
PERFORMANCE ENGINEERING OF MULTICORE
SOFTWARE:

DEVELOPING A SCIENCE OF FAST CODE FOR THE
POST-MOORE ERA

by

TAO BENJAMIN SCHARDL

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE AND ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2016

© Tao Benjamin Schardl, MMXVI. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole or in part in any

medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

August 31, 2016

Certified by. .
Charles E. Leiserson

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Chair, Department Committee on Graduate Theses

2

Performance Engineering of Multicore Software:

Developing a Science of Fast Code for the Post-Moore Era

by
Tao Benjamin Schardl

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science and Engineering

Abstract

The end of Moore’s Law, which experts predict to occur in as few as 5 years, means that
even average programmers will need to be able to write fast code. Software performance
engineering offers great promise to provide computer performance gains in the post-Moore
era, but developing efficient software today requires substantial expertise and arcane knowl-
edge of hardware and software systems. Multicore processors are particularly challenging
to use efficiently, because doing so requires programmers to engage in parallel programming
and to deal with nondeterministic program behavior and parallel scalability concerns.

I contend that we can remedy the ad hoc and unprincipled nature of software performance
engineering by creating simple and integrated programming technologies for writing fast
code. This thesis studies how such technologies can be built by examining nine artifacts that
enable principled approaches to tackling nondeterminism and scalability concerns in writing
efficient multicore software. Five artifacts develop programming models and theories of
performance for writing multicore programs that are efficient both in theory and in practice:

• PBFS, a work-efficient parallel breadth-first search algorithm.
• The Prism chromatic-scheduling algorithm, which executes dynamic data-graph com-

putations deterministically in parallel.
• Ordering heuristics for parallel greedy graph coloring algorithms.
• The pedigree mechanism and DotMix algorithm for generating pseudorandom num-

bers deterministically in parallel in dynamic multithreaded programs.
• The Cilk-P concurrency platform, which provides linguistic and runtime support for

deterministic on-the-fly pipeline parallelism.
Three artifacts strive to embed abstract programming and performance models into tools
and compilers:

• Cilkprof, a profiler that efficiently measures how each call site in a Cilk program
contributes to the program’s scalability.

• Rader, a provably good race detector for Cilk programs that use reducer hyperobjects.
• The Tapir compiler intermediate representation, which enables existing compiler opti-

mizations for serial code to optimize across parallel control flow with minimal changes.
The final artifact tackles the complexity of creating efficient diagnostic tools:

• CSI, a framework that provides comprehensive static instrumentation for efficient
dynamic-analysis tools.

Together, these artifacts contribute to developing a more coherent science of fast code for
multicores than exists today.

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering

3

4

Acknowledgments

There are numerous people who deserve tremendous thanks for shaping my development as
a researcher and as a person, without whom this thesis would not have been possible. I will
do my best to thank as many as of them here as I can.

First and foremost, thanks to my advisor, Charles E. Leiserson, for being a phenomenal
mentor, teacher, and collaborator. Although I had had some experience doing research
before I met Charles, I never knew just how invigorating and fun research can really be
until we started working together. His shining example inspires me each day to tackle every
problem head-on, to follow every line of inquiry as far as I can, and to strive to be a better
writer and teacher.

I would like to thank Saman Amarasinghe and Guy E. Blelloch, for their invaluable
feedback and support over the years, as well as their service on my thesis committee. Saman
and I have talked many times about the practical side of software performance engineering,
including the variety of strange performance anomalies that arise when writing fast code
and strategies and techniques for teaching students how to write efficient software. Guy and
I have had many discussions on the theoretical side of software performance engineering,
and thanks to Guy and his research group, I have had the pleasure of seeing many beautiful
parallel algorithms and analysis techniques.

Erik D. Demaine deserves thanks for his advice during my undergraduate career at MIT
and for entertaining many research discussions in programming languages, computational
geometry, and data structures during my undergraduate career and my early graduate career.
Charles, Saman, Guy, and Erik also all deserve many thanks for the indispensable career
advice they given me.

Thanks to all of my coauthors who helped me produce the work presented in this thesis.
• Jim Sukha coauthored the DPRNG and Cilk-P papers. I also thank Jim for the many

research discussions we have had on pedigrees, random number generators, reducers,
pipelining, and Cilk technology.

• I-Ting Angelina Lee coauthored the Cilk-P, Cilkprof, Rader, and CSI papers. Angelina
also deserves many thanks for showing me the internals of the Cilk runtime and for
research discussions on many topics, including pipelining, reducers, race detection,
runtime systems, and compiler instrumentation.

• Zhunping (Justin) Zhang coauthored the Cilk-P paper. I also thank Justin for great
discussions on performance-engineering the PARSEC benchmarks using Cilk technol-
ogy.

• William Hasenplaugh coauthored the Prism and graph-coloring papers. Over my grad-
uate career, Will and I have had many conversations on provably efficient algorithms
and proof techniques I had not seen before, for which I am thankful.

• Tim Kaler coauthored the Prism and graph-coloring papers as well. Tim also deserves
many thanks for several great conversations on various topics, including efficient data
structures, reducers, pedigrees, performance analysis, how to teach software perfor-
mance engineering, and how to write fast code in the cloud.

• Bradley C. Kuszmaul coauthored the Cilkprof paper and the Life after Moore’s Law
article. In addition, many thanks to Bradley for collaborating on the textbook and the
matrix-multiplication case study, as well as for showing me many esoteric features of
programming languages and many brilliant software-performance-engineering tricks.

• William M. Leiserson coauthored the Cilkprof paper. I also thank Will for teaching
me about Cilk technology early in my graduate career, for his work in developing the

5

prototype Cilkprof Pin tool, and for ongoing conversations about parallel programming
and programming languages.

• William (Billy) Moses coauthored the Tapir paper, and I commend Billy for his phe-
nomenal efforts in developing the prototype implementation of Tapir in LLVM. Billy
also deserves thanks for many discussions on reducers and programming languages.

• Tyler Denniston and Damon Doucet coauthored the CSI paper. I thank both Tyler
and Damon for their insights on the design and implementation of CSI. Tyler also
deserves thanks for his ongoing efforts in upstreaming CSI into mainstream LLVM.

• Joel S. Emer, Butler W. Lampson, Daniel Sanchez, and Neil C. Thompson all coau-
thored the Life after Moore’s Law article. Thanks to Joel and Daniel for teaching me
about modern computer architecture and the impact of Moore’s Law. Butler deserves
thanks for teaching me about large components and the development of large systems.
Many thanks to Neil for teaching me about the economics related to Moore’s Law.

In addition to the coauthors and collaborators mentioned so far, I also thank everyone I
have collaborated with on different projects and research meetings over the years. Thanks
to all of the past and present members of the Supertech research group, especially Kunal
Agrawal, Aydın Buluç, Maryam Mehri Dehnavi, Jeremy T. Fineman, Matteo Frigo, Miriam
Gershenson, Predrag Gruevski, Shahin Kamali, Matthew Kilgore, Edya Ladan-Moses, Nasro
Min-Allah, Eka Palamadai Natarajan, Warut Suksompong, Yuan Tang, James J. Thomas,
and Kerry Xing. Thanks to Intel, especially Pablo Halpern, Barry Tannenbaum, and other
members of the Cilk team, for discussions on Cilk technology and for incorporating some
of our ideas into Intel Cilk Plus. Many thanks to Ronald L. Rivest for his service on
my RQE committee and his feedback on the DPRNG paper. Thanks to the participants of
various open problem sessions I have attended, especially Zachary Abel, Martin L. Demaine,
Sarah Eisenstat, Jayson Lynch, and Isaac Shapiro-Ellowitz. I thank Guy L. Steele Jr. for
interesting discussions on fast parallel random-number generation. I thank my collaborators
at CMU, including Phillip B. Gibbons, Julian Shun, Harsha Vardhan Simhadri, Kanat
Tangwongsan, and the participants of the Parlay research meetings, for showing me many
beautiful algorithms. I thank the participants of the parallel video-coding project, especially
Daewook Kim, Vivienne Sze, and various visitors from Foxconn. Thanks to Robert C. Miller
and Genghis Chau for discussions on visualizing the output of different Cilk tools. I thank
our Google sponsors, especially Kostya Serebryany, for their feedback and guidance on the
CSI project. Arvind, Christian J. Bell, Adam Chlipala, and Mohsen Lesani deserve thanks
for their feedback on Tapir and formal semantics. Thanks to everyone who contributed to
discussions on Life after Moore’s Law, especially Arvind, Jack Dennis, and Srini Devadas.

Finally, I thank all of my friends and family, especially my sister, Anisa, my brother-in-
law, Matt,1 and my parents, Chris and Kuey-Chu. Without their inexorable love, support,
and encouragement, I never would have made it through my undergraduate and graduate
student careers at MIT.

1Perhaps more commonly known as “Snowflake.”

6

Contents

1 Introduction 11
1.1 Shared-memory-multicore programming . 17
1.2 Developing simple programming models and theories of performance 21
1.3 Enhancing the software-development environment 25
1.4 Thesis statement . 29
1.5 Outline . 29

2 Dynamic Multithreading 31
2.1 Linguistic extensions for fork-join parallelism 31
2.2 The dag model . 32
2.3 Determinacy and races . 33
2.4 Work-span analysis . 34
2.5 Scheduling . 35
2.6 Parallel reduction mechanisms . 35
2.7 Worker-local storage . 37

3 A Work-Efficient Parallel Breadth-First Search Algorithm 39
3.1 Introduction . 39
3.2 The PBFS algorithm . 42
3.3 The bag data structure . 44
3.4 Experimental results . 47
3.5 Modeling reducers . 49
3.6 Analysis of programs with nonconstant-time reducers 52
3.7 Analyzing PBFS . 60
3.8 Conclusion . 62

4 Executing Dynamic Data-Graph Computations Deterministically Using
Chromatic Scheduling 63
4.1 Introduction . 63
4.2 The Prism algorithm . 68
4.3 The multibag data structure . 70
4.4 Analysis of Prism . 74
4.5 Empirical evaluation . 75
4.6 The Prism-R algorithm . 80
4.7 The multivector data structure . 82
4.8 Analysis and evaluation of Prism-R . 86
4.9 Conclusion . 87

7

5 Ordering Heuristics for Parallel Graph Coloring 89
5.1 Introduction . 89
5.2 The Jones-Plassmann algorithm . 94
5.3 JP with random ordering . 95
5.4 The LF and SL heuristics . 97
5.5 Log ordering heuristics . 99
5.6 Empirical evaluation . 102
5.7 Implementation techniques . 108
5.8 Evaluation of serial ordering heuristics . 109
5.9 Related work . 111
5.10 Conclusion . 112
5.11 Recent developments . 113

6 Deterministic Parallel Random-Number Generation 115
6.1 Introduction . 115
6.2 Pedigrees . 117
6.3 DotMix: A pedigree-based DPRNG . 121
6.4 Other pedigree-based DPRNG’s . 125
6.5 A scoped DPRNG library interface . 128
6.6 Performance results . 130
6.7 Related work . 135
6.8 Concluding remarks . 135
6.9 Recent developments . 137

7 On-the-Fly Pipeline Parallelism 139
7.1 Introduction . 139
7.2 On-the-fly pipeline programs . 143
7.3 On-the-fly pipelining of x264 . 144
7.4 Computation-dag model . 145
7.5 The Piper scheduler . 152
7.6 Structural invariants . 154
7.7 Time analysis of Piper . 160
7.8 Space analysis of Piper . 165
7.9 Cilk-P runtime design . 166
7.10 Evaluation . 168
7.11 Pipeline throttling . 176
7.12 Conclusion . 179
7.13 Recent developments . 180

8 The Cilkprof Scalability Profiler 181
8.1 Introduction . 181
8.2 Parallel quicksort . 183
8.3 Computing work and span . 186
8.4 The basic profile algorithm . 188
8.5 The prof data structure . 191
8.6 The profile . 194
8.7 Empirical evaluation . 199
8.8 Case study: PBFS . 201

8

8.9 Related work . 202
8.10 Conclusion . 203

9 Race Detection for Cilk Programs That Use Reducer Hyperobjects 205
9.1 Introduction . 205
9.2 Examples of races that involve a reducer . 208
9.3 The Peer-Set algorithm . 210
9.4 Correctness of the Peer-Set algorithm . 213
9.5 The SP+ algorithm . 217
9.6 The spawn parse tree and the view parse tree 223
9.7 Correctness of the SP+ algorithm . 230
9.8 Analysis of the SP+ algorithm . 233
9.9 Rader . 235
9.10 Related work . 239
9.11 Conclusion . 240
9.12 Recent developments . 241

10 Tapir: Embedding Fork-Join Parallelism into LLVM’s Intermediate Rep-
resentation 243
10.1 Introduction . 243
10.2 Tapir . 249
10.3 Analysis passes . 253
10.4 Denotational semantics for Tapir . 255
10.5 Optimization passes . 263
10.6 Auxiliary software . 266
10.7 Evaluation . 266
10.8 Related work . 270
10.9 Conclusion . 272

11 Comprehensive Static Instrumentation for Dynamic-Analysis Tools 273
11.1 Introduction . 273
11.2 The CSI instrumentation API . 277
11.3 An example CSI-tool . 284
11.4 Implementation . 286
11.5 Demonstration CSI-tools . 290
11.6 Related work . 297
11.7 Conclusion . 297

12 Life after Moore’s Law 299

9

10

Chapter 1

Introduction

With a growing number of indications that the end of Moore’s Law is imminent — meaning
that advances in silicon fabrication technology can no longer sustain the historical expo-
nential growth of computer performance — even average programmers will soon need to be
able to write efficient software. Although programmers can find considerable gains in com-
puter performance through “software performance engineering,” writing efficient software
today requires substantial expertise and arcane knowledge. I contend that the process of
writing efficient software can be made accessible to average programmers by building sim-
ple and integrated software-performance-engineering technologies. In particular, building
these technologies serves to develop a more coherent science of fast code than exists today.
This thesis examines the development of such technologies by examining nine artifacts that
support principled approaches to tackling complex issues in writing fast multicore programs.

Software performance — how quickly code runs and how efficiently it uses computing
resources, such as memory, energy, network bandwidth, secondary storage, etc. — dictates
the cost of running an application on a computing device. Every software application requires
some time and computing resources in order to run, and new software functionality requires
additional computing resources to run alongside existing applications. Optimizing a program
for performance ensures that computing devices can meet the resource requirements of that
program. Recently, cloud computing [14,15,23,138,166] has generated monetary incentives
for optimizing software performance. The monetary cost of running an application in the
cloud scales with its running time [16]. Minimizing the running time of the application
therefore minimizes the cost of running that application in the cloud.

Despite the monetary and human costs of slow code, software performance engi-
neering — the rewriting code to run faster and use computing resources more efficiently —
is a notoriously difficult task [221]. Attempting to improve a program’s performance tends
to complicate its codebase, making the code difficult to understand, maintain, and debug.
Furthermore, programmers often demonstrate a poor intuitive understanding of where pro-
grams spend their execution time. As a result, programmers can waste significant time and
energy making code more complicated without actually improving its performance. These
issues with software performance engineering have been known since the 1970’s and 1980’s,
when several famous criticisms were made of programmers attempting to improve software
performance:

Premature optimization is the root of all evil.
—Donald Knuth, 1979 [221]

11

Running Absolute Relative Fraction
Version Implementation time (s) GFLOPS speedup speedup of peak

1 Python 25,552.48 0.005 1 — 0.00%
2 Java 2,372.68 0.058 11 10.8 0.01%
3 C 542.67 0.253 47 4.4 0.03%
4 Parallel loops 69.80 1.969 366 7.8 0.24%
5 Parallel divide-and-conquer 3.80 36.180 6,727 18.4 4.33%
6 + vectorization 1.10 124.914 23,224 3.5 14.96%
7 + AVX intrinsics 0.41 337.812 62,806 2.7 40.45%
8 Strassen 0.38 361.177 67,150 1.1 43.24%

Figure 1-1: Performance gains from iteratively performance-engineering a program on a modern
multicore machine to multiply two 4096⇥ 4096 matrices of double-precision floating-point numbers.
“Time” is the running time in seconds of the particular code. “GFLOPS ” is the giga-FLOPS —
billions of floating-point operations per second — that the code achieved. “Absolute speedup” is the
ratio of the running time of the code to that of the Python code in Version 1 of the table. “Relative
speedup” is the ratio of the running time of the code to the running time of the code on the preceding
line of the table. “Fraction of peak ” is the percentage of the computer’s maximum double-precision
floating-point capability, which is 835GFLOPS. The “GFLOPS ” and “Percent of peak ” values for
Strassen are computed based on time, as if Strassen actually performed 2 · 40963 floating-point
operations in its running time. Each running time is the minimum of 5 runs on an Amazon AWS
c4.8xlarge spot instance, which is a dual-socket Intel Xeon E5-2666 v3 system with a total of 60GiB
of memory. Each Xeon is a 2.9GHz 18-core CPU with a shared 25MiB L3-cache. Each processor
core has a 32KiB private L1-data-cache and a 256KiB private L2-cache. The machine was running
Fedora 22, using version 4.0.4 of the Linux kernel. The Python version was executed using Python
2.7.9. The Java version was compiled and run using OpenJDK version 1.8.0_51. All other versions
were compiled using GCC 5.2.1 20150826.

More computing sins are committed in the name of efficiency (without neces-
sarily achieving it) than for any other single reason — including blind stupidity.

—William Wulf, 1979 [410]

The First Rule of Program Optimization: Don’t do it. The Second Rule of
Program Optimization — For experts only: Don’t do it yet.

—Michael A. Jackson (quoted by Jon Bentley, 1988 [39])

These criticism were originally uttered in response to programmers using goto statements in
complicated ways in efforts to improve software efficiency. These efforts would produce codes
that are difficult to reason about and debug. Although programmers today typically use
structured control flow, such as conditionals and loops, instead of goto statements, the act
of writing fast code still tends to produce complicated code that is difficult to understand,
maintain, and debug.

To illustrate the complexity and payoff of software performance engineering today, con-
sider a simple example: matrix multiplication. Figure 1-1 presents the results of a case
study my colleagues1 and I undertook to performance-engineer a program that multiplies
two 4096⇥4096 matrices on a shared-memory multicore machine.2 Version 1 reflects what a
programmer today might initially implement to solve the problem: multiply the two matrices
using three nested loops in Python, one of today’s most popular high-level programming lan-
guages. As the table shows, this code takes 7 hours to run and achieves less than 1/150,000
of the machine’s peak performance.

1I collaborated with Bradley C. Kuszmaul and Charles E. Leiserson on this case study.
2This case study was originally inspired by Saman Amarasinghe.

12

Starting from the Python implementation, we engineered this software for performance
using a variety of techniques. Simply choosing a more efficient programming language speeds
up this calculation dramatically. For example, coding it in Java (Version 2) produces a
speedup of 10.8⇥, and coding it in C (Version 3) produces an additional speedup of 4.4⇥,
or 47 times faster than the original Python code. “Form-fitting” the matrix code to take
advantage of the hardware makes it still faster. By parallelizing the code to run on all 16
of the processor cores (Version 4), exploiting the cache hierarchy (Version 5), vectorizing
the code (Version 6), and exploiting Intel’s special AVX chip instructions (Version 7), the
matrix-multiplication task can be solved in 0.41 seconds. By using Strassen’s celebrated
algorithm [375] for matrix multiplication, the highly optimized matrix-multiplication code
in Version 7 of Figure 1-1 can be improved about 10% to achieve a running time of 0.38
seconds, a 67,000⇥ speedup over the original Python code.

This case study also illustrates the difficulty of writing fast code. Today, there are three
general techniques to improve software efficiency, each of which complicates programming.
(1) Adopt low-level programming languages and avoid high-level programming technologies
that trade off performance for ease of programming. (2) Refactor code to exploit architec-
tural features, including parallelism, cache hierarchy, and vectorization. (3) Rewrite code
to use more efficient algorithms. When all of these techniques are applied in the case study,
the resulting efficient parallel Strassen implementation (Version 8) is over 850 lines of code,
which is 40 times the number of lines in the original Python implementation (Version 1).
It took us over 100 hours of programmer effort to produce the Strassen code, even though
we availed ourselves of the latest software-performance-engineering technology produced by
recent research. Of course, for the specific problem of matrix multiplication, one can simply
call an already optimized routine, such as DGEMM from the Intel Math Kernel Library
(MKL) [200], which is almost as fast as Version 8. For arbitrary pieces of code where such
libraries are not available, however, programmers must use these techniques themselves and
deal with the concomitant programming difficulties. As the study shows, there exists a vast
distance in both program efficiency and programming difficulty between simple code and
fast code.

Software performance engineering and Moore’s Law

Should average programmers worry about writing fast code? Programmers today often don’t
concern themselves with engineering software for performance, in part because of “Moore’s
Law.” In 1965 Intel founder Gordon Moore observed the steady trend of transistor minia-
turization [287], and in 1975 he predicted that the number of transistors per computer chip
would double every two years [288]. This trend was christened Moore’s Law by Caltech
professor Carver Mead (although the precise origins are actually a bit murky [102]) and
has held since 1975. Until about 2006, smaller transistors were also faster and more energy
efficient [109], which enhanced the speed and capacity of computers. Moore’s Law is respon-
sible for cellphones today that are more powerful than the room-sized computers from just
25 years ago, for providing nearly half the world’s people with access to all the world’s infor-
mation on the Internet [202], and for drug discoveries enabled by powerful supercomputers.
With Moore’s Law providing programmers with “free” computer performance, programmers
found little economic incentive to struggle with the complex task of writing fast code and
instead focused on minimizing the development time of their applications.

Because of both fundamental physical limits and because of the economics of chip man-
ufacturing, however, it appears that Moore’s Law will end soon. Technology leaders, such

13

as Robert Colwell [95] and the International Technology Roadmap for Semiconductors [203]
have predicted the demise of Moore’s Law to occur as early as 2020. Even Intel, the leader
in semiconductor-device technology, has acknowledged a significant attenuation in the rate
of shrinking device sizes [201, p. 14].

After the demise of Moore’s Law, programmers must find other opportunities for com-
puter performance to grow. The case study in Figure 1-1 suggests that programmers can
find substantial performance gains by performance-engineering software. For example, con-
sider a simple conception of Moore’s Law that says that computers get twice as power-
ful every two years.3 Then the speedup factor of 67,000 achieved by the Strassen imple-
mentation (Version 8) over the original Python program (Version 1) amounts to over 32
years of Moore’s Law improvements. Other promising results can be found in studies in
performance-engineering large graph-processing codes [320] and in performance-engineering
the “connectomics” pipeline for processing images of brain tissue to determine neural con-
nectivity [253, 353]. Although these problems are often thought to require large clusters of
machines to solve, these studies successfully performance-engineer these codes to run more
efficiently on single multicore machines. But performance-engineering software for today’s
machines still requires substantial expertise and arcane knowledge, as the case study in
Figure 1-1 illustrates. How can we expect average programmers to do such optimizations?

Previous research on software performance engineering

Decades of research effort have gone into mitigating the complexity of software performance
engineering. This research effort has produced an array of technologies that support princi-
pled approaches to writing and reasoning about fast code, including programming languages
and frameworks, compilers, performance analysis tools, theoretical models of performance,
provably efficient algorithms, and methodologies for developing efficient software.

Several fundamental tools and methodologies for writing efficient software find their ori-
gins in the 1970’s and 1980’s. In 1971, Knuth developed the first program profiler to
measure how frequently a program executed each of its statements [220]. Knuth and other
programmers used the resulting program profiles to identify bottlenecks in the execution
time of a program and to direct their optimization efforts towards those bottlenecks. In
1975, Wulf et al. developed one of the earliest optimizing compilers [411], which empow-
ered programmers to use higher-level programming-language constructs without sacrificing
undue performance. In 1982, Bentley authored a short treatise on software performance
engineering, entitled Writing Efficient Programs [38], which presents a set of simple rules
for programmers to apply to their source code to optimize their program’s performance.
Although some of these rules have been encoded into optimizing compilers or have grown
obsolete with advances in computer hardware, many of these rules are still applicable today.

Thanks to ongoing research and development efforts, programmers today can avail
themselves of an abundance of diagnostic tools, compilers, and programming models to
simplify the task of performance-engineering software for modern machines. A host of
dynamic-analysis tools, such as race detectors [123, 124, 134, 280, 281, 343, 351], memory
checkers [31,177,350], cache simulators [121,377,407], call-graph generators [171,205], code-
coverage analyzers [390,397], and performance profilers [171,329,401], have been built that
allow programmers to study how an executing program spends its time and computing

3In fact, computer performance has grown at slower and faster rates over time [181], but this thesis uses
this commonly accepted definition for simplicity.

14

resources. Modern multicore processors contain hardware performance counters that diag-
nostic tools can employ to gain detailed insight into how a program utilizes the hardware.
Mainstream compilers, including GCC [369], ICC [198], and LLVM [232], are all optimiz-
ing compilers that are designed to handle multiple front-end programming languages and
multiple back-end machine architectures. “Just-in-time” compilers have been created that
compile and optimize a program as it executes (see [25] for a history). These compiler tech-
nologies allow a wide variety of software to enjoy the benefits of compilation and automatic
optimization. Tools such as autotuners [18, 19, 91, 142, 322, 400, 404] and polyhedral opti-
mization frameworks [63,172] have been built to perform elaborate optimizations on specific
types of programs or program structures. Parallel building blocks [357] and “dynamic multi-
threading concurrency platforms” (described in Section 1.1) have been built that temper the
complexity parallel programming. Domain-specific languages have emerged that simplify
the task of writing efficient programs in specific problem domains. The Halide programming
language [323] aims to enable performance engineers to quickly iterate through a variety
of image-processing-pipeline implementations to zero in on the fastest one. The Julia pro-
gramming language [44] simplifies the task of writing fast programs in technical computing.
Several frameworks have been created to support efficient computations on graphs, including
GraphLab [264, 265] Pregel [269], Galois [298, 299], PowerGraph [165], Ligra [358, 361], and
GraphChi [228].

Immense research effort has also gone into creating efficient algorithms and data struc-
tures for numerous problems, as well as creating analytical techniques and performance
models for justifying an algorithm’s efficiency [9, 101, 223, 349]. Although most algorithms
and data structures are designed to optimize the serial running time of a computation, the-
oretical performance models have been developed to address particular features of modern
multicore hardware. We now have many good performance models for parallel machines,
including the parallel random-access machine (PRAM) model and its variants (see [214]
for a survey), the bulk-synchronous model [393], the work-span model [100, Ch. 27], the
logP model [105], fixed-connection networks [244, Sec. 1.1], and even Boolean circuits [396].
Meanwhile, performance models, such as external memory model and its variants [5, 145]
and the parallel external memory model [21] allow programmers to analyze performance in
terms of memory accesses, which are relatively expensive operations on modern machines.
Theoretical performance models have also emerged to account for high-latency operations
such as file I/O in parallel programs [291].

Given these numerous developments, why does software performance engineering con-
tinue to be an art that requires considerable expertise and arcane knowledge to carry out?
From my own research experience, I find that many existing performance-engineering tech-
nologies are difficult to use because they are not integrated. For example, many theoretically
efficient algorithms and data structures described in the literature have never been imple-
mented, leaving the question of whether their theoretical efficiency can be borne out in
practice unresolved. Furthermore, most algorithms are still designed to minimize only their
asymptotic serial running time, and relatively little attention is paid to “form-fitting” these
algorithms to efficiently utilize modern multicore hardware. Meanwhile, existing diagnostic
tools and compilers are often difficult to use because their behavior does not reflect the
simple programming and performance models used to write efficient software. Diagnostic
tools can produce results that defy interpretation in terms of the models, while compil-
ers can fail to perform optimizations that are simple and straightforward in light of the
programming model. Although some developments, such as the dynamic multithreading
concurrency platforms described in Section 1.1, combine sets of performance-engineering

15

Simple Theories Diagnostic
Artifact programming models of performance tools Compilers

PBFS

Prism

Color

DPRNG

Cilk-P

Cilkprof

Rader

Tapir

CSI

Figure 1-2: Illustration of the high-level software-performance-engineering technologies used or
developed by each artifact presented in this thesis. The first column lists the artifacts in this the-
sis, while the remaining columns identify high-level software-performance-engineering technologies:
column two denotes simple programming models, column three denotes theories of performance,
column four denotes diagnostic tools, and column five denotes compilers. Each row corresponds to
a thesis artifact. A circle indicates that a particular thesis artifact used or developed a particular
technology. “PBFS” identifies my work on a work-efficient parallel breadth-first search algorithm
(Chapter 3). “Prism” identifies my work on the Prism chromatic-scheduling algorithm for dynamic
data-graph computations (Chapter 4). “Color” identifies my work on ordering-heuristics for parallel
graph coloring (Chapter 5). “DPRNG” identifies my work on deterministic parallel random-number
generation (Chapter 6). “Cilk-P” identifies my work on the Cilk-P concurrency platform for on-the-
fly pipeline parallelism (Chapter 7). “Cilkprof” identifies my work on the Cilkprof scalability profiler
(Chapter 8). “Rader” identifies my work on the Rader race detector for Cilk programs that use
reducer hyperobjects (Chapter 9). “Tapir” identifies my work on the Tapir compiler intermediate
representation for dynamic multithreaded programs (Chapter 10). “CSI” identifies my work on the
CSI compiler instrumentation framework (Chapter 11).

technologies, further integration of these technologies is needed to reduce the expertise and
arcane knowledge required to write fast code.

Contributions

I contend that we can remedy the ad hoc and unprincipled nature of software performance
engineering by transforming the writing of fast code into a more coherent engineering science.
To do so, the disparate technologies that support software performance engineering must
be integrated and new technologies must be developed. Programming models, theories
of performance, compilers, and tools must all work together to reduce the complexity of
writing fast code and reasoning about its behavior and efficiency. As long as programmers
must reconcile the diverse assumptions and behaviors of different performance-engineering
technologies themselves, writing fast code will continue to be more of an art than a science.
Only by integrating the various aspects of software development can performance engineers
hope to realize the central promise of science: the ability to make testable predictions about
how things behave. Today, programmers generally must choose between writing simple
code they can understand or writing fast code. I contend that we can reduce the distance
between simple code and fast code by building integrated software-performance-engineering
technologies and developing a more coherent science of efficient software.

16

This thesis explores how simple and integrated software-performance-engineering tech-
nologies can be built by studying nine artifacts that tackle complex issues facing performance
engineers when writing efficient multicore software. Figure 1-2 illustrates the set of high-level
software-performance-engineering technologies that are used or developed by each thesis ar-
tifact. As the figure shows, the first five artifacts develop simple programming models and
theories of performance that enable principled approaches to reasoning about the behavior
and efficiency of multicore software. The remaining four artifacts focus on the diagnostic
tools and compilers in the software-development environment. Three of these artifacts work
to embed the abstract programming models and theories of performance for efficient mul-
ticore software into these diagnostic tools and compilers. This embedding strives to ensure
that the behavior of the development environment conforms to the programmer’s reason-
ing about the program’s performance and behavior. The final artifact introduces a simple
programming model for creating new efficient diagnostic tools. Together, these artifacts
examine how software-performance-engineering technologies can be built and integrated to
support principled, scientific approaches to reasoning about the behavior and performance
of fast code for multicores.

The remainder of this chapter overviews the challenges in writing fast multicore software
and how the nine artifacts presented in this thesis develop technologies to support principled,
scientific approaches to addressing these challenges. Section 1.1 describes “shared-memory
multicore machines” and the major issues of “nondeterminism” and “scalability” that com-
plicate multicore-software performance engineering. This section also describes prior work
on “dynamic multithreading” to address some of these issues. Section 1.2 describes the first
five artifacts and how they develop simple programming models that admit theories of per-
formance for writing and reasoning about efficient multicore software. Section 1.3 describes
the last four artifacts, which look to enhance the software-development environment to sup-
port principled approaches to reasoning about the behavior and performance of multicore
programs. Section 1.4 reviews the statement of this thesis, and Section 1.5 outlines the
remaining chapters of this thesis.

1.1 Shared-memory-multicore programming

Most of the artifacts presented in this thesis tackle the complexity of writing efficient software
for a shared-memory multicore machine (or simply a multicore), which is a computer
that contains multiple general-purpose processor cores that share a common main memory.
This section describes why studying shared-memory multicores will be important in the
post-Moore era. This section also describes parallel programming, one of the largest and
most difficult problems in programming multicores, and the main concerns of “nondetermin-
ism” and “scalability” that make writing fast multicore programs particularly challenging.
I briefly outline “dynamic multithreading” technology,4 which makes substantial progress
in addressing nondeterminism and scalability issues in multicore programming. Chapter 2
describes dynamic multithreading in greater detail.

One reason for why multicore programming will be important in the post-Moore era
comes from their ubiquity in the computing environment. Multicores entered the market-
place around the mid-2000’s, when processor manufacturers could no longer run transistors
at higher frequencies due to physical limitations on processor hardware, specifically, on the
power density of silicon technology. Since then, multicore processors have proliferated to

4Also called task parallelism .

17

become the “bargain” processor component that is widely employed in building a variety of
computing devices, large and small. Mobile computing systems such as tablets and smart-
phones are typically built using a multicore processor chip. Large, complex systems, mean-
while, such as datacenters for cloud computing, grid computers, high-performance clusters,
and supercomputers, are often built from collections of shared-memory multicore machines.

Shared-memory multicore machines are also simpler to program than distributed sys-
tems. Although a cluster of multicore machines has greater total capacity than any single
multicore, coordinating parallel tasks in a distributed computing environment often involves
moving data between machines, which incurs high performance costs. As a result, machines
in distributed environments often exhibit poor utilization — software achieves little of the
total potential computer performance of the cluster. In a multicore, however, main memory
is shared between processor cores. As a result, data need not be copied to coordinate parallel
operations, and the cost of this coordination is thereby significantly reduced. Software thus
has an easier time achieving high machine utilization on a single multicore.

Furthermore, individual multicores have grown to be quite large and powerful. A single
multicore system today is able to fit a whole database system within its memory [78]. A host
of other applications across domains such as computational science, real-world modeling, ma-
chine learning, and image and video processing, are designed to run on multicore computers,
because multicores represent a “sweet spot” in cost for performance. The aforementioned
studies in large graph-processing problems and the “connectomics” image-processing pipeline
demonstrate the capacity of multicores to solve problems that are typically thought to be too
large for a single machine. Shun argues persuasively that single shared-memory machines
are sufficient for solving many problems in large-scale computing [357].

Software often fails to realize the computer performance available within a single multi-
core, however. John Hennessy5 acknowledged this trend when he said,

We switched to multicore, but we have not made it as useful as if we had just
made single-threaded processors faster.

—John Hennessy [312]

The matrix-multiplication case study presented in Figure 1-1 reflects this trend as well.
As the figure shows, software-performance-engineering effort beyond simply programming
in a more efficient language is required to make the program utilize more than 1% of the
machine’s peak performance.

One reason why software tends to underutilize multicores is because multicores are com-
plicated. A multicore contains a host of interconnected computing resources, including one
or more processor chips, each of which contains multiple processor cores. Typically, a pro-
cessor core is a pipelined, superscalar processing unit that includes multiple functional units,
vector units, out-of-order execution, branch predictors, hardware prefetchers, hyperthreads,
and one or more levels of local cache. Each processor also shares a last-level cache among
all of its cores, while the machine itself contains a main memory that is shared by all of
its processors. Different shared-memory multicores might contain additional computing re-
sources, such as a network, a graphics-processing unit (GPU), a disc, or a battery. Utilizing
all of these hardware features of a shared-memory multicore machine is a complex task that
requires significant expertise and arcane knowledge.

5President of Stanford University, parallel-computing pioneer, and coauthor of Computer Architecture:

A Quantitative Approach.

18

Parallel programming

Using parallel processor cores efficiently involves parallel programming, which poses one of
the largest and most difficult problems in programming multicores. Parallel programming is
also involved in using other multicore hardware, such as GPU’s and vector units. Although
ongoing important research efforts seek ways to apply these hardware systems for general
computation, most software today employs these systems in an ad hoc and opportunistic
fashion. This thesis instead focuses on programming the general-purpose processor cores,
which are responsible for executing the vast majority of software running on multicores
today.

To illustrate some of the challenges involved in parallel programming, let us consider
writing a parallel program using Pthreads [188], a standard API for threading that is used
to write many parallel programs today. The Pthreads API provides a set of library functions
for creating and managing parallel operating-system threads. To write a program using
Pthreads, the programmer explicitly creates each parallel thread, or Pthread, and assigns it
computation to execute. The operating-system scheduler then takes care of executing these
Pthreads asynchronously on processor cores. Pthreads communicate with each other and
exchange data through shared memory, and programmers can coordinate updates to shared
variables by employing mechanisms such as mutex locks or condition variables.

The Pthreading model forces programmers to deal with several difficult problems in
reasoning about the behavior and performance of a parallel program. Pthreaded programs
can behave nondeterministically , based on how the operating system chooses to schedule
and execute different Pthreads in any particular run of the program. Reasoning about the
behavior of a Pthreaded program therefore involves considering all of the exponentially many
possible timings (interleavings) of the computations running on different Pthreads, which
is difficult and error-prone. Furthermore, nondeterministic behavior confounds traditional
debugging strategies, because a programmer cannot reliably expose buggy behavior over
and over to zero in on a bug. Meanwhile, the programmer must account for several factors
to optimize the performance of a Pthreaded program. Because creating a Pthread is an
expensive operation, taking longer than 10,000 cycles, the programmer must amortize this
overhead over a reasonably large amount of computation allocated to each Pthread. A
typical strategy for minimizing this overhead is to create only as many Pthreads as there
are processors on the system. Programmers must then strive to avoid serial bottlenecks and
to balance the computation among these Pthreads. These complications are amplified when
scalability is considered, that is, how quickly the program runs on different machines with
different numbers of processor cores. Problems of nondeterminism and scalability are not
unique to Pthreads, but persist in other threading models as well.

The nondeterminism of multithreaded programs has been viewed as a key reason that
programming large-scale parallel applications remains error prone and difficult [235]. In
response to the problem of nondeterminism, many researchers over multiple decades have
advocated that the difficulty of parallel programming can be greatly reduced by using some
form of deterministic parallelism [41, 42, 51, 60, 113, 114, 134, 158, 174, 187, 304, 310, 370, 414].
With a deterministic parallel program, the programmer observes no logical concurrency ,
that is, no nondeterminacy in the behavior of the program due to the relative timing of
communicating processes such as occurs when one process arrives at a lock before another.6

6Netzer and Miller [297] distinguish internal determinacy, where the program contains no determinacy
races, from external determinacy, where the final answer of the program is the same from run to run. The
work presented in this thesis generally seeks to avoid programmer-observable nondeterministic behavior.

19

The semantics of a deterministic parallel program therefore match those of a corresponding
serial program, and reasoning about such a program’s correctness, at least in theory, is no
harder than reasoning about the correctness of a serial program. Testing, debugging, and
formal verification are simplified, because there is no need to consider all possible relative
interleavings of operations on shared mutable state. Furthermore, Blelloch et al. [52] argue
persuasively that price of determinism in performance need not be high, and in particular,
that deterministic parallel algorithms can be fast.

Despite the apparent advantages of deterministic parallelism, however, many parallel
codes deployed in practice still exhibit nondeterministic behavior. For example, all the
codes in the PARSEC [45], Galois [315], and STAMP [79] benchmark suites use concurrency
mechanisms, such as mutex locks and condition variables, which behave nondeterministi-
cally. Part of the reason that many parallel programs are still nondeterministic is that
existing parallel-programming environments are immature and do not provide good support
for deterministic parallel programming. Indeed, concurrency mechanisms are the building
blocks for synchronization in most parallel-programming environments. Programmers are
familiar with locks and condition variables, and even generalizing them to transactional
memory [182] does not mitigate their inherent nondeterminacy. Some approaches to deter-
minism — such as data parallelism [224], commutative operations [331, 370], and various
effect systems [60] — do not seem general enough to handle more than a limited set of
real-life applications. Purely functional programming is perhaps the most straightforward
way to achieve deterministic parallelism, because functional programming precludes parallel
threads from interacting [51,174], but few real-world codebases employ functional languages.
Because of the prevalence of nondeterminism, only experts can program these parallel appli-
cations, especially those for shared-memory platforms, and these bug-prone codes can only
be understood by experts.

Dynamic multithreading

Tremendous progress has been made in mitigating the problems posed by nondetermin-
ism and scalability in parallel programming. Concurrency platforms that support dy-
namic multithreading , such as dialects of Cilk [56, 106, 146, 196, 237, 246], Fortress [11],
Habanero [33], Habanero-Java [82], Hood [59], HotSLAW [283], Java Fork/Join Frame-
work [233], OpenMP [26, 305], Task Parallel Library [245], Threading Building Blocks
(TBB) [330] and X10 [87], have been developed that relieve programmers of the need to ex-
plicitly deal with concurrency or load-balance a parallel program. Dynamic multithreading
concurrency platforms typically support the programming model of fork-join parallelism ,
in which subroutines can be spawned in parallel with little overhead. With dynamic mul-
tithreading, spawning a subroutine allows, but does not require, that subroutine to execute
in parallel. The spawning of subroutines generates a series-parallel execution dag (directed
acyclic graph) in which the synchronization of subtasks is managed “under the covers” by
the runtime system. Constructs such as parallel loops can be implemented as syntactic
sugar on top of the fork-join model. Dynamic multithreading concurrency platforms usu-
ally schedule the computation using randomized work-stealing [24, 56, 58, 146], where
worker threads in the runtime system coordinate to load-balance the computation. Hence,
dynamic multithreading provides a processor-oblivious model of parallel computation, in
which programmers only expose logical parallelism without referring to the physical proces-
sor cores on the machine. Dynamic multithreading has grown in popularity to the point
that mainstream compilers, such as GCC [369], ICC [198], and LLVM [232], now support the

20

dynamic multithreading linguistics provided by Cilk Plus [151,195] and OpenMP [152,262].
Dynamic multithreading supports a principled approach to reasoning about parallel pro-

gram correctness and scalability. Intuitively, as long as a parallel program contains no
determinacy races [134] (also called general races [297]), then the program is deter-
ministic, and it therefore exhibits serial semantics. Moreover, efficient tools exist that can
guarantee to detect determinacy races or validate their absence [119,134,135,324,325,392].
The fork-join model also supports theoretical analysis of program performance and scalabil-
ity in terms of the program’s “work” and “span” [100, Ch. 27], and concurrency platforms
can ensure that the performance predictions from work-span analysis are often borne out in
practice [146,180]. Efficient tools exist for analyzing a program’s scalability based work-span
analysis [180].

Despite this progress, however, these technologies remain immature, and their shortcom-
ings still leave programmers to deal with complex nondeterminism and scalability issues.
How, for example, do dynamic multithreading platforms support efficient parallel computa-
tions on irregular structures (i.e., graphs), computations that use pseudorandom numbers,
or computations that exhibit pipeline parallelism that emerges dynamically? How can pro-
grammers quickly see how different parts of a dynamic multithreaded program contribute
to its “work” and “span?” How can programmers detect determinacy races in programs that
use advanced programming features? How can compilers support performance engineering
of dynamic multithreaded codes? The artifacts presented in this thesis shed light on these
questions.

1.2 Developing simple programming models and theories of
performance

The first five artifacts presented in this thesis (Chapters 3 through 7) explore the develop-
ment of two key technologies to support a science of fast code: simple programming models
and theories of performance that are borne out in practice. This section describes these two
technologies as well as the five artifacts in this thesis that explore their development.

Simple programming models, such as the fork-join model of dynamic multithreading,
can support principled approaches to reasoning about program behavior. Efficient multi-
core software, for example, must deal effectively with complex issues such as atomicity, non-
determinism, scheduling, and load-balancing. Programming models can simplify fast code
by encapsulating “ugly” aspects of computer hardware and providing programmer-friendly
abstract properties such as processor obliviousness, determinism, serial semantics, and com-
posable performance. An analogy can be made with goto statements and the structured
control-flow statements — e.g., conditionals and loops — that replaced them in modern
serial programming languages. Similarly to how structured control-flow statements facili-
tates reasoning about the serial program behavior, simple programming models can make
multicore programs easier to reason about than their traditional Pthreaded counterparts.

Some programming models support the powerful feature that they admit theories of per-
formance that are borne out in practice, which support principled approaches to reasoning
about software efficiency. Consider the randomized work-stealing schedulers [24,56,58,146]
employed by dynamic multithreading concurrency platforms. These schedulers offer theoret-
ical guarantees on how efficiently they execute a parallel program. By using these schedulers,
programmers can predict how a parallel program will scale on any number of processors with-
out having to write an optimized implementation and test it on a variety of machines and

21

core counts. Moreover, programmers can perform back-of-the-envelope calculations based
on work-span analysis to check whether parallel software meets its theoretical performance
expectations or fails to do so due to a programming bug or an unanticipated factor that
inhibits scalability. Because these theories of performance are borne out in practice, pro-
grammers can use the

The artifacts presented in this section address a variety of parallel programming chal-
lenges using dynamic multithreading, specifically, Cilk technology [56,106,146,196,237,246].
Cilk supports a fork-join model of parallelism and employs a randomized work-stealing
scheduler that schedules and load-balances programs efficiently, both in theory and in prac-
tice [146]. Modern dialects of Cilk [196, 237, 246] also support “reducer hyperobjects” [144],
an advanced programming feature for managing concurrent accesses to shared variables.

The five artifacts overviewed in this section — “PBFS,” “Prism,” “Color,” “DPRNG,” and
“Cilk-P” — explore how Cilk’s programming model and theoretical performance guarantees
can be employed and enhanced to support a wider variety of parallel computations. The
“PBFS,” “Prism,” and “Color” artifacts examine how to parallelize algorithms on graphs
to provide provable guarantees on efficiency that are borne out in practice. Graph com-
putations are generally challenging to perform efficiently in parallel, because the irregular
structure of a graph complicates the scheduling and load-balancing of these computations
on parallel cores. The “DPRNG” artifact tackles the problem of generating pseudorandom
numbers deterministically in parallel in dynamic multithreaded codes. The “Cilk-P” artifact
studies the problem of writing and efficiently scheduling programs that exhibit both fork-join
parallelism and pipeline parallelism that arises dynamically “on-the-fly.”

PBFS

Chapter 3 presents PBFS [248], a “work-efficient” parallel breadth-first search (BFS) algo-
rithm, which exhibits high work efficiency and achieves parallel speedup in both theory and
practice.7 In the standard serial BFS algorithm, the FIFO queue imposes a serial bottle-
neck that is difficult to parallelize effectively. PBFS replaces this queue with an efficient
implementation of a multiset data structure, called a “bag,” which allows PBFS to achieve
parallel speedup in practice. On a variety of benchmark input graphs, PBFS runs as fast
on a single processor as a tight implementation of the standard serial BFS algorithm, and
it speeds up linearly with processors.

