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Abstract

The FFTW library for computing the discrete Fourier trans-
form (DFT) has gained a wide acceptance in both academia
and industry, because it provides excellent performance on
a variety of machines (even competitive with or faster than
equivalent libraries supplied by vendors). In FFTW, most of
the performance-critical code was generated automatically
by a special-purpose compiler, calledgenfft, that outputs
C code. Written in Objective Caml,genfft can produce
DFT programs for any input length, and it can specialize
the DFT program for the common case where the input data
are real instead of complex. Unexpectedly,genfft “discov-
ered” algorithms that were previously unknown, and it was
able to reduce the arithmetic complexity of some other ex-
isting algorithms. This paper describes the internals of this
special-purpose compiler in some detail, and it argues that a
specialized compiler is a valuable tool.

1 Introduction

Recently, Steven G. Johnson and I released Version 2.0 of
the FFTW library [FJ98, FJ], a comprehensive collection of
fast C routines for computing the discrete Fourier transform
(DFT) in one or more dimensions, of both real and complex
data, and of arbitrary input size. The DFT [DV90] is one
of the most important computational problems, and many
real-world applications require that the transform be com-
puted as quickly as possible. FFTW is one of the fastest
DFT programs available (see Figures 1 and 2) because of two
unique features. First, FFTW automatically adapts the com-
putation to the hardware. Second, the inner loop of FFTW�The author was supported in part by the Defense Advanced Research
Projects Agency (DARPA) under Grant F30602-97-1-0270, andby a Digital
Equipment Corporation fellowship.

To appear inProceedings of the 1999 ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), Atlanta, Georgia, May 1999.
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Figure 1 : Graph of the performance of FFTW versus Sun’s Per-
formance Library on a 167 MHz UltraSPARC processor in single
precision. The graph plots the speed in “mflops” (higher is better)
versus the size of the transform. This figure shows sizes thatare
powers of two, while Figure 2 shows other sizes that can be fac-
tored into powers of 2, 3, 5, and 7. This distinction is important
because the DFT algorithm depends on the factorization of the size,
and most implementations of the DFT are optimized for the case
of powers of two. See [FJ97] for additional experimental results.
FFTW was compiled with Sun’s C compiler (WorkShop Compilers
4.2 30 Oct 1996 C 4.2).

(which amounts to 95% of the total code) was generated au-
tomatically by a special-purpose compiler written in Objec-
tive Caml [Ler98]. This paper explains how this compiler
works.

FFTW does not implement a single DFT algorithm, but it
is structured as a library ofcodelets—sequences of C code
that can be composed in many ways. In FFTW’s lingo, a
composition of codelets is called aplan. You can imagine
the plan as a sort of bytecode that dictates which codelets
should be executed in what order. (In the current FFTW
implementation, however, a plan has a tree structure.) The
precise plan used by FFTW depends on the size of the in-
put (where “the input” is an array ofn complex numbers),
and on which codelets happen to run fast on the underly-
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Figure 2 : See caption of Figure 1.

ing hardware. The user need not choose a plan by hand,
however, because FFTW chooses the fastest plan automat-
ically. The machinery required for this choice is described
elsewhere [FJ97, FJ98].

Codelets form the computational kernel of FFTW. You
can imagine a codelet as a fragment of C code that computes
a Fourier transform of a fixed size (say, 16, or 19).1 FFTW’s
codelets are produced automatically by theFFTW codelet
generator, unimaginatively calledgenfft. genfft is an
unusual special-purpose compiler. While a normal compiler
accepts C code (say) and outputs numbers,genfft inputs
the single integern (the size of the transform) and outputs
C code. The codelet generator contains optimizations that
are advantageous for DFT programs but not appropriate for
a general compiler, and conversely, it does not contain opti-
mizations that are not required for the DFT programs it gen-
erates (for example loop unrolling).genfft operates in four phases.

1. In the creation phase,genfft produces a directed
acyclic graph (dag) of the codelet, according to some
well-known algorithm for the DFT [DV90]. The gen-
erator contains many such algorithms and it applies the
most appropriate.

2. In thesimplifier, genfft applies local rewriting rules
to each node of the dag, in order to simplify it. In tradi-
tional compiler terminology, this phase performs alge-
braic transformations and common-subexpressionelim-
ination, but it also performs other transformations that
are specific to the DFT. For example, it turns out that if
all floating point constants are made positive, the gener-
ated code runs faster. (See Section 5.) Another impor-
tant transformation isdag transposition, which derives
from the theory of linear networks [CO75]. Moreover,

1In the actual FFTW system, some codelets perform more tasks,how-
ever. For the purposes of this paper, we consider only the generation of
transforms of a fixed size.

besides noticing common subexpressions, the simplifier
also attempts to create them. The simplifier is written in
monadic style [Wad97], which allowed me to deal with
the dag as if it were a tree, making the implementation
much easier.

3. In thescheduler, genfft produces a topological sort of
the dag (a “schedule”) that, for transforms of size2k,
provably minimizes the asymptotic number of register
spills,no matter how many registers the target machine
has. This truly remarkable fact can be derived from
the analysis of the red-blue pebbling game of Hong and
Kung [HK81], as we shall see in Section 6. For trans-
forms of other sizes the scheduling strategy is no longer
provably good, but it still works well in practice. Again,
the scheduler depends heavily on the topological struc-
ture of DFT dags, and it would not be appropriate in a
general-purpose compiler.

4. Finally, the schedule is unparsed to C. (It would be easy
to produce FORTRAN or other languages by changing
the unparser.) The unparser is rather obvious and unin-
teresting, except for one subtlety discussed in Section 7.

