assumption, it follows that T1=P � c1T1, and hence from Inequal-ity (3.1) that TP � T1=P , and we obtain linear speedup. The critical-path overheadc1 has little e�ect on performance when su�cient slackness exists, although it doesdetermine how much slackness must exist to ensure linear speedup.Whether substantial slackness exists in common applications is a matter of opinionand empiricism, but we suggest that slackness is the common case. The expressive-ness of Cilk makes it easy to code applications with large amounts of parallelism.For modest-sized problems, many applications exhibit an average parallelism of over200, yielding substantial slackness on contemporary SMP's. Even on Sandia NationalLaboratory's Intel Paragon, which contains 1824 nodes, the ?Socrates chess program34



(coded in Cilk-1) ran in its linear-speedup regime during the 1995 ICCA World Com-puter Chess Championship (where it placed second in a �eld of 24). Section 3.4describes a dozen other diverse applications which were run on an 8-processor SMPwith considerable parallel slackness. The parallelism of these applications increaseswith problem size, thereby ensuring they will run well on large machines.The third assumption behind the work-�rst principle is that every Cilk programhas a C elision against which its one-processor performance can be measured. Let usdenote by TS the running time of the C elision. Then, we de�ne the work overheadby c1 = T1=TS. Incorporating critical-path and work overheads into Inequality (3.1)yields TP � c1TS=P + c1T1 (3.2)� c1TS=P ;since we assume parallel slackness.We can now restate the work-�rst principle precisely. Minimize c1, even at theexpense of a larger c1, because c1 has a more direct impact on performance. Adopt-ing the work-�rst principle may adversely a�ect the ability of an application to scaleup, however, if the critical-path overhead c1 is too large. But, as we shall see in Sec-tion 3.4, critical-path overhead is reasonably small in Cilk-5, and many applicationscan be coded with large amounts of parallelism.The work-�rst principle pervades the Cilk-5 implementation. The work-stealingscheduler guarantees that with high probability, only O(PT1) steal (migration) at-tempts occur (that is, O(T1) on average per processor), all costs for which are borneon the critical path. Consequently, the scheduler for Cilk-5 postpones as much ofthe scheduling cost as possible to when work is being stolen, thereby removing itas a contributor to work overhead. This strategy of amortizing costs against stealattempts permeates virtually every decision made in the design of the scheduler.
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3.2 Cilk's compilation strategyThis section describes how our cilk2c compiler generates C postsource from a Cilkprogram. As dictated by the work-�rst principle, our compiler and scheduler aredesigned to reduce the work overhead as much as possible. Our strategy is to generatetwo clones of each procedure|a fast clone and a slow clone. The fast clone operatesmuch as does the C elision and has little support for parallelism. The slow clone hasfull support for parallelism, along with its concomitant overhead. We �rst describethe Cilk scheduling algorithm. Then, we describe how the compiler translates theCilk language constructs into code for the fast and slow clones of each procedure.Lastly, we describe how the runtime system links together the actions of the fast andslow clones to produce a complete Cilk implementation.As in lazy task creation [76], in Cilk-5 each processor, called a worker , maintainsa ready deque (doubly-ended queue) of ready procedures (technically, procedureinstances). Each deque has two ends, a head and a tail , from which procedures canbe added or removed. A worker operates locally on the tail of its own deque, treatingit much as C treats its call stack, pushing and popping activation frames. Whena worker runs out of work, it becomes a thief and attempts to steal a procedureinstance from another worker, called its victim . The thief steals the procedure fromthe head of the victim's deque, the opposite end from which the victim is working.When a procedure is spawned, the fast clone runs. Whenever a thief steals aprocedure, however, the procedure is converted to a slow clone.3 The Cilk schedulerguarantees that the number of steals is small when su�cient slackness exists, andso we expect the fast clones to be executed most of the time. Thus, the work-�rstprinciple reduces to minimizing costs in the fast clone, which contribute more heavilyto work overhead. Minimizing costs in the slow clone, although a desirable goal, isless important, since these costs contribute less heavily to work overhead and moreto critical-path overhead.3Cilk procedures can be stolen when they are suspended at a spawn statement, so the slow clonemust be able to start executing a Cilk procedure at any spawn or sync point.36



1 int fib (int n)2 {3 fib_frame *f; frame pointer4 f = alloc(sizeof(*f)); allocate frame5 f->sig = fib_sig; initialize frame6 if (n<2) {7 free(f, sizeof(*f)); free frame8 return n;9 }10 else {11 int x, y;12 f->entry = 1; save PC13 f->n = n; save live vars14 push(f); push frame15 x = fib (n-1); do C call16 if (pop(x) == FAILURE) pop frame17 return 0; frame stolen18 � � � second spawn19 ; sync is free!20 free(f, sizeof(*f)); free frame21 return (x+y);22 }23 }Figure 3-2: The fast clone generated by cilk2c for the fib procedure from Figure 2-1. The code for the second spawn is omitted. The functions alloc and free areinlined calls to the runtime system's fast memory allocator. The signature fib sigcontains a description of the fib procedure, including a pointer to the slow clone.The push and pop calls are operations on the scheduling deque and are described indetail in Section 3.3.We minimize the costs of the fast clone by exploiting the structure of the Cilkscheduler. Because we convert a procedure instance to its slow clone when it isstolen, we maintain the invariant that a fast clone has never been stolen. Furthermore,none of the descendants of a fast clone have been stolen either, since the strategy ofstealing from the heads of ready deques guarantees that parents are stolen before theirchildren. As we shall see, this simple fact allows many optimizations to be performedin the fast clone.We now describe how our cilk2c compiler generates postsource C code for thefib procedure from Figure 2-1. An example of the postsource for the fast clone of37



fib is given in Figure 3-2. The generated C code has the same general structure asthe C elision, with a few additional statements. In lines 4{5, an activation frameis allocated for fib and initialized. The Cilk runtime system uses activation framesto represent procedure instances. Using techniques similar to [49, 50], our inlinedallocator typically takes only a few cycles. The frame is initialized in line 5 by storinga pointer to a static structure, called a signature, describing fib.The �rst spawn in fib is translated into lines 12{17. In lines 12{13, the state ofthe fib procedure is saved into the activation frame. The saved state includes theprogram counter, encoded as an entry number, and all live, dirty variables. Then,the frame is pushed on the runtime deque in line 14. Next, we call the fib routine aswe would in C. Because the spawn statement itself compiles directly to its C elision,the postsource can exploit the optimization capabilities of the C compiler, includingits ability to pass arguments and receive return values in registers rather than inmemory.After fib returns, lines 16{17 check to see whether the parent procedure instancehas been stolen. If it has, then the scheduling deque is empty, and we return to theruntime system by returning immediately with a dummy return value. Since all of theancestors have been stolen as well, the C stack quickly unwinds and control is returnedto the runtime system.4 The protocol to check whether the parent procedure has beenstolen is quite subtle|we postpone discussion of its implementation to Section 3.3.If the parent procedure has not been stolen, however, it continues to execute at line18, performing the second spawn, which is not shown.In the fast clone, all sync statements compile to no-ops. Because a fast clonenever has any children when it is executing, we know at compile time that all pre-viously spawned procedures have completed. Thus, no operations are required for async statement, as it always succeeds. For example, line 19 in Figure 3-2, the trans-lation of the sync statement is just the empty statement. Finally, in lines 20{21,fib deallocates the activation frame and returns the computed result to its parent4The setjmp/longjmp facility of C could have been used as well, but our unwinding strategy issimpler. 38



procedure.The slow clone is similar to the fast clone except that it provides support forparallel execution. When a procedure is stolen, control has been suspended betweentwo of the procedure's threads, that is, at a spawn or sync point. When the slowclone is resumed, it uses a goto statement to restore the program counter, and thenit restores local variable state from the activation frame. A spawn statement is trans-lated in the slow clone just as in the fast clone. For a sync statement, cilk2c insertsa call to the runtime system, which checks to see whether the procedure has anyspawned children that have not returned. Although the parallel bookkeeping in aslow clone is substantial, it contributes little to work overhead, since slow clones arerarely executed.The separation between fast clones and slow clones also allows us to compile inletsand abort statements e�ciently in the fast clone. An inlet call compiles as e�cientlyas an ordinary spawn. For example, the code for the inlet call from Figure 2-2 compilessimilarly to the following Cilk code:tmp = spawn fib(n-1);summer(tmp);Implicit inlet calls, such as x += spawn fib(n-1), compile directly to their C elisions.An abort statement compiles to a no-op just as a sync statement does, because whileit is executing, a fast clone has no children to abort.The runtime system provides the glue between the fast and slow clones that makesthe whole system work. It includes protocols for stealing procedures, returning val-ues between processors, executing inlets, aborting computation subtrees, and the like.All of the costs of these protocols can be amortized against the critical path, so theiroverhead does not signi�cantly a�ect the running time when su�cient parallel slack-ness exists. The portion of the stealing protocol executed by the worker contributesto work overhead, however, thereby warranting a careful implementation. We discussthis protocol in detail in Section 3.3.The work overhead of a spawn in Cilk-5 is only a few reads and writes in the fastclone|3 reads and 5 writes for the fib example. We will experimentally quantify the39



work overhead in Section 3.4. Some work overheads still remain in our implementa-tion, however, including the allocation and freeing of activation frames, saving statebefore a spawn, pushing and popping of the frame on the deque, and checking if aprocedure has been stolen. A portion of this work overhead is due to the fact thatCilk-5 is duplicating the work the C compiler performs, but as Section 3.4 shows, thisoverhead is small. Although a production Cilk compiler might be able eliminate thisunnecessary work, it would likely compromise portability.In Cilk-4, the precursor to Cilk-5, we took the work-�rst principle to the extreme.Cilk-4 performed stack-based allocation of activation frames, since the work overheadof stack allocation is smaller than the overhead of heap allocation. Because of thecactus stack semantics of the Cilk stack (see Section 2.7), however, Cilk-4 had tomanage the virtual-memory map on each processor explicitly, as was done in [94]. Thework overhead in Cilk-4 for frame allocation was little more than that of incrementingthe stack pointer, but whenever the stack pointer overowed a page, an expensiveuser-level interrupt ensued, during which Cilk-4 would modify the memory map.Unfortunately, the operating-system mechanisms supporting these operations weretoo slow and unpredictable, and the possibility of a page fault in critical sectionsled to complicated protocols. Even though these overheads could be charged tothe critical-path term, in practice, they became so large that the critical-path termcontributed signi�cantly to the running time, thereby violating the assumption ofparallel slackness. A one-processor execution of a program was indeed fast, butinsu�cient slackness sometimes resulted in poor parallel performance.In Cilk-5, we simpli�ed the allocation of activation frames by simply using a heap.In the common case, a frame is allocated by removing it from a free list. Deallocationis performed by inserting the frame into the free list. No user-level managementof virtual memory is required, except for the initial setup of shared memory. Heapallocation contributes only slightly more than stack allocation to the work overhead,but it saves substantially on the critical path term. On the downside, heap allocationcan potentially waste more memory than stack allocation due to fragmentation. For acareful analysis of the relative merits of stack and heap based allocation that supports40



heap allocation, see the paper by Appel and Shao [3]. For an equally careful analysisthat supports stack allocation, see [73].Thus, although the work-�rst principle gives a general understanding of whereoverheads should be borne, our experience with Cilk-4 showed that large enoughcritical-path overheads can tip the scales to the point where the assumptions under-lying the principle no longer hold. We believe that Cilk-5 work overhead is nearlyas low as possible, given our goal of generating portable C output from our com-piler. Other researchers have been able to reduce overheads even more, however, atthe expense of portability. For example, lazy threads [46] obtains e�ciency at theexpense of implementing its own calling conventions, stack layouts, etc. Although wecould in principle incorporate such machine-dependent techniques into our compiler,we feel that Cilk-5 strikes a good balance between performance and portability. Wealso feel that the current overheads are su�ciently low that other problems, notablyminimizing overheads for data synchronization, deserve more attention.3.3 Implemention of work-stealingIn this section, we describe Cilk-5's work-stealing mechanism, which is based on aDijkstra-like [29], shared-memory, mutual-exclusion protocol called the \THE" pro-tocol. In accordance with the work-�rst principle, this protocol has been designed tominimize work overhead. For example, on a 167-megahertz UltraSPARC I, the fibprogram with the THE protocol runs about 25% faster than with hardware lockingprimitives. We �rst present a simpli�ed version of the protocol. Then, we discussthe actual implementation, which allows exceptions to be signaled with no additionaloverhead.Several straightforward mechanisms might be considered to implement a work-stealing protocol. For example, a thief might interrupt a worker and demand atten-tion from this victim. This strategy presents problems for two reasons. First, themechanisms for signaling interrupts are slow, and although an interrupt would beborne on the critical path, its large cost could threaten the assumption of parallel41



slackness. Second, the worker would necessarily incur some overhead on the workterm to ensure that it could be safely interrupted in a critical section. As an al-ternative to sending interrupts, thieves could post steal requests, and workers couldperiodically poll for them. Once again, however, a cost accrues to the work overhead,this time for polling. Techniques are known that can limit the overhead of polling[36], but they require the support of a sophisticated compiler.The work-�rst principle suggests that it is reasonable to put substantial e�ortinto minimizing work overhead in the work-stealing protocol. Since Cilk-5 is designedfor shared-memory machines, we chose to implement work-stealing through shared-memory, rather than with message-passing, as might otherwise be appropriate for adistributed-memory implementation. In our implementation, both victim and thiefoperate directly through shared memory on the victim's ready deque. The crucialissue is how to resolve the race condition that arises when a thief tries to steal the sameframe that its victim is attempting to pop. One simple solution is to add a lock tothe deque using relatively heavyweight hardware primitives like Compare-And-Swapor Test-And-Set. Whenever a thief or worker wishes to remove a frame from thedeque, it �rst grabs the lock. This solution has the same fundamental problem as theinterrupt and polling mechanisms just described, however. Whenever a worker popsa frame, it pays the heavy price to grab a lock, which contributes to work overhead.Consequently, we adopted a solution that employs Dijkstra's protocol for mutualexclusion [29], which assumes only that reads and writes are atomic. Because ourprotocol uses three atomic shared variables T, H, and E, we call it the THE protocol.The key idea is that actions by the worker on the tail of the queue contribute towork overhead, while actions by thieves on the head of the queue contribute onlyto critical-path overhead. Therefore, in accordance with the work-�rst principle, weattempt to move costs from the worker to the thief. To arbitrate among di�erentthieves attempting to steal from the same victim, we use a hardware lock, since thisoverhead can be amortized against the critical path. To resolve conicts between aworker and the sole thief holding the lock, however, we use a lightweight Dijkstra-like protocol which contributes minimally to work overhead. A worker resorts to a42



heavyweight hardware lock only when it encounters an actual conict with a thief, inwhich case we can charge the overhead that the victim incurs to the critical path.In the rest of this section, we describe the THE protocol in detail. We �rst presenta simpli�ed protocol that uses only two shared variables T and H designating the tailand the head of the deque, respectively. Later, we extend the protocol with a thirdvariable E that allows exceptions to be signaled to a worker. The exception mechanismis used to implement Cilk's abort statement. Interestingly, this extension does notintroduce any additional work overhead.The pseudocode of the simpli�ed THE protocol is shown in Figure 3-3. Assumethat shared memory is sequentially consistent [63].5 The code assumes that the readydeque is implemented as an array of frames. The head and tail of the deque aredetermined by two indices T and H, which are stored in shared memory and arevisible to all processors. The index T points to the �rst unused element in the array,and H points to the �rst frame on the deque. Indices grow from the head towardsthe tail so that under normal conditions, we have T � H. Moreover, each deque has alock L implemented with atomic hardware primitives or with OS calls.The worker uses the deque as a stack. (See Section 3.2.) Before a spawn, it pushesa frame onto the tail of the deque. After a spawn, it pops the frame, unless the framehas been stolen. A thief attempts to steal the frame at the head of the deque. Onlyone thief at the time may steal from the deque, since a thief grabs L as its �rst action.As can be seen from the code, the worker alters T but not H, whereas the thief onlyincrements H and does not alter T.The only possible interaction between a thief and its victim occurs when the thiefis incrementing H while the victim is decrementing T. Consequently, it is always safefor a worker to append a new frame at the end of the deque (push) without worryingabout the actions of the thief. For a pop operations, there are three cases, which areshown in Figure 3-4. In case (a), the thief and the victim can both get a frame from5If the shared memory is not sequentially consistent, a memory fence must be inserted betweenlines 5 and 6 of the worker/victim code and between lines 3 and 4 of the thief code to ensure thatthese instructions are executed in the proper order.43



Worker/Victim1 push(frame *f) {2 deque[T] = f;3 T++;4 }5 pop() {6 T--;7 if (H > T) {8 T++;9 lock(L);10 T--;11 if (H > T) {12 T++;13 unlock(L);14 return FAILURE;15 }16 unlock(L);17 }18 return SUCCESS;19 }

Thief1 steal() {2 lock(L);3 H++;4 if (H > T) {5 H--;6 unlock(L);7 return FAILURE;8 }9 unlock(L);10 return SUCCESS;11 }

Figure 3-3: Pseudocode of a simpli�ed version of the THE protocol. The left partof the �gure shows the actions performed by the victim, and the right part shows theactions of the thief. None of the actions besides reads and writes are assumed to beatomic. For example, T--; can be implemented as tmp = T; tmp = tmp - 1; T =tmp;.
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VictimFigure 3-4: The three cases of the ready deque in the simpli�ed THE protocol. Ashaded entry indicates the presence of a frame at a certain position in the deque. Thehead and the tail are marked by T and H.the deque. In case (b), the deque contains only one frame. If the victim decrementsT without interference from thieves, it gets the frame. Similarly, a thief can steal theframe as long as its victim is not trying to obtain it. If both the thief and the victimtry to grab the frame, however, the protocol guarantees that at least one of themdiscovers that H > T. If the thief discovers that H > T, it restores H to its originalvalue and retreats. If the victim discovers that H > T, it restores T to its originalvalue and restarts the protocol after having acquired L. With L acquired, no thiefcan steal from this deque so the victim can pop the frame without interference (if theframe is still there). Finally, in case (c) the deque is empty. If a thief tries to steal,it will always fail. If the victim tries to pop, the attempt fails and control returns tothe Cilk runtime system. The protocol cannot deadlock, because each process holdsonly one lock at a time.We now argue that the THE protocol contributes little to the work overhead.Pushing a frame involves no overhead beyond updating T. In the common case wherea worker can succesfully pop a frame, the pop protocol performs only 6 operations|2 memory loads, 1 memory store, 1 decrement, 1 comparison, and 1 (predictable)45



conditional branch. Moreover, in the common case where no thief operates on thedeque, both H and T can be cached exclusively by the worker. The expensive operationof a worker grabbing the lock L occurs only when a thief is simultaneously trying tosteal the frame being popped. Since the number of steal attempts depends on T1,not on T1, the relatively heavy cost of a victim grabbing L can be considered as partof the critical-path overhead c1 and does not inuence the work overhead c1.We ran some experiments to determine the relative performance of the THE pro-tocol versus the straightforward protocol in which pop just locks the deque beforeaccessing it. On a 167-megahertz UltraSPARC I, the THE protocol is about 25%faster than the simple locking protocol. This machine's memory model requires thata memory fence instruction (membar) be inserted between lines 6 and 7 of the poppseudocode. We tried to quantify the performance impact of the membar instruc-tion, but in all our experiments the execution times of the code with and withoutmembar are about the same. On a 200-megahertz Pentium Pro running Linux andgcc 2.7.1, the THE protocol is only about 5% faster than the locking protocol. Onthis processor, the THE protocol spends about half of its time in the memory fence.Because it replaces locks with memory synchronization, the THE protocol is more\nonblocking" than a straightforward locking protocol. Consequently, the THE pro-tocol is less prone to problems that arise when spin locks are used extensively. Forexample, even if a worker is suspended by the operating system during the executionof pop, the infrequency of locking in the THE protocol means that a thief can usuallycomplete a steal operation on the worker's deque. Recent work by Arora et al. [4] hasshown that a completely nonblocking work-stealing scheduler can be implemented.Using these ideas, Lisiecki and Medina [68] have modi�ed the Cilk-5 scheduler tomake it completely nonblocking. Their experience is that the THE protocol greatlysimpli�es a nonblocking implementation.The simpli�ed THE protocol can be extended to support the signaling of excep-tions to a worker. In Figure 3-3, the index H plays two roles: it marks the head ofthe deque, and it marks the point that the worker cannot cross when it pops. Theseplaces in the deque need not be the same. In the full THE protocol, we separate the46



two functions of H into two variables: H, which now only marks the head of the deque,and E, which marks the point that the victim cannot cross. Whenever E > T, someexceptional condition has occurred, which includes the frame being stolen, but it canalso be used for other exceptions. For example, setting E = 1 causes the worker todiscover the exception at its next pop. In the new protocol, E replaces H in line 7of the worker/victim. Moreover, lines 8{16 of the worker/victim are replaced by acall to an exception handler to determine the type of exception (stolen frame orotherwise) and the proper action to perform. The thief code is also modi�ed. Beforetrying to steal, the thief increments E. If there is nothing to steal, the thief restores Eto the original value. Otherwise, the thief steals frame H and increments H. From thepoint of view of a worker, the common case is the same as in the simpli�ed protocol:it compares two pointers (E and T rather than H and T).The exception mechanism is used to implement abort. When a Cilk procedureexecutes an abort instruction, the runtime system serially walks the tree of outstand-ing descendants of that procedure. It marks the descendants as aborted and signalsan abort exception on any processor working on a descendant. At its next pop, aprocessor working on an aborted computation will discover the exception, notice thatit has been aborted, and cause all of its procedure instances to return immediately.It is conceivable that a processor could run for a long time without executing a popand discovering that it has been aborted. We made the design decision to accept thepossibility of this unlikely scenario, �guring that more cycles were likely to be lost inwork overhead if we abandoned the THE protocol for a mechanism that solves thisminor problem.3.4 BenchmarksIn this section, we evaluate the performance of Cilk-5. We show that on 12 applica-tions, the work overhead c1 is close to 1, which indicates that the Cilk-5 implemen-tation exploits the work-�rst principle e�ectively. We then present a breakdown ofCilk's work overhead c1 on four machines. Finally, we present experiments showing47



Program Size T1 T1 P c1 T8 T1=T8 TS=T8fib 35 12.77 0.0005 25540 3.63 1.60 8.0 2.2blockedmul 1024 29.9 0.0044 6730 1.05 4.3 7.0 6.6notempmul 1024 29.7 0.015 1970 1.05 3.9 7.6 7.2strassen 1024 20.2 0.58 35 1.01 3.54 5.7 5.6*cilksort 4; 100; 000 5.4 0.0049 1108 1.21 0.90 6.0 5.0yqueens 22 150. 0.0015 96898 0.99 18.8 8.0 8.0yknapsack 30 75.8 0.0014 54143 1.03 9.5 8.0 7.7lu 2048 155.8 0.42 370 1.02 20.3 7.7 7.5*cholesky BCSSTK32 1427. 3.4 420 1.25 208. 6.9 5.5heat 4096� 512 62.3 0.16 384 1.08 9.4 6.6 6.1fft 220 4.3 0.0020 2145 0.93 0.77 5.6 6.0barnes-hut 216 108. 0.15 720 1.02 14.8 7.2 7.1Figure 3-5: The performance of some example Cilk programs. Times are in seconds andare accurate to within about 10%. The serial programs are C elisions of the Cilk programs,except for those programs that are starred (*), where the parallel program implements adi�erent algorithm than the serial program. Programs labeled by a dagger (y) are non-deterministic, and thus, the running time on one processor is not the same as the workperformed by the computation. For these programs, the value for T1 indicates the actualwork of the computation on 8 processors, and not the running time on one processor.that the critical-path overhead c1 is reasonably small as well.Figure 3-5 shows a table of performance measurements taken for 12 Cilk pro-grams on a Sun Enterprise 5000 SMP with 8 167-megahertz UltraSPARC processors,each with 512 kilobytes of L2 cache, 16 kilobytes each of L1 data and instructioncaches, running Solaris 2.5. We compiled our programs with gcc 2.7.2 at optimiza-tion level -O3. For a full description of these programs, see the Cilk 5.1 manual [24].The table shows the work of each Cilk program T1, the critical path T1, and the twoderived quantities P and c1. The table also lists the running time T8 on 8 processors,and the speedup T1=T8 relative to the one-processor execution time, and speedupTS=T8 relative to the serial execution time.For the 12 programs, the average parallelism P is in most cases quite large rel-ative to the number of processors on a typical SMP. These measurements validateour assumption of parallel slackness, which implies that the work term dominatesin Inequality (3.3). For instance, on 1024� 1024 matrices, notempmul runs with anaverage parallelism of 1970|yielding adequate parallel slackness for up to severalhundred processors. For even larger machines, one normally would not run such a48



small problem. For notempmul, as well as the other 11 applications, the average par-allelism grows with problem size, and thus su�cient parallel slackness is likely to existeven for much larger machines, as long as the problem sizes are scaled appropriately.6The work overhead c1 is only a few percent larger than 1 for most programs, whichshows that our design of Cilk-5 faithfully implements the work-�rst principle. Thetwo cases where the work overhead is larger (cilksort and cholesky) are due tothe fact that we had to change the serial algorithm to obtain a parallel algorithm,and thus the comparison is not against the C elision. For example, the serial Calgorithm for sorting is an in-place quicksort, but the parallel algorithm cilksortrequires an additional temporary array which adds overhead beyond the overhead ofCilk itself. Similarly, our parallel Cholesky factorization (see Section 4.2 for detailsof this algorithm) uses a quadtree representation of the sparse matrix, which inducesmore work than the linked-list representation used in the serial C algorithm. Finally,the work overhead for fib is large, because fib does essentially no work besidesspawning procedures. Thus, the overhead c1 = 3:63 for fib gives a good estimateof the cost of a Cilk spawn versus a traditional C function call. With such a smalloverhead for spawning, one can understand why for most of the other applications,which perform signi�cant work for each spawn, the overhead of Cilk-5's scheduling isbarely noticeable compared to the 10% \noise" in our measurements.We now present a breakdown of Cilk's serial overhead c1 into its components. Be-cause scheduling overheads are small for most programs, we perform our analysis withthe fib program from Figure 2-1. This program is unusually sensitive to schedulingoverheads, because it contains little actual computation. We give a breakdown of theserial overhead into three components: the overhead of saving state before spawning,the overhead of allocating activation frames, and the overhead of the THE protocol.Figure 3-6 shows the breakdown of Cilk's serial overhead for fib on four machines.6Our analysis of average parallelism is somewhat suspect because it assumes an ideal memorysystem. In the real world, the work, critical path, and average parallelism of an application canchange as the costs of the application's memory operations vary with the number of processors.Nevertheless, our performance metrics give a rough estimate of the scalability of applications onmachines with adequate memory bandwidth. 49
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3.5 ConclusionWe conclude this chapter by examining some related work.Mohr et al. [76] introduced lazy task creation in their implementation of theMul-T language. Lazy task creation is similar in many ways to our lazy schedulingtechniques. Mohr et al. report a work overhead of around 2 when comparing withserial T, the Scheme dialect on which Mul-T is based. Our research con�rms theintuition behind their methods and shows that work overheads of close to 1 areachievable.The Cid language [82] is like Cilk in that it uses C as a base language and hasa simple preprocessing compiler to convert parallel Cid constructs to C. Cid is de-signed to work in a distributed memory environment, and so it employs latency-hidingmechanisms which Cilk-5 could avoid. Both Cilk and Cid recognize the attractive-ness of basing a parallel language on C so as to leverage C compiler technology forhigh-performance codes. Cilk is a faithful extension of C, however, supporting thesimplifying notion of a C elision and allowing Cilk to exploit the C compiler technol-ogy more readily.TAM [28] and Lazy Threads [46] also analyze many of the same overhead issuesin a more general, \nonstrict" language setting, where the individual performancesof a whole host of mechanisms are required for applications to obtain good overallperformance. In contrast, Cilk's multithreaded language provides an execution modelbased on work and critical-path length that allows us to focus our implementatione�orts by using the work-�rst principle. Using this principle as a guide, we haveconcentrated our optimizing e�ort on the common-case protocol code to develop ane�cient and portable implementation of the Cilk language.