PBFS offers theoretical guarantees that support its performance in practice. PBFS is
implemented in Cilk and employs Cilk’s “reducer hyperobject” mechanism [144] to efficiently
coordinate concurrent updates to bags. Because the Cilk runtime system maintains reduc-
ers based on how it schedules and load balances the computation, the work inherent in a
PBFS execution is nondeterministic. My coauthor and I enhanced the dag model of Cilk
dynamic multithreading to build a general theoretical performance model for analyzing Cilk
programs that use reducers. Analyzing PBFS in this model shows that PBFS is work-
efficient , meaning that it performs asymptotically the same number of operations as its
serial counterpart, the standard serial BFS algorithm. Furthermore, this analysis shows that
PBFS achieves linear speedup on as many processors as the size of the graph divided by its
diameter, up to polylogarithmic factors.

PBFS’s theoretical guarantees offer assurance that the PBFS algorithm scales well when
applied to other parallel software. Intel used PBFS to implement a parallel version of the

7I collaborated with Charles E. Leiserson on this work.

22

Murphi model checker [118] that achieves near-perfect parallel speedup, specifically, a 15.5
factor speedup on 16 cores.

Prism

Chapter 4 presents the Prism and Prism-R “chromatic-scheduling” algorithms for executing
“dynamic data-graph computations” efficiently and deterministically in parallel [213].8 A
data-graph computation consist of rounds of updates, where each update recomputes the
value associated with a vertex in a graph. A dynamic data-graph computation updates only
a subset of the graph’s vertices in each round. When executing a data-graph computation
in parallel, locks are often employed to ensure that updates are performed atomically. Locks
not only incur overhead, but they also cause updates to occur in a nondeterministic relative
order.

Instead of locks, Prism uses “chromatic scheduling” [2, 43, 264] to coordinate parallel
updates in a dynamic data-graph computation. Conceptually, Prism precomputes a vertex-
coloring of the graph of dependencies between updates, and then executes each round of the
data-graph computation based on the coloring: vertices of different colors are updated in a
fixed order, while vertices of the same color are updated in parallel. Prism thereby ensures
that the dynamic data-graph computation executes deterministically, allowing programmers
to reason about the program’s correctness based on its serial semantics. Prism employs
an efficient implementation of a novel “multibag” data structure to maintain dynamic sets
of vertices partitioned by color. Prism provides theoretical guarantees on its scalability,
based on the size of the graph, the size of each round, and the number of colors used
in the vertex-coloring. In practice, by avoiding the overheads of locking, Prism executes
dynamic data-graph computations faster than lock-based alternatives, despite imposing the
restrictive requirement of deterministic execution. By providing theoretical guarantees that
are borne out in practice, programmers can rely on Prism to execute dynamic data-graph
computations efficiently.

An extension of Prism, called Prism-R, handles dynamic data-graph computations
whose updates perform associative operations on global variables. Prism-R employs an
efficient implementation of a novel “multivector” data structure, in place of Prism’s “multi-
bag,” to efficiently maintain ordered sets of vertices partitioned by color. Prism-R provides
the same theoretical guarantees on its scalability to those of Prism, and runs nearly as
quickly as Prism in practice.

Color

Chapter 5 presents the “largest-log-degree-first” (LLF) and “smallest-log-degree-last” (SLL)
ordering heuristics for greedy graph-coloring algorithms [175].9 These ordering heuristics
seek to eliminate a tradeoff between coloring quality and parallel performance. Greedy
graph-coloring algorithms often use ordering heuristics, such as “largest-degree-first” and
“smallest-degree-last,” to reduce the number of colors they use in practice. My coauthors
and I show, however, that there exist input graphs on which these heuristics can create serial
bottlenecks when applied to parallel graph-coloring algorithms. The LLF and SLL ordering
heuristics aim to get the best of both worlds. Not only do these heuristics color graphs using

8
Prism and Prism-R were developed in collaboration with Tim Kaler, William Hasenplaugh, and Charles

E. Leiserson.
9I collaborated with William Hasenplaugh, Tim Kaler, and Charles E. Leiserson on this work.

23

a comparable number of colors to the analogous largest-degree-first and smallest-degree-last
heuristics, but unlike their serial analogs, LLF and SLL provide theoretical guarantees on
parallel scalability and achieve parallel speedup in practice. Programmers can therefore
employ these heuristics in graph-coloring codes with confidence that they will not inhibit
scalability, and they can use the theoretical guarantees to understand the performance of
these graph coloring codes quantitatively.

DPRNG

Chapter 6 introduces the DotMix library and the “pedigree” mechanism to support deter-
ministic parallel random-number generation in dynamic multithreaded programs [249].10 To
debug a serial program that uses pseudorandom numbers, programmers can fix the seed of
the random-number generator to make it behave deterministically. Standard approaches to
parallel random-number generation, however, produce pseudorandom numbers nondetermin-
istically in dynamic multithreaded programs, even when the programmer uses a fixed seed.
These approaches involve either synchronizing concurrent accesses to a common random-
number generator or using separate random-number generators per processor. With either
approach, the nondeterminism of parallel scheduling can change the pseudorandom numbers
generated. Although some solutions to deterministic parallel random-number generation ex-
ist for Pthreaded programs [92,273,338], these solutions either do not scale or do not directly
apply to dynamic multithreaded programs.

DotMix generates pseudorandom numbers in parallel, such that its behavior is deter-
ministic for a fixed seed. The DotMix library thus simplifies the programming model
for randomized dynamic multithreaded programs by providing linguistics to support serial
semantics and repeatable execution. DotMix generates pseudorandom values of compa-
rable statistical quality to the popular Mersenne twister random-number generator [274]
while incurring little overhead — less than 21% on realistic benchmarks — compared to
using Mersenne twister nondeterministically. These properties ensure that programs that
use DotMix still use high-quality pseudorandom numbers and pay minimal performance
to enjoy deterministic behavior.

DotMix requires support from the runtime system and compiler to generate pseudo-
random numbers deterministically. DotMix in particular uses our “pedigree” mechanism,
which assigns a unique ID to each program point in a dynamic multithreaded program in
a schedule-independent manner. To generate a pseudorandom number, each call to the
rand routine in the DotMix library extracts the pedigree of the current program point and
hashes it using a provably good hash function. This hash function guarantees a low proba-
bility that two ID’s hash to the same value; formally, this hash function is 2-independent.
Pedigrees incur negligible overhead in a runtime system, specifically, less than 1% overhead
in the MIT Cilk runtime system.

Cilk-P

Chapter 7 presents Cilk-P [239],11 an extension to the Cilk concurrency platform that pro-
vides a simple, processor-oblivious programming model for writing deterministic parallel
programs that exhibit “on-the-fly” pipeline parallelism. Pipeline parallelism [55, 157, 169,
268, 277, 295, 317, 328, 339, 381] is a well-known programming pattern that can be used to

10I collaborated with Charles E. Leiserson and Jim Sukha on this work.
11Cilk-P was joint work with I-Ting Angelina Lee, Charles E. Leiserson, Jim Sukha, and Zhunping Zhang.

24

parallelize a variety of applications, including streaming applications from the domains of
video, audio, and digital signal processing. Many systems that support pipeline parallelism
require the programmer to add locks and condition variables to application code in order
to enforce such program dependencies that emerge on the fly, that is, during the program’s
dynamic execution. These synchronization mechanisms complicate the source code and
necessarily behave nondeterministically.

Cilk-P introduces linguistic and runtime support for deterministic on-the-fly pipeline
parallelism. Cilk-P’s language constructs can encapsulate the nondeterminism of synchro-
nization mechanisms needed to enforce pipeline dependencies, allowing programmers to write
deterministic parallel programs. Furthermore, Cilk-P’s language constructs are flexible, al-
lowing the pipeline dependencies in the program to emerge on-the-fly, that is, as the pro-
gram’s execution unfolds dynamically. Cilk-P provides a simple programming model for
pipeline parallelism that supports work-span analysis for measuring program scalability.

Cilk-P implements the Piper scheduler to load-balance the program on parallel proces-
sors. Piper provides theoretical guarantees to execute a pipeline program on any number
of parallel processors using bounded space and nearly optimal time with high probability.
Cilk-P’s efficient implementation of Piper ensures that these theoretical guarantees are
borne out in practice. A Cilk-P implementation of the x264 video encoder, for example,
matches the performance of an optimized implementation in Pthreads that uses explicit
synchronization mechanisms. Cilk-P thus allows programmers to write pipeline parallel
programs simply and to reason about their scalability in a quantitative, scientific fashion.

1.3 Enhancing the software-development environment

The remaining four artifacts in this thesis (Chapters 8 through 11) focus on enhancing the
software-development environment, specifically, diagnostic tools and the compiler, to support
principled approaches to reasoning about program behavior and efficiency. Although simple
programming models and theories of performance can support principled approaches to
reasoning about program behavior and efficiency, tools and compiler technology can produce
surprising or incomprehensible results if they do not assimilate these abstract models and
theories. This section describes the service that diagnostic tools and compilers provide
to developing efficient software. I overview the artifacts in this thesis that explore how
abstract programming models and theories of performance can be embedded into diagnostic
tools and the compiler. I also describe an artifact that tackles the complexity of developing
new diagnostic tools.

Diagnostic tools can amplify a programmer’s ability to reason about software that is
otherwise too large or complex to understand, effectively redefining what counts as simple
code. For example, provably effective determinacy-race detectors, such as those supported
by Cilk [134,135,197,392], provide guarantees to verify the absence of a determinacy race or,
if a race exists, to pinpoint its source. Furthermore, tools such as the Cilkview scalability
analyzer [180] can measure the scalability of a Cilk program in terms of its “work” and
“span.” Tools have limited utility, however, is a programmer must wait a long time for
them to produce results. Efficient diagnostic tools enable programmers to rapidly test new
changes to their code and, thereby, to iteratively develop efficient software.

Compilers can relieve programmers of mechanical performance-engineering tasks that are
onerous and error-prone to carry out manually. Compilers can automatically perform cum-
bersome transformations on software to improve its efficiency. These compiler optimizations

25

allow programmers to write simpler codes that nevertheless execute efficiently. Compilers
can also provide visibility into the program’s dynamic execution through compiler instru-
mentation (e.g., [133,350,352]) — code inserted by a compiler into a program-under-test.
Diagnostic tools can utilize compiler instrumentation to efficiently inspect the dynamic ex-
ecution of a program, thus ensuring that programmers need not wait unduly for these tools
to produce results.

To operate efficiently in accordance with the programmer’s conceptual understanding
of program behavior and performance, tools and compilers must incorporate the abstract
programming and performance models that the programmer uses to reason about software.
For example, to efficiently provide useful results, race detectors and scalability analyzers for
Cilk programs leverage the Cilk programming model to quickly determine which instruc-
tions can execute in parallel. The Cilkview scalability analyzer, moreover, leverages the fact
that the scalability of a Cilk program can be understood using work-span analysis. Mean-
while, mainstream compilers today often fail to perform valid optimizations across dynamic
multithreading language constructs, which introduces unnecessary performance overhead to
parallel codes in comparison to their serial counterparts.

The four artifacts presented in this section — “Cilkprof,” “Rader,” “Tapir,” and “CSI” —
tackle shortcomings in the software-development environment. The “Cilkprof,” “Rader,” and
“Tapir” artifacts work to embed the abstract programming models and theories of perfor-
mance supported by dynamic multithreading platforms into tools and compilers. “Cilkprof”
takes on the problem of computing a profile of a program in terms of the program’s “work”
and “span.” “Rader” studies the problem of finding programming bugs that yield determi-
nacy races in Cilk programs that use “reducer hyperobjects” [144]. “Tapir” examines how
existing compiler optimizations for serial code can be easily adapted to optimize dynamic
multithreaded codes. The final artifact presented in this section, “CSI,” takes on the com-
plexity of developing new efficient diagnostic tools. In particular, “CSI” enables programmers
to write efficient dynamic-analysis tools that use compiler instrumentation without having
to modify the compiler.

Cilkprof

Chapter 8 presents the Cilkprof scalability profiler [346] for tracking down serial bottlenecks
in a Cilk program.12 When optimizing a serial program, a programmer can use a profiler,
such as gprof [171], to measure how different parts of the program contribute to the program’s
overall running time. Programmers can use these measurements to methodically direct their
optimization efforts towards expensive parts of the code. Although a programmer can use
a standard profiler on a parallel program to measure how each processor spends its time,
the resulting data do not necessarily tell the programmer what parts of the code prevent it
from scaling onto additional processor cores.

Cilkprof measures how every call site — every program point that calls a function —
affects the overall scalability of a Cilk program. In particular, Cilkprof build on the approach
taken by Cilkview [180] to measure how each call site contributes to both the “work” and
“span” of a given Cilk computation. With this information, programmers can work to
improve a program’s scalability by focusing their optimization efforts on functions that
contribute substantially to the span. Cilkprof uses an efficient algorithm to accumulate
measurements in an amortized “prof” data structure, which allows Cilkprof to compute its

12I collaborated with Bradley C. Kuszmaul, I-Ting Angelina Lee, Charles E. Leiserson, and William M.
Leiserson on this work.

26

profile in time asymptotically equal to the serial running time of the program. In practice,
Cilkprof computes profiles quickly, incurring only a constant-factor slowdown of 1.9 on
average on a suite of application benchmarks. Programmers can use Cilkprof to discover
serial bottlenecks in a Cilk program in a scientific fashion.

Rader

Chapter 9 presents Rader [240], a tool to detect race bugs that can cause an ostensibly
deterministic Cilk program that uses “reducer hyperobjects” [144] to behave nondeterminis-
tically.13 Although determinacy race detectors exist for Cilk programs, they cannot reliably
detect race bugs that involve the state of a reducer, however, because the Cilk runtime
system itself maintains this state nondeterministically.

Rader can detect race bugs that involve a Cilk reducer hyperobject. Rader implements
the Peer-Set and SP+ race-detection algorithms, both of which provide guarantees to
report a race if one exists. The Peer-Set algorithm evaluates a single execution of a Cilk
program and guarantees to report a problem if the program ever reads the state of a reducer
when the semantics of reducers deem it unsafe to do so. The SP+ algorithm, meanwhile,
leverages the performance model described in Chapter 3 for analyzing Cilk programs that
use reducers to detect race bugs that occur when the program accesses reducer state by
means other than the reducer’s API. The SP+ algorithm examines a particular execution
of a Cilk program that uses reducers, which can be identified by the program, an input to the
program, and a small “steal specification” that specifies the outcome of the runtime system’s
nondeterministic scheduling choices. These two algorithms enable programmers to method-
ically zero in on programming errors in a Cilk program that jeopardizes its deterministic
behavior, enhancing their ability to contend with nondeterministic codes. We implemented
both of these algorithms in Rader using compiler instrumentation on memory accesses, Cilk
parallel language constructs, and operations on reducers. Both of these algorithms detect
race bugs efficiently, both in theory and in practice.

Tapir

Chapter 10 presents the Tapir compiler intermediate representation (IR) [347], which enables
ordinary compiler optimizations to effectively optimize dynamic multithreaded programs.14

Mainstream compilers such as GCC [369], ICC [198], and LLVM [232] generally treat parallel
language constructs as syntactic sugar for function calls into a parallel runtime system.
These function calls impede valid optimizations on parallel code that the compiler readily
performs on analogous serial code. It is well documented, however, that standard compiler
optimizations for serial programs can introduce incorrect code when applied to parallel
programs [282]. Intuitively, enabling mainstream compilers to optimize parallel code as
effectively as it optimizes serial code requires extensive changes to their codebases to ensure
that existing optimizations handle parallel code correctly.

Tapir embeds fork-join parallelism directly into LLVM IR to enable LLVM’s existing
optimizations for serial code to work on dynamic multithreaded programs with only minor
changes. Tapir necessitates such minimal changes by representing fork-join parallel subrou-
tines in an asymmetric fashion that captures the program’s serial semantics. Implementing
Tapir in LLVM thus required modifying only 5000 of LLVM’s 3-million-line codebase. With

13Rader was joint work with I-Ting Angelina Lee.
14I collaborated with William Moses and Charles E. Leiserson on this work.

27

these changes, existing serial optimizations — such as common-subexpression elimination,
loop-invariant code motion, and tail-recursion elimination — can operate across parallel
control flow. Tapir also enables parallel optimizations such as “unnecessary-synchronization
elimination” and “parallel-loop spawning.” On a suite of 20 benchmark applications, my
coauthors and I found that the applications exhibit higher work efficiency when compiled
using our implementation of Tapir in LLVM than with other mainstream compilers. Tapir
thus enables compilers to optimize dynamic multithreaded programs comparably to serial
programs, ensuring that their theoretical performance guarantees are borne out in prac-
tice and allowing programmers to avail themselves of the powerful automatic optimization
capabilities of a compiler when writing dynamic multithreaded programs.

Tapir programs also support provably good determinacy-race detection by race detectors
similar to those that exist for dynamic multithreaded programs. We embed determinacy-
race detection within the formal semantics for Tapir to formally prove that if an execution
of a Tapir program is free of determinacy races, then it has serial semantics. This semantic
feature simplifies the development of compiler optimizations for Tapir programs. In partic-
ular, this feature supports efficient verification that compiler optimizations do not introduce
races into determinacy-race-free Tapir programs.

CSI

Chapter 11 presents the CSI compiler-instrumentation framework [345], which aims to lower
the bar for developing new, efficient dynamic-analysis tools, including race detectors [123,
124, 134, 280, 281, 343, 351], memory checkers [31, 177, 350], cache simulators [121, 377, 407],
call-graph generators [171, 205], code-coverage analyzers [390, 397], and performance pro-
filers [171, 329, 401].15 Although compiler instrumentation can provide visibility into the
dynamic execution of a program, writing a dynamic-analysis tool that uses compiler instru-
mentation today generally requires the tool writer to modify the compiler to insert custom
instrumentation for their tool. This requirement can raise the bar substantially for building
new and innovative dynamic-analysis tools.

The CSI framework seeks to have the compiler insert comprehensive static instrumenta-
tion into a program-under-test. CSI’s standard collection of instrumentation hooks aim to
cover the instrumentation needs of a wide variety of dynamic-analysis tools. Each CSI-tool
can be implemented simply as a library that defines relevant hooks; no further compiler
modification is needed. Furthermore, the CSI runtime maintains information associated
with each hook to simplify and speed up common tasks of dynamic-analysis tools, such as
scanning over the “basic blocks” in a program or associating instrumentation with lines in the
source code. CSI thereby enables programmers to rapidly develop new efficient diagnostic
tools to scientifically investigate the dynamic execution of their programs.

Although CSI’s approach to compiler instrumentation seems replete with overheads, CSI
overcomes these overheads using modern compiler technology. In particular, unused hooks
are elided during “link-time optimization (LTO)” [368], resulting in instrumented running
times on par with custom instrumentation. A CSI port of Google’s ThreadSanitizer race-
detection tool [351], for example, exhibits performance approaching that of the original
version that used custom compiler instrumentation. CSI furthermore preserves the per-
formance of production code and does not slow down compilation and link times unduly.
Compiling with CSI and linking with the “null” CSI-tool slows the build time of the Apache

15CSI was developed in collaboration with Tyler Denniston, Damon Doucet, Bradley C. Kuszmaul, I-Ting
Angelina Lee, and Charles E. Leiserson.

28

HTTP server by less than 40%, and the resulting tool-instrumented executable is as fast
as the original uninstrumented code. CSI thus enables the easy development of diagnostic
tools that are still efficient.

1.4 Thesis statement

The artifacts presented in this thesis develop software-performance-engineering technolo-
gies to support principled and scientific approaches to reasoning about efficient multicore
software. Together, these artifacts provide evidence to support the following statement:

Thesis statement: We can develop a more coherent science of fast code for multicores by
creating simple and integrated programming technologies that remedy the current ad hoc
and unprincipled nature of software performance engineering.

These artifacts demonstrate three intertwined efforts to create such integrated technolo-
gies. Five of the artifacts build on dynamic multithreading technology to develop simple
programming models that support theories of performance and scalability that are borne out
in practice. Three artifacts work to embed the abstract programming models and theories of
performance supported by dynamic multithreading into the diagnostic tools and compilers.
The final artifact aims to enhance the software-development environment to facilitate the
creation of efficient diagnostic tools. Together, these artifacts work to advance a science of
fast code by supporting principled approaches to writing efficient software, reasoning about
its behavior and performance, and carefully examining its dynamic execution.

I believe that, after the imminent end of Moore’s Law, even average programmers will
need to be able to write fast code in order to find further gains in computer performance. By
building simple and integrated programming technologies to develop a coherent science of
fast code and by educating programmers in that science, I believe that software performance
engineering can be made accessible even to average programmers.

1.5 Outline

The remainder of this thesis is organized as follows. Chapter 2 presents background on
dynamic multithreading used throughout the remainder of this thesis. Chapters 3 through 11
present the nine artifacts contributed by this thesis:

• A work-efficient parallel breadth-first search algorithm, called PBFS, which exhibits
high work efficiency and achieves parallel speedup in both theory and practice (Chap-
ter 3).

• The pedigree mechanism and DotMix algorithm for generating pseudorandom num-
bers deterministically in parallel in dynamic multithreaded programs (Chapter 6).

• The Cilk-P concurrency platform, which provides linguistic and runtime support for
deterministic on-the-fly pipeline parallelism (Chapter 7).

• A chromatic scheduling algorithm, called Prism, that executes dynamic data-graph
computations deterministically and efficiently (Chapter 4).

• Ordering heuristics for parallel greedy graph coloring algorithms that provide provably
good scalability that is borne out in practice (Chapter 5).

• Cilkprof, a profiler that efficiently measures how each call site in a Cilk program
contributes to the program’s scalability (Chapter 8).

29

• Rader, a provably good race detector for Cilk programs that use reducer hyperobjects
(Chapter 9).

• The Tapir compiler intermediate representation, which enables existing compiler opti-
mizations for serial code to optimize across parallel control flow with minimal changes
(Chapter 10).

• CSI, a framework that provides comprehensive static instrumentation for dynamic-
analysis tools (Chapter 11).

Chapter 12 concludes with a discussion on the end of Moore’s Law and software performance
engineering in the post-Moore era.

30

Chapter 2

Dynamic Multithreading

This chapter overviews dynamic multithreading, with a focus on the model supported by
Cilk, which forms the basis of much of the work in this thesis. Cilk extends C/C++ with
keywords for expressing logical fork-join parallelism within a program. The Cilk concurrency
platform employs a randomized work-stealing scheduler in its runtime system to schedule
and load-balance the computation on whatever processors are available at runtime. Modern
dialects of Cilk also support a general parallel reduction mechanism, called “reducer hyper-
objects.” The code and pseudocode presented in subsequent chapters of this thesis shall use
a dynamic multithreading model inspired by Cilk.

This chapter is organized as follows. Section 2.1 describes the spawn, sync, and par-
allel for language constructs for expressing fork-join parallelism. Section 2.2 describes how
the execution of a dynamic multithreaded program can be modeled theoretically as a dag
using the framework of Blumofe and Leiserson [58]. This section also overviews assumptions
about the runtime environment. Section 2.3 defines deterministic computations. Section 2.4
describes work-span analysis of parallel scalability. Section 2.5 describes greedy and ran-
domized work-stealing schedulers. Section 2.6 describes parallel reduction mechanisms and
introduces “reducer hyperobjects.”

2.1 Linguistic extensions for fork-join parallelism

Dynamic multithreading concurrency platforms typically support the abstraction of fork-
join parallelism , in which threads are spawned off as parallel subroutines. Although some
platforms provide this abstraction through library routines, others provide it by extending
a serial base language with language constructs. The dynamic multithreaded codes and
pseudocodes presented in this thesis adopt the language approach. The pseudocodes in this
thesis augment ordinary serial pseudocode with the keywords spawn, sync, and parallel
for, of which spawn and sync are the more basic. Analogously, the code examples in this
thesis are based on dialects of Cilk, most commonly Cilk Plus, which add the corresponding
keywords cilk_spawn, cilk_sync, and cilk_for to ordinary C/C++ code.

Let us first examine the dynamic multithreading pseudocode keywords spawn and sync.
Parallel work is created when the keyword spawn precedes the invocation of a function,
thereby causing the function to be spawned . Semantically, spawning a function differs from
calling a function only in that the parent continuation — the code immediately following
the spawn — is allowed to execute in parallel with the invoked child function, instead of
waiting for the child to complete, as is normally done for a function call. A function cannot

31

12

13 15

4 5

1 2 18

3

7

10 11

8

16 17

9 6

14

continuation
strand

spawn
strand

sync
strand

19

Figure 2-1: A dag representation of the execution of a dynamic multithreaded program. Each
vertex represents a strand, and edges represent parallel-control dependencies between strands.

safely use the values returned by its spawned children until it executes a sync statement,
which suspends the function until all of its spawned children return. The function is synced
once its spawned children return and it is allowed to execute the instruction after the sync.
Every function syncs implicitly before it returns, precluding orphaning. Together, spawn
and sync can succinctly express fork-join parallelism in a program. The scheduler in the
runtime system takes the responsibility of scheduling the spawned functions on the individual
processor cores of the multicore computer and synchronizing their returns according to the
fork-join logic provided by the spawn and sync keywords.

Loops can be parallelized by preceding an ordinary for with the keyword parallel,
which indicates that all iterations of the loop may operate in parallel. Parallel loops do not
require additional runtime support, but can be implemented by parallel divide-and-conquer
recursion over the loop iterations using spawn and sync.

A key property of this linguistic model is processor-obliviousness, meaning that a
dynamic-multithreaded program makes no explicit reference to the processors on which it
executes. As a consequence, a dynamic multithreaded program admits a serial execution.
Simply eliding the keywords spawn, sync, and parallel produces a serial program, called
the serialization or serial elision , which implements a legal semantics of the dynamic
multithreaded program. The serialization has the property that spawned children are simply
called, and they complete their execution before the parent resumes, as with an ordinary
function call.

2.2 The dag model

The dag model views the executed computation resulting from running a dynamic multi-
threaded program1 as a dag (directed acyclic graph), where a vertex represents a strand
— a sequence of serially executed instructions containing no parallel control — and an edge
(u, v) represents a (parallel-)control dependency between two strands u and v which asserts
that v cannot execute until after u has finished executing. Figure 2-1 illustrates such a dag,
which notably involves executed instructions, as opposed to source instructions. A strand
can be as small as a single instruction, or it can represent a longer computation. Gener-
ally, we shall dice a chain of serially executed instructions into strands in a manner that
is convenient for the computation we are modeling. For notational convenience, we shall
typically assume that strands respect function boundaries, meaning that calling or spawning

1When we refer to the running of a program, we shall generally assume that we mean “on a given input.”

32

a function terminates a strand, as does returning from a function. Each strand therefore
belongs to exactly one function instantiation.

We identify a few types of strands in the dag modeling an executed computation. A
strand that has 2 outgoing control dependencies is a spawn strand , and a strand that
resumes the caller after a spawn is called a continuation strand . A strand that has at
least 2 incoming control dependencies is a sync strand . We assume that no continuation
strand is also a sync strand.

The serial execution of a dynamic multithreaded program corresponds to a walk of its
dag. Because we assume that a serial execution of the computation executes all spawned
child subcomputations before their continuations, the serial (execution) order of a com-
putation corresponds to a depth-first traversal of the dag in which the spawned child of a
spawn strand is executed before its continuation.

The length of a strand is the time it takes for a processor to execute all its instructions.
For most theoretical analyses in this paper, we shall assume that programs execute on an
ideal parallel computer , where each instruction takes unit time to execute, there is ample
memory bandwidth, there are no cache effects, etc. We shall also assume that the computer
supports concurrent reads and writes.

2.3 Determinacy and races

We say that a dynamic multithreaded program is deterministic (on a given input) if every
memory location is updated with the same sequence of values in every execution. Otherwise,
the program is nondeterministic. A deterministic program always behaves the same, no
matter how the program is scheduled. Two different memory locations might be updated
in different orders, but each location always sees the same sequence of updates. Whereas a
nondeterministic program may produce different dags, i.e., behave differently, a deterministic
program always produces the same dag.

A program execution with no “determinacy races” is deterministic and always produces
the same dag, no matter how the execution is scheduled. A program execution contains a
determinacy race [134] if two parallel strands access the same memory location and at
least one of the strands updates it. Because the serialization of a dynamic multithreaded
program implements legal semantics for the program, every execution of a determinacy-
race-free program has the same semantics as its serialization. In this case, we say that a
determinacy-race-free dynamic multithreaded program has serial semantics.

Determinacy races have been given many different names in the literature. For exam-
ple, they are sometimes called access anomalies [122], data races [280], race condi-
tions [370], or harmful shared-memory accesses [302]. Netzer and Miller [297] clarify
different types of races and define a determinacy race or general race to be a race that
causes a supposedly deterministic program to behave nondeterministically. (They also de-
fine a data race or atomicity race to be a race in a nondeterministic program involving
nonatomic accesses to critical regions.) We shall prefer the more descriptive term “determi-
nacy race.” Emrath and Padua [130] call a deterministic program internally deterministic
if the program execution on the given input exhibits no determinacy race and externally
deterministic if the program has determinacy races but its output is deterministic because
of the commutative and associative operations performed on the shared locations.

33

2.4 Work-span analysis

The dag model admits two natural measures of the performance of a dynamic multithreaded
computation. The work of a dag A, denoted by Work(A), is the sum of the lengths of all the
strands in the dag. Assuming for simplicity that it takes unit time to execute each strand,
the work for the example dag in Figure 2-1 is 19. The span2 of A, denoted by Span(A),
is the length of the longest path in the dag. Again assuming unit-time strands, the span
of the dag in Figure 2-1 is 10, which is realized by the path h1, 2, 3, 6, 7, 8, 10, 11, 18, 19i.
Work-span analysis is outlined in tutorial fashion in [100, Ch. 27] and in [246].

Work and span can be used to provide important bounds [57,58,66,128,170] on perfor-
mance and speedup. Suppose that a program execution produces a dag A in time T

P

when
run on P processors of an ideal parallel computer. We have the following two lower bounds
on the execution time T

P

:

T
P

� Work(A)/P , (2.1)
T
P

� Span(A) . (2.2)

Inequality (2.2), which is called the Work Law , holds in this simple performance model,
because each processor executes at most 1 instruction per unit time, and hence P processors
can execute at most P instructions per unit time. Inequality (2.2), called the Span Law ,
holds because no execution that respects the partial order of the dag can execute faster than
the longest serial chain of instructions.

We define the speedup of a program as T1/TP

— how much faster the P -processor
execution is than the serial execution. For deterministic programs, since all executions
produce the same dag A, we have that T1 = Work(A), and T1 = Span(A) (assuming no
overhead for scheduling). Rewriting the Work Law, we obtain T1/TP

 P , which is to say
that the speedup on P processors can be at most P . If the application obtains speedup
P , which is the best we can do in our model, we say that the application exhibits linear
speedup. If the application obtains speedup greater than P (which cannot happen in our
model due to the Work Law, but can happen in models that incorporate caching and other
processor effects), we say that the application exhibits superlinear speedup.

The parallelism of the dag is defined as Work(A)/Span(A). For a deterministic com-
putation, the parallelism is therefore T1/T1. The parallelism represents the maximum
possible speedup on any number of processors, which follows from the Span Law, because
T1/TP

 T1/Span(A) = Work(A)/Span(A). For example, the parallelism of the dag in
Figure 2-1 is 19/10 = 1.9, which means that any advantage gained by executing it with
more than 2 processors is marginal, since the additional processors will surely be starved for
work. The parallelism simultaneously provides a limit on the possibility of attaining perfect
linear speedup. To see this point, suppose that P > Work(A)/Span(A). In this case the
span law implies that the speedup satisfies T1/TP

 Work(A)/Span(A) < P . Moreover, in
an ideal parallel computer, the more processors that are used beyond the parallelism — the
more that P exceeds Work(A)/Span(A) — the less perfect the parallel speedup.

In practice, to achieve linear speedup and minimize the overhead of Cilk’s randomized
work-stealing scheduler, a Cilk computation should exhibit ample parallelism, that is, the
parallelism of the computation should exceed the number of processors by a sufficient margin
[146], typically a factor of 10 [100, p. 783].

2The literature also uses the terms (computational) depth [51] and critical-path length [56].

34

2.5 Scheduling

A greedy scheduler [57,66,128,170] schedules a computation without ever leaving a proces-
sor idle if there is work that can be done. If a computation scheduled by a greedy scheduler
produces a dag A, then we have

T
P

 Work(A)/P + Span(A) . (2.3)

This bound assumes an ideal computer and ignores overheads for scheduling. For a de-
terministic computation, if the parallelism exceeds the number P of processors by a suffi-
cient margin, Inequality (2.3) guarantees near-perfect linear speedup. Specifically, if P ⌧
Work(A)/Span(A), then Span(A) ⌧ Work(A)/P , and hence Inequality (2.3) yields T

P

⇡
Work(A)/P , and the speedup is T1/TP

⇡ P .
A (randomized) work-stealing scheduler [24,56,58,146] operates as follows. When the

runtime system starts up, it allocates as many operating-system threads, called workers,
as there are processors (although the programmer can override this default decision). Each
worker’s stack operates like a deque , or double-ended queue. When a subroutine is spawned,
the subroutine’s activation frame containing its local variables is pushed onto the bottom of
the deque. When it returns, the frame is popped off the bottom. Thus, in the common case,
the parallel code operates just like serial code and imposes little overhead. When a worker
runs out of work, however, it becomes a thief and “steals” the top frame from another vic-
tim worker’s deque, where the victim worker is chosen uniformly at random from the set of
workers. In general, the worker operates on the bottom of the deque, and thieves steal from
the top. This strategy has the great advantage that all communication and synchroniza-
tion is incurred only when a worker runs out of work. If an application exhibits sufficient
parallelism, stealing is infrequent, and thus the cost of bookkeeping, communication, and
synchronization to effect a steal is negligible.

Work-stealing achieves good expected running time based on the work and span. In
particular, if A is the executed dag on P processors, the expected execution time T

P

can be
bounded as

T
P

 Work(A)/P +O(Span(A)) , (2.4)

where we omit the notation for expectation for simplicity. This bound, which is proved
in [58], assumes an ideal computer, but it includes scheduling overhead. For a deterministic
computation, if the parallelism exceeds the number P of processors sufficiently, Inequal-
ity (2.4) guarantees near-linear speedup. Specifically, if P ⌧ Work(A)/Span(A), then
Span(A) ⌧ Work(A)/P , and hence Inequality (2.4) yields T

P

⇡ Work(A)/P , and the
speedup is T1/TP

⇡ P .
Another relevant measure is the number of steals that occur during a computation. As is

shown in [58], the expected number of steals incurred for a dag A produced by a P -processor
execution is O(P · Span(A)).

2.6 Parallel reduction mechanisms

A popular technique for coordinating safe concurrent updates to a shared variable or data
structure without contention is to use parallel reductions [50, 86, 204, 224, 231, 278, 330].
Many modern concurrency platforms provide some form of (parallel) reduction mecha-
nism [144, 196, 241, 278, 306, 330, 356, 409]. A reduction mechanism coordinates parallel up-

35

(a)

1 x = 10
2 x++
3 x += 3
4 x += �2
5 x += 6
6 x��
7 x += 4
8 x += 3
9 x++

10 x += �9

(b)

1 x = 10
2 x++
3 x += 3
4 x += �2
5 x += 6

x0 = 0
6 x0��
7 x0 += 4
8 x0 += 3
9 x0++

10 x0 += �9
x += x0

(c)

1 x = 10
2 x++
3 x += 3

x0 = 0
4 x0 += �2
5 x0 += 6
6 x0��

x00 = 0
7 x00 += 4
8 x00 += 3
9 x00++

10 x00 += �9
x += x0

x += x00

Figure 2-2: The intuition behind reducers. (a) A series of additive updates performed on a
variable x. (b) The same series of additive updates split between two “views” x and x0. The two
update sequences can execute in parallel and are combined at the end. (c) Another valid splitting
of these updates among the views x, x0, and x00.

dates to a shared variable by accumulating concurrent updates in distinct, local views of
the variable. When the parallel subcomputations that update the variable complete, these
views are combined together, or reduced , using a binary Reduce operator. A reduction
mechanism typically encapsulates the nondeterministic behavior induced by parallel updates
as long as the update and reduce operations satisfy associativity and commutativity.

Modern dialects of Cilk, including Cilk++ [246], Cilk Plus [196], and Cilk-M [238],
provide a parallel reduction mechanism called a reducer hyperobject [144] (or simply a
reducer). A reducer is defined in terms of a binary associative Reduce operator, such
as sum, list concatenation, logical AND, etc. Like other parallel reduction mechanisms,
updates to a reducer are accumulated in local views, which the runtime system combines
automatically with calls to Reduce when subcomputations join. Unlike other reduction
mechanisms, however, the Reduce operator need not be commutative; as long as Reduce
is associative, then the Cilk program has serial semantics.

Figure 2-2 illustrates the basic idea of a reducer. The example involves a series of additive
updates to a variable x. When the code in Figure 2-2(a) is executed serially, the resulting
value is x = 16. Figure 2-2(b) shows the same series of updates split between two “views,”
x and x0, of the variable. These two views may be evaluated independently in parallel and
then combined, or reduced , at the end, as Figure 2-2(b) shows. As long as the values for
the views x and x0 are not inspected in the middle of the computation, the associativity of
addition guarantees that the final result is deterministically x = 16. This series of updates
could be split anywhere else along the way and yield the same final result. Figure 2-2(c)
demonstrates, for example, how the computation can be split across three views, x, x0,
and x00. To encapsulate nondeterminism in this way, each of the views must be reduced with
an associative Reduce operator (addition for this example) and intermediate views must
be initialized to the identity for Reduce (0 for this example).

Reducer hyperobjects support this kind of decomposition of update sequences automat-
ically without requiring the programmer to manually create various views. When a function
spawns, the spawned child inherits the parent’s view of the reducer. If the child returns
before the continuation executes, the child can return the view and the chain of updates

36

can continue. If the continuation begins executing before the child returns, however, then
the continuation receives a new view initialized to the identity for the associative Reduce
operator. Sometime at or before the sync that joins the spawned child with its parent, the
two views are combined with Reduce. If Reduce is indeed associative, then the result is
the same as if all the updates had occurred serially. Indeed, if the program is run on one
processor, then the entire computation updates only a single view without ever invoking the
Reduce operator, in which case the behavior is virtually identical to a serial execution that
uses an ordinary object instead of a hyperobject.

Formally, a reducer is defined in terms of an algebraic monoid : a triple (T,⌦, e), where
T is a set and ⌦ is an associative binary operation over T with identity e. From an object-
oriented programming perspective, the set T is a base type which provides a member function
Reduce that implements the binary operator ⌦ and a member function Create-Identity
that constructs an identity element of type T . The base type T also provides one or more
Update functions, which modify an object of type T . The reducer library included in
modern Cilk dialects provides a list of commonly used monoids. A programmer can also
declare a reducer with a user-defined view type, so long as she defines a Create-Identity
function to create an identity view of that type and a Reduce function that implements a
binary associative operator for that type.

Reducers complicate the ordinary work-span analysis of a Cilk program, because the Cilk
runtime system maintains views of a reducer nondeterministically. Chapter 3 describes this
nondeterminism and introduces a performance model for bounding the parallel execution
time of a program that uses reducers. In particular, Chapter 3 shows that Cilk programs
that use reducers achieve the expected runtime bound:

T
P

 Work(A
⌫

)/P +O(⌧2 · Span(A
⌫

)) , (2.5)

where A
⌫

is the “user dag” of A — the dag from the programmer’s perspective — and ⌧
is an upper bound on the time it takes to perform a Reduce, which may be a function
of the input size. For nondeterministic computations satisfying Inequality (2.5), we can
define the effective parallelism as Work(A

⌫

)/(⌧2 ·Span(A
⌫

)). Just as with parallelism for
deterministic computations, if the effective parallelism exceeds the number P of processors
by a sufficient margin, then the P -processor execution is guaranteed to attain near-linear
speedup over the serial execution.

2.7 Worker-local storage

Worker-local storage3 is memory that is private to a particular worker. Conceptually, in
a P -processor execution of a parallel program, a worker-local variable can be implemented
using a shared-memory array of P instances of that variable, where each instance belongs to
a particular worker. Work-stealing runtime systems frequently employ worker-local storage
to store the state of each worker in the system, such as the worker’s deque.

In practice, many dynamic-multithreading concurrency platforms offer a mechanism to
support worker-local storage in a user-level program. The Intel Cilk Plus runtime system,
for example, provides the __cilkrts_get_worker_number API call, which returns an integer
that identifies the worker executing a strand, and the __cilkrts_get_nworkers API call,
to get P , the number of workers in the system. A Cilk program can therefore implement

3Also called thread-local storage [372].

37

its own variable x in worker-local storage by allocating its own array of P instances of x
and allowing each strand to access the instance of x corresponding to the ID of the worker
executing the strand.

Although worker-local storage shares some similarities with reducers — both mecha-
nisms, for example, can ensure that distinct workers see distinct instances of a variable —
worker-local storage differs from reducers in several important ways. Variables in a dynamic
multithreaded program that are stored in worker-local storage can behave nondeterministi-
cally, based on the runtime system’s nondeterministic choice of which worker executes which
strand. A reducer, meanwhile, provides a processor-oblivious abstraction for a variable and
adheres to “peer-set semantics” (defined in Chapter 9) which dictates when reading the
value of the reducer is guaranteed to return a deterministic result. Furthermore, multiple
simultaneous runs of a function that uses worker-local variables can interfere if the program-
mer is not careful to ensure that the different function instantiations use disjoint regions of
worker-local storage. Chapter 3 compares worker-local storage and reducers in more detail.
Of the dynamic multithreaded algorithms described in this thesis, only Prism and Prismr
(Chapter 4) use worker-local storage.

38

Chapter 3

A Work-Efficient Parallel
Breadth-First Search Algorithm

This chapter examines the problem of conducting a breadth-first search of a graph in parallel
and presents PBFS [248, 344], a work-efficient algorithm to solve this problem. This work
was conducted in collaboration with Charles E. Leiserson.

3.1 Introduction

Algorithms to search a graph in a breadth-first manner have been studied for over 50 years.
The first breadth-first search (BFS) algorithm was discovered by Moore [286] while studying
the problem of finding paths through mazes. Lee [234] independently discovered the same
algorithm in the context of routing wires on circuit boards. A variety of parallel BFS algo-
rithms have since been explored [29, 36, 96, 225, 413, 418]. Some of these parallel algorithms
are work efficient , meaning that the total number of operations performed is the same
to within a constant factor as that of a comparable serial algorithm. That constant factor,
which we call the work efficiency , can be important in practice, but few if any papers
actually measure work efficiency. We present a parallel BFS algorithm, called PBFS, whose
performance scales linearly with the number of processors, both in theory and in practice,
and for which the work efficiency is nearly 1, as measured by comparing its performance on
benchmark graphs to the classical FIFO-queue algorithm [100, Section 22.2].

Given a graph G = (V,E) with vertex set V = V (G) and edge set E = E(G), the
BFS problem is to compute for each vertex v 2 V the distance v.dist that v lies from a
distinguished source vertex v0 2 V . The BFS problem measures distance as the minimum
number of edges on a path from v0 to v in G. To simplify the statement of results, we shall
assume that G is connected and undirected, although the algorithms we shall explore apply
equally as well to unconnected graphs, digraphs, and multigraphs.

Figure 3-1 presents Serial-BFS, a variant of the classical serial algorithm [100, Section
22.2] for computing BFS which uses a FIFO queue as an auxiliary data structure. The
FIFO can be implemented simply as an array with two pointers to the head and tail of
the items in the queue. Enqueueing an item consists of incrementing the tail pointer and
storing the item into the array at the new pointer location. Dequeueing consists of removing
the item referenced by the head pointer and incrementing the head pointer. Because only
⇥(1) operations are required to enqueue or dequeue an item, the work of Serial-BFS is
⇥(V +E). Moreover, the constants hidden by the asymptotic notation are small due to the

39

Serial-BFS(G, v0)

1 for u 2 V (G)� {v0}
2 u.dist = 1
3 v0.dist = 0
4 Q = {v0}
5 while Q 6= ;
6 u = Dequeue(Q)
7 for v 2 V (G) such that (u, v) 2 E(G)
8 if v.dist == 1
9 v.dist = u.dist + 1

10 Enqueue(Q, v)

Figure 3-1: A standard serial breadth-first search algorithm operating on a graph G and source
vertex v0 2 V (G). The algorithm employs a FIFO queue Q as an auxiliary data structure to compute
for each v 2 V (G) the distance v.dist that v lies from v0.

extreme simplicity of the FIFO operations.
Although efficient, the FIFO queue hinders parallelization of Serial-BFS. Parallelizing

Serial-BFS while leaving the FIFO queue intact yields minimal parallelism for sparse
graphs — graphs for which |E| ⇡ |V |. The reason is that if each Enqueue operation
must be serialized, then the span of the computation must have length ⌦(V). A work-
efficient algorithm can thus have parallelism at most ⇥(V + E)/⌦(V), which is O(1) when
|E| = O(V).1

Replacing the FIFO queue with another data structure can compromise the work-
efficiency of a BFS algorithm, however, because FIFO’s are so simple and fast. This work
introduces a multiset data structure, called a bag , which supports insertion essentially as
fast as a FIFO, even when constant factors are considered. In addition, bags can be split
and unioned efficiently.

We have designed a parallel BFS algorithm and implemented it in Cilk++ [190,246]. The
PBFS algorithm, which employs bags instead of a FIFO, uses the reducer hyperobject [144]
feature of Cilk++. Our implementation of PBFS runs comparably on a single processor to
a good implementation of Serial-BFS. The parallelism of PBFS on a given graph G
decreases with the diameter of G, that is, the maximum distance between any two vertices
in G. For a variety of benchmark graphs whose diameters are significantly smaller than the
number of vertices — a common occurrence in practice — PBFS demonstrates high levels
of parallelism and generally good speedup with the number of processor cores.

Figure 3-2 shows the typical speedup our PBFS implementation obtains on a large bench-
mark graph, in this case, for a sparse matrix called Cage15 arising from DNA electrophore-
sis [395]. This undirected graph has |V | = 5,154,859 vertices and |E| = 99,199,551 edges,
and a BFS finds all vertices within distance 50 of the source vertex. The code was run on
an Intel Core i7 machine with eight 2.53GHz processing cores, 12GiB of RAM, and two
8MiB L3-caches, each shared among 4 cores. As the figure shows, although PBFS scales well
initially, it attains a speedup of only about 5 on 8 cores, even though the parallelism in this
graph is nearly 700. The figure additionally plots the impact of artificially increasing the
computational intensity — the ratio of the number of CPU operations to the number
of memory operations — and suggests that this low speedup is due to limitations of the
memory system, rather than to the inherent parallelism in the algorithm.