Although the creation phase uses algorithms that have
been known for several years, the output ofgenfft is at
times completely unexpected. For example, for a complex
transform of sizen = 13, the generator employs an algo-
rithm due to Rader, in the form presented by Tolimieri and
others [TAL97]. In its most sophisticated variant, this al-
gorithm performs 214 real (floating-point) additions and 76
real multiplications. (See [TAL97, Page 161].) The gener-
ated code in FFTW for the same algorithm, however, con-
tains only 176 real additions and 68 real multiplications, be-
causegenfft found certain simplifications that the authors
of [TAL97] did not notice.2

The generator specializes the dag automatically for the
case where the input data are real, which occurs frequently
in applications. This specialization is nontrivial, and in the
past the design of an efficient real DFT algorithm required
a serious effort that was well worth a publication [SJHB87].genfft, however, automatically derives real DFT programs
from the complex algorithms, and the resulting programs
have the same arithmetic complexity as those discussed by
[SJHB87, Table II].3 The generator also produces real vari-
ants of the Rader’s algorithm mentioned above, which to my
knowledge do not appear anywhere in the literature.

2Buried somewhere in the computation dag generated by the algorithm
are statements of the forma = c + d, b = c � d, e = a + b. The
generator simplifies these statements toe = 2 � c, provideda andb are
not needed elsewhere. Incidentally, [SB96] reports an algorithm with 188
additions and 40 multiplications, using a more involved DFTalgorithm that
I have not implemented yet. To my knowledge, the program generated bygenfft performs the lowest known number of additions for this problem.

3In fact,genfft saves a few operations in certain cases, such asn = 15.
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I found a special-purpose compiler such as the FFTW
codelet generator to be a valuable tool, for a variety of rea-
sons that I now discuss briefly.� Performancewas the main goal of the FFTW project,

and it could not have been achieved withoutgenfft.
For example, the codelet that performs a DFT of size 64
is used routinely by FFTW on the Alpha processor. The
codelet is about twice as fast as Digital’s DXML library
on the same machine. The codelet consists of about
2400 lines of code, including 912 additions and 248
multiplications. Writing such a program by hand would
be a formidable task for any programmer. At least for
the DFT problem, these long sequences of straight-line
code seem to be necessary in order to take full advan-
tage of large CPU register sets and the scheduling capa-
bilities of C compilers.� Achievingcorrectnesshas been surprisingly easy. The
DFT algorithms ingenfft are encoded straightfor-
wardly using a high-level language. The simplifica-
tion phase transforms this high-level algorithm into op-
timized code by applying simple algebraic rules that
are easy to verify. In the rare cases during develop-
ment when the generator contained a bug, the output
was completely incorrect, making the bug manifest.� Rapid turnaroundwas essential to achieve the perfor-
mance goals. For example, the scheduler described in
Section 6 is the result of a trial-and-error process in
search of the best result, since the schedule of a codelet
interacts with C compilers (in particular, with register
allocators) in nonobvious ways. I could usually imple-
ment a new idea and regenerate the whole system within
minutes, until I found the solution described in this pa-
per.� The generator is effective because it can applyproblem-
specificcode improvements. For example, the sched-
uler is effective only for DFT dags, and it would per-
form poorly for other computations. Moreover, the sim-
plifier performs certain improvements that depend on
the DFT being a linear transformation.� Finally, genfft derived somenew algorithms, as in
the examplen = 13 discussed above. While this pa-
per does not focus on these algorithmsper se, they are
of independent theoretical and practical interest in the
Digital Signal Processing community.

This paper, of necessity, brings together concepts from
both the Programming Languages and the Signal Processing
literatures. The paper, however, is biased towards a reader
familiar with compilers [ASU86], programming languages,
and monads [Wad97], while the required signal-processing
knowledge is kept to the bare minimum. (For example, I am

not describing some advanced number-theoretical DFT algo-
rithms used by the generator.) Readers unfamiliar with the
discrete Fourier transform, however, are encouraged to read
the good tutorial by Duhamel and Vetterli [DV90].

The rest of the paper is organized as follows. Section 2
gives some background on the discrete Fourier transform
and on algorithms for computing it. Section 3 overviews re-
lated work on automatic generation of DFT programs. The
remaining sections follow the evolution of a codelet withingenfft. Section 4 describes what the codelet dag looks like
and how it is constructed. Section 5 presents the dag simpli-
fier. Section 6 describes the scheduler and proves that it min-
imizes the number of transfers between memory and regis-
ters. Section 7 discusses some pragmatic aspects ofgenfft,
such as running time and memory requirements, and it dis-
cusses the interaction ofgenfft’s output with C compilers.

2 Background

This section defines the discrete Fourier transform (DFT),
and mentions the most common algorithms to compute it.

LetX be an array ofn complex numbers. The (forward)
discrete Fourier transformof X is the arrayY given byY [i] = n�1Xj=0X [j]!�ijn ; (1)

where!n = e2�p�1=n is a primitiven-th root of unity, and0 � i < n. In caseX is a real vector, the transformY has
thehermitian symmetryY [n� i] = Y �[i] ;
whereY �[i] is the complex conjugate ofY �[i].

The backwardDFT flips the sign at the exponent of!n,
and it is defined in the following equation.Y [i] = n�1Xj=0X [j]!ijn : (2)

The backward transform is the “scaled inverse” of the for-
ward DFT, in the sense that computing the backward trans-
form of the forward transform yields the original array mul-
tiplied byn.

If n can be factored inton = n1n2, Equation (1) can be
rewritten as follows. Letj = j1n2 + j2, andi = i1 + i2n1.
We then have,Y [i1 + i2n1] = (3)n2�1Xj2=0 240@n1�1Xj1=0 X [j1n2 + j2]!�i1j1n1 1A!�i1j2n 35!�i2j2n2 :
This formula yields theCooley-Tukey fast Fourier trans-
form algorithm (FFT) [CT65]. The algorithm computesn2
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transforms of sizen1 (the inner sum), it multiplies the result
by the so-calledtwiddle factors!�i1j2n , and finally it com-
putesn1 transforms of sizen2 (the outer sum).