52



Chapter 4
Applications
In this chapter, we describe some parallel applications we have written in Cilk. Inthe context of Cilk, this chapter gives some anecdotal evidence that realistic applica-tions are easy to program and perform well. In addition, some of these applicationshave independent interest apart from Cilk as they are implemented with some novelalgorithms. The applications include some dense matrix algorithms including ma-trix multiplication and LU factorization, a sparse Cholesky factorization algorithm,a Barnes-Hut N -body simulator, and the world's fastest Rubik's cube solver.4.1 Dense matrix algorithmsIn this section, we describe the four dense matrix algorithms shown in Figure 3-5,blockedmul, notempmul, strassen, and lu. The �rst three algorithms are variantsof matrix multiplication, and the last is a code for LU factorization. This sectionshows how the model of work and critical path can be applied to analyze algorithmswritten in Cilk and explore tradeo�s between work, average parallelism, and spaceutilization.
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1 cilk void blockedmul(long nb, block *A, block *B, block *R)2 {3 if (nb == 1)4 multiply_block(A, B, R);5 else {6 block *C,*D,*E,*F,*G,*H,*I,*J;7 block *CG,*CH,*EG,*EH,*DI,*DJ,*FI,*FJ;8 block tmp[nb*nb];/* get pointers to input submatrices */9 partition(nb, A, &C, &D, &E, &F);10 partition(nb, B, &G, &H, &I, &J);/* get pointers to result submatrices */11 partition(nb, R, &CG, &CH, &EG, &EH);12 partition(nb, tmp, &DI, &DJ, &FI, &FJ);/* solve subproblems recursively */13 spawn blockedmul(nb/2, C, G, CG);14 spawn blockedmul(nb/2, C, H, CH);15 spawn blockedmul(nb/2, E, H, EH);16 spawn blockedmul(nb/2, E, G, EG);17 spawn blockedmul(nb/2, D, I, DI);18 spawn blockedmul(nb/2, D, J, DJ);19 spawn blockedmul(nb/2, F, J, FJ);20 spawn blockedmul(nb/2, F, I, FI);21 sync;/* add results together into R */22 spawn matrixadd(nb, tmp, R);23 sync;24 }25 return;26 }Figure 4-2: Cilk code for recursive blocked matrix multiplication.storing the results in the 8 disjoint submatrices of R and tmp. The sync statementin line 21 causes the procedure to suspend until all the procedures it spawned have�nished. Then, line 22 spawns a parallel addition in which the matrix tmp is addedinto R. (The procedure matrixadd is itself implemented in a recursive, parallel, divide-and-conquer fashion, and the code is not shown.) The sync in line 23 ensures thatthe addition completes before blockedmul returns.The work and critical-path length for blockedmul can be computed using recur-rences. The computational work T1(n) to multiply n � n matrices satis�es T1(n) =8T1(n=2) + �(n2), since adding two matrices in parallel can be done using O(n2)computational work, and thus, T1(n) = �(n3). To derive a recurrence for thecritical-path length T1(n), we observe that with an in�nite number of processors,only one of the 8 submultiplications is the bottleneck, because the 8 multiplica-55



1 cilk void notempmul(long nb, block *A, block *B, block *R)2 {3 if (nb == 1)4 multiplyadd_block(A, B, R);5 else {6 block *C,*D,*E,*F,*G,*H,*I,*J;7 block *CGDI,*CHDJ,*EGFI,*EHFJ;/* get pointers to input submatrices */8 partition(nb, A, &C, &D, &E, &F);9 partition(nb, B, &G, &H, &I, &J);/* get pointers to result submatrices */10 partition(nb, R, &CGDI, &CHDJ, &EGFI, &EHFJ);/* solve subproblems recursively */11 spawn notempmul(nb/2, C, G, CGDI);12 spawn notempmul(nb/2, C, H, CHDJ);13 spawn notempmul(nb/2, E, H, EHFJ);14 spawn notempmul(nb/2, E, G, EGFI);15 sync;16 spawn notempmul(nb/2, D, I, CGDI);17 spawn notempmul(nb/2, D, J, CHDJ);18 spawn notempmul(nb/2, F, J, EHFJ);19 spawn notempmul(nb/2, F, I, EGFI);20 sync;21 }22 return;23 }Figure 4-3: Cilk code for a no-temporary version of recursive blocked matrix multiplica-tion.tions can execute in parallel. Consequently, the critical-path length T1(n) satis�esT1(n) = T1(n=2) + �(lgn), because the parallel addition can be accomplished re-cursively with a critical path of length �(lgn). The solution to this recurrence isT1(n) = �(lg2 n).One drawback of the blockedmul algorithm from Figure 4-2 is that it requirestemporary storage. We developed an in-place version of the same algorithm, callednotempmul, which trades o� a longer critical path for less storage. The code fornotempmul is shown in Figure 4-3. The code is very similar to blockedmul exceptthat there is an extra sync in line 15. By adding this extra synchronization, we areable to add in the second four recursive multiplications directly to the result matrixinstead of storing them in a temporary matrix and adding them in later. The extrasynchronization, however, makes the critical path longer. The critical-path lengthrecurrence becomes T1(n) = 2T1(n=2) + �(lgn), whose solution is T1(n) = �(n).56
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Figure 4-4: Total megaops rate of Cilk matrix multiplication algorithms for 1024�1024matrices (for the purpose of this graph, all algorithms are assumed to perform 2n3 ops,even though Strassen performs asymptotically less ops). These experiments were run onan Alpha 4100 SMP with 4 466MHz processors.By lengthening the critical path, and hence reducing the average parallelism, we areable to use less storage. The average parallelism is still quite large, however, as canbe seen from Figure 3-5, where a 1024� 1024 notempmul multiply has a parallelismof 1970. Thus, the use of notempmul is generally a win except on very large machines.We also experimented with Strassen's algorithm [96], a subcubic algorithm formatrix multiplication. The algorithm is signi�cantly more complicated than thatshown in Figure 4-1, but still required only an evening to code in Cilk. On oneprocessor, Strassen is competitive with our other matrix multiplication codes forlarge matrices. Because its average parallelism is small, however, the Strassen codeis less suitable for large parallel machines.Figure 4-4 gives an absolute comparison of the three matrix multiplication algo-rithms presented.
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4.1.2 LU decompositionA divide-and-conquer algorithm for LU decomposition can be constructed in a similarrecursive fashion to the matrix multiplication algorithms. LU decomposition is theprocess of factoring a matrix A into the product of a lower triangular matrix and anupper triangular matrix. To see how our algorithm works, divide the matrix A andits factors L and U into four parts so that A = L � U is written as264 A00 A01A10 A11 375 = 264 L00 0L10 L11 375 � 264 U00 U010 U11 375 :The parallel algorithm computes L and U as follows. It recursively factors A00 intoL00 �U00. Then, it uses back substitution to solve for U01 in the formula A01 = L00U01,while simultaneously using forward substitution to solve for L10 in A10 = L10U00.Finally, it recursively factors the Schur complement A11 � L10U01 into L11 � U11.To understand the performance of this LU-decomposition algorithm, we must�rst understand how the back- and forward-substitution algorithms work. To solvethese problems on an n � n matrix, we can also use a parallel divide-and-conquerstrategy. For back substitution (forward substitution is symmetric), we wish to solvethe matrix equation A = LX for the unknown matrixX, where L is a lower triangularmatrix. Subdividing the three matrices as we did for LU-decomposition, we solve theequation as follows. First, solve A00 = L00X00 forX00 recursively, and in parallel solveA01 = L00X01 for X01. Then, compute A010 = A10 � L10X00 and A011 = A11 � L10X01using one of the matrix muliplication routines from Section 4.1.1. Finally, solveA010 = L11X10 for X10 recursively, and in parallel solve A011 = L11X11 for X11.To analyze back substitution, let us assume that we are implementing an in-placealgorithm, so that we can use the multiplication algorithm notempmul that requires noauxiliary space, but which has a critical path of length �(n). The computational workfor back substitution satis�es T1(n) = 4T1(n=2) + �(n3), since matrix multiplicationhas computational work �(n3), which has solution T1(n) = �(n3). The critical-path length for back substitution is T1(n) = 2T1(n=2) + �(n), since the �rst two58



recursive subproblems together have a critical path of T1(n=2), as do the secondtwo subproblems, which must wait until the �rst two are done. The solution to thisrecurrence is T1(n) = �(n lgn). The results for forward substitution are identical.We can now analyze the LU-decomposition algorithm. First, observe that ifnotempmul is used to form the Schur complement as well as in the back and for-ward substitution, the entire algorithm can be performed in place with no extrastorage. For the computational work of the algorithm, we obtain the recurrenceT1(n) = 2T1(n=2) + �(n3), since we have two recursive calls to the algorithm and�(n3) computational work is required for the back substitution, the forward sub-stitution, and the matrix multiplication to compute the Schur complement. Thisrecurrence gives us a solution of T1(n) = �(n3) for the computational work. Thecritical-path length has recurrence T1(n) = 2T1(n=2) + �(n lgn), since the backand forward substitutions have �(n lgn) critical-path length. The solution to thisrecurrence is T1(n) = �(n lg2 n).If we replace all of the matrix multiplication routines in the LU decompositionalgorithm with calls to blockedmul algorithm, we can improve the critical path to�(n lgn) at the expense of using extra temporary space. We are able to predict usingour computational model, however, that the in-place algorithm performs better onour 8-processor SMP for large matrices. For instance, the average parallelism of thein-place algorithm is 370 for 2048 � 2048 matrices, easily satisfying the assumptionof parallel slackness. Hence, the longer critical path length of the in-place algorithmwill not have much e�ect on the overall running time, and allocation costs and cachee�ects from using more space dominate the performance tradeo�.As a �nal note, we observe that our LU decomposition algorithm does not per-form any pivoting, and therefore can be numerically unstable. We are investigatingtechniques to adapt this algorithm to perform some form of pivoting.
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all zero elements as null pointers. For e�ciency reasons, the recursion of the datastructure bottoms out at matrices of size 4� 4, where we store the 16 entries of the4� 4 matrix in dense form.Cholesky factorization is the process of computing, for a symmetric positive def-inite matrix M , a lower-triangular matrix L such that M = LLT . Our parallelalgorithm for sparse Cholesky factorization is a divide-and-conquer algorithm whichfollows the recursive structure of the quadtree. The algorithm for factoring a matrixM = 264 M00 MT10M10 M11 375 into a matrix L = 264 L00 0L10 L11 375 is similar to the LU decomposi-tion algorithm and proceeds as follows:1. Recursively Cholesky factor the upper-left quadrant of M , i.e. compute L00such that M00 = L00LT00.2. Solve for L10 in the equation M10 = L10LT00 using parallel back substitution.3. Compute M11 � L10LT10 using parallel matrix multiplication and subtraction.4. Compute L11 as the Cholesky factorization of M11 � L10LT10.When the recursion reaches a 4 � 4 matrix at the leaves of the quadtree, we doa direct Cholesky factorization of the dense 4 � 4 matrix. The code for the parallelback substitution and matrix multiplication is similar to the dense algorithms forthese problems given in Section 4.1. The only fundamental di�erence in the sparsealgorithms is that opportunities for optimization can occur if one or more submatrixof the quadtree is all zero. Our algorithms for back substitution and matrix multipli-cation use these opportunities to take advantage of the sparsity. Unfortunately, theseoptimizations depend on the structure of the sparse matrix, and hence analyzing thework and critical path of sparse Cholesky is di�cult. Fortunately, the Cilk runtimesystem can measure the work and critical path of a Cilk computation, so we canexperimentally determine T1 and T1 for the Cholesky algorithm run on speci�c inputmatrices. Figure 3-5 shows the results of an experiment for the matrix bcsstk32 ob-tained from Matrix Market [17]. We can see that with an average parallelism of 420,the Cholesky algorithm run on this particular problem instance should scale well.61
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Figure 4-6: Speedup of our sparse Cholesky algorithm on the matrix bcsstk29.Figure 4-6 shows, for a di�erent problem instance, that sparse Cholesky does scalewell. These experiments were run with the sparse matrix bcsstk29 obtained fromMatrix Market [17], reordered using MATLAB's column minimum degree permu-tation. The matrix has 13; 992 rows with 316; 740 nonzero elements. Despite theirregular nature of our parallel sparse matrix computation, the Cilk runtime systemis able to schedule the computation e�ciently on our 8 processor UltraSPARC SMP.Furthermore, the nature of the algorithm lends itself very easily to its expression inCilk. The entire factorization program, including I/O, timing, and testing code, is ex-pressed in less than 1000 lines of Cilk. The combination of simplicity and performancemakes Cilk a good �t for this application.We did have to reorganize the representation of the sparse matrix in order to obtainparallelism, however. The overhead of the quadtree organization adds about 20%overhead to the running time of the Cilk code on one processor. This work overheadis unfortunate, but we see no simple way of parallelizing Cholesky factorization usingthe more e�cient linked-list representation. It is an open question whether linked-listparallelizations can achieve similar speedups to those shown in Figure 4-6.62



Finally, we note that as with our LU decomposition algorithm, our factorizationalgorithm does no pivoting. We do not know how our algorithm might be adaptedto do partial or complete pivoting. Thus, our algorithm is only recommended formatrices which are well-conditioned.4.3 Barnes-HutBarnes-Hut is an algorithm for simulating the motion of particles under the inuenceof gravity. Barnes-Hut is part of the SPLASH-2 benchmark suite from Stanford [101],a set of standard parallel benchmark applications. We currently have a version ofthe Barnes-Hut algorithm coded in Cilk, derived from a C version of the algorithmobtained from Barnes's home page [5]. This C code was also the basis for the SPLASH-2 benchmark program.The Barnes-Hut code is organized into four phases, a tree-build phase which buildsan octtree describing the hierarchical decomposition of space, a force calculation phasewhich calculates gravitational forces on each particle, and two particle-push phaseswhich move particles along their calculated trajectories. Our parallel Barnes-Hutcode parallelizes all four phases. The most computation-intensive portion of thecode, the force calculation phase, is easily parallelizable because there are no depen-dencies between particles in this phase. The two particle-push phases are also easilyparallelizable. The only di�cult phase to parallelize is the tree-building phase, be-cause there are complicated dependencies between particles. The tree building phaseis parallelized by taking advantage of the write-once nature of the tree. Althoughthe parallel tree building may result in nondeterministic intermediate states, the �-nal tree that results is deterministic. The critical path of the parallel algorithm isonly O(lgn), assuming no lock conicts and a distribution of particles that leads toa balanced tree.A comparison of our Cilk Barnes-Hut code is made with the SPLASH-2 Barnes-Hut code in Section 1.2. That comparison shows that the e�ort required to parallelizethe original C code using Cilk is signi�cantly less than the e�ort required to parallelize63
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Figure 4-7: End-to-end speedup (TS=TP ) of Cilk and SPLASH-2 versions of the Barnes-Hut algorithm. These experiments were run on a Sun Enterprise 5000 with 8 167MHzUltraSPARC processors.the original C code using the SPLASH-2 thread library. For a performance compari-son, Figure 1-2 compares the performance of the Cilk and SPLASH-2 parallelizations.The Cilk version of Barnes-Hut runs only 2.4% slower than the C version, showingthat the overhead of spawn and sync is quite low, even for this relatively �ne-grainedapplication (each tree insertion, force calculation, and particle push is its own threadin the Cilk version). In contrast, the work overhead of the SPLASH-2 code is 9.9%due to the explicit load balancing and partitioning code that is required. In thissection, we additionally show speedup curves for both parallelizations in Figure 4-7.This �gure indicates that no scalability is lost when writing a program in Cilk versuswriting a program in a thread library like SPLASH-2. Although both parallelizationsachieve approximately the same speedup T1=T8, when we look at end-to-end speedupTS=T8 the Cilk parallelization does better because of its lower work overhead. Fromthese numbers, we conclude that Cilk provides both a programming environmentwhich enables parallel programming at a higher level of abstraction, and performancecompetitive with implementations that use no such abstractions.64



4.4 Rubik's cubeRubik's cube has fascinated mathematicians and laypeople alike since its introductionby Ern�o Rubik [93, 85]. Despite the fact that a large amount of research has beendone on Rubik's cube, some important questions remain unanswered. This sectionwill focus on one particular unanswered question | what is the hardest position tosolve? Although we will not answer this question de�nitively, we present some strongevidence that the hardest cube to solve is the one pictured in Figure 4-8, called\superip" because it is the solved cube with each edge piece ipped in place.In order to �nd the hardest position, we need to de�ne what it means for aposition to be hard to solve. We examine the problem of solving Rubik's cube usingthe quarter-turn metric. In this metric, each quarter-turn of a face of the cubecounts as one move. Thus, there are twelve possible moves, turning each of the sixfaces either clockwise or counterclockwise.1 We denote the six clockwise moves asF,B,U,D,L,R for the front, back, up, down, left, and right faces of the cube, and thecounterclockwise moves are denoted with a prime ('). With this de�nition of a move,a cube is hard to solve if the minimum number of moves to solve that position, calledits depth , is large. The depth of the superip cube is known to be 24, and it hasbeen conjectured that it may be the hardest Rubik's cube position. Although thedepth of superip is known, little else is known about other deep cubes. This workis the �rst to produce an approximate histogram of cube depths.Determining the depth of a position is a di�cult task. There are 43; 252; 003; 274;489; 856; 000 possible positions of Rubik's cube, which is too many to exhaustivelysearch with today's computers. Don Dailey and I have developed a program, however,that can �nd the minimum depth of most cubes in at most a few hours. We describehow this program works and how we have used it to provide evidence that the superipcube is in fact a very hard cube.1Other metrics include the half-turn metric, in which half turns of the faces count as one move,and the half-slice metric, in which quarter and half turns of the center slices also count as onemove. 65
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Figure 4-8: The superip cube, conjectured to be the hardest Rubik's cube position tosolve. It is formed by ipping in place each of the edge pieces of the solved cube.4.4.1 SearchIn this section, we describe the method we use to �nd minimal solution sequences(and hence depths) of cube positions. Our method is basically a brute-force searchalgorithm with very agressive pruning heuristics. Our program can solve an averagecube in about 20 minutes, and most in a few hours, on a 4-processor 466MHz Alphamachine using about 1.2 gigabytes of memory.Our search algorithm is simple. From a cube position, we try all possible movesequences of a certain length and see if any reach the solved position. We use a tech-nique called iterative deepening in which we try successively longer move sequencesuntil we �nd a solution. Thus, the �rst move sequence found gives a minimal solutionsequence. Of course, some move sequences are redundant. For instance, the movesequence F F and the move sequence F' F' both generate the same cube. In orderto reduce the branching factor of our search, we try to eliminate as many of theseredundant move sequences as possible. We do this pruning using four rules:1. Do not undo the last move.2. Do not play three of the same move in a row.3. Do not play two counterclockwise moves in a row.4. Play \parallel" moves in increasing order. Parallel moves are moves of opposite66



faces. For instance, the move sequences F B and B F both generate the sameposition. We do not play the lexicographically larger of these two sequences.These rules reduce the branching factor from 12 to an asymptotic value of approx-imately 9:374. Why only these four rules? Interestingly, there are no more simplerules like the ones above. The above rules can all be enforced by disallowing certaintriples of moves. If we disallow quadrouples or quintuples of moves, we get no furtherimprovement in the branching factor. In other words, all sequences of 5 moves aredistinct when �ltered with the above four rules. Additionally, less than 1% of all 6move sequences are redundant. Thus, these four rules provide all the branching factorpruning we can reasonably expect.4.4.2 Pruning heuristicsOnce we have removed most redundant sequences, we apply pruning heuristics thateliminate certain positions from possible consideration for a minimal move sequence.Our rules generate assertions of the form \this position cannot be solved in less thanx moves." When searching a particular position to a particular depth, we apply all ofour rules, and if one of them asserts that the position in question cannot be solved inthe given number of moves, we prune the search. We have considered many di�erentpruning rules, but only two rules are currently used by our solver.Our �rst rule is that a position cannot be solved in less moves than the cornersof the cube can be solved. The \corners cube", consisting of Rubik's cube minusthe edge pieces, can be solved by brute force because it has only 88; 179; 840 possiblepositions. We use a table of the depths of these positions, stored at 4 bits per entry(� 42MB), to determine the number of moves required to solve the corner cube.2Our second rule uses a hash table to determine a bound on the depth of a cube.Each hash table entry contains a lower bound on the minimum depth of all cubes thathash to that entry. To �ll the table, we use an exhaustive enumeration of all cubes2We would like to use an edge cube rule as well, but the edge cube has 490; 497; 638; 400 positions,slightly too large for the memory of our machines.67



near the solved cube and compute the minimum depth cube that maps to each tableentry. When searching, we hash our unknown cube and determine the minimumpossible depth of that cube using the hash table. If we are looking for a shortersolution than allowed by the hash table information, we can prune the search. Wecurrently use a 1 GB hash table, stored with 2 bits per entry. An entry can encodeone of four states: no cube � 12 in depth, no cube � 11 in depth, no cube � 10 indepth, and no lower bound.4.4.3 SymmetryWe also take advantage of the symmetries of the cube. A symmetry of a cubeposition is obtained by recoloring the facets of the cube in a way that preserves oppo-siteness of colors. There are 6�4�2 = 48 possible recolorings, and hence symmetries.Alternatively, the 48 symmetries can be viewed as the rigid transformations of spacethat take the cube to itself. For instance, there is a symmetry obtained by rotatingthe cube 90 degrees around a face, 120 degrees around a corner, etc. We can applythese symmetries to any cube position to obtain another \symmetric" position. Theset of cube positions obtained by applying the 48 symmetry operators to a particularposition gives the equivalence class of that position. These equivalence classespartition the set of cube positions.An important property of positions in the same equivalence class is that theyhave the same depth. To prove this fact, consider a possible solution sequenceM = m1; m2; : : : ; mk�1; mk of a position P . Then, viewing the moves in the solutionsequence as operators on the cube state, we have SOLV ED = mkmk�1 � � �m2m1P .Multiplying on the left by a symmetry s, and adding some identity symmetries s�1sfollowing each move, we get the following equation:sSOLV ED = (smks�1)(smk�1s�1) � � � (sm2s�1)(sm1s�1)sP :Because any symmetry applied to SOLV ED gives the same position, sSOLV ED is68



equal to SOLV ED. Thus, if M is a solution sequence for P , thenM 0 = sm1s�1; sm2s�1; : : : ; smk�1s�1; smks�1is a solution sequence for sP .3 Therefore, two symmetric positions have solutionsequences of the same length and therefore those positions have the same depth.We take advantage of the fact that all positions in the same equivalence class havethe same depth by storing only a canonical representative of each equivalence classin the hash table. Because most equivalence classes are of size 48, we save almost afactor of 48 in hash table space.Calculating the canonical representative of an equivalence class can be expensive.In the worst case, we have to enumerate all positions in the equivalence class byapplying all 48 symmetry operators to a position in order to determine which positionis the canonical representative. We use a trick, however, which lets us compute thecanonical representative quickly in most cases. The trick uses a crafty de�nitionof the canonical representative. For an equivalence class of cubes, the canonicalrepresentative is the one with the lexicographically smallest representation, wherethe representation is ordered so that the state of the corner cubies is in the high orderbits and the state of the edge cubies is in the low order bits. Thus, the canonicalrepresentative of a position's equivalence class is completely determined by the stateof the corners of that position, as long as no two members of the equivalence classhave the same corner state. It turns out that less than 0:26% of positions belong toan equivalence class that has two or more positions with the same corner state.In order to calculate canonical representatives quickly, then, we again use the cor-ner cube and an auxiliary 84 MB table to �gure out which symmetry generates thecanonical representative for a particular position. For each corner state, we store thesymmetry operator that, when applied to the given position, generates the canonicalrepresentation. Therefore, we only need to apply one symmetry operator, insteadof 48, to determine the canonical representative of a position's equivalence class. In3It is easy to verify that the conjugates smis�1 are operators representing legal moves.69
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Figure 4-9: Speedup (T1=TP ) for our Rubik's cube solver. The work overhead c1 for thesolver is less than 1:12.the rare case when this operator is not completely determined by the corner state,a dummy value is stored in the table, and if this dummy value is detected, all 48symmetry operators are applied to the position and the minimum lexicographic po-sition is found. Since only 0:26% of positions require this additional work, however,we usually only need to compute one symmetry.4.4.4 ExperimentsUsing our search and heuristic techniques, we can solve a random cube in about 20minutes on a four-processor 466MHz Alpha machine using about 1.2 GB of memory.We use Cilk to exploit all four processors of the machine. This application is veryeasy to program using Cilk because of its recursive tree structure. The work overheadof Cilk is only 12% (c1 = 1:12) for this application. This overhead is somewhathigher than most Cilk applications because the average thread length, 2:9�s, is veryshort. This overhead, however, is well worth the dynamic load balancing and ease ofexpression provided by Cilk. Rubik's cube requires dynamic load balancing because70
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the depth of search subtrees can vary widely depending on when the heuristic cuto�skick in. Thus, Cilk provides a natural language in which to express this parallelprogram. For searches with deterministic amounts of work (those which �nd nosolution and hence have to search the entire tree), we get near-perfect linear speedupfor this application (see Figure 4-9).We now return to the central question. What is the hardest position to solve?We have used our program to generate Figure 4-10, a randomly sampled histogramof cube depths. After solving over 400 random cubes, we have found only a few cubeswith depth 23, and no cubes of depth 24, showing statistically that few cubes aredepth 23 or greater. In fact, this research has found the �rst depth 23 cubes whichare not near superip. The only previously known depth 23 equivalence classes arethe one adjacent to superip, superip + F U F, and superip + F F B. If we comparethis sampled histogram with the exact histogram for the 2�2�2 cube in Figure 4-11,we see that they are quite similar. Since the maximum-depth corner cube, which isof depth 14, is only 3 greater than the depth of the corner cubes at the peak of thedistribution, we can expect the maximum-depth full cube to be only a few depthsaway from the peak of its distribution as well. Since the depth of the superip cubeis known to be 24, 3 greater than the peak of the distribution, we conjecture thatsuperip is likely to be the hardest position of Rubik's cube.
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Chapter 5
The Nondeterminator-2
Recall from Chapter 1 that a data race occurs when two parallel threads holdingno locks in common access the same memory location and at least one of the threadsmodi�es the location. This chapter describes the algorithms and strategies used bythe Nondeterminator-2 debugging tool to �nd data races in Cilk programs.1 Like itspredecessor, the Nondeterminator (which checks for simple \determinacy" races), theNondeterminator-2 is a debugging tool, not a veri�er, since it checks for data racesonly in the computation generated by a serial execution of the program on a giveninput.We give an algorithm, All-Sets, which determines whether the computationgenerated by a serial execution of a Cilk program on a given input contains a race.For a program that runs serially in time T , accesses V shared memory locations, usesa total of n locks, and holds at most k � n locks simultaneously, All-Sets runsin O(nkT �(V; V )) time and O(nkV ) space, where � is Tarjan's functional inverse ofAckermann's function.Since All-Sets may be too ine�cient in the worst case, we propose a muchmore e�cient algorithm which can be used to detect races in programs that obeythe \umbrella" locking discipline, a programming methodology that is more exiblethan similar disciplines proposed in the literature. We present an algorithm, Brelly,1The contents of this chapter are joint work with Guang-Ien Cheng, Mingdong Feng, CharlesLeiserson, and Andrew Stark and will appear at SPAA'98 [23].73