PBFS exhibits two sources of nondeterminism. First, because the program employs a

1For convenience, the notation for set cardinality is omitted within asymptotic notation.

40

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7 8

S
p
e
e

d
u
p

Processors

PBFS + comp
PBFS
Serial BFS

Figure 3-2: The performance of PBFS for the Cage15 graph showing speedup curves for serial BFS,
PBFS, and a variant of PBFS where the computational intensity has been artificially enhanced and
the speedup normalized.

bag reducer which operates in nonconstant time, the work and span of PBFS can vary
from run to run depending upon how Cilk++’s work-stealing scheduler load-balances the
computation. Second, for efficient implementation, PBFS contains a benign race condition,
which does not affect the correctness of PBFS, but can cause PBFS to perform additional
work nondeterministically.

Our theoretical analysis of PBFS bounds the additional work due to the bag reducer when
the race condition is resolved using mutual-exclusion locks. For example, on a connected
graph G with vertex set V = V (G), edge set E = E(G), diameter D, and O(1) maximum
out-degree — maximum number of outgoing edges from any vertex v 2 V — this “locking”
version of PBFS performs a BFS in ⇥(V +E)/P +O(D lg3(V/D)) time on P processors and
exhibits effective parallelism ⌦((V + E)/D lg3(V/D)), which is considerable when D ⌧ V ,
even if G is sparse. Our method of analysis is general and can be applied to other programs
that employ reducers. Consequently, this model allows programmers to predict how the use
of a reducer will affect the performance of any Cilk program. We leave it as an open question
how to analyze the extra work when the race condition is left unresolved.

PBFS’s theoretical guarantees justify the scalability that our PBFS implementation dis-
plays. Consequently, when applying PBFS to other software, performance engineers can
make quantitative predictions about how PBFS will perform and have confidence that PBFS
will satisfy those predictions in practice. Section 3.4 describes an example application of
PBFS to performance-engineering another program. Dr. Yuxiong He, formerly of Cilk Arts
and Intel Corporation, used PBFS to parallelize the Murphi model-checking tool [118] and
observed that the parallel Murphi using PBFS scales well, attaining a large speedup factor
of 15.5 on 16 cores.

41

Outline

The main body of this chapter first describes PBFS and its empirical performance and then
delves into its theoretical analysis.

Sections 3.2 through 3.4 describe PBFS and its empirical performance. Section 3.2
describes the basic PBFS algorithm, and Section 3.3 describes the implementation of the
bag data structure. Section 3.4 studies PBFS’s empirical performance.

Sections 3.5 through 3.7 describe how to cope with the nondeterminism of reducers in
the theoretical analysis of PBFS. Section 3.5 gives a formal model for reducer behavior, and
Section 3.6 develops a theory for analyzing programs that use reducers. Section 3.7 employs
this theory to analyze the performance of PBFS.

Section 3.8 concludes by discussing thread-local storage as an alternative to reducers.

3.2 The PBFS algorithm

This section presents the PBFS algorithm. We describe the “layer synchronization” strategy
PBFS employs, which requires PBFS to use a data structure to maintain a “layer” of the
graph. We describe how PBFS uses a “bag” to implement a layer and perform breadth-first
search. Section 3.3 describes the “bag” data structure in detail.

PBFS uses layer synchronization [29, 418] to parallelize the breadth-first search of
an input graph G. Let v0 2 V (G) be the source vertex, and define layer d to be the set
V
d

✓ V (G) of vertices at distance d from v0. For example, layer 0 is V0 = {v0}. Each
iteration processes layer d by checking all the neighbors of vertices in V

d

for those that
should be added to V

d+1.
PBFS implements layers using an unordered-set data structure, called a bag , which

supports efficient parallel traversal over the elements in the set and provides the following
operations:

• S = Bag-Create(): Create a new empty bag.
• Bag-Insert(S, x): Insert element x into bag .
• Bag-Union(S1, S2): Move all the elements from S2 into S1, and destroy S2.

As Section 3.3 shows, Bag-Create operates in O(1) time, and Bag-Insert operates in
O(1) amortized time and O(lg n) worst-case time on a bag with n elements. Moreover,
Bag-Union operates in O(lg n) worst-case time.

Let us walk through the pseudocode for PBFS, which is shown in Figure 3-3. For the
moment, ignore the revert and reducer keywords in lines 18 and 19.

After initialization, PBFS begins the while loop in line 17 which iteratively calls the
auxiliary function Process-Layer to process layer d = 0, 1, . . . , D, where D is the diameter
of the input graph G. Section 3.3 walks through the pseudocode of Process-Layer and
Process-Pennant in detail, but we shall give a high-level description of these functions
here. To process V

d

, Process-Layer extracts each vertex u in V
d

in parallel and examines
each edge (u, v) in parallel. If v has not yet been visited — v.dist is infinite (line 27) —
then line 28 sets v.dist = d+ 1 and line 29 inserts v into bag V

d+1.
This description skirts over two subtleties that require discussion, both involving races.
First, the update of v.dist in line 28 creates a race, since a processor processing vertex u

and one processing vertex u0 might both be examining vertex v at the same time. Theoret-
ically, both processors might check whether v.dist is infinite in line 27, discover that it is,
and both proceed to update v.dist . Fortunately, this race is benign, meaning that it does
not affect the correctness of the algorithm. Both processors set v.dist to the same value, and

42

PBFS(G, v0)

11 parallel for v 2 V (G)� {v0}
12 v.dist = 1
13 v0.dist = 0
14 d = 0
15 V0 = Bag-Create()
16 Bag-Insert(V0, v0)
17 while Vd 6= ;
18 Vd+1 = new reducer Bag-Create()
19 Process-Layer(revert Vd, Vd+1, d)
20 d = d+ 1

Process-Layer(Vd, Vd+1, d)

21 for k = blg |Vd|c downto 0
22 if Vd[k] 6= null
23 Process-Pennant(Vd[k], Vd+1, d)

Process-Pennant(N,Vd+1, d)

24 if Pennant-Size(N) < grainsize
25 for u 2 N
26 parallel for v 2 Adj[u]
27 if v.dist == 1
28 v.dist = d+ 1 // benign race
29 Bag-Insert(Vd+1, v)
30 return

31 N 0 = Pennant-Split(N)
32 spawn Process-Pennant(N 0, Vd+1, d)
33 Process-Pennant(N,Vd+1, d)
34 sync

Figure 3-3: The PBFS algorithm operating on a graph G with source vertex v0 2 V (G). PBFS
uses the parallel subroutine Process-Layer to process each layer, which is described in detail in
Section 3.3. PBFS contains a benign race in line 28.

28.1 if Try-Lock(v)
28.2 if v.dist == 1
28.3 v.dist = d+ 1
28.4 Bag-Insert(Vd+1, v)
28.5 Release-Lock(v)

Figure 3-4: Modification to the PBFS algorithm to resolve the benign race.

hence no inconsistency arises from updating the location at the same time. Both processors
go on to insert v into bag V

d+1 in line 29, which could induce another race. Putting that
issue aside for the moment, notice that inserting multiple copies of v into V

d+1 does not
affect correctness, only performance for the extra work it will take when processing layer
d + 1, because v will be encountered multiple times. As Section 3.4 discusses, the amount
of extra work is small, because the race is rarely actualized.

Second, a race in line 29 occurs due to parallel insertions of vertices into V
d+1. We

employ the reducer functionality to avoid the race by making V
d+1 a bag reducer (via the

reducer keyword on line 18), where Bag-Union is the associative operation required by
the reducer mechanism. The identity for Bag-Union — an empty bag — is created by
Bag-Create. In the common case, line 29 simply inserts v into the local view, which,

43

+ =
y x y

x

Figure 3-5: Illustration of the Pennant-Union operation, which combines two pennants, each of
size 2k, in constant time to form a pennant of size 2k+1.

as Section 3.3 shall show, is generally as efficient as pushing v onto a FIFO, as is done by
Serial-BFS. To process layer V

d+1 in the next iteration, the revert keyword on line 19
converts V

d+1 from a reducer into an ordinary bag that can Process-Layer can read in
parallel.

Unfortunately, we are not able to analyze PBFS due to unstructured nondeterminism
created by the benign race, but we can analyze a version where the race is resolved using a
mutual-exclusion lock. The locking version involves replacing lines 28 and 29 with the code
in Figure 3-4. In the code, the call Try-Lock(v) in line 28.1 attempts to acquire a lock on
the vertex v. If it is successful, we proceed to execute lines 28.2–28.5. Otherwise, we can
abandon the attempt, because we know that some other processor has succeeded, and thus
v.dist will be set to d+1 regardless. There is therefore no contention on v’s lock, because no
processor ever waits for another, and processing an edge (u, v) always takes constant time.
The apparently redundant lines 27 and 28.2 avoid the overhead of lock acquisition when
v.dist has already been set.

3.3 The bag data structure

This section describes the bag data structure for implementing a dynamic unordered set.
We describe an auxiliary data structure called a “pennant.” We show how bags can be
implemented using pennants, and we provide algorithms for Bag-Create, Bag-Insert,
and Bag-Union. We describe how to extract the elements in a bag in parallel. We discuss
some optimizations of this structure that PBFS employs.

Pennants

A pennant is a tree of 2k nodes, where k is a nonnegative integer. Each node x in this tree
contains two pointers x. left and x.right to its children. The root of the tree has only a left
child, which is a complete binary tree of the remaining elements.

Two pennants x and y of size 2k can be combined to form a pennant of size 2k+1 in ⇥(1)
time using the following Pennant-Union function, which is illustrated in Figure 3-5.

Pennant-Union(x, y)
35 y.right = x. left
36 x. left = y
37 return x

The function Pennant-Split performs the inverse operation of Pennant-Union in
⇥(1) time. Given a pennant x containing at least 2 elements, Pennant-Split modifies x
and returns a new pennant y such that each of x and y contain half of the elements originally
in x.

44

Figure 3-6: A bag with 23 = 0101112 elements.

Pennant-Split(x)
38 y = x. left
39 x. left = y.right
40 y.right = null
41 return y

Bags

A bag is a collection of pennants, no two of which have the same size. PBFS represents a bag
S using a fixed-size array S[0 . . r], called the backbone , where 2r+1 exceeds the maximum
number of elements ever stored in a bag. Each entry S[k] in the backbone contains either a
null pointer or a pointer to a pennant of size 2k. Figure 3-6 illustrates a bag containing 23
elements, for example.

The Bag-Create function allocates space for a fixed-size backbone of null pointers,
which takes ⇥(r) time. This bound can be improved to ⇥(1) by keeping track of the largest
nonempty index in the backbone.

The Bag-Insert function employs an algorithm similar to that of incrementing a binary
counter. To implement Bag-Insert, the given element is first packaged as a pennant x of
size 1. We then insert x into bag S using the following method.

Bag-Insert(S, x)
42 k = 0
43 while S[k] 6= null
44 x = Pennant-Union(S[k], x)
45 S[k++] = null
46 S[k] = x

The analysis of Bag-Insert mirrors the analysis for incrementing a binary counter [100,
Ch. 17]. Since every Pennant-Union operation takes constant time, Bag-Insert takes
⇥(1) amortized time and ⇥(lg n) worst-case time to insert into a bag containing n elements.

The Bag-Union function uses an algorithm similar to ripple-carry addition of two bi-
nary counters. To implement Bag-Union, we first examine the process of unioning three
pennants into two pennants, which operates like a full adder. Three pennants x, y, and z,
where each either has size 2k or is empty, can be merged to produce a pair of pennants (s, c),
where s has size 2k or is empty, and c has size 2k+1 or is empty. The following table details
the function FA(x, y, z) in which (s, c) is computed from (x, y, z), where 0 means that the
designated pennant is empty, and 1 means that it has size 2k:

45

x y z s c
0 0 0 null null
1 0 0 x null
0 1 0 y null
0 0 1 z null
1 1 0 null Pennant-Union(x, y)
1 0 1 null Pennant-Union(x, z)
0 1 1 null Pennant-Union(y, z)
1 1 1 x Pennant-Union(y, z)

With this full-adder function in hand, Bag-Union can be implemented as follows:

Bag-Union(S1, S2)

47 y = null // The “carry” bit.
48 for k = 0 to r
49 (S1[k], y) = FA(S1[k], S2[k], y)

Because every Pennant-Union operation takes constant time, computing the value of
FA(x, y, z) also takes constant time. To compute all entries in the backbone of the resulting
bag takes ⇥(r) time. This algorithm can be improved to ⇥(lg n), where n is the total number
of elements in the two bags, by maintaining the largest nonempty index of the backbone of
each bag and unioning the bag with the smaller such index into the one with the larger.

Given this design for the bag data structure, let us now return to the pseudocode for
Process-Layer and Process-Pennant in Figure 3-3. To process the elements of V

d

,
Process-Layer calls Process-Pennant on each non-null pennant N in V

d

(on lines 21–
23) in parallel. Process-Pennant processes pennant N using parallel divide-and-conquer
over its elements. For the recursive case, line 31 splits N , removing half of its elements and
placing them in N 0. Lines 32 and 33 process the two halves recursively in parallel.

This recursive decomposition continues until N has fewer than grainsize elements,
which line 24 checks. Each vertex u in N is extracted in line 25, and as described in
Section 3.2, line 26 examines each of its edges (u, v) in parallel. If v has not yet been visited
— line 27 discovers that v.dist is infinite — then line 28 sets v.dist = d + 1 and line 29
inserts v into bag V

d+1.

Optimization

To improve the constant in the performance of Bag-Insert, we made some simple but
important modifications to pennants and bags, which do not affect the asymptotic behavior
of the algorithm. First, in addition to its two pointers, every pennant node in the bag stores
a constant-size array of grainsize elements, all of which are guaranteed to be valid, rather
than just a single element. Our PBFS software uses the value grainsize = 128. Second,
in addition to the backbone, the bag itself maintains an additional pennant node of size
grainsize called the hopper , which it fills gradually. These modifications impact the bag
operations and PBFS algorithm as follows.

First, Bag-Create allocates additional space for the hopper. This overhead is small as
the allocation is done only once per bag.

Second, Bag-Insert targets the hopper when inserting an element, rather than the
pennants in the backbone of the bag. If the hopper is full, then it inserts the full hopper
into the backbone of the bag and allocates a new hopper into which it inserts the element.
This optimization does not change the asymptotic running-time analysis of Bag-Insert,

46

but the code runs much faster. In the common case, Bag-Insert simply inserts the element
into the hopper with code nearly identical to that for inserting an element into a FIFO. Only
once in every grainsize insertions does a Bag-Insert trigger the insertion of the now full
hopper into the backbone of the bag.

Third, when unioning two bags S1 and S2, Bag-Union also combines their hoppers.
Bag-Union first determines which bag has the less full hopper. For this description, let us
assume that S1 has the less full hopper, since the alternative case is symmetric. Bag-Union
then copies the elements of S1’s hopper into S2’s hopper until either S2’s hopper is full or
S1’s hopper is empty. If it empties S1’s hopper, then Bag-Union proceeds to merge the
two bags as usual and uses S2’s hopper as the hopper for the resulting bag. If it fills S2’s
hopper, however, line 47 of Bag-Union sets y to S2’s hopper and sets S1’s hopper, now
containing fewer elements, to be the hopper for the resulting bag before proceeding as usual.

Finally, the for loop on lines 21–23 in Process-Layer additionally calls Process-
Pennant on a unit-sized pennant containing the hopper of bag V

d

.

3.4 Experimental results

We implemented optimized versions of both the PBFS algorithm in Cilk++ and Serial-BFS
in C++. This section compares their performance on a suite of benchmark graphs. Figure 3-7
summarizes the results.

Implementation and testing

Our implementation of PBFS differs from the abstract algorithm in some notable ways.
First, our implementation of PBFS does not use locks to resolve the benign races described
in Section 3.2. Second, our implementation assumes that all vertices have bounded out-
degree, and indeed most of the vertices in our benchmark graphs have relatively small degree.
Finally, our implementation of PBFS sets grainsize = 128, which seems to perform well in
practice. The Serial-BFS implementation uses an array, sized to the number of vertices
in the input graph, and two pointers to implement the FIFO queue in the simplest way
possible.

These implementations were tested on the eight benchmark graphs described in Fig-
ure 3-7. Kkt_power, Cage14, Cage15, Freescale1, Wikipedia (as of February 6, 2007), and
Nlpkkt160 are all from the University of Florida sparse-matrix collection [107]. Grid3D200
is a 7-point finite difference mesh generated using the Matlab Mesh Partitioning and Graph
Separator Toolbox [159]. The RMat23 matrix [251], which models scale-free graphs, was gen-
erated by using repeated Kronecker products [28]. Parameters A = 0.7, B = C = D = 0.1
for RMat23 were chosen in order to generate skewed matrices. We stored these graphs in a
compressed-sparse-rows format [374] in main memory for our empirical tests.

We ran our experiments on the machine described in Figure 3-8. All code was compiled
using -O3 optimization.

Results

Figure 3-7 presents the performance of PBFS on eight different benchmark graphs. (The
parallelism was computed using the Cilkview [180] tool and does not take into account effects
from reducers.) As can be seen in Figure 3-7, PBFS performs well on these benchmark

47

Name
Description Spy Plot

|V | Work Serial-BFS T1

|E| Span PBFS T1

D Parallelism PBFS T1/T8

Kkt_power 2.05M 241M 0.504
Optimal power flow, 12.76M 2.3M 0.359
nonlinear opt. 31 103.85 5.983

Freescale1

Circuit simulation

3.43M 349M 0.285
17.1M 2.3M 0.327
128 152.72 5.190

Cage14

DNA electrophoresis

1.51M 390M 0.262
27.1M 1.6M 0.283
43 245.70 5.340

Wikipedia 2.4M 606M 0.914
Links between 41.9M 3.4M 0.721
Wikipedia pages 460 178.73 6.381

Grid3D200 8M 1 009M 1.544
3D 7-point 55.8M 12.7M 1.094
finite-diff mesh 598 79.27 4.862

RMat23 2.3M 1 050M 1.100
Scale-free 77.9M 11.3M 0.936
graph model 8 93.22 6.500

Cage15

DNA electrophoresis

5.15M 1 410M 1.065
99.2M 2.1M 1.142
50 674.65 5.263

Nlpkkt160

Nonlinear optimization

8.35M 3 060M 1.269
225.4M 9.2M 1.448
163 331.45 5.983

Figure 3-7: Performance results for breadth-first search. The vertex and edge counts listed corre-
spond to the number of vertices and edges evaluated by Serial-BFS, while D denotes the length of
the longest shortest path discovered by Serial-BFS. The work and span are measured in instruc-
tions. All running times are measured in seconds.

graphs. For five of the eight benchmark graphs, PBFS is as fast or faster than Serial-
BFS. Moreover, on the remaining three benchmarks, PBFS is at most 15% slower than
Serial-BFS.

This performance advantage PBFS holds over Serial-BFS on several of the benchmark
graphs might be due to how PBFS uses memory. Whereas Serial-BFS performs a single
linear scan through an array as it processes its queue, PBFS is constantly allocating and
deallocating fixed-size chunks of memory of size grainsize for the bag. Because these
chunks do not change in size from allocation to allocation, the memory manager incurs
little work to perform these allocations. Perhaps more importantly, PBFS can frequently
reuse previously allocated chunks, making it more cache-friendly. This improvement due
to memory reuse is also apparent in some serial BFS implementations that use two queues
instead of one.

Although PBFS generally performs well on these benchmarks, we explored why it was
only attaining a speedup of 5 or 6 on 8 processor cores. Inadequate parallelism is not the
answer, as most of the benchmarks have over 100 parallelism. Our studies indicate that the
multicore processor’s memory system may be hurting performance in two ways.

48

CPU Intel Core i7
Clock 2.53GHz
Hyperthreading Disabled
Cores per processor chip 4
Processor chips (sockets) 2
L1 data cache/core 32KiB
L2 cache/core 256KiB
L3 cache/socket 8MiB
DRAM 12GiB
Compiler Cilk++ compiler

Figure 3-8: Technical specifications of the machine used for benchmarking.

First, the memory bandwidth of the system seems to limit performance for several of
these graphs. For Wikipedia and Cage14, when we run 8 independent instances of PBFS
serially on the 8 processor cores of our machine simultaneously, the total runtime is at least
20% worse than the expected 8T1. This experiment suggests that the system’s available
memory bandwidth limits the performance of the parallel execution of PBFS.

Second, for several of these graphs, contention from true and false sharing on the dis-
tance array appears to constrain speedup. Placing each location in the distance array on a
different cache line tends to increase the speedups somewhat, although it slows down overall
performance due to the loss of spatial locality. We attempted to modify PBFS to mitigate
contention by randomly permuting or rotating each adjacency list. Although these ap-
proaches improve the observed speedups, they slow down overall performance due to loss of
locality. Despite its somewhat lower relative speedup numbers, therefore, the unadulterated
PBFS seems to yield the best overall performance.

PBFS obtains good performance despite the benign race which induces redundant work.
On none of these benchmarks does PBFS examine more than 1% of the vertices and edges
redundantly. Using a mutex lock on each vertex to resolve the benign race costs a substantial
overhead in performance, typically slowing down PBFS by more than a factor of 2.

Yuxiong He [179], formerly of Cilk Arts and Intel Corporation, used PBFS to parallelize
the Murphi model-checking tool [118]. Murphi is a popular tool for verifying finite-state ma-
chines and is widely used in cache-coherence algorithms and protocol design, link-level pro-
tocol design, executable memory-model analysis, and analysis of cryptographic and security-
related protocols. As can be seen in Figure 3-9, a parallel Murphi using PBFS scales well,
even outperforming a version based on parallel depth-first search and attaining the relatively
large speedup factor of 15.5 on 16 cores.

3.5 Modeling reducers

This section extends the dag model of dynamic multithreading presented in Chapter 2 to
incorporate reducer hyperobjects. Although the parallel speedup of deterministic dynamic
multithreaded programs can be bounded theoretically using work-span analysis, as presented
in Chapter 2, obtaining bounds on the speedup of a program such as PBFS can be more
challenging, because of its use of reducer hyperobjects. In particular, programs that use
reducers are nondeterministic because the runtime system creates and reduces views based
on scheduling happenstance. For such nondeterministic programs, the work of a P -processor
execution might not readily be related to the serial running time. We define the notion
of a “user dag” for a computation, which represents the strands that are visible to the

49

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
p

ee
d

u
p

Number of Cores

BFS
DFS

Figure 3-9: Multicore Murphi application speedup on a 16-core AMD processor [179]. Even though
the DFS implementation uses a parallel depth-first search for which Cilk++ is particularly well suited,
the BFS implementation, which uses the PBFS library, outperforms it.

programmer. We also define the notion of a “performance dag,” which includes the strands
that the runtime system implicitly invokes.

To analyze PBFS, we think of the bag data structure, like other reducers, as an algebraic
monoid. In the case of bags, the Reduce function is Bag-Union, the Create-Identity
function is Bag-Create, and the Update function is Bag-Insert. Although the Reduce
operator for bags is not actually associative, bags admit an idea of “logical” associativity,
which is sufficient in practice. If we have three bags S1, S2, and S3, we do not care whether
the bag data structures for (S1 [S2) [S3 and S1 [(S2 [S3) are identical, only that they
contain the same elements.

To specify the nondeterministic behavior encapsulated by reducers precisely, consider a
computation A from running a dynamic multithreaded program, and let V (A) be the set of
executed strands. We assume that the implicitly invoked functions for a reducer — Reduce
and Create-Identity — execute only serial code. We model each execution of one of
these functions as a single strand containing the instructions of the function. If an Update
causes the runtime system to invoke Create-Identity implicitly, the serial code arising
from Update is broken into two strands sandwiching the point where Create-Identity
is invoked.

We partition V (A) into three classes of strands.
• V

◆

: Init strands arise from the execution of Create-Identity when invoked implic-
itly by the runtime system, which occur when the user program attempts to update a
reducer, but a local view has not yet been created.

• V
⇢

: Reduce strands arise from the execution of Reduce, which occur implicitly
when the runtime system combines views.

• V
⌫

: User strands arise from the execution of code explicitly invoked by the program-

50

mer, including calls to Update.
We call V

◆

[V
⇢

the set of runtime strands .
Because the programmer sees runtime strands as invoked “invisibly” by the runtime

system, his or her understanding of the program generally relies only on the user strands.
We capture the control dependencies among the user strands by defining the user dag A

⌫

=
(V

⌫

, E
⌫

) for a computation A in the same manner as we defined an ordinary multithreaded
dag. For example, a spawn strand e1 has out-degree 2 in A

⌫

with an edge (v1, v2) going to the
first strand v2 of the spawned child and the other edge (v2, v3) going to the continuation v3;
if v1 is the final strand of a spawned subroutine and v2 is the sync strand with which v1
syncs, then we have (v1, v2) 2 E

⌫

; etc.
To track the views of a reducer h in the user dag, let h(v) denote the view of h that a

strand v 2 V
⌫

can access. The runtime system maintains the following invariants.

Invariant 1 If u 2 V
⌫

has out-degree 1 and (u, v) 2 E
⌫

, then h(v) = h(u).

Invariant 2 Suppose that u 2 V
⌫

is a spawn strand with outgoing edges (u, v), (u,w) 2 E
⌫

,
where v 2 V

⌫

is the first strand of the spawned subroutine and w 2 V
⌫

is the continuation in
the parent. Then, we have h(v) = h(u) and

h(w) =

(
h(u) if u was not stolen
new view otherwise.

Invariant 3 If v 2 V
⌫

is a sync strand, then h(v) = h(u), where u is the first strand of v’s
function.

When a new view h(w) is created, as is inferred by Invariant 2, we say that the old view
h(u) dominates h(w), which we denote by h(u) > h(w). For a set H of views, we say that
two views h1, h2 2 H, where h1 > h2, are adjacent if there does not exist h3 2 H such that
h1 > h3 > h2.

A useful property of sync strands is that the views of strands entering a sync strand
v 2 V

⌫

are totally ordered by the dominates relation. That is, if k strands each have an edge
in E

⌫

to the same sync strand v 2 V
⌫

, then the strands can be numbered u1, u2, . . . , u
k

2 V
⌫

such that h(u1) � h(u2) � · · · � h(u
k

). Moreover, h(u1) = h(v) = h(u), where u is the first
strand of v’s function. These properties can be proved inductively, noting that the views
of the first and last strands of a function must be identical, because a function implicitly
syncs before it returns. The runtime system always reduces adjacent pairs of views in this
ordering, destroying the dominated view in the pair.

If a computation A does not involve any runtime strands, then the “delay-sequence”
argument in [58] can be applied to A

⌫

to bound the P -processor execution time: T
P

(A)
Work(A

⌫

)/P +O(Span(A
⌫

)). Our goal is to apply this same analytical technique to compu-
tations containing runtime strands. To do so, we augment the A

⌫

with the runtime strands
to produce a performance dag A

⇡

= (V
⇡

, E
⇡

) for the computation A, where
• V

⇡

= V (A) = V
⌫

[V
◆

[V
⇢

, and
• E

⇡

= E
⌫

[E
◆

[E
⇢

,
where the edge sets E

◆

and E
⇢

are constructed as follows.
The edges in E

◆

are created in pairs. For each init strand v 2 V
◆

, we include (u, v) and
(v, w) in E

◆

, where u,w 2 V
⌫

are the two strands comprising the instructions of the Update
whose execution caused the invocation of the Create-Identity corresponding to v.

51

The edges in E
⇢

are created in groups corresponding to the set of Reduce functions
that must execute before a given sync. Suppose that v 2 V

⌫

is a sync strand, that k
strands u1, u2, . . . , u

k

2 A
⌫

join at v, and that k0 < k reduce strands r1, r2, . . . , r
k

0 2
A

⇢

execute before the sync. Consider the set U = {u1, u2, . . . , u
k

}, and let h(U) =
{h(u1), h(u2), . . . , h(u

k

)} be the set of k0 + 1 views that must be reduced. The edges in
E

⇢

connect the strands in U , the strands r1, r2, . . . , r
k

0 , and the strand v together into a
reduce tree as follows:

50 while |h(U)| � 2
51 Let r 2 {r1, r2, . . . , rk0} be the reduce strand that reduces a “minimal”

pair hj , hj+1 2 h(U) of adjacent strands, meaning that if a distinct r0 2
{r1, r2, . . . , rk0} reduces adjacent strands hi, hi+1 2 h(U), we have hi > hj

52 Let Ur = {u 2 U : h(u) = hj or h(u) = hj+1}
53 Include in E⇢ the edges in the set {(u, r) : u 2 Ur}
54 U = U � Ur [{r}
55 Include in E⇢ the edges in the set {(r, v) : r 2 U}

Since the reduce trees and init strands only add more dependencies between strands in
the user A

⌫

that are already in series, the performance dag A
⇡

is indeed a dag.

3.6 Analysis of programs with nonconstant-time reducers

This section provides a framework for analyzing dynamic multithreaded programs that might
use a nonconstant-time reducer — a reducer whose Reduce function takes ⌦(1) time to
execute. Much like Blumofe and Leiserson’s analysis of a randomized work-stealing scheduler
[58], we use an accounting argument to bound the expected running time of a computation
A with performance dag A

⇡

. We describe how the Cilk runtime system maintains reducer
views in detail. We bound the work and span of A

⇡

in terms of the work and span of
the user dag A

⌫

and the worst-case running time ⌧ of any Reduce or Create-Identity
operation. Combining these bounds, we prove that the expected running time of A is
T
P

(A) Work(A
⌫

)/P +O(⌧2 · Span(A
⌫

)).
Throughout this section, we shall refer to dynamic multithreaded programs and compu-

tations simply as multithreaded programs and computations.

Scheduling with reducers

Let us first formally define a schedule. Executing a computation A on a P -processor
computer using a work-stealing scheduler produces a schedule of A, which is a mapping
C : V (A) ! {0, 1, . . . , P � 1}⇥N where, for each strand u 2 V (A), if C(u) = (w

u

, t
u

) then
worker w

u

begins executing u at time step t
u

. A schedule must obey all control dependencies
in the dag of A, meaning that, if there exists a path from a strand u to a strand v in A, then
we have C(u) = (w

u

, t
u

) and C(v) = (w
v

, t
v

) such that t
u

< t
v

. If a strand u depends on
every strand in a set {v1, v2, . . . , v

k

} ✓ V (A), we say that the last strand in {v1, v2, . . . , v
k

}
to finish executing enables u.

Our analysis of the performance of a multithreaded program that uses a reducer relies
on the runtime system joining strands quickly even when it must invoke nonconstant-time
Reduce operations. Providing a guarantee on the time to join strands requires that we
examine the specifics of how the runtime system handles reducers.

52

Let us review how the runtime system handles spawns and steals, as described by Frigo
et al. [144]. Every time a Cilk function is stolen, the runtime system creates a new frame .2
Although frames are created and destroyed dynamically during a program execution, the
ones that exist always form a rooted spawn tree . Each frame F provides storage for
temporary values and local variables, as well as metadata for the function, including the
following:

• A pointer F. lp to either F ’s left sibling or, if F is the first child, to F ’s parent;
• A pointer F.c to F ’s first child;
• A pointer F.r to F ’s right sibling.

These pointers form a left-child right-sibling representation of the part of the spawn tree
that is distributed among processors, which is known as the steal tree .

To handle reducers, each worker in the runtime system uses a hash table, called a hyper-
map, to map reducers to its local views. To allow for lock-free access to the hypermap of a
frame F while siblings and children of the frame are terminating, F stores three hypermaps,
denoted F.hu, F.hr , and F.hc. The F.hu hypermap is used to look up reducers for the
user’s program, while the F.hr and F.hc hypermaps store the accumulated values of F ’s
terminated right siblings and terminated children, respectively.

A frame’s hypermaps are empty when it is initially created. If a worker using a frame
F executes an Update operation on a reducer h, then the worker tries to get h’s current
view from the F.hu hypermap. If h’s view is empty, then the worker performs a Create-
Identity operation to create an identity view of h in F.hu.

When a worker returns from a spawn, first it must perform up to two Reduce operations
to reduce its hypermaps into its neighboring frames, and then it must eliminate its current
frame. To perform these Reduce operations and elimination without races, the worker
grabs locks on its neighboring frames. The algorithm by Frigo et al. [144] uses an intricate
protocol to avoid long waits on locks, but the analysis of its performance assumes that each
Reduce takes only constant time.

To support nonconstant-time Reduce functions, we modify the locking protocol. To
eliminate a frame F , the worker first reduces F.hu ⌦= F.hr . Second, the worker reduces
F. lp.hc ⌦= F.hu or F. lp.hr ⌦= F.hu, depending on whether or not F is a first child.

Workers eliminating F. lp and F.r might race with the elimination of F . To resolve these
races, Frigo et al. describe how to acquire an abstract lock between F and these neighbors,
where an abstract lock is a pair of locks that correspond to an edge in the steal tree. We
shall use these abstract locks to eliminate a frame F according to the locking protocol shown
in Figure 3-10. As Lemma 9 will show, this locking protocol ensures that locks are only held
for ⇥(1) time, regardless of the time required to execute a Reduce operation.

Analyzing a performance dag

We next bound the time a work-stealing scheduler takes to execute a multithreaded com-
putation A that might use a nonconstant-time reducer in terms of its performance dag A

⇡

.
The proof follows that of Blumofe and Leiserson [58] and that of Frigo et al. [144], with
some salient differences to handle init and reduce strands. For simplicity, let us assume that
computation A makes use of at most a single reducer. The following proofs can be extended
to handle many reducers within a computation.

2When we refer to frames in this chapter, we specifically mean the “full” frames described by Frigo et

al. [144].

53

56 while true
57 Acquire the abstract locks for edges (F, F. lp) and (F, F.r) in an order

chosen uniformly at random
58 if F is a first child
59 L = F. lp.hc
60 else L = F. lp.hr
61 R = F.hr
62 if L == ; and R == ;
63 if F is a first child
64 F. lp.hc = F.hu
65 else F. lp.hr = F.hu
66 Eliminate F
67 Release the abstract locks
68 break

69 R0 = R; L0 = L
70 R = ;; L = ;
71 Release the abstract locks
72 for each reducer h 2 R0

73 if h 2 F.hu
74 F.hu(h) ⌦= R0(h)
75 else F.hu(h) = R0(h)
76 for each reducer h 2 L0

77 if h 2 F.hu
78 F.hu(h) = L0(h)⌦ F.hu(h)
79 else F.hu(h) = L0(h)

Figure 3-10: A modified locking protocol for managing reducers, which holds locks for ⇥(1) time.

We use an accounting argument to analyze the running time of a work-stealing scheduler
executing a multithreaded computation. To model the process of running a multithreaded
computation, let us represent a unit of computation performed by a processor during a time
step with a dollar. At each time step, each processor spends its dollar by placing it into
some bucket, depending on the type of task that processor performs at the step. If the
execution takes time T

P

, then at the end the total number of dollars in all the buckets
is PT

P

. Consequently, if we sum up all of the dollars in all of the buckets and divide by P ,
we obtain the running time.

We consider four different types of tasks a processor can perform at a step. If a processor
executes an instruction at the step, then it places its dollar into the Work bucket. If a
processor initiates a steal attempt at the step, then it places its dollar into the Steal
bucket. If a processor waits for its steal request to be satisfied at the step, then it places its
dollar into the Wait-Steal bucket. Finally, if a processor waits to acquire a lock on a data
structure in the runtime system at the step, then it places its dollar into the Wait-Lock
bucket.

We first bound the total number of dollars in the Work bucket.

Lemma 4 The execution of a dynamic multithreaded computation A with work Work(A
⇡

)
by a randomized work-stealing scheduler on a computer with P processors, terminates with
exactly Work(A

⇡

) dollars in the Work bucket.

Proof. Because there are exactly Work(A
⇡

) instructions in the computation, the execu-
tion ends with exactly Work(A

⇡

) dollars in the Work bucket.
Next, we bound the total dollars in the Steal bucket using a delay-sequence argument,

as presented by Ranade [326]. The main idea of the argument is to first construct a “delay

54

sequence” with the performance dag, and to then argue that any delay sequence has a low
probability of occurring. This proof resembles that of Blumofe and Leiserson [58], but with
care given to handle init and reduce strands.

To begin this argument, we identify a “delaying path,” which is a path of “critical strands,”
through an augmented performance dag A

�

. The augmented performance dag represents
both control dependencies and “deque dependencies” on V (A). To construct a delay se-
quence, we divide the set of steal attempts that occur during A’s execution into rounds,
and we associate each round with some strand on the delaying path. Next, we bound the
probability that a strand remains critical across many steal attempts. We conclude that any
delay sequence is unlikely to occur and the execution of A is therefore unlikely to suffer a
large number of steal attempts.

Let us assume without loss of generality that every strand represents a single instruction
that executes in a single time step. When we refer to an init or reduce strand, we mean
the sequence of single-instruction strands that perform a particular Create-Identity or
Reduce operation.

A round of steal attempts is a set of at least 3P but fewer than 4P consecutive steal
attempts such that if a steal attempt that is initiated at time step t occurs in a particular
round, then all other steal attempts initiated at time step t occur in the same round. We can
partition all of the steal attempts that occur during an execution as follows. The first round
contains all steal attempts initiated at time steps 1, 2, . . . , t1, where t1 is the first time step
such that at least 3P steal attempts were initiated at or before t1. For i > 1 we say that the
ith round of steals begins at time step t

i�1 + 1 and ends at time step t
i

, where at least 3P
consecutive steal attempts were initiated between time step t

i�1 + 1 and time step t
i

. Each
round necessarily contains at least 3P consecutive steal attempts, and because fewer than
P steal attempts can be initiated at a single time step, each round contains fewer than 4P
steal attempts, and each round takes at least 4 steps.

The criticality of a strand v 2 V (A) is defined in terms of control dependencies and
“deque dependencies,” which are defined on the successors of spawn strands. A deque
dependency exists from a strand u to a strand v if v is the first child strand after a spawn
strand w and u is the continuation strand after w. We augment a given performance dag
A

⇡

to form a new dag A
�

that reflects both the control and deque dependencies between
strands. Formally, the augmented performance dag A

�

contains all of the vertices and edges
of the performance dag A

⇡

plus an edge (u, v) for every pair of strands u, v 2 V (A) for
which a deque dependency exists from u to v. Because we assume that no continuation
strand is also a sync strand, the augmented scheduling dag is indeed a dag, and we have
Span(A

�

) 2 · Span(A
⇡

). We assume for simplicity that neither the first spawned child of
a spawn strand w nor the continuation after w is a reduce strand.

A strand u 2 V (A) is critical at time step t if it is unexecuted at time step t and
all immediate predecessor strands v 2 {v1, v2, . . . , v

k

} of u in A
�

have been executed. If a
strand u is critical, then u must be enabled, because all strands with control dependencies
into u have been executed.

We use the augmented performance dag A
�

to create a delay sequence. A delay se-
quence of a computation A with schedule C is a triple (p,R,⇧) consisting of the following:

• A delaying path p = hu1, u2, . . . , uLi — a maximal path through A
�

, in which
strand u1 is the first strand in A

�

, strand u
L

is the last strand in A
�

, and for each
i = 1, 2, . . . , L� 1, strand u

i+1 follows strand u
i

if (u
i

, u
i+1) 2 E(A

�

).
• A positive number R of steal-attempt rounds.
• A partition ⇧ = (⇡1,⇡01,⇡2,⇡

0
2, . . . ,⇡L,⇡

0
L

) of R (that is R =
P

L

i=1(⇡i+⇡
0
i

)), such that

55

⇡0
i

2 {0, 1} for i = 1, 2, . . . , L.
For each i = 1, 2, . . . , L, we define the ith group of steal-attempt rounds to be the ⇡

i

consecutive rounds that begin after the r
i

th round, where r
i

=
P

i�1
j=1 ⇡j [⇡0j . Because ⇧ is

a partition of R and ⇡0
i

2 {0, 1} for i = 1, 2, . . . , L, we have

LX

i=1

⇡
i

� R� L , (3.1)

We say that a given round of steal attempts occurs while strand v is critical if all of
the steal attempts that comprise the round are initiated at time steps when v is critical.
In other words, v must be critical throughout the entire round. A delay sequence occurs
during the execution of A if, for each i = 1, 2, . . . , L, strand u

i

is critical throughout all ⇡
i

rounds in the ith group.
The following lemma shows that, if at least R rounds take place during an execution,

then some delay sequence (p,R,⇧) must occur. In particular, in any execution in which
at least R rounds occur, we can identify a delaying path p = hu1, u2, . . . , uLi in A

�

and a
partition ⇧ = (⇡1,⇡01,⇡2,⇡

0
2, . . . ,⇡L,⇡

0
L

) of R such that, for each i = 1, 2, . . . , L, all of the
⇡
i

rounds in ith group occur while u
i

is critical. Each ⇡0
i

counts at most one round, which
is the round that began when u

i

was critical and ended after u
i

began executing. Such a
round cannot be part of any group because no instruction is critical throughout.

Lemma 5 Consider an execution of a dynamic multithreaded computation A by a random-
ized work-stealing scheduler on an ideal parallel computer with P processors. If at least 4PR
steal attempts occur during A’s execution, then some delay sequence (p,R,⇧) must occur.

Proof. The proof follows from the techniques of Blumofe and Leiserson [58, Lemma 9]
for constructing a delaying path, using A

�

as the dag.
We now argue that a critical instruction is unlikely to remain critical across a modest

number of rounds. In particular, we argue that the analysis of Blumofe and Leiserson [58]
applies to performance dags containing runtime strands.

Lemma 6 Consider the execution of a dynamic multithreaded computation A by a random-
ized work-stealing scheduler on an ideal parallel computer with P � 2 processors. For any
strand u and any number r � 2 of steal-attempt rounds, the probability that any particular
set of r rounds occur while the strand u is critical is at most the probability that only 0 or 1
of the steal attempts initiated in the first r� 1 of these rounds chose u’s worker, which is at
most e�2r+3.

Proof. Let C be the schedule generated by the execution of A. If u is a user strand, then
this claim follows from the argument by Blumofe and Leiserson [58, Lemma 11]. Suppose
therefore that u is a runtime strand, and let C(u) = (w

u

, t
u

). In this case, because runtime
strands are executed opportunistically by the scheduler, u was never placed on w

u

’s deque.
Instead, w

u

begins executing u at the time step after u is enabled. Because at most P � 1
steal attempts can occur during a single time step and a round of steal attempts consists of
at least 3P steal attempts, less than 1 round of steal attempts can occur while u is critical.
Therefore, u is not critical throughout any rounds of steal attempts, and thus the probability
bound of Blumofe and Leiserson [58, Lemma 11] holds.

The following lemma now completes the delay-sequence argument and bounds the total
dollars in the Steal bucket. The proof of this lemma largely follows the analysis of Blumofe

56

and Leiserson [58, Lemma 12], but it lifts the restriction on the degree of a strand in the
dag.

Lemma 7 Consider the execution of a dynamic multithreaded computation A by a random-
ized work-stealing scheduler on an ideal parallel computer with P processors. For any ✏ > 0,
with probability 1�✏, the execution terminates with at most O(P (Span(A

⇡

)+lg(1/✏))) dollars
in the Steal bucket, and the expected number of dollars in this bucket is O(P ·Span(A

⇡

)).

Proof. Lemma 5 shows that, if at least 4PR steal attempts occur, then some delay
sequence (p,R,⇧) must occur. Consider a particular delay sequence (p,R,⇧) with delaying
path p = hu1, u2, . . . , uLi and permutation ⇧ = (⇡1,⇡01,⇡2,⇡

0
2, . . . ,⇡L,⇡

0
L

). The construction
of deque dependencies in A

�

ensures that L 2 · Span(A
⇡

).
Such a sequence occurs if, for i = 1, 2, . . . , L, each strand u

i

is critical throughout all
rounds in ⇡

i

. Lemma 6 shows that the probability that all ⇡
i

rounds in the ith group occur
while a given strand u

i

is critical is at most the probability that only 0 or 1 of the steal
attempts initiated in the first ⇡

i

� 1 of these rounds chose u
i

’s worker, which is at most
e�2⇡i+3 for ⇡

i

� 2. For ⇡
i

< 2, probability 1 suffices an upper bound. Moreover, because
the work stealing scheduler chooses all targets of work-steal attempts independently, the
probability of the delay sequence (p,R,⇧) occurring satisfies the following:

Pr {(p,R,⇧) occurs} =
Y

1iL

Pr {the rounds in ith group occur while u
i

is critical}

Y

1iL; ⇡i�2

e�2⇡i+3

 exp

2

4�2

0

@
X

1iL; ⇡i�2

⇡
i

1

A+ 3L

3

5

= exp

2

4�2

0

@
X

1iL

⇡
i

�
X

1iL; ⇡i<2

⇡
i

1

A+ 3L

3

5

 e�2((R�L)�L)+3L

= e�2R+7L ,

where the final inequality follows from Inequality (3.1).
To bound the probability of any delay sequence (p,R,⇧) occurring, we multiply the

number of possible delay sequences and by the probability that a particular delay sequence
occurs. Because the maximum out-degree of any strand in A

�

is 2, there are at most
22·Span(A⇡) distinct maximal paths in A

�

, and there are hence at most 22·Span(A⇡) distinct
choices for a delaying path p. There are at most

✓
2L+R

R

◆

✓
4 · Span(A

⇡

) +R

R

◆

ways to choose ⇧, because ⇧ partitions R into at most 2 ·Span(A
⇡

) pieces. We just observed
that a given delay sequence has at most an e�2R+14·Span(A⇡) chance of occurring. Multiplying
these three factors together bounds the probability than any delay sequence (p,R,⇧) occurs
to be

22·Span(A⇡) ·
✓
4 · Span(A

⇡

) +R

R

◆
· e�2R+14·Span(A⇡) ,

57

which is at most ✏ for R = c ·Span(A
⇡

)+ lg(1/✏), where c is a sufficiently large positive con-
stant. The probability that at least 4PR = ⇥(P (Span(A

⇡

) + lg(1/✏))) steal attempts occur
is therefore at most ✏. The expectation bound follows because the tail of the distribution
decreases exponentially.

Next, we bound the number of dollars in the Wait-Steal bucket by observing that
Blumofe and Leiserson’s analysis applies.

Lemma 8 Consider the execution of a dynamic multithreaded computation A on an ideal
parallel computer with P processors using a randomized work-stealing scheduler. For any
✏ > 0, with probability at least 1� ✏, the number of dollars in the Wait-Steal bucket is at
most a constant times the number of dollars in the Steal bucket plus O(P lgP +P lg(1/✏)),
and the expected number of dollars in the Wait-Steal bucket is at most the number in the
Steal bucket.