If gcd(n1; n2) = 1, the prime factor algorithm can be
applied, which avoids the multiplications by the twiddle fac-
tors at the expense of a more involved computation of in-
dices. (See [OS89, page 619].) Ifn is a multiple of4,
the split-radix algorithm [DV90] can save some operations
with respect to Cooley-Tukey. Ifn is prime,genfft uses
either Equation (1) directly, orRader’s algorithm[Rad68],
which converts the transform into a circular convolution of
sizen � 1. The circular convolution can be computed re-
cursively using two Fourier transforms, or by means of a
clever technique due to Winograd [Win78] (genfft does not
employ this technique yet, however). Other algorithms are
known for prime sizes, and this is still the subject of active
research. See [TAL97] for a recent compendium on the topic.
Any algorithm for the forward DFT can be readily adapted to
compute the backward DFT, the difference being that certain
complex constants become conjugate. For the purposes of
this paper, we do not distinguish between forward and back-
ward transform, and we simply refer to both as the “complex
DFT”.

In the case when the input is purely real, the transform
can be computed with roughly half the number of operations
of the complex case, and the hermitian output requires half
the storage of a complex array of the same size. In gen-
eral, keeping track of the hermitian symmetry throughout
the recursion is nontrivial, however. This bookkeeping is
relatively easy for the split-radix algorithm, and it becomes
particularly nasty for the prime factor and the Rader algo-
rithms. The topic is discussed in detail in [SJHB87]. In the
real transform case, it becomes important to distinguish the
forward transform, which takes a real input and produces an
hermitian output, from the backward transform, whose input
is hermitian and whose output is real, requiring a different
algorithm. We refer to these cases as the “real to complex”
and “complex to real” DFT, respectively.

In the DFT literature, unlike in most of Computer Sci-
ence, it is customary to report the exact number of arith-
metic operations performed by the various algorithms, in-
stead of their asymptotic complexity. Indeed, the time com-
plexity of all DFT algorithms of interest isO(n logn), and
a detailed count of the exact number of operation is usually
doable (which by no means implies that the analysis is easy
to carry out). It is no problem for me to follow this conven-
tion in this paper, sincegenfft produces an exact arithmetic
count anyway.

In the literature, the term FFT (“fast Fourier trans-
form”) refers to either the Cooley-Tukey algorithm or to anyO(n logn) algorithm for the DFT, depending on the author.
In this paper, FFT denotes anyO(n logn) algorithm.

3 Related work

Researchers have been generating FFT programs for at least
twenty years, possibly to avoid the tedium of getting all the
implementation details right by hand. To my knowledge, the
first generator of FFT programs was FOURGEN, written by
J. A. Maruhn [Mar76]. It was written in PL/I and it generated
FORTRAN.4 FOURGEN is limited to transforms of size2k.

Perez and Takaoka [PT87] present a generator of Pascal
programs implementing a prime factor FFT algorithm. This
program is limited to complex transforms of sizen, wheren must be factorable into mutually prime factors in the setf2; 3; 4; 5; 7; 8; 9; 16g.

Johnson5 and Burrus [JB83] applied dynamic program-
ming to the automatic design of DFT modules. Selesnick
and Burrus [SB96] used a program to generate MATLAB
subroutines for DFTs of certain prime sizes. In many cases,
these subroutines are the best known in terms of arithmetic
complexity.

The EXTENT system by Gupta and others [GHSJ96] gen-
erates FORTRAN code in response to an input expressed in
a tensor productlanguage. Using the tensor product ab-
straction one can express concisely a variety of algorithms
that includes the FFT and matrix multiplication (including
Strassen’s algorithm).

Another program calledgenfft generating Haskell FFT
subroutines is part of thenofib benchmark for Haskell
[Par92]. Unlike my program, thisgenfft is limited to trans-
forms of size2k. The program innofib is not documented
at all, but apparently it can be traced back to [HV92].

Veldhuizen [Vel95] used a template metaprograms tech-
nique to generateC++ programs. The technique exploits the
template facility ofC++ to force theC++ compiler to perform
computations at compile time.

All these systems are restricted to complex transforms,
and the FFT algorithm is knowna priori. To my knowl-
edge, the FFTW generator is the only one that produces real
algorithms, and in fact, which canderivereal algorithms by
specializing a complex algorithm. Also, my generator is the
only one that addressed the problem of scheduling the pro-
gram efficiently.

4 Creation of the expression dag

This section describes the creation of an expression dag. We
first define thenode data type, which encodes a directed
acyclic graph (dag) of a codelet. We then describe a few

4Maruhn argues that PL/I is more suited than FORTRAN to this
program-generation task, and has the following curious remark.

One peculiar difficulty is that some FORTRAN systems pro-
duce an output format for floating-point numbers without the
exponent delimiter “E”, and this makes them illegal in FOR-
TRAN statements.

5Unrelated to Steven G. Johnson, the other author of FFTW.
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type node =| Num of Number.number| Load of Variable.variable| Store of Variable.variable * node| Plus of node list| Times of node * node| Uminus of node
Figure 3 : Objective Caml code that defines thenode data type,
which encodes an expression dag.

ancillary data structures and functions that provide complex
arithmetic. Finally, the bulk of the section describes the func-
tion fftgen, which actually produces the expression dag.

We start by defining thenode data type, which encodes
an arithmetic expression dag. Each node of the dag rep-
resents an operator, and the node’s children represent the
operands. This is the same representation as the one gen-
erally used in compilers [ASU86, Section 5.2]. A node in
the dag can have more than one “parent”, in which case the
node represents a common subexpression. The definition
of node is given in Figure 3, and it is straightforward. A
node is either a real number (encoded by the abstract data
typeNumber.number), a load of an input variable, a store of
an expression into an output node, the sum of the children
nodes, the product of two nodes, or the sign negation of a
node. For example, the expressiona � b, wherea andb are
input variables, is represented byPlus [Load a; Uminus(Load b)].

The structureNumber maintains floating-point constants
with arbitrarily high precision (currently, 50 decimal digits),
in case the user wants to use the quadruple precision floating-
point unit on a processor such as the UltraSPARC.Number is
implemented on top of Objective Caml’s arbitrary-precision
rationals. The structureVariable encodes the input/output
nodes of the dag, and the temporary variables of the gener-
ated C code. Variables can be considered an abstract data
type that is never used explicitly in this paper.