which detects violations of the umbrella discipline in O(kT �(V; V )) time using O(kV )space.We also prove that any \abelian" Cilk program, one whose critical sections com-mute, produces a determinate �nal state if it is deadlock free and if it generates anycomputation which is data-race free. Thus, the Nondeterminator-2's two algorithmscan verify the determinacy of a deadlock-free abelian program running on a giveninput.5.1 Data racesIn a parallel multithreaded computation, a data race exists if logically parallelthreads access the same location, the two threads hold no locks in common, and atleast one of the threads writes to the location. A data race is usually a bug, becausedepending on how the threads are scheduled, the program may exhibit unexpected,nondeterministic behavior. If the two threads hold a lock in common, however, thenondeterminism is usually not a bug. By introducing locks, the programmer presum-ably intends to allow the locked critical sections to be scheduled in either order, aslong as they are not interleaved.Figure 5-1 illustrates a data race in a Cilk program. The procedures foo1, foo2,and foo3 run in parallel, resulting in parallel accesses to the shared variable x. Theaccesses by foo1 and foo2 are protected by lock A and hence do not form a datarace. Likewise, the accesses by foo1 and foo3 are protected by lock B. The accessesby foo2 and foo3 are not protected by a common lock, however, and therefore form adata race. If all accesses had been protected by the same lock, only the value 3 wouldbe printed, no matter how the computation is scheduled. Because of the data race,however, the value of x printed by main might be 2, 3, or 6, depending on scheduling,since the statements in foo2 and foo3 are composed of multiple machine instructionswhich may interleave, possibly resulting in a lost update to x.Since a data race is usually a bug, automatic data-race detection has been studiedextensively. Static race detectors [78] can sometimes determine whether a program74



int x; cilk void foo3() {Cilk_lockvar A, B; Cilk_lock(&B);x++;cilk void foo1() { Cilk_unlock(&B);Cilk_lock(&A); }Cilk_lock(&B);x += 5; cilk int main() {Cilk_unlock(&B); Cilk_lock_init(&A);Cilk_unlock(&A); Cilk_lock_init(&B);} x = 0;spawn foo1();cilk void foo2() { spawn foo2();Cilk_lock(&A); spawn foo3();x -= 3; sync;Cilk_unlock(&A); printf("%d", x);} }Figure 5-1: A Cilk program with a data race. The data race is between the accesses tox in foo2 and foo3.will ever produce a data race when run on all possible inputs. Since static debuggerscannot fully understand the semantics of programs, however, most race detectors aredynamic tools in which potential races are detected at runtime by executing the pro-gram on a given input. Some dynamic race detectors perform a post-mortem analysisbased on program execution traces [34, 53, 72, 79], while others perform an \on-the-y" analysis during program execution. On-the-y debuggers directly instrumentmemory accesses via the compiler [30, 31, 37, 38, 71, 83], by binary rewriting [89], orby augmenting the machine's cache coherence protocol [75, 84].The race-detection algorithms in this chapter are based on the Nondeterminator[37], which �nds \determinacy races" in Cilk programs that do not use locks. TheNondeterminator executes a Cilk program serially on a given input, maintaining ane�cient \SP-bags" data structure to keep track of the logical series/parallel relation-ships between threads. For a Cilk program that runs serially in time T and accesses Vshared-memory locations, the Nondeterminator runs in O(T �(V; V )) time and O(V )space, where � is Tarjan's functional inverse of Ackermann's function, which for allpractical purposes is at most 4.The Nondeterminator-2, which is currently under development, �nds data races75



in Cilk programs that use locks. This race detector contains two algorithms, both ofwhich use the same e�cient SP-bags data structure from the original Nondetermina-tor. The �rst of these algorithms, All-Sets, is an on-the-y algorithm which, likemost other race-detection algorithms, assumes that no locks are held across parallelcontrol statements, such as spawn and sync, and thus all critical sections are sequen-tial code. The second algorithm, Brelly, is a faster on-the-y algorithm, but inaddition to reporting data races as bugs, it also reports as bugs some complex (butrace-free) locking protocols.The All-Sets algorithm executes a Cilk program serially on a given input andeither detects a data race in the computation or guarantees that none exist. For aCilk program that runs serially in time T , accesses V shared-memory locations, usesa total of n locks, and holds at most k � n locks simultaneously, All-Sets runsin O(nkT �(V; V )) time and O(nkV ) space. Tighter, more complicated bounds onAll-Sets will be given in Section 5.2.In previous work, Dinning and Schonberg's \lock-covers" algorithm [31] also de-tects all data races in a computation. The All-Sets algorithm improves the lock-covers algorithm by generalizing the data structures and techniques from the originalNondeterminator to produce better time and space bounds. Perkovic and Keleher [84]o�er an on-the-y race-detection algorithm that \piggybacks" on a cache-coherenceprotocol for lazy release consistency. Their approach is fast (about twice the serialwork, and the tool runs in parallel), but it only catches races that actually occurduring a parallel execution, not those that are logically present in the computation.Although the asymptotic performance bounds of All-Sets are the best to date,they are a factor of nk larger in the worst case than those for the original Nonde-terminator. The Brelly algorithm is asymptotically faster than All-Sets, and itsperformance bounds are only a factor of k larger than those for the original Nondeter-minator. For a Cilk program that runs serially in time T , accesses V shared-memorylocations, and holds at most k locks simultaneously, the serial Brelly algorithmruns in O(kT �(V; V )) time and O(kV ) space. Since most programs do not holdmany locks simultaneously, this algorithm runs in nearly linear time and space. The76



improved performance bounds come at a cost, however. Rather than detecting dataraces directly, Brelly only detects violations of a \locking discipline" that precludesdata races.A locking discipline is a programming methodology that dictates a restrictionon the use of locks. For example, many programs adopt the discipline of acquiringlocks in a �xed order so as to avoid deadlock [57]. Similarly, the \umbrella" lockingdiscipline precludes data races. It requires that each location be protected by thesame lock within every parallel subcomputation of the computation. Threads thatare in series may use di�erent locks for the same location (or possibly even none, ifno parallel accesses occur), but if two threads in series are both in parallel with athird and all access the same location, then all three threads must agree on a singlelock for that location. If a program obeys the umbrella discipline, a data race cannotoccur, because parallel accesses are always protected by the same lock. The Brellyalgorithm detects violations of the umbrella locking discipline.Savage et al. [89] originally suggested that e�cient debugging tools can be devel-oped by requiring programs to obey a locking discipline. Their Eraser tool enforces asimple discipline in which any shared variable is protected by a single lock throughoutthe course of the program execution. Whenever a thread accesses a shared variable, itmust acquire the designated lock. This discipline precludes data races from occurring,and Eraser �nds violations of the discipline in O(kT ) time and O(kV ) space. (Thesebounds are for the serial work; Eraser actually runs in parallel.) Eraser only worksin a parallel environment containing several linear threads, however, with no nestedparallelism or thread joining as is permitted in Cilk. In addition, since Eraser doesnot understand the series/parallel relationship of threads, it does not fully understandat what times a variable is actually shared. Speci�cally, it heuristically guesses whenthe \initialization phase" of a variable ends and the \sharing phase" begins, and thusit may miss some data races.In comparison, our Brelly algorithm performs nearly as e�ciently, is guaranteedto �nd all violations, and importantly, supports a more exible discipline. In particu-lar, the umbrella discipline allows separate program modules to be composed in series77



int x; cilk void bar3() {Cilk_lockvar A, B, C; Cilk_lock(&B);Cilk_lock(&C);cilk void bar1() { x += 3;Cilk_lock(&A); Cilk_unlock(&C);Cilk_lock(&B); Cilk_unlock(&B);x += 1; }Cilk_unlock(&B);Cilk_unlock(&A); cilk int main() {} Cilk_lock_init(&A);Cilk_lock_init(&B);cilk void bar2() { Cilk_lock_init(&C);Cilk_lock(&A); x = 0;Cilk_lock(&C); spawn bar1();x += 2; spawn bar2();Cilk_unlock(&C); spawn bar3();Cilk_unlock(&A); sync;} }Figure 5-2: A Cilk program with no data race which violates the umbrella methodology.Accesses to the variable x are each guarded by two of the three locks A, B, and C, and thusdo not race with each other. The three parallel accesses to x do not agree on a single lockto protect x, however, so this program violates the umbrella methodology.without agreement on a global lock for each location. For example, an applicationmay have three phases|an initialization phase, a work phase, and a clean-up phase|which can be developed independently without agreeing globally on the locks used toprotect locations. If a fourth module runs in parallel with all of these phases and ac-cesses the same memory locations, however, the umbrella discipline does require thatall phases agree on the lock for each shared location. Thus, although the umbrelladiscipline is more exible than Eraser's discipline, it is more restrictive than what ageneral data-race detection algorithm, such as All-Sets, permits. For example, thedata-race free program in Figure 5-2 can be veri�ed by All-Sets to be data-racefree, but Brelly will detect an umbrella discipline violation.Most dynamic race detectors, like All-Sets and Brelly, attempt to �nd, inthe terminology of Netzer and Miller [81], apparent data races|those that appearto occur in a computation according to the parallel control constructs|rather thanfeasible data races|those that can actually occur during program execution. The78



distinction arises, because operations in critical sections may a�ect program controldepending on the way threads are scheduled. Thus, an apparent data race betweentwo threads in a given computation may not actually be feasible, because the compu-tation itself may change if the threads were scheduled in a di�erent order. Since theproblem of exactly �nding feasible data races is computationally di�cult,2 attentionhas naturally focused on the easier (but still di�cult) problem of �nding apparentdata races.For some classes of programs, however, a feasible data race on a given input existsif and only if an apparent data race exists in every computation for that input. Tocheck for a feasible data race in such a program, it su�ces to check a single com-putation for an apparent data race. One class of programs having this property are\abelian" programs in which critical sections protected by the same lock \commute":intuitively, they produce the same e�ect regardless of scheduling. For a computationgenerated by a deadlock-free abelian program running on a given input, we prove thatif no data races exist in that computation, then the program is determinate: allschedulings produce the same �nal result. For abelian programs, therefore, All-Setsand Brelly can verify the determinacy of the program on a given input. Our resultson abelian programs formalize and generalize the claims of Dinning and Schonberg[31, 32], who argue that for \internally deterministic" programs, checking a singlecomputation su�ces to detect all races in the program.The remainder of this chapter is organized as follows. Section 5.2 presents theAll-Sets algorithm, and Section 5.3 presents the Brelly algorithm. Section 5.4gives some empirical results obtained by using the Nondeterminator-2 in its All-Sets and Brelly modes. Section 5.5 de�nes the notion of abelian programs andproves that data-race free abelian programs produce determinate results. Section 5.6o�ers some concluding remarks.2Even in simple models, �nding feasible data races is NP-hard [80].
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depth-�rst treewalk of the parse tree. The series relation � is transitive.Cilk provides the user with mutual-exclusion locks as described in Section 2.5. Weassume in this chapter, as does the general literature, that any lock/unlock pair iscontained in a single thread, and thus holding a lock across a parallel control constructis forbidden.3 The lock set of an access is the set of locks held by the thread when theaccess occurs. The lock set of several accesses is the intersection of their respectivelock sets.If the lock set of two parallel accesses to the same location is empty, and at leastone of the accesses is a write, then a data race exists. To simplify the descriptionand analysis of the race detection algorithm, we shall use a small trick to avoid theextra condition for a race that \at least one of the accesses is a write." The ideais to introduce a fake lock for read accesses called the r-lock, which is implicitlyacquired immediately before a read and released immediately afterwards. The fakelock behaves from the race detector's point of view just like a normal lock, but duringan actual computation, it is never actually acquired and released (since it does notactually exist). The use of r-lock simpli�es the description and analysis of All-Sets, because it allows us to state the condition for a data race more succinctly: ifthe lock set of two parallel accesses to the same location is empty, then a data raceexists. By this condition, a data race (correctly) does not exist for two read accesses,since their lock set contains the r-lock.The All-Sets algorithm is based on the e�cient SP-bags algorithm used by theoriginal Nondeterminator to detect determinacy races in Cilk programs that do notuse locks. The SP-bags algorithm executes a Cilk program on a given input in serial,depth-�rst order. This execution order mirrors that of normal C programs: every sub-computation that is spawned executes completely before the procedure that spawnedit continues. While executing the program, SP-bags maintains an SP-bags datastructure based on Tarjan's nearly linear-time least-common-ancestors algorithm [98].3The Nondeterminator-2 can still be used with programs for which this assumption does nothold, but the race detector prints a warning, and some races may be missed. We are developingextensions of the Nondeterminator-2's detection algorithms that work properly for programs thathold locks across parallel control constructs. 81



The SP-bags data structure allows SP-bags to determine the series/parallel rela-tion between the currently executing thread and any previously executed thread inO(�(V; V )) amortized time, where V is the size of shared memory. In addition, SP-bags maintains a \shadow space" where information about previous accesses to eachlocation is kept. This information is used to determine previous threads that haveaccessed the same location as the current thread. For a Cilk program that runs inT time serially and references V shared memory locations, the SP-bags algorithmruns in O(T �(V; V )) time and uses O(V ) space.The All-Sets algorithm also uses the SP-bags data structure to determine theseries/parallel relationship between threads. Its shadow space lockers is more complexthan the shadow space of SP-bags, however, because it keeps track of which lockswere held by previous accesses to the various locations. The entry lockers[l ] stores alist of lockers: threads that access location l, each paired with the lock set that washeld during the access. If he;Hi 2 lockers[l ], then location l is accessed by thread ewhile it holds the lock set H.As an example of what the shadow space lockers may contain, consider a threade that performs the following:Cilk lock(&A); Cilk lock(&B);read(l)Cilk unlock(&B); Cilk unlock(&A);Cilk lock(&B); Cilk lock(&C);write(l)Cilk unlock(&C); Cilk unlock(&B);For this example, the list lockers[l ] contains two lockers|he; fA; B;r-lockgi andhe; fB; Cgi.The All-Sets algorithm is shown in Figure 5-4. Intuitively, this algorithmrecords all lockers, but it is careful to prune redundant lockers, keeping at mostone locker per distinct lock set. Lines 1{3 check to see if a data race has occurred andreport any violations. Lines 5{11 then add the current locker to the lockers shadowspace and prune redundant lockers. A locker he;Hi is redundant if there exists a82



access(l) in thread e with lock set H1 for each he0; H 0i 2 lockers[l ]2 do if e0 k e and H 0 \H = ;3 then declare a data race4 redundant  false5 for each he0; H 0i 2 lockers[l ]6 do if e0 � e and H 0 � H7 then lockers[l ] lockers[l ]� fhe 0;H 0ig8 if e0 k e and H 0 � H9 then redundant  true10 if redundant = false11 then lockers[l ] lockers[l ] [ fhe;H igFigure 5-4: The All-Sets algorithm. The operations for the spawn, sync, and returnactions are unchanged from the SP-bags algorithm on which All-Sets is based. Addi-tionally, the Cilk lock() and Cilk unlock() functions must be instrumented to add andremove locks from the lock set H appropriately.stronger locker in lockers[l ], one which races with a future access whenever he;Hiraces with that future access. We remove the redundant locker he0; H 0i in line 7 be-cause the locker he;Hi is stronger than he0; H 0i. Similarly, we do not add the lockerhe;Hi to lockers[l ] if we record in line 9 that another stronger locker he0; H 0i is alreadyin lockers[l ].Before proving the correctness of All-Sets, we restate two important lemmasfrom [37].Lemma 1 Suppose that three threads e1, e2, and e3 execute in order in a serial,depth-�rst execution of a Cilk program, and suppose that e1 � e2 and e1 k e3. Then,we have e2 k e3.Lemma 2 (Pseudotransitivity of k) Suppose that three threads e1, e2, and e3 ex-ecute in order in a serial, depth-�rst execution of a Cilk program, and suppose thate1 k e2 and e2 k e3. Then, we have e1 k e3.We now prove that the All-Sets algorithm is correct.83



Theorem 3 The All-Sets algorithm detects a data race in a computation of a Cilkprogram running on a given input if and only if a data race exists in the computation.Proof: ()) To prove that any race reported by the All-Sets algorithm really existsin the computation, observe that every locker added to lockers[l ] in line 11 consistsof a thread and the lock set held by that thread when it accesses l. The algorithmdeclares a race when it detects in line 2 that the lock set of two parallel accesses (bythe current thread e and one from lockers[l ]) is empty, which is exactly the conditionrequired for a data race.(() Assuming a data race exists in a computation, we shall show that a data raceis reported. If a data race exists, then we can choose two threads e1 and e2 such thate1 is the last thread before e2 in the serial execution which has a data race with e2.If we let H1 and H2 be the lock sets held by e1 and e2, respectively, then we havee1 k e2 and H1 \H2 = ;.We �rst show that immediately after e1 executes, lockers[l ] contains some threade3 that races with e2. If he1; H1i is added to lockers[l ] in line 11, then e1 is suchan e3. Otherwise, the redundant ag must have been set in line 9, so there must exista locker he3; H3i 2 lockers[l ] with e3 k e1 and H3 � H1. Thus, by pseudotransitivity(Lemma 2), we have e3 k e2. Moreover, since H3 � H1 and H1 \ H2 = ;, we haveH3 \H2 = ;, and therefore e3, which belongs to lockers[l ], races with e2.To complete the proof, we now show that the locker he3; H3i is not removed fromlockers[l ] between the times that e1 and e2 are executed. Suppose to the contrary thathe4; H4i is a locker that causes he3; H3i to be removed from lockers[l ] in line 7. Then,we must have e3 � e4 and H3 � H4, and by Lemma 1, we have e4 k e2. Moreover,since H3 � H4 and H3 \H2 = ;, we have H4 \H2 = ;, contradicting the choice of e1as the last thread before e2 to race with e2.Therefore, thread e3, which races with e2, still belongs to lockers[l ] when e2 exe-cutes, and so lines 1{3 report a race.In Section 5.1, we claimed that for a Cilk program that executes in time T onone processor, references V shared memory locations, uses a total of n locks, and84



holds at most k � n locks simultaneously, the All-Sets algorithm can check thiscomputation for data races in O(nkT �(V; V )) time and using O(nkV ) space. Thesebounds, which are correct but weak, are improved by the next theorem.Theorem 4 Consider a Cilk program that executes in time T on one processor, ref-erences V shared memory locations, uses a total of n locks, and holds at most k lockssimultaneously. The All-Sets algorithm checks this computation for data races inO(TL(k+�(V; V ))) time and O(kLV ) space, where L is the maximum of the numberof distinct lock sets used to access any particular location.Proof: First, observe that no two lockers in lockers have the same lock set, becausethe logic in lines 5{11 ensure that if H = H 0, then locker he;Hi either replaces he0; H 0i(line 7) or is considered redundant (line 9). Thus, there are at most L lockers in thelist lockers[l ]. Each lock set takes at most O(k) space, so the space needed for lockersis O(kLV ). The length of the list lockers[l ] determines the number of series/parallelrelations that are tested. In the worst case, we need to perform 2L such tests (lines 2and 6) and 2L set operations (lines 2, 6, and 8) per access. Each series/parallel testtakes amortized O(�(V; V )) time, and each set operation takes O(k) time. Therefore,the All-Sets algorithm runs in O(TL(k + �(V; V ))) time.The looser bounds claimed in Section 5.1 of O(nkT �(V; V )) time and O(nkV )space for k � n follow because L � Pki=0 �ni� = O(nk=k!). As we shall see inSection 5.4, however, we rarely see the worst-case behavior given by the bounds inTheorem 4.5.3 The Brelly algorithmThe umbrella locking discipline requires all accesses to any particular location withina given parallel subcomputation to be protected by a single lock. Subcomputations inseries may each use a di�erent lock, or even none, if no parallel accesses to the locationoccur within the subcomputation. In this section, we formally de�ne the umbrelladiscipline and present the Brelly algorithm for detecting violations of this discipline.85



We prove that the Brelly algorithm is correct and analyze its performance, whichwe show to be asymptotically better than that of All-Sets.The umbrella discipline can be de�ned precisely in terms of the parse tree ofa given Cilk computation. An umbrella of accesses to a location l is a subtreerooted at a P-node containing accesses to l in both its left and right subtrees, as isillustrated in Figure 5-5. An umbrella of accesses to l is protected if its accesses havea nonempty lock set and unprotected otherwise. A program obeys the umbrellalocking discipline if it contains no unprotected umbrellas. In other words, withineach umbrella of accesses to a location l, all threads must agree on at least one lockto protect their accesses to l.The next theorem shows that adherence to the umbrella discipline precludes dataraces from occuring.Theorem 5 A Cilk computation with a data race violates the umbrella discipline.Proof: Any two threads involved in a data race must have a P-node as their leastcommon ancestor in the parse tree, because they operate in parallel. This P-noderoots an unprotected umbrella, since both threads access the same location and thelock sets of the two threads are disjoint.The umbrella discipline can also be violated by unusual, but data-race free, lockingprotocols. For instance, suppose that a location is protected by three locks and thatevery thread always acquires two of the three locks before accessing the location.No single lock protects the location, but every pair of such accesses is mutuallyexclusive. The All-Sets algorithm properly certi�es this bizarre example as race-free, whereas Brelly detects a discipline violation. In return for disallowing theseunusual locking protocols (which in any event are of dubious value), Brelly checksprograms asymptotically much faster than All-Sets.Like All-Sets, the Brelly algorithm extends the SP-bags algorithm used inthe original Nondeterminator and uses the r-lock fake lock for read accesses (seeSection 5.2). Figure 5-6 gives pseudocode for Brelly. Like the SP-bags algorithm,86
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Figure 5-5: Three umbrellas of accesses to a location l. In this parse tree, each shadedleaf represents a thread that accesses l. Each umbrella of accesses to l is enclosed by adashed line.Brelly executes the program on a given input in serial depth-�rst order, maintain-ing the SP-bags data structure so that the series/parallel relationship between thecurrently executing thread and any previously executed thread can be determinedquickly. Like the All-Sets algorithm, Brelly also maintains a set H of currentlyheld locks. In addition, Brelly maintains two shadow spaces of shared memory:accessor , which stores for each location the thread that performed the last \serialaccess" to that location; and locks, which stores the lock set of that access. Eachentry in the accessor space is initialized to the initial thread (which logically precedesall threads in the computation), and each entry in the locks space is initialized to theempty set.Unlike the All-Sets algorithm, Brelly keeps only a single lock set, rather thana list of lock sets, for each shared-memory location. For a location l, each lock inlocks[l ] potentially belongs to the lock set of the largest umbrella of accesses to lthat includes the current thread. The Brelly algorithm tags each lock h 2 locks[l ]with two pieces of information: a thread nonlocker [h] and a ag alive[h]. The threadnonlocker [h] is a thread that accesses l without holding h. The ag alive[h] indicateswhether h should still be considered to potentially belong to the lock set of theumbrella. To allow reports of violations to be more precise, the algorithm \kills" alock h by setting alive[h] false when it determines that h does not belong to thelock set of the umbrella, rather than simply removing it from locks[l ].Whenever Brelly encounters an access by a thread e to a location l, it checksfor a violation with previous accesses to l, updating the shadow spaces appropriately87