Proof. The proof follows from the analysis of Blumofe and Leiserson [58, Lemma 6].
The next lemma bounds the work required to perform all eliminations using the locking

protocol in Figure 3-10 in order to bound the number of dollars in the Wait-Lock bucket.

Lemma 9 Consider the execution of a dynamic multithreaded computation A on an ideal
parallel computer with P processors using a randomized work-stealing scheduler. If M suc-
cessful steals occur during the execution of A, then the expected number of dollars in the
Wait-Lock bucket is O(M), and with probability at least 1�✏, at most O(M+lgP+lg(1/✏))
dollars end up in the Wait-Lock bucket.

Proof. We apply the analysis of the locking protocol presented in [144] to the locking
protocol presented in Figure 3-10. Because lines 58–71 in Figure 3-10 all require ⇥(1) work,
each abstract lock is held for ⇥(1) time. Because only two workers can compete for any
given abstract lock simultaneously, assuming linear waiting on locks [76], the total amount
of time workers spend waiting for workers holding two abstract locks is at most proportional
the number M of successful steals. We only need, therefore, to analyze the time workers
that are holding only one abstract lock spend waiting for their second abstract lock.

Consider the eliminations attempts performed by a given worker w, and assume that w
performed m elimination attempts and hence 2m abstract lock acquisitions. Consider the
steal tree at the time of the ith abstract lock acquisition by w, when w is trying to eliminate
frame F . Each worker x that is trying to eliminate some other frame F

x

6= F in the steal
tree at the same time creates an arrow across F

x

oriented in the direction from the first
edge x abstractly locks to the second. These arrows create directed paths in the tree that
represent chains of dependencies on a given abstract lock, and the delay for w’s ith lock
acquisition can be at most the length of such a directed path starting at the edge that w is
abstractly locking. Because the orientation of lock acquisition along this path is fixed, and
each pair of acquisitions is correctly oriented with probability 1/2, the waiting time for F
acquiring one of its locks can be bounded by a geometric distribution:

Pr {w waits for at least k elimination attempts} 2�k�1 .

We compute a bound on the total time � for all 2m abstract lock acquisitions by
worker w. First, we must prove that the ith abstract lock acquisition by some worker
w is independent of the time for the jth abstract lock acquisition for j > i.

58

To prove this independence result, we argue that, for two workers w and v, we have
Pr {v delays w

j

| v delays w
i

} = Pr {v delays w
j

| v does not delay w
i

} = Pr {v delays w
j

},
where w

i

and w
j

are w’s ith and jth lock acquisitions, respectively. We consider each of
these cases separately. First, suppose that worker v delays acquisition w

i

. After w
i

, worker
v has succeeded in acquiring and releasing its abstract locks, and all lock acquisitions in the
directed path from w’s lock acquisition to v’s have also succeeded. For v to delay acquisition
w
j

, a new directed path of dependencies from w to v must occur. Each edge in that path is
oriented correctly with a 1/2 probability, regardless of any previous interaction between v
and w. Similarly, suppose that v does not delay w

i

. For v to delay w
j

, a chain of dependencies
must form from one of w’s abstract locks to one of v’s abstract locks after w

i

completes.
Forming such a dependency chain requires every edge in the chain to be correctly oriented,
which occurs with a 1/2 probability per edge regardless of the fact that v did not delay w

i

.
We conclude that Pr {v delays w

j

| v delays w
i

} = Pr {v delays w
j

| v does not delay w
i

} =
Pr {v delays w

j

}.
For all workers v 6= w, the probability that v delays acquisition w

j

is therefore inde-
pendent of whether v delays acquisition w

i

, and every lock acquisition by some worker is
independent of all previous acquisitions. The probability that the 2m acquisitions take time
longer than � elimination attempts is therefore at most

✓
�

2m

◆
2��

✓
e�

2m

◆2m

2��

 ✏0/P

by choosing � = c(m+ lg(1/✏0)), where c is a sufficiently large constant greater than 1.
Next, we bound the number of elimination attempts that occur. Because each successful

steal creates a frame in the steal tree that must be eliminated, the number of elimination
attempts is at least as large as the number M of successful steals. Each successful elimination
can force up to 2 other frames to repeat this protocol, thereby increasing the number of
elimination attempts by at most 2. The total number of elimination attempts is therefore
at most 3M .

Because there are at most P workers, the total number of dollars in the Wait-Lock
bucket is O(M + lgP + lg(1/✏)) with probability at least 1 � ✏ (letting ✏ = ✏0/P). The
expectation bound follows directly.

The next lemma combines these bounds on the dollars within each bucket to yield the
expected running time of a multithreaded computation A.

Lemma 10 Consider the execution of a dynamic multithreaded computation A on an ideal
parallel computer with P processors using a randomized work-stealing scheduler. The ex-
pected running time of A is T

P

(A) Work(A
⇡

)/P +O(Span(A
⇡

)), and for any ✏ > 0, with
probability at least 1�✏, the execution time on P processors is Work(A

⇡

)/P+O(Span(A
⇡

)+
lgP + lg(1/✏)).

Proof. Lemma 7 shows that the number successful steal attempts is O(P · Span(A
⇡

))
in expectation and O(P (Span(A

⇡

) + lg(1/✏))) with probability at least 1 � ✏. Lemma 9
shows that the expected number of dollars in the Wait-Lock bucket is O(P · Span(A

⇡

)).
Summing over the number of dollars in the remaining buckets argued in Lemmas 4 and 8
and dividing by P gives the stated bounds.

59

Relating the performance and user dags

We conclude the proof with two more lemmas to bound the work and span of the performance
dag in terms of the work and span of the user dag.

Lemma 11 Consider the execution of a dynamic multithreaded computation A with user
dag A

⌫

and performance dag A
⇡

, and let ⌧ be the worst-case cost of any Create-Identity
or Reduce operation for the given input. Then we have Span(A

⇡

) = O(⌧ · Span(A
⌫

)).

Proof. Each successful steal in the execution of A can force one call to Create-Identity,
which creates a nonempty view that must later be reduced using a Reduce operation.
Therefore, at most one Reduce operation can occur per successful steal, and at most one
reduce strand can occur in the performance dag for each steal. Each spawn in A

⌫

provides
an opportunity for a steal to occur. Consequently, each spawn operation in A can increase
the size of the dag by 2⌧ in the worst case.

Consider a critical path p
⇡

in A
⇡

, and let p
⌫

be the corresponding path in A
⌫

, that
is, the path in A

⌫

made up exactly of the user strands in p
⇡

. Suppose that k steals occur
along p

⌫

. The length of the path p
⇡

in A
⇡

is then at most 2k⌧+ |p
⌫

| 2⌧ ·Span(A
⌫

)+ |p
⌫

|
3⌧ · Span(A

⌫

), which implies that Span(A
⇡

) = O(⌧ · Span(A
⌫

)).

Lemma 12 Consider the execution of a dynamic multithreaded computation A with user dag
A

⌫

, and let ⌧ be the worst-case cost of any Create-Identity or Reduce operation for
the given input. For any ✏ > 0, with probability 1� ✏, the work of A

⇡

is Work(A
⌫

)+O(⌧2P ·
Span(A

⌫

) + ⌧P lg(1/✏)), and the expected work of A
⇡

is Work(A
⌫

) +O(⌧2P · Span(A
⌫

)).

Proof. The work in A
⇡

equals the work in A
⌫

plus the total work of all runtime strands
in A. Because at most one call to Create-Identity and one call to Reduce can occur
for each successful steal in the execution of A, the number of reduce and init strands in A

⇡

is bounded above by the number of successful steals M . Each reduce or init strand incurs
at most ⌧ work to execute, meaning that the total work in reduce and init strands is ⌧M .
The lemma follows from applying Lemmas 7 and 11 to bound M .

We now prove Inequality (2.5), which bounds the running time of a computation whose
nondeterminism arises from reducers.

Theorem 13 Consider the execution of a computation A on a parallel computer with P
processors using a work-stealing scheduler. Let A

⌫

be the user dag of A. The expected running
time of A is T

P

(A) Work(A
⌫

)/P +O(⌧2 · Span(A
⌫

)), and for any ✏ > 0, with probability
1� ✏, the execution time is T

P

(A) Work(A
⌫

)/P +O(⌧2 · Span(A
⌫

) + lgP + ⌧ lg(1/✏)).

Proof. The proof follows from combining Lemmas 10, 11 and 12.

3.7 Analyzing PBFS

This section applies the results of Section 3.6 to bound the expected running time of PBFS.
Specifically, we analyze the locking version of PBFS, for which a vertex is added at most
once to any bag. We analyze the work and span of the user dag for PBFS. Using Theorem 13
to combine these bounds with performance bounds on the bag data structure methods, we
bound the expected running time of PBFS. In particular, for a connected graph G = (V,E)

60

with bounded maximum out-degree, PBFS executes in T
P

 ⇥(V +E)/P +O(D lg3(V/D))
expected time.

We first bound the work and span of the user dag for PBFS.

Lemma 14 Consider an execution of the locking version of PBFS on a connected graph
G = (V,E) with diameter D, and let � denote the maximum out-degree of any vertex in V .
The total work in PBFS’s user dag is ⇥(V + E), and the total span of PBFS’s user dag is
O(D lg(V/D) +D lg�), where � is the maximum out-degree of any vertex in V .

Proof. We measure work and span of PBFS by studying its pseudocode in Figures 3-3
and 3-4.

To measure the work of PBFS, consider evaluating the dth layer V
d

of G. PBFS evaluates
every vertex v 2 V

d

exactly once, and PBFS checks every successor vertex u of v exactly
once. In the locking version of PBFS, each vertex u is assigned its distance exactly once and
added to the bag for layer V

d+1 exactly once. Because these properties hold for all layers of
G, the total work for this portion of PBFS is ⇥(V + E).

PBFS performs additional bookkeeping work in order to store the vertices within a bag.
In particular, PBFS performs additional work to create a bag for each layer, to subdivide
a bag into grainsize pieces, and to insert vertices into a bag. We shall show that this
additional bookkeeping work totals to ⇥(V) work, implying that the total work of PBFS is
⇥(V + E).

To create a bag for each layer, PBFS calls Bag-Create once per layer, which incurs
⇥(D) total work across all D layers.

To subdivide a bag into grainsize pieces, PBFS first subdivides a bag into pennants
(lines 21–23) and then recursively splits each pennant (lines 31–34), which requires ⇥(V

d

)
work per layer and ⇥(V) work over all layers.

The total time PBFS spends executing Bag-Insert depends on the parallel execution
of PBFS. Since a steal resets the contents of a bag for subsequent update operations, the
maximum running time of Bag-Insert depends on the steals that occur. Each steal can
only decrease the work of a subsequent Bag-Insert, and therefore the amortized running
time of ⇥(1) for each Bag-Insert still applies. Because Bag-Insert is called once per
vertex, PBFS spends ⇥(V) work total executing Bag-Insert.

The span of PBFS is dominated by the sum of the spans for processing each layer of G.
The span of a Process-Layer call on the dth layer is at most the span of the for loop on
lines 21–23 — O(lg V

d

) — plus the maximum span of any Process-Pennant call on line 23.
The total span for any such Process-Pennant call is the sum of the span to recursively
split a pennant in lines 31–33, which is O(lg V

d

); plus the span to process a single vertex;
plus the span to sync all spawned children, which is also O(lg V

d

). The span of processing a
single vertex is dominated by lines 26 and 28.4, which have a total span of O(lg�+lg V

d+1).
The span of processing the dth layer of G is therefore O(lg V

d

+ lg V
d+1 + lg�), making the

total span of PBFS O(D lg(V/D) +D lg�).
We now bound the expected running time of PBFS.

Theorem 15 Consider the parallel execution of PBFS on a connected graph G = (V,E)
with diameter D running on a parallel computer with P processors using a work-stealing
scheduler. The expected running time of the locking version of PBFS is T

P

(PBFS) ⇥(V +
E)/P +O(D lg2(V/D)(lg(V/D)+ lg�)), where � is the maximum out-degree of any vertex
in V .

61

Proof. To maximize the cost of all Create-Identity and Reduce operations in
PBFS, the worst-case cost of each of these operations must be O(lg(V/D)). Combin-
ing Lemma 14 with Theorem 13, where ⌧ = O(lg(V/D)), we get T

P

 ⇥(V + E)/P +
O(D lg2(V/D)(lg(V/D) + lg�)).

3.8 Conclusion

Thread-local storage [372], or TLS, presents an alternative to bag reducers for implementing
the layer sets in a parallel breadth-first search. The bag reducer allows PBFS to write the
vertices of a layer in a single data structure in parallel and later efficiently traverse them
in parallel. As an alternative to bags, each of the P workers could store the vertices it
encounters into a vector within its own TLS, thereby avoiding races. The set of elements in
the P vectors could then be walked in parallel using divide-and-conquer. Such a structure
appears simple to implement and practically efficient, since it avoids merging sets.

Despite the simplicity of the TLS solution, reducer-based solutions exhibit some advan-
tages over TLS solutions, including a simple programming model that supports a scientific
approach to reasoning about fast multicore software. First, reducers provide a processor-
oblivious alternative to TLS, enhancing portability and simplifying reasoning about how
performance scales. Second, reducers allow a function to be instantiated multiple times in
parallel without interference. To support simultaneous running of functions that use TLS,
the programmer must manually ensure that the TLS regions used by the functions are dis-
joint. Third, reducers require only a monoid — associativity and an identity — to ensure
correctness, whereas TLS also requires commutativity. The correctness of some applica-
tions, including BFS, is not compromised by allowing commutative updates to its shared
data structure. Without commutativity, an application cannot easily use TLS, whereas
reducers seem to be good whether commutativity is allowed or not. Finally, whereas TLS
makes the nondeterminism visible to the programmer, reducers encapsulate nondeterminism.
In particular, reducers hide the particular nondeterministic manner in which associativity is
resolved, thereby allowing the programmer to assume specific semantic guarantees at well-
defined points in the computation. This encapsulation of nondeterminism simplifies the task
of reasoning about the program’s correctness compared to a TLS solution.

Nondeterminism can wreak havoc on the ability to reason about programs, to test their
correctness, and to ascertain their performance, but it also can provide opportunities for
additional parallelism. Well-structured linguistic support for encapsulating nondeterminism
can allow parallel programmers to enjoy the benefits of nondeterminism without suffering
unduly from the inevitable complications that nondeterminism engenders. Reducers provide
an effective way to encapsulate nondeterminism. We view it as an open question whether a
semantics exists for TLS that would encapsulate nondeterminism while providing a poten-
tially more efficient implementation in situations where commutativity is allowed.

62

Chapter 4

Executing Dynamic Data-Graph
Computations Deterministically
Using Chromatic Scheduling

This chapter presents the Prism chromatic-scheduling algorithm for executing dynamic data-
graph computations [213]. This work was conducted in collaboration with Tim Kaler,
William Hasenplaugh, and Charles E. Leiserson.

4.1 Introduction

Many systems from physics, artificial intelligence, and scientific computing can be repre-
sented naturally as a data graph — a graph with data associated with its vertices and
edges. For example, some physical systems can be decomposed into a finite number of
elements whose interactions induce a graph. Probabilistic graphical models in artificial in-
telligence can be used to represent the dependency structure of a set of random variables.
Sparse matrices can be interpreted as graphs for scientific computing.

A data-graph computation is an algorithm that performs “local” updates on the vertices
of a data graph, taking as input data associated with a vertex and its neighbors. Several soft-
ware systems have been implemented to support parallel data-graph computations, includ-
ing GraphLab [264,265], Pregel [269], Galois [298,299], PowerGraph [165], Ligra1 [358,361],
and GraphChi [228]. These systems can support “complex” data-graph computations, in
which data can be associated with edges as well as vertices and updating a vertex v can
modify any data associated with v, v’s incident edges, and the vertices adjacent to v. For
ease in discussing chromatic scheduling, however, we shall principally restrict ourselves to
“simple” data-graph computations (which correspond to “edge-consistent” computations in
GraphLab), although most of our results straightforwardly extend to more complex mod-
els. Indeed, six out of the seven GraphLab applications described in [264, 265] are simple
data-graph computations.

In a data-graph computation, updates to vertices proceed in rounds, where each vertex
can be updated at most once per round. In a static data-graph computation, the activation
set Q

r

of vertices updated in a round r — the set of active vertices — is determined a
1While Ligra does not technically execute data-graph computations, it is designed to implement similar

algorithms by decoupling the scheduling and algorithm-specific code, as with the other data-graph compu-
tation frameworks.

63

priori. Often, a static data-graph computation updates every vertex in each round. Static
data-graph computations include Gibbs sampling [155, 156], iterative graph coloring [104],
and n-body problems such as the fluidanimate PARSEC benchmark [45].

We shall be interested in dynamic data-graph computations, where the activation set
changes round by round. Dynamic data-graph computations include the Google PageRank
algorithm [68], loopy belief propagation [292, 313], coordinate descent [110], co-EM [300],
alternating least-squares [185], singular-value decomposition [164], and matrix factoriza-
tion [391].

We formalize the computational model as follows. Let G = (V,E) be a data graph.
We shall denote the neighbors, or adjacent vertices, of a vertex v 2 V by Adj[v] =
{u 2 V : (u, v) 2 E}. The degree of v is thus deg(v) = |Adj[v]|, and the degree of G is
deg(G) = max {deg(v) : v 2 V }. A (simple) dynamic data-graph computation is a
triple hG, f,Q0i, where

• G = (V,E) is a graph with data associated with each vertex v 2 V ;
• f : V ! 2V is an update function ; and
• Q0 ✓ V is the initial activation set .

The update S = f(v) implicitly computes as a side effect a new value for the data associated
with v as a function of the old data associated with v and v’s neighbors. The update returns
a set S ✓ Adj[v] of vertices that must be updated in the next round. For example, an
update f(v) might activate a neighbor u only if the value of v changes significantly. During
a round r of a dynamic data-graph computation, each vertex v 2 Q

r

is updated at most
once, that is, Q

r

is a set, not a multiset.
The advantage of dynamic over static data-graph computations is that they avoid per-

forming many unnecessary updates. Studies in the literature [264, 265] show that dynamic
execution can enhance the practical performance of many applications. We confirmed these
findings by implementing static and dynamic versions of several data-graph computations.
The results for a PageRank algorithm on a power-law graph of 1 million vertices and 10
million edges were typical. The static computation performed approximately 15 million
updates, whereas the dynamic version performed less than half that number of updates.

A serial reference implementation

Before we address the issues involved in scheduling and executing dynamic data-graph com-
putations in parallel, let us first hone our intuition with a serial implementation. Figure 4-1
gives the pseudocode for Serial-DDGC, a serial algorithm for scheduling dynamic data-
graph computations. Serial-DDGC schedules the updates of a data-graph computation
by maintaining a FIFO queue Q of activated vertices that have yet to be updated. Sentinel
values enqueued in Q on lines 4 and 9 demarcate the rounds of the computation such that
the set of vertices in Q after the rth sentinel has been enqueued is the activation set Q

r

for
round r.

Given a data-graph G = (V,E), an update function f , and an initial activation set
Q0, Serial-DDGC executes the data-graph computation hG, f,Q0i as follows. Lines 1–2
initialize Q to contain all vertices in Q0. The while loop on lines 5–14 then repeatedly
dequeues the next scheduled vertex v 2 Q on line 5 and executes the update f(v) on line 11.
Executing f(v) produces a set S of activated vertices, and lines 12–14 check each vertex in
S for membership in Q, enqueuing all vertices in S that are not already in Q.

We can analyze the time Serial-DDGC takes to execute one round r of the data-graph

64

Serial-DDGC(G, f,Q0)

1 for v 2 Q0

2 enqueue(Q, v)
3 r = 0
4 enqueue(Q,nil) // Sentinel nil denotes the end of a round.
5 while Q 6= {nil}
6 v = dequeue(Q)
7 if v == nil
8 r += 1
9 enqueue(Q,nil)

10 else

11 S = f(v)
12 for u 2 S
13 if u /2 Q
14 enqueue(Q, u)

Figure 4-1: Pseudocode for a serial algorithm to execute a data-graph computation hG, f,Q0i.
Serial-DDGC takes as input a data graph G and an update function f . The computation maintains
a FIFO queue Q of activated vertices that have yet to be updated and sentinel values nil, each of
which demarcates the end of a round. An update S = f(v) returns the set S ✓ Adj[v] of vertices
activated by that update. Each vertex u 2 S is added to Q if it is not currently scheduled for a
future update.

computation hG, f,Q0i. Define the size of an activation set Q
r

as

size(Q
r

) = |Q
r

|+
X

v2Qr

deg(v) .

The size of Q
r

is asymptotically the space needed to store all the vertices in Q
r

and their
incident edges using a standard sparse-graph representation, such as compressed-sparse-
rows (CSR) format [374]. For example, if Q0 = V , we have size(Q0) = |V | + 2 |E| by
the handshaking lemma [100, p. 1172–3]. Let us make the reasonable assumption that the
time to execute f(v) serially is proportional to deg(v). If we implement the queue as a
dynamic (resizable) table [100, Section 17.4], then line 14 executes in ⇥(1) amortized time.
Of course, a linked list would suffice to append operations in ⇥(1) time, but would not
allow for convenient subsequent parallel iteration over its elements. All other operations
in the for loop on lines 12–14 take ⇥(1) time, and thus all vertices activated by executing
f(v) are examined in ⇥(deg(v)) time. The total time spent updating the vertices in Q

r

is
therefore ⇥(Q

r

+
P

v2Qr
deg(v)) = ⇥(size(Q

r

)), which is linear time: time proportional to
the storage requirements for the vertices in Q

r

and their incident edges.

Parallelizing dynamic data-graph computations

The salient challenge in parallelizing data-graph computations is to deal effectively with
races between logically parallel updates that read and write common data. Two updates
in a data-graph computation conflict if executing them in parallel produces a determinacy
race. A parallel scheduler must manage or avoid conflicting updates to execute a data-graph
computation correctly and deterministically.

The standard approach to preventing races associates a mutual-exclusion lock with each
vertex of the data graph to ensure that an update on a vertex v does not proceed until all
locks on v and v’s neighbors have been acquired. Although this locking strategy prevents

65

Benchmark |V | |E| � RRLocks Cilk+Locks Prism Prism-R

PR/G 916,428 5,105,040 43 15.5 14.3 9.7 12.6
PR/L 4,847,570 68,475,400 333 227.6 200.4 109.3 127.3
ID/2000 4,000,000 15,992,000 4 48.6 43.8 32.1 32.8
ID/4000 16,000,000 63,984,000 4 200.0 179.6 123.1 124.3
FBP/C1 87,831 265,204 2 8.7 8.9 6.9 7.0
FBP/C3 482,920 160,019 2 16.4 17.8 13.3 13.4
ALS/N 187,722 20,597,300 6 134.3 123.6 105.2 105.7

Figure 4-2: Comparison of dynamic data-graph schedulers on seven application benchmarks. All
running times are in seconds and were calculated by taking the median 12-core execution time
of 5 runs on an Intel Xeon X5650 with hyperthreading disabled. The running times of Prism and
Prism-R include the time used to color the input graph. PR/G and PR/L run a PageRank algorithm
on the web-Google [252] and soc-LiveJournal [27] graphs, respectively. ID/2000 and ID/4000 run
an image denoise algorithm to remove Gaussian noise from 2D grayscale images of dimension 2000
by 2000 and 4000 by 4000. FBP/C1 and FBP/C3 perform belief propagation on a factor graph
provided by the cora-1 and cora-3 datasets [276, 362]. ALS/N runs an alternating least squares
algorithm on the NPIC-500 dataset [284].

data races, it can incur substantial overhead from lock acquisition and contention, hurting
application performance, especially when update functions are simple. Moreover, because
runtime happenstance can determine the order in which two logically parallel updates acquire
locks, the data-graph computation can behave nondeterministically: different runs on the
same inputs can produce different results. Without repeatability, performance engineers face
a significant challenge in understanding what a program does and in finding and removing
programming bugs.

A known alternative to using locks is chromatic scheduling [2,43,264], which schedules
a data-graph computation based on a coloring of the data-graph computation’s conflict
graph — a graph with an edge between two vertices if updating them in parallel would
produce a determinacy race. For a simple data-graph computation, the conflict graph is
simply the data graph itself with undirected edges. The idea behind chromatic scheduling
is fairly simple. Chromatic scheduling begins by computing a (vertex) coloring of the
conflict graph — an assignment of colors to the vertices such that no two adjacent vertices
share the same color. Since no edge in the conflict graph connects two vertices of the same
color, updates on all vertices of a given color can execute in parallel without producing
races. To execute a round of a data-graph computation, the set of activated vertices Q is
partitioned into � color sets — subsets of Q containing vertices of a single color. Updates
are applied to vertices in Q by serially stepping through each color set and updating all
vertices within a color set in parallel. Indeed, the special case where the active set Q = V
is the entire vertex set of the graph (i.e., a static data-graph computation) can be executed
using chromatic scheduling using Distributed GraphLab [264]. The result of a data-graph
computation executed using chromatic scheduling is equivalent to that of a slightly modified
version of Serial-DDGC that starts each round (immediately before line 9 of Figure 4-1)
by sorting the vertices within its queue by color.

Chromatic scheduling avoids both of the pitfalls of the locking strategy. First, since only
nonadjacent vertices in the conflict graph are updated in parallel, no races can occur, and
the necessity for locks and their associated performance overheads are precluded. Second,
by establishing a fixed order for processing different colors, any two adjacent vertices are
always processed in the same order. The data-graph computation is therefore executed
deterministically, as long as a deterministic coloring algorithm is used to color the conflict

66

graph. While chromatic scheduling potentially loses parallelism because vertices of different
colors are processed serially, we shall see that this concern does not appear to be an issue
in practice.

To date, chromatic scheduling has been applied to static data-graph computations [264],
but not to dynamic data-graph computations. This chapter addresses the question of how
to perform chromatic scheduling efficiently when the activation set changes on the fly, ne-
cessitating a data structure for maintaining dynamic sets of vertices in parallel.

Contributions

This chapter introduces Prism, a chromatic-scheduling algorithm that executes dynamic
data-graph computations in parallel efficiently in a deterministic fashion. Prism employs a
“multibag” data structure to manage an activation set as a list of color sets. The “multibag”
achieves efficiency using worker-local storage. By using the “multibag” and a determin-
istic coloring algorithm, Prism provides theoretical guarantees to execute the data-graph
computation deterministically.

We analyze the performance of Prism using work-span analysis. We shall make the rea-
sonable assumption that a single update f(v) executes in ⇥(deg(v)) work and ⇥(lg(deg(v)))
span.2 Under this assumption, on a �-degree data graph G colored using � colors, Prism
executes the updates on the vertices in the activation set Q

r

of a round r on P processors
in O(size(Q

r

) + P) work and O(�(lg(Q
r

/�) + lg�) + lgP) span.
The “price of determinism” incurred by using chromatic scheduling instead of the more

common locking strategy appears to be negative for real-world applications. This discovery
is perhaps surprising since it would seem to be strictly harder to guarantee that the compu-
tation behave deterministically than to allow for nondeterministic behaviors. Nevertheless,
as Figure 4-2 indicates, on seven application benchmarks, Prism executes 1.2 to 2.1 times
faster than GraphLab’s comparable, but nondeterministic, locking strategy, which we call
RRLocks. This performance gap is not due solely to superior engineering or load balanc-
ing. A similar performance overhead is observed in a comparably engineered lock-based
scheduling algorithm, Cilk+Locks. Prism outperforms Cilk+Locks on each of the 7
application benchmarks and is on average (geometric mean) 1.4 times faster.

Prism offers several benefits to performance-engineering dynamic data-graph computa-
tions. By executing these computations deterministically, Prism allows programmers to rea-
son about the behavior of these computations based on a serial execution. Prism also offers
theoretical guarantees to execute dynamic data-graph computations efficiently on parallel
processors, which programmers can use to investigate the scalability of these computations.
Finally, our Prism implementation bears out these theoretical performance guarantees in
practice, allowing programmers to convert their theoretical predictions into efficient soft-
ware.

Our contribution is not a full-featured framework like GraphLab, Pregel, Galois, Pow-
erGraph, Ligra, or GraphChi. Each of these systems is the result of countless hours of
performance engineering and feature support. Instead, we provide a scheduling technique
that could be adopted by any such framework to enable the deterministic execution of
work-efficient, dynamic data-graph computations, which no existing framework currently
supports.3 We use a modified shared-memory version of GraphLab in order to isolate the

2Other assumptions about the work and span of an update can easily be made at the potential expense
of complicating the analysis.

3Deterministic Galois [299] has added support for deterministic execution of dynamic data-graph com-

67

effect of our scheduling algorithms. Thus, the empirical comparisons in this chapter are
apples-to-apples comparisons of scheduling strategies, not competitive comparisons with
other systems.

Prism behaves deterministically as long as every update is pure : it modifies no data
except for that associated with its target vertex. This assumption precludes the update func-
tion from modifying global variables to aggregate or collect values. To support this common
use pattern, we describe an extension to Prism, called Prism-R, which executes dynamic
data-graph computations deterministically even when updates modify global variables using
associative operations. Prism-R replaces each “multibag” that Prism uses with a “mul-
tivector,” maintaining color sets whose contents are ordered deterministically. Prism-R
executes in the same theoretical bounds as Prism, but its implementation is more involved.
Empirically, Prism-R is on average (geometric mean) only 1.07 times slower than Prism
and outperforms Cilk+Locks on all but one of the seven application benchmarks.

Outline

The remainder of this chapter is organized as follows. Section 4.2 describes Prism, the
chromatic-scheduling algorithm for dynamic data-graph computations. Section 4.3 describes
the “multibag” data structure Prism uses to represent its color sets. Section 4.4 presents
our theoretical analysis of Prism. Section 4.5 describes a Cilk Plus [196] implementation of
Prism and presents empirical results measuring this implementation’s performance on seven
application benchmarks. Section 4.6 describes Prism-R which executes dynamic data-graph
computations deterministically even when update functions modify global variables using
associative operations. Section 4.7 describes and analyzes the “multivector” data structure
Prism-R uses to represent deterministically ordered color sets. Section 4.8 analyzes Prism-
R both theoretically, using work-span analysis, and empirically. Section 4.9 offers some
concluding remarks.

4.2 The Prism algorithm

This section presents Prism, a chromatic-scheduling algorithm for executing dynamic data-
graph computations deterministically. We describe how Prism differs from the serial algo-
rithm, Serial-DDGC, in Section 4.1, including how it maintains activation sets that are
partitioned by color using the “multibag” data structure.

Figure 4-3 presents the pseudocode for Prism, which differs from Serial-DDGC (shown
in Figure 4-1) in two main ways: the use of a “multibag” data structure to implement Q,
and the call to Color-Graph on line 15 to color the data graph.

A multibag Q represents a list hC0, C1, . . . , C��1i of � bags (unordered multisets) and
supports two operations:

• MB-Insert(Q, v, k) inserts an item v into bag C
k

in Q. A multibag supports parallel
MB-Insert operations.

• MB-Collect(Q) produces a collection C that represents a list of the nonempty bags
in Q, emptying Q in the process.

Although the multibag data structure supports duplicate items in a single bag, our im-
plementation of Prism actually ensures that no duplicate vertices are ever inserted into a

putations by recursively removing and executing independent sets of vertices. However, their algorithm is
not work-efficient and, as a result, is much slower than the nondeterministic version.

68

Prism(G, f,Q0)

15 � = Color-Graph(G)
16 r = 0
17 Q = Q0

18 while Q 6= ;
19 C = MB-Collect(Q)
20 for C 2 C
21 parallel for v 2 C
22 active[v] = false
23 S = f(v)
24 parallel for u 2 S
25 if CAS(active[u], false,true)
26 MB-Insert(Q, u, color [u])
27 r = r + 1

CAS(current , test , value)
28 begin atomic

29 if current == test
30 current = value
31 return true
32 else

33 return false
34 end atomic

Figure 4-3: Pseudocode for Prism, including the compare-and-swap synchronization primitive
CAS. The procedure Prism takes as input a data graph G, an update function f , and an initial
activation set Q0. The procedure Color-Graph colors a given graph and returns the number of
colors it used. The procedures MB-Collect and MB-Insert operate the multibag Q to maintain
activation sets for Prism. The variable r tracks the number of rounds executed.

multibag.
Prism calls Color-Graph on line 15 to color the given data graph G = (V,E) and

obtain the number � of colors used. Although it is NP-complete to find an optimal coloring
of a graph [150] — a coloring that uses the smallest possible number of colors — an optimal
coloring is not necessary for Prism to perform well, as long as the data graph is colored
deterministically, in parallel,4 and with sufficiently few colors in practice. Many parallel
coloring algorithms exist that satisfy the needs of Prism (see, for example, [13,32,162,163,
175, 209, 226, 227, 254, 382]). Our implementation of Prism uses a multicore variant of the
Jones and Plassmann algorithm [209] that produces a deterministic (�+1)-coloring of a �-
degree graph G = (V,E) in linear work and O(lg V + lg� ·min{pE,�+ lg� lg V/ lg lg V })
span. Chapter 5 describes this coloring algorithm in detail.

Let us see how Prism uses chromatic scheduling to execute a dynamic data-graph com-
putation hG, f,Q0i. After line 15 colors G, line 17 initializes the multibag Q with the initial
activation set Q0, and then the while loop on lines 18–27 executes the rounds of the data-
graph computation. At the start of each round, line 19 collects the nonempty bags C from
Q, which correspond to the nonempty color sets for the round. Lines 20–26 iterate through
the color sets C 2 C sequentially, and the parallel for loop on lines 21–26 processes the
vertices of each C in parallel. For each vertex v 2 C, line 23 performs the update S = f(v),
which returns a set S of activated vertices, and lines 24–26 insert into Q the vertices in S
that were not already active before the update.

Although a vertex u can be activated by multiple neighbors, it must only be updated at
most once during a round. Prism enforces this constraint5 by using the atomic compare-
and-swap operator [183, p. 480], CAS, which is available as a synchronization primitive
on most machines. The definition of CAS is given on lines 28–34 in Figure 4-3. Lines

4If the data-graph computation performs sufficiently many updates, a serial ⇥(V + E)-work greedy
coloring algorithm, such as that introduced by Welsh and Powell [403], can suffice as well, since the time to
color the graph would be sufficiently amortized against the work performed.

5This constraint can be enforced without the use of an atomic compare-and-swap operation by dedupli-
cating the contents of Q at the start of each round. However, our empirical studies have shown that this
limited use of atomics is beneficial in practice.

69

24–26 use the CAS primitive to activate each vertex u 2 S by first atomically setting
active[u] = true, and then calling MB-Insert if active[u] was previously false. Thus,
each vertex is inserted into Q at most once during a round.

Design considerations for the implementation of multibags

The theoretical performance of Prism depends upon the properties of the multibag data
structure. In particular, the multibag is carefully designed to ensure that Prism is work-
efficient — that is, it performs the same asymptotic work as the serial algorithm Serial-
DDGC in Figure 4-1. Before examining the design of the multibag in Section 4.3, let
us first explore why maintaining active color sets in Prism in a work-efficient manner is
tricky. Specifically, we shall consider two alternative strategies: bit vectors and an array of
worker-local queues.

The bit-vector approach avoids the multibag altogether and simply manages activation
sets using the bit vector active already used by Prism. Recall that if active[i] is true, then
the vertex v

i

2 V indexed by i is active. Suppose that active were the only data structure.
To iterate over all activated vertices of color k, a parallel for could scan through active,
updating the vertex v

i

whenever active[i] is true and color [i] is k. This scheme requires
⌦(V �) work per round of the computation, where � is the number of colors returned by
Color-Graph in line 15 of Figure 4-3, since the entire bit vector must be scanned � times
each round. At the cost of additional preprocessing, active could be organized such that
vertices of the same color are assigned contiguous indexes. Even with this optimization,
however, scanning active requires ⌦(V) work each round, which is not work-efficient for
dynamic computations that activate only a sparse subset of the vertices each round.

An alternative strategy that one might consider is to represent the active color sets
using an array of worker-local queues. A straightforward implementation of this approach,
however, is also not work-efficient. For a dynamic data-graph computation using � colors
and P processors, a total of P� worker-local queues would be needed to maintain the set
of active vertices, and ⌦(P�) work would be required to collect all nonempty queues. As
we shall see in Section 4.3, however, by using a carefully designed data structure to manage
worker-local queues, we can obtain a work-efficient data structure for maintaining color sets.

4.3 The multibag data structure

This section presents the multibag data structure employed by Prism. The multibag uses
worker-local sparse accumulators [160] and an efficient parallel collection operation. We de-
scribe how the MB-Insert and MB-Collect operations are implemented, and we analyze
them using work-span analysis. When used in a P -processor execution of a parallel program,
a multibag Q of � bags storing n elements supports MB-Insert in ⇥(1) worst-case time
and MB-Collect in O(n+�+P) work and O(lg n+�+lgP) span. Such a multibag uses
O(P�+ n) space.

Our implementation of Prism assumes the existence of a runtime-system-provided func-
tion Get-Worker-ID that returns an integer from 0 to P � 1 that uniquely identifies
the worker executing the current strand in ⇥(1) time. Other strategies for implementing
worker-local storage exist that are comparable to the strategy outlined here.

A sparse accumulator (SPA) [160] implements an array that supports lazy initializa-
tion of its elements. A SPA T contains a sparsely populated array T.array of elements and

70

v24 v9 v14

v25 v1

v33 v44 v28

v97 v6

v84

v12 v8

v60 v13 v72

v5 v79 v10 array

log

size 3

log log

size 2
bag-offsets

3

array array

v24 v9 v14

v12 v8

v25 v1

v60 v13 v72

v97 v6

v33 v44 v28

v84

v5 v79 v10

0

2

3

6

collected-subbags

size

subbag

0 1 P–1

(a) (b)

C0

C2

C3

C6

Figure 4-4: Illustration of the multibag data structure. (a) A multibag containing 19 elements
distributed across 4 distinct bags: {C0, C2, C3, C6}, representing vertices of colors 0, 2, 3, and 6,
respectively. For each bag, each worker keeps track of its portion of its subbag in a worker-local
SPA, thus avoiding initialization of empty subbags by maintaining a compact log pointing to the
set of populated subbags. For example, bag C6 is composed of three subbag contributions from
the three active workers: {v33, v44, v28}, {v84}, and {v5, v79, v10}. (b) The output of MB-Collect
when executed on the multibag in (a). Sets of subbags in collected -subbags are labeled with the bag
Ck that their union represents.

a log T. log , which is a list of indices of initialized elements in T.array . To implement multi-
bags, we shall only need the ability to create a SPA, to access an arbitrary SPA element,
and to delete all elements from a SPA. For simplicity, we shall assume that an uninitialized
array element in a SPA has a value of nil. When an array element T.array [i] is modified for
the first time, the index i is appended to T. log . An appropriately designed SPA T storing
n = |T. log | elements admits the following performance properties:

• Creating T takes ⇥(1) work.
• Each element of T can be accessed in ⇥(1) work.
• Reading all n initialized elements of T takes ⇥(n) work and ⇥(lg n) span.
• Emptying T takes ⇥(1) work.
A multibag Q is an array of P worker-local SPA’s, where P is the number of workers

executing the program. We shall use p interchangeably to denote either a worker or that
worker’s unique identifier. Worker p’s local SPA in Q is thus denoted by Q[p]. For a
multibag Q of � bags, each SPA Q[p] contains an array Q[p].array of size � and a log
Q[p]. log . Figure 4-4(a) illustrates a multibag with � = 7 bags, 4 of which are nonempty.
As Figure 4-4(a) shows, the worker-local SPA’s in Q partition each bag C

k

2 Q into P
subbags, {C

k,0, Ck,1, . . . , Ck,P�1}, where Q[p].array [k] stores subbag C
k,p

.

Implementation of MB-Insert and MB-Collect

The worker-local SPA’s enable a multibag Q to support parallel MB-Insert operations
without creating races. Figure 4-5 shows the pseudocode for MB-Insert. When a worker p
executes MB-Insert(Q, v, k), it inserts element v into the subbag C

k,p

as follows. Line 35
calls Get-Worker-ID to get worker p’s identifier. Line 36 checks if subbag C

k,p

stored in
Q[p].array [k] is initialized, and if not, lines 37 and 38 initialize it. Line 39 inserts v into
Q[p].array [k].

71

MB-Insert(Q, v, k)

35 p = Get-Worker-ID()
36 if Q[p].array [k] == nil
37 Append(Q[p]. log , k)
38 Q[p].array [k] = new subbag
39 Append(Q[p].array [k], v)

Figure 4-5: Pseudocode for the MB-Insert multibag operation. MB-Insert(Q, v, k) inserts the
element v into the kth bag Ck of the multibag Q.

Conceptually, the MB-Collect operation extracts the bags in Q to produce a compact
representation of those bags that can be read efficiently. Figure 4-4(b) illustrates the com-
pact representation of the elements of the multibag from Figure 4-4(a) that MB-Collect
returns. This representation consists of a pair hbag-o↵sets, collected -subbagsi of arrays that
together resemble the representation of a graph in a CSR format. The collected -subbags ar-
ray stores all of the subbags in Q sorted by their corresponding bag’s index. The bag-o↵sets
array stores indices in collected -subbags that denote the sets of subbags comprised by each
bag. In particular, in this representation, the contents of bag C

k

are stored in the subbags
in collected -subbags between indices bag-o↵sets[k] and bag-o↵sets[k + 1].

Figure 4-6 sketches how MB-Collect converts a multibag Q stored in worker-local
SPA’s into the representation illustrated in Figure 4-4(b). Steps 1 and 2 create an array
collected -subbags of nonempty subbags from the worker-local SPA’s in Q. Each subbag C

k,p

in collected -subbags is tagged with the integer index k of its corresponding bag C
k

2 Q.
Step 3 sorts collected -subbags by these index tags, and Step 4 creates the bag-o↵sets array.
Step 5 removes all elements from Q, thereby emptying the multibag.

Analysis of multibags

We now analyze the work and span of the multibag’s MB-Insert and MB-Collect oper-
ations, starting with MB-Insert.

Lemma 16 Executing MB-Insert takes ⇥(1) time in the worst case.

Proof. Consider each step of a call to MB-Insert(Q, v, k). The Get-Worker-ID
procedure on line 35 obtains the executing worker’s identifier p from the runtime system in
⇥(1) time, and line 36 checks if the entry Q[p].array [k] is empty in ⇥(1) time. Suppose
that Q[p]. log and each subbag in Q[p].array are implemented as dynamic arrays that use a
deamortized table-doubling scheme [69]. Lines 37–39 then take ⇥(1) time each to append k
to Q[p]. log , create a new subbag in Q[p].array [k], and append v to Q[p].array [k].

The next lemma analyzes the work and span of MB-Collect.

Lemma 17 In a program execution on P processors, a call to MB-Collect(Q) on a
multibag Q with � bags whose contents are distributed across m distinct subbags executes
in ⇥(m+ �+ P) work and ⇥(lgm+ �+ lgP) span.

Proof. We analyze each step of MB-Collect in turn. We shall use a helper procedure
Prefix-Sum(A), which computes the all-prefix sums of an array A of n integers in ⇥(n)
work and ⇥(lg n) span. Blelloch [49] describes an appropriate implementation of Prefix-
Sum.

72

MB-Collect(Q)
1. For each SPA Q[p], map each bag index k in Q[p]. log to the pair hk, Q[p].array [k]i.
2. Concatenate the arrays Q[p]. log for all workers p 2 {0, 1, . . . , P � 1} into a single array,

collected -subbags.
3. Sort the entries of collected -subbags by their bag indices.
4. Create the array bag-o↵sets, where bag-o↵sets[k] stores the index of the first subbag in

collected -subbags that contains elements of the kth bag.
5. For p = 0, 1, . . . , P � 1, delete all elements from the SPA Q[p].
6. Return the pair hbag-o↵sets, collected -subbagsi.

Figure 4-6: Pseudocode for the MB-Collect multibag operation. Calling MB-Collect on a
multibag Q produces a pair of arrays collected -subbags, which contains all nonempty subbags in Q
sorted by their associated bag’s index, and bag-o↵sets, which associates sets of subbags in Q with
their corresponding bag.

Step 1 replaces each entry in Q[p]. log in each worker-local SPA Q[p] with the appropriate
index-subbag pair hk, C

k,p

i in parallel, which requires ⇥(m + P) work and ⇥(lgm + lgP)
span.

Step 2 gathers all index-subbag pairs into a single array. Suppose that each worker-local
SPA Q[p] is augmented with the size of Q[p]. log , as Figure 4-4(a) illustrates. Executing
Prefix-Sum on these sizes and then copying the entries of Q[p]. log into collected -subbags
in parallel therefore completes Step 2 in ⇥(m+ P) work and ⇥(lgm+ lgP) span.

Step 3 can sort the collected -subbags array in ⇥(m+�) work and ⇥(lgm+�) span using
a variant of a parallel radix sort [54,93,416] as follows:

1. Divide collected -subbags into m/� groups of size �, and create an (m/�)⇥� matrix A,
where entry A

ij

stores the number of subbags with index j in group i. Constructing
A can be done with ⇥(m+�) work and ⇥(lgm+�) span by evaluating the groups in
parallel and the subbags in each group serially.

2. Evaluate Prefix-Sum on AT (or, more precisely, the array formed by concatenating
the columns of A in order) to produce a matrix B such that B

ij

identifies which entries
in the sorted version of collected -subbags will store the subbags with index j in group i.
This Prefix-Sum call takes ⇥(m+ �) work and ⇥(lgm+ lg�) span.

3. Create a temporary array T of size m, then evaluate the groups of collected -subbags
in parallel, serially moving each subbag in the group to an appropriate index in T
identified by B. Copying these subbags executes in ⇥(m + �) work and ⇥(lgm + �)
span.

4. Rename the temporary array T as collected -subbags in ⇥(1) work and span.
Finally, Step 4 can scan collected -subbags for adjacent pairs of entries with different bag

indices to compute bag-o↵sets in ⇥(m) work and ⇥(lgm) span, and Step 5 can reset every
SPA in Q in parallel using ⇥(P) work and ⇥(lgP) span. Totaling the work and span of
each step completes the proof.

Corollary 18 In a program execution on P processors, let Q be a multibag whose contents
are distributed across m distinct subbags, and suppose that all nonempty bags in Q have
indices in 0, 1, . . . , k. Then Q may be treated as a multibag representing k bags such that
MB-Collect(Q) executes in ⇥(m+ k + P) work and ⇥(lgm+ k + lgP) span.

Proof. Steps 1 and 2 of MB-Collect can determine the index k of the largest nonempty
bag in Q at no asymptotic cost to work or span, and the subsequent steps of MB-Collect
can then substitute k in place of �. The corollary thus follows from Lemma 17.