The node data type encodes expressions over real num-
bers, since the final C output contains only real expressions.
For creating the expression dag of the codelet, however, it
is convenient to express the algorithms in terms of com-
plex numbers. The generator contains a structure calledComplex, which implements complex expressions on top of
the node data type, in a straightforward way.6 The typeComplex.expr (not shown) is essentially a pair ofnodes.

We now describe the functionfftgen, which creates a
dag for a DFT of sizen. In the current implementation,fftgen uses one of the following algorithms.

6One subtlety is that a complex multiplication by a constant can be im-
plemented with either 4 real multiplications and 2 real additions, or 3 real
multiplications and 3 real additions [Knu98, Exercise 4.6.4-41]. The cur-
rent generator uses the former algorithm, since the operation count of the
dag is generally dominated by additions. On most CPUs, it is advantageous
to move work from the floating-point adder to the multiplier.

� A split-radix algorithm [DV90], ifn is a multiple of4.
Otherwise,� A prime factor algorithm (as described in [OS89, page
619]), if n factors inton1n2, where ni 6= 1 andgcd(n1; n2) = 1. Otherwise,� The Cooley-Tukey FFT algorithm (Equation (3)) ifn
factors inton1n2, whereni 6= 1. Otherwise,� (n is a prime number) Rader’s algorithm for transforms
of prime length [Rad68] ifn = 5 orn � 13. Otherwise,� Direct application of the definition of DFT (Equa-
tion (1)).

We now look at the operation offftgen more closely.
The function has typefftgen : int -> (int -> Complex.expr) ->int -> (int -> Complex.expr)
The first argument tofftgen is the sizen of the trans-
form. The second argument is a functioninput with typeint -> Complex.expr. The application(input i) re-
turns a complex expression that contains thei-th input. The
third argumentsign is either1 or�1, and it determines the
direction of the transform.

Depending on the sizen of the requested transform,fftgen dispatches one of the algorithms mentioned above.
We now discuss how the Cooley-Tukey FFT algorithm is im-
plemented. The implementation of the other algorithms is
similar, and it is not shown in this paper.

The Objective Caml code that implements the Cooley-
Tukey algorithm can be found in Figure 4. In order to un-
derstand the code, recall Equation (3). This equation trans-
lates almost verbatim into Objective Caml. With reference
to Figure 4, the function applicationtmp1 j2 computes the
inner sum of Equation (3) for a given value ofj2, and it re-
turns a function ofi1. (tmp1 is curried overi1, and thereforei1 does not appear explicitly in the definition.) Next,(tmp1j2 i1) is multiplied by the twiddle factors, yieldingtmp2,
that is, the expression in square braces in Equation (3). Next,tmp3 computes the outer summation, which is itself a DFT
of sizen2. (Again,tmp3 is a function ofi1 andi2, curried
overi2.) In order to obtain thei-th element of the output of
the transform, the indexi is finally mapped intoi1 andi2 and(tmp3 i1 i2) is returned.

Observe that the code in Figure 4 does not actually per-
form any computation. Instead, it builds a symbolic expres-
sion dag that specifies the computation. The other DFT al-
gorithms are implemented in a similar fashion.

At the top level, the generator invokesfftgen with
the sizen and the directionsign specified by the user.
The input function is set tofun i -> Complex.load(Variable.input i), i.e., a function that loads thei-th
input variable. Recall now thatfftgen returns a function
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let rec cooley_tukey n1 n2 input sign =let tmp1 j2 = fftgen n1(fun j1 -> input (j1 * n2 + j2)) sign inlet tmp2 i1 j2 =exp n (sign * i1 * j2) @* tmp1 j2 i1 inlet tmp3 i1 = fftgen n2 (tmp2 i1) signin(fun i -> tmp3 (i mod n1) (i / n1))
Figure 4 : Fragment of the FFTW codelet generator that imple-
ments the Cooley-Tukey FFT algorithm. The infix operator@*
computes the complex product. The functionexp n k computes
the constant exp(2�kp�1=n).output, where(output i) is a complex expression that
computes thei-th element of the output array. The top level
builds a list ofStore expressions that store(output i)
into the i-th output variable, for all0 � i < n. This list
of Stores is the codelet dag that forms the input of subse-
quent phases of the generator.

We conclude this section with a few remarks. According
to the description given in this section,fftgen contains no
special support for the case where the input is real. This
statement is not completely true. In the actual implemen-
tation,fftgen maintains certain symmetries explicitly (for
example, if the input is real, then the output is known to
have hermitian symmetry). These additional constraints do
not change the final output, but they speed up the genera-
tion process, since they avoid computing and simplifying the
same expression twice. For the same reason, the actual im-
plementation memoizes expressions such astmp1 i2 i1 in
Figure 4, so that they are only computed once.7

At this stage, the generated dag contains many redundant
computations, such as multiplications by1 or 0, additions
of 0, and so forth.fftgen makes no attempt to eliminate
these redundancies. Figure 5 shows a possible C translation
of a codelet dag at this stage of the generation process.

5 The simplifier

In this section, we present FFTW’ssimplifier, which trans-
forms code such as the one in Figure 5 into simpler code.
The simplifier transforms a dag ofnodes (see Section 4) into
another dag ofnodes. We first discuss how the simplifier
transforms the dag, and then how the simplifier is actually
implemented. The implementation benefits heavily from the
use of monads.