access(l) in thread e with lock set H1 if accessor [l ] � e2 then � serial accesslocks[l ] H , leaving nonlocker [h] with its oldnonlocker if it was already in locks[l ] butsetting nonlocker [h] accessor [l ] otherwise3 for each lock h 2 locks[l ]4 do alive[h] true5 accessor [l ] e6 else � parallel access7 for each lock h 2 locks[l ]� H8 do if alive[h] = true9 then alive[h] false10 nonlocker [h] e11 for each lock h 2 locks[l ] \ H12 do if alive[h] = true and nonlocker [h] k e13 then alive[h] false14 if no locks in locks[l ] are alive (or locks[l ] = ;)15 then report violation on l involvinge and accessor [l ]16 for each lock h 2 H \ locks[l ]17 do report access to l without hby nonlocker [h]Figure 5-6: The Brelly algorithm. While executing a Cilk program in serial depth-�rst order, at each access to a shared-memory location l, the code shown is executed. Notshown are the updates to H, the set of currently held set of locks, which occur wheneverlocks are acquired or released. To determine whether the currently executing thread is inseries or parallel with previously executed threads, Brelly uses the SP-bags data structurefrom [37].for future reference. If accessor [l ] � e, we say the access is a serial access, and thealgorithm performs lines 2{5, setting locks[l ]  H and accessor [l ]  e, as well asupdating nonlocker [h] and alive[h] appropriately for each h 2 H. If accessor [l ] k e,we say the access is a parallel access, and the algorithm performs lines 6{17, killingthe locks in locks[l ] that do not belong to the current lock set H (lines 7{10) orwhose nonlockers are in parallel with the current thread (lines 11{13). If Brellydiscovers in line 14 that there are no locks left alive in locks[l ] after a parallel access,it has discovered an unprotected umbrella, and it reports a discipline violation in88
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thread access type accessor [l ] locks [l ] a nonlocker [a] b nonlocker [b]initial e0 f ge1 serial e1 fa;bg alive e0 alive e0e2 parallel e1 fa;bg alive e0 killed e2e3 parallel e1 fa;bg alive e0 killed e2e4 serial e4 f ge5 serial e5 fa;bg alive e4 alive e4e6 parallel e5 fa;bg killed e6 alive e4e7 parallel e5 fa;bg killed e6 killed e4Figure 5-7: A sample execution of the Brelly algorithm. We restrict our attention tothe algorithm's operation on a single location l. In the parse tree, each leaf represents anaccess to l and is labeled with the thread that performs the access (e.g., e1) and the lock setof that access (e.g., fa;bg). Umbrellas are enclosed by dashed lines. The table displays thevalues of accessor [l ] and locks [l ] after each thread's access. The state of each lock and itsnonlocker are listed after locks [l ]. The \access type" column indicates whether the accessis a parallel or serial access.lines 15{17.When reporting a violation, Brelly speci�es the location l, the current threade, and the thread accessor [l ]. It may be that e and accessor [l ] hold locks in common,in which case the algorithm uses the nonlocker information in lines 16{17 to reportthreads which accessed l without each of these locks.Figure 5-7 illustrates how Brelly works. The umbrella containing threads e1,e2, and e3 is protected by lock a but not by lock b, which is reected in locks[l ] afterthread e3 executes. The umbrella containing e5 and e6 is protected by b but not by a,which is reected in locks[l ] after thread e6 executes. During the execution of threade6, a is killed and nonlocker [a] is set to e6, according to the logic in lines 7{10. When89



e7 executes, b remains as the only lock alive in locks[l ] and nonlocker [b] is e4 (due toline 2 during e5's execution). Since e4 k e7, lines 11{13 kill b, leaving no locks alivein locks[l ], properly reecting the fact that no lock protects the umbrella containingthreads e4 through e7. Consequently, the test in line 14 causes Brelly to declare aviolation at this point.The following two lemmas, which will be helpful in proving the correctness ofBrelly, are stated without proof.Lemma 6 Suppose a thread e performs a serial access to location l during an execu-tion of Brelly. Then all previously executed accesses to l logically precede e in thecomputation.Lemma 7 The Brelly algorithm maintains the invariant that for any location land lock h 2 locks[l ], the thread nonlocker [h] is either the initial thread or a threadthat accessed l without holding h.Theorem 8 The Brelly algorithm detects a violation of the umbrella discipline ina computation of a Cilk program running on a given input if and only if a violationexists.Proof: We �rst show that Brelly only detects actual violations of the discipline,and then we argue that no violations are missed. In this proof, we denote by locks�[l ]the set of locks in locks[l ] that have true alive ags.()) Suppose that Brelly detects a violation caused by a thread e, and lete0 = accessor [l ] when e executes. Since we have e0 k e, it follows that p = lca(e0; e)roots an umbrella of accesses to l, because p is a P-node and it has an access to lin both subtrees. We shall argue that the lock set U of the umbrella rooted at p isempty. Since Brelly only reports violations when locks�[l ] = ;, it su�ces to showthat U � locks�[l ] at all times after e0 executes.Since e0 is a serial access, lines 2{5 cause locks�[l ] to be the lock set of e0. Atthis point, we know that U � locks�[l ], because U can only contain locks held by90



every access in p's subtree. Suppose that a lock h is killed (and thus removed fromlocks�[l ]), either in line 9 or line 13, when some thread e0 executes a parallel accessbetween the times that e0 and e execute. We shall show that in both cases h 62 U ,and so U � locks�[l ] is maintained.In the �rst case, if thread e0 kills h in line 9, it does not hold h, and thus h 62 U .In the second case, we shall show that w, the thread stored in nonlocker [h] whenh is killed, is a descendant of p, which implies that h 62 U , because by Lemma 7,w accesses l without the lock h. Assume for the purpose of contradiction that w isnot a descendant of p. Then, we have lca(w; e0) = lca(w; e0), which implies thatw k e0, because w k e0. Now, consider whether nonlocker [h] was set to w in line 10or in line 2 (not counting when nonlocker [h] is left with its old value in line 2). Ifline 10 sets nonlocker [h]  w , then w must execute before e0, since otherwise, wwould be a parallel access, and lock h would have been killed in line 9 by w beforee0 executes. By Lemma 6, we therefore have the contradiction that w � e0. If line 2sets nonlocker [h]  w , then w performs a serial access, which must be prior to themost recent serial access by e0. By Lemma 6, we once again obtain the contradictionthat w � e0.(() We now show that if a violation of the umbrella discipline exists, then Brellydetects a violation. If a violation exists, then there must be an unprotected umbrellaof accesses to a location l. Of these unprotected umbrellas, let T be a maximal onein the sense that T is not a subtree of another umbrella of accesses to l, and let p bethe P-node that roots T . The proof focuses on the values of accessor [l ] and locks[l ]just after p's left subtree executes.We �rst show that at this point, accessor [l ] is a left-descendant of p. Assumefor the purpose of contradiction that accessor [l ] is not a left-descendant of p (and istherefore not a descendant of p at all), and let p0 = lca(accessor [l ]; p). We knowthat p0 must be a P-node, since otherwise accessor [l ] would have been overwritten inline 5 by the �rst access in p's left subtree. But then p0 roots an umbrella which is aproper superset of T , contradicting the maximality of T .Since accessor [l ] belongs to p's left subtree, no access in p's right subtree overwrites91



locks[l ], as they are all logically in parallel with accessor [l ]. Therefore, the accessesin p's right subtree may only kill locks in locks[l ]. It su�ces to show that by the timeall accesses in p's right subtree execute, all locks in locks[l ] (if any) have been killed,thus causing a race to be declared. Let h be some lock in locks�[l ] just after the leftsubtree of p completes.Since T is unprotected, an access to l unprotected by h must exist in at least oneof p's two subtrees. If some access to l is not protected by h in p's right subtree,then h is killed in line 9. Otherwise, let eleft be the most-recently executed threadin p's left subtree that performs an access to l not protected by h. Let e0 be thethread in accessor [l ] just after eleft executes, and let eright be the �rst access to lin the right subtree of p. We now show that in each of the following cases, we havenonlocker [h] k eright when eright executes, and thus h is killed in line 13.Case 1: Thread eleft is a serial access. Just after eleft executes, we have h 62 locks[l ](by the choice of eleft) and accessor [l ] = eleft. Therefore, when h is later placed inlocks[l ] in line 2, nonlocker [h] is set to eleft. Thus, we have nonlocker [h] = eleft keright.Case 2: Thread eleft is a parallel access and h 2 locks[l ] just before eleft executes.Just after e0 executes, we have h 2 locks[l ] and alive[h] = true, since h 2 locks[l ]when eleft executes and all accesses to l between e0 and eleft are parallel and do notplace locks into locks[l ]. By pseudotransitivity (Lemma 2), e0 k eleft and eleft k erightimplies e0 k eright. Note that e0 must be a descendant of p, since if it were not, T wouldbe not be a maximal umbrella of accesses to l. Let e00 be the most recently executedthread before or equal to eleft that kills h. In doing so, e00 sets nonlocker [h] e 00 inline 10. Now, since both e0 and eleft belong to p's left subtree and e00 follows e0 in theexecution order and comes before or is equal to eleft, it must be that e00 also belongsto p's left subtree. Consequently, we have nonlocker [h] = e 00 k eright.Case 3: Thread eleft is a parallel access and h 62 locks[l ] just before eleft exe-cutes. When h is later added to locks[l ], its nonlocker [h] is set to e0. As above, bypseudotransitivity, e0 k eleft and eleft k eright implies nonlocker [h] = e 0 k eright.In each of these cases, nonlocker [h] k eright still holds when eright executes, since92



eleft, by assumption, is the most recent thread to access l without h in p's left subtree.Thus, h is killed in line 13 when eright executes.Theorem 9 On a Cilk program which on a given input executes serially in timeT , uses V shared-memory locations, and holds at most k locks simultaneously, theBrelly algorithm runs in O(kT �(V; V )) time and O(kV ) space.Proof: The total space is dominated by the locks shadow space. For any location l,the Brelly algorithm stores at most k locks in locks[l ] at any time, since locks areplaced in locks[l ] only in line 2 and jHj � k. Hence, the total space is O(kV ).Each loop in Figure 5-6 takes O(k) time if lock sets are kept in sorted order,excluding the checking of nonlocker [h] k e in line 12, which dominates the asymptoticrunning time of the algorithm. The total number of times nonlocker [h] k e is checkedover the course of the program is at most kT , requiring O(kT �(V; V )) time.
5.4 Experimental resultsWe are in the process of implementing both the All-Sets and Brelly algorithms aspart of the Nondeterminator-2 debugging tool. Our experiences are therefore highlypreliminary. In this section, we describe our initial results from running these twoalgorithms on four Cilk programs that use locks. Our implementations of All-Setsand Brelly have not yet been optimized, and so better performance than what wereport here is likely to be possible.According to Theorem 4, the factor by which All-Sets slows down a program isroughly �(Lk) in the worst case, where L is the maximum number of distinct lock setsused by the program when accessing any particular location, and k is the maximumnumber of locks held by a thread at one time. According to Theorem 9, the worst-caseslowdown factor for Brelly is about �(k). In order to compare our experimental
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results with the theoretical bounds, we characterize our four test programs in termsof the parameters k and L:4maxflow: A maximum-ow code based on Goldberg's push-relabel method [45].Each vertex in the graph contains a lock. Parallel threads perform simple operationsasynchronously on graph edges and vertices. To operate on a vertex u, a threadacquires u's lock, and to operate on an edge (u; v), the thread acquires both u's lockand v's lock (making sure not to introduce a deadlock). Thus, for this application, themaximum number of locks held by a thread is k = 2, and L is at most the maximumdegree of any vertex.barnes-hut: The n-body gravity simulation code from Section 4.3. In the tree-building phase, parallel threads race to build various parts of the octtree.5 Each partis protected by an associated lock, and the �rst thread to acquire that lock buildsthat part of the structure. As the program never holds more than one lock at a time,we have k = L = 1.bucket: A bucket sort [26, Section 9.4]. Parallel threads acquire the lock associ-ated with a bucket before adding elements to it. This algorithm is analogous to thetypical way a hash table is accessed in parallel. For this program, we have k = L = 1.rad: A 3-dimensional radiosity renderer running on a \maze" scene. The original75-source-�le C code was developed in Belgium by Bekaert et. al. [6]. We used Cilkto parallelize its scene geometry calculations. Each surface in the scene has its ownlock, as does each \patch" of the surface. In order to lock a patch, the surface lockmust also be acquired, so that k = 2, and L is the maximum number of patches persurface, which increases at each iteration as the rendering is re�ned.Figure 5-8 shows the preliminary results of our experiments on the test codes.These results indicate that the performance of All-Sets is indeed dependent on theparameter L. Essentially no performance di�erence exists between All-Sets andBrelly when L = 1, but All-Sets gets progressively worse as L increases. On all4These characterizations do not count the implicit \fake" r-lock used by the detectionalgorithms.5The tree-building algorithm in our version of Barnes-Hut is di�erent from the tree-buildingalgorithm in the SPLASH-2 code. 94



Parameters Time (sec.) Slowdownprogram input k L orig. All. Br. All. Br.maxflow sp. 1K 2 32 0.05 30 3 590 66sp. 4K 2 64 0.2 484 14 2421 68d. 256 2 256 0.2 263 15 1315 78d. 512 2 512 2.0 7578 136 3789 68barnes-hut 1K 1 1 0.6 47 47 79 782K 1 1 1.6 122 119 76 74bucket 100K 1 1 0.3 22 22 74 73rad iter. 1 2 65 1.2 109 45 91 37iter. 2 2 94 1.0 179 45 179 45iter. 5 2 168 2.8 773 94 276 33iter. 13 2 528 9.1 13123 559 1442 61Figure 5-8: Timings of our implementations on a variety of programs and inputs. (Theinput parameters are given as sparse/dense and number of vertices for maxflow, numberof bodies for barnes-hut, number of elements for bucket, and iteration number for rad.)The parameter L is the maximum number of distinct lock sets used while accessing anyparticular location, and k is the maximum number of locks held simultaneously. Runningtimes for the original optimized code, for All-Sets, and for Brelly are given, as well asthe slowdowns of All-Sets and Brelly as compared to the original running time.of our test programs, Brelly runs fast enough to be useful as a debugging tool. Insome cases, All-Sets is as fast, but in other cases, the overhead of All-Sets is tooextreme (iteration 13 of rad takes over 3.5 hours) to allow interactive debugging.5.5 Abelian programsBy checking a single computation for the absence of determinacy races, the originalNondeterminator can guarantee that a Cilk program without locking is determinate:it always produces the same answer (when run on the same input). To date, no similarclaim has been made by any data-race detector for any class of programs with locks.We cannot make a general claim either, but in this section, we introduce a class ofnondeterministic programs for which a determinacy claim can be made. We provethat the absence of data races in a single computation of a deadlock-free \abelian"program implies that the program (when run on the same input) is determinate. As aconsequence, All-Sets and Brelly can verify the determinacy of abelian programs95



int x, y; cilk void bar1() {Cilk_lockvar A; Cilk_lock(&A);x++;cilk int main() { if (x == 1)Cilk_lock_init(&A); y = 3;x = 0; Cilk_unlock(&A);spawn bar1(); }spawn bar2();sync; cilk void bar2() {printf("%d", y); Cilk_lock(&A);} x++;Cilk_unlock(&A);y = 4;}Figure 5-9: A Cilk program that generates a computation with an infeasible data raceon the variable y.from examining a single computation. We do not claim that abelian programs form animportant class in any practical sense. Rather, we �nd it remarkable that a guaranteeof determinacy can be made for any nontrivial class of nondeterministic programs.Locking introduces nondeterminism intentionally, allowing many di�erent compu-tations to arise from the same program, some of which may have data races and someof which may not. Since All-Sets and Brelly examine only one computation, theycannot detect data races that appear in other computations. More subtlely, the dataraces that these algorithms do detect might actually be infeasible, never occurring inan actual program execution.Figure 5-9 shows a program that exhibits an infeasible data race. In the compu-tation generated when bar1 obtains lock A before bar2, a data race exists betweenthe two updates to y. In the scheduling where bar2 obtains lock A �rst, however,bar1's update to y never occurs. In other words, no scheduling exists in which thetwo updates to y happen simultaneously, and in fact, the �nal value of y is always 4.Thus, the computation generated by the serial depth-�rst scheduling, which is theone examined by All-Sets and Brelly, contains an infeasible data race.Deducing from a single computation that the program in Figure 5-9 is determinateappears di�cult. But not all programs are so hard to understand. For example, the96



program from Figure 5-1 exhibits a race no matter how it is scheduled, and therefore,All-Sets and Brelly can always �nd a race. Moreover, if all accesses to x inthe program were protected by the same lock, no data races would exist in anycomputation. For such a program, checking a single computation for the absenceof races su�ces to guarantee that the program is determinate. The reason we canverify the determinacy of this program from a single computation is because it has\commuting" critical sections.The critical sections in the program in Figure 5-1 obey the following strict de�ni-tion of commutativity: Two critical sections R1 and R2 commute if, beginning withany (reachable) program state S, the execution of R1 followed by R2 yields the samestate S 0 as the execution of R2 followed by R1; and furthermore, in both executionorders, each critical section must execute the identical sequence of instructions onthe identical memory locations.6 Thus, not only must the program state remain thesame, the same accesses to shared memory must occur, although the values returnedby those accesses may di�er. The program in Figure 5-1 also exhibits \properly nestedlocking." Locks are properly nested if any thread which acquires a lock a and thena lock b releases b before releasing a. We say that a program is abelian if any pair ofparallel critical sections that are protected by the same lock commute, and all locks inthe program are properly nested. The programs in Figures 5-1 and 2-3 are examplesof abelian programs.The idea that critical sections should commute is natural. A programmer presum-ably locks two critical sections with the same lock not only because he intends themto be atomic, but because he intends them to \do the same thing" no matter in whatorder they are executed. The programmer's notion of commutativity is usually lessrestrictive, however, than what our de�nition allows. First, both execution ordersof two critical sections may produce distinct program states that the programmer6It may be the case that even though R1 and R2 are in parallel, they cannot appear adjacent inany execution because a lock is acquired preceeding R1 and released after R1 which is also acquiredby R2 (or vice versa). Therefore, we require the additional technical condition that the executionof R1 followed by any pre�x R02 of R2 generates for R02 the same instructions operating on the samelocations as executing R02 alone. 97



nevertheless views as equivalent. Our de�nition insists that the program states beidentical. Second, even if they leave identical program states, the two execution or-ders may cause di�erent memory locations to be accessed. Our de�nition demandsthat the same memory locations be accessed.In practice, therefore, most programs are not abelian, but abelian programs nev-ertheless form a nontrivial class of nondeterministic programs that can be checkedfor determinacy. For example, all programs that use locking to accumulate valuesatomically, such as the histogram program in Figure 2-3, fall into this class. Al-though abelian programs form an arguably small class in practice, the guarantees ofdeterminacy that All-Sets and Brelly provide for them are not provided by anyother existing race-detectors for any class of lock-employing programs. It is an openquestion whether a more general class of nondeterministic programs exists for whichan e�cient race-detector can o�er a provable guarantee of determinacy.In order to study the determinacy of abelian programs, we �rst give a formalmultithreaded machine model that more precisely describes an actual execution of aCilk program. We view the abstract execution machine for Cilk as a (sequentiallyconsistent [63]) shared memory together with a collection of interpreters, each withsome private state. (See [15, 28, 51] for examples of multithreaded implementationssimilar to this model.) Interpreters are dynamically created during execution by eachspawn statement. The ith such child of an interpreter is given a unique interpretername by appending i to its parent's name.When an instruction is executed by an interpreter, it maps the current state ofthe multithreaded machine to a new state. An interpreter whose next instructioncannot be executed is said to be blocked . If all interpreters are blocked, the machineis deadlocked .Although a multithreaded execution may proceed in parallel, we consider a se-rialization of the execution in which only one interpreter executes at a time, butthe instructions of the di�erent interpreters may be interleaved.7 The initial state7The fact that any parallel execution can be simulated in this fashion is a consequence of ourchoice of sequential consistency as the memory model.98



of the machine consists of a single interpreter whose program counter points to the�rst instruction of the program. At each step, a nondeterministic choice among thecurrent nonblocked interpreters is made, and the instruction pointed to by its pro-gram counter is executed. The resulting sequence of instructions is referred to as anexecution of the program.When an instruction executes in a run of a program, it a�ects the state of themachine in a particular way. To formalize the e�ect of an instruction execution, wede�ne an instantiation of an instruction to be a 3-tuple consisting of an instructionI, the shared memory location l on which I operates (if any), and the name of theinterpreter that executes I. We assume that the instantiation of an instruction is adeterministic function of the machine state.We de�ne a region to be either a single instantiation other than a lock orunlock instruction, or a sequence of instantiations that comprise a critical section(including the lock and unlock instantiations themselves).8 Every instantiationbelongs to at least one region and may belong to many. Since a region is a sequenceof instantiations, it is determined by a particular execution of the program and notby the program code alone. We de�ne the nesting count of a region R to be themaximum number of locks that are acquired in R and held simultaneously at somepoint in R.The execution of a program can alternatively be viewed as sequence of instantia-tions, rather than instructions, and an instantiation sequence can always be generatedfrom an instruction sequence. We formally de�ne a computation as a dag in whichthe vertices are instantiations and the edges denote synchronization. Edges go fromeach instantiation to the next instantiation executed by the same interpreter, fromeach spawn instantiation to the �rst instantiation executed by the spawned inter-preter, and from the last instantiation of each interpreter to the next sync instantia-tion executed by its parent interpreter.We can now give a more precise de�nition of a data race. A data race exists in a8The instantiations within a critical section must be serially related in the dag, as we disallowparallel control constructs while locks are held. 99



computation if two logically parallel instantiations access the same memory locationwithout holding the same lock, and at least one of the accesses is a write. Sincea memory location is a component of each instantiation, it is unambiguous what itmeans for two instantiations to access the same memory location. In contrast, if thecomputation were constructed so that the nodes were instructions, it would not beapparent from the dag alone whether two nodes reference the same memory location.A scheduling of a computation G is a sequence of instantiations forming a per-mutation of the vertex set of G. This sequence must satisfy the ordering constraintsof the dag, as well as have the property that any two lock instantiations that ac-quire the same lock are separated by an unlock of that lock in between. A partialscheduling of G is a scheduling of a pre�x of G, and if any partial scheduling of Gcan be extended to a scheduling of G, we say that G is deadlock free. Otherwise,G has at least one deadlock scheduling , which is a partial scheduling that cannotbe extended.Not every scheduling of G corresponds to some actual execution of the program.If a scheduling or partial scheduling does correspond to an actual execution as de�nedby the machine model, we call that scheduling a true scheduling of G; otherwiseit is a false scheduling . Since we are only concerned with the �nal memory statesof true schedulings, we de�ne two schedulings (or partial schedulings) of G to beequivalent if both are false, or both are true and have the same �nal memory state.An alternate de�nition of commutativity, then, is that two regionsR1 andR2 commuteif, beginning with any reachable machine state S, the instantiation sequences R1R2and R2R1 are equivalent.Our study of the determinacy of abelian programs will proceed as follows. Startingwith a data-race free, deadlock-free computation G resulting from the execution ofan abelian program, we �rst prove that adjacent regions in a scheduling of G can becommuted. Second, we show that regions which are spread out in a scheduling of Gcan be grouped together. Third, we prove that all schedulings of G are true and yieldthe same �nal memory state. Finally, we prove that all executions of the abelianprogram generate the same computation and hence the same �nal memory state.100



Lemma 10 (Reordering) Let G be a data-race free, deadlock-free computation re-sulting from the execution of an abelian program. Let X be some scheduling of G. Ifregions R1 and R2 appear adjacent in X, i.e., X = X1R1R2X2, and R1 k R2, thenthe two schedulings X1R1R2X2 and X1R2R1X2 are equivalent.Proof: We prove the lemma by double induction on the nesting count of the regions.Our inductive hypothesis is the theorem as stated for regions R1 of nesting count iand regions R2 of nesting count j.Base case: i = 0. Then R1 is a single instantiation. Since R1 and R2 are adjacentin X and are parallel, no instantiation of R2 can be guarded by a lock that guards R1,because any lock held at R1 is not released until after R2. Therefore, since G is data-race free, either R1 and R2 access di�erent memory locations or R1 is a read and R2does not write to the location read by R1. In either case, the instantiations of each ofR1 and R2 do not a�ect the behavior of the other, so they can be executed in eitherorder without a�ecting the �nal memory state.Base case: j = 0. Symmetric with above.Inductive step: In general, R1 of count i � 1 has the form lock(a) � � �unlock(a),and R2 of count j � 1 has the form lock(b) � � �unlock(b). If a = b, then R1 andR2 commute by the de�nition of abelian. Otherwise, there are three possible cases.Case 1: Lock a appears in R2, and lock b appears in R1. This situation cannotoccur, because it implies that G is not deadlock free, a contradiction. To construct adeadlock scheduling, we schedule X1 followed by the instantiations of R1 up to (butnot including) the �rst lock(b). Then, we schedule the instantiations of R2 until adeadlock is reached, which must occur, since R2 contains a lock(a) (although thedeadlock may occur before this instantiation is reached).Case 2: Lock a does not appear in R2. We start with the sequence X1R1R2X2and commute pieces of R1 one at a time with R2: �rst, the instantiation unlock(a),then the (immediate) subregions of R1, and �nally the instantiation lock(a). Theinstantiations lock(a) and unlock(a) commute withR2, because a does not appearanywhere in R2. Each subregion of R1 commutes with R2 by the inductive hypothesis,because each subregion has lower nesting count than R1. After commuting all of R1101



past R2, we have an equivalent execution X1R2R1X2.Case 3: Lock b does not appear in R1. Symmetric to Case 2.Lemma 11 (Region grouping) Let G be a data-race free, deadlock-free computa-tion resulting from the execution of an abelian program. Let X be some schedulingof G. Then, there exists an equivalent scheduling X 0 of G in which the instantiationsof every region are contiguous.Proof: We shall create X 0 by grouping the regions inX one at a time. Each groupingoperation will not destroy the grouping of already grouped regions, so eventually allregions will be grouped.Let R be a noncontiguous region in X that completely overlaps no other noncon-tiguous regions in X. Since region R is noncontiguous, other regions parallel with Rmust overlap R in X. We �rst remove all overlapping regions which have exactly oneendpoint (an endpoint is the bounding lock or unlock of a region) in R, where by\in" R, we mean appearing in X between the endpoints of R. We shall show howto remove regions which have only their unlock in R. The technique for removingregions with only their lock in R is symmetric.Consider the partially overlapping region S with the leftmost unlock in R. Thenall subregions of S which have any instantiations inside R are completely inside R andare therefore contiguous. We remove S by moving each of its (immediate) subregionsin R to just left of R using commuting operations. Let S1 be the leftmost subregionof S which is also in R. We can commute S1 with every instruction I to its left untilit is just past the start of R. There are three cases for the type of instruction I. If Iis not a lock or unlock, it commutes with S1 by Lemma 10 because it is a region inparallel with S1. If I = lock(b) for some lock b, then S1 commutes with I, becauseS1 cannot contain lock(b) or unlock(b). If I = unlock(b), then there must exista matching lock(b) inside R, because S is chosen to be the region with the leftmostunlock without a matching lock. Since there is a matching lock in R, the regionde�ned by the lock/unlock pair must be contiguous by the choice of R. Therefore,we can commute S1 with this whole region at once using Lemma 10.102



We can continue to commute S1 to the left until it is just before the start of R.Repeat for all other subregions of S, left to right. Finally, the unlock at the end ofS can be moved to just before R, because no other lock or unlock of that samelock appears in R up to that unlock.Repeat this process for each region overlapping R that has only an unlock in R.Then, remove all regions which have only their lock in R by pushing them to justafter R using similar techniques. Finally, when there are no more unmatched lockor unlock instantiations in R, we can remove any remaining overlapping regions bypushing them in either direction to just before or just after R. The region R is nowcontiguous.Repeating for each region, we obtain an execution X 0 equivalent to X in whicheach region is contiguous.Lemma 12 Let G be a data-race free, deadlock-free computation resulting from theexecution of an abelian program. Then every scheduling of G is true and yields thesame �nal memory state.Proof: Let X be the execution that generates G. Then X is a true scheduling of G.We wish to show that any scheduling Y of G is true. We shall construct a set ofequivalent schedulings of G that contain the schedulings X and Y , thus proving thelemma.We construct this set using Lemma 11. Let X 0 and Y 0 be the schedulings ofG with contiguous regions which are obtained by applying Lemma 11 to X and Y ,respectively. From X 0 and Y 0, we can commute whole regions using Lemma 10 to puttheir threads in the serial depth-�rst order speci�ed by G, obtaining schedulings X 00and Y 00. We have X 00 = Y 00, because a computation has only one serial depth-�rstscheduling. Thus, all schedulings X, X 0, X 00 = Y 00, Y 0, and Y are equivalent. SinceX is a true scheduling, so is Y , and both have the same �nal memory state.Theorem 13 An abelian Cilk program that produces a deadlock-free computation withno data races is determinate. 103