73

Although different executions of a program can store the elements of Q in different
numbers m of distinct subbags, notice that m is never more than the total number of
elements in Q.

4.4 Analysis of Prism

This section analyzes the performance of Prism using work-span analysis. We derive bounds
on the work and span of Prism for any simple data-graph computation hG, f,Q0i. Recall
that we make the reasonable assumptions that a single update f(v) executes in ⇥(deg(v))
work and ⇥(lg(deg(v))) span, and that the update only activates vertices in Adj[v]. These
work and span bounds can be used to characterize the data-graph computations on which
Prism achieves good parallel scalability. In particular, we show that on a data-graph on
n vertices colored using � colors that Prism achieves good parallel speedup whenever the
average work per round is much greater than P � lg n.

The theoretical analyses presented throughout this chapter assume that concurrent reads
and writes incur no overheads due to contention.

Let us first analyze the work and span of Prism for one round of a data-graph compu-
tation.

Theorem 19 Suppose that Prism colors a �-degree data graph G = (V,E) using � colors,
and then executes the data-graph computation hG, f,Q0i. Then, on P processors, Prism
executes updates on all vertices in the activation set Q

r

for a round r using ⇥(size(Q
r

)+P)
work and O(�(lg(Q

r

/�) + lg�) + lgP) span.

Proof. Let us first analyze one iteration of the for loop on lines 20–26 in Prism, which
performs the updates on the vertices belonging to one color set C 2 Q

r

. Consider a vertex
v 2 C. Lines 22 and 23 execute in ⇥(deg(v)) work and ⇥(lg(deg(v))) span. For each vertex
u in the set S of vertices activated by the update f(v), Lemma 16 implies that lines 25–26
execute in ⇥(1) total work. The parallel for loop on lines 24–26 therefore executes in ⇥(S)
work and ⇥(lgS) span. Because |S| deg(v), the parallel for loop on lines 21–26 thus
executes in ⇥(size(C)) work and ⇥(lgC +max

v2C lg(deg(v))) = O(lgC + lg�) span.
By processing each of the � color sets belonging to Q

r

, lines 20–26 therefore executes in
⇥(size(Q

r

) + �) work and O(�(lg(Q
r

/�) + lg�)) span. Corollary 18 implies that line 19
executes MB-Collect in ⇥(Q

r

+ �
r

+ P) work and ⇥(lgQ
r

+ �
r

+ lgP) span where
�
r

= max
v2Qr {color [v]}. The theorem follows since |Q

r

|+ �
r

 size(Q
r

) + 1

Theoretical scalability of Prism

Dynamic data-graph computations typically run for multiple rounds until a convergence
criteria is met. We will now generalize Theorem 19 to prove work and span bounds for
Prism when executing a sequence of rounds.

Theorem 20 Suppose that Prism colors a �-degree data graph G = (V,E) using � colors,
and then executes the data-graph computation hG, f,Q0i in r rounds applying updates to the
activation sets Q0, Q1, . . . , Qr�1. Define the multiset U =

U
r�1
i=0 Qi

so that |U| =Pr�1
i=0 |Qi

|
and size(U) =

P
r�1
i=0 size(Qi

), where the symbol
U

indicates a multiset sum.6 Then, on
6A multiset sum M =

U
i2I Mi has multiplicity of element m equal to M(m) =

P
i2I Mi(m) for all

m 2 M .

74

P processors, Prism executes the data-graph computation using ⇥(size(U) + rP) work and
O(r �(lg((U/r)/�) + lg�) + r lgP) span.

Proof. The work bound follows directly from Theorem 19 by taking the sum of work
performed in each of the r rounds of Prism. The total span of Prism is equal to the sum
of each round’s span, which Theorem 19 bounds by

P
r�1
i=0 O(�(lg(Q

i

/�) + lg�) + lgP).
Observing that

P
r�1
i=0 � lg(Q

i

/�) r � lg((U/r)/�) completes the proof.
Given Theorem 20 we can compute the parallelism of Prism for a data-graph computa-

tion that applies a multiset U of updates over r rounds. The following corollary expresses
the parallelism of Prism in terms of the average size of the activation sets in a sequence of
rounds.

Corollary 21 Suppose Prism executes a data-graph computation in r rounds during which
it applies a multiset U of updates. Define the average number of updates per round U

avg

=
|U| /r and the average work per round W

avg

= size(U)/r. Then Prism has parallelism of
⌦(W

avg

/(�(lg(U
avg

/�) + lg�))).

Proof. Follows from Theorem 20 by computing the parallelism as the ratio of the work
over the span and then performing substitution.

Corollary 21 implies that Prism achieves near perfect linear parallel speedup on P
processors for a graph of n vertices when the average work W

avg

performed in each round
is much larger than P � lg n.

4.5 Empirical evaluation

This section explores the performance properties of Prism from an empirical perspective.
We describe three experiments designed to investigate the synchronization costs, dynamic-
scheduling overheads, and scalability properties of Prism. For the first experiment, on a
suite of 12 benchmark graphs, Prism executed between 1.0 and 2.1 times faster than a
nondeterministic locking protocol on PageRank [68], exhibiting a geometric-mean speedup
of a factor of 1.5. Prism thus exhibits substantially lower synchronization costs. The second
experiment shows that, compared with static scheduling, the slowdown that Prism incurs
for dynamic scheduling using multibags is only about 1.16 when all vertices are activated in
every round. This experiment shows that Prism can be effective even for relatively densely
activated graphs. The third experiment shows that Prism scales well and is relatively
insensitive to the number of colors needed to color the conflict graph, as long as there is
sufficient parallelism.

The results presented here include data for Prism-R. We will discuss this data in Sec-
tion 4.8, after presenting Prism-R.

Experimental setup

Figure 4-7 summarizes the technical specifications of the machine used for all of the experi-
ments. All code was compiled using -O3 optimizations.

As a platform for our experiments, we implemented a new parallel execution engine
within GraphLab [265] that uses Intel Cilk Plus [196] to expose parallelism. The new
execution engine and all of our scheduling algorithms were designed to be compatible with
the original GraphLab API in order to facilitate a fair evaluation of the relative merits of

75

CPU Intel Xeon X5650
Clock 2.67GHz
Hyperthreading Disabled
Cores per processor chip 6
Processor chips (sockets) 2
L1 data cache/core 32KiB
L2 cache/core 128KiB
L3 cache/socket 12MiB
DRAM 49GiB
Compiler Intel C/C++ compiler v13.1.1

Figure 4-7: Technical specifications of the machine used for benchmarking.

different scheduling methodologies. In particular, to better understand the performance
properties of Prism, we developed four scheduling algorithms for comparison:

• Serial-DDGC is an implementation of the serial scheduling algorithm from Figure 4-
1. Serial-DDGC provides a serial performance baseline for measuring the parallel
speedup achieved by the other, more complex, scheduling algorithms for dynamic
data-graph computations.

• Cilk+Locks is a lock-based scheduling algorithm for dynamic data-graph computa-
tions. During each round, Cilk+Locks updates only an active subset of the vertices
in the graph. It uses a locking scheme to avoid executing conflicting updates in par-
allel. The locking scheme associates a shared-exclusive (i.e., reader-writer) lock [103]
with each vertex in the graph. Prior to executing an update f(v), vertex v’s lock
is acquired exclusively, and a shared lock is acquired for each u 2 Adj[v]. A global
ordering of locks is used to avoid deadlock.

• RRLocks is the lock-based dynamic scheduling algorithm implemented by the round-
robin sweep scheduler in the original shared-memory version of GraphLab. A bit vec-
tor active is used to represent the active set of vertices. During each round, RRLocks
scans each vertex in the active set in a round-robin fashion, conditionally updating a
vertex v

i

if active[i] is true. To avoid races, a locking strategy is used to coordinate
updates that conflict.

• RRColor is a coloring-based dynamic scheduling algorithm that uses a bit vector
active to represent the active set of vertices. Instead of using locks to coordinate
conflicting updates, however, RRColor uses a vertex-coloring of the graph. At the
start of the computation, RRColor partitions the vertices by color and stores them
in static arrays. For a graph colored using � colors, each round of the computation
is divided into � color steps. During the kth color step, RRColor scans all color-k
vertices and conditionally updates a color-k vertex v

i

if active[i] is true.

Overheads for locking and for chromatic scheduling

We compared the overheads associated with coordinating conflicting updates of a dynamic
data-graph computation using locks versus using chromatic scheduling. We evaluated these
overheads by comparing the 12-core execution times for Prism and Cilk+Locks to execute
the PageRank [68] data-graph computation on a suite of graphs. We used PageRank for this
study because of its comparatively cheap update function, which makes overheads due to
scheduling more pronounced. PageRank updates a vertex v by first scanning v’s incoming
edges to aggregate the data from its incoming neighbors, and then by scanning v’s outgoing
edges to activate its outgoing neighbors.

76

Graph |V | |E| � Cilk+Locks Prism Prism-R Coloring

cage15 5,154,860 94,044,700 17 36.9 35.5 35.6 12%
liveJournal 4,847,570 68,475,400 333 36.8 21.7 22.3 12%
randLocalDim25 1,000,000 49,992,400 36 26.7 14.4 14.6 18%
randLocalDim4 1,000,000 41,817,000 47 19.5 12.5 13.7 14%
rmat2Million 2,097,120 39,912,600 72 22.5 16.6 16.8 12%
powerGraph2M 2,000,000 29,108,100 15 12.1 9.8 10.1 13%
3dgrid5m 5,000,210 15,000,600 6 10.3 10.3 10.4 7%
2dgrid5m 4,999,700 9,999,390 4 17.7 8.9 9.0 4%
web-Google 916,428 5,105,040 43 3.9 2.4 2.4 8%
web-BerkStan 685,231 7,600,600 200 3.9 2.4 2.7 8%
web-Stanford 281,904 2,312,500 62 1.9 0.9 1.0 11%
web-NotreDame 325,729 1,469,680 154 1.1 0.8 0.8 12%

Figure 4-8: Performance of Prism versus Cilk+Locks when executing 10 · |V | updates of the
PageRank [68] data-graph computation on a suite of six real-world graphs and six synthetic graphs.
Column “Graph” identifies the input graph, and columns |V | and |E| specify the number of vertices
and edges in the graph, respectively. Column � gives the number of colors Prism used to color the
graph. Columns “Cilk+Locks,” “Prism,” and “Prism-R” present 12-core running times in seconds
for each respective scheduler. Each running time is the median of 5 runs. Column “Coloring” gives
the percentage of Prism’s running time spent coloring the graph. Prism-R, discussed in Section 4.6,
provides deterministic support for associative operations on global variables.

We executed the PageRank application on a suite of six synthetic and six real-world
graphs. The six real-world graphs came from the Stanford Large Network Dataset Col-
lection (SNAP) [250], and the University of Florida Sparse Matrix Collection [107]. The
six synthetic graphs were generated using the “randLocal,” “powerLaw,” “gridGraph,” and
“rMatGraph” generators included in the Problem Based Benchmark Suite [360]. We chose
the graphs in this suite to be large enough to stress the memory system and thus make
parallel speedup comparatively difficult. That is, given the random access inherent in data-
graph computations, we expect most references to vertex data to come from DRAM, making
DRAM bandwidth a scarce shared commodity. Since the span of Prism is superconstant,
however, for a fixed number of workers, increasing the size of the graph only increases par-
allelism, making good parallel speedup comparatively easy. Thus, we have pessimistically
chosen the graphs in the suite to be large enough to make DRAM bandwidth a shared
bottleneck but not unduly larger.

To isolate scheduling overheads, we forced Prism and Cilk+Locks to perform the
same number of updates. We observed that Prism often performs slightly fewer rounds of
updates than Cilk+Locks when both are allowed to run until convergence. We controlled
this variation by explicitly setting the total number of updates on a graph to 10 times the
number of vertices.

Figure 4-8 presents the empirical results for this study. The figure shows that over the
12 benchmark graphs, Prism executes between 1.0 and 2.1 times faster than Cilk+Locks
on PageRank, exhibiting a geometric-mean speedup of a factor of 1.5. Moreover, the figure
shows that an average of 10.9% of Prism’s total running time is spent coloring the data
graph, which is approximately equal to the cost of executing |V | updates. Prism colors
the data-graph once to execute the data-graph computation, however, meaning that the
cost of coloring can be amortized over all of the updates in the data-graph computation.
By contrast, the locking scheme implemented by Cilk+Locks incurs overhead for every
update. Before updating a vertex v, Cilk+Locks acquires the lock associated with v and

77

Benchmark � Updates RRLocks RRColor Prism Prism-R

PR/L 333 48,475,700 35.3 14.5 17.7 18.4
ID/2000 4 40,000,000 63.2 50.1 59.2 59.9
FBP/C3 2 16,001,900 11.9 8.8 8.8 8.9
ID/1000 4 10,000,000 15.7 12.6 14.9 15.0
PR/G 43 9,164,280 3.1 1.3 2.1 2.2
FBP/C1 2 8,783,100 5.9 4.7 4.8 4.8
ALS/N 6 1,877,220 65.7 52.4 52.8 53.5

Figure 4-9: Performance of three schedulers on the seven application benchmarks from Figure 4-2,
modified so that all vertices are activated in every round. Column “Updates” specifies the number of
updates performed in the data-graph computation. Columns “RRLocks,” “RRColor,” “Prism,”
and “Prism-R” list the 12-core running times in seconds for the respective schedulers to execute each
benchmark. Each running time is the median of 5 runs. The Prism-R algorithm, which provides
deterministic support for associative operations on global variables, will be discussed in Section 4.6.

each lock associated with a vertex u 2 Adj[v]. For simple data-graph computations whose
update functions perform relatively little work, this step can account for a significant fraction
of the time to execute an update.

Dynamic-scheduling overhead

To investigate the overhead of using multibags to maintain activation sets, we compared
the 12-core running times of Prism, RRColor, and RRLocks on the seven benchmark
applications from Figure 4-2. For this study, we modified the benchmarks slightly for each
scheduler in order to provide a fair comparison. First, because Prism typically executes
fewer updates than a scheduler for static data-graph computations, we modified the update
functions for each application so that every update on a vertex v always activates all vertices
u 2 Adj[v]. This modification guarantees that Prism executes the same set of updates each
round as RRLocks and RRColor, while still incurring the overhead that Prism requires
in order to maintain a dynamic set of active vertices. Thus, we compare the worst case
conditions for Prism with respect to scheduling overhead with the best case conditions for
RRLocks and RRColor.

Figure 4-9 presents the results of these tests, revealing the overhead Prism incurs to
maintain its activation sets using a multibag. As can be seen from the figure, Prism is
1.0 to 1.6 times slower than RRColor on the benchmarks with a geometric-mean relative
slowdown of 1.16. That is, for static data-graph computations, Prism incurs only an ag-
gregate 16% slowdown through the use of a multibag, as opposed to the simple array used
by RRColor, which suffices for static scheduling. The Prism algorithm, which can also
support dynamic activation sets efficiently, incurred minimal overhead for the multibag data
structure. Prism outperformed RRLocks on all benchmarks, achieving a geometric-mean
speedup of 30% due to RRLocks’s lock overhead. Thus, Prism incurs relatively little
overhead by maintaining activation sets with multibags.

The relative overhead of RRColor and Prism depends on the percentage of vertices
active during a given round. As a typical example, RRColor is approximately 1.09 times
faster than Prism on the image denoise benchmark when 80% of the vertices are active each
round, but is 1.11 times slower when 5% or less of the vertices are active each round. As
part of an effort to incorporate the Prism scheduling paradigm into an existing data-graph
computation framework (e.g., GraphLab, Pregel etc.), one might consider using a heuristic
to switch between the use of a bitvector and a multibag depending on the density of the

78

2

4

6

8

10

12

P
R

/L

ID
/2

00
0

FB
P

/C
3

ID
/1

00
0

P
R

/G

FB
P

/C
1

A
LS

/N

Sp
ee

du
p

Cilk+Locks
Prism

Prism-R

Figure 4-10: Empirical speedup relative to Serial-DDGC on 12 processor cores. Shown are the
empirical speedups Ts/T12 of Cilk+Locks, Prism, and Prism-R, where Ts is the running time
of the serial scheduling algorithm Serial-DDGC and T12 is the running time of the particular
algorithm on 12 cores. The Prism-R algorithm is discussed in Section 4.6.

activation set. A simple heuristic such as a fixed threshold on the relative density of the
activation set (e.g., 10% of the vertices) would likely suffice to maintain activation sets with
good performance: if fewer than 10% of vertices are active, use a multibag, otherwise use a
bitvector.

Scalability of Prism

To measure the scalability of Prism, and Cilk+Locks, we compared their 12-core run-
ning times to the running time of the serial reference implementation Serial-DDGC. Fig-
ure 4-10 shows the empirical 12-core speedups relative to Serial-DDGC of Prism and
Cilk+Locks on seven application benchmarks. In geometric mean, Cilk+Locks achieved
5.73 times speedup and Prism achieved 7.56 times speedup.

In order to study the effect of the number � of colors used to color the application’s
data graph on the parallel scalability of Prism, we measured the parallelism T1/T1 and the
12-core speedup T1/T12 of Prism while executing the image-denoise application as we varied
the number of colors used. The image-denoise application performs belief propagation to
remove Gaussian noise added to a gray-scale image. The data graph for the image-denoise
application is a two-dimensional grid in which each vertex represents a pixel, and there is
an edge between any two adjacent pixels. The Color-Graph procedure invoked in line 15
of Figure 4-3 typically colors this data-graph with just 4 colors.

To perform this study, we artificially increased � by repeatedly assigning a new color
to a random nonempty subset of the largest set of vertices with the same color. Using this
technique, we ran the image-denoise application on a 500-by-500 pixel input image for values
of � between 4 and 250, 000, the last data point corresponding to a coloring that assigns all
pixels distinct colors. Figure 4-11 plots the results of these tests. Although the parallelism
of Prism is inversely proportional to �, Prism’s speedup on 12 cores is relatively insensitive
to �, as long as the parallelism is greater than about 120. This result is consistent with the

79

0.25

1

4

16

64

256

1024

4096

16384

24 26 28 210 212 214 216 218

Sp
ee

du
p

Colors

Parallelism
Empirical Speedup

Figure 4-11: Scalability of Prism on the image-denoise application as a function of �, the number
of colors used to color the data graph. The parallelism T1/T1 is plotted together with the empirical
speedup T1/T12 achieved on a 12-core execution. Parallelism values were measured using the Cilkview
scalability analyzer [180].

rule of thumb that a program with at least 10P parallelism should achieve nearly perfect
linear speedup on P processors [100, p. 783].

4.6 The Prism-R algorithm

This section introduces Prism-R, a chromatic-scheduling algorithm that executes a dynamic
data-graph computation deterministically even when updates modify global reducer vari-
ables using associative operations such as a reducer hyperobject [144]. While the chromatic
scheduling technique employed by Prism ensures that there are no data races on the vertex
data of the graph, the order in which updates are made to a reducer variable among vertices
of a common color can yield a nondeterministic result to the final reducer variable value.
Prism-R uses the “multivector” data structure, which is a theoretical improvement to the
multibag, to maintain activation sets that are partitioned by color and ordered determin-
istically. We describe an extension of the model of simple data-graph computations that
permits an update function to perform associative operations on global variables using a
parallel reduction mechanism. In this extended model, Prism-R executes dynamic data-
graph computations deterministically while achieving the same work and span bounds as
Prism.

Data-graph computations with global reductions

Several frameworks for executing data-graph computations allow updates to modify global
variables in limited ways. Pregel aggregators [269], and GraphLab’s sync mechanism [265],
for example, both support data-graph computations in which an update can modify a global
variable in a restricted manner. These mechanisms coordinate parallel modifications to a
global variable using parallel reductions. We shall focus our attention on allowing updates
to modify global reducer hyperobjects, because reducers provide a particularly general re-

80

Prism-R(G, f,Q0)

40 � = Color-Graph(G)
41 r = 0
42 updates = 0
43 Q = Q0

44 while Q 6= ;
45 C = MV-Collect(Q)
46 for C 2 C
47 parallel for i = 1, 2, . . . , |C|
48 hv, pi = C[i]
49 if p == priority [v]
50 rank [f(v)] = updates + i
51 priority [v] = 1
52 S = f(v)
53 parallel for u 2 S
54 if PriorityWrite(priority [u], rank [f(v)])
55 MV-Insert(Q, hu, rank [f(v)]i, color [u])
56 updates = updates + |C|
57 r = r + 1

PriorityWrite(current , value)
58 begin atomic

59 if current > value
60 current = value
61 return true
62 else

63 return false
64 end atomic

Figure 4-12: Pseudocode for Prism-R. The algorithm takes as input a data graph G, an update
function f , and an initial activation set Q0. Color-Graph colors a given graph and returns the
number of colors it used. The procedures MV-Collect and MV-Insert operate the multivector
Q to maintain activation sets for Prism-R. Prism-R updates the value of updates after processing
each color set and r after each round of the data-graph computation.

duction mechanism that requires only associativity out of its binary reduction operator.
Other parallel reduction mechanisms, including Pregel aggregators and GraphLab’s sync
mechanism, provide this guarantee only if the reduction operator is also commutative.

Although Prism is implemented in Cilk Plus, Prism does not produce a deterministic
result if updates modify global variables using a noncommutative reducer. The reason
for this is, in part, that the order of vertices within in a multibag depends on how the
computation happens to be scheduled among participating workers. As a result, the order
in which lines 21–26 of Prism in Figure 4-3 evaluates the vertices in a color set C is
nondeterministic. If two updates on vertices in C modify the same reducer, then the relative
order of these modifications can differ between runs of Prism, even if a single worker happens
to execute both updates.

Prism-R

Prism-R is an extension to Prism that executes dynamic data-graph computations
deterministically even when update functions are allowed to perform associative operations
on global variables. The semantics of Prism-R mimic that of Serial-DDGC when its queue
of active vertices is stable-sorted by color at the start of each round. In this modified version
of Serial-DDGC updates to active vertices of the same color are applied in increasing
order of their insertion into the queue. Prism-R guarantees that the result of associative
reductions performed by update functions reflect this same order.

Figure 4-12 presents the pseudocode for Prism-R, which differs from Prism in its use
of a “multivector,” instead of a multibag, to maintain partitioned activation sets, and in its
use of a priority deduplication strategy for avoiding multiple updates to the same vertex in
a round.

81

Prism-R uses a multivector to represent a list of � vectors (ordered multisets). A
multivector supports the operations MV-Insert and MV-Collect, which are analogous
to the multibag operations MB-Insert and MB-Collect, respectively. Each vector main-
tained by a multivector has serial semantics, meaning that the order of elements within each
vector is deterministic and equivalent to the insertion order in an execution of the serial
elision of the parallel program. Section 4.7 describes and analyzes the implementation of
the multivector data structure.

The serial semantics of the multivector are not alone sufficient to ensure that updates are
ordered deterministically in an execution of the serial elision of the program. Consider, for
example, a round of Prism that updates the three vertices x, y, z in parallel. Suppose that y
activates u and both x and z activate a common neighbor v. The atomic compare-and-swap
operator used by Prism on line 25 of Figure 4-3 ensures that the updates on x and z will
not both insert v into the activation set, but which of the two succeeds is nondeterministic.
Inserting these two activated vertices into a multivector would produce either the order u, v
or v, u depending on whether x or z activated v.

To eliminate this source of nondeterminism, Prism-R assigns each update f(v) a unique
integer rank [f(v)] on line 50 of Figure 4-12 that orders updates applied during a round
according to their serial execution order of Prism-R. Instead of maintaining a bit vector
denoting whether or not a vertex is active, Prism-R maintains an integer array priority of
priorities. For each active vertex v, the value priority [v] is equal to the smallest rank of any
update f(u) that activated v in the previous round. The priority of a vertex v is reset on
line 51 before applying f(v) by setting priority [v] = 1.

For each vertex u 2 Adj[v] activated by update f(v), Prism-R uses an atomic priority-
write operator [359] to set priority [u] = min {priority [u], rank [f(v)]} and inserts the vertex-
priority pair hu, rank [f(v)]i into the multivector if the priority write is successful on line 54.
The color sets returned by MV-Collect on line 45 can contain multiple vertex-priority
pairs for each active vertex. On lines 47–55 Prism-R iterates over the vertex-priority pairs
hv, pi in a color set and only applies the update f(v) if priority [v] == p. Since priority [v]
is equal to the lowest ranked update that activated v, Prism-R updates each active vertex
exactly once during a round in the same order as a serial execution.

4.7 The multivector data structure

This section introduces the multivector data structure, which provides a theoretical improve-
ment to the multibag. The multivector data structure maintains several vectors (dynamic
arrays), each supporting a parallel append operation. Each vector has serial semantics,
that is, the order of elements within any vector is equivalent to their insertion order in an
execution of the serial elision of the Cilk program. The multivector can be used in place
of the multibag to provide a stronger encapsulation of nondeterminism in programs whose
behavior depends on the ordering of elements in each set.

A multivector represents a list of � vectors (ordered multisets). It supports the
operations MV-Insert and MV-Collect, which are analogous to the multibag operations
MB-Insert and MB-Collect, respectively.

Our implementation of multivector relies on how the runtime system in a dynamic mul-
tithreading concurrency platform executes a program with respect to the serial execution
order of the program. Let R(A) denote the sequence of strands executed in the serial ex-
ecution of a program modeled by the dag A. The runtime system partitions R(A) into a

82

Flatten(L,A, i)

65 A[i] = L
66 if L. left 6= nil
67 spawn Flatten(L. left , A, i� L.right .size � 1)
68 if L.right 6= nil
69 Flatten(L.right , A, i� 1)
70 sync

Figure 4-13: Pseudocode for the Flatten operation for a log tree. Flatten performs a post-order
parallel traversal of a log tree to place its nodes into a contiguous array.

Identity()
71 L = new log-tree node
72 L.sublog = new vector
73 L.size = 1
74 L. left = nil
75 L.right = nil
76 return L

Reduce(Ll, Lr)

77 L = Identity()
78 L.size = Ll.size + Lr.size + 1
79 L. left = Ll

80 L.right = Lr

81 return L

Figure 4-14: Pseudocode for the Identity and Reduce log-tree reducer operations. The Iden-
tity operation creates and returns a new log-tree node L. The Reduce(Ll, Lr) operation concate-
nates a left log-tree node Ll with a right log-tree node Lr.

sequence R(A) = ht0, t1, . . . , tM�1i, where each trace t
i

2 R(A) is a contiguous subsequence
of R(A) executed by exactly one worker. A multivector represents each vector as a sequence
of trace-local subvectors — subvectors that are modified within exactly one trace. The
ordering properties of traces imply that concatenating a vector’s trace-local subvectors in
order produces a vector whose elements appear in the serial execution order. The multivec-
tor data structure assumes that a worker can query the runtime system to determine when
it starts executing a new trace.

The log-tree reducer

A multivector stores its nonempty trace-local subvectors in a log tree , which represents
an ordered multiset of elements and supports ⇥(1)-work append operations. A log tree is
a binary tree in which each node L stores a dynamic array L.sublog . The ordered multiset
represented by a log tree corresponds to a concatenation of the tree’s dynamic arrays in a
post-order tree traversal. Each log-tree node L is augmented with the size of its subtree
L.size counting the number of log-tree nodes in the subtree rooted at L. Using this aug-
mentation, the operation Flatten(L,A,L.size � 1) described in Figure 4-13 flattens a log
tree rooted at L of n nodes and height h into a contiguous array A using ⇥(n) work and
⇥(h) span.

To handle parallel MV-Insert operations, a multivector employs a log-tree reducer ,
that is, a reducer whose view type is a log tree. Figure 4-14 presents the pseudocode for the
Identity and Reduce operations for the log-tree reducer.

The Identity operation creates a new log-tree node with an empty sublog. The
Reduce(L

l

, L
r

) operation creates a new root node L and assigns L. left = L
l

and L.right =
L
r

. Updates are performed using a log-tree reducer R by first obtaining a local view L of
the log-tree reducer using a runtime-system-provided function Get-Local-View(R) and
appending elements to L.sublog . A log tree’s Flatten operation uses a post-order traversal
to order the log tree’s nodes, which results in an ordering identical to that which would be

83

A(R)

82 Log-Insert(R, e1)
83 spawn B(R)
84 Log-Insert(R, e7)
85 sync

86 Log-Insert(R, e8)

B(R)

87 Log-Insert(R, e2)
88 spawn Log-Insert(R, e3)
89 Log-Insert(R, e4)
90 Log-Insert(R, e5)
91 sync

92 Log-Insert(R, e6)

Log-Insert(R, e)

93 L = Get-Local-View(R)
94 Append(L.subblog , e)

e8

size
5

left right

sublog

e6

size
3

left right

sublog e7

size
1

left right

sublog

e1 e2 e3

size
1

left right

sublog e4 e5

size
1

left right

sublog

Figure 4-15: The state of a log-tree reducer R after a parallel execution of A(R). The runtime
system creates new trace starting at line 84 of A and another starting at line 89 of B. As a result,
the sync instructions in A and B therefore also create new traces, meaning that the serial execution
order of this program is partitioned into 5 traces total. The ordered multiset (e1, e2, . . . , e8) is
represented by 5 trace-local sublogs ordered according to a post-order traversal of the log tree.

obtained by using a linked-list reducer in place of the log-tree reducer.
The log-tree reducer’s Reduce operation is logically associative, that is, for any three

log-tree reducer views a, b, and c, the views produced by Reduce(Reduce(a, b), c) and
Reduce(a,Reduce(b, c)) represent the same ordered multiset.

Figure 4-15 illustrates the state of a log-tree reducer R following the execution of the
given fork-join parallel program A. The runtime system partitions the serial execution order
of A at line 84 of A and line 89 of B. As a result, the sync instructions in A and B also
partition the serial execution order, yielding a total of 5 traces. The log-tree reducer thus
contains 5 nodes, one for each trace.

To maintain trace-local subvectors, a multivector Q consists of an array of P worker-
local SPA’s, where P is the number of processors executing the computation, and a log-tree
reducer. The SPA Q[p] for worker p stores the trace-local subvectors that worker p has
appended since the start of its current trace. The log-tree reducer Q. log-reducer stores all
nonempty subvectors created.

Implementation of MV-Insert and MV-Collect

Figure 4-16 sketches the MV-Insert(Q, v, k) operation to insert element v into the
vector C

k

2 Q. MV-Insert differs from MB-Insert in two ways. First, when a new
subvector is created and added to a SPA, lines 100–101 additionally append that subvector
to Q. log-reducer , thereby maintaining the log-tree reducer. Second, lines 96–97 reset the
contents of the SPA Q[p] after worker p begins executing a new trace, thereby ensuring that
Q[p] stores only trace-local subvectors.

84

MV-Insert(Q, v, k)

95 p = Get-Worker-ID()
96 if worker p began a new trace since last insert
97 reset Q[p]
98 if Q[p].array [k] == nil
99 Q[p].array [k] = new subvector

100 L = Get-Local-View(Q. log-reducer)
101 Append(L.sublog , Q[p].array [k])
102 Append(Q[p].array [k], v)

Figure 4-16: Pseudocode for the MV-Insert multivector operation. MV-Insert(Q, v, k) inserts
an element v into the kth vector Ck maintained by the multivector Q.

MV-Collect(Q)
1. Flatten the log-reducer tree so that all subvectors in the log appear in a contiguous array

collected -subvectors.
2. Sort the subvectors in collected -subvectors by their vector indices using a stable sort.
3. Create the array vector -o↵sets, where vector -o↵sets[k] stores the index of the first subvector

in collected -subvectors that contains elements of the vector Ck 2 Q.
4. Reset Q. log-reducer , and for p = 0, 1, . . . , P � 1, reset Q[p].
5. Return the pair hvector -o↵sets, collected -subvectorsi.

Figure 4-17: Pseudocode for the MV-Collect multivector operation. Calling MV-Collect
on a multivector Q produces a pair hvector -o↵sets, collected -subvectorsi of arrays, where
collected -subvectors contains all nonempty subvectors in Q sorted by their associated vector’s color,
and vector -o↵sets associates sets of subvectors in Q with their corresponding vector.

Figure 4-17 sketches the MV-Collect operation, which, like its analog, MB-Collect,
returns a pair hsubvector -o↵sets, collected -subvectorsi. The procedure MV-Collect dif-
fers from MB-Collect primarily in that Step 1, which replaces Steps 1 and 2 in MB-
Collect, flattens the log tree underlying Q. log-reducer to produce the unsorted array
collected -subvectors. MV-Collect also requires that collected -subvectors be sorted using
a stable sort on Step 2. The integer sort described in the proof of Lemma 17 for MB-
Collect is a suitable stable sort for this purpose.

Analysis of multivectors

We now analyze the work and span of the MV-Insert and MV-Collect operations.

Lemma 22 Executing MV-Insert takes ⇥(1) time in the worst case.

Proof. Resetting the SPA Q[p] on line 97 can be done in ⇥(1) worst-case time with an
appropriate SPA implementation, and appending a new subvector to a log tree takes ⇥(1)
time. The lemma thus follows from the analysis of MB-Insert in Lemma 16.

Lemma 23 bounds the work and span of MV-Collect.

Lemma 23 Let Q be a multivector of � vectors whose contents are distributed across m
subvectors. Then a call to MV-Collect(Q) in a dynamic-multithreaded computation with
span T1 incurs ⇥(m+ �) work and ⇥(lgm+ �+ T1) span.

Proof. Flattening the log-tree reducer in Step 1 is accomplished in two steps. First, the
Flatten operation writes the nodes of the log tree to a contiguous array. Execution of
Flatten has span proportional to the depth of the log tree, which is bounded by O(T1),

85

since at most O(T1) reduction operations can occur along any path in A, and Reduce for
log trees executes in ⇥(1) work [144]. Second, using a parallel-prefix sum computation, the
log entries associated with each node in the log tree can be packed into a contiguous array,
incurring ⇥(m) work and ⇥(lgm) span. Step 1 thus incurs ⇥(m) work and O(lgm + T1)
span. The remaining steps of MV-Collect, which are analogous to those of MB-Collect
and analyzed in Lemma 17, execute in ⇥(m+ �) work and ⇥(�+ lgm) span.

4.8 Analysis and evaluation of Prism-R

This section presents a theoretical work-span analysis of Prism-R and an empirical analysis
of Prism-R. The theoretical analysis demonstrates that the work and span of Prism-R are
essentially the same as the work and span of Prism. Empirically, Prism-R is only 2%–7%
slower than Prism, overall, while providing deterministic support for associative operations
on global variables.

Work-span analysis of Prism-R

We begin by analyzing the work and span of Prism-R for simple data-graph computations
that perform associative operations on global variables. In this extended model, Prism-R
executes dynamic data-graph computations deterministically while achieving essentially the
same work and span bounds as Prism.

Theorem 24 Let G be a �-degree data graph. Suppose that Prism-R colors G using �
colors. Then Prism-R executes updates on all vertices in the activation set Q

r

for a round
r of a simple data-graph computation hG, f,Q0i in ⇥(size(Q

r

)) work and O(�(lg(Q
r

/�) +
lg�)) span.

Proof. Prism-R can perform a priority write to its active array with ⇥(1) work, and
it can remove duplicates from the output of MV-Collect in work ⇥(size(Q

r

)) and span
O(lg(size(Q

r

))) = O(lgQ
r

+ lg�). The theorem follows by applying Lemmas 22 and 23
appropriately to the analysis of Prism in Theorem 19.

Theorem 25 Suppose that Prism-R colors a �-degree data graph G = (V,E) using �
colors, and then executes the data-graph computation hG, f,Q0i in r rounds applying up-
dates to the activation sets Q0, Q1, . . . , Qr�1. Define the multiset U =

U
r�1
i=0 Qi

so that
|U| =

P
r�1
i=0 |Qi

| and size(U) =
P

r�1
i=0 size(Qi

). Then Prism-R executes the data-graph
computation using ⇥(size(U)) work and O(r · �(lg((U/r)/�) + lg�)) span.

Proof. By Theorem 24 Prism-R executes a round of a data-graph computation using
the similar asymptotic work and span as Prism. We mirror the arguments in Theorem 20
to bound the work and span of Prism-R for a sequence of rounds.

Given Theorem 25 we can compute the parallelism of Prism-R for a data-graph compu-
tation that applies a multiset U of updates over r rounds. The following corollary expresses
the parallelism of Prism-R in terms of the average size of the activation sets in a sequence
of rounds.

Corollary 26 Suppose Prism-R executes a data-graph computation in r rounds during
which it applies a multiset U of updates. Define the average number of updates per round

86

U
avg

= |U| /r and the average work per round W
avg

= size(U)/r. Then Prism-R has
⌦(W

avg

/(�(lg(U
avg

/�) + lg�))) parallelism.

Proof. The theorem follows from Theorem 25 by computing the parallelism as the ratio
of the work over the span and then performing substitution.

Empirical evaluation of Prism-R

Prism-R provides deterministic support for associative operations on global variables at
the cost of additional complexity versus Prism, specifically in the maintenance of activation
sets. Nonetheless, Prism-R guarantees the essentially the same asymptotic work and span
as Prism. Empirically, we find that Prism-R suffers a geometric-mean slowdown of only
2%–7% versus Prism in various scenarios. In particular, the 12-core performance for each
dynamic data-graph computation application featured in Figure 4-2 demonstrate that for
real-world applications Prism-R is 7% slower in geometric mean than Prism. In Figure 4-9
we see that Prism-R is only 1.8% slower than Prism for static versions of the applications
featured in Figure 4-2 (i.e., all vertices are updated every round). In Figure 4-8 we present
the 12-core performance of Prism-R on PageRank [68] for a suite of six synthetic and six
real-world graphs. Prism-R in this case is 3.5% slower in geometric mean than Prism.
Finally, Figure 4-10 shows that Prism-R achieved 7.42 times speedup on 12 cores compared
to the serial reference implementation Serial-DDGC, which is only 1.9% less speedup than
Prism.

4.9 Conclusion

The behavior of Prism corresponds to a variant of Serial-DDGC that sorts the activated
vertices in its queue by color at the start of each round. Whether Prism executes a given data
graph on 1 processor or many, it always behaves the same way. With Prism-R, this property
holds even when the update function can perform reductions (e.g., associative operators
on global variables). By contrast, lock-based schedulers provide no such a guarantee of
determinism. Instead, updates in a round executed by a lock-based scheduler appear to
execute according to some linear order, the so-called sequential consistency model employed
by GraphLab [264, 265] and others. This order is nondeterministic due to races on the
acquisition of locks. Prism and Prism-R thus provide a deterministic solution to executing
dynamic data-graph computations efficiently, which allows programmers to reason about
their behavior in a principled manner.

Blelloch et al. [52] argue that deterministic programs can be fast compared with nonde-
terministic programs, and they document many examples where the overhead for converting
a nondeterministic program into a deterministic one is small. They even document a few
cases where this “price of determinism” is slightly negative. To their list, we add the ex-
ecution of dynamic data-graph computations as having a price of determinism which is
significantly negative.

87

88

Chapter 5

Ordering Heuristics for Parallel
Graph Coloring

This chapter examines parallel algorithms for efficiently coloring graphs and presents or-
dering heuristics for greedy graph-coloring algorithms [175]. This work was conducted in
collaboration with William Hasenplaugh, Tim Kaler, and Charles E. Leiserson.

5.1 Introduction

Graph coloring is a heavily studied problem with many real-world applications, including
the scheduling of conflicting jobs [22, 136, 272, 403], register allocation [67, 83, 84], high-
dimensional nearest-neighbor search [40], and sparse-matrix computation [94, 210, 337], to
name just a few. Formally, a (vertex)-coloring of an (undirected) graph G = (V,E) is an
assignment of a color v.color to each vertex v 2 V such that for every edge (u, v) 2 E,
we have u.color 6= v.color , that is, no two adjacent vertices have the same color. The
graph-coloring problem is the problem of determining a coloring which uses as few colors
as possible.

We were motivated to work on graph coloring in the context of the work presented
in Chapter 4 on chromatic scheduling of parallel data-graph computations. Let us briefly
review chromatic scheduling and data-graph computations here. A data graph is a graph
with data associated with its vertices and edges. A data-graph computation is an algorithm
implemented as a sequence of updates on the vertices of a data graph G = (V,E), where
updating a vertex v 2 V involves computing a new value associated with v as a function of
v’s old value and the values associated with the neighbors of v: the set of vertices adjacent
to v in G, denoted Adj[v] = {u 2 V : (v, u) 2 E}. To ensure atomicity of each update, rather
than using mutual-exclusion locks or other nondeterministic means of data synchronization,
chromatic scheduling first colors the vertices of G and then sequences through the colors,
scheduling all vertices of the same color in parallel. The time to perform a data-graph
computation thus depends both on how long it takes to color G and on the number of colors
produced by the graph-coloring algorithm: more colors means less parallelism. Although the
coloring can be performed offline for some data-graph computations, for other computations
the coloring must be produced online, and one must accept a trade-off between coloring
quality — number of colors — and the time to produce the coloring.

Although the problem of finding an optimal coloring of a graph — a coloring using
the fewest colors possible — is in NP-complete [150], heuristic “greedy” algorithms work

89

reasonably well in practice. Welsh and Powell [403] introduced the original greedy coloring
algorithm, which iterates over the vertices and assigns each vertex the smallest color not
assigned to a neighbor. For a graph G = (V,E), define the degree of a vertex v 2 V
by deg(v) = |Adj[v]|, the number of neighbors of v, and let the degree of G be � =
max

v2V {deg(v)}. Welsh and Powell show that the greedy algorithm colors a graph G with
degree � using at most �+ 1 colors.

Ordering heuristics

In practice, however, greedy coloring algorithms tend to produce much better colorings than
the �+1 bound implies, and moreover, the order in which a greedy coloring algorithm colors
the vertices affects the quality of the coloring.1 To reduce the number of colors a greedy
coloring algorithm uses, practitioners therefore employ ordering heuristics to determine
the order in which the algorithm colors the vertices [12,65,209,275].

The literature includes many studies of ordering heuristics and how they affect running
time and coloring quality. Here are six of the more popular heuristics:
FF The first-fit ordering heuristic [263, 403] colors vertices in the order they appear in

the input graph representation.
R The random ordering heuristic [209] colors vertices in a uniformly random order.
LF The largest-degree-first ordering heuristic [403] colors vertices in order of decreasing

degree.
ID The incidence-degree ordering heuristic [94] iteratively colors an uncolored vertex

with the largest number of colored neighbors.
SL The smallest-degree-last ordering heuristic [12, 275] colors the vertices in the order

induced by first removing all the lowest-degree vertices from the graph, then recursively
coloring the resulting graph, and finally coloring the removed vertices.

SD The saturation-degree ordering heuristic [65] iteratively colors an uncolored vertex
whose colored neighbors use the largest number of distinct colors.

The experimental results overviewed in Section 5.8 indicate that we have listed these
heuristics in rough order of coloring quality from worst to best, confirming the findings of
Gebremedhin and Manne [153], who also rank the relative quality of R, LF, ID, and SD in
this order.

Although an ordering heuristic can be viewed as producing a permutation of the vertices
of a graph G = (V,E), we shall find it convenient to think of an ordering heuristic H as
producing an injective (1-to-1) priority function ⇢ : V ! R.2 We shall use the notation
⇢ 2 H to mean that the ordering heuristic H produces a priority function ⇢.

Figure 5-1 gives the pseudocode for Greedy, a greedy coloring algorithm. Greedy
takes a vertex-weighted graph G = (V,E, ⇢) as input, where ⇢ : V ! R is a priority function
produced by some ordering heuristic. Each step of Greedy simply selects the uncolored

1In fact, for any graph G = (V,E), some ordering of V causes a greedy algorithm to color G optimally,
although finding such an ordering is NP-hard [285].

2If the rule for an ordering heuristic allows for ties in the priority function (the priority function is not
injective), we shall assume that ties are broken randomly. Formally, suppose that an ordering heuristic H
produces a priority function ⇢H which may contain ties. We extend ⇢H to a priority function ⇢ that maps
each vertex v 2 V to an ordered pair h⇢H (v), ⇢R(v)i, where the priority function ⇢R is produced by the
random ordering heuristic R. To determine which of two vertices u, v 2 V has higher priority, we compare
the ordered pairs ⇢(u) and ⇢(v) lexicographically. Notwithstanding this subtlety, we shall still adopt the
simplifying convenience of viewing the priority function as mapping vertices to real numbers. In fact, the
range of the priority function can be any linearly ordered set.

90

Greedy(G)

1 let G = (V,E, ⇢)
2 for v 2 V in order of decreasing ⇢(v)
3 C = {1, 2, . . . , deg(v) + 1}
4 for u 2 Adj[v] such that ⇢(u) > ⇢(v)
5 C = C � {u.color}
6 v.color = minC

Figure 5-1: Pseudocode for a serial greedy graph-coloring algorithm. Given a vertex-weighted
graph G = (V,E, ⇢), where the priority of a vertex v 2 V is given by ⇢(v), Greedy colors each
vertex v 2 V in decreasing order according to ⇢(v).

JP(G)

7 let G = (V,E, ⇢)
8 parallel for v 2 V
9 v.pred = {u 2 V : (u, v) 2 E and ⇢(u) > ⇢(v)}

10 v.succ = {u 2 V : (u, v) 2 E and ⇢(u) < ⇢(v)}
11 v.counter = |v.pred |
12 parallel for v 2 V
13 if v.pred == ;
14 JP-Color(v)

JP-Color(v)
15 v.color = Get-Color(v)
16 parallel for u 2 v.succ
17 if Join(u.counter) == 0
18 JP-Color(u)

Get-Color(v)
19 C = {1, 2, . . . , |v.pred |+ 1}
20 parallel for u 2 v.pred
21 C = C � {u.color}
22 return minC

Figure 5-2: The Jones-Plassmann parallel coloring algorithm. JP uses a recursive helper function
JP-Color to process a vertex once all of its predecessors have been colored. JP-Color uses the
helper routine Get-Color to find the smallest color available to color a vertex v.

vertex with the highest priority according to ⇢ and colors it with the smallest available color.
Generally, for a coloring algorithm A and ordering heuristic H , let A-H denote the coloring
algorithm A that runs on vertex-weighted graphs whose priority functions are produced
by H . In this way, we separate the behavior of the coloring algorithm from that of the
ordering heuristic.

Greedy, using any of these six ordering heuristics, can be made to run in ⇥(V + E)
time theoretically. Although some of these ordering heuristics involve more bookkeeping
than others, achieving these theoretical bounds for Greedy-FF, Greedy-R, Greedy-LF,
Greedy-ID, and Greedy-SL is straightforward [212,275]. Despite conjectures to the con-
trary [94,212], Greedy-SD can also be made to run in ⇥(V +E) time, as we shall show in
Section 5.8.