5.1 What the simplifier does

We first illustrate the improvements applied by the simplifier
to the dag. The simplifier traverses the dag bottom-up, and it

7These performance improvements were important for a user ofFFTW
who needed a hard-coded transform of size 101, and had not obtained an
answer after the generator had run for three days. See Section 7 for more
details.

tmp1 = REAL(input[0]);tmp5 = REAL(input[0]);tmp6 = IMAG(input[0]);tmp2 = IMAG(input[0]);tmp3 = REAL(input[1]);tmp7 = REAL(input[1]);tmp8 = IMAG(input[1]);tmp4 = IMAG(input[1]);REAL(output[0]) = ((1 * tmp1) - (0 * tmp2))+ ((1 * tmp3) - (0 * tmp4));IMAG(output[0]) = ((1 * tmp2) + (0 * tmp1))+ ((1 * tmp4) + (0 * tmp3));REAL(output[1]) = ((1 * tmp5) - (0 * tmp6))+ ((-1 * tmp7) - (0 * tmp8));IMAG(output[1]) = ((1 * tmp6) + (0 * tmp5))+ ((-1 * tmp8) + (0 * tmp7));
Figure 5 : C translation of a dag for a complex DFT of size 2,
as generated byfftgen. Variable declarations have been omitted
from the figure. The code contains many common subexpression
(e.g.,tmp1 andtmp5), and redundant multiplications by0 or 1.

applies a series of local improvements to every node. For ex-
planation purposes, these improvements can be subdivided
into three categories: algebraic transformations, common-
subexpression elimination, and DFT-specific improvements.
Since the first two kinds are well-known [ASU86], I just dis-
cuss them briefly. We then consider the third kind in more
detail.

Algebraic transformationsreduce the arithmetic complex-
ity of the dag. Like a traditional compiler, the simplifier per-
forms constant folding, and it simplifies multiplications by0, 1, or �1, and additions of0. Moreover, the simplifier
applies the distributive property systematically. Expressions
of the formkx + ky are transformed intok(x + y). In the
same way, expressions of the formk1x+k2x are transformed
into (k1 + k2)x. In general, these two transformations have
the potential of destroying common subexpressions, and they
might increase the operation count. This does not appear to
be the case for all DFT dags I have studied, although I do not
fully understand the reason for this phenomenon.

Common-subexpression eliminationis also applied sys-
tematically. Not only does the simplifier eliminate common
subexpressions, it also attempts to create new ones. For ex-
ample, it is common for a DFT dag (especially in the case of
real input) to contain bothx�y andy�x as subexpressions,
for somex andy. The simplifier converts both expressions
to eitherx � y and�(x � y), or�(y � x) andy � x, de-
pending on which expression is encountered first during the
dag traversal.

The simplifier applies two kinds ofDFT-specific improve-
ments. First, all numeric constants are made positive, possi-
bly propagating a minus sign to other nodes of the dag. This
curious transformation is effective because constants gener-
ally appear in pairsk and�k in a DFT dag. To my knowl-
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b3yx 245 a b3yx 245 a
Figure 6 : Illustration of “network” transposition. Each graph de-
fines an algorithm for computing a linear function. These graphs
are calledlinear networks, and they can be interpreted as follows.
Data are flowing in the network, from input nodes to output nodes.
An edge multiplies data by some constant (possibly1), and each
node is understood to compute the sum of all incoming edges. In
this example, the network on the left computesa = 5x + 3y andb = 2x + 4y. The network on the right is the “transposed” form
of the first network, obtained by reversing all edges. The newnet-
work computes the linear functionx = 5a + 2b andy = 3a+ 4b.
In general, if a network computesx = My for some matrixM ,
the transposed network computesy = MTx. (See [CO75] for a
proof.) These linear networks are similar to but not the sameas ex-
pression dags normally used in compilers and ingenfft, because
in the latter case the nodes and not the edges perform computation.
A network can be easily transformed into an expression dag, how-
ever. The converse is not true in general, but it is true for DFT dags
where all multiplications are by constants.

edge, every C compiler would store bothk and�k in the
program text, and it would load both constants into a register
at runtime. Making all constants positive reduces the number
of loads of constants by a factor of two, and this transforma-
tion alone speeds up the generated codelets by 10-15% on
most machines. This transformation has the additional effect
of converting subexpressions into a canonical form, which
helps common-subexpression elimination.

The second DFT-specific improvement is not local to
nodes, and is instead applied to the whole dag. The trans-
formation is based on the fact that a dag computing a lin-
ear function can be “reversed” yielding atransposeddag
[CO75]. This transposition process is well-known in the Sig-
nal Processing literature [OS89, page 309], and it operates a
shown in Figure 6. It turns out that in certain cases the trans-
posed dag exposes some simplifications that are not present
in the original dag. (An example will be shown later.) Ac-
cordingly, the simplifier performs three passes over the dag.
It first simplifies the original dagD yielding a dagE. Then,
it simplifies the transposed dagET yielding a dagF T . Fi-
nally, it simplifiesF (the transposed dag ofF T ) yielding a
dagG.8 Figure 7 shows the savings in arithmetic complex-
ity that derive from dag transposition for codelets of various
sizes. As it can be seen in the figure, transposition can re-
duce the number of multiplications, but it does not reduce
the number of additions.

Figure 8 shows a simple case where transposition is bene-

8Although one might imagine iterating this process, three passes seem
to be sufficient in all cases.

adds muls adds muls
size (not transposed) (transposed)
complex to complex
5 32 16 32 12
10 84 32 84 24
13 176 88 176 68
15 156 68 156 56
real to complex
5 12 8 12 6
10 34 16 34 12
13 76 44 76 34
15 64 31 64 25
complex to real
5 12 9 12 7
9 32 20 32 18
10 34 18 34 14
12 38 14 38 10
13 76 43 76 35
15 64 37 64 31
16 58 22 58 18
32 156 62 156 54
64 394 166 394 146
128 956 414 956 374

Figure 7 : Summary of the benefits of dag transposition. The table
shows the number of additions and multiplications for codelets of
various size, with and without dag transposition. Sizes forwhich
the transposition has no effect are not reported in this table.

ficial. The network in the figure computesc = 4 � (2a+3b).
It is not safe to simplify this expression toc = 8a + 12b,
since this transformation destroys the common subexpres-
sions2a and3b. (The transformation destroys one operation
and two common subexpressions, which might increase the
operation count by one.) Indeed, the whole point of most
FFT algorithms is to create common subexpressions. When
the network is transposed, however, it computesa = 2 � 4c
andb = 3 � 4c. These transposed expressionscanbe safely
transformed intoa = 8c andb = 12c because each transfor-
mation saves one operation and destroys one common subex-
pression. Consequently, the operation count cannot increase.
In a sense, transposition provides a simple and elegant way
to detect which dag nodes have more than one parent, which
would be difficult to detect when the dag is being traversed.