Proof: Let X be an execution of an abelian program that generates a data-racefree, deadlock-free computation G. Let Y be an arbitrary execution of the sameprogram. Let H be the computation generated by Y , and let Hi be the pre�x of Hthat is generated by the �rst i instantiations of Y . If Hi is a pre�x of G for all i,then H = G, and therefore, by Lemma 12, executions X and Y have the same �nalmemory state. Otherwise, assume for contradiction that i0 is the largest value of i forwhich Hi is a pre�x of G. Suppose that the (i0+1)st instantiation of Y is executed byan interpreter with name �. We shall derive a contradiction through the creation ofa new scheduling Z of G. We construct Z by starting with the �rst i0 instantiationsof Y , and next adding the successor of Hi0 in G that is executed by interpreter �.We then complete Z by adding, one by one, any nonblocked instantiation from theremaining portion of G. One such instantiation always exists because G is deadlockfree. By Lemma 12, the scheduling Z that results is a true scheduling of G. We thushave two true schedulings which are identical in the �rst i0 instantiations but whichdi�er in the (i0 + 1)st instantiation. In both schedulings the (i0 + 1)st instantiationis executed by interpreter �. But, the state of the machine is the same in both Y andZ after the �rst i0 instantiations, which means that the (i0 + 1)st instantiation mustbe the same for both, which is a contradiction.We state one more lemma which allows us to show that All-Sets and Brellycan give a guarantee of determinacy for deadlock-free abelian programs. We leavethe proof of this lemma to Appendix A because of its technical nature.Lemma 14 Let G be a computation generated by a deadlock-free abelian program. IfG is data-race free, then it is deadlock free.Corollary 15 If the All-Sets algorithm detects no data races in an execution ofa deadlock-free abelian Cilk program, then the program running on the same input isdeterminate.Proof: Combine Theorems 3 and 13 and Lemma 14.104



Corollary 16 If the Brelly algorithm detects no violations of the umbrella disci-pline in an execution of a deadlock-free abelian Cilk program, then the program runon the same input is determinate.Proof: Combine Theorems 5, 8, and 13 and Lemma 14.5.6 ConclusionAlthough All-Sets and Brelly are fast race-detection algorithms, many practicalquestions remain as to how to use these algorithms to debug real programs. Inthis section, we discuss our early experiences in using the Nondeterminator-2, whichcurrently provides both algorithms as options, to debug Cilk programs.A key decision by Cilk programmers is whether to adopt the umbrella locking dis-cipline. A programmer might �rst debug with All-Sets, but unless he has adoptedthe umbrella discipline, he will be unable to fall back on Brelly if All-Sets seemstoo slow. We recommend that programmers use the umbrella discipline initially,which is good programming practice in any event, and only use All-Sets if they areforced to drop the discipline.The Nondeterminator-2 reports any apparent data race as a bug. As we have seen,however, some data races are infeasible. We have experimented with ways that theuser can inform the Nondeterminator-2 that certain races are infeasible, so that thedebugger can avoid reporting them. One approach we have tried is to allow the userto \turn o�" the Nondeterminator-2 in certain pieces of code using compiler pragmasand other linguistic mechanisms. Unfortunately, turning o� the Nondeterminator-2 requires the user to check for data races manually between the ignored accessesand all other accesses in the program. A better strategy has been to give the userfake locks|locks that are acquired and released only in debugging mode, as in theimplicit r-lock fake lock. The user can then protect accesses involved in apparentbut infeasible races using a common fake lock. Fake locks reduce the number of falsereports made by the Nondeterminator-2, and they require the user to manually checkfor data races only between critical sections locked by the same fake lock.105



Another cause of false reports is \publishing." One thread allocates a heap object,initializes it, and then \publishes" it by atomically making a �eld in a global datastructure point to the new object so that the object is now available to other threads.If a logically parallel thread now accesses the object in parallel through the globaldata structure, an apparent data race occurs between the initialization of the objectand the access after it was published. Fake locks do not seem to help much, becauseit is hard for the initializer to know all the other threads that may later access theobject, and we do not wish to suppress data races among those later accesses. We donot yet have a good solution for this problem.With the Brelly algorithm, some programs may generate many violations of theumbrella discipline that are not caused by actual data races. We have implementedseveral heuristics in the Nondeterminator-2's Brelly mode to report straightforwarddata races and hide violations that are not real data races whenever possible.False reports are not a problem when the program being debugged is abelian, butprogrammers would like to know whether an ostensibly abelian program is actuallyabelian. Dinning and Schonberg give a conservative compile-time algorithm to checkif a program is \internally deterministic" [31], and we have given thought to how theabelian property might likewise be conservatively checked. The parallelizing compilertechniques of Rinard and Diniz [87] may be applicable.We are currently investigating versions of All-Sets and Brelly that correctlydetect races even when parallelism is allowed within critical sections. A more ambi-tious goal is to detect potential deadlocks by dynamically detecting the user's accor-dance with a exible locking discipline that precludes deadlocks.
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Chapter 6
Dag consistency
This chapter de�nes dag consistency, a weak memory model for multithreaded com-puting, and presents the Backer algorithm for maintaining dag consistency.1 Weargue that dag consistency is a natural consistency model for Cilk programs, and wegive both theoretical and empirical evidence that the Backer algorithm is e�cient.We prove that the number of page faults (cache misses) FP (C) incurred by Backerrunning on P processors, each with a shared-memory cache of C pages, is at mostF1(C)+2Cs, where where s is the number of steals executed by Cilk's scheduler. TheF1(C) term represents the page faults incurred by the serial execution, and the 2Csterm represents additional faults due to \warming up" the processors' caches on eachsteal. We present empirical evidence that this warm-up overhead is actually muchsmaller in practice than the theoretical bound.6.1 IntroductionWhy do we care about weak memory consistency models? Architects of shared mem-ory for parallel computers have attempted to support Lamport's strong model ofsequential consistency [63]: The result of any execution is the same as if the opera-tions of all the processors were executed in some sequential order, and the operations1The contents of this chapter are joint work with Robert Blumofe, Matteo Frigo, ChristopherJoerg, and Charles Leiserson and appeared at IPPS'96 [12].107



of each individual processor appear in this sequence in the order speci�ed by its pro-gram. Unfortunately, they have generally found that Lamport's model is di�cult toimplement e�ciently, and hence relaxed models of shared-memory consistency havebeen developed [33, 43, 44] that compromise on semantics for a faster implementa-tion. By and large, all of these consistency models have had one thing in common:they are \processor centric" in the sense that they de�ne consistency in terms of ac-tions by physical processors. In contrast, dag consistency is de�ned on the abstractcomputation dag of a Cilk program, and hence is \computation centric".To de�ne a computation-centric memory model like dag consistency, it su�cesto de�ne what values are allowed to be returned by a read. Intuitively, a read can\see" a write in the dag-consistency model only if there is some serial executionorder consistent with the dag in which the read sees the write. Unlike sequentialconsistency, but similar to certain processor-centric models [43, 47], dag consistencyallows di�erent reads to return values that are based on di�erent serial orders, butthe values returned must respect the dependencies in the dag.The mechanisms to support dag-consistent distributed shared memory on theConnection Machine CM5 are implemented in software. Nevertheless, codes such asmatrix multiplication run e�ciently, as can be seen in Figure 6-1. The dag-consistentshared memory performs at 5 megaops per processor as long as the work per pro-cessor is su�ciently large. This performance compares fairly well with other matrixmultiplication codes on the CM5 (that do not use the CM5's vector units). For ex-ample, an implementation coded in Split-C [27] attains just over 6 megaops perprocessor on 64 processors using a static data layout, a static thread schedule, andan optimized assembly-language inner loop. In contrast, Cilk's dag-consistent sharedmemory is mapped across the processors dynamically, and the Cilk threads performingthe computation are scheduled dynamically at runtime. We believe that the overheadin our CM5 implementation can be reduced, but that in any case, this overhead isa reasonable price to pay for the ease of programming and dynamic load balancingprovided by Cilk.The primary motivation for any weak consistency model, including dag consis-108
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Figure 6-1: Megaops per processor versus the number of processors for several matrixmultiplication runs on the Connection Machine CM5. The shared-memory cache on eachprocessor is set to 2MB. The lower curve is for the blockedmul code in Figure 4-2 and theupper two curves are for the notempmul code in Figure 4-3.tency, is performance. In addition, however, a memory model must be understandableby a programmer. We argue that dag consistency is a reasonable memory model fora programmer to use. If the programmer wishes to ensure that a read sees a write, hemust ensure that there is a path in the computation dag from the write to the read.The programmer ensures that such a path exists by placing a sync statement betweenthe write and read in his program. In fact, our experience shows that most of theCilk programs from Chapter 4 already have this property. Thus, they work withoutmodi�cation under dag consistency. All Cilk applications that do not require locks,including all of the matrix algorithms from Section 4.1 and Section 4.2, a version ofthe Barnes-Hut algorithm from Section 4.3 that does not parallelize the tree build,and the Rubik's cube solver from Section 4.4 require only dag consistency.Irregular applications like Barnes-Hut and Strassen's algorithm provide a goodtest of Cilk's ability to schedule computations dynamically. We achieve a speedup of9 on an 8192-particle Barnes-Hut simulation using 32 processors, which is competitivewith other software implementations of distributed shared memory [59] on the CM5.Strassen's algorithm runs as fast as regular matrix multiplication on a small numberof processors for 2048� 2048 matrices. 109
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Figure 6-2: Dag of the blocked matrix multiplication algorithm blockedmul.The remainder of this chapter is organized as follows. Section 6.2 gives a moti-vating example of dag consistency using the blockedmul matrix multiplication al-gorithm. Section 6.3 gives a formal de�nition of dag consistency and describes theabstract Backer coherence algorithm for maintaining dag consistency. Section 6.4describes an implementation of the Backer algorithm on the Connection MachineCM5. Section 6.5 analyzes the number of faults taken by Cilk programs, both theo-retically and empirically. Section 6.6 investigates the running time of dag-consistentshared memory programs and presents a model for their performance. Section 5.6compares dag-consistency with some related consistency models and o�ers some ideasfor future work.6.2 Example: matrix multiplicationTo illustrate the concepts behind dag consistency, consider once again the parallelmatrix multiplication algorithm from Figure 4-1. Like any Cilk computation, theexecution of blockedmul can be viewed as a dag of threads. Figure 6-2 illustratesthe structure of the dag for blockedmul. The spawn and sync statements of theprocedure blockedmul break it up into ten threads X1; : : : ; X10, where thread X1corresponds to the partitioning of the matrices and the spawning of subproblem M1in lines 1{13, threads X2 through X8 correspond to the spawning of subproblems M2through M8 in lines 14{20, thread X9 corresponds to the spawning of the addition Sin line 22, and thread X10 corresponds to the return in line 25.Dag-consistent shared memory is a natural consistency model to support a shared-memory program such as blockedmul. Certainly, sequential consistency can guaran-110



tee the correctness of the program, but a closer look at the precedence relation givenby the dag reveals that a much weaker consistency model su�ces. Speci�cally, the 8recursively spawned children M1;M2; : : : ;M8 need not have the same view of sharedmemory, because the portion of shared memory that each writes is neither read norwritten by the others. On the other hand, the parallel addition of tmp into R by thecomputation S requires S to have a view in which all of the writes to shared memoryby M1;M2; : : : ;M8 have completed.The intuition behind dag consistency is that each thread sees values that areconsistent with some serial execution order of the dag, but two di�erent threads maysee di�erent serial orders. Thus, the writes performed by a thread are seen by itssuccessors, but threads that are incomparable in the dag may or may not see eachother's writes. In blockedmul, the computation S sees the writes of M1;M2; : : : ;M8,because all the threads of S are successors of M1;M2; : : : ;M8, but since the Miare incomparable, they cannot depend on seeing each others writes. We de�ne dagconsistency precisely in Section 6.3.6.3 The Backer coherence algorithmThis section describes our coherence algorithm, which we call Backer, for main-taining dag consistency. We �rst give a formal de�nition of dag-consistent sharedmemory and explain how it relates to the intuition of dag consistency that we havegained thus far. We then describe the cache and \backing store" used by Backerto store shared-memory objects, and we give three fundamental operations for mov-ing shared-memory objects between cache and backing store. Finally, we give theBacker algorithm and describe how it ensures dag consistency.Shared memory consists of a set of objects that threads can read and write. Totrack which thread is responsible for an object's value, we imagine that each shared-memory object has a tag which the write operation sets to the name of the threadperforming the write. We assume without loss of generality that each thread performsat most one read or write. In addition, we make the technical assumption that an111



initial sequence of instructions writes a value to every object. We now de�ne dagconsistency in terms of the computation. A computation is represented by its graphG = (V;E), where V is a set of vertices representing threads of the computation, andE is a set of edges representing ordering constraints on the threads. For two threadsu and v, we say u � v if u 6= v and there is a directed path in G from u to v.De�nition 1 The shared memoryM of a computation G = (V;E) is dag consistentif for every object x in the shared memory, there exists an observer function fx :V ! V such that the following conditions hold.1. For all instructions u 2 V , the instruction fx(u) writes to x.2. If an instruction u writes to x, then we have fx(u) = u.3. If an instruction u reads x, it receives a value tagged with fx(u).4. For all instructions u 2 V , we have u 6� fx(u).5. For each triple u, v, and w of instructions such that u � v � w, if fx(v) 6= fx(u)holds, then we have fx(w) 6= fx(u).Informally, the observer function fx(u) represents the viewpoint of instruction uon the contents of object x, that is, the tag of x from u's perspective. Therefore, ifan instruction u writes, the tag of x becomes u (part 2 of the de�nition), and when itreads, it reads something tagged with fx(u) (part 3). Moreover, part 4 requires thatfuture execution does not have any inuence on the current value of the memory. Therationale behind part 5 is shown in Figure 6-3. When there is a path from u to wthrough v, then v \masks" u, in the sense that if the value observed by u is no longercurrent when v executes, then it cannot be current when w executes. Instruction wcan still have a di�erent viewpoint on x than v. For instance, instruction w may seea write on x performed by some other instruction (such as s and t in the �gure) thatis incomparable with v.For deterministic programs, this de�nition implies the intuitive notion that aread can \see" a write only if there is some serial execution order of the dag in112
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Figure 6-3: Illustration of the de�nition of dag consistency. When there is a pathfrom u to w through v, then a write by v to an object \masks" u's write to the object,not allowing u's write to be read by w. Instruction w may see writes to the objectperformed by instructions s and t, however.which the read sees the write. As it turns out, however, this intuition is ill de�nedfor certain nondeterministic programs. For example, there exist nondeterministicprograms whose parallel execution can contain reads that do not occur in any serialexecution. De�nition 1 implies the intuitive semantics for deterministic programs andis well de�ned for all programs.Programs can easily be written that are guaranteed to be deterministic. Non-determinism arises when there is a \determinacy race", a write to an object that isincomparable with another read or write to the same object. To avoid nondetermin-ism, it su�ces that no write to an object occurs that is incomparable with anotherread or write to the same object, in which case all writes to the object must lie on asingle path in the dag. Moreover, all writes and any one given read must also lie ona single path. Consequently, by De�nition 1, every read of an object sees exactly onewrite to that object, and the execution is deterministic. This determinism guaranteecan be veri�ed by the Nondeterminator [37], which checks for determinacy races.2We now describe the Backer coherence algorithm for maintaining dag-consistentshared memory.3 In this algorithm, versions of shared-memory objects can residesimultaneously in any of the processors' local caches or the global backing store. Eachprocessor's cache contains objects recently used by the threads that have executed2The Nondeterminator-2 is not required in this case because locks are not part of the de�nitionof dag consistency.3See [58] for details of a \lazier" coherence algorithm than Backer based on climbing the spawntree. 113



on that processor, and the backing store provides default global storage for eachobject. For our Cilk system on the CM5, portions of each processor's main memoryare reserved for the processor's cache and for a portion of the distributed backingstore, although on some systems, it might be reasonable to implement the backingstore on disk. In order for a thread executing on the processor to read or write anobject, the object must be in the processor's cache. Each object in the cache has adirty bit to record whether the object has been modi�ed since it was brought intothe cache.Three basic operations are used by the Backer to manipulate shared-memoryobjects: fetch, reconcile, and ush. A fetch copies an object from the backing storeto a processor cache and marks the cached object as clean. A reconcile copies adirty object from a processor cache to the backing store and marks the cached objectas clean. Finally, a ush removes a clean object from a processor cache. Unlikeimplementations of other models of consistency, all three operations are bilateralbetween a processor's cache and the backing store, and other processors' caches arenever involved.The Backer coherence algorithm operates as follows. When the user code per-forms a read or write operation on an object, the operation is performed directlyon a cached copy of the object. If the object is not in the cache, it is fetched fromthe backing store before the operation is performed. If the operation is a write, thedirty bit of the object is set. To make space in the cache for a new object, a cleanobject can be removed by ushing it from the cache. To remove a dirty object, it isreconciled and then ushed.Besides performing these basic operations in response to user reads and writes,the Backer performs additional reconciles and ushes to enforce dag consistency.For each edge i! j in the computation dag, if threads i and j are scheduled ondi�erent processors, say p and q, then Backer reconciles all of p's cached objectsafter p executes i but before p enables j, and it reconciles and ushes all of q's cachedobjects before q executes j. Although ushing all of q's objects seems extreme, we arenevertheless able to achieve good performance with Backer, because these ushes114



do not happen very often. In a production implementation of Backer, however,some means of keeping objects in a cache across multiple synchronizations might bewarranted.The key reason Backer works is that it is always safe, at any point during theexecution, for a processor p to reconcile an object or to ush a clean object. Supposewe arbitrarily insert a reconcile of an object into the computation performed by p.Assuming that there is no other communication involving p, if p later fetches theobject that it previously reconciled, it will receive either the value that it wrote earlieror a value written by a thread i0 that is incomparable with the thread i performingthe read. In the �rst case, part 5 of De�nition 1 is satis�ed by the semantics ofordinary serial execution. In the second case, the thread i0 that performed the writeis incomparable with i, and thus part 5 of the de�nition holds because there is nopath from i0 to i. The other four parts of De�nition 1 are easy to verify.The Backer algorithm uses this safety property to guarantee dag consistencyeven when there is communication. Suppose that a thread i resides on processorp with an edge to a thread j on processor q. In this case, Backer causes p toreconcile all its cached objects after executing i but before enabling j, and it causesq to reconcile and ush its entire cache before executing j. At this point, the stateof q's cache (empty) is the same as p's if j had executed with i on processor p, but areconcile and ush had occurred between them. Consequently, Backer ensures dagconsistency.4With all the reconciles and ushes being performed by the Backer algorithm,why should we expect it to be an e�cient coherence algorithm? The main reasonis that once a processor has fetched an object into its cache, the object never needsto be updated with external values or invalidated, unless communication involvingthat processor occurs to enforce a dependency in the dag. Consequently, the pro-4For a rigorous proof that Backer maintains dag consistency, see [69]. In fact, Backer main-tains a stronger memory model, called location consistency , which is the weakest memory modelstronger than dag consistency that is constructible (exactly implementable by an on-line algo-rithm). For a full discussion of constructibility in memory models and the relation of dag consistencyto other memory models, see [40, 42]. 115



cessor can run with the speed of a serial algorithm with no overheads. Moreover,in Cilk, communication to enforce dependencies can be amortized against steals, sosuch communication does not happen often if the computation has enough parallelslackness.6.4 ImplementationThis section describes our implementation of dag-consistent shared memory for theCilk-3 runtime system running on the Connection Machine Model CM5 parallel super-computer [66]. We describe the grouping of shared memory into pages and describethe \di�" mechanism [61] for managing dirty bits. Finally, we discuss minor anoma-lies in atomicity that can occur when the size of the concrete objects supported bythe shared-memory system is di�erent from the abstract objects that the programmermanipulates.The Cilk-3 system on the CM5 supports concrete shared-memory objects of 32-bit words. All consistency operations are logically performed on a per-word basis. Ifthe runtime system had to operate on every word independently, however, the systemwould be terribly ine�cient. Since extra fetches and reconciles do not adversely a�ectthe Backer coherence algorithm, we implemented the familiar strategy of groupingobjects into pages [54, Section 8.2], each of which is fetched or reconciled as a unit.Assuming that spatial locality exists when objects are accessed, grouping objectshelps amortize the runtime system overhead.An important issue we faced with the implementation of dag-consistent sharedmemory was how to keep track of which objects on a page have been written. Currentmicroprocessors do not provide hardware support for maintaining user-level dirty bitsat the granularity of words. Rather than using dirty bits explicitly, Cilk uses a di�mechanism as is used in the Treadmarks system [61]. The di� mechanism computesthe dirty bit for an object by comparing that object's value with its value in a twincopy made at fetch time. Our implementation makes this twin copy only for pagesloaded in read/write mode, thereby avoiding the overhead of copying for read-only116



pages. The di� mechanism imposes extra overhead on each reconcile, but it imposesno extra overhead on each access [102].Dag consistency can su�er from atomicity anomalies when abstract objects thatthe programmer is reading and writing are larger than the concrete objects supportedby the shared-memory system. For example, suppose the programmer is treating two4-byte concrete objects as one 8-byte abstract object. If two incomparable threadseach write the entire 8-byte object, the programmer might expect an 8-byte read ofthe structure by a common successor to receive one of the two 8-byte values written.The 8-byte read may nondeterministically receive 4 bytes of one value and 4 bytesof the other value, however, since the 8-byte read is really two 4-byte reads, and theconsistency of the two halves is maintained separately. Fortunately, this problemcan only occur if the abstract program is nondeterministic, that is, if the programis nondeterministic even when the abstract and concrete objects are the same size.When writing deterministic programs, the programmer need not worry about thisatomicity problem.As with other consistency models, including sequential consistency, atomicityanomalies can also occur when the programmer packs several abstract objects into asingle system object. Fortunately, this problem can easily be avoided in the standardway by not packing together abstract objects that might be updated in parallel.The size of the backing store determines how large a shared-memory applicationone can run. On the CM5, the backing store is implemented in a distributed fashion byallocating a large fraction of each processor's memory to this function. To determinewhich processor holds the backing store for a page, a hash function is applied to thepage identi�er (a pair of the virtual address and the allocating subcomputation). Afetch or reconcile request for a page is made to the backing store of the processorto which the page hashes. This policy ensures that backing store is spread evenlyacross the processors' memory. In other systems, it might be reasonable to place thebacking store on disk �a la traditional virtual memory.
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6.5 An analysis of page faultsIn this section, we examine the number FP (C) of page faults that a Cilk computationincurs when run on P processors using the implementation of the Backer coherencealgorithm with cache size C described in Section 6.4. Although we will prove tighterbounds later in Section 7.2, this analysis is provided to give an intuition for whyBacker performs well when exectuing Cilk programs. We prove that FP (C) canbe related to the number F1(C) of page faults taken by a 1-processor execution bythe formula FP (C) � F1(C) + 2Cs, where C is the size of each processor's cachein pages and s is the total number of steals executed by the scheduler. The 2Csterm represents faults due to \warming up" the processors' caches, and we presentempirical evidence that this overhead is actually much smaller in practice than thetheoretical bound.We begin with a theorem that bounds the number of page faults of a Cilk ap-plication. The proof takes advantage of properties of the least-recently used (LRU)page replacement scheme used by Cilk, as well as the fact that Cilk's scheduler, likeC, executes serial code in a depth-�rst fashion.Theorem 17 Let FP (C) be the number of page faults of a Cilk computation whenrun on P processors with a cache of C pages on each processor. Then, we haveFP (C) � F1(C) + 2Cs, where s is the total number of steals that occur during Cilk'sexecution of the computation.Proof: The proof is by induction on the number s of steals. For the base case,observe that if no steals occur, then the application runs entirely on one processor,and thus it faults F1(C) times by de�nition. For the inductive case, consider anexecution E of the computation that has s steals. Choose any subcomputation Tfrom which no processor steals during the execution E. Construct a new executionE 0 of the computation which is identical to E, except that T is never stolen. SinceE 0 has only s � 1 steals, we know it has at most F1(C) + 2C(s � 1) page faults bythe inductive hypothesis. 118