In practice, producing a better quality coloring tends to cost more in running time. That
is, the six heuristics, which are listed in increasing order of coloring quality, are also listed
in increasing order of running time. The only exception is Greedy-ID, which is dominated
by Greedy-SL in both coloring quality and running time. The experiments discussed in
the Section 5.8 summarize our empirical findings for serial greedy coloring.

Parallel greedy coloring

A historical tension exists between coloring quality and the parallel scalability of greedy

91

graph coloring. Although the traditional ordering heuristics FF, LF, ID, and SL are efficient
using Greedy, it can be shown that any parallelization of them requires worst-case span
of ⌦(V) for a general graph G = (V,E). Of the various attempts to parallelize greedy
coloring [93, 117, 266], the algorithm first proposed by Jones and Plassmann [209] extends
the greedy algorithm in a straightforward manner, uses work linear in size of the graph,
and is deterministic given any particular choice of random seed. Jones and Plassmann’s
original paper demonstrates good parallel performance for O(1)-degree graphs using the
random ordering heuristic R. Unfortunately, in practice, R tends to produce colorings of
relatively poor quality compared to the other traditional ordering heuristics. But the other
traditional ordering heuristics are all vulnerable to adversarial graph inputs which cause JP
to operate in ⌦(V) time and thus exhibit poor parallel scalability. This state of affairs forces
performance engineers working with graph coloring codes to choose between good coloring
quality and parallel scalability. Consequently, there is need for new ordering heuristics for
JP that can achieve both good coloring quality and guarantee parallel scalability.

Figure 5-2 gives the pseudocode for JP, which colors a given graph G = (V,E, ⇢) in
the order specified by the priority function ⇢. The algorithm begins on lines 9 and 10 by
partitioning the neighbors of each vertex into predecessors — vertices with larger priorities
— and successors — vertices with smaller priorities. JP uses the recursive JP-Color
helper function to color a vertex v 2 V once all of v’s predecessors, v.pred , have been
colored. Initially, lines 12–14 in JP scan the vertices of V to find every vertex that has no
predecessors and colors each one using JP-Color. Within a call to JP-Color(v), line 15
calls Get-Color to assign a color to v, and the loop on lines 16–18 broadcasts in parallel
to all of v’s successors, v.succ, the fact that v is colored. For each successor u 2 v.succ,
line 17 tests whether all of u’s predecessors have already been colored, and if so, line 18
recursively calls JP-Color on u.

Jones and Plassmann analyze the performance of JP-R for O(1)-degree graphs. Although
they do not discuss using the naive FF ordering heuristic, it is apparent that there exist
adversarial input orderings for which their algorithm would fail to scale. For example, if the
graph G = (V,E) is simply a chain of vertices and the input order of V corresponds to their
order in the chain, JP-FF exhibits no parallelism. Jones and Plassmann show that a random
ordering produced by R, however, allows the algorithm to run in O(lg V/ lg lg V) expected
time on this chain graph and, for that matter, on any O(1)-degree graph. Section 5.3 of this
chapter extends their analysis of JP-R to arbitrary-degree graphs.

Although JP-R scales well both in theory and in practice, when it comes to coloring
quality, R is one of the weaker ordering heuristics, as we have noted. Of the other heuristics,
JP-LF and JP-SL suffer from the same problem as FF, namely, it is possible to construct
adversarial graphs that cause them to scale poorly, which we explore in Section 5.4. The
ID heuristic tends to produce worse colorings than SL, and since Greedy-ID also runs
more slowly than Greedy-SL, we have dropped ID from consideration. Moreover, because
of our motivation to use the coloring algorithm for online chromatic scheduling, where the
performance of the coloring algorithm cannot be sacrificed for marginal improvements in
the quality of coloring, we also have dropped the SD heuristic. Because SD produces the
best-quality colorings of the six ordering heuristics, however, we see parallelizing it as an
interesting opportunity for future research.

Consequently, this chapter focuses on alternatives to the LF and SL ordering heuristics
that provide comparable coloring quality while exhibiting the same resilience to adversarial
graphs that R shows compared with FF. Specifically, we introduce two new randomized
ordering heuristics — “largest log-degree first” (LLF) and “smallest log-degree last” (SLL)

92

H H 0 CH 0

CH

Greedy-H
JP-H 0

1

JP-H 0
1

JP-H 0
12

FF R 1.011 0.417 7.039
LF LLF 1.021 1.058 7.980
SL SLL 1.037 1.092 6.082

Figure 5-3: Summary of ordering-heuristic behavior on a suite of 8 real-world graphs and 10
synthetic graphs when run on a machine with 12 Intel Xeon X5650 processor cores. Column H
lists three serial heuristics traditionally used for Greedy, and column H 0 lists parallel heuristics for
JP, of which LLF and SLL are introduced in this chapter. Column “CH 0/CH ” shows the geometric
mean of the ratio of the number of colors the parallel heuristic uses compared to the serial heuristic.
Column “Greedy-H /JP-H 0

1” shows the geometric mean of the ratio of serial running times of
Greedy with the serial heuristic versus JP with the analogous parallel heuristic when run on 1
processor. Column “JP-H 0

1/JP-H 0
12” shows the geometric mean of the speedup of each parallel

heuristic going from 1 processor to 12.

— which resemble LF and SL, respectively, but which scale provably well when used with JP.
We demonstrate that JP-LLF and JP-SLL provide good parallel scalability in theory and
in practice and are resilient to adversarial graphs. By using the LLF and SLL heuristics,
performance engineers can enjoy similar improvements to coloring quality as those that LF
and SL bestow to serial graph-coloring codes, without sacrificing parallel performance.

Figure 5-3 summarizes our empirical findings. The data suggest that the LLF and SLL
ordering heuristics produce colorings that are nearly as good as LF and SL, respectively.
With respect to performance, our implementations of JP-LLF and JP-SLL actually operate
slightly faster on 1 processor than our highly tuned implementations of Greedy-LF and
Greedy-SL, respectively, and they scale comparably to JP-R.

The theoretical and empirical performance analyses presented in this chapter allow pro-
grammers to apply their predictions about the performance of parallel greedy graph-coloring
codes to other contexts in which these codes are used. In particular, the analyses in this
chapter complement the theoretical analyses of the Prism and Prism-R algorithms, intro-
duced in Chapter 4, to fully justify that these algorithms scale well in parallel, even when
the cost of coloring is taken into account.

Outline

The remainder of this chapter is organized as follows. Section 5.2 reviews the asynchronous
parallel greedy coloring algorithm first proposed by Jones and Plassmann [209]. We show
how JP can be extended to handle arbitrary-degree graphs and arbitrary priority func-
tions. Using work-span analysis [100, Ch. 27], we show that JP colors a �-degree graph
G = (V,E, ⇢) in ⇥(V + E) work and O(L lg� + lg V) span, where L is the length of
the longest path in G along which the priority function ⇢ decreases. Section 5.3 analyzes
the performance of JP-R, showing that it operates using linear work and O(lg V + lg� ·
min{pE,�+lg� lg V/ lg lg V }) span. Section 5.4 shows that there exist “adversarial” graphs
for which JP-LF and JP-SL exhibit limited parallel speedup. Section 5.5 introduces and
analyzes the LLF and SLL ordering heuristics. We show that, given a �-degree graph
G, JP-LLF colors G = (V,E, ⇢) using ⇥(V + E) work and O(lg V + lg�(min{�,

p
E} +

lg2� lg V/ lg lg V)) expected span, while JP-SLL colors G = (V,E, ⇢) using same work and
an additive ⇥(lg� lg V) additional span. Section 5.6 evaluates the performance of JP-LLF
and JP-SLL on a suite of 8 real-world and 10 synthetic benchmark graphs. Section 5.7
discusses the software engineering techniques used in our implementation of JP-R, JP-LLF,

93

and JP-SLL. Section 5.8 presents some experimental results for serial ordering heuristics
and introduces an algorithm for computing the SD ordering heuristic using ⇥(V +E) work.
Section 5.9 discusses related work, and Section 5.10 offers some concluding remarks.

5.2 The Jones-Plassmann algorithm

This section reviews JP, the parallel greedy coloring algorithm introduced by Jones and
Plassmann [209], whose pseudocode is given in Figure 5-2. We describe how JP can be
modified from Jones and Plassmann’s original algorithm to handle arbitrary-degree graphs
and arbitrary priority functions. We analyze JP with an arbitrary priority function ⇢ and
show that on a �-degree graph G = (V,E, ⇢), JP runs in ⇥(V +E) work and O(L lg�+lg V)
span, where L is the longest path in the “priority dag” of G induced by ⇢.

The theoretical analysis throughout this chapter assume that the parallel computer sup-
ports read-modify-write instructions [183] and incurs no overhead due to contention.

Analysis of JP

To analyze the performance of JP, we shall think of JP as coloring the vertices in the
partial order of a “priority dag,” similar to the priority dag described by Blelloch et al. [53].
Specifically, on a vertex-weighted graph G = (V,E, ⇢), the priority function ⇢ induces a
priority dag G

⇢

= (V,E
⇢

), where E
⇢

= {(u, v) 2 V ⇥ V : (u, v) 2 E and ⇢(u) > ⇢(v)},
that is, E

⇢

contains a directed edge from u to v, where ⇢(u) > ⇢(v), for each (undirected)
edge (u, v) 2 E. Because ⇢ is an injective function, it induces a total order on the vertices,
and thus G

⇢

is indeed a dag. We shall bound the span of JP running on a graph G in terms
of the depth of G

⇢

, that is, the length of a longest path through G
⇢

.
We analyze JP in two steps. First, we bound the work and span of calls during the

execution of JP to the helper routine Get-Color(v), which returns the minimum color
not assigned to any predecessor u 2 v.pred .

Lemma 27 The helper routine Get-Color, shown in Figure 5-2, can be implemented so
that during the execution of JP on a graph G = (V,E, ⇢), a call to Get-Color(v) for a
vertex v 2 V costs ⇥(k) work and ⇥(lg k) span, where k = |v.pred |.

Proof. If the set C in Get-Color is implemented an array whose ith entry C[i] initially
stores the value i, then the ith element in C can be removed by setting C[i] = 1. With
this implementation, lines 20–21 execute in ⇥(k) work and ⇥(lg k) span. The min operation
on line 22 can be implemented as a parallel minimum reduction in the same bounds.
Second, we show that JP colors a graph G = (V,E, ⇢) using work ⇥(V +E) and span linear
in the depth of the priority dag G

⇢

.

Theorem 28 Given a �-degree graph G = (V,E, ⇢) for some priority function ⇢, let G
⇢

be the priority dag induced on G by ⇢, and let L be the depth of G
⇢

. Then JP(G) runs in
⇥(V + E) work and O(L lg�+ lg V) span.

Proof. Let us first bound the work and span of JP-Color excluding any recursive
calls. For a single call to JP-Color on a vertex v 2 V , Lemma 27 shows that line 15 takes
⇥(deg(v)) work and ⇥(lg(deg(v))) span. The Join operation on line 17 can be implemented
as an atomic decrement-and-fetch operation [183] on the specified counter. Hence, excluding

94

the recursive call, the loop on lines 16–18 performs ⇥(deg(v)) work and ⇥(lg(deg(v))) span
to decrement the counters of all successors of v.

Because JP-Color is called once per vertex, the total work that JP spends in calls to
JP-Color is ⇥(V +E). Furthermore, the span of JP-Color is the length of any path of
vertices in G

⇢

, which is at most L, times ⇥(lg�). Finally, the loop on lines 8–11 executes
in ⇥(V +E) work and ⇥(lg V + lg�) span, and the parallel loop on lines 12–14, excluding
the call to JP-Color, executes in ⇥(V + E) work and ⇥(lg V) span.

5.3 JP with random ordering

This section bounds the depth of a priority dag G
⇢

induced on a �-degree graph G =
(V,E, ⇢) by a random priority function ⇢ in R. We show that the expected depth of G

⇢

is O(min{pE,� + lg� lg V/ lg lg V }),3 extending Jones and Plassmann’s O(lg V/ lg lg V)
bound for the depth of G

⇢

when � = ⇥(1) [209]. Combined with Theorem 28, this bound
implies that JP-R executes in O(lg V +lg�·min{pE,�+lg� lg V/ lg lg V }) expected span.

To bound the depth of a priority dag G
⇢

induced on a graph G by ⇢ 2 R, let us start
by bounding the number of k-length paths in G

⇢

. Each path in G
⇢

corresponds to a unique
simple path in G, that is, a path in which each vertex in G appears at most once. The
following lemma bounds the number of k-length simple paths in G.

Lemma 29 The number of k-length simple paths in any �-degree graph G = (V,E) is at
most |V | ·min{�k�1, (2 |E| /(k � 1))k�1}.

Proof. Consider selecting a k-length simple path p = hv1, . . . , v
k

i in G. There are |V |
choices for v1, and for all i 2 1, 2, . . . , k � 1, given a choice of hv1, . . . , vii, there are at
most deg(v

i

) choices for v
i+1. Hence there are at most J = |V | · Qk�1

i=1 deg(v
i

) simple
paths in G of length k. Let V

k�1 ✓ V denote some set of k � 1 vertices in V , and let
� = max

Vk�1{
P

v2Vk�1
deg(v)/(k � 1)} be the maximum average degree of any such set.

Then we have J |V | · �k�1.
The proof follows from two upper bounds on �. First, because deg(v) � for all v 2 V ,

we have � �. Second, for all V
k�1 ✓ V , we have

P
v2Vk�1

deg(v) P
v2V deg(v) = 2 |E|

by the handshaking lemma [100, p. 1172–3], and thus � 2 |E| /(k � 1).
Intuitively, the bound on the expected depth of G

⇢

follows by arguing that although the
number of k-length simple paths in a graph G might be exponential in k, for sufficiently large
k, the probability is tiny that any such path is a path in G

⇢

. To formalize this argument,
we make use of the following technical lemma.

Lemma 30 Define the function g(↵,�) for ↵,� > 1 as

g(↵,�) = e2
ln↵

ln�
ln

✓
e
� ln↵

↵ ln�

◆
.

Then for all � � e2, ↵ � 2, and � � ↵, we have g(↵,�) � 1.

Proof. We consider the cases when ↵ � e2 and when ↵ < e2 separately.

3Hasenplaugh improved this analysis to show that the expected depth of G⇢ is ⇥(min{
p
E,�}).

95

When ↵ > e2, the partial derivative of g(↵,�) with respect to � is

@g(↵,�)

@�
= e2

ln↵

� ln2�
ln

✓
↵

e2
ln�

ln↵

◆

� 0 ,

since ↵ ln�/e2 ln↵ � 1 when ↵ � e2 and � � ↵. Thus, g(↵,�) is a nondecreasing function
in � when ↵ � e2 and � � ↵. Since we have

g(↵,↵) = e2(ln↵/ ln↵) ln (e(↵ ln↵)/(↵ ln↵))

� 1 ,

it follows that g(↵,�) � 1 for ↵ � e2 and � � ↵.

When e2 > ↵ � 2, we make use of the fact that 2�/e ln� >
p
� for all � > e2:

g(↵,�) � (e2 ln 2/ ln�) ln (2�/(e ln�))

� (e2 ln 2/ ln�) ln
⇣p

�
⌘

� (e2 ln 2 ln�)/(2 ln�)

� 1 .

The following theorem applies Lemmas 29 and 30 to bound the depth of G
⇢

.

Theorem 31 Let G = (V,E) be a �-degree graph, let n = |V | and m = |E|, and let G
⇢

be
a priority dag induced on G by a random priority function ⇢ 2 R. For any constant ✏ > 0
and sufficiently large n, with probability at most n�✏, there exists a directed path of length
e2 ·min {�,

p
m}+ (1 + ✏)min

�
e2 ln� lnn/ ln lnn, lnn

in G

⇢

.

Proof. Let p = hv1, . . . , v
k

i be a k-length simple path in G. Because ⇢ is a random priority
function, ⇢ induces each possible permutation among {v1, . . . , v

k

} with equal probability. If
p is a directed path in G

⇢

, then we must have that ⇢(v1) < ⇢(v2) < · · · < ⇢(v
k

). Hence, p is
a k-length path in G

⇢

with probability at most 1/k!. If J is the number of k-length simple
paths in G, then by the union bound, the probability that a k-length directed path exists
in G

⇢

is at most J/k!, which is at most J(e/k)k by Stirling’s approximation [100, p. 57].

We consider cases when � < lnn and � � lnn separately.

First, suppose that � < lnn. By Lemma 29, the number of k-length simple paths in
G is at most J = n�k�1 n�k, which implies that the probability that a k-length path
exists in G

⇢

is at most n(e�/k)k. We assume, without loss of generality, that � > 2,
because the theorem holds for O(1)-degree graphs as a result of [209]. For � � 2, let
↵ = � and � = lnn. Because ↵ � 2 and � � e2 for sufficiently large n, Lemma 30
implies that the function g(↵,�) = e2(ln↵/ ln�) ln(� ln↵/↵ ln�) is at least 1. Letting

96

k = e2(�+ (1 + ✏) ln� lnn/ ln lnn), we conclude that

n (e�/k)k = n · exp (�k ln (k/e�))

 n · exp
✓
�e2 (1 + ✏) lnn

ln�

ln lnn
ln

✓
e
lnn ln�

� ln lnn

◆◆

= n · exp (� (1 + ✏) (lnn) · g(�, lnn))

 ne�(1+✏) lnn

= n�✏ .

Now suppose that � � lnn. We consider the cases when � <
p
m and � � p

m,
separately. When � <

p
m, letting k = e2� + (1 + ✏) lnn, the theorem follows from the

facts that k � (1 + ✏) lnn and k � e2�. When � � p
m, let k = e2

p
m + (1 + ✏) lnn. By

Lemma 29, the number of k-length simple paths is at most n(2m/(k � 1))k�1 n(4m/k)k,
and thus the probability that a k-length path exists in G

⇢

is at most n(4em/k2)k. The
theorem follows from the facts that k � (1 + ✏) lnn and k2 � e4m.

Corollary 32 Given a graph G = (V,E, ⇢), where ⇢ 2 R is a random priority function, the
expected depth of the priority dag G

⇢

is O(min{pE,�+ lg� lg V/ lg lg V }), and thus JP-R
colors all vertices of G with O(lg V + lg� ·min{pE,�+ lg� lg V/ lg lg V }) expected span.

Proof. Theorems 28 and 31 together imply the corollary.

5.4 The LF and SL heuristics

This section shows that the largest-first (LF) and smallest-last (SL) ordering heuristics can
inhibit parallel speedup when used by JP. We examine a “clique-chain” graph and show that
JP-LF incurs ⌦(�2) span to color a �-degree “clique-chain” graph G, whereas JP-R colors
G incurring only O(� lg�) expected span. We formally review the SL ordering heuristic
and observe that this formulation of SL means that JP-SL requires ⌦(V) span to color a
path graph G = (V,E), which JP-R colors in O(lg V) span. We shall see in Section 5.5
that it is possible to achieve coloring quality comparable to LF and SL, but with guaranteed
parallel scalability comparable to JP-R.

The LF ordering heuristic

The LF ordering heuristic colors the vertices of a graph G = (V,E, ⇢) for some ⇢ in LF
in order of decreasing degree. Formally, ⇢ 2 LF is defined for a vertex v 2 V as ⇢(v) =
hdeg(V), ⇢R(v)i, where ⇢R is randomly chosen from R.

Although LF has been used in parallel greedy graph-coloring algorithms in the past [12,
212], Figure 5-4 illustrates a �-degree “clique-chain” graph G = (V,E) for which JP-LF
incurs ⌦(�2) span to color, but JP-R colors with only O(� lg�+lg2� lg V/ lg lg V) expected
span. Conceptually, the clique-chain graph comprises a set of cliques of increasing size
that are connected in a “chain” such that JP-LF is forced to color these cliques sequentially
from largest to smallest. Figure 5-4 specifically illustrates a �-degree clique-chain graph,
where 3 evenly divides �. This clique-chain graph contains a sequence of cliques K =
{K1,K4, . . . ,K��2} of increasing size, each pair of which is separated by two additional
vertices forming a linear chain. Specifically, for r 2 {1, 4, . . . ,�� 2}, each vertex u 2

97

KΔ–2

Δ

xΔ–3

Δ–1

xΔ–4

Δ–2

KΔ–5

Δ–3

xΔ–6

Δ– 4

x4

4 3

K1

Figure 5-4: A �-degree clique-chain graph G, which Theorem 33 shows is adversarial for JP-LF.
This graph contains ⇥(�2) vertices arranged as a chain of cliques. Each hexagon labeled Kr rep-
resents a clique of r vertices, and circles represent individual vertices. A thick edge between an
individual vertex and a clique indicates that the vertex is connected to every vertex within the
clique. A label below an individual vertex indicates the degree of the associated vertex, and a label
below a clique indicates the degree of every vertex within that clique.

K
r

is connected to each vertex u 2 K
r+3 by a path hu, x

r+1, xr+2, vi for distinct vertices
x
r+1, xr+2 2 V . Additional vertices, shown above the chain in Figure 5-4, ensure that the

degree of each vertex in K
r

is r+2, and the degrees of the vertices x
r+1 and x

r+2 are r+3
and r + 4, respectively. Clique-chain graphs of other degrees are structured similarly.

The following theorem uses the clique chain graph to show that JP-LF can incur a large
span to color a graph.

Theorem 33 For any � > 0, there exists a �-degree graph G = (V,E) such that JP-LF
colors G in ⌦(�2) span and JP-R colors G in O(� lg�) expected span.

Proof. Assume without loss of generality that 3 divides � and that G is a clique-chain
graph. The span of JP-R follows from Corollary 32, noting that |V | = ⇥(�2). Because
JP-LF trivially requires ⌦(1) span to process each vertex in G, we bound the span of JP-LF
on G by showing that the length of the longest path p in the priority dag G

⇢

induced on
G by any priority function ⇢ in LF is �2/6 +�/2 + 2. Because LF assigns higher priority
to higher-degree vertices, p starts at some vertex in K��2, which has degree �, and passes
through the � � 2 vertices in K��2 followed by x��3 and x��4.4 The remainder of p is
a longest path through the clique-chain graph G0 of degree � � 3 in the remaining graph
G�K��2 � {x��3, x��4}, which has a longest path p0 of length |p0| = (�� 3)2/6 + (��
3)/2 + 2 by induction. The length of p is thus �+ |p0| = �2/6 +�/2 + 2.

The SL ordering heuristic

We focus on the formulation of the SL ordering heuristic due to Allwright et al. [12], be-
cause our experiments indicate that it gives colorings using fewer colors than other formu-
lations [275].

Given a graph G = (V,E), the SL ordering heuristic produces a priority function ⇢
via an iterative algorithm that assigns priorities to the vertices V in rounds to induce an
ordering on V . For i > 0, let G

i

= (V
i

, E
i

) denote the subgraph of G remaining at the
start of round i, and let �

i

denote an upper bound on the smallest degree of any vertex
v 2 V

i

. Assume that �0 = 1. At the start of round i, remove all vertices v 2 V
i

such
4This fact holds regardless how the priority function ⇢ breaks ties.

98

that deg(v) max {�
i�1,min

v2Vi {deg(v)}}. For a vertex v removed in round i, a priority
function ⇢ 2 SL is defined as ⇢(v) = hi, ⇢R(v)i where ⇢R 2 R is a random priority function.

The following theorem shows that there exist graphs for which JP-SL incurs a large
span, whereas JP-R incurs only a small span.

Theorem 34 There exists a class of graphs such that for any G = (V,E, ⇢) in the class and
for any priority function ⇢ 2 SL, JP-SL incurs ⌦(V) span and JP-R incurs O(lg V) span.

Proof. Consider the algorithm to compute the priority function ⇢ for all vertices in a
path graph G. By induction over the rounds, the graph G

i

at the start of round i is a
path with |V | � 2i + 2 vertices, and in round i the 2 vertices at the endpoints of G

i

will
be removed. Hence d|V | /2e rounds are required to assign priorities for all vertices in G.
A similar argument shows that the resulting priority dag G

⇢

contains a path of length
|V | /2 along which the priorities strictly decrease. Because JP-SL trivially incurs ⌦(1) span
through each vertex in the longest path in G

⇢

, it incurs ⌦(V) span in total to color G. The
span of JP-R follows from Corollary 32 and the fact that � = ⇥(1).

5.5 Log ordering heuristics

This section introduces the largest-log-degree-first (LLF) and smallest-log-degree-last (SLL)
ordering heuristics. Given a �-degree graph G, we show that the expected depth of
the priority dag G

⇢

induced on G by a priority function ⇢ 2 LLF is O(min{�,
p
E} +

lg2� lg V/ lg lg V). The same bound applies to the depth of a priority dag G
⇢

induced on a
graph G by a priority function ⇢ 2 SLL, though O(lg� lg V) additional span is required to
calculate ⇢ using the method given in Figure 5-5. Combined with Theorem 28, these bounds
imply that the expected span of JP-LLF is O(lg V +lg�(min{�,

p
E}+lg2� lg V/ lg lg V))

and the expected span of JP-SLL is O(lg� lg V + lg�(min{�,
p
E}+ lg2� lg V/ lg lg V)).

The LLF ordering heuristic

The LLF ordering heuristic orders the vertices in decreasing order by the logarithm of
their degree. More precisely, given a graph G = (V,E, ⇢) for some ⇢ 2 LLF, the priority
of each v 2 V is equal to ⇢(v) = hdlg(deg(v))e , ⇢R(v)i, where ⇢R 2 R is a random priority
function and lg x denotes log2 x.5 For a given graph G, the following theorem bounds the
depth of the priority dag G

⇢

induced by ⇢ 2 LLF.

Theorem 35 Let G = (V,E) be a �-degree graph, and let G
⇢

be the priority dag induced
on G by a priority function ⇢ 2 LLF. The expected length of the longest directed path in G

⇢

is O(min{�,
p
E}+ lg2� lg V/ lg lg V).

Proof. Consider a k-length path p = hv1, . . . , v
k

i in G
⇢

. Let G(`) ✓ G
⇢

be the subdag
of G

⇢

induced by those vertices v 2 V for which ⇢(v) = dlg(deg(v))e = `. Suppose that
5The theoretical results in this section assume only that the base b of the logarithm is a constant. In

practice, however, it is possible that the choice of b could have impact on the coloring quality or running
time of JP-LLF. We studied this trade-off and found that there is only a minor dependence on b. In general,
the coloring quality and running time of JP-LLF smoothly transitions from the behavior of JP-LF for small
b and the behavior of JP-R for large b, sweeping out a Pareto-efficient frontier of reasonable choices. We
chose b = 2 for our experiments, because log2 x can be calculated conveniently by native instructions on
modern architectures.

99

v
i

2 G(`) for some v
i

2 p. Since dlg(deg(v
i�1))e � dlg(deg(v

i

))e for all i > 1, we have
v
i�1 2 G(`0) for some `0 � `. We can therefore decompose p into a sequence of paths
p =

⌦
pdlg�e, . . . , p0

↵
such that each subpath p

`

2 p is a path through G(`). By definition
of LLF, the subdag G(`) is a dag induced on a graph with degree 2` by a random priority
function.

By Corollary 32, the expected length of p
`

is O(2` + ` lg V/ lg lg V). Linearity of expec-
tation therefore implies that

E [|p|] =
dlg�eX

`=0

O
⇣
2` + ` lg V/ lg lg V

⌘

= O
�
�+ lg2� lg V/ lg lg V

�
.

To establish the
p
E bound, observe that at most E/2` vertices have degree at least 2`.

Consequently, for ` > lg
p
E, the depth of G(`) can be at most E/2`. Hence we have

E [|p|]
dlgpEeX

`=0

O
⇣
2`
⌘
+

1X

`=dlgpEe
E/2` +

dlg�eX

`=0

O (` lg V/ lg lg V)

= O
⇣p

E + lg2� lg V/ lg lg V
⌘

.

Corollary 36 Given a graph G = (V,E, ⇢) for some ⇢ 2 LLF, JP-LLF colors all vertices
in G with expected span O(lg V + lg�(min{pE,�}+ lg2� lg V/ lg lg V)).

Proof. The corollary follows from Theorem 28.

The SLL ordering heuristic

To understand the SLL ordering heuristic, it is convenient to consider in isolation how
to compute its priority function. The pseudocode in Figure 5-5 for SLL-Assign-Priorities
describes algorithmically how to perform this computation on a given graph G = (V,E).
As Figure 5-5 shows, a priority function ⇢ 2 SLL can be computed by iteratively removing
low-degree vertices from G in rounds. The priority of a vertex v 2 V is the round number
in which v is removed, with ties broken randomly. As with SL, SLL colors the vertices of
G in the reverse order in which they are removed, but SLL-Assign-Priorities determines
when to remove a vertex using a degree bound that grows exponentially. SLL-Assign-
Priorities considers each degree bound for a maximum of r rounds. Effectively, a vertex
is removed from G based on the logarithm of its degree in the remaining graph.

We can formalize the behavior of SLL as follows. Given a graph G, let G
i

= (V
i

, E
i

)
denote the subgraph of G remaining at the start of round i. As Figure 5-5 shows, for each
d 2 0, 1, . . . , lg�, SLL-Assign-Priorities executes r rounds in which it removes vertices
v 2 V

i

such that deg(v) 2d in G
i

.6

6As with LLF, the degree cutoff 2

d on line 30 of Figure 5-5 could be b

d for an arbitrary constant base
b with no harm to the theoretical results. We explored the choice of base empirically, but found that there
was only a minor dependence on b. Generally, JP-SLL smoothly transitions from the behavior of JP-SL for
small b to the behavior of JP-R and for large b. We therefore chose b = 2 for our experiments because of its
implementation simplicity.

100

SLL-Assign-Priorities(G, r)

23 let G = (V,E)
24 i = 1
25 U = V
26 let � be the degree of G
27 let ⇢R 2 R be a random priority function
28 for d = 0 to lg�
29 for j = 1 to r
30 Qi =

�
u 2 U : |Adj[u] \ U | 2d

31 if Qi == ;
32 break

33 parallel for v 2 Qi

34 ⇢(v) = hi, ⇢R(v)i
35 U = U �Qi

36 i = i+ 1
37 return ⇢

Figure 5-5: Pseudocode for SLL-Assign-Priorities, which computes a priority function ⇢ 2 SLL
for the input graph. The input parameter r denotes the maximum number of times SLL-Assign-
Priorities is permitted to remove vertices of at most a particular degree 2d on lines 29–36.

For a given graph G, the following theorem bounds the depth of the priority dag G
⇢

induced by a priority function ⇢ 2 SLL.

Theorem 37 Let G = (V,E) be a �-degree graph, and let G
⇢

be the priority dag induced
on G by a random priority function ⇢ 2 SLL. The expected length of the longest directed
path in G

⇢

is O(min{�,
p
E}+ lg2� lg V/ lg lg V).

Proof. We begin with an argument similar to the proof of Theorem 35. Let p =
hv1, . . . , v

k

i be a k-length path in G
⇢

, and let G(`) ✓ G
⇢

be the subdag of G
⇢

induced
by those vertices v 2 V , where ⇢(v) = `. Because lines 29–36 of SLL-Assign-Priorities
remove vertices with degree at most 2d exactly r times for each d 2 0, 1, . . . , lg�, we have
that b⇢(v)/rc = d, and thus the degree of G(`) is at most 2b`/rc. Suppose that v

i

2 G(`) for
some v

i

2 p. Because ⇢(v
i�1) ⇢(v

i

) for all i > 1, we have v
i�1 2 G(`0) for some `0 � `. We

can therefore decompose p into a sequence of paths p =
⌦
pdr lg�e, . . . , p0

↵
where each p

`

2 p
is a path in G(`). By definition of SLL, the subdag G(`) is a dag induced on a subgraph
with degree at most 2b`/rc by a random priority function.

By Corollary 32, the expected length of p
`

is O(2b`/rc + b`/rc lg V/ lg lg V). Linearity of
expectation therefore implies that

E [|p|] =
dr lg�eX

`=0

O
⇣
2b`/rc + b`/rc lg V/ lg lg V

⌘

= O
�
�+ lg2� lg V/ lg lg V

�
.

Next, because at most E/2b`/rc vertices can have degree at least 2b`/rc, we have for
` > r lg

p
E that the longest path through the subdag G(`) is no longer than E/2b`/rc. We

101

CPU Intel Xeon X5650
Clock 2.67GHz
Hyperthreading Disabled
Cores per processor chip 6
Processor chips (sockets) 2
L1 data cache/core 32KiB
L2 cache/core 128KiB
L3 cache/socket 12MiB
DRAM 49GiB
Compiler Intel C/C++ compiler v13.1.1

Figure 5-6: Technical specification of the machine used for benchmarking.

thus conclude that

E [|p|]
dr lgpEeX

`=0

O
⇣
2b`/rc

⌘
+

1X

`=dr lgpEe
E/2b`/rc +

dr lg�eX

`=0

O (b`/rc lg V/ lg lg V)

= O
⇣p

E + lg2� lg V/ lg lg V
⌘

.

Corollary 38 Given a graph G = (V,E, ⇢) for some ⇢ 2 SLL, JP-SLL colors all vertices
in G with expected span O(lg� lg V + lg�(min{pE,�}+ lg2� lg V/ lg lg V)).

Proof. The theorem follows from adding the result of Theorems 28 and 37 plus the span
of SLL-Assign-Priorities. In SLL-Assign-Priorities, the span of lines 33–34 is lg |Q

i

|,
and the expected span of lines 28–36 is therefore at most

lg�X

d=0

0

@1 +

rX

j=1

lgmax {|Q
i

| , 1}
1

A = O(lg� lg(V/(r lg�)))

= O(lg� lg V) .

5.6 Empirical evaluation

This section evaluates the LLF and SLL ordering heuristics empirically using a suite of
eight real-world and ten synthetic graphs. We describe the experimental setup used to
evaluate JP-R, JP-LLF, and JP-SLL, and we compare their performance with Greedy-FF,
Greedy-LF, and Greedy-SL. We compare the ordering heuristics in terms of the quality
of the colorings they produce and their execution times. We conclude that LLF and SLL
produce colorings with quality comparable to LF and SL, respectively, and that JP-LLF
and JP-SLL scale well. We also show that the engineering quality of our implementations
appears to be competitive with ColPack [154], a publicly available graph-coloring library.

102

Graph |V | a b c d

graph500-5M 5M 0.57 0.19 0.19 0.05
graph500-2M 2M 0.57 0.19 0.19 0.05
rMat-ER-2M 2M 0.25 0.25 0.25 0.25
rMat-G-2M 2M 0.45 0.15 0.15 0.25
rMat-B-2M 2M 0.55 0.15 0.15 0.15

Figure 5-7: Parameters for the generation of rMat graphs [85], where a+ b+ c+ d = 1 and b = c,
when the desired graph is undirected. An rMat graph is built by adding |E| edges independently at
random using the following rule: Let k be the number of 1’s in a binary representation of i. As each
edge is added, the probability that the ith vertex vi is selected as an endpoint is (a+c)k(b+d)lgn�k.

Graph |E| |E| / |V | �

com-orkut 117.2M 38.1 33,313
liveJournal1 42.9M 8.8 20,333
europe-osm 36.0M 0.7 9
cit-Patents 16.5M 2.7 793
as-skitter 11.1M 1.0 35,455
wiki-Talk 4.7M 1.9 100,029
web-Google 4.3M 4.7 6,332
com-youtube 3.0M 2.6 28,754

constant1M 50.0M 50.0 100
constant500K 50.0M 99.9 200
graph500-5M 49.1M 5.9 121,495
graph500-2M 19.2M 9.2 70,718
rMat-ER-2M 20.0M 9.5 44
rMat-G-2M 20.0M 9.5 938
rMat-B-2M 19.8M 9.4 14,868
big3dgrid 29.8M 3.0 6
cliqueChain400 3.6M 132.4 400
path-10M 10.0M 1.0 2

Figure 5-8: Number of edges, ratio of edges to vertices and maximum vertex degree for a collection
of real-world and synthetic graphs, which lie above and below the center line, respectively.

Experimental setup

To evaluate the ordering heuristics, we implemented JP using Intel Cilk Plus [196] and
engineered it to use the parallel ordering heuristics R, LLF, and SLL. To compare these
parallel codes against their serial counterparts, we implemented Greedy in C to use the
FF, LF, or SL ordering heuristics. In order to empirically evaluate the potential parallel
performance of the serial ordering heuristics, we also engineered JP to use FF, LF, or SL.
We evaluated our implementations on the machine described in Figure 5-6. Each code
was compiled using -O3 optimizations. Each measurement was taken as the median of 7
independent trials, and the averages of those measurements reported in Figures 5-9 and 5-
10 were taken across 5 independent random seeds.

These implementations were run on a suite of eight real-world graphs and ten synthetic
graphs. The real-world graphs came from the Large Network Dataset Collection provided
by Stanford’s SNAP project [250]. The synthetic graphs consist of the adversarial graphs
described in Section 5.4 and a set of graphs from three classes: constant degree, 3D grid,
and “recursive matrix” (rMat) [81, 85]. The adversarial graphs include cliqueChain400, a

103

Greedy JP

Graph H CH TS H 0 CH 0 T1 T12 TS/T1 T1/T12

com-orkut
FF 175 2.23 R 132 4.44 0.817 0.50 5.43
LF 87 3.54 LLF 98 5.74 0.846 0.62 6.79
SL 83 10.59 SLL 84 9.90 1.865 1.07 5.31

liveJournal1
FF 352 0.89 R 330 2.08 0.231 0.43 8.98
LF 323 2.34 LLF 326 2.23 0.286 1.05 7.80
SL 322 4.69 SLL 327 4.03 0.704 1.16 5.73

europe-osm
FF 5 1.32 R 5 4.04 0.391 0.33 10.34
LF 4 17.15 LLF 4 4.93 0.473 3.48 10.41
SL 3 19.87 SLL 3 7.28 1.232 2.73 5.91

cit-Patents
FF 17 0.50 R 21 1.08 0.163 0.46 6.67
LF 14 2.00 LLF 14 1.46 0.160 1.37 9.11
SL 13 3.21 SLL 14 2.90 0.519 1.11 5.58

as-skitter
FF 103 0.24 R 81 0.58 0.114 0.42 5.07
LF 71 2.43 LLF 72 0.63 0.106 3.84 5.99
SL 70 2.79 SLL 71 1.04 0.269 2.67 3.88

wiki-Talk
FF 102 0.09 R 85 0.28 0.053 0.31 5.28
LF 72 0.49 LLF 70 0.34 0.050 1.43 6.78
SL 56 0.61 SLL 62 0.55 0.124 1.12 4.43

web-Google
FF 44 0.09 R 44 0.21 0.029 0.44 7.44
LF 45 0.25 LLF 44 0.27 0.030 0.94 8.92
SL 44 0.47 SLL 44 0.50 0.093 0.94 5.44

com-youtube
FF 57 0.06 R 46 0.18 0.026 0.36 6.86
LF 32 0.25 LLF 33 0.22 0.028 1.11 7.97
SL 28 0.35 SLL 28 0.35 0.073 1.01 4.75

Figure 5-9: Performance measurements for a set of real-world graphs taken from Stanford’s SNAP
project [250]. The column heading H denotes that the priority function used for the experiment in
a particular row was produced by the ordering heuristic listed in the column. The average number
of colors used by the corresponding ordering heuristic and graph is CH . The time in seconds of
Greedy, JP with 1 worker and with 12 workers is given by TS , T1 and T12, respectively. Details of
the experimental setup and graph suite can be found in Section 5.6.

clique-chain graph (which is illustrated in Figure 5-4) with � = 400, and path-10M, a path
graph with |V | = 10M. The constant-degree graphs — constant1M and constant500K —
have 1M and 500 k vertices and constant degrees of 100 and 200, respectively. These graphs
were generated such that every pair of vertices is equally likely to be connected and every
vertex has the same degree. The graph big3dgrid is a 3-dimensional grid on 10M vertices.
The rMat graphs were generated using the parameters given in Figure 5-7.

Coloring quality of R, LLF, and SLL

Figures 5-9 and 5-10 present the coloring quality of the three parallel ordering heuristics R,
LLF, and SLL alongside that of their serial counterparts FF, LF, and SL.

On the vast majority of the 18 graphs, the number of colors used by LLF was comparable
to that used by LF, and the number of colors used by SLL was comparable to that used by
SL. Indeed, LLF produced colorings that were within 2 colors of LF on all synthetic graphs
and all but 2 real-world graphs: com-orkut and liveJournal1. Similarly, SLL produced

104

Greedy JP

Graph H CH TS H 0 CH 0 T1 T12 TS/T1 T1/T12

constant1M
FF 33 0.90 R 32 1.93 0.255 0.47 7.55
LF 32 1.16 LLF 32 2.70 0.323 0.43 8.35
SL 34 2.96 SLL 32 4.63 0.610 0.64 7.59

constant500K
FF 52 0.74 R 52 1.50 0.190 0.49 7.89
LF 52 0.84 LLF 52 2.01 0.273 0.42 7.34
SL 53 1.97 SLL 52 3.33 0.498 0.59 6.69

graph500-5M
FF 220 1.83 R 220 2.99 0.558 0.61 5.35
LF 159 3.69 LLF 160 3.74 0.542 0.99 6.89
SL 158 8.43 SLL 162 7.63 1.056 1.10 7.23

graph500-2M
FF 206 0.52 R 208 1.01 0.212 0.51 4.77
LF 153 0.98 LLF 154 1.24 0.151 0.79 8.19
SL 153 2.22 SLL 156 2.25 0.324 0.99 6.94

rMat-ER-2M
FF 12 0.47 R 12 1.25 0.149 0.37 8.40
LF 11 1.07 LLF 12 1.63 0.198 0.66 8.25
SL 11 2.22 SLL 11 3.13 0.506 0.71 6.18

rMat-G-2M
FF 27 0.48 R 27 0.91 0.144 0.53 6.33
LF 15 1.18 LLF 17 1.34 0.204 0.88 6.54
SL 15 2.59 SLL 15 2.75 0.432 0.94 6.36

rMat-B-2M
FF 105 0.50 R 105 0.86 0.149 0.58 5.78
LF 67 1.00 LLF 68 1.18 0.149 0.85 7.94
SL 67 2.41 SLL 68 2.38 0.376 1.01 6.31

big3dgrid
FF 4 0.41 R 7 1.66 0.178 0.25 9.31
LF 7 4.07 LLF 7 1.89 0.216 2.15 8.76
SL 7 4.77 SLL 7 2.63 0.307 1.81 8.57

cliqueChain400
FF 399 0.05 R 399 0.09 0.012 0.50 7.77
LF 399 0.05 LLF 399 0.12 0.015 0.41 7.70
SL 399 0.08 SLL 399 0.16 0.024 0.47 6.70

path-10M
FF 2 0.18 R 3 0.85 0.074 0.21 11.54
LF 3 2.49 LLF 3 0.98 0.083 2.54 11.87
SL 2 2.58 SLL 3 1.36 0.169 1.90 8.04

Figure 5-10: Performance measurements for five classes of synthetically generated graphs: constant
degree, rMat, 3D grid, clique chain and path. The column headings are equivalent to those in
Figure 5-9.

colorings that were within 3 colors of SL for all synthetic graphs and all but 2 real-world
graphs: liveJournal1 and wiki-Talk.

The liveJournal1 graph appears to benefit little from the ordering heuristics we consid-
ered. Every heuristic uses more than 300 colors, and the biggest difference between the
number of colors used by any heuristic is less than 10.

The wiki-Talk and com-orkut graphs appear to benefit from ordering heuristics and
illustrate what we believe is a coarse hierarchy of coloring quality in which FF < R <
LLF < LF < SLL < SL. On com-orkut, LLF produced a coloring of size 98, which was
better than the 175 and 132 colors used by FF and R, respectively, but not as good as the
87 colors used by LF. In contrast, SLL nearly matched the superior coloring quality of SL,
producing a coloring of size 84. On wiki-Talk, SLL produced a coloring of size 62, which

105

Greedy JP

Graph H CH TS T1 T12 TS/T1 T1/T12

com-orkut
FF 175 2.23 4.16 0.817 0.54 5.09
LF 87 3.54 6.43 1.067 0.55 6.02
SL 83 10.59 12.94 8.264 0.82 1.57

liveJournal1
FF 352 0.89 1.69 0.275 0.52 6.15
LF 323 2.34 2.89 0.365 0.81 7.91
SL 322 4.69 4.76 2.799 0.98 1.70

europe-osm
FF 5 1.32 1 1 1 1
LF 4 17.15 5.16 0.587 3.33 8.79
SL 3 19.87 1 1 1 1

cit-Patents
FF 17 0.50 0.99 0.152 0.50 6.47
LF 14 2.00 1.52 0.211 1.31 7.22
SL 13 3.21 3.05 1.579 1.05 1.93

as-skitter
FF 103 0.24 0.55 0.109 0.45 5.00
LF 71 2.43 0.69 0.133 3.51 5.21
SL 70 2.79 1.19 0.733 2.35 1.62

wiki-Talk
FF 102 0.09 0.23 0.046 0.38 4.99
LF 72 0.49 0.37 0.073 1.30 5.12
SL 56 0.61 0.57 0.293 1.08 1.93

web-Google
FF 44 0.09 0.20 0.036 0.47 5.62
LF 45 0.25 0.29 0.042 0.88 6.85
SL 44 0.47 0.53 0.278 0.89 1.92

com-youtube
FF 57 0.06 0.16 0.027 0.39 6.07
LF 32 0.25 0.24 0.040 1.03 6.12
SL 28 0.35 0.36 0.181 0.98 1.99

Figure 5-11: Performance measurements for a set of real-world graphs taken from Stanford’s SNAP
project [250]. The column heading H denotes that the priority function used for the experiment in
a particular row was produced by the ordering heuristic listed in the column. The average number
of colors used by the corresponding ordering heuristic and graph is CH . The time in seconds of
Greedy, JP with 1 worker and with 12 workers is given by TS , T1 and T12, respectively, where
a value of 1 indicates that the program crashed due to excessive stack usage. Details of the
experimental setup and graph suite can be found in Section 5.6.

was better than LF, LLF, R, and FF by a margin of 8 to 40 colors, but not as good as SL,
which used only 56 colors. These trends appear to exist, in general, for most of the graphs
in the suite.

Scalability of JP-R, JP-LLF, and JP-SLL

The parallel performance of JP was measured by computing the speedup it achieved on 12
cores and by comparing the 1-core running times of JP to an optimized serial implementation
of Greedy. These results are summarized in Figures 5-9 and 5-10.

Overall, JP-LLF obtains a geometric-mean speedup — the ratio of the running time on
1 core to the running time on 12 cores — of 7.83 on the eight real-world graphs and 8.08 on
the ten synthetic graphs. Similarly, JP-SLL obtains a geometric-mean speedup of 5.36 and
7.02 on the real-world and synthetic graphs, respectively.