5.2 Implementation of the simplifier

The simplifier is written in monadic style [Wad97]. The
monad performs two important functions. First, it allows
the simplifier to treat the expression dag as if it were a tree,
which makes the implementation considerably easier. Sec-
ond, the monad performs common-subexpression elimina-
tion. We now discuss these two topics.

Treating dags as trees. Recall that the goal of the sim-
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ab c423
Figure 8 : A linear network where which dag transposition exposes
some optimization possibilities. See the text for an explanation.

plifier is to simplify an expression dag. The simplifier, how-
ever, is written as if it were simplifying an expressiontree.
The map from trees to dags is accomplished by memoization,
which is performed implicitly by a monad. The monad main-
tains a table of all previously simplified dag nodes, along
with their simplified versions. Whenever a node is visited
for the second time, the monad returns the value in the table.

In order to continue reading this section, you really should
be familiar with monads [Wad97]. In any case, here is a
very brief summary on monads. The idea of a monadic-style
program is to convert all expressions of the formlet x = a in (b x)
into something that looks likea >>= fun x -> returnM (b x)
The code should be read “callf, and then name the resultx and return(b x).” The advantage of this transformation
is that the meanings of “then” (the infix operator>>=) and
“return” (the functionreturnM) can be defined so that they
perform all sorts of interesting activities, such as carrying
state around, perform I/O, act nondeterministically, etc. In
the specific case of the FFTW simplifier,>>= is defined so
as to keep track of a few tables used for memoization, andreturnM performs common-subexpression elimination.

The core of the simplifier is the functionalgsimpM, as
shown in Figure 9.algsimpM dispatches on the argumentx (of type node), and it calls a simplifier function for the
appropriate case. If the node has subnodes, the subnodes are
simplified first. For example, supposex is a Times node.
Since aTimes node has two subnodesa andb, the functionalgsimpM first calls itself recursively ona, yieldinga', and
then onb, yieldingb'. Then,algsimpMpasses control to the
functionstimesM. If botha' andb' are constants,stimesM
computes the product directly. In the same way,stimesM
takes care of the case where eithera' or b' is 0 or 1, and so
on. The code forstimesM is shown in Figure 10.

The neat trick of using memoization for graph traversal
was invented by Joanna Kulik in her master’s thesis [Kul95],
as far as I can tell.

Common-subexpression elimination (CSE) is per-
formed behind the scenes by the monadic operatorreturnM.
The CSE algorithm is essentially the classical bottom-up

let rec algsimpM x =memoizing(functionNum a -> snumM a| Plus a ->mapM algsimpM a >>= splusM| Times (a, b) ->algsimpM a >>= fun a' ->algsimpM b >>= fun b' ->stimesM (a', b')| Uminus a ->algsimpM a >>= suminusM| Store (v, a) ->algsimpM a >>= fun a' ->returnM (Store (v, a'))| x -> returnM x)x
Figure 9 : The top-level simplifier functionalgsimpM, written in
monadic style. See the text for an explanation.

construction from [ASU86, page 592]. The monad main-
tains a table of all nodes produced during the traversal of
the dag. Each time a new node is constructed and returned,returnM checks whether the node appears elsewhere in the
dag. If so, the new node is discarded andreturnM returns
the old node. (Two nodes are considered the same if they
compute equivalent expressions. For example,a + b is the
same asb+ a.)

It is worth remarking that the simplifierinterleaves
common-subexpression elimination with algebraic transfor-
mations. To see why interleaving is important, consider for
example the expressiona � a0, wherea anda0 are distinct
nodes of the dag that compute the same subexpression. CSE
rewrites the expression toa�a, which is then simplified to0.
This pattern occurs frequently in DFT dags.

6 The scheduler

In this section we discuss thegenfft scheduler, which pro-
duces a topological sort of the dag in an attempt to maximize
register usage. For transforms whose size is a power of2, we
prove that a schedule exists that is asymptotically optimal in
this respect, even though the schedule is independent of the
number of registers. This fact is derived from the red-blue
pebbling game of Hong and Kung [HK81].

Even after simplification, a codelet dag of a large trans-
form still contains hundreds or even thousands of nodes, and
there is no way to execute it fully within the register set of
any existing processor. The scheduler attempts to reorder the
dag in such a way that register allocators commonly used in
compilers [Muc97, Section 16] can minimize the number of
register spills. Note that the FFTW codelet generator does
not address theinstruction schedulingproblem; that is, the
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let rec stimesM = function| (Uminus a, b) -> (* -a * b ==> -(a * b) *)stimesM (a, b) >>= suminusM| (a, Uminus b) -> (* a * -b ==> -(a * b) *)stimesM (a, b) >>= suminusM| (Num a, Num b) -> (* multiply two numbers *)snumM (Number.mul a b)| (Num a, Times (Num b, c)) ->snumM (Number.mul a b) >>= fun x ->stimesM (x, c)| (Num a, b) when Number.is_zero a ->snumM Number.zero (* 0 * b ==> 0 *)| (Num a, b) when Number.is_one a ->returnM b (* 1 * b ==> b *)| (Num a, b) when Number.is_mone a ->suminusM b (* -1 * b ==> -b *)| (a, (Num _ as b')) -> stimesM (b', a)| (a, b) -> returnM (Times (a, b))
Figure 10 : Code for the functionstimesM, which simplifies the
product of two expressions. The comments (delimited with(* *))
briefly discuss the various simplifications. Even if it operates on a
dag, this is exactly the code one would write to simplify a tree.

maximization of pipeline usage is left to the C compiler.
Figure 11 illustrates the scheduling problem. Suppose a

processor has 4 registers, and consider a “column major” ex-
ecution order that first executes all nodes in the diagonally-
striped box (say, top-down), and then proceeds to the next
column of nodes. Since there are 8 values to propagate from
column to column, and the machine has 4 registers, at least
four registers must be spilled if this strategy is adopted. A
different strategy would be to execute all operations in the
gray box before executing any other node. These operations
can be performed fully within registers once the input nodes
have been loaded. It is clear that different schedules lead to
different behaviors with respect to register spills.