To relate the number of page faults during execution E to the number duringexecution E 0, we examine cache behavior under LRU replacement. Consider twoprocessors that execute simultaneously and in lock step a block of code using twodi�erent starting cache states, where each processor's cache has C pages. The mainproperty of LRU we exploit is that the number of page faults in the two executionscan di�er by at most C page faults. This property follows from the observation thatno matter what the starting cache states might be, the states of the two caches mustbe identical after one of the two executions takes C page faults. Indeed, at the pointwhen one execution has just taken its Cth page fault, each cache contains exactly thelast C distinct pages referenced [25].We can now count the number of page faults during the execution E. The faultbehavior of E is the same as the fault behavior of E 0 except for the subcomputation Tand the subcomputation, call it U , from which it stole. Since T is executed in depth-�rst fashion, the only di�erence between the two executions is that the starting cachestate of T and the starting cache state of U after T are di�erent. Therefore, executionE makes at most 2C more page faults than execution E 0, and thus execution E hasat most F1(C) + 2C(s� 1) + 2C = F1(C) + 2Cs page faults.Theorem 17 says that the total number of faults on P processors is at most thetotal number of faults on 1 processor plus an overhead term. The overhead ariseswhenever a steal occurs, because in the worst case, the caches of both the thievingprocessor and the victim processor contain no pages in common compared to thesituation when the steal did not occur. Thus, they must be \warmed up" until thecaches \synchronize" with the cache of a serial execution. If most stolen tasks touchless than C shared-memory pages, however, then the warm-up overhead will not beas large as the worst-case bound in Theorem 17.To measure the warm-up overhead, we counted the number of page faults taken byseveral applications|including blockedmul, notempmul, and Strassen's algorithm|for various choices of cache, processor, and problem size. For each run we measuredthe cache warm-up fraction (FP (C)�F1(C))=2Cs, which represents the fractionof the cache that needs to be warmed up on each steal. We know from Theorem 17119
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6.6 PerformanceIn this section, we model the performance of Cilk on synthetic benchmark applicationssimilar to blockedmul. In order to model performance for Cilk programs that usedag-consistent shared memory, we observe that running times will vary as a functionof the cache size C, so we must introduce measures that account for this dependence.Consider again the computation that results when a given Cilk program is used tosolve a given input problem. We shall de�ne a new work measure, the \total work,"that accounts for the cost of page faults in the serial execution, as follows. Let m bethe time to service a page fault in the serial execution. We now weight the instructionsof the dag. Each instruction that generates a page fault in the one-processor executionwith the standard, depth-�rst serial execution order and with a cache of size C hasweight m + 1, and all other instructions have weight 1. The total work , denotedT1(C), is the total weight of all instructions in the dag, which corresponds to the serialexecution time if page faults take m units of time to be serviced. We shall continueto let T1 denote the number of instructions in the dag, but for clarity, we shall referto T1 as the computational work . (The computational work T1 corresponds tothe serial execution time if all page faults take zero time to be serviced.) To relatethese measures, we observe that the number of instructions with weight m+1 is justthe number of page faults of the one processor execution, or F1(C). Thus, we haveT1(C) = T1 +mF1(C).The quantity T1(C) is an unusual measure. Unlike T1, it depends on the serialexecution order of the computation. The quantity T1(C) further di�ers from T1 inthat T1(C)=P is not a lower bound on the execution time for P processors. It ispossible to construct a computation containing P subcomputations that run on Pseparate processors in which each processor repeatedly accesses C di�erent pages insequence. Consequently, with caches of size C, no processor ever faults, except towarm up the cache at the start of the computation. If we run the same computationserially with a cache of size C (or any size less than CP ), however, the necessarymultiplexing among tasks can cause numerous page faults. Consequently, for this121
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sured the work and critical-path length for synthetic benchmarks obtained by addingsync statements to the matrix multiplication program shown in Figure 4-2. By judi-ciously placing sync statements in the code, we were able to obtain synthetic bench-marks that exhibited a wide range of average parallelism. We ran the benchmarkson various numbers of processors of the CM5, each time recording the number P ofprocessors and the actual runtime TP (C).5Figure 6-5 shows a normalized speedup curve [15] for the synthetic benchmarks.This curve is obtained by plotting speedup T1(C)=TP (C) versus machine size P ,but normalizing each of these values by dividing them by the average parallelismT1(C)=T1. We use a normalized speedup curve, because it allows us to plot runs ofdi�erent benchmarks on the same graph. Also plotted in the �gure are the perfectlinear-speedup curve TP (C) = T1(C)=P (the 45� line) and the limit on performancegiven by the parallelism bound TP (C) � T1 (the horizontal line).The quantity T1 is not necessarily a tight lower bound on TP (C), because itignores page faults. Indeed, the structure of blockedmul on n � n matrices causes
(lgn) faults to be taken along any path through the dag. Although the boundTP (C) � T1(C) is tighter (and makes our numbers look better), it appears di�cultto compute. We can estimate using analytical techniques, however, that for ourmatrix multiplication algorithms, T1(C) is about twice as large as T1. Had we usedthis value for T1 in the normalized speedup curve in Figure 6-5, each data pointwould shift up and right by this factor of 2, giving somewhat tighter results.The normalized speedup curve in Figure 6-5 shows that dag-consistent shared-memory applications can obtain good speedups. The data was �t to a curve of theform TP (C) = c1T1(C)=P + c1T1. We obtained a �t with c1 = 1:34 and c1 = 5:1,with an R2 correlation coe�cient of 0:963 and a mean relative error of 13:8%. Thus,the shared memory imposes about a 34% performance penalty on the work of analgorithm, and a factor of 5 performance penalty on the critical path. The factor of5 on the critical path term is quite good considering all of the scheduling, protocol,5The experiments in this chapter were run using an earlier version of Cilk, Cilk-3, which hadexplicit shared memory pointers and software page fault checks.123



and communication that could potentially contribute to this term.There are two possible explanations for the additional 34% on the work term.The extra work could represent congestion at the backing store, which causes pagefaults to cost more than in the one-processor run. Alternatively, it could be becauseour T1(C) measure is too conservative. To compute T1(C), we run the backing storeon processors other than the one running the benchmark, while when we run on Pprocessors, we use the same P processors to implement the backing store. We havenot yet determined which of these two explanations is correct.6.7 ConclusionMany other researchers have investigated distributed shared memory. To conclude,we briey outline work in this area and o�er some ideas for future work.The notion that independent tasks may have incoherent views of each others' mem-ory is not new to Cilk. The BLAZE [70] language incorporated a memory semanticssimilar to that of dag consistency into a PASCAL-like language. The Myrias [7]computer was designed to support a relaxed memory semantics similar to dag con-sistency, with many of the mechanisms implemented in hardware. Loosely-CoherentMemory [64] allows for a range of consistency protocols and uses compiler supportto direct their use. Compared with these systems, Cilk provides a multithreadedprogramming model based on directed acyclic graphs, which leads to a more exiblelinguistic expression of operations on shared memory.Cilk's implementation of dag consistency borrows heavily on the experiences fromprevious implementations of distributed shared memory. Like Ivy [67] and others [20,39, 61], Cilk's implementation uses �xed-sized pages to cut down on the overheadof managing shared objects. In contrast, systems that use cache lines [21, 62, 86]require some degree of hardware support [91] to manage shared memory e�ciently. Asanother alternative, systems that use arbitrary-sized objects or regions [22, 59, 88, 90,97] require either an object-oriented programming model or explicit user managementof objects. 124



The idea of dag-consistent shared memory can be extended to the domain of �leI/O to allow multiple threads to read and write the same �le in parallel. We anticipatethat it should be possible to memory-map �les and use our existing dag-consistencymechanisms to provide a parallel, asynchronous, I/O capability for Cilk.
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Chapter 7
Analysis of dag consistency
In Chapter 6, we proposed dag-consistent distributed shared memory as a sharedmemory model for multithreaded parallel-programming systems such as Cilk. In thischapter, we analyze the execution time, page faults, and space requirements of Cilkprograms where dag consistency is maintained by the Backer coherence algorithm.1We prove that under the assumption that accesses to the backing store are randomand independent, Cilk with Backer executes a program with total work T1(C) andcritical path T1 in expected time O(T1(C)=P +mCT1), where C is the size of thecache in pages and m is the minimum page transfer time. As a corollary to thistheorem, we improve upon the bounds in the previous section to prove that thenumber of page faults FP (C) is bounded by F1(C) +O(CPT1).We also prove bounds on SP , the space used by a Cilk program on P proces-sors, and F1(C), the faults of the serial execution, for \regular" divide-and-conquerCilk programs. We use these bounds to analyze some of the example applicationsin Chapter 4. For instance, we show that blockedmul for n � n matrices incursF1(C; n) = O(n3=m3=2pC) faults and uses SP (n) = O(n2P 1=3) space.1The contents of this chapter are joint work with Robert Blumofe, Matteo Frigo, ChristopherJoerg, and Charles Leiserson and appeared at SPAA'96 [13].
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7.1 IntroductionTo analyze the performance of Cilk programs which use a shared virtual addressspace implemented by Backer, we must take into account all of the protocol ac-tions required by Backer. The Backer algorithm implements this virtual spaceby cacheing physical pages from a backing store which is distributed across the pro-cessors. We assume that when a page fault (cache miss) occurs, no progress can bemade on the computation during the time it takes to service the fault, and the faulttime may vary due to congestion of concurrent accesses to the backing store. Weshall further assume that pages in the cache are maintained using the popular LRU(least-recently-used) [25] heuristic. In addition to servicing page faults, Backermustreconcile pages between the processor page caches and the backing store so that thesemantics of the execution obey the assumptions of dag consistency.Recall from Section 2.8 that both T1=P and T1 are lower bounds on the runningtime of any computation. The randomized work-stealing scheduler used by Cilkachieves performance close to these lower bounds for the case of Cilk programs thatdo not use shared memory. Speci�cally, for any such program and any number P ofprocessors, the scheduler executes the program in T1=P +O(T1) expected time.To analyze the complete system, however, we must include the overhead costsof Backer as well. As in Section 6.6, we assume a Cilk program is executed ona parallel computer with P processors, each with a cache of size C, and a pagefault that encounters no congestion is serviced in m units of time. We de�ne themeasures F1(C), T1(C), TP (C), and T1(C) as in that section. In addition, we assumethat accesses to shared memory are distributed uniformly and independently overthe backing store|often a plausible assumption, since Backer hashes pages to thebacking store. Then, for any given input problem, the expected execution time TP (C)is O(T1(C)=P +mCT1). In addition, we give a high-probability bound.This result is not as strong as we would like to prove, because accesses to thebacking store are not necessarily independent. For example, procedures may concur-rently access the same pages by program design. We can arti�cially solve this problem127



by insisting, as does the EREW-PRAM model, that the program performs exclusiveaccesses only. More seriously, however, congestion delay in accessing the backingstore can cause the computation to be scheduled di�erently than if there were nocongestion, thereby perhaps causing more congestion to occur. It may be possibleto prove our bounds for a hashed backing store without making this independenceassumption, but we do not know how at this time. The problem with independencedoes not seem to be serious in practice, and indeed, given the randomized nature ofour scheduler, it is hard to conceive of how an adversary can actually take advantageof the lack of independence implied by hashing to slow the execution. Although ourresults are imperfect, we are actually analyzing the e�ects of congestion, and thusour results are much stronger than if we had assumed, for example, that accesses tothe backing store independently su�er Poisson-distributed delays.In this chapter, we also analyze the number of page faults that occur during pro-gram execution. Under the same assumptions, we show that for any Cilk program, theexpected number of page faults to execute the program on P processors, each with anLRU cache of size C, is at most F1(C)+O(CPT1). In addition, for \regular" divide-and-conquer Cilk programs, we derive a good upper bound on F1(C) in terms of the in-put size of the problem. For example, we show that the total number of page faults in-curred by the divide-and-conquer matrix-multiplication algorithm blockedmul whenmultiplying n�n matrices using P processors is O(n3=(m3=2pC)+CP lg2 n), assum-ing that the independence assumption for the backing store holds.Finally, in this chapter, we analyze the space requirements of \simple" Cilk pro-grams that use dag-consistent shared memory. For a given simple Cilk program, let S1denote the space required by the standard, depth-�rst serial execution of the programto solve a given problem. In an analysis of the Cilk scheduler, Blumofe and Leisersonhave shown that the space used by a P -processor execution is at most S1P in theworst case [11, 16]. We improve this characterization of the space requirements, andwe provide a much stronger upper bound on the space requirements of regular divide-and-conquer Cilk programs. For example, we show that the blockedmul program onP processors uses only O(n2P 1=3) space when multiplying n � n matrices, which is128



tighter than the O(n2P ) result obtained by directly applying the S1P bound.The remainder of this chapter is organized as follows. Section 7.2 analyzes theexecution time of Cilk programs using the Backer coherence algorithm. Section 7.3analyzes the number of page faults taken by divide-and-conquer Cilk programs, andSection 7.4 does the same for space requirements. Section 7.5 presents some sampleanalyses of algorithms that use dag-consistent shared memory. Finally, Section 7.6o�ers some comparisons with other consistency models and some ideas for the future.7.2 Analysis of execution timeIn this section, we bound the execution time Cilk programs when dag consistencyis maintained by the Backer algorithm, under the assumption that accesses to thebacking store are random and independent. For a given Cilk program, let TP (C)denote the time taken by the program to solve a given problem on a parallel com-puter with P processors, each with an LRU cache of C pages, when the executionis scheduled by Cilk in conjunction with the Backer coherence algorithm. In thissection, we show that if accesses to backing store are random and independent, thenthe expected value of TP (C) is O(T1(C)=P +mCT1), where m denotes the minimumtime to transfer a page and T1 is the critical-path length of the computation. Inaddition, we bound the number of page faults. The exposition of the proofs in thissection makes heavy use of results and techniques from [11, 16].In the following analysis, we consider the computation that results when a givenCilk program is executed to solve a given input problem. We assume that the compu-tation is executed by Cilk's work-stealing scheduler in conjunction with the Backercoherence algorithm on a parallel computer with P homogeneous processors. Thebacking store is distributed across the processors by hashing, with each processormanaging a proportional share of the objects which are grouped into �xed-size pages.In addition to backing store, each processor has a cache of C pages that is main-tained using the LRU replacement heuristic. We assume that a minimum of m timesteps are required to transfer a page. When pages are transferred between processors,129



congestion may occur at a destination processor, in which case we assume that thetransfers are serviced at the destination in FIFO (�rst-in, �rst-out) order.The work-stealing scheduler assumed in our analysis is the same work-stealingscheduler used in Chapter 3, but with a small technical modi�cation. Between suc-cessful steals, we wish to guarantee that a processor performs at least C page transfers(fetches or reconciles) so that it does not steal too often. Consequently, whenever aprocessor runs out of work, if it has not performed C page transfers since its last suc-cessful steal, the modi�ed work-stealing scheduler performs enough additional \idle"transfers until it has transferred C pages. At that point, it can steal again. Similarly,we require that each processor perform one idle transfer after each unsuccessful stealrequest to ensure that steal requests do not happen too often.Our analysis of execution time is organized as follows. First, we prove a lemmadescribing how the Backer algorithm adds page faults to a parallel execution. Then,we obtain a bound on the number of \rounds" that a parallel execution contains.Each round contains a �xed amount of scheduler overhead, so bounding the numberof rounds bounds the total amount of scheduler overhead. To complete the analysis,we use an accounting argument to add up the total execution time.Before embarking on the analysis, however, we �rst de�ne some helpful termi-nology. A task is the fundamental building block of a computation and is eithera local instruction (one that does not access shared memory) or a shared-memoryoperation. If a task is a local instruction or references an object in the local cache,it takes 1 step to execute. Otherwise, the task is referencing an object not in thelocal cache, and a page transfer occurs, taking at least m steps to execute. A syn-chronization task is a task in the dag that forces Backer to perform a cache ushin order to maintain dag consistency. Remember that for each interprocessor edgei ! j in the dag, a cache ush is required by the processor executing j sometimeafter i executes but before j executes. A synchronization task is thus a task j havingan incoming interprocessor edge i ! j in the dag, where j executes on a proces-sor that has not ushed its cache since i was executed. A subcomputation is thecomputation that one processor performs from the time it obtains work to the time130



it goes idle or enables a synchronization task. We distinguish two kinds of subcom-putations: primary subcomputations start when a processor obtains work from arandom steal request, and secondary subcomputations start when a processor startsexecuting from a synchronization task. We distinguish three kinds of page transfers.An intrinsic transfer is a transfer that would occur during a 1-processor depth-�rstexecution of the computation. The remaining extrinsic page transfers are dividedinto two types. A primary transfer is any extrinsic transfer that occurs during aprimary subcomputation. Likewise, a secondary transfer is any extrinsic transferthat occurs during a secondary subcomputation. We use these terms to refer to pagefaults as well.Lemma 18 Each primary transfer during an execution can be associated with a cur-rently running primary subcomputation such that each primary subcomputation has atmost 3C associated primary transfers. Similarly, each secondary transfer during anexecution can be associated with a currently running secondary subcomputation suchthat each secondary subcomputation has at most 3C associated secondary transfers.Proof: For this proof, we use the fact shown in Section 6.6 that executing a subcom-putation starting with an arbitrary cache can only incur C more page faults than thesame block of code incurred in the serial execution. This fact follows from the obser-vation that a subcomputation is executed in the same depth-�rst order as it wouldhave been executed in the serial execution, and the fact that the cache replacementstrategy is LRU.We associate each primary transfer with a running primary subcomputation asfollows. During a steal, we associate the (at most) C reconciles done by the victimwith the stealing subcomputation. In addition, the stolen subcomputation has atmost C extrinsic page faults, because the stolen subcomputation is executed in thesame order as the subcomputation executes in the serial order. At the end of thesubcomputation, at most C pages need be reconciled, and these reconciles may beextrinsic transfers. In total, at most 3C primary transfers are associated with anyprimary subcomputation. 131



A similar argument holds for secondary transfers. Each secondary subcomputa-tion must perform at most C reconciles to ush the cache at the start of the sub-computation. The subcomputation then has at most C extrinsic page faults duringits execution, because it executes in the same order as it executes in the serial order.Finally, at most C pages need to be reconciled at the end of the subcomputation.We now bound the amount of scheduler overhead by counting the number ofrounds in an execution.Lemma 19 If each page transfer (fetch or reconcile) in the execution is serviced bya processor chosen independently at random, and each processor queues its transferrequests in FIFO order, then, for any � > 0, with probability at least 1� �, the totalnumber of steal requests and primary transfers is at most O(CPT1 + CP lg(1=�)).Proof: To begin, we shall assume that each access to the backing store takes onestep regardless of the congestion. We shall describe how to handle congestion at theend of the proof.First, we wish to bound the overhead of scheduling, that is, the additional workthat the one-processor execution would not need to perform. We de�ne an event aseither the sending of a steal request or the sending of a primary-page-transfer request.In order to bound the number of events, we divide the execution into rounds. Round 1starts at time step 1 and ends at the �rst time step at which at least 27CP eventshave occurred. Round 2 starts one time step after round 1 completes and ends whenit contains at least 27CP events, and so on. We shall show that with probability atleast 1� �, an execution contains only O(T1 + lg(1=�)) rounds.To bound the number of rounds, we shall use a delay-sequence argument. Wede�ne a modi�ed dag D0 exactly as in [16]. (The dag D0 is for the purposes ofanalysis only and has no e�ect on the computation.) The critical-path length of D0 isat most 2T1. We de�ne a task with no unexecuted predecessors in D0 to be critical ,and it is by construction one of the �rst two tasks to be stolen from the processor onwhich it resides. Given a task that is critical at the beginning of a round, we wishto show that it is executed by the start of the next round with constant probability.132



This fact will enable us to show that progress is likely to be made on any path of D0in each round.We now show that at least 4P steal requests are initiated during the �rst 22CPevents of a round. If at least 4P of the 22CP events are steal requests, then we aredone. If not, then there are at least 18CP primary transfers. By Lemma 18, we knowthat at most 3CP of these transfers are associated with subcomputations running atthe start of the round, leaving 15CP for steals that start in this round. Since at most3C primary transfers can be associated with any steal, at least 5P steals must haveoccurred. At most P of these steals were requested in previous rounds, so there mustbe at least 4P steal requests in this round.We now argue that any task that is critical at the beginning of a round has aprobability of at least 1=2 of being executed by the end of the round. Since thereare at least 4P steal requests during the �rst 22CP events, the probability is at least1=2 that any task that is critical at the beginning of a round is the target of a stealrequest [16, Lemma 10], if it is not executed locally by the processor on which itresides. Any task takes at most 3mC + 1 � 4mC time to execute, since we areignoring the e�ects of congestion for the moment. Since the last 4CP events of around take at least 4mC time to execute, if a task is stolen in the �rst part of theround, it is done by the end of the round.We want to show that with probability at least 1� �, the total number of roundsis O(T1+ lg(1=�)). Consider a possible delay sequence. Recall from [16] that a delaysequence of size R is a maximal path U in the augmented dag D0 of length at most2T1, along with a partition � of R which represents the number of rounds duringwhich each task of the path in D0 is critical. We now show that the probability of alarge delay sequence is tiny.Whenever a task on the path U is critical at the beginning of a round, it has aprobability of at least 1=2 of being executed during the round, because it is likelyto be the target of one of the 4P steals in the �rst part of the round. Furthermore,this probability is independent of the success of critical tasks in previous rounds,because victims are chosen independently at random. Thus, the probability is at133



most (1=2)R�2T1 that a particular delay sequence with size R > 2T1 actually occursin an execution. There are at most 22T1�R+2T12T1 � delay sequences of size R. Thus, theprobability that any delay sequence of size R occurs is at most22T1 R + 2T12T1 !�12�R�2T1� 22T1  e(R + 2T1)2T1 !2T1 �12�R�2T1�  4e(R + 2T1)2T1 !2T1 �12�R ;which can be made less than � by choosing R = 14T1+ lg(1=�). Therefore, there areat most O(T1 + lg(1=�)) rounds with probability at least 1� �. In each round, thereare at most 28CP events, so there are at most O(CPT1+CP lg(1=�)) steal requestsand primary transfers in total.Now, let us consider what happens when congestion occurs at the backing store.We still have at most 3C transfers per task, but these transfers may take more than3mC time to complete because of congestion. We de�ne the following indicatorrandom variables to keep track of the congestion. Let xuip be the indicator randomvariable that tells whether task u's ith transfer request is delayed by a transfer requestfrom processor p. The probability is at most 1=P that one of these indicator variablesis 1. Furthermore, we shall argue that they are nonpositively correlated, that is,Pr nxuip = 1 ���Vu0i0p0 xu0i0p0 = 1o � 1=P , as long as none of the (u0; i0) requests executeat the same time as the (u; i) request. That they are nonpositively correlated followsfrom an examination of the queuing behavior at the backing store. If a request (u0; i0)is delayed by a request from processor p0 (that is, xu0i0p0 = 1), then once the (u0; i0)request has been serviced, processor p0's request has also been serviced, because wehave FIFO queuing of transfer requests. Consequently, p0's next request, if any, goesto a new, random processor when the (u; i) request occurs. Thus, a long delay forrequest (u0; i0) cannot adversely a�ect the delay for request (u; i). Finally, we also havePr nxuip = 1 ���Vp0 6=p xuip0 = 1o � 1=P , because the requests from the other processorsbesides p are distributed at random. 134



The execution time X of the transfer requests for a path U in D0 can be writtenas X � Pu2U(5mC+mPip xuip). Rearranging, we have X � 10mCT1+mPuip xuip,because U has length at most 2T1. This sum is just the sum of 10CPT1 indicatorrandom variables, each with expectation at most 1=P . Since the tasks u in U do notexecute concurrently, the xuip are nonpositively correlated, and thus, their sum canbe bounded using combinatorial techniques. The sum is greater than z only if somez-size subset of these 10CPT1 variables are all 1, which happens with probability:Pr8<:Xuip xuip � z9=; �  10CPT1z !� 1P �z� �10eCPT1z �z � 1P �z� �10eCT1z �z :This probability can be made less than (1=2)z by choosing z � 20eCT1. Therefore,we have X > (10 + 20e)mCT1 with probability at most (1=2)X�10mCT1. Since thereare at most 2T1 tasks on the critical path, at most 2T1 + X=mC rounds can beoverlapped by the long execution of page transfers of these critical tasks. Therefore,the probability of a delay sequence of size R is at most (1=2)R�O(T1). Consequently,we can apply the same argument as for unit-cost transfers, with slightly di�erentconstants, to show that with probability at least 1 � �, there are O(T1 + lg(1=�))rounds, and hence O(CPT1 + CP lg(1=�)) events, during the execution.We now bound the running time of a computation.Theorem 20 Consider any Cilk program executed on P processors, each with anLRU cache of C pages, using Cilk's work-stealing scheduler in conjunction with theBacker coherence algorithm. Let m be the service time for a page fault that encoun-ters no congestion, and assume that accesses to the backing store are random andindependent. Suppose the computation has T1 computational work, F1(C) serial pagefaults, T1(C) = T1 +mF1(C) total work, and T1 critical-path length. Then for any� > 0, the execution time is O(T1(C)=P +mCT1 +m lgP +mC lg(1=�)) with proba-bility at least 1� �. Moreover, the expected execution time is O(T1(C)=P +mCT1).135



Proof: As in [16], we shall use an accounting argument to bound the running time.During the execution, at each time step, each processor puts a dollar into one of 5buckets according to its activity at that time step. Speci�cally, a processor puts adollar in the bucket labeled:� Work, if the processor executes a task;� Steal, if the processor sends a steal request;� StealWait, if the processor waits for a response to a steal request;� Xfer, if the processor sends a page-transfer request; and� XferWait, if the processor waits for a page transfer to complete.When the execution completes, we add up the dollars in each bucket and divide byP to get the running time.We now bound the amount of money in each of the buckets at the end of thecomputation by using the fact, from Lemma 19, that with probability at least 1� �0,there are O(CPT1 + CP lg(1=�0)) events:Work. The Work bucket contains exactly T1 dollars, because there are exactlyT1 tasks in the computation.Steal. We know that there are O(CPT1 + CP lg(1=�0)) steal requests, so thereare O(CPT1 + CP lg(1=�0)) dollars in the Steal bucket.StealWait. We use the analysis of the recycling game ([16, Lemma 5]) to boundthe number of dollars in the StealWait bucket. The recycling game says that ifN requests are distributed randomly to P processors for service, with at most P re-quests outstanding simultaneously, the total time waiting for the requests to completeis O(N+P lgP +P lg(1=�0)) with probability at least 1��0. Since steal requests obeythe assumptions of the recycling game, if there areO(CPT1+CP lg(1=�0)) steals, thenthe total time waiting for steal requests is O(CPT1+P lgP+CP lg(1=�0)) with prob-ability at least 1� �0. We must add to this total an extra O(mCPT1+mCP lg(1=�0))dollars because the processors initiating a successful steal must also wait for the cache136



of the victim to be reconciled, and we know that there are O(CPT1 + CP lg(1=�0))such reconciles. Finally, we must add O(mCPT1 + mCP lg(1=�)) dollars becauseeach steal request might also have up to m idle steps associated with it. Thus, withprobability at least 1 � �0, we have a total of O(mCPT1 + P lgP +mCP lg(1=�0))dollars in the StealWait bucket.Xfer. We know that there are O(F1(C) +CPT1 +CP lg(1=�0)) transfers duringthe execution: a fetch and a reconcile for each intrinsic fault, O(CPT1+CP lg(1=�0))primary transfers from Lemma 19, and O(CPT1+CP lg(1=�0)) secondary transfers.We have this bound on secondary transfers, because each secondary subcomputationcan be paired with a unique primary subcomputation. We construct this pairing asfollows. For each synchronization task j, we examine each interprocessor edge enteringj. Each of these edges corresponds to some child of j's procedure in the spawn tree.At least one of these children (call it k) is not �nished executing at the time of thelast cache ush by j's processor, since j is a synchronization task. We now show thatthere must be a random steal of j's procedure just after k is spawned. If not, then k iscompleted before j's procedure continues executing after the spawn. There must be arandom steal somewhere between when k is spawned and when j is executed, however,because j and k execute on di�erent processors. On the last such random steal, theprocessor executing j must ush its cache, but this cannot happen because k is stillexecuting when the last ush of the cache occurs. Thus, there must be a randomsteal just after k is spawned. We pair the secondary subcomputation that starts attask j with the primary subcomputation that starts with the random steal after k isspawned. By construction, each primary subcomputation has at most one secondarysubcomputation paired with it, and since each primary subcomputation does at leastC extrinsic transfers and each secondary subcomputation does at most 3C extrinsictransfers, there are at most O(CPT1 + CP lg(1=�0)) secondary transfers. Since eachtransfer takes m time, the number of dollars in the Xfer bucket is O(mF1(C) +mCPT1 +mCP lg(1=�0)).XferWait. To bound the dollars in the XferWait bucket, we use the recyclinggame as we did for the StealWait bucket. The recycling game shows that there are137