For comparison, Figures 5-11 and 5-12 include scalability data for JP-FF, JP-LF, and

106

Greedy JP

Graph H CH TS T1 T12 TS/T1 T1/T12

constant1M
FF 33 0.90 1.70 0.230 0.53 7.40
LF 32 1.16 2.96 0.386 0.39 7.68
SL 34 2.96 5.09 2.023 0.58 2.52

constant500K
FF 52 0.74 1.26 0.286 0.59 4.42
LF 52 0.84 2.55 0.444 0.33 5.73
SL 53 1.97 3.50 1.435 0.56 2.44

graph500-5M
FF 220 1.83 2.86 0.560 0.64 5.11
LF 159 3.69 3.99 0.649 0.92 6.15
SL 158 8.43 9.45 5.576 0.89 1.69

graph500-2M
FF 206 0.52 0.98 0.208 0.53 4.72
LF 153 0.98 1.34 0.221 0.73 6.06
SL 153 2.22 2.72 1.559 0.81 1.75

rMat-ER-2M
FF 12 0.47 1.11 0.169 0.42 6.60
LF 11 1.07 1.72 0.204 0.62 8.45
SL 11 2.22 3.07 1.362 0.72 2.25

rMat-G-2M
FF 27 0.48 0.88 0.130 0.55 6.74
LF 15 1.18 1.42 0.200 0.83 7.09
SL 15 2.59 3.09 1.712 0.84 1.81

rMat-B-2M
FF 105 0.50 0.84 0.151 0.60 5.53
LF 67 1.00 1.28 0.191 0.79 6.68
SL 67 2.41 2.84 1.691 0.85 1.68

big3dgrid
FF 4 0.41 1.68 0.173 0.24 9.69
LF 7 4.07 1.53 0.198 2.66 7.72
SL 7 4.77 2.60 1.074 1.83 2.42

cliqueChain400
FF 399 0.05 0.09 0.224 0.51 0.40
LF 399 0.05 1 1 1 1
SL 399 0.08 0.14 0.265 0.55 0.54

path-10M
FF 2 0.18 1 1 1 1
LF 3 2.49 0.76 0.092 3.26 8.27
SL 2 2.58 1 1 1 1

Figure 5-12: Performance measurements for five classes of synthetically generated graphs: constant
degree, rMat, 3D grid, clique chain and path. The column headings are equivalent to those in
Figure 5-11.

JP-SL. Historically, JP-LF has been used with mixed success in practical parallel set-
tings [12, 209, 212, 340]. Despite the fact that it offers little in terms of theoretical par-
allel performance guarantees, we have measured its parallel performance for our graph
suite, and indeed JP-LF scales reasonably well: JP-LF1/JP-LF12 = 6.8 as compared to
JP-LLF1/JP-LLF12 = 8.0 in geometric mean, not including cliqueChain400, which is omit-
ted because JP-LF crashes on the graph due to excessive stack usage. The omission of
cliqueChain400 highlights the dangers of using algorithms without good performance guar-
antees: it is difficult to know if the algorithm will behave badly given any particular input.
In this respect, JP-FF is particularly vulnerable to adversarial inputs, as we can see by the
fact that it crashes on europe-osm, which is not even intentionally adversarial. We also see
this vulnerability with JP-SL, as well as generally poor scalability on the entire suite.

107

To measure the overheads introduced by using a parallel algorithm, the running time T1

of JP on 1 core was compared with the running time T
S

of an optimized implementation of
Greedy. This comparison was performed for each of the three parallel ordering heuristics
we considered: R, LLF, and SLL. On average (geometric mean), the serial running time of
Greedy using FF is 2.5 times faster than JP-R on 1 core for the eight real-world graphs and
2.3 times faster on the ten synthetic graphs. We conjecture that Greedy gains its advantage
due to the spatial locality of processing the vertices in the linear order they appear in the
graph representation. JP-LLF and JP-SLL on 1 core, however, are actually faster than
Greedy with LF and SL by 43.3% and 19%, repsectively, on the eight real-world graphs
and 6% and 3%, respectively, on the whole suite.

In order to validate that our implementation of Greedy is a credible baseline, we
compared it with a publicly available graph-coloring library, ColPack [154], developed by
Gebremedhin et al.. We found that the two implementations appeared to achieve similar
performance. For example, using the SL ordering heuristic, Greedy is 19% faster than
ColPack in geometric-mean across the graph suite, though Greedy is slower on 5 of the
16 graphs and as much 2.22 times slower for as-skitter.

5.7 Implementation techniques

This section describes the techniques we employed to implement JP and Greedy for the
evaluation in Section 5.6. We describe three techniques — join-trees [127], bit-vectors, and
software prefetching — that improve the practical performance of JP. Where applicable,
these same techniques were used to optimize the implementation of Greedy. Overall,
applying these techniques yielded 1.6 to 2.9 factor speedup for JP and a 1.2 to 1.6 factor
speedup for Greedy on the rMat-G-2M, rMat-B-2M, web-Google, and as-skitter graphs
used in Section 5.6.

Join trees for reducing memory contention

Although the theoretical analysis of JP in Section 5.2 does not concern itself with contention,
the implementation of JP works to mitigate overheads due to contention. The pseudocode
for JP in Figure 5-2 shows that each vertex u in the graph has an associated counter
u.counter . Line 17 of JP-Color executes a Join operation on u.counter . Although Sec-
tion 5.2 describes how Join can treat u.counter as a join counter [99] and update u.counter
using an atomic decrement-and-fetch operation, the cache-coherence protocol [309] on the
machine serializes such atomic operations, giving rise to potential memory contention. In
particular, memory contention may harm the practical performance of JP on graphs with
large-degree vertices.

Our implementation of JP mitigates overheads due to contention by replacing each join
counter u.counter with a join tree having ⇥(|u.pred |) leaves. In particular, each join tree
was sized such that an average of 64 predecessors of u map to each leaf through a hash
function that maps predecessors to random leaves. We found that the join tree reduces T1

for JP by a factor of 1.15 and reduces T12 for JP by a factor of 1.1 to 1.3.

Bit vectors for assigning colors

To color vertices more efficiently, the implementation of JP uses vertex-local bit vectors to
store information about the availability of low-numbered colors. Because JP assigns to each

108

vertex the lowest-numbered available color, vertices tend to be colored with low-numbered
colors. To take advantage of this observation, we store a 64-bit word per vertex u to track
the colors in the range {1, 2, . . . , 64} that have already been assigned to a neighbor of u. The
bit vector on u.vec is computed as a “self-timed” OR reduction that occurs during updates
on u’s join tree. Effectively, as each predecessor v of u executes Join on u’s join tree, if
v.color is in {1, 2, . . . , 64}, then v OR’s the word 2v.color�1 into u.vec. When Get-Color(u)
subsequently executes, Get-Color first scans for the lowest unset bit in u.vec to find the
minimum color in {1, 2, . . . , 64} not assigned to a neighbor of u. Only when no such color
is available does Get-Color(u) scan its predecessors to assign a color to u.

We discovered that a large fraction of vertices in a graph can be colored efficiently using
this practical optimization. We found that this optimization improved T12 for JP by a factor
of 1.4 to 2.2, and a similar optimization sped up the implementation of Greedy by a factor
of 1.2 to 1.6.

Software prefetching

We used software prefetching to improve the latency of memory accesses in JP. In particular,
JP uses software prefetching to mitigate the latency of the indirect memory access encoun-
tered when accessing the join trees of the successors of a vertex v on line 16 of JP-Color
in Figure 5-2. This optimization improves T12 for JP by a factor of 1.2 to 1.5.

Interestingly, our implementation of Greedy did not appear to benefit from using soft-
ware prefetching in a similar context, specifically, to access the predecessors of a vertex on
line 4 of Greedy in Figure 5-1. We suspect that because Greedy only reads the prede-
cessors of a vertex on this line and does not write them, the processor hardware is able to
generate many such reads in parallel, thereby mitigating the latency penalty introduced by
cache misses.

5.8 Evaluation of serial ordering heuristics

This section summarizes our experiments with serial ordering heuristics. We compare the
FF, R, LF, ID, SL, and SD heuristics in practice, both for running time and coloring quality.
Our experiments indicate that the SD heuristic tends to provide colorings with higher quality
than the other heuristics we have considered, confirming similar findings by Gebremedhin
and Manne [153]. Although we leave the problem of devising a good parallel algorithm for SD
as an open question, we devised a linear-time serial algorithm for SD, despite conjectures in
the literature [94,212] that superlinear time is required. We briefly describe our linear-time
serial algorithm for SD.

Figures 5-13 and 5-14 summarizes our empirical evaluation of Greedy run on our suite
of real-world and synthetic graphs using the six ordering heuristics from Section 5.1. The
measurements were taken using the same machine and methodology as was used for Figures
5-9 and 5-10. As Figures 5-13 and 5-14 show, we found that, in order, FF, R, LF, SL,
and SD generally produce better colorings at the cost of greater running times. ID was
outperformed in both time and quality by SL. The figure indicates that LF tends to produce
better colorings than FF and R at some performance cost, and SL produces better colorings
than LF at additional cost. We found that SD produces the best colorings overall, at the
cost of a 4.5 geometric-mean slowdown versus SL.

109

Graph FF R LF ID SL SD Spark

com-orkut 175 132 87 86 83 76
liveJournal1 352 330 323 325 322 326
europe-osm 5 5 4 4 3 3
cit-Patents 17 21 14 14 13 12
as-skitter 103 81 71 72 70 70
wiki-Talk 102 85 72 57 56 51
web-Google 44 44 45 45 44 44
com-youtube 57 46 32 28 28 26

constant1M 33 32 32 34 34 26
constant500K 52 52 52 55 53 44
graph500-5M 220 220 159 157 158 147
graph500-2M 206 208 153 152 153 141
rMat-ER-2M 12 12 11 11 11 8
rMat-G-2M 27 27 15 15 15 11
rMat-B-2M 105 105 67 67 67 59
big3dgrid 4 7 7 4 7 5
cliqueChain400 399 399 399 399 399 399
path-10M 2 3 3 2 2 2

Figure 5-13: Coloring-quality measurements for six serial ordering heuristics used by Greedy,
where measurements for real-world graphs appear above the center line and those for synthetic graphs
appear below. The “Spark ” column contains bar graphs that pictorially represent the coloring quality
for each of the ordering heuristics. The height of the bar for the coloring quality CH of ordering
heuristic H is proportional to CH . Section 5.6 details the experimental setup and graph suite used.

The SD heuristic

Figure 5-15 gives pseudocode for the Greedy-SD algorithm, which implements the SD
heuristic. Rather than trying to define a priority function for SD, the figure gives the coloring
algorithm Greedy-SD itself, since the calculation of such a priority function would color the
graph as a byproduct. At any moment during the execution of the algorithm, the saturation
degree of a vertex v is the number |v.adjColors| of distinct colors of v’s neighbors, and the
effective degree of v is |v.adjUncolored |, its degree in the as yet uncolored graph.

The main loop of Greedy-SD (lines 44–54) first removes a vertex v of maximum sat-
uration degree from Q (line 45) and colors it (line 46). It then updates each uncolored
neighbor u 2 v.adjUncolored of v (lines 47–52) in three steps. First, line 48 removes u
from Q. Next, lines 49–50 update the set u.adjUncolored of u’s effective neighbors —
u’s uncolored neighbors in G — and the set u.adjColors of colors used by u’s neighbors.
Finally, lines 51–52 enqueues u in Q based on u’s updated information.

The crux of Greedy-SD lies in the operation of the queue data structure Q, which
is organized as an array of saturation tables , each of which supports the three methods
PushOrAddKey, PopOrDelKey, and RemoveOrDelKey described in the caption of
Figure 5-15. A saturation table can support these operations in ⇥(1) time and allow its
keys K to be read in ⇥(K) time. At the start of each main loop iteration, entry Q[i]
stores the uncolored vertices in the graph with saturation degree i in a saturation table.
The PushOrAddKey, PopOrDelKey, and RemoveOrDelKey methods maintain the
invariant that, for each table Q[i], each key j 2 Keys(Q[i]) is associated with a nonempty
set of vertices, such that each vertex v 2 Q[i][j] has saturation degree i and effective degree j.

The following theorem shows that Greedy-SD runs in linear time.

110

Graph FF R LF ID SL SD Spark

com-orkut 2.23 3.39 3.54 44.13 10.59 46.60
liveJournal1 0.89 2.05 2.34 17.93 4.69 19.75
europe-osm 1.32 13.36 17.15 48.59 19.87 52.73
cit-Patents 0.50 1.62 2.00 9.82 3.21 10.08
as-skitter 0.24 1.70 2.43 9.41 2.79 9.94
wiki-Talk 0.09 0.35 0.49 2.79 0.61 2.90
web-Google 0.09 0.22 0.25 1.68 0.47 1.77
com-youtube 0.06 0.19 0.25 1.50 0.35 1.55

constant1M 0.90 1.13 1.16 16.07 2.96 17.23
constant500K 0.74 0.88 0.84 14.20 1.97 15.51
graph500-5M 1.83 3.14 3.69 25.19 8.43 35.29
graph500-2M 0.52 0.77 0.98 8.09 2.22 11.68
rMat-ER-2M 0.47 0.93 1.07 10.10 2.22 9.13
rMat-G-2M 0.48 0.92 1.18 9.17 2.59 9.07
rMat-B-2M 0.50 0.83 1.00 8.44 2.41 8.64
big3dgrid 0.41 3.34 4.07 13.61 4.77 15.30
cliqueChain400 0.05 0.05 0.05 0.81 0.08 2.06
path-10M 0.18 1.95 2.49 7.34 2.58 7.96

Figure 5-14: Running-time measurements for six serial ordering heuristics used by Greedy, where
measurements for real-world graphs appear above the center line and those for synthetic graphs
appear below. The “Spark ” column contains bar graphs that pictorially represent the serial running
time for each of the ordering heuristics. The height of the bar for the serial running time TS of
ordering heuristic H is proportional to log TS . Section 5.6 details the experimental setup and graph
suite used.

Theorem 39 Greedy-SD colors a graph G = (V,E) according to the SD ordering heuristic
in ⇥(V + E) time.

Proof. The operations PushOrAddKey, PopOrDelKey, and RemoveOrDelKey
each take ⇥(1) time, and a given saturation table’s key set K can be read in ⇥(K) time.
Line 45 can thus find a vertex v with maximum saturation degree s in ⇥(|Keys(Q[s])|) time.
Line 46 can color v in ⇥(deg(v)) time, and lines 52–54 maintain s in ⇥(s) time. Because
s + |Keys(Q[s])| deg(v), lines 44–54 evaluate v in ⇥(deg(v)) time. The handshaking
lemma [100, p. 1172–3] implies the theorem, because each vertex in V is evaluated once.

5.9 Related work

Parallel coloring algorithms have been explored extensively in the distributed computing
domain [13, 32, 162, 163, 209, 226, 227, 254]. These algorithms are evaluated in the message-
passing model, where nodes are allowed unlimited local computation and exchange messages
through a sequence of synchronized rounds. Kuhn [226] and Barenboim and Elkin [32] in-
dependently developed O(�+ lg⇤ n)-round message passing algorithms to compute a deter-
ministic greedy coloring.

Several greedy coloring algorithms have been described in synchronous PRAM models.
Goldberg et al. [162] describe an algorithm for finding a greedy coloring of O(1)-degree
graphs in O(lg n) time in the EREW PRAM model using a linear number of processors.
They observe that their technique can be applied recursively to color �-degree graphs in
O(� lg� lg n) time. Their strategy incurs ⌦(lg�(V + E)) (superlinear) work, however.

111

Greedy-SD(G)

38 let G = (V,E)
39 for v 2 V
40 v.adjColors = ;
41 v.adjUncolored = Adj[v]
42 PushOrAddKey(v,Q[0][|v.adjUncolored |])
43 s = 0
44 while s � 0
45 v = PopOrDelKey(Q[s][maxKeys(Q[s])])
46 v.color = min({1, 2, . . . , |v.adjUncolored |+ 1}� v.adjColors)
47 for u 2 v.adjUncolored
48 RemoveOrDelKey(u,Q[|u.adjColors|][|u.adjUncolored |])
49 u.adjColors = u.adjColors [{v.color}
50 u.adjUncolored = u.adjUncolored � {v}
51 PushOrAddKey(u,Q[|u.adjColors|][|u.adjUncolored |])
52 s = max {s, |u.adjColors|}
53 while s � 0 and Q[s] == ;
54 s = s� 1

Figure 5-15: The Greedy-SD algorithm computes a coloring for the input graph G = (V,E)
using the SD heuristic. Each uncolored vertex v 2 V maintains a set v.adjColors of colors used
by its neighbors and a set v.adjUncolored of uncolored neighbors of v. The PushOrAddKey
method adds a specified key, if necessary, and then adds an element to that key’s associated set.
The PopOrDelKey and RemoveOrDelKey methods remove an element from a specified key’s
associated set, deleting that key if the set becomes empty. The variable s maintains the maximum
saturation degree of G.

Catalyurek et al. [81] present the algorithm Iterative, which first speculatively colors
a graph G and then fixes coloring conflicts, that is, corrects the coloring where two adjacent
vertices are assigned the same color. The process of fixing conflicting colors can introduce
new conflicts, though the authors observe empirically that comparatively few iterations
suffice to find a valid coloring. We ran Iterative on our test system and found that
JP-LLF uses 13% fewer colors and takes 19% less time in geometric mean of number of
colors and relative time, respectively, over all graphs in our test suite. Furthermore, we
found that JP-SLL uses 17% fewer colors, but executes in twice the time of Iterative.
We do not know the extent to which the optimizations enjoyed by our algorithms could be
adopted by speculative-coloring algorithms, however, and so it is likely too soon to draw
conclusions about comparisons between the strategies.

5.10 Conclusion

Because of the importance of graph coloring, considerable effort has been invested over the
years to develop ordering heuristics for serial graph-coloring algorithms. For the traditional
“serial” LF and SL ordering heuristics, we have developed “parallel” analogs — the LLF
and SLL heuristics, respectively — which approximate the traditional orderings, generating
colorings of comparable quality while offering provable guarantees on parallel scalability.
The correspondence between serial ordering heuristics and their parallel analogs is fairly
direct for LF and LLF. LLF colors any two vertices whose degrees differ by more than a
factor of 2 in the same order as LF. In this sense, LLF can be viewed as a simple coarsening
of the vertex ordering used by LF. Although SLL is inspired by SL, and both heuristics
tend to color vertices of smaller degree later, the correspondence between SL and SLL is

112

not as straightforward. We relied on empirical results to determine the degree to which SLL
captures the salient properties of SL. The LLF and SLL heuristics thus allow programmers
to improve the colorings produced by parallel greedy graph-coloring programs, as they might
for serial graph-coloring programs, without sacrificing parallel scalability. These heuristics
thus support a principled approach to improving the coloring quality of parallel coloring
algorithms.

We had hoped that the coarsening strategy LLF and SLL embody would generalize to
the other serial ordering heuristics, and we are disappointed that we have not yet been able
to devise parallel analogs for the other ordering heuristics, and in particular, for SD. Because
the SD heuristic appears to produce better colorings in practice than all of the other serial
ordering heuristics, SD appears to capture an important phenomenon that the others miss.

The problem with applying the coarsening strategy to SD stems from the way that SD
is defined. Because SD determines the order to color vertices while serially coloring the
graph itself, it seems difficult to parallelize, and it is not clear how SD might correspond
to a possible parallel analog. Thus, it remains an intriguing open question as to whether
a parallel ordering heuristic exists that captures the same “insights” as SD while offering
provable guarantees on scalability.

5.11 Recent developments

Hasenplaugh improved the bounds on the span of JP-R, JP-LLF, and JP-SLL, reducing
the O(lg3� lg V/ lg lg V) term in each bound to O(lg2� lg V/ lg(e lg V/D)) [176].

113

114

Chapter 6

Deterministic Parallel
Random-Number Generation

This chapter presents the pedigree mechanism and DotMix deterministic parallel random-
number generator [249]. This work was conducted in collaboration with Charles E. Leiserson
and Jim Sukha. This chapter presents an improved analysis of DotMix compared to the
analysis that originally appeared in [249].

6.1 Introduction

Dynamic multithreading concurrency platforms fail to encapsulate an important source of
nondeterminism for applications that employ (pseudo)random number generators (RNG’s).
RNG’s are useful for randomized algorithms [289], which provide efficient solutions to a host
of combinatorial problems, and are essential for Monte Carlo simulations, which consume
a large fraction of computing cycles [273] for applications such as option pricing, molecular
modeling, quantitative risk analysis, and computer games. Unfortunately, typical imple-
mentations of RNG’s are either nondeterministic or exhibit high overheads when used in
dynamic multithreaded code. As a result, performance engineers are left to contend either
with slow code or with nondeterministic program behaviors that can be difficult to elicit
repeatably and reliably. Nondeterminism undermines a programmer’s ability to understand
what the program does and to find and eradicate incorrect behaviors.

To understand the problem that RNG’s introduce in dynamic multithreaded programs,
we first review conventional serial RNG’s and consider how they are traditionally adapted for
use in parallel programs. Then we examine the ramifications of this adaptation on dynamic
multithreaded programs.

A serial RNG operates as a stream. The RNG begins in some initial state S0. The ith
request for a random number updates the state S

i�1 to a new state S
i

, and then it returns
some function of S

i

as the ith random number. One can construct a parallel RNG using
a serial RNG, but at the cost of introducing nondeterminism. One way that a serial RNG
can be used directly in a dynamic multithreaded application is as a global RNG where the
stream’s update function is protected by a lock. This strategy introduces nondeterminism
in the order of lock acquisition, however, as well as contention on the lock that can adversely
affect performance.

A more practical alternative that avoids lock contention is to use worker-local RNG’s,
that is, to construct a parallel RNG by having each worker thread maintain its own serial

115

RNG for generating random numbers. Unfortunately, this solution fails to eliminate nonde-
terminism when applied to dynamic multithreaded programs. In particular, the underlying
nondeterministic scheduler might execute a given call to the RNG on different workers dur-
ing different runs of the program, even if the sequence of random numbers produced by each
worker is deterministic.

Although deterministic parallel random-number generators (DPRNG’s) exist
for Pthreading platforms, they are ineffective for dynamic multithreading platforms. For
example, SPRNG [273] is an excellent DPRNG which creates independent RNG’s via a pa-
rameterization process.1 For a few Pthreads that are spawned at the start of a computation
and which operate independently, SPRNG can produce the needed RNG for each Pthread.
For a dynamic multithreaded program, however, which may contain millions of strands —
serial sequences of executed instructions containing no parallel control — each strand might
need its own RNG, and SPRNG cannot cope.

Consider, for example, a program that uses SPRNG to generate a random number at each
leaf of the computation of a parallel, exponential-time, recursive Fibonacci calculation, fib.
Every time fib spawns a recursive subcomputation, a new strand is created, and the program
calls SPRNG to produce a new serial RNG stream from the existing serial RNG. The fib
program is deterministic, since each strand receives the same sequence of random numbers in
every execution. In an implementation of this program, however, we observed two significant
problems:

• When computing fib(21), the program using SPRNG was almost 50,000 times slower
than a nondeterministic version that maintains worker-local Mersenne twister [274]
RNG’s from the GNU Scientific Library [147].

• SPRNG’s default RNG only guarantees the independence of 219 streams, and comput-
ing fib(n) for n > 21 forfeits this guarantee.

Of course, SPRNG was never intended for this kind of use case where many streams are
created with only a few random numbers generated from each stream. This example does
show, however, the inadequacy of a naive solution to the problem of deterministic parallel
random-number generation for dynamic multithreading platforms.

Contributions

In this chapter, we investigate the problem of deterministic parallel random-number gener-
ation for dynamic multithreading platforms. In particular, this chapter makes the following
contributions:

• A compiler and runtime-system mechanism, called “pedigrees,” for tracking the “lin-
eage” of each strand in a dynamic multithreaded program. Pedigrees introduce negli-
gible overhead across a suite of 10 MIT Cilk [146] benchmark applications.

• A general strategy for efficiently generating quality deterministic parallel random num-
bers based on compressing the strand’s pedigree and “mixing” the result.

• A high-quality DPRNG library for Cilk Plus, called DotMix, which is based on
compressing the pedigree via a dot-product [116] and “RC6-mixing” [98,332] the result.
The statistical quality of the numbers generated by DotMix appears to rival that of
the popular Mersenne twister RNG [274]. The cost of calling DotMix depends on
the depth of nested spawns in a Cilk program, which tends to be small for programs

1In addition to parametrized streams, other approaches to parallelizing RNG’s exist, such as leapfrogging
and splitting (for a survey, see [92]), and many of these parallel RNG schemes can also be adapted to create
similar DPRNG’s for Pthreaded programs.

116

Cilk programs with good scalability. For realistic benchmark applications that use
pseudorandom numbers, the “price of determinism” paid for using DotMix instead of
worker-local instances of Mersenne twister is at most 21%, and sometimes much less.

Pedigrees and DotMix enable programmers to write randomized dynamic multithreaded
programs whose behavior is deterministic for any fixed seed of the RNG. As a consequence,
the semantics of such a program are serial, meaning that programmers can understand what
the program does from its serial execution. Furthermore, as Section 6.5 will show, the
interface to DotMix mirrors that of an ordinary serial RNG, meaning that programmers
need only minimal changes to make a program use DotMix instead of an ordinary serial
RNG. These properties can simplify the task of understanding what randomized dynamic-
multithreaded programs do, which helps programmers engineer these codes in a principled
fashion. Finally, the performance of DotMix ensures that programmers need not pay undue
performance to enjoy this deterministic behavior. In particular, the “price of determinism”
for DotMix seems amply fast for debugging purposes, which is a major reason for desiring
repeatability.

Outline

The remainder of this chapter is organized as follows. Section 6.2 defines pedigrees and de-
scribes how they can be incorporated into a dynamic multithreading platform. Section 6.3
presents the DotMix DPRNG, showing how pedigrees can be leveraged to implement
DPRNG’s. Section 6.4 describes other pedigree-based DPRNG schemes, focusing on one
based on linear congruential generators [222]. Section 6.5 presents a programming interface
for a DPRNG library. Section 6.6 presents performance results measuring the overhead of
runtime support for pedigrees in MIT Cilk, as well as the overheads of DotMix in Cilk Plus
on synthetic and realistic applications. Section 6.7 describes related work, and Section 6.8
offers some concluding remarks.

6.2 Pedigrees

A pedigree scheme uniquely identifies each strand of a dynamic multithreaded program in a
scheduler-independent manner. This section introduces “spawn pedigrees,” a simple pedigree
scheme that can be easily maintained by a dynamic multithreading runtime system. We
describe the changes that Intel implemented in their Cilk Plus concurrency platform to
implement spawn pedigrees. Their runtime support provides an application programming
interface (API) that allows user programmers to access the spawn pedigree of a strand,
which can be used to implement a pedigree-based DPRNG scheme. We finish by describing
an important optimization for parallel loops, called “flattening.”

We shall focus on dialects of Cilk to contextualize our discussion, because we used Cilk
platforms to implement the spawn-pedigree scheme and study its empirical behavior. The
runtime support for pedigrees that we describe can be adapted to other dynamic multi-
threading platforms, however, as Section 6.8 will discuss. To simplify the “spawn pedigree”
scheme, in this section, we shall not assume that strands respect function boundaries, mean-
ing that a single strand might contain executed instructions from multiple function frames.

Pedigree schemes

Pedigrees are deterministic labels for the executed instructions in a dynamic multithreaded

117

01 int main(void) {
02 int x = fib(4);
03 printf("x = %d\n", x);
04 return x;
05 }
06

07 int fib(int n) {
08 if (n < 2) return n;
09 else {
10 int x, y;
11 x = cilk_spawn fib(n-1);
12 y = fib(n-2);
13 cilk_sync;
14 return x+y;
15 }
16 } Instruc(on	

Sync	

Legend:	

fib(1)

1	 1	

1	

fib(3)

0	 0	 2	

fib(1)

0	 0	

fib(0)

1	 1	

1	

fib(2)

0	 0	 2	

Func(on	instan(a(on	

fib(4)

0	 0	 4	

fib(1)

0	 0	

fib(0)

2	 2	

2	

fib(2)

1	 1	 3	

3	

main

R=0	

R=0	

R=0	

R=1	

<0,0,0,0>	 <0,0,1>	

<0,0,0>	

<0,0,1>	

<0,0,2>	 <0,1>	

<0,1>	

<0,1>	<0,0>	

<1,0>	 <2>	

<2>	

<3>	

<3>	

<4>	<0>	

4	
<4>	

4	
<4>	

Spawn	

Call	

Figure 6-1: Cilk code for a recursive Fibonacci calculation and the invocation tree for an execution
of fib(4). Pedigrees are labeled for each instruction. For example, cilk_sync instruction in fib(4)
has pedigree h3i. A left-to-right preorder traversal of the tree represents the serial execution order.
For example, for the children of the node for fib(4), the first two instructions with rank 0 correspond
to lines 8 and 10 from Figure 6-1, the subtree rooted at node fib(4) between fib(3) and the sync
node corresponds to the execution of the sync block (lines 11–13), and the last instruction with rank
4 corresponds to the return in line 14. Instructions and functions are labeled with their ranks. For
example, fib(3) has a rank of 0.

program execution that partition the instructions into valid strands. For the remainder of
this section, assume that the dynamic multithreaded program in question would be deter-
ministic if each RNG call in the program always returned the same random number on every
execution. For such computations, a pedigree scheme maintains two useful properties:

1. Schedule independence: For any instruction x, the value of the pedigree for x,
denoted J(x), does not depend on how the program is scheduled on multiple processors.

2. Strand uniqueness: All instructions with the same pedigree form a strand.
Together, Properties 1 and 2 guarantee that pedigrees identify strands of a dynamic mul-
tithreaded program in a deterministic fashion, regardless of scheduling. Therefore, one can
generate a random number for each strand by simply hashing its pedigree.

The basic idea of a pedigree scheme is to name a given strand by the path from the
root of the invocation tree — the tree of function (instances) where F is a parent of G,
denoted F = parent(G), if F spawns or calls G. Imagine labeling each instruction of a
function with a rank , which is the number of calls, spawns, or syncs that precede it in the
function. Then the pedigree of an instruction x can be encoded by giving its rank and a list
of ancestor ranks. For example, the instruction x might have rank 3 and be the 5th child
of the 1st child of the 3rd child of the 2nd child of the root, and thus its pedigree would be
J(x) = h2, 3, 1, 5, 3i. Such a scheme satisfies Property 1, because the invocation tree is the
same no matter how the computation is scheduled. It also satisfies Property 2, because two
instructions with the same pedigree cannot have a spawn or sync between them.

Spawn pedigrees improve on this simple scheme by defining ranks using only spawns
and syncs, omitting calls and treating called functions as being “inlined” in their parents.

118

We can define spawn pedigrees operationally in terms of a serial execution of a dynamic
multithreaded program. The runtime system conceptually maintains a stack of rank coun-
ters, where each rank counter corresponds to an instance of a spawned function. Program
execution begins with a single rank counter with value 0 on the stack for the root (main)
function F0. Three events cause the rank-counter stack to change:

1. On a spawn of a function G, push a new rank counter with value 0 for G onto the
bottom of the stack.

2. On a return from the spawn of G, pop the rank counter (for G) from the bottom of
the stack, and then increment the rank counter at the bottom of the stack.

3. On a sync statement inside a function F , increment the rank counter at the bottom
of the stack.

For any instruction x, the pedigree J(x) is simply the sequence of ranks on the stack
when x executes. Figure 6-1 shows the Cilk code for a recursive Fibonacci calculation and
the corresponding invocation tree for an execution of fib(4) with spawn pedigrees labeled
on instructions. Intuitively, the counter at the bottom of the rank-counter stack tracks the
rank of the currently executing instruction x with respect to the spawned ancestor function
closest to x. Thus, the increment at the bottom of the stack occurs whenever resuming
the continuation of a spawn or a sync statement. This operational definition of spawn
pedigrees satisfies Property 2, because an increment occurs whenever any parallel control is
reached and the values of the pedigrees are strictly increasing according to a lexicographic
order. Because a spawn pedigree is dependent only on the invocation tree, spawn pedigrees
also satisfy Property 1.

Runtime support for spawn pedigrees

Supporting spawn pedigrees in parallel in a dynamic multithreaded program is simple but
subtle. Let us first acquire some terminology. We extend the definition of “parent” to in-
structions, where for any instruction x, the parent of x, denoted parent(x), is the function
that executes x. For any nonroot function F , define the spawn parent of F , denoted
spParent(F), as parent(F) if F was spawned, or spParent(parent(F)) if F was called. In-
tuitively, spParent(F) is the closest proper ancestor of F that is a spawned function. Define
the spawn parent of an instruction x similarly: spParent(x) = spParent(parent(x)). The
rank of an instruction x, denoted R(x), corresponds to the value in the bottom-most rank
counter at the time x is executed in a serial execution, and each more-distant spawn parent
in the ancestry of x directly maps to a rank counter higher in the stack.

The primary complication for maintaining spawn pedigrees during a parallel execution is
that, while one worker p is executing an instruction x in F = spParent(x), another worker
p0 might steal a continuation in F and continue executing, conceptually modifying the rank
counter for F . To eliminate this complication, when p spawns a function G from F , it saves
R(G) — the rank-counter value of F when G was spawned — into the frame of G, thereby
guaranteeing that any query of the pedigree for x has access to the correct rank, even if p0
has resumed execution of F and incremented its rank counter.

Figure 6-2 presents an API that allows a currently executing strand s to query its spawn
pedigree. For any instruction x belonging to a strand s, this API allows s to walk up the
chain of spawned functions along the x-to-root path in the invocation tree and access the
appropriate rank value for x and each ancestor spawned function. The sequence of ranks
discovered along this walk is precisely the reverse of the pedigree J(x).

We persuaded Intel to modify its Cilk Plus concurrency platform [196] to include pedi-

119

Function Description Implementation

Rank() Returns R(x). Returns p!rank
SPParent() Returns spParent(x). Returns p!current_frame.
Rank(bF) Returns R(bF). Returns bF !brank

SPParent(bF) Returns spParent(bF). Returns bF !parent

StrandBreak() Ends the currently-executing strand. p!rank++

Figure 6-2: An API for spawn pedigrees in Cilk Plus. In these operations, x is the currently
executing instruction for a worker p, and bF is a spawn-wrapper function which is an ancestor of
x in the computation tree. These operations allow a worker to walk up the computation tree to
compute J(x). A worker can also call StrandBreak() to end its currently executing strand.

grees. The Intel C/C++ compiler with Cilk Plus compiles the spawning of a function G as a
call to a spawn-wrapper function bG, which performs the necessary runtime manipulations
to effect the spawn, one step of which is calling the function G. Thus, for any function G,
we have spParent(G) = bG, and for any instruction x, the pedigree J(x) has a rank counter
for each spawn-wrapper ancestor of x.

Implementing this API in Cilk Plus requires additional storage in spawn-wrapper frames
and in the state of each worker thread. For every spawned function F , the spawn wrapper
bF stores the following rank information in F ’s frame:

• bF !brank : A 64-bit2 value that stores R(F).
• bF !parent : The pointer to spParent(bF).

In addition, every worker p maintains two values in worker-local storage for its currently
executing instruction x:

• p!current_frame: the pointer to spParent(x).
• p!rank : a 64-bit value storing R(x).

As Figure 6-2 shows, to implement the API, the runtime system reads these fields to report
a spawn pedigree. In terms of the operational definition of spawn pedigrees, the rank field in
p holds the bottom-most rank counter on the stack for the instruction x that p is currently
executing.

To maintain these fields, the runtime system requires additional storage to save and
restore the current spawn-parent pointer and rank counter for each worker whenever it
enters or leaves a nested spawned function. In particular, we allocate space for a rank and
parent pointer in the stack frame of every Cilk function — function that can contain
spawn and sync statements:

• G!rank : a 64-bit value that stores R(x) for some instruction x with spParent(x) =
G.

• G!sp_rep: the pointer to spParent(G).
These fields are only used to save and restore the corresponding fields for a worker p. When-
ever p is executing a Cilk function G which spawns a function F , it saves its fields into G
before beginning execution of F . When a worker p0 (which might or might not be p) resumes
the continuation after the spawn statement, p0 restores its values from G. Similarly, saving
and restoring also occurs when a worker stalls at a sync statement. Figure 6-3 summarizes
the runtime operations needed to maintain spawn pedigrees.

Although the implementation of spawn pedigrees in Intel Cilk Plus required changes
to the Intel compiler, ordinary C/C++ functions need not be recompiled for the pedigree
scheme to work. The reason is that the code in Figure 6-3 does not perform any operations

2A 64-bit counter never overflows in practice, since 2

64 is a big number.

120

On a spawn of F from G:
1 G!rank = p!rank
2 G!sp_rep = p!current_frame

3 bF !brank = G!rank

4 bF !parent = G!sp_rep
5 p!rank = 0

6 p!current_frame = bF

On stalling at a sync in G:
7 G!rank = p!rank

On resuming the continuation of a spawn or
sync in G:
8 p!rank = G!rank++
9 p!current_frame = G!sp_rep

Figure 6-3: How a worker p maintains spawn pedigrees. In this pseudocode, G denotes a Cilk
function instantiation, F denotes the instantiation of a function that G spawns, and bF denotes the
instantiation of the spawn wrapper of F . The value p ! current_frame need not be saved into
G!sp_rep, because the first spawn in G will have saved this value already, and this value is fixed
for G.

on entry or exit to called functions. Consequently, the scheme works even for programs that
incorporate legacy and third-party C/C++ binaries.

To implement DPRNG’s, it is useful to extend the API in Figure 6-2 to include a
StrandBreak function that allows the DPRNG to end a currently executing strand ex-
plicitly. In particular, if a user requests multiple random numbers from a DPRNG in a
serial sequence of instructions, then the DPRNG can let each call to get a random num-
ber terminate a strand in that sequence using this function, meaning that the DPRNG
produces at most one random number per strand. Like a spawn or sync, when a worker
p encounters a StrandBreak call, the next instruction after the StrandBreak that p
executes is guaranteed to be part of a different strand, and thus have a different pedigree.
The StrandBreak function is implemented by incrementing p!rank .

Pedigree flattening for parallel loops

As an optimization, we can simplify spawn pedigrees for parallel loops. The Cilk Plus
runtime system implements its parallel loop construct, cilk_for, using a balanced binary
recursion tree implemented with cilk_spawn’s and cilk_sync’s, where each leaf performs
a chunk of iterations serially. Rather than track ranks at every level of this recursion tree,
the Cilk Plus pedigree scheme conceptually “cuts out the middle man” and flattens all
the iterations of the cilk_for loop so that they share a single level of pedigree. The basic
idea is simply to let the rank of an iteration be the loop index. Consequently, iterations
in a cilk_for can be referenced within the cilk_for by a single value, rather than a path
through the binary recursion tree. To ensure that cilk_spawn and cilk_sync statements
within a loop iteration do not affect the pedigrees of other loop iterations, the body of each
loop iteration is treated as a spawned function with respect to its pedigree. This change
simplifies the pedigrees generated for cilk_for loops by reducing the effective spawn depth
of strands within the cilk_for and, as Section 6.6 shows, the cost of reading the pedigree
as well.

6.3 DotMix: A pedigree-based DPRNG

This section presents DotMix, a high-quality statistically random pedigree-based DPRNG.
DotMix operates by hashing the pedigree and then “mixing” the result. We investigate
theoretical principles behind the design of DotMix, and in particular, we show that Dot-
Mix is 2-universal [80]. These properties offer evidence that pedigree-based DPRNG’s can

121

generate pseudorandom numbers of high quality for real applications. We also examine em-
pirical test results using Dieharder [71], which suggest that DotMix generates high-quality
random numbers in practice.

The DotMix DPRNG

At a high level, DotMix generates random numbers in two stages. First, DotMix com-
presses the pedigree into a single machine word while attempting to maintain uniqueness
of compressed pedigrees. Second, DotMix “mixes” the bits in the compressed pedigree to
produce a pseudorandom value.

To describe DotMix formally, let us first establish some notation. We assume that our
computer has a word width of w bits. We choose a prime p < m = 2w and assume that
each rank j

i

in the pedigree falls in the range 1 j
i

< p. Our library implementation of
DotMix simply increments each rank in the spawn-pedigree scheme from Section 6.2 to
ensure that ranks are nonzero. Let Z

m

denote the universe of (unsigned) w-bit integers over
which calculations are performed, and let Z

p

denote the finite field of integers modulo p.
Consequently, we have Z

p

✓ Z
m

. We assume that the spawn depth d(x) for any instruction
x in a dynamic multithreaded program is bounded by d(x) D.3 A pedigree J(x) for an
instruction x at spawn depth d(x) can then be represented by a D-length vector J(x) =
hj1, j2, . . . , jDi 2 ZD

p

, where j
i

= 0 for D� d(x) entries. Which entries are padded out with
0 does not matter for the theorems that follow, as long as distinct pedigrees remain distinct.
In our implementation, we actually pad out the first entries.

For a given pedigree J 2 ZD

p

, the random number produced by DotMix is the hash
h(J), where h(J) is the composition of

1. a compression function c : ZD

p

! Z
p

that hashes each pedigree J into a single
integer c(J) less than p, and

2. a mixing function µ : Z
m

! Z
m

that “mixes” the compressed pedigree value c(J).
Let us consider each of these functions individually.

The goal of a compression function c is to hash each pedigree J into an integer in Z
p

such
that the probability of a collision — two distinct pedigrees hashing to the same integer
— is small. To compress pedigrees, DotMix computes a dot product of the pedigree with
a vector of random values [116]. More formally, DotMix uses a compression function c
chosen uniformly at random from the following hash family.4

Definition 1 Let � = h�0, �1, �2, . . . , �Di be a vector of integers chosen uniformly at random
from ZD+1

p

. Define the compression function c� : ZD+1
p

! Z
p

by

c�(J) = �0 +

DX

k=1

�
k

j
k

!
mod p ,

where J = hj1, j2, . . . , jDi 2 ZD

p

. The DotMix compression-function family is the set

C
DotMix

=
�
c� : � 2 ZD+1

p

.

3Although a dynamic multithreaded program might have arbitrarily deeply nested spawns in theory, this
depth imposes a lower bound on the span of a computation, and scalable programs generally have low depth.
A reasonable upper bound in practice is D = 100.

4The definition of C
DotMix

presented here differs from that in the original paper on this work [249], but
represents the implementation of DotMix more faithfully.

122

The next theorem justifies that the probability is small that a randomly chosen compression
function c� 2 C

DotMix

causes two distinct pedigrees to collide. In fact, we show a stronger
result, namely, that the DotMix compression-function family is 2-independent [402]. 5

Theorem 40 Let c� 2 C
DotMix

be a randomly chosen compression function, and let h and
h0 be arbitrary integers in Z

p

. Then, for any two distinct pedigrees J, J 0 2 ZD

p

, we have
Pr {c�(J) = h \ c�(J 0) = h0} = 1/p2.

Proof. We first show that Pr {c�(J) = h} = 1/p. Let J = hj1, j2, . . . , jDi. Then we have
(modulo p) that

h = �0 +
DX

k=1

�
i

j
i

,

which implies that

h�
DX

k=1

�
i

j
i

= �0 .

Because �0 is chosen uniformly at random from Z
p

, the probability that it equals any par-
ticular value of h�PD

k=1 �iji is 1/p.
We now show that the conditional probability Pr {c�(J 0) = h0 | c�(J) = h} is 1/p. Let

J = hj1, j2, . . . , jDi, and let J 0 = hj01, j02, . . . , j0
D

i. Because J 6= J 0, there must exist some
index k in the range 1 k D such that j

k

6= j0
k

. Without loss of generality, assume that
k = 1. Then the difference between h and h0 equals the following sum (modulo p):

h� h0 = c�(J)� c�(J
0)

= �1j1 � �1j
0
1 +

DX

k=2

�
k

j
k

�
DX

k=2

�
k

j0
k

.

Rearranging terms gives us

(j1 � j01)�1 = h� h0 +
DX

k=2

�
k

(j0
k

� j
k

) .

Consider fixed values for J , J 0, and �2, . . . , �D. Let a = j1 � j01 6= 0, let x = �1, and let
y = h� h0 +

P
D

k=2 �k(j
0
k

� j
k

). The equation above can thus be rewritten simply as y = ax.
We argue that for any fixed choice of y 2 Z

p

and nonzero a 2 Z
p

, there is exactly one
choice of x 2 Z

p

such that y = ax, namely, x = a�1y. For the sake of contradiction, suppose
that there are two distinct values x1 and x2 such that y = ax1 = ax2. This supposition
implies that 0 = ax1 � ax2 = a(x1 � x2) modulo p, which is satisfied if and only if either
a = 0 or x1 � x2 = 0, because p is prime. Because a 6= 0, we must have x1 � x2 = 0,
contradicting the supposition that x1 and x2 are distinct. Therefore, there is one value of x
satisfying y = ax. Because x = �1 is a randomly chosen value from Z

p

, the probability that
x satisfies y = ax is 1/p.

The theorem follows from multiplying Pr {c�(J) = h} and Pr {c�(J 0) = h0 | c�(J) = h}.

A corollary of Theorem 40 is that the probability that any two distinct pedigrees collide
5The original paper on this work [249] only shows that this compression-function family is 2-universal.

123

is 1/p. This low probability of collision allows DotMix to generate many random numbers
with a low probability that any pair collide. By Boole’s Inequality [100, p. 1195], given n
distinct pedigrees and using a random function from C

DotMix

, the probability of a collision
among any of their compressed pedigrees is at most

�
n

2

�
(1/p) = n(n� 1)/2p. For example,

our DotMix implementation uses the prime p = 264 � 59, for which the probability that
hashing 5 million pedigrees results in a collision in their compressed values is less than 1 in
a million.

Although the compression function effectively hashes a pedigree into an integer less than
p with a small probability of collision, two similar pedigrees may yet have “similar” hash
values, whereas we would like them to be statistically “dissimilar.” In particular, for a given
compression function c�, two pedigrees that differ only in their kth coordinate differ in
their compressions by a predictable multiple of �

k

. To reduce the statistical correlation in
generated random values, DotMix “mixes” the bits of a compressed pedigree using a mixing
function based on the RC6 block cipher [98, 332]. For any w-bit input z, where we assume
that w is even, let �(z) denote the function that swaps the high- and low-order w/2 bits of
z, that is,

�(z) =

�
zp
m

⌫
+
p
m
�
z mod

p
m
�
,

and let
f(z) = �(2z2 + z) mod m .