A lower bound on the number of register spills incurred by
any execution of the FFT graph was first proved by Hong and
Kung [HK81] in the context of the so-called “red-blue peb-
bling game”. Paraphrased in compiler terminology, Theorem
2.1 from [HK81] states that the execution of the FFT graph
of sizen = 2k on a machine withC registers (whereC � n)
requires at least
(n logn= logC) register spills.9 Aggarwal
and Vitter [AV88] generalize this result to disk I/O, where a
single I/O operation can transfer a block of elements. In ad-
dition, Aggarwal and Vitter give a schedule that matches the
lower bound. Their schedule is constructed as in the example
that follows. With reference to Figure 11, assume again that
the machine hasC = 4 registers. The schedule loads the
four topmost input nodes of the dag, and then executes all
nodes in the gray box, which can be done completely using
the 4 registers. Then, the four outputs of the gray box are

9The same result holds for any two-level memory, such as L1 cache vs.
L2, or physical memory vs. disk.
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Figure 11 : Illustration of the scheduling problem. The butterfly
graph (in black) represents an abstraction of the data flow ofthe
fast Fourier transform algorithm on 8 inputs. (In practice,the graph
is more complicated because data are complex, and the real and
imaginary part interact in nontrivial ways.) The boxes denote two
different execution orders that are explained in the text.

written to some temporary memory location, and the same
process is repeated for the four inputs in the bottom part of
the dag. Finally, the schedule executes the rightmost column
of the dag. In general, the algorithm proceeds by partitioning
the dag into blocks that haveC input nodes and�(logC)
depth. Consequently, there are�(n logn=(C logC)) such
blocks, and each block can be executed withO(C) transfers
between registers and memory. The total number of transfers
is thus at mostO(n logn= logC), and the algorithm matches
the lower bound.

Unfortunately, Aggarwal and Vitter’s algorithm depends
onC, and a schedule for a given value ofC does not work
well for other values. The aim of the FFTW generator is
to produce portable code, however, and the generator cannot
make any assumption aboutC. It is perhaps surprising that
a schedule exists that matches the asymptotic lower bound
for all values ofC. In other words, a single sequential order
of execution of an FFT dag exists that, for allC, requiresO(n logn= logC) register spills on a machine withC regis-
ters. We say that such a schedule iscache-oblivious.10

We now show that the Cooley-Tukey FFT becomes cache-
oblivious when the factors ofn are chosen appropriately (as
in [VS94a, VS94b]). We first formulate a recursive algo-
rithm, which is easier to understand and analyze than a dag.
Then, we examine how the computation dag of the algorithm
should be scheduled in order to mimic the register/cache be-
havior of the cache-oblivious algorithm.

Consider the Cooley-Tukey algorithm applied to a trans-

10We say “cache-” and not “register-oblivious” since this notion first
arose from the analysis of the caching behavior of Cilk [FLR98] programs
using shared memory. Work is still in progress to understandand define
cache-obliviousness formally, and this concept does not yet appear in the
literature. Simple divide-and-conquer cache-oblivious algorithms for ma-
trix multiplication and LU decomposition are described in [BFJ+96].
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form of sizen = 2k. Assume for simplicity thatk is itself a
power of two, although the result holds for any positive inte-
gerk. At every stage of the recursion, we have a choice of
the factorsn1 andn2 of n. Choosen1 = n2 = pn. The
algorithm computes

pn transforms of size
pn, followed byO(n) multiplications by the twiddle factors, followed by

pn
more transforms of size

pn. Whenn < �(C), the trans-
form can be computed fully within registers. Thus, the num-
berM(n) of transfers between memory and registers when
computing a transform of sizen satisfies this recurrence.M(n) = � 2pnM(pn) +O(n) whenn > �(C) ;�(C) otherwise:
The recurrence has solutionM(n) = O(n logn= logC),
which matches the lower bound.

We now reexamine the operation of the cache-oblivious
FFT algorithm in terms of the FFT dag as the one in Fig-
ure 11. Partitioning a problem of sizen into

pn problems of
size

pn is equivalent to cutting the dag with a vertical line
that partitions the dag into two halves of (roughly) equal size.
Every node in the first half is executed before any node in the
second half. Each half consists of�(pn) connected compo-
nents, which are scheduled recursively in the same way.

The genfft scheduler uses this recursive partitioning
technique for transforms of all sizes (not just powers of 2).
The scheduler cuts the dag roughly into two halves. “Half
a dag” is not well defined, however, except for the power
of 2 case, and therefore thegenfft scheduler uses a simple
heuristic (described below) to compute the two halves for the
general case. The cut induces a set of connected components
that are scheduled recursively. The scheduler guarantees that
all components in the first half of the dag (the one containing
the inputs) are executed before the second half is scheduled.
For the special casen = 2k, because of the previous analy-
sis, we know that this schedule of the dag allows the register
allocator of the C compiler to minimize the number of regis-
ter spills (up to some constant factor). Little is known about
the optimality of this scheduling strategy for generaln, for
which neither the lower-bound nor the upper-bound analy-
ses hold.

Finally, we discuss the heuristic used to cut the dag into
two halves. The heuristic consists of “burning the candle at
both ends”. Initially, the scheduler colors the input nodes
red, the output nodes blue, and all other nodes black. After
this initial step, the scheduler alternates between a red and a
blue coloring phase. In a red phase, any node whose prede-
cessors are all red becomes red. In a blue phase, all nodes
whose successors are blue are colored blue. This alternation
continues while black nodes exist. When coloring is done,
red nodes form the first “half” of the dag, and blue nodes
the second. Whenn is a power of two, the FFT dag has a
regular structure like the one shown in Figure 11, and this
process has the effect of cutting the dag in the middle with a
vertical line, yielding the desired optimal behavior.