O(mF1(C) +mCPT1 +mP lgP +mCP lg(1=�0)) dollars in the XferWait bucketwith probability at least 1� �0.With probability at least 1�3�0, the sum of all the dollars in all the buckets is T1+O(mF1(C)+mCPT1+mP lgP+mCP lg(1=�0)). Dividing by P , we obtain a runningtime of TP � O((T1+mF1(C))=P +mCT1 +m lgP +mC lg(1=�0)) with probabilityat least 1 � 3�0. Using the identity T1(C) = T1 + mF1(C) and substituting � = 3�0yields the desired high-probability bound. The expected bound follows similarly.We now bound the number of page faults.Corollary 21 Consider any Cilk program executed on P processors, each with anLRU cache of C pages, using Cilk's work-stealing scheduler in conjunction with theBacker coherence algorithm. Assume that accesses to the backing store are ran-dom and independent. Suppose the computation has F1(C) serial page faults andT1 critical-path length. Then for any � > 0, the number of page faults is at mostF1(C)+O(CPT1+CP lg(1=�)) with probability at least 1� �. Moreover, the expectednumber of page faults is at most F1(C) +O(CPT1).Proof: In the parallel execution, we have one fault for each intrinsic fault, plus anextra O(CPT1 + CP lg(1=�)) primary and secondary faults. The expected boundfollows similarly.
7.3 Analysis of page faultsThis section provides upper bounds on the number of page faults for \regular" divide-and-conquer Cilk programs when the parallel execution is scheduled by Cilk and dagconsistency is maintained by the Backer algorithm. In a regular divide-and-conquer Cilk program, each procedure, when spawned to solve a problem of size n,operates as follows. If n is larger than some given constant, the procedure divides theproblem into a subproblems, each of size n=b for some constants a � 1 and b > 1, andthen it recursively spawns child procedures to solve each subproblem. When all a of138



the children have completed, the procedure merges their results, and then returns. Inthe base case, when n is smaller than the speci�ed constant, the procedure directlysolves the problem, and then returns.Corollary 21 bounds the number of page faults that a Cilk program incurs whenrun on P processors using Cilk's scheduler and the Backer coherence algorithm.Speci�cally, for a given Cilk program, let F1(C; n) denote the number of page faultsthat occur when the algorithm is used to solve a problem of size n with the standard,depth-�rst serial execution order on a single processor with an LRU cache of C pages.In addition, for any number P � 2 of processors, let FP (C; n) denote the numberof page faults that occur when the algorithm is used to solve a problem of size nwith the Cilk's scheduler and Backer on P processors, each with an LRU cacheof C pages. Corollary 21 then says that the expectation of FP (C; n) is at mostF1(C; n) + O(CPT1(n)), where T1(n) is the critical path of the computation on aproblem of size n. The O(CPT1(n)) term represents faults due to \warming up" theprocessors' caches.Generally, one must implement and run an algorithm to get a good estimate ofF1(C; n) before one can predict whether it will run well in parallel. For regular divide-and-conquer Cilk programs, however, analysis can provide good asymptotic boundson F1(C; n), and hence on FP (C; n).Theorem 22 Consider any regular divide-and-conquer Cilk program executed on 1processor with an LRU cache of C pages, using the standard, depth-�rst serial exe-cution order. Let nC be the largest problem size that can be solved wholly within thecache. Suppose that each procedure, when spawned to solve a problem of size n largerthan or equal to nC , divides the problem into a subproblems each of size n=b for someconstants a � 1 and b > 1. Additionally, suppose each procedure solving a problem ofsize n makes p(n) page faults in the worst case. Then, the number F1(C; n) of pagefaults taken by the algorithm when solving a problem of size n can be determined asfollows:22Other cases exist besides the three given here.139



1. If p(n) = O(nlogb a��) for some constant � > 0, then F1(C; n) = O(C(n=nC)logb a),if p(n) further satis�es the regularity condition that p(n) � ap(n=b) for someconstant  < 1.2. If p(n) = �(nlogb a), thenF1(C; n) = O(C(n=nC)logb a lg(n=nC)).3. If p(n) = 
(nlogb a+�) for some constant � > 0, then F1(C; n) = O(C(n=nC)logb a+p(n)), if p(n) further satis�es the regularity condition that p(n) � ap(n=b) forsome constant  > 1.Proof: If a problem of size n does not �t in the cache, then the number F1(C; n) offaults taken by the algorithm in solving the problem is at most the number F1(C; n=b)of faults for each of the a subproblems of size n=b plus an additional p(n) faults for thetop procedure itself. If the problem can be solved in the cache, the data for it needonly be paged into memory at most once. Consequently, we obtain the recurrenceF1(C; n) � 8><>: aF1(C; n=b) + p(n) if n > nC ;C if n � nC : (7.1)We can solve this recurrence using standard techniques [26, Section 4.4]. Weiterate the recurrence, stopping as soon as we reach the �rst value of the iterationcount k such that n=bk � nC holds, or equivalently when k = dlogb(n=nC)e holds.Thus, we have F1(C; n) � akF1(C; n=bk) + k�1Xi=0 aip(n=bi)� Cak + k�1Xi=0 aip(n=bi)= O0@C(n=nC)logb a +logb(n=nC)Xi=0 aip(n=bi)1A :If p(n) satis�es the conditions of Case 1, the sum is geometrically increasing and isdominated by its last term. For p(n) satisfying Case 2, each term in the sum is the140



same. Finally, for p(n) satisfying Case 3, the �rst term of the sum dominates. Usingthe inequality p(nC) � C, we obtain the stated results.
7.4 Analysis of space utilizationThis section provides upper bounds on the memory requirements of regular divide-and-conquer Cilk programs when the parallel execution is scheduled by a \busy-leaves" scheduler, such as the Cilk scheduler. A busy-leaves scheduler is a schedulerwith the property that at all times during the execution, if a procedure has no livingchildren, then that procedure has a processor working on it. Cilk's work-stealingscheduler is a busy-leaves scheduler [11, 16]. We shall proceed through a series oflemmas that provide an exact characterization of the space used by \simple" Cilkprograms when executed by a busy-leaves scheduler. A simple Cilk program is aprogram in which each procedure's control consists of allocating memory, spawningchildren, waiting for the children to complete, deallocating memory, and returning,in that order. We shall then specialize this characterization to provide space boundsfor regular divide-and-conquer Cilk programs.Previous work [11, 16] has shown that a busy-leaves scheduler can e�ciently ex-ecute a Cilk program on P processors using no more space than P times the spacerequired to execute the program on a single processor. Speci�cally, for a given Cilkprogram, if S1 denotes the space used by the program to solve a given problem withthe standard, depth-�rst, serial execution order, then for any number P of proces-sors, a busy leaves scheduler uses at most PS1 space. The basic idea in the proofof this bound is that a busy-leaves scheduler never allows more than P leaves in thespawn tree of the resulting computation to be living at one time. If we look at anypath in the spawn tree from the root to a leaf and add up all the space allocatedon that path, the largest such value we can obtain is S1. The bound then follows,because each of the at most P leaves living at any time is responsible for at mostS1 space, for a total of PS1 space. For many programs, however, the bound PS1is an overestimate of the true space, because space near the root of the spawn tree141



may be counted multiple times. In this section, we tighten this bound for the case ofregular divide-and-conquer programs. We start by considering the more general caseof simple Cilk programs.We �rst introduce some terminology. Consider any simple Cilk program andinput problem, and let T be the spawn tree of the program that results when thegiven algorithm is executed to solve the given problem. Let � be any nonempty setof the leaves of T . A node (procedure) u 2 T is covered by � if u lies on the pathfrom some leaf in � to the root of T . The cover of �, denoted C(�), is the set ofnodes covered by �. Since all nodes on the path from any node in C(�) to the rootare covered, it follows that C(�) is connected and forms a subtree of T . If each nodeu allocates f(u) memory, then the space used by � is de�ned asS (�) = Xu2C(�) f(u) :The following lemma shows how the notion of a cover can be used to character-ize the space required by a simple Cilk programs when executed by a busy leavesscheduler.Lemma 23 Let T be the spawn tree of a simple Cilk program, and let f(u) denote thememory allocated by node u 2 T . For any number P of processors, if the computationis executed using a busy-leaves scheduler, then the total amount of allocated memoryat any time during the execution is at most S �, which we de�ne by the identityS � = maxj�j�P S (�) ;with the maximum taken over all sets � of leaves of T of size at most P .Proof: Consider any given time during the execution, and let � denote the set ofleaves living at that time, which by the busy-leaves property has cardinality at most P .The total amount of allocated memory is the sum of the memory allocated by theleaves in � plus the memory allocated by all their ancestors. Since both leaves andancestors belong to C(�) and j�j � P holds, the lemma follows.142
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Figure 7-1: An illustration of the de�nition of a dominator set. For the tree shown,let f be given by the labels at the left of the nodes, and let � = fF;Hg. Then, the se-rial space S is given by the labels at the right of the nodes, C(�) = fA;B;C;D; F;Hg(the shaded nodes), and D (�; G) = fC;Dg. The space required by � is S (�) = 12.The next few de�nitions will help us characterize the structure of C(�) when �maximizes the space used. Let T be the spawn tree of a simple Cilk program, and letf(u) denote the memory allocated by node u 2 T , where we shall henceforth makethe technical assumption that f(u) = 0 holds if u is a leaf and f(u) > 0 holds if u isan internal node. When necessary, we can extend the spawn tree with a new level ofleaves in order to meet this technical assumption. De�ne the serial-space functionS(u) inductively on the nodes of T as follows:S(u) = 8>>>>><>>>>>: 0 if u is a leaf;f(u) + max fS(v) : v is a child of ugif u is an internal node of T .The serial-space function assumes a strictly increasing sequence of values on the pathfrom any leaf to the root. Moreover, for each node u 2 T , there exists a leaf such thatif � is the unique simple path from u to that leaf, then we have S(u) = Pv2� f(v).We shall denote that leaf (or an arbitrary such leaf, if more than one exists) by �(u).The u-induced dominator of a set � of leaves of T is de�ned byD (�; u) = fv 2 T : 9w 2 C(�) such that w is a childof v and S(w) < S(u) � S(v)g :The next lemma shows that every induced dominator of � is indeed a \dominator"143



of �.Lemma 24 Let T be the spawn tree of a simple Cilk program encompassing morethan one node, and let � be a nonempty set of leaves of T . Then, for any internalnode u 2 T , removal of D (�; u) from T disconnects each leaf in � from the root of T .Proof: Let r be the root of T , and consider the path � from any leaf l 2 � to r. Weshall show that some node on the path belongs to D (�; u). Since u is not a leaf and Sis strictly increasing on the nodes of the path �, we must have 0 = S(l) < S(u) � S(r).Let w be the node lying on � that maximizes S(w) such that S(w) < S(u) holds, andlet v be its parent. We have S(w) < S(u) � S(v) and w 2 C(�), because all nodeslying on � belong to C(�), which implies that v 2 D (�; u) holds.The next lemma shows that whenever we have a set � of leaves that maximizesspace, every internal node u not covered by � induces a dominator that is at least aslarge as �.Lemma 25 Let T be the spawn tree of a simple Cilk program encompassing more thanone node, and for any integer P � 1, let � be a set of leaves such that S (�) = S �holds. Then, for all internal nodes u 62 C(�), we have jD (�; u)j � j�j.Proof: Suppose, for the purpose of contradiction, that jD (�; u)j < j�j holds.Lemma 24 implies that each leaf in � is a descendant of some node in D (�; u).Consequently, by the pigeonhole principle, there must exist a node v 2 D (�; u) thatis ancestor of at least two leaves in �. By the de�nition of induced dominator, a childw 2 C(�) of v must exist such that S(w) < S(u) holds.We shall now show that a new set �0 of leaves can be constructed such that wehave S (�0) > S (�), thus contradicting the assumption that S achieves its maximumvalue on �. Since w is covered by �, the subtree rooted at w must contain a leafl 2 �. De�ne �0 = � � flg [ f�(u)g. Adding �(u) to � causes the value of S (�)to increase by at least S(u), and the removal of l causes the path from l to somedescendant of w (possibly w itself) to be removed, thus decreasing the value of S (�)144



by at most S(w). Therefore, we have S (�0) � S (�) � S(w) + S(u) > S (�), sinceS(w) < S(u) holds.We now restrict our attention to regular divide-and-conquer Cilk programs, asintroduced in Section 7.3. In a regular divide-and-conquer Cilk program, each pro-cedure, when spawned to solve a problem of size n, allocates an amount of spaces(n) for some function s of n. The following lemma characterizes the structure of theworst-case space usage for this class of algorithms.Lemma 26 Let T be the spawn tree of a regular divide-and-conquer Cilk programencompassing more than one node, and for any integer P � 1, let � be a set of leavessuch that S (�) = S � holds. Then, C(�) contains every node at every level of the treewith P or fewer nodes.Proof: If T has fewer than P leaves, then � consists of all the leaves of T and thelemma follows trivially. Thus, we assume that T has at least P leaves, and we havej�j = P .Suppose now, for the sake of contradiction, that there is a node u at a level of thetree with P or fewer nodes such that u 62 C(�) holds. Since all nodes at the samelevel of the spawn tree allocate the same amount of space, the set D (�; u) consists ofall covered nodes at the same level as u, all of which have the same serial space S(u).Lemma 25 then says that there are at least P nodes at the same level as u that arecovered by �. This fact contradicts our assumption that the tree has P or fewer nodesat the same level as u.Finally, we state and prove a theorem that bounds the worst-case space used bya regular divide-and-conquer Cilk program when it is scheduled using a busy-leavesscheduler.Theorem 27 Consider any regular divide-and-conquer Cilk program executed on Pprocessors using a busy-leaves scheduler. Suppose that each procedure, when spawnedto solve a problem of size n, allocates s(n) space, and if n is larger than some constant,145



then the procedure divides the problem into a subproblems each of size n=b for someconstants a � 1 and b > 1. Then, the total amount SP (n) of space taken by thealgorithm in the worst case when solving a problem of size n can be determined asfollows:31. If s(n) = �(lgk n) for some constant k � 0, then SP (n) = �(P lgk+1(n=P )).2. If s(n) = O(nlogb a��) for some constant � > 0, then SP (n) = �(Ps(n=P 1= logb a)),if, in addition, s(n) satis�es the regularity condition 1s(n=b) � s(n) � a2s(n=b)for some constants 1 > 1 and 2 < 1.3. If s(n) = �(nlogb a), then SP (n) = �(s(n) lgP ).4. If s(n) = 
(nlogb a+�) for some constant � > 0, then SP (n) = �(s(n)), if, inaddition, s(n) satis�es the regularity condition that s(n) � as(n=b) for someconstant  > 1.Proof: Consider the spawn tree T of the Cilk program that results when the programis used to solve a given input problem of size n. The spawn tree T is a perfectlybalanced a-ary tree. A node u at level k in the tree allocates space f(u) = s(n=bk).From Lemma 23 we know that the maximum space usage is bounded by S �, whichwe de�ned as the maximum value of the space function S (�) over all sets � of leavesof the spawn tree having size at most P .In order to bound the maximum value of S (�), we shall appeal to Lemma 26which characterizes the set � at which this maximum occurs. Lemma 26 states thatfor this set �, the set C(�) contains every node in the �rst bloga P c levels of the spawntree. Thus, we haveSP (n) � bloga P c�1Xi=0 ais(n=bi) + �(PS1(n=P 1= logb a)) : (7.2)To determine which term in Equation (7.2) dominates, we must evaluate S1(n),3Other cases exist besides those given here. 146



which satis�es the recurrence S1(n) = S1(n=b) + s(n) ;because with serial execution the depth-�rst discipline allows each of the a subprob-lems to reuse the same space. The solution to this recurrence [26, Section 4.4] is� S1(n) = �(lgk+1 n), if s(n) = �(lgk n) for some constant k � 0, and� S1(n) = �(s(n)), if s(n) = 
(n�) for some constant � > 0 and in additionsatis�es the regularity condition that s(n) � s(n=b) for some constant  > 1.The theorem follows by evaluating Equation (7.2) for each of the cases. We onlysketch the essential ideas in the algebraic manipulations. For Cases 1 and 2, the serialspace dominates, and we simply substitute appropriate values for the serial space. InCases 3 and 4, the space at the top of the spawn tree dominates. In Case 3, the totalspace at each level of the spawn tree is the same. In Case 4, the space at each levelof the spawn tree decreases geometrically, and thus, the space allocated by the rootdominates the entire tree.
7.5 Example analyses of Cilk programsIn this section we show how to apply the analysis techniques of this chapter to spe-ci�c Cilk programs. We focus �rst on analyzing matrix multiplication, and thenwe examine LU-decomposition. We show that the algorithms given for these prob-lems in Section 4.1 are e�cient with respect to the measures of time, page faults,and space. In our analyses, we shall assume that the cache memory of each of theP processors contains C pages and that each page holds m matrix elements. Weshall also assume that the accesses to backing store behave as if they were randomand independent, so that the expected bounds TP (C) = O(T1(C)=P +mCT1) andFP (C) = F1(C) +O(CPT1) are good models for the performance of Cilk programs.147



Let us �rst apply our results to the naive \blocked" serial matrix multiplicationalgorithm for computing R = AB in which the three matrices A, B, and R arepartitioned into pm�pm submatrix blocks. We perform the familiar triply nestedloop on the blocked matrix|indexing i through the row blocks of R, j through thecolumn blocks of R, and k through the row blocks of A and column blocks of B|updating R[i; j]  R[i; j] + A[i; k] � B[k; j] on the matrix blocks. This algorithmcan be parallelized to obtain computational work T1(n) = �(n3) and critical-pathlength T1(n) = �(lgn) [65]. If the matrix B does not �t into the cache, that is,mC < n2, then in the serial execution, every access to a block of B causes a page fault.Consequently, the number of serial page faults is F1(C; n) = (n=pm)3 = n3=m3=2,even if we assume that A and R never fault.The divide-and-conquer blockedmul algorithm from Section 4.1.1 uses the pro-cessor cache much more e�ectively. To see why, we can apply Theorem 22 to analyzethe page faults of blockedmul using a = 8, b = 2, nC = pmC, and p(n) = �(n2=m).Case 1 of the theorem applies with � = 1, which yields F1(C; n) = O(C(n=pmC)3) =O(n3=m3=2pC), a factor of pC fewer faults than the naive algorithm.To analyze the space for blockedmul, we use Theorem 27. For this algorithm, weobtain a recurrence with a = 8, b = 2, and s(n) = �(n2). Case 2 applies, yieldinga worst-case space bound of SP (n) = �(P (n=P 1=3)2) = �(n2P 1=3).4 Note that thisspace bound is better than the O(n2P ) bound obtained by just using the O(S1P )bound from [11, 16].We have already computed the computational work and critical path length ofthe blockedmul algorithm in Section 4.1.1. Using these values we can compute thetotal work and estimate the total running time TP (C; n). The computational work ofblockedmul is T1(n) = �(n3), so the total work is T1(C; n) = T1(n) +mF1(C; n) =�(n3). The critical path is T1 = �(lg2 n), so using our performance model, the4In recent work, Blelloch, Gibbons, and Matias [10] have shown that \series-parallel" dag com-putations can be scheduled to achieve substantially better space bounds than we report here. Forexample, they give a bound of SP (n) = O(n2 + P lg2 n) for matrix multiplication. Their improvedspace bounds come at the cost of substantially more communication and overhead than is used byour scheduler, however. 148



total expected time for blockedmul on P processors is TP (C; n) = O(T1(C; n)=P +mCT1(n)) = O(n3=P +mC lg2 n). Consequently, if we have P = O(n3=(mC lg2 n)),the algorithm runs in O(n3=P ) time, obtaining linear speedup. A parallel version ofthe naive algorithm has a slightly shorter critical path, and therefore it can achieveO(n3=P ) time even with slightly more processors. But blockedmul commits fewerpage faults, which in practice may mean better actual performance. Moreover, thecode is more portable, because it requires no knowledge of the page size m. What isimportant, however, is that the performance models for dag consistency allow us toanalyze the behavior of algorithms.Let us now examine the more complicated problem of performing an LU-decomp-osition of an n � n matrix A without pivoting. The ordinary parallel algorithmfor this problem pivots on the �rst diagonal element. Next, in parallel it updatesthe �rst column of A to be the �rst column of L and the �rst row of A to be the�rst row of U . Then, it forms a Schur complement to update the remainder ofA, which it recursively (or iteratively) factors. This standard algorithm requires�(n3) computational work and it has a critical path of length �(n). Unfortunately,even when implemented in a blocked fashion, the algorithm does not display goodlocality for a hierarchical memory system. Each step causes updates to the entirematrix, resulting in F1(C; n) = �(n3=m3=2) serial page faults, similar to blockedmatrix multiplication.The divide-and-conquer algorithm presented in Section 4.1.2 for LU decompositionincurrs fewer page faults, at the cost of a slightly longer critical path. To bound thenumber of page faults, we �rst bound the page faults during the back substitutionstep. Observe that page faults in the one step of back substitution are dominated bythe �(n3=m3=2pC) page faults in the matrix multiplication, and hence we obtain therecurrence F1(C; n) = 4F1(n=2) + �(n3=m3=2pC). Therefore, we can apply Case 3of Theorem 22 with a = 4, b = 2, nC = pmC, and p(n) = O(n3=m3=2pC) to obtainthe solution F1(C; n) = �(n3=m3=2pC).We now analyze the page faults of the LU-decomposition algorithm as a whole.The number of serial page faults satis�es F1(C; n) = 2F1(C; n=2) + �(n3=m3=2pC),149



due to the matrix multiplications and back substitution costs, which by Case 3 ofTheorem 22 with a = 2, b = 2, nC = pmC, and p(n) = O(n3=m3=2pC) has solutionF1(C; n) = �(n3=m3=2pC).Using our performance model, the total expected time for LU-decompositionon P processors is therefore TP (C; n) = O(T1(C; n)=P + mCT1(n)) = O(n3=P +mCn lg2 n). If we have P = O(n3=mCn lg2 n), the algorithm runs in O(n3=P ) time,obtaining linear speedup. As with blockedmul, many fewer page faults occur forthe divide-and-conquer algorithm for LU-decomposition than for the correspondingstandard algorithm. The penalty we pay is a slightly longer critical path|�(n lg2 n)versus �(n)|which decreases the available parallelism. The critical path can beshortened to �(n lgn) by using the more space-intensive blockedmul algorithm dur-ing back and forward substitution, however.We leave it as an open question whether Cilk programs with optimal critical pathscan be obtained for matrix multiplication and LU-decomposition without compromis-ing the other performance parameters.7.6 ConclusionWe briey relate dag consistency to other distributed shared memories, and then weo�er some ideas for the future.Like Cilk's dag consistency, most distributed shared memories (DSM's) employ arelaxed consistency model in order to realize performance gains, but unlike dag con-sistency, most distributed shared memories take a low-level view of parallel programsand cannot give analytical performance bounds. Relaxed shared-memory consistencymodels are motivated by the fact that sequential consistency [63] and various formsof processor consistency [47] are too expensive to implement in a distributed setting.(Even modern SMP's do not typically implement sequential consistency.) Relaxedmodels, such as Gao and Sarkar's location consistency [43] (not the same as Frigo'slocation consistency [40]) and various forms of release consistency [1, 33, 44], ensureconsistency (to varying degrees) only when explicit synchronization operations occur,150



such as the acquisition or release of a lock. Causal memory [2] ensures consistencyonly to the extent that if a process A reads a value written by another process B,then all subsequent operations by A must appear to occur after the write by B. MostDSM's implement one of these relaxed consistency models [20, 59, 61, 90], thoughsome implement a �xed collection of consistency models [8], while others merelyimplement a collection of mechanisms on top of which users write their own DSMconsistency policies [64, 86]. All of these consistency models and the DSM's thatimplement these models take a low-level view of a parallel program as a collection ofcooperating processes.In contrast, dag consistency takes the high-level view of a parallel program as adag, and this dag exactly de�nes the memory consistency required by the program.Like some of these other DSM's, dag consistency allows synchronization to a�ectonly the synchronizing processors and does not require a global broadcast to updateor invalidate data. Unlike these other DSM's, however, dag consistency requires noextra bookkeeping overhead to keep track of which processors might be involved in asynchronization operation, because this information is encoded explicitly in the dag.By leveraging this high-level knowledge, Backer in conjunction with Cilk's work-stealing scheduler is able to execute Cilk programs with the performance boundsshown here. The BLAZE parallel language [70] and the Myrias parallel computer [7]de�ne a high-level relaxed consistency model much like dag consistency, but we do notknow of any e�cient implementation of either of these systems. After an extensiveliterature search, we are aware of no other distributed shared memory with analyticalperformance bounds for any nontrivial algorithms.We are also currently working on supporting dag-consistent shared memory in ourCilk-NOW runtime system [11] which executes Cilk programs in an adaptively paralleland fault-tolerant manner on networks of workstations. We expect that the \well-structured" nature of Cilk computations will allow the runtime system to maintaindag consistency e�ciently, even in the presence of processor faults.Finally, we observe that our work to date leaves open several analytical questionsregarding the performance of Cilk programs that use dag consistent shared memory.151