7 Pragmatic aspects of genfft
This section discusses briefly the running time and the mem-
ory requirements ofgenfft, and also some problems that
arise in the interaction of thegenfft scheduler with C com-
pilers.

The FFTW codelet generator is not optimized for speed,
since it is intended to be run only once. Indeed, users of
FFTW can download a distribution of generated C code and
never rungenfft at all. Nevertheless, the resources needed
by genfft are quite modest. Generation of C code for a
transform of size 64 (the biggest used in FFTW) takes about
75 seconds on a 200MHz Pentium Pro running Linux 2.2 and
the native-code compiler of Objective Caml 2.01.genfft
needs less than 3 MB of memory to complete the generation.
The resulting codelet contains 912 additions, 248 multiplica-
tions. On the same machine, the whole FFTW system can be
regenerated in about 15 minutes. The system contains about
55,000 lines of code in 120 files, consisting of various kinds
of codelets for forward, backward, real to complex, and com-
plex to real transforms. The sizes of these transforms in the
standard FFTW distribution include all integers up to 16 and
all powers of two up to 64.

A few FFTW users needed fast hard-coded transforms of
uncommon sizes (such as 19 and 23), and they were able
to run the generator to produce a system tailored to their
needs. The biggest program generated so far was for a com-
plex transform of size 101, which required slightly less than
two hours of CPU time on the Pentium Pro machine, and
about 10 MB of memory. Again, a user had a special need
for such a transform, which would be formidable to code by
hand. In order to achieve this running time, I was forced to
replace a linked-list implementation of associative tables by
hashing, and to avoid generating “obvious” common subex-
pressions more than once when the dag is created. The naive
generator was somewhat more elegant, but had not produced
an answer after three days.

The long sequences of straight-line code produced bygenfft can push C compilers (in particular, register alloca-
tors) to their limits. The combined effect ofgenfft and of
the C compiler can lead to performance problems. The fol-
lowing discussion presents two particular cases that I found
particularly surprising, and is not intended to blame any par-
ticular compiler or vendor.

The optimizer of theegcs-1.1.1 compiler performs an
instruction scheduling pass, followed by register allocation,
followed by another instruction scheduling pass. On some
architectures, including the SPARC and PowerPC proces-
sors,egcs employs the so-called “Haifa scheduler”, which
usually produces better code than the normalegcs/gcc
scheduler. The first pass of the Haifa scheduler, however,
has the unfortunate effect of destroyinggenfft’s schedule
(computed as explained in Section 6). Inegcs, the first
instruction scheduling pass can be disabled with the option
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void foo(void)void foo(void) {{ {double a; double a;double b; .. lifetime of a ..}.. lifetime of a .. {.. lifetime of b .. double b;} .. lifetime of b ..}}
Figure 12 : Two possible declarations of local variables in C. On
the left side, variables are declared in the topmost lexicalscope. On
the right side, variables are declared in a private lexical scope that
encompasses the lifetime of the variable.-fno-schedule-insns, and on a 167 MHz UltraSPARC I,
the compiled code is between 50% and 100% faster and
about half the size when this option is used. Inspection of
the assembly code produced byegcs reveals that the differ-
ence consists entirely of register spills and reloads.

Digital’s C compiler for Alpha (DEC C V5.6-071 on Dig-
ital UNIX V4.0 (Rev. 878)) seems to be particularly sen-
sitive to the way local variables are declared. For exam-
ple, Figure 12 illustrates two ways to declare temporary
variables in a C program. Let’s call them the “left” and
the “right” style. genfft can be programmed to produce
code in either way, and for most compilers I have tried
there is no appreciable performance difference between the
two styles. Digital’s C compiler, however, appears to pro-
duce better code with the right style (the right side of Fig-
ure 12). For a transform of size 64, for example, and com-
piler flags -newc -w0 -O5 -ansi alias -ansi args-fp reorder -tune host -std1, a 467MHz Alpha
achieves about 450 MFLOPS with the left style, and 600
MFLOPS with the right style. (Different sizes lead to sim-
ilar results.) I could not determine the exact source of this
difference.

8 Conclusion

In my opinion, the main contribution of this paper is to
present a real-world application of domain-specific compil-
ers and of advanced programming techniques, such as mon-
ads. In this respect, the FFTW experience has been very
successful: the current release FFTW-2.0.1 is being down-
loaded by more than 100 people every week, and a few users
have been motivated to learn ML after their experience with
FFTW. In the rest of this concluding section, I offer some
ideas about future work and possible developments of the
FFTW system.

The currentgenfft program is somewhat specialized to
computing linear functions, using algorithms whose control

structure is independent of the input. Even with this restric-
tion, the field of applicability ofgenfft is potentially huge.
For example, signal processing FIR and IIR filters fall into
this category, as well as other kinds of transforms used in
image processing (for example, the discrete cosine transform
used in JPEG). I am confident that the techniques described
in this paper will prove valuable in this sort of application.

Recently, I modifiedgenfft to generate crystallographic
Fourier transforms [ACT90]. In this particular application,
the input consists of 2D or 3D data with certain symmetries.
For example, the input data set might be invariant with re-
spect to rotations of 60 degrees, and it is desirable to have
a special-purpose FFT algorithm that does not execute re-
dundant computations. Preliminary investigation shows thatgenfft is able to exploit most symmetries. I am currently
working on this problem.

In its present form,genfft is somewhat unsatisfactory
because it intermixes programming and metaprogramming.
At the programming level, one specifies a DFT algorithm,
as in Figure 4. At the metaprogramming level, one specifies
how the program should be simplified and scheduled. In the
current implementation, the two levels are confused together
in a single binary program. It would be nice to have a clean
separation of these two levels, but I currently do not know
how to do it.
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