We would like to improve the analysis of execution time to directly account for thecost of page faults when pages are hashed to backing store instead of assuming thataccesses to backing store \appear" to be independent and random as assumed here.We conjecture that the bound of Theorem 20 holds when pages are hashed to backingstore provided the algorithm is EREW in the sense that concurrent procedures neverread or write to the same page. We would also like to obtain tight bounds on thenumber of page faults and the memory requirements for classes of Cilk programsthat are di�erent from, or more general than, the class of regular divide-and-conquerprograms analyzed here.
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Chapter 8
Distributed Cilk
8.1 IntroductionThis chapter describes our implementation of Cilk on a cluster of SMP's. In particu-lar, we de�neMultiBacker, an extension of the Backer algorithm from Chapter 6which takes advantage of hardware support for sharing within an SMP while main-taining the advantages of Backer across SMP's. Also, we give our \local bias"scheduling policy for modifying the Cilk scheduler to improve the locality of schedul-ing decisions without breaking the provable properties of Backer given in Chapter 7.With these two modi�cations to Backer and the Cilk scheduler, we show that Cilkprograms achieve good speedups on networks of SMP's.8.2 Multilevel shared memoryIn this section, we describe modi�cations to the Backer algorithm from Chapter 6to operate on clusters of SMP's. The original Backer algorithm is designed fora network of uniprocessors, that is, a network where each processor has its ownshared-memory cache. In a cluster of SMP's, however, multiple processors on anSMP have the opportunity to share a single shared-memory cache. The design ofMultiBacker, our multilevel shared memory protocol, attempts to share a shared-memory cache among several processors on an SMP and provide hardware-based153



memory consistency between those processors.One obvious solution to implementing Backer on a cluster of SMP's is to giveeach processor its own separate shared-memory cache. We call this solution disjointBacker. Disjoint Backer ignores the fact that the processors in an SMP areconnected by hardware support for shared memory. Thus, it has two ine�ciencies.The �rst is that if a particular shared-memory page is referenced by more than oneprocessor, multiple copies of the page are stored in one SMP, one in each cache of eachreferencing processor. These multiple copies arti�cially reduce the amount of sharedmemory that can be cached in the case when the processors on an SMP exhibit somecommonality of reference, which we expect to be the case. Second, by keeping theshared-memory caches separate for each processor, we lose the opportunity to use thehardware consistency mechanism provided by the SMP. Because references to thesame virtual page by two di�erent processors go to two di�erent physical pages, nohardware sharing is possible between processors.Another solution is to treat the SMP as a single processor within the Backeralgorithm. We call this solution uni�ed Backer. The SMP has a single uni�edcache for all processors on the SMP. The processors of the SMP operate on the cachejust as if they were executing as timeslices of a single processor. Most distributedshared memory protocols use this model for their SMP caches [61, 35], because itdoes not cache redundant pages and allows hardware sharing within an SMP.Uni�ed Backer does have a drawback, however. In particular, when one proces-sor requires a consistency operation to be performed on a page, it must be performedwith respect to all processors. For instance, if a processor needs to invalidate a pagebecause of a consistency operation, it must be invalidated by all processors on theSMP. Erlichson et al [35] call this the TLB synchronization problem, because in-validations are done by removing entries from a page table, and cached page tableentries in the TLB must be removed as well. Invalidating TLB entries on multipleprocessors requires some form of interprocessor synchronization and can be expensive.Erlichson et al found that TLB synchronization on a 12-processor SGI machine takesover 350�s. 154



For many parallel programming environments, in particular those with frequentglobal barriers, requiring TLB synchronization is not too cumbersome because whenone processor is required to invalidate a page, all processors are required to invalidatethat page. In Backer, however, most synchronization operations are bilateral innature, from one processor on one SMP to one processor on another SMP. Thislimited synchronization means that processors on one SMP do not necessarily needto invalidate pages simultaneously. Therefore, forcing all processors to invalidate apage that only one processor needs to invalidate can lead to high TLB synchronizationoverheads. Additionally, processors who must unnecessarily invalidate a page may beforced to refetch that page and thus generate additional memory tra�c.The third alternative, called MultiBacker, is used in our implementation ofdistributed Cilk. In the MultiBacker protocol, we keep one central cache for eachSMP, but control the access to each page of the cache on a per-processor basis. Thissolution has all of the advantages of uni�ed Backer. In particular, no multiplecopies of a page are kept and sharing within a machine is provided in hardware.However, each processor keeps a separate set of access permissions (in practice, aseparate virtual memory map) that it can update individually. No processor on anSMP needs to synchronize its TLB with any other processor, except when pages needto be removed from the cache because of capacity constraints. In this case, however,the TLB synchronization overhead can be amortized by evicting several pages fromthe cache at once. By maintaining separate access permissions, processors only needto invalidate, and consequently refetch, pages which actually require invalidation.The exibility of MultiBacker requires a slightly more complicated protocolthan either disjoint or uni�ed Backer, however. Because some processors may havea page mapped invalid while others have it mapped valid, a page fetch cannot simplycopy a page into the cache, because pages with dirty entries cannot be overwritten.Instead, we use a procedure called two-way di�ng , described in [95] as \outgoing"and \incoming" di�s. Just as with the Backer algorithm described in Section 6.4,an outgoing di� compares the working copy of a page with its twin, and sends anydata that have been written since the twin was created to the backing store. An155



incoming di�, on the other hand, compares a page fetched from the backing storewith the twin, and writes any changes that have occurred at the backing store sincethe twin was fetched to the working copy (and to the twin itself). In this way, changescan be propegated both from a processor cache to the backing store via outgoing di�s,and from the backing store to a processor cache via incoming di�s.The MultiBacker protocol also needs to maintain timestamps to keep track ofwhich processors are allowed to access which pages. Each processor has a permissionnumber which identi�es how recently it has performed an o�-SMP synchronizationoperation. Similarly, each page in the cache has a timestamp which records whenthe page was last updated from the backing store. The invariant maintained byMultiBacker is that a processor may access a page in the cache if its permissionnumber is smaller than the timestamp of the page. When a page is fetched frombacking store, its timestamp is set to be greater than the permission numbers ofall processes in the SMP, giving all processors on the SMP permission to access theup-to-date page. When a processor does an o�-SMP synchronization operation, itspermission number is set to be greater than the timestamp of any page in the cache,thereby invalidating all of that processor's pages. When processors synchronize withinan SMP, they set their permission numbers to the maximum permission number ofthe synchronizing processors, ensuring that if the page is out-of-date with respect toany synchronizing processor, it becomes out of date with respect to all synchronizingprocessors.8.3 Distributed schedulingThe work-stealing scheduler presented in Section 3.2 makes no distinction betweenstealing from a processor on the same SMP or a processor on a di�erent SMP. As apractical matter, however, we would like to schedule related threads on the same SMPwhenever possible. This section outlines our strategy for providing some measure oflocality of scheduling while at the same time retaining the provably-good propertiesof the work-stealing scheduler from Chapter 7.156



The obvious way to increase the locality of scheduling is to always steal from aprocessor on the local SMP if there is any work on the SMP. Only when the wholeSMP runs out of work are any steal attempts allowed to go to another SMP. Althoughthis strategy, which we call the maximally local strategy, provides good locality, itbreaks the provable bounds of the Cilk scheduler. In particular, the following scenariodemonstrates how the maximally local scheduling algorithm can go wrong. Let ourcluster consist of M SMP's, each with P processors. The �rst M � 1 SMP's have asingle, long-running, nearly serial piece of work. The last SMP has a large chunk ofwork with lots of parallelism. In this situation, because no steal attempts leave anSMP, the M �1 machines never realize that the last SMP has a lot of work that theycan steal and work on. Thus, this con�guration executes onlyM �1+P instructionsat every time step when there is the potential to execute MP instructions per timestep. For a large cluster (M � P ), this con�guration forces such a maximally localscheduler to use only one processor on every machine.How can we modify the Cilk scheduler to improve scheduling locality withoutintroducing such performance anomalies? Our solution lies examining the proof ofthe optimality of the Cilk scheduler given in Chapter 7. If we modify the schedulingalgorithm in such a way that the proof is preserved, then we are guaranteed that nosuch performance anomalies can occur.We modify the scheduling algorithm as follows. We use a local bias strategywhere instead of stealing randomly with a uniform distribution, we steal with a biaseddistribution. We bias the choice of the victim processor to be weighted in favor ofthe local processors. Let � be the ratio of the probability of picking a local processorversus the probability of picking a remote processor. We observe that the runningtime bound obtained in Chapter 7 depends linearly on the minimum probability of anyprocessor being chosen as a steal target. Since the local bias strategy underweightsthe remote processors by a factor of at most O(�), the running time bounds increaseby a factor of O(�). As long as we choose � to be a constant, instead of 1 as wasdone with the maximally local strategy, we maintain provable performance (albeitwith a larger constant hidden in the big-Oh) while augmenting the locality of Cilk's157



scheduler.Now that we have identi�ed the local bias strategy as the proper modi�cation tomake to Cilk's stealing algorithm, we need to decide on the scheduling parameter �. Anatural choice for � is the largest � possible while still maintaining a remote stealingrate close to the rate obtained when � = 1. Maintaining the remote stealing rate isimportant for distributing work quickly at the beginning of the computation or aftera serial phase. This value of � is just the ratio of the latency of a remote steal tothe latency of a local steal, because if � local steals are performed per remote steal,the rate of remote stealing drops by only a factor of 2. (Larger values of � lower theremote stealing rate proportionally to the increase in �.) For our implementation ona cluster of 466MHz Alpha SMP's connected with Digital's Memory Channel, thischoice of � is about 100, derived from a local steal latency of about 0:5�s and aremote steal latency of about 50�s.8.4 Distributed Cilk performanceWe have a preliminary version of distributed Cilk running with MultiBacker andour local bias scheduling strategy on a cluster of SMP's. Distributed Cilk runs onmultiple platforms and networks. There are currently implementations for Sun Ultra5000 SMP's, Digital Alpha 4100 SMP's, and Penium Pro SMP's. Currently supportednetworks include UDP over Ethernet, Digital's Memory Channel, and MIT's Arcticnetwork [18, 56]. This section gives some preliminary performance numbers for ourAlpha 4100 SMP implementation running with the Memory Channel interconnect.Figure 8-1 shows the performance of the Fibonacci program from Figure 2-1.Importantly, no changes were made to the source code of the program to run iton distributed Cilk. Except for the presence of a relaxed consistency model,1 theprogramming environment is the same as Cilk on one SMP. We can see from Figure 8-1 that for a simple program like Fibonacci, near-linear speedup is achievable evenwhen dynamically load balancing across a cluster of SMP's.1And, as a consequence, the absence of locking primitives158



processors con�guration speedup1 1 1.002 2 2.002 1,1 1.993 2,1 2.983 1,1,1 2.974 2,2 3.974 2,1,1 3.935 2,2,1 4.936 2,2,2 5.87Figure 8-1: Performance of Fibonacci program from Figure 2-1 for various machinecon�gurations. These experiments were run on a cluster of 3 Alpha 4100 machineswith 4 466MHz processors each connected with Digital's Memory Channel network.The con�guration column shows how many processors on each machine were used forcomputation. An additional processor on each machine (not included in the abovenumbers) was dedicated to polling.We are currently working on evaluating the performance of our cluster of SMPversion of distributed Cilk on programs with more demanding shared-memory re-quirements.
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Chapter 9
Conclusion
This thesis presents a parallel multithreaded language called Cilk. I believe that Cilkcan go a long way to provide a robust programming environment for contemporarySMP machines. Here is a summary of Cilk's features and how each one simpli�esthe life of a programmer wishing to take advantage of his new commodity SMP (orSMP's):� simple language semantics By providing a simple, faithful, parallel exten-sion of C, Cilk makes the transition from serial C programming to parallel Cilkprogramming easier. Also, by leveraging the power of modern C compilers, Cilkretains all of the e�ciencies of serial C programming.� low parallel overhead Historically, a common obstacle to programming inparallel has been that parallel programs are not e�cient to run on one, or evena few, processors. Only with very large parallel computers was the e�ort ofprogramming in parallel worthwhile. Because the parallel overhead of Cilk isso small, however, programmers can now program for very small SMP's, onlya few processors, and expect to get good performance. In fact, the overhead ofCilk is so small that it makes sense to use the Cilk program even when runningon a uniprocessor. That way, a programmer needs to maintain only a singlecode base, simplifying program development considerably.160



� automatic load balancing Cilk's provably e�cient work-stealing scheduleralleviates the programmer from having to worry about which part of his pro-gram executes on which processor. The programmer needs only to express theparallelism in his application, the Cilk system does the rest.� good speedup The e�ciency of the Cilk language together with the e�ciencyof its scheduler combine to give good overall application speedups when a serialprogram is converted to a Cilk program. A programmer can be fairly con�dentthat if he can expose enough parallelism in his code using Cilk, the system willbe able to exploit that parallelism to obtain good speedups.� parallel debugging Programming in parallel is di�cult because reasoningabout all possible behaviors of a program can become intellectually intractable.Cilk provides a debugging tool called the Nondeterminator-2 that can detectmany of the misbehaviors of parallel programs quickly and robustly. This toolgreatly simpli�es the intellectual e�ort required to design and debug a parallelprogram.� distributed implementation Because a Cilk program can be easily portedto a cluster of SMP's, a programmer can convieniently scale from a small SMPto a large cluster of SMP's without having to rewrite his application. Thus, theconcept of the single code base extends even to very large, distributed memorycomputers.
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Appendix A
Connecting deadlock-free programsand computations
In this appendix, we prove Lemma 14, which shows that a deadlock in a data-race freecomputation of an abelian program always corresponds to a deadlock in the program.1In our current formulation, proving that a deadlock scheduling of a computation istrue is not su�cient to show that the machine actually deadlocks. A deadlock schedul-ing is one that cannot be extended in the computation, but it may be possible for themachine to extend the execution if the next machine instruction does not correspondto one of the possibilities in the dag. In this appendix, in order to prove machinedeadlocks, we think of a lock instruction as being composed of two instructions:lock attempt and lock succeed. Every two lock succeed instantiations thatacquire the same lock must be separated by an unlock of that lock, but multipleinterpreters can execute lock attempt instantiations for the same lock without anintervening unlock. In other words, lock attempt instructions can always be ex-ecuted by the interpreter, but lock succeed instructions cannot be executed unlessno other interpreter holds the lock. If an interpreter executes a lock attempt in-struction, the next instruction executed by the interpreter must be a lock succeedinstruction for the same lock. A true deadlock scheduling is therefore an actual ma-1The contents of this appendix are joint work with Andrew Stark.162



chine deadlock, because the lock succeed instantiations that come next in the dagare always the same as the next possible instantiations for the machine.A lock attempt instantiation commutes with any other parallel instantiation.For convenience, we still use the instantiation lock to mean the sequence lockattempt lock succeed.To prove Lemma 14, we �rst introduce new versions of Lemmas 10, 11, and 12that assume a deadlock-free program instead of a deadlock-free dag. We then proveLemma 14.Lemma 28 (Reordering) Let G be a data-race free computation resulting from theexecution of a deadlock-free abelian program, and let R1 and R2 be two parallel regionsin G. Then:1. Let X be a partial scheduling of G of the form X1R1R2X2. The partial schedulingX and the partial scheduling X1R2R1X2 are equivalent.2. Let Y be a true partial scheduling of G of the form Y = Y1R1R02, where R02 is apre�x of R2. Then then the partial scheduling Y1R02 is true.Proof: We prove the lemma by double induction on the nesting count of the regions.Our inductive hypothesis is the theorem as stated for regions R1 of nesting count iand regions R2 of nesting count j. The proofs for part 1 and part 2 are similar, sosometimes we will prove part 1 and provide the modi�cations needed for part 2 inparentheses.Base case: i = 0. Then R1 is a single instantiation. Since R1 and R2 (R02) areparallel and are adjacent in X (Y ), no instantiation of R2 (R02) can be guarded by alock that guards R1, because any lock held at R1 is not released until after R2 (R02).Therefore, since G is data-race free, either R1 and R2 (R02) access di�erent memorylocations or R1 is a read and R2 (R02) does not write to the location read by R1. Ineither case, the instantiations of each of R1 and R2 (R02) do not a�ect the behavior ofthe other, so they can be executed in either order without a�ecting the �nal memorystate. 163



Base case: j = 0. Symmetric with above.Inductive step: In general, R1 of count i � 1 has the form lock(a) � � �unlock(a),and R2 of count j � 1 has the form lock(b) � � �unlock(b). If a = b, then R1 andR2 commute by the de�nition of abelian. Parts 1 and 2 then both follow from thede�nition of commutativity. Otherwise, there are three possible cases.Case 1: Lock a does not appear in R2 (R02). For part 1, we start with the sequenceX1R1R2X2 and commute pieces of R1 one at a time with R2: �rst, the instantia-tion unlock(a), then the immediate subregions of R1, and �nally the instantiationlock(a). The instantiations lock(a) and unlock(a) commute with R2, becausea does not appear anywhere in R2. Each subregion of R1 commutes with R2 bythe inductive hypothesis, because each subregion has lower nesting count than R1.After commuting all of R1 past R2, we have an equivalent execution X1R2R1X2.For part 2, the same procedure can be used to drop pieces of R1 in the true partialschedule Y1R1R02 until the true partial schedule Y1R02 is reached.Case 2: Lock b does not appear in R1. The argument for part 1 is symmetric withCase 1. For part 2, we break upR02 into its constituents: R02 = lock(b)R2;1 : : : R2;nR002 ,where R2;1 through R2;n are complete regions, and R002 is a pre�x of a region. Theinstantiation lock(b) commutes with R1 because b does not appear in R1, and thecomplete regions R2;1 through R2;n commute with R1 by induction. From the sched-ule Y1lock(b)R2;1 : : : R2;nR1R002, we again apply the inductive hypothesis to drop R1,which proves that Y1lock(b)R2;1 : : : R2;nR002 = Y1R02 is true.Case 3: Lock a appears in R2 (R02), and lock b appears in R1. For part 1, if bothschedulings X1R1R2X2 and X1R2R1X2 are false, then we are done. Otherwise, weprove a contradiction by showing that the program can deadlock. Without loss ofgenerality, let the scheduling X1R1R2X2 be a true scheduling. Because X1R1R2X2 isa true scheduling, the partial scheduling X1R1R2 is true as well.We now continue the proof for both parts of the lemma. Let �1 be the pre�x ofR1 up to the �rst lock attempt(b) instantiation, let �1 be the rest of R1, and let�2 be the pre�x of R2 (R02) up to the �rst lock attempt of a lock acquired in R2(R02) that is acquired but not released in �1. At least one such lock exists, namely a,164



so �2 is not all of R2 (R02).We show that the partial scheduling X1�1�2 is also true. This partial scheduling,however, cannot be completed to a full scheduling of the program because �1 and �2each hold the lock that the other is attempting to acquire.We prove the partial scheduling X1�1�2 is true by starting with the true partialscheduling X1R1�2 = X1�1�1�2 and dropping complete subregions and unpairedunlocks in �1 from in front of �2. The sequence �1 has two types of instantiations,those in regions completely contained in �1, and unpaired unlocks.Unpaired unlocks in �1 must have their matching lock in �1, so that lock doesnot appear in �2 by construction. Therefore, an unlock instantiation just before �2commutes with �2 and thus can be dropped from the schedule. Any complete regionjust before �2 can be dropped by the inductive hypothesis. When we have droppedall instantiations in �1, we obtain the true partial scheduling X1�1�2 which cannotbe completed, and hence the program has a deadlock.Lemma 29 (Region grouping) Let G be a data-race free computation resultingfrom the execution of a deadlock-free abelian program. Let X1XX2 be a scheduling ofG, for some instantiation sequences X1, X, and X2. Then, there exists an instantia-tion sequence X 0 such that X1X 0X2 is equivalent to X1XX2 and every region entirelycontained in X 0 is contiguous.Proof: As a �rst step, we create X 00 by commuting each lock attempt in X toimmediately before the corresponding lock succeed. In this way, every completeregion begins with a lock instantiation. If there is no corresponding lock succeedin X, we commute the lock attempt instantiation to the end of X 00.Next, we create our desired X 0 by grouping all the complete regions in X 00 oneat a time. Each grouping operation will not destroy the grouping of already groupedregions, so eventually all complete regions will be grouped.Let R be a noncontiguous region in X 00 that completely overlaps no other noncon-tiguous regions in X 00. Since region R is noncontiguous, other regions parallel withR must overlap R in X 00. We �rst remove all overlapping regions which have exactly165



one endpoint (an endpoint is the bounding lock or unlock of a region) in R, whereby \in" R, we mean appearing in X 00 between the endpoints of R. We shall show howto remove regions which have only their unlock in R. The technique for removingregions with only their lock in R is symmetric.Consider the partially overlapping region S with the leftmost unlock in R. Thenall subregions of S which have any instantiations inside R are completely inside R andare therefore contiguous. We remove S by moving each of its (immediate) subregionsin R to just left of R using commuting operations. Let S1 be the leftmost subregionof S which is also in R. We can commute S1 with every instruction I to its left untilit is just past the start of R. There are three cases for the type of instruction I. If Iis not a lock or unlock, it commutes with S1 by Lemma 28 because it is a region inparallel with S1. If I = lock(b) for some lock b, then S1 commutes with I, becauseS1 cannot contain lock(b) or unlock(b). If I = unlock(b), then there must exista matching lock(b) inside R, because S is chosen to be the region with the leftmostunlock without a matching lock. Since there is a matching lock in R, the regionde�ned by the lock/unlock pair must be contiguous by the choice of R. Therefore,we can commute S1 with this whole region at once using Lemma 28.We can continue to commute S1 to the left until it is just before the start of R.Repeat for all other subregions of S, left to right. Finally, the unlock at the end ofS can be moved to just before R, because no other lock or unlock of that samelock appears in R up to that unlock.Repeat this process for each region overlapping R that has only an unlock in R.Then, remove all regions which have only their lock in R by pushing them to justafter R using similar techniques. Finally, when there are no more unmatched lockor unlock instantiations in R, we can remove any remaining overlapping regions bypushing them in either direction to just before or just after R. The region R is nowcontiguous.Repeating for each region, we obtain an execution X1X 0X2 equivalent to X1XX2in which every region completely contained in X 0 is contiguous.166



Lemma 30 Let G be a data-race free computation resulting from the execution of adeadlock-free abelian program. Then every scheduling of G is true and yields the same�nal memory state.Proof: The proof is identical to the proof of Lemma 12, using the Reordering andRegion Grouping lemmas from this appendix in place of those from Section 5.5.We restate and then prove Lemma 14.Lemma 14 Let G be a computation generated by a deadlock-free abelian program. IfG is data-race free, then it is deadlock free.Proof: By contradiction. Assume that a deadlock-free abelian program P can gen-erate a data-race free computation G that has a deadlock. We show that P candeadlock, which is a contradiction.The proof has two parts. In the �rst part, we generate a true scheduling Y ofG that is \almost" a deadlock scheduling. Then, we show that Y can be modi�edslightly to generate a deadlock scheduling Z which is also true, which proves thecontradiction.Every deadlock scheduling contains a set of threads e1; e2; : : : en, some of whichare completed and some of which are not. Each thread ei has a depth , whichis the length of the longest path in G from the initial node to the last instan-tiation in ei. We can de�ne the depth of a deadlock scheduling as the n-tuplehdepth(e1); depth(e2); : : : ; depth(en)i, where we order the threads such that depth(e1) �depth(e2) � : : : � depth(en). Depths of deadlocked schedulings are compared in thedictionary order.2We generate the scheduling Y of G which is almost a deadlock scheduling bymodifying a particular deadlock scheduling of G. We choose the deadlock schedulingX from which we will create the scheduling Y to have the maximum depth of anydeadlock scheduling of G.2The dictionary order <D is a partial order on tuples that can be de�ned as follows: The size0 tuple is less than any other tuple. hii; i2; : : : ; imi <D hj1; j2; : : : ; jni if i1 < j1 or if i1 = j1 andhi2; i3; : : : ; imi <D hj2; j3; : : : ; jni. 167



Let us examine the structure of X in relation to G. The deadlock scheduling X di-vides G into a set of completely executed threads, X1, a set of unexecuted threads X2,and a set of partially executed threads T = ft1; : : : ; tng, which are the threads whoselast executed instantiation in the deadlock scheduling is a lock attempt. We divideeach of the threads in T into two pieces. Let A = f�1; : : : ; �ng be the parts of the tiup to and including the last executed instantiation, and let B = f�1; : : : ; �ng be therest of the instantiations of the ti. We say that �i blocks �j if the �rst instantiationin �j is a lock succeed on a lock that is acquired but not released by �i.X is a deadlock scheduling containing the instantiations in X1 [A. To isolate thee�ect of the incomplete regions in A, we construct the legal scheduling X 0 which �rstschedules all of the instantiations in X1 in the same order as they appear in X, andthen all of the instantiations in A in the same order as they appear in X.The �rst instantiations of the �i cannot be scheduled in X 0 because they blockedby some �j. We now prove that the blocking relation is a bijection. Certainly, aparticular �i can only be blocked by one �j. Suppose there exists an �j blockingtwo or more threads in B. Then by the pigeonhole principle some thread �k blocksno threads in B. This contradicts that fact that X has maximum depth, becausethe deadlock scheduling obtained by scheduling the sequence X1tk, all subsequentlyrunnable threads in X2 in any order, and then the n� 1 partial threads in A� f�kgis a deadlock scheduling with a greater depth than X.Without loss of generality, let �2 be a thread in A with a deepest last instantiation.Since the blocking relation is a bijection, only one thread blocks �2; without loss ofgenerality, let it be �1. Break �1 up into two parts, �1 = �L1�R1 , where the �rstinstantiation of �R1 attempts to acquire the lock that blocks �2. (�L1 may be empty.)To construct a legal schedule, we start with X 0 and remove the instantiations in �R1from X 0. The result is still a legal scheduling because we did not remove any unlockwithout also removing its matching lock. We then schedule the �rst instantiationof �2, which we know is legal because we just unblocked it. We then complete thescheduling of the threads in T by scheduling the remaining instantiations in T (�R1 andall instantiations in B except for the �rst one in �2). We know that such a scheduling168



exists, because if it didn't, then there would be a deeper deadlock schedule (becausewe executed one additional instantiation from �2, the deepest incomplete thread,and we didn't remove any completed threads). We �nish o� this legal scheduling bycompleting X2 in topological sort order.As a result, the constructed schedule consists of four pieces, which we call Y1, Y2,Y 03 , and Y4. The instantiation sequence Y1 is some scheduling of the instantiationsin X1, Y2 is some scheduling of the instantiations in �L1 [ �2 [ : : : [ �n, Y 03 is somescheduling of the instantiations in �R1 [ �1 [ : : : [ �n, and Y4 is some scheduling ofthe instantiations in X2. To construct Y , we �rst group the complete regions in Y 03using Lemma 29 to get Y3, and then de�ne Y to be the schedule Y1Y2Y3Y4. Since Yis a (complete) scheduling of G, it is true by Lemma 30.The true scheduling Y is almost the same as the deadlock scheduling X, except �R1is not in the right place. We further subdivide �R1 into two pieces, �R1 = �01�001 , where�01 is the maxmimum pre�x of �R1 that contains no lock succeed instantiations oflocks that are held but not released by the instantiations in �L1 ; �2; : : : ; �n. (Such an�01 must exist in �R1 by choice of �R1 , and furthermore �01 is contiguous in Y because�1 completes the region started at �01, and both �1 and �01 are part of Y3.) We nowdrop all instantiations after �01 to make a partial scheduling. We then commute �01to the beginning of Y3, dropping instantiations as we go, to form the true schedulingY1Y2�01. Two types of instantiations are in front of �01. Complete regions before�01 are contiguous and can be dropped using Lemma 28. Unlock instantiations canbe dropped from in front of �01 because they are unlocks of some lock acquired in�L1 ; �2; : : : ; �n, which do not appear in �01 by construction. By dropping instantiations,we arrive at the true scheduling Y1Y2�01, which is a deadlock scheduling, as everythread is blocked. This contradiction completes the proof.
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