DotMix uses the mixing function µ(z) = f (r)(z), which applies r rounds of f(z) to the
compressed pedigree value z. Contini et al. [98] prove that f(z) is a one-to-one function,
and hence, for two distinct pedigrees J and J 0, the probability that µ(c(J)) = µ(c(J 0)) is
1/p, unchanged from Theorem 40.

DotMix allows a seed to be incorporated into the hash of a pedigree. The random num-
ber generated for a pedigree J is actually the value of a hash function h(J,�), where � is
a seed. Such a seed may be incorporated into the computation of µ(c�(J)) in several ways.
For instance, we might XOR or otherwise combine the seed with the result of µ(c�(J)),
computing, for example, h(J,�) = ��µ(c�(J)). This scheme does not appear to be partic-
ularly good, because it lacks much statistical variation between the numbers generated by
one seed versus another. A better scheme, which DotMix adopts, is to combine the seed
with the compressed pedigree before mixing. In particular, DotMix incorporates the seed
in selecting a hash function from the DotMix compression-function family C

DotMix

.

The statistical quality of DotMix

Although DotMix is not a cryptographically secure RNG, it appears to generate high-
quality random numbers as evinced by Dieharder [71], a collection of statistical tests designed
to empirically test the quality of serial RNG’s. Figure 6-4 summarizes the Dieharder test
results for DotMix and compares them to those of the Mersenne twister [274], whose
implementation is provided in the GNU Scientific Library [147]. As Figure 6-4 shows,
with 2 or more iterations of the mixing function, DotMix generates random numbers of
comparable quality to Mersenne twister. In particular, Mersenne twister and DotMix with
2 or more mixing iterations generally fail the same set of Dieharder tests. Because the
Dieharder tests are based on P -values [184], it is not surprising to see statistical variation
in the number of “Weak” and “Poor” results even from high-quality RNG’s. We report the
median of 5 runs using 5 different seeds to reduce this variation.

124

Test r Passed Weak Poor Failed

Mersenne twister — 79 7 7 14

DotMix (tree)

16 83 6 4 14
8 84 6 4 13
4 81 5 7 14
2 81 5 5 16
1 3 2 3 99
0 0 0 0 107

DotMix (loop)

16 82 2 8 15
8 79 6 8 14
4 79 5 8 15
2 79 4 8 16
1 55 2 8 42
0 2 0 1 104

LCGMix (tree) 4 84 4 6 13
0 24 6 21 56

Figure 6-4: A summary of the quality of DotMix on the Dieharder tests compared to the Mersenne
twister. For the entries labeled “tree,” DotMix generates 320 random numbers in a parallel divide-
and-conquer ternary tree fashion using spawns. For the entries labeled “loop,” a cilk_for loop
generates 320 random numbers. The column labeled r indicates the number of mixing iterations.
Each successive column counts the number of tests that produced the given status, where the status
of each test was computed from the median of 5 runs of the generator using 5 different seeds. The
table also summarizes the Dieharder test results for LCGMix.

When using Dieharder to measure the quality of a parallel RNG, we confronted the
issue that Dieharder is really designed to measure the quality of serial RNG’s. Since all
numbers are generated by a serial RNG in a linear order, this order provides a natural
measure of “distance” between adjacent random numbers, which Dieharder can use to look for
correlations. When using an RNG for a parallel program, however, this notion of “distance”
is more complicated, because calls to the RNG can execute in parallel. The results in
Figure 6-4 use numbers generated in a serial execution of the (parallel) test program, which
should maximize the correlation between adjacent random numbers due to similarities in the
corresponding pedigrees. In principle, another execution order of the same program could
generate random numbers in a different order and lead to different Dieharder test results.

As a practical matter, DotMix uses r = 4 mixing iterations to generate empirically
high-quality random numbers. The difference in performance per call to DotMix with
r = 0 and with r = 4 is less than 2%, and thus DotMix can generate high-quality random
numbers without sacrificing performance.

6.4 Other pedigree-based DPRNG’s

This section investigates several other pedigree-based schemes for DPRNG’s. Principal
among these schemes is LCGMix, which uses a compression function based on linear con-
gruential generators and the same mixing function as DotMix. We prove that the prob-
ability that LCGMix’s compression function generates a collision is small, although not
quite as small as for DotMix. We examine Dieharder results which indicate that LCGMix
is statistically good. We also discuss alternative DPRNG schemes and their utility. These
DPRNG’s demonstrate that pedigrees can enable not only DotMix, but a host of other

125

DPRNG implementations. We close by observing a theoretical weakness with DotMix
which would be remedied by a 4-independent compression scheme.

The LCGMix DPRNG

LCGMix is related to the “Lehmer tree” DPRNG scheme [139]. LCGMix uses a fam-
ily of compression functions for pedigrees that generalize linear congruential generators
(LCG’s) [222, 243]. LCGMix then “RC6-mixes” the compressed pedigree to generate a
pseudorandom value using the same mixing function as DotMix.

The basic idea behind LCGMix is to compress a pedigree by combining each successive
rank using an LCG that operates modulo a prime p, where p is close to but less than
m = 2w, where w is the computer word width. LCGMix uses only three random nonzero
values ↵,�, � 2 Z

p

, rather than a table as DotMix does. Specifically, for an instruction x
at depth d = d(x) with pedigree J(x) = hj1, j2, . . . , j

d

i, the LCGMix compression function
performs the following recursive calculation modulo p:

X
d

=

(
� if d = 0,
↵X

d�1 + �j
d

if d > 0.

The value X
d

is the compressed pedigree. Thus, the LCGMix compression function need
only perform two multiplications modulo p and one addition modulo p per rank in the
pedigree.

Assume, as for DotMix, that the spawn depth d(x) for any instruction x in a dynamic
multithreaded program is bounded by d(x) D. The family of compression functions used
by LCGMix can be defined as follows:

Definition 2 Let ↵,�, � be nonzero integers chosen uniformly at random from Z
p

. Define
c
↵,�,�

:
S1

d=1 Zd

p

! Z
p

by

c
↵,�,�

(J) =

↵d� + �

dX

k=1

↵d�kj
k

!
mod p ,

where J = hj1, j2, . . . , j
d

i 2 Zd

p

. The LCGMix compression-function family is the set
of functions

C
LCGMix

= {c
↵,�,�

: ↵,�, � 2 Z
p

� {0}} .

The next theorem shows that the probability a randomly chosen compression function
c
↵,�,�

2 C
LCGMix

hashes two distinct pedigrees to the same value is small, although not
quite as small as for DotMix.

Theorem 41 Let c
↵,�,�

2 C
LCGMix

be a randomly chosen compression function. Then
for any two distinct pedigrees J 2 Zd

p

and J 0 2 Zd

0
p

we have Pr {c
↵,�,�

(J) = c
↵,�,�

(J 0)}
D/(p� 1), where D = max {d, d0}.

Proof. Let J = hj1, j2, . . . , j
d

i and J 0 =
⌦
j01, j

0
2, . . . , j

0
d

0
↵
. The important observation is

that the difference c
↵,�,�

(J)�c
↵,�,�

(J 0) is a nonzero polynomial in ↵ of degree at most D with
coefficients in Z

p

. Thus, there are at most D roots to the equation c
↵,�,�

(J)�c
↵,�,�

(J 0) = 0,

126

which are values for ↵ that cause the two compressed pedigrees to collide. Since there are
p� 1 possible values for ↵, the probability of collision is at most D/(p� 1).

This pairwise-collision probability implies a theoretical bound on how many random
numbers LCGMix can generate before one would expect a collision between any pair of
numbers in the set. By Boole’s Inequality [100, p. 1195], compressing n pedigrees with a
random function from C

LCGMix

gives a collision probability between any pair of those n
compressed pedigrees of at most

�
n

2

�
D/(p � 1) = n(n � 1)D/2(p � 1). With p = 264 � 59

and making the reasonable assumption that D 100, the probability that compressing
500,000 pedigrees results in a collision is less than 1 in a million. As can be seen, 500,000
pedigrees is a factor of 10 less than the 5 million for DotMix for the same probability. Since
our implementation of LCGMix was no faster than our implementation of DotMix per
function call, we favored the stronger theoretical guarantee of DotMix for the Cilk Plus
library.

We tested the quality of random numbers produced by LCGMix using Dieharder, pro-
ducing the results in Figure 6-4. The data suggest that, as with DotMix, r = 4 mixing
iterations in LCGMix are sufficient to provide random numbers whose statistical quality is
comparable to those produced by the Mersenne twister.

Further ideas for DPRNG’s

We can define DPRNG’s using families of compression functions that exhibit stronger the-
oretical properties or provide faster performance than either DotMix or LCGMix.

One alternative is to use tabulation hashing [80] to compress pedigrees, giving com-
pressed pedigree values that are 3-independent and have other strong theoretical proper-
ties [311]. This DPRNG is potentially useful for applications that require stronger proper-
ties from their random numbers. To implement this scheme, the compression function treats
the pedigree as a bit vector whose 1 bits select entries in a table of random values to XOR
together.

As another example which favors theoretical quality over performance, a DPRNG could
be based on compressing the pedigree with a SHA-1 hash [294], providing a cryptographically
secure compression function that would not require any mixing to generate high-quality ran-
dom numbers. Other cryptographically secure hash functions could be used as well. While
cryptographically secure hash functions are typically slow, they would allow the DPRNG
to provide pseudorandom numbers with very strong theoretical properties, which can be
important for some applications.

On the other side of the performance-quality spectrum, a DPRNG could be based on
compressing a pedigree using a faster hash function. One such function is the hash function
used in UMAC [48], which performs half the multiplications of DotMix’s compression
function. The performance of the UMAC compression scheme and the quality of the DPRNG
it engenders offers an interesting topic for future research.

4-independent compression of pedigrees

Although Theorem 40 shows that the probability is small that DotMix’s compression func-
tion causes two pedigrees to collide, DotMix contains a theoretical weakness. Consider two
distinct pedigrees J1 and J2 of length D, and suppose that DotMix maps J1 and J2 to the
same value, or more formally, that DotMix chooses a compression function c� such that
c�(J1) = c�(J2). Let J + hji denote the pedigree that results from appending the rank j to

127

17 template <typename T>
18 class DPRNG {
19 DPRNG(); // Constructor
20 ~DPRNG(); // Destructor
21 DPRNG_scope current_scope(); // Get current scope
22 void set(uint64_t seed, DPRNG_scope scope); // Init
23 uint64_t get(); // Get random number
24 };

Figure 6-5: A C++ interface for a pedigree-based DPRNG suitable for use with Cilk Plus. The type
T of the DPRNG object specifies a particular DPRNG library, such as DotMix, that implements
this interface. In addition to accepting an argument for an initial seed, the initialization method for
the DPRNG in line 22 also requires an lexical scope, restricting the scope where the DPRNG object
can be used.

the pedigree J . Because J1 and J2 both have length D, it follows that

c�(J1 + hji) = c�(J1) + �
D+1j

= c�(J2) + �
D+1j

= c�(J2 + hji) .

Thus, DotMix hashes the pedigrees J1 + hji and J2 + hji to the same value, regardless
of the value of j. In other words, one collision in the compression of the pedigrees for two
strands, however rare, might result in many ancillary collisions.

To address this theoretical weakness, a DPRNG scheme might provide the guarantee
that if two pedigrees for two strands collide, then the probability remains small that the
pedigrees collide for any other pair of strands. A 4-independent hash function [402] would
achieve this goal by guaranteeing that the probability is small that any sequence of 4 distinct
pedigrees hash to any particular sequence of 4 values. Tabulation-based 4-independent hash
functions for single words are known [389], but extending these techniques to hash pedigrees
efficiently remains an intriguing open problem.

6.5 A scoped DPRNG library interface

This section presents the programming interface for a DPRNG library that we implemented
for Cilk Plus. This interface demonstrates how programmers can use a pedigree-based
DPRNG library in applications. The interface uses the notion of “scoped” pedigrees, which
allow DPRNG’s to compose easily.

Scoped pedigrees solve the following problem. Suppose that a dynamic multithreaded
program contains a parallel subcomputation that uses a DPRNG, and suppose that the
program would like to run this subcomputation the same way twice. Using scoped pedigrees,
the program can guarantee that both runs generate the exact same random numbers, even
though corresponding RNG calls in the subcomputations have different pedigrees globally.

Programming interface

Figure 6-5 shows a C++ interface for a DPRNG suitable for use with Cilk Plus. It resembles
the interface for an ordinary serial RNG, but it constrains when the DPRNG can be used
to generate random numbers by defining a “scope” for each DPRNG instance. The set
method in line 22 initializes the DPRNG object based on two quantities: an initial seed and

128

25 uint64_t foo(DPRNG<DotMix>* rand, uint64_t seed, int i) {
26 uint64_t sum = 0;
27 DPRNG_scope scope = rand->current_scope();
28 rand->set(seed, scope);
29 for (int j = 0; j < 15; ++j) {
30 uint64_t val = rand->get();
31 sum += val;
32 }
33 return sum;
34 }
35

36 int main(void) {
37 const int NSTREAMS = 10;
38 uint64_t sum[NSTREAMS];
39 uint64_t s1 = 0x42; uint64_t s2 = 31415;
40 // Generate NSTREAMS identical streams
41 cilk_for (int i = 0; i < NSTREAMS; ++i) {
42 DPRNG<DotMix>* rand = new DPRNG<DotMix>();
43 sum[i] = foo(rand, s1, i);
44 sum[i] += foo(rand, s2, i);
45 delete rand;
46 }
47 for (int i = 1; i < NSTREAMS; ++i)
48 assert(sum[i] == sum[0]);
49 return 0;
50 }

Figure 6-6: A program that generates NSTREAMS identical streams of random numbers. Inside
function foo, the code in lines 27–28 limits the scope of rand so that it can generate random
numbers only within foo.

a scope. The seed is the same as for an ordinary serial RNG. The scope represented by a
pedigree J is the set of instructions whose pedigrees have J as a common prefix. Specifying
a scope (represented by) J to the DPRNG object rand restricts the DPRNG to generate
numbers only within that scope and to ignore the common prefix J when generating random
numbers. By default, the programmer can pass in the global scope h0i to let the DPRNG
object be usable anywhere in the program. The interface allows programmers to limit the
scope of a DPRNG object by getting an explicit scope (line 21) and setting the scope of a
DPRNG object (line 22).

Figure 6-6 demonstrates how restricting the scope of a DPRNG can be used to generate
repeatable streams of random numbers within a single program. Inside foo, the code in
lines 27–28 limits the scope of rand so that it generates random numbers only within foo.
Because of this limited scope, the assertion in line 48 holds true. If the programmer sets
rand with a global scope, then each call to foo would generate a different value for sum, and
the assertion would fail.

Intuitively, one can think of the scope as extension of the seed for a serial RNG. To
generate exactly the same stream of random numbers in a dthreaded program, one must
(1) use the same seed, (2) use the same scope, and (3) have exactly the same structure
of spawned functions and RNG calls within the scope. Even if foo from Figure 6-6 were
modified to generate random numbers in parallel, the use of scoped pedigrees still guarantees
that each iteration of the parallel loop in line 41 behaves identically.

129

Implementation

To implement the get method of a DPRNG, we use the API in Figure 6-2 to extract the
current pedigree during the call to get, and then we hash the pedigree. The principal
remaining difficulty in the DPRNG’s implementation is in handling scopes.

Intuitively, a scope can be represented by a pedigree prefix that should be common to
the pedigrees of all strands generating random numbers within the scope. Let y be the
instruction corresponding to a call to current_scope(), and let x be a call to get() within
the scope J(y). Let J(x) =

⌦
j1, j2, . . . , j

d(x)

↵
and J(y) =

D
j01, j

0
2, . . . , j

0
d(y)

E
. Since x belongs

to the scope J(y), it follows that d(x) � d(y), and we have j
d(y) � j0

d(y) and j
k

= j0
k

for all
k < d(y). We now define the scoped pedigree of x with respect to scope J(y) as

J
J(y)(x) =

D
j
d(y) � j0

d(y), jd(y)+1, . . . , jd(x)
E
.

To compute a random number for J(x) excluding the scope J(y), we simply perform
a DPRNG scheme on the scoped pedigree J

J(y)(x). For example, DotMix computes
µ(c�(J

J(y)(x))). Furthermore, one can check for scoping errors by verifying that J(y) is
indeed the prefix of J(x) via a direct comparison of all the pedigree terms.

Scoped pedigrees allow DPRNG’s to optimize the process of reading a pedigree. By
hashing scoped pedigrees, a call to the DPRNG need only read a suffix of the pedigree, i.e.
the scoped pedigree itself, rather than the entire pedigree. To implement this optimization,
each scope may store a pointer to the spawn parent for the deepest rank of the scope, and
then the code for reading the pedigree extracts ranks as usual until it observes the spawn
parent the scope points to. One problem with this optimization is that a DPRNG may not
detect if it is hashing a pedigree outside of its scope. To overcome this problem, DotMix
supports a separate mode for debugging, in which each call checks its pedigree term-by-term
to verify that it is within the scope.

6.6 Performance results

This section reports on our experimental results investigating the overhead of maintaining
pedigrees and the cost of the DotMix DPRNG. To study the overhead of tracking pedi-
grees, we modified the open-source MIT Cilk [146], whose compiler and runtime system
were both accessible. We discovered that the overhead of tracking pedigrees is small, having
a geometric mean of only 1% on all tested benchmarks. To measure the costs of Dot-
Mix, we implemented it as a library for a version of Cilk Plus that Intel engineers had
augmented with pedigree support, and we compared its performance to a nondeterministic
DPRNG implemented using worker-local Mersenne twister RNG’s. Although the price of
determinism from using DotMix was approximately a factor of 2.3 greater per function
call than Mersenne twister on a synthetic benchmark, this price was much smaller on more
realistic codes such as a sample sort and Monte Carlo simulations. These empirical results
suggest that pedigree-based DPRNG’s are amply fast for debugging purposes and that their
overheads may be low enough for some production codes.

Pedigree overheads

To estimate the overhead of maintaining pedigrees, we ran a set of microbenchmarks for
MIT Cilk with and without support for pedigrees. We modified MIT Cilk 5.4.6 to store the

130

Application Default Pedigree Overhead

fib 11.03 12.13 1.10
cholesky 2.75 2.92 1.06
fft 1.51 1.53 1.01
matmul 2.84 2.87 1.01
rectmul 6.20 6.21 1.00
strassen 5.23 5.24 1.00
queens 4.61 4.60 1.00
plu 7.32 7.35 1.00
heat 2.51 2.46 0.98
lu 7.88 7.25 0.92

Figure 6-7: Overhead of maintaining 64-bit rank pedigree values for the Cilk benchmarks as
compared to the default of MIT Cilk 5.4.6. The experiments were run on an AMD Opteron 6168
system with a single 12-core CPU clocked at 1.9GHz. All times are the minimum of 15 runs measured
in seconds.

necessary 64-bit rank values and pointers in each frame for spawn pedigrees and to maintain
spawn pedigrees at runtime. We then ran 10 MIT Cilk benchmark programs using both our
modified version of MIT Cilk and the original MIT Cilk. In particular, we ran the following
benchmarks:

• fib: Recursive exponential-time calculation of the 40th Fibonacci number.
• cholesky: A divide-and-conquer Cholesky factorization of a sparse 2000⇥2000 matrix

with 10,000 nonzeros.
• fft: Fast Fourier transform on 222 elements.
• matmul: Recursive matrix multiplication of 1000⇥ 1000 square matrices.
• rectmul: Rectangular matrix multiplication of 2048⇥ 2048 square matrices.
• strassen: Strassen’s algorithm for matrix multiplication on 2048 ⇥ 2048 square ma-

trices.
• queens: Backtracking search to count the number of solutions to the 24-queens puzzle.
• plu: LU-decomposition with partial pivoting on a 2048⇥ 2048 matrix.
• heat: Jacobi-type stencil computation on a 4096⇥ 1024 grid for 100 timesteps.
• lu: LU-decomposition on a 2048⇥ 2048 matrix.
The results from these benchmarks, as summarized in Figure 6-7, show that the slowdown

due to spawn pedigrees is generally negligible, having a geometric mean of less than 1%.
Although the overheads run as high as 10% for fib, they appear to be within measurement
noise caused by the intricacies of modern-day processors. For example, two benchmarks
actually run measurably faster despite the additional overhead. This benchmark suite gives
us confidence that the overhead for maintaining spawn pedigrees should be close to negligible
for most real applications.

DPRNG overheads

To estimate the cost of using DPRNG’s, we persuaded Intel to modify its Cilk Plus concur-
rency platform to maintain pedigrees, and then we implemented the DotMix DPRNG for
Intel Cilk Plus.6 We compared DotMix’s performance, using r = 4 mixing iterations, to a
nondeterministic parallel implementation of the Mersenne twister on synthetic benchmarks,
as well as on more realistic applications. From these results, we estimate that the “price of

6The Intel C/C++ compiler v12.1 provides compiler and runtime support for maintaining pedigrees in
Cilk.

131

 0

 100

 200

 300

 400

 500

 600

 6 8 10 12 14 16 18 20 22

C
y
c
l
e
s

p
e
r

R

N
G

C

a
l
l

Pedigree Length L

DotMix, r=16

DotMix, r=4

Worker-Local Mersenne Twister

Global Mersenne Twister

Figure 6-8: Overhead of various RNG’s on the CBT benchmark when generating n = 220 random
numbers. Each data point represents the minimum of 20 runs. The global Mersenne twister RNG
from the GSL library [147] only works for serial code, while the worker-local Mersenne twister is a
nondeterministic parallel implementation.

 0

 100

 200

 300

 400

 500

 600

 6 8 10 12 14 16 18 20 22

C
y
c
l
e
s

p
e
r

L
e
a
f

N

o
d
e

Pedigree Length L

DotMix, r=16

DotMix, r=4

Pedigree Lookup

Worker Lookup

Empty Leaf

Figure 6-9: Breakdown of overheads of DotMix in the CBT benchmark, with n = 220. This
experiment uses the same methodology as for Figure 6-8.

determinism” for DotMix is about a factor of 2.3 in practice on synthetic benchmarks that
generate large pedigrees, but it can be significantly less for more practical applications. For
these experiments, we coded by hand an optimization that the compiler could, but does not
currently, implement. To avoid incurring the overhead of multiple worker lookups on every
call to generate a random number, within a strand, DotMix looks up the worker once and
uses it for all calls to the API made by the strand.

We used Intel Cilk Plus to perform three different experiments. First, we used a synthetic
benchmark, called CBT, to quantify how DotMix performance is affected by pedigree
length. Next, we used CBT to measure the performance benefits of flattening pedigrees
for cilk_for loops. Finally, we benchmarked the performance of DotMix on realistic
applications that require random numbers. All experiments described in the remainder of

132

CPU Intel Xeon X5650
Clock 2.67GHz
Cores per processor chip 6
Processor chips (sockets) 2
L1 data cache/core 32KiB
L2 cache/core 128KiB
L3 cache/socket 12MiB
DRAM 49GiB
Compiler Intel C/C++ compiler v13.0 beta

Figure 6-10: Technical specifications of the machine used for benchmarking.

this section were run on the Intel Xeon machine described in Figure 6-10. The code was
compiled using the Intel C/C++ compiler with -O3 optimizations and uses the Intel Cilk Plus
runtime, which together provide support for pedigrees.

The CBT benchmark that we constructed successively creates n/k complete binary
trees, each with k leaves, which it walks in parallel by spawning two children recursively.
The pedigree of each leaf has uniform length L = 2 + lg k, and within each leaf the RNG
is called. Figure 6-8 compares the performance of various RNG’s on the CBT benchmark,
fixing n = 220 random numbers but varying the pedigree length L. These results show that
the overhead of DotMix increases roughly linearly with pedigree length, but that DotMix
is still within about a factor of 2 compared to using a Mersenne Twister RNG. From a linear
regression on the data from Figure 6-8, we observed that the cost per additional term in the
pedigree for both DotMix and LCGMix was about 15 cycles, regardless of whether r = 4
or r = 16.7

Figure 6-9 breaks down the overheads of DotMix in the CBT benchmark further. To
generate a random number, DotMix requires looking up the currently executing worker in
Cilk (from thread-local storage),8 reading the pedigree, and then generating a random num-
ber. The figure compares the overhead of DotMix with the overhead of simply spawning
a binary tree with n leaves while performing no computation within each leaf. From these
data, we can attribute at least 35% of the execution time of DotMix calls to the overhead
of simply spawning the tree itself. Furthermore, by measuring the cost of reading a pedigree,
we observe that for the longest pedigrees, roughly half of the cost of an RNG call can be
attributed to looking up the pedigree itself.

Pedigree flattening

To estimate the performance improvement of the pedigree-flattening optimization for parallel
loops described in Section 6.2, we compared the cost performing n pedigree lookups for the
CBT benchmark (Figure 6-9) to the cost of pedigree lookups in a cilk_for loop performing
n pedigree lookups in parallel. Figure 6-11 shows that the cilk_for pedigree optimization
substantially reduces the cost of pedigree lookups. This result is not surprising, since the
pedigree lookup for recursive spawning in the CBT benchmark cost increases roughly linearly
with lg n, whereas the lookup cost remains nearly constant for using a cilk_for as lg n
increases.

7This linear model overestimates the running time of this benchmark for L < 4 (not shown). For small
trees, it is difficult to accurately measure and isolate the RNG performance from the cost of the recursion
itself.

8Our implementation of a parallel RNG based on Mersenne Twister also requires a similar lookup from
thread-local storage to find the worker’s local RNG.

133

 0

 50

 100

 150

 200

 250

 300

 350

 6 8 10 12 14 16 18 20 22

C
y
c
l
e
s

p
e
r

P

e
d
i
g
r
e
e

L
o
o
k
u
p

2 + lg n

Recursive Spawn

cilk_for Loop

Figure 6-11: Comparison of pedigree lookups in a cilk_for loop with recursive spawns in a binary
tree. The recursive spawning generates n leaves as in the CBT benchmark, with each pedigree
lookup having L = 2+ lg n terms. The cilk_for loop uses a grain size of 1, and generates pedigrees
of length 4.

Application T1(DotMix)/T1(mt) T12(DotMix)/T12(mt)

fib 2.33 2.25
pi 1.21 1.13
maxIndSet 1.14 1.08
sampleSort 1.00 1.00
DiscreteHedging 1.03 1.03

Figure 6-12: Overhead of DotMix as compared to a parallel version of the Mersenne twister
(denoted by mt in the table) on four programs. All benchmarks use the same worker-local Mersenne
twister RNG’s as in Figure 6-8 except for DiscreteHedging, which uses QuantLib’s existing Mersenne
twister implementation.

Application benchmarks

Figure 6-12 summarizes the performance results for the various RNG’s on four application
benchmarks:

• pi: A simple Monte-Carlo simulation that calculates the value of the transcendental
number ⇡ using 256M samples.

• maxIndSet: A randomized algorithm for finding a maximal independent set in graphs
with approximately 16M vertices, where nodes have an average degree of between 4
and 20.

• sampleSort: A randomized recursive samplesort algorithm on 64M elements, with the
base case on 10,000 samples.

• DiscreteHedging: A financial-model simulation using Monte Carlo methods.
We implemented the pi benchmark ourselves. The maxIndSet and sampleSort benchmarks
were derived from the code described in [52]. The DiscreteHedging benchmark is de-
rived from the QuantLib library for computation finance. More specifically, we modified
QuantLib version 1.1 to parallelize this example as described in [179], and then supple-
mented QuantLib’s existing RNG implementation of Mersenne Twister with DotMix.

134

To estimate the per-function-call cost of DotMix, we also ran the same fib benchmark
that was used for the experiment described in Figure 6-7, but modified so that the RNG is
called once at every node of the computation. The results for fib in Figure 6-12 indicate
that DotMix is about a factor of 2.3 slower than using Mersenne twister, suggesting that
the price of determinism for parallel random-number generation in dynamic multithreaded
programs is at most 2–3 per function call.

The remaining applications pay a relatively lesser price for determinism for two reasons.
First, many of these applications perform more computation per random number obtained,
thereby reducing the relative cost of each call to DotMix. Second, many of these applica-
tions call DotMix within a cilk_for loop, and thus benefit from the pedigree-flattening
optimization to reduce the cost per call of reading the pedigree.

6.7 Related work

The problem of generating random numbers deterministically in multithreaded programs has
received significant attention. SPRNG [273] is a popular DPRNG for Pthreading platforms
that works by creating independent RNG’s via a parameterization process. Other approaches
to parallelizing RNG’s exist, such as leapfrogging and splitting. Coddington [92] surveys
these alternative schemes and their respective advantages and drawbacks. It may be possible
to adapt some of these Pthreading RNG schemes to create similar DPRNG’s for dynamic
multithreaded programs.

The concept of deterministically hashing interesting locations in a program execution is
not new. The maxIndSet and sampleSort benchmarks we borrowed from [52] used an ad
hoc hashing scheme to afford repeatability, a technique we have used technique ourselves in
the past and which must have been reinvented numerous times before us. More interesting
is the pedigree-like scheme due to Bond and McKinley [62] where they use an LCG strategy
similar to LCGMix to assign deterministic identifiers to calling contexts for the purposes
of residual testing, anomaly-based bug detection, and security intrusion detection.

Salmon et al. [338] independently explored the idea of “counter-based” parallel RNG’s,
which generate random numbers by performing independent transformations of counter val-
ues. Counter-based RNG’s use similar ideas to pedigree-based DPRNG’s. Intuitively, the
compressed pedigree values generated by DotMix and LCGMix can be thought of as
counter values, and the mixing function corresponds to a particular kind of transformation.
Salmon et al. focus on generating high-quality random numbers, exploring several transfor-
mations based on both existing cryptographic standards and some new techniques, and show
that these transformations lead to RNG’s with good statistical properties. Counter-based
RNG’s do not directly lead to DPRNG’s for a dynamic multithreaded programs, however,
because it can be difficult to generate deterministic counter values. One can, however, ap-
ply these transformations to compressed pedigree values and automatically derive additional
pedigree-based DPRNG’s.

6.8 Concluding remarks

DotMix supports a simple programming model for generating pseudorandom numbers de-
terministically in parallel. DotMix employs the pedigree mechanism, which leverages the
simple programming model of Cilk programs to quickly assign uniquely identifiers to all pro-
gram points in a deterministic, processor-oblivious fashion. We conclude by discussing two

135

enhancements for pedigrees and DPRNG’s. We also consider how the notion of pedigrees
might be extended to work on other concurrency platforms.

The first enhancement addresses the problem of multiple calls to a DPRNG within a
strand. The mechanism described in Section 6.2 involves calling the StrandBreak func-
tion, which increments the rank whenever a call to the DPRNG is made, thereby ensuring
that two successive calls have different pedigrees. An alternative idea is to have the DPRNG
store for each worker p an event counter e

p

that the DPRNG updates manually and uses
as an additional pedigree term so that multiple calls to the DPRNG per strand generate
different random numbers.

The DPRNG can maintain an event counter for each worker as follows. Suppose that
the DPRNG stores for each worker p the last pedigree p read. When worker p calls the
DPRNG to generate another random number, causing the DPRNG to read the pedigree,
the DPRNG can check whether the current pedigree matches the last pedigree p read. If it
matches, then p has called the DPRNG again from the same strand, and so the DPRNG
updates e

p

. If it does not match, then p must be calling the DPRNG from a new strand.
Because each strand is executed by exactly one worker, the DPRNG can safely reset e

p

to
a default value in order to generate the next random number.

This event counter scheme improves the composability of DPRNG’s in a program, be-
cause calls to one DPRNG do not affect calls to another DPRNG in the same program,
as they do for the scheme from Section 6.2. In practice, however, event counters can hurt
the performance of a DPRNG. From experiments with the fib benchmark, we found that
an event-counter scheme runs approximately 20%–40% slower per function call than the
scheme from Section 6.2, and thus we favored the use of StrandBreak for our main re-
sults. Nevertheless, more efficient ways to implement an event-counter mechanism might
exist, which would enhance composability.

Our second enhancement addresses the problem of “climbing the tree” to access all ranks
in the pedigree for each call to the DPRNG, the cost of which is proportional to the spawn
depth d. Some compression functions, including Definitions 1 and 2, can be computed
incrementally , and thus results can be “memoized” to avoid walking up the entire tree
to compress the pedigree. In principle, one could memoize these results in a frame-data
cache — a worker-local cache of intermediate results — and then, for some computations,
generate random numbers in O(1) time instead of O(d) time. Preliminary experiments
with using frame-data caches indicate, however, that in practice, the cost of memoizing the
intermediate results in every stack frame outweighs the benefits from memoization, even in
an example such as fib, where the spawn depth can be quite large. Hence, we opted not to
use frame-data caches for DotMix. Nevertheless, it is an interesting open question whether
another memoization technique, such as selective memoization specified by the programmer,
might improve performance for some applications.

We now turn to the question of how to extend the pedigree ideas to “less structured”
dynamic multithreading concurrency platforms. For some parallel-programming models with
less structure than Cilk, it might not be important to worry about DPRNG’s at all, because
these models do not encapsulate the nondeterminism of the scheduler. Thus, a DPRNG
would seem to offer little benefit over a nondeterministic parallel RNG. Nevertheless, some
models that support more complex parallel control than the fork-join model of Cilk do admit
the writing of deterministic programs, and for these models, the ideas of pedigrees can be
adapted.

As an example, Intel Threading Building Blocks [277,330] supports pipeline parallelism,
in which each stage of the pipeline is a fork-join computation. For this control construct,

136

one could maintain an outer-level pedigree to identify the stage in the pipeline and combine
it with a pedigree for the interior fork-join computation within a stage.

Although Cilk programs produce instruction traces corresponding to fork-join graphs,
the pedigree idea also seems to extend to general dags, at least in theory. One can define
pedigrees on general dags as long as the children (successors) of a node are ordered. The
rank of a node x indicates the birth order of x with respect to its siblings. Thus, a given
pedigree (sequence of ranks) defines a unique path from the source of the task graph. The
complication arises because in a general dag, multiple pedigrees (paths) can lead to the same
node. Assuming there exists a deterministic procedure for choosing a particular path as the
“canonical” pedigree, one can still base a DPRNG on canonical pedigrees. It remains an
open question, however, as to how efficiently one can maintain canonical pedigrees in this
more general case, which will depend on the particular parallel-programming model.

6.9 Recent developments

This work has been adopted into industry in various ways since it was conducted. Pedigrees
were incorporated into Intel Cilk Plus and both the Intel [198] and GNU C/C++ compil-
ers [369]. Intel also adopted DotMix algorithm for its deterministic parallel random-number
generation library [378]. DotMix also provided the basis for the efficient splittable random-
number generator [371] introduced in Java JDK8 by Steele, Lea, and Flood.

137

138

Chapter 7

On-the-Fly Pipeline Parallelism

This chapter presents the Cilk-P concurrency platform [239], a dynamic multithreading
concurrency platform that supports pipeline parallelism. This work was conducted in col-
laboration with I-Ting Angelina Lee, Charles E. Leiserson, Jim Sukha, and Zhunping Zhang.

7.1 Introduction

Pipeline parallelism1 [55,157,169,268,277,295,317,328,339,381] is a well-known parallel-
programming pattern that can be used to parallelize a variety of applications, including
streaming applications from the domains of video, audio, and digital signal processing.
Many applications, including the ferret , dedup, and x264 benchmarks from the PARSEC
benchmark suite [45,46], exhibit parallelism in the form of a linear pipeline, where a linear
sequence S = hS0, . . . ,Sm�1i of abstract functions, called stages, are executed on an input
stream I = ha0, a1, . . . , an�1i. Conceptually, a linear pipeline can be thought of as a loop
over the elements of I, where each loop iteration i processes an element a

i

of the input
stream. The loop body encodes the sequence S of stages through which each element is
processed. Parallelism arises in linear pipelines because the execution of iterations can
overlap in time, that is, iteration i may start after the preceding iteration i� 1 has started,
but before i� 1 has necessarily completed.

Most systems that provide pipeline parallelism employ a construct-and-run model, as
exemplified by the pipeline model in Intel Threading Building Blocks (TBB) [277], where
the pipeline stages and their dependencies are defined a priori before execution. Systems
that support construct-and-run pipeline parallelism are described in: [6,97,169,268,271,277,
305,307,317,327,339,381,388].

We have extended the Cilk parallel-programming model [146,196,246] to Cilk-P, a system
that augments Cilk’s native fork-join parallelism with on-the-fly pipeline parallelism, where
the linear pipeline is constructed dynamically as the program executes. The Cilk-P system
provides a flexible processor-oblivious linguistic model for pipelining that allows the structure
of the pipeline to be determined dynamically as a function of data in the input stream. For
example, Cilk-P allows pipelines to have a variable number of stages across iterations. The
Cilk-P programming model is flexible, yet restrictive enough to allow provably efficient
scheduling, as Sections 7.5 through 7.8 will show. In particular, Cilk-P’s scheduler provides
automatic “throttling” to ensure that the computation uses bounded space. As a testament

1Pipeline parallelism should not be confused with instruction pipelining in hardware [333] or software
pipelining [229].

139

...	

...	

0
iterations

stages

1 2 3 4 5 6 7 n–1
0

1

2

Figure 7-1: Modeling the execution of ferret ’s linear pipeline as a pipeline dag. Each column
contains nodes for a single iteration, and each row corresponds to a stage of the pipeline. Vertices
in the dag correspond to nodes of the linear pipeline, and edges denote dependencies between the
nodes. Throttling edges are not shown.

to the flexibility provided by Cilk-P, we were able to parallelize the x264 benchmark from
PARSEC, an application that cannot be programmed easily using TBB [328]. These flexible
linguistics and provable performance guarantees simplify the task of engineering efficient
multicore programs that exhibit a mixture of fork-join and pipeline parallelism.

Although Cilk-P’s support for defining linear pipelines on the fly is more flexible than
construct-and-run approaches and the ordered directive in OpenMP [305], which supports a
limited form of on-the-fly pipelining, it is less expressive than other approaches. Blelloch and
Reid-Miller [55] describe a scheme for on-the-fly pipeline parallelism that employs futures [30,
141] to coordinate the stages of the pipeline, allowing even nonlinear pipelines to be defined
on the fly. Although futures permit more complex, nonlinear pipelines to be expressed, this
generality can lead to unbounded space requirements to attain even modest speedups [57].

To illustrate the ideas behind the Cilk-P model, consider a simple 3-stage linear pipeline
such as in the ferret benchmark from PARSEC [45,46]. Figure 7-1 shows a pipeline dag G =
(V,E) representing the execution of the pipeline. Each of the 3 horizontal rows corresponds
to a stage of the pipeline, and each of the n vertical columns is an iteration. A vertex in
the dag represents a pipeline node (i, j) 2 V , where i = 0, 1, . . . , n � 1 and j = 0, 1, 2,
which corresponds to the execution of S

j

(a
i

), the jth stage in the ith iteration. The edges
between nodes denote control dependencies. A stage edge from node (i, j) to node (i, j0),
where j < j0, indicates that (i, j0) cannot start until (i, j) completes. A cross edge from
node (i�1, j) to node (i, j) indicates that (i, j) can start execution only after node (i�1, j)
completes. Cilk-P always executes nodes of the same iteration in increasing order by stage
number, thereby creating a vertical chain of stage edges. Cross edges between corresponding
stages of adjacent iterations are optional.

We can categorize the stages of a Cilk-P pipeline. A stage is a serial stage if all nodes
belonging to the stage are connected by cross edges. A stage is a parallel stage if none of
the nodes belonging to the stage are connected by cross edges. A stage is a hybrid stage
if it is neither a serial nor a parallel stage. For example, the ferret pipeline, illustrated in
Figure 7-1, exhibits a static structure often referred to as an “SPS” pipeline, since stage 0 and
stage 2 are serial and stage 1 is parallel. Cilk-P requires that pipelines be linear, meaning
that stages within an iteration must be executed one after another. Stage 0 of any Cilk-P
pipeline is always a serial stage. Later stages may be serial, parallel, or hybrid, as we shall
see in Sections 7.2 and 7.3.

To execute a linear pipeline, Cilk-P follows the lead of TBB and adopts a bind-to-
element approach [268,277], where workers execute pipeline iterations either to completion
or until an unresolved dependency is encountered. In particular, Cilk-P and TBB both rely
on work-stealing schedulers for load balancing. In contrast, many systems that support

140

pipeline parallelism, including typical Pthreaded implementations, execute linear pipelines
using a bind-to-stage approach, where each worker executes a distinct stage and coordina-
tion between workers is handled using concurrent queues [169, 339, 388]. Some researchers
report that the bind-to-element approach generally outperforms bind-to-stage [295, 328],
since a work-stealing scheduler can do a better job of dynamically load-balancing the com-
putation, but our own experiments show mixed results.

A natural theoretical question is, how much parallelism is inherent in the ferret pipeline
(or in any pipeline)? How much speedup can one hope for? Since the computation is
represented as a dag G = (V,E), one can use a simple work-span analysis to answer this
question. In this analytical model, we assume that each vertex v 2 V executes in some time
w(v). For simplicity, let us assume that the parallel pipeline is deterministic. The work
T1 of the computation is T1 =

P
v2V w(v). The span T1 of the computation is the length

of a longest weighted path through G, which is essentially the time of an infinite-processor
execution. The parallelism T1/T1 captures the maximum possible speedup attainable on
any number of processors, using any scheduler.

We can apply the work-span analysis to the ferret pipeline shown in Figure 7-1. This
pipeline has the special structure that each node executes serially, that is, without any
nested parallelism inside the node. Thus, in the ferret pipeline, the work and span of each
node is the same. Let w(i, j) be the execution time of node (i, j). Assume that the serial
stages 0 and 2 execute in unit time — for all i, we have w(i, 0) = w(i, 2) = 1 — and that
the parallel stage 1 executes in time r � 1, that is, for all i, we have w(i, 1) = r. The work
of this pipeline is therefore T1 = n(r + 2). Because the pipeline dag is grid-like, the span of
this SPS pipeline can be realized by some staircase walk through the dag from node (0, 0)
to node (n� 1, 2), and therefore the span is

T1 = max
0x<n

(
xX

i=0

w(i, 0) + w(x, 1) +
n�1X

i=x

w(i, 2)

)

= n+ r .

Consequently, the parallelism of this dag is T1/T1 = n(r+2)/(n+ r), which for 1 ⌧ r n
is at least r/2+ 1. Thus, if stage 1 contains much more work than the other two stages, the
ferret pipeline exhibits good parallelism.

On an ideal shared-memory computer, Cilk-P guarantees to execute the ferret pipeline
efficiently. In particular, Cilk-P guarantees linear speedup on a computer with up to
T1/T1 = O(r) processors. Generally, Cilk-P executes a pipeline with linear speedup as
long as the parallelism of the pipeline exceeds the number of processors on which the com-
putation is scheduled. Moreover, as Section 7.3 will describe, Cilk-P allows stages of the
pipeline themselves to be parallel using recursive pipelining or fork-join parallelism.

In practice, it is also important to limit the space used during an execution. Unbounded
space can cause thrashing of the memory system, leading to slowdowns not predicted by
simple execution models. In particular, a bind-to-element scheduler must avoid creating
a runaway pipeline — a situation where the scheduler allows many new iterations to be
started before finishing old ones. In Figure 7-1, a runaway pipeline might correspond to
executing many nodes in stage 0 (the top row) without finishing the other stages of the
computation in the earlier iterations. Runaway pipelines can cause space utilization to grow
unboundedly, because every started but incomplete iteration requires space to store local
variables.

141

Cilk-P automatically throttles pipelines to avoid runaway pipelines. On a system with
P workers, Cilk-P inhibits the start of iteration i+K until iteration i has completed, where
K = ⇥(P) is the throttling limit . In terms of the pipeline dag, throttling corresponds
to putting throttling edges from the last node in each iteration i to the first node in
iteration i + K. For the simple pipeline from Figure 7-1, throttling does not adversely
affect asymptotic scalability if stages are uniform, but it can be a concern for more complex
pipelines, as Section 7.11 will discuss. The Cilk-P scheduler guarantees efficient scheduling
of pipelines as a function of the parallelism of the dag in which throttling edges are included
in the calculation of span.

Cilk-P supports a simple, principled approach to writing programs that exhibit pipeline
parallelism and to reasoning about their performance. Cilk-P provides a simple, yet flex-
ible, programming model for writing fast, deterministic programs that exhibit on-the-fly
pipeline parallelism. As in the Cilk model, Cilk-P’s linguistics encapsulate the nondetermin-
ism of synchronization mechanisms for enforcing pipeline dependencies and offer a flexible,
processor-oblivious model for writing programs with pipeline parallelism. These properties
can assist programmers in reasoning about the correctness of these programs. Furthermore,
the Cilk-P model admits work-span analysis for understanding the scalability of pipeline
programs. Cilk-P’s provably efficient scheduling guarantees to execute a Cilk-P program
near optimally on whatever processors are available at runtime.

Contributions

Our prototype Cilk-P system adapts the Cilk-M [238] runtime scheduler to support on-the-
fly pipeline parallelism using a bind-to-element approach. This chapter makes the following
contributions:

• We describe linguistics for Cilk-P that allow on-the-fly pipeline parallelism to be in-
corporated into the Cilk fork-join parallel programming model (Section 7.2).

• We illustrate how Cilk-P linguistics can be used to express the x264 benchmark as a
pipeline program (Section 7.3).

• We characterize the execution dag of a Cilk-P pipeline program as an extension of a
fork-join program (Section 7.4).

• We introduce the Piper scheduling algorithm, a theoretically sound randomized work-
stealing scheduler (Section 7.5).

• We prove that Piper is asymptotically efficient, executing Cilk-P programs on P
processors in T

P

 T1/P +O(T1) expected time (Sections 7.6 and 7.7).
• We bound space usage, proving that Piper on P processors uses S

P

 P (S1 + fDK)
stack space for pipeline iterations, where S1 is the serial stack space, f is the “frame
size” (roughly, the maximum number of bytes consumed on the stack by any one
pipeline iteration), D is the depth of nested pipelines, and K is the throttling limit
(Section 7.8).

• We describe our implementation of Piper in the Cilk-P runtime system, introducing
two key optimizations, called “lazy enabling” and “dynamic dependency folding,” for
reducing synchronization overhead when two consecutive pipeline iterations execute
in parallel (Section 7.9).

• We demonstrate that the ferret , dedup, and x264 benchmarks from PARSEC that have
been hand-compiled for the Cilk-P runtime system run competitively with existing
Pthreaded implementations (Section 7.10).

• We prove two theorems regarding the performance impact of throttling (Section 7.11).

142

First we show that, if each stage has approximately the same cost and dependencies in
every iteration, then throttling only reduces the parallelism in a pipeline by a constant
factor. We then show that, if the cost of a stage can vary dramatically between
iterations, however, then it is impossible for any scheduler to achieve parallel speedup
when executing the pipeline without using a large amount of space.

We conclude in Section 7.12 with a discussion of potential future work.

7.2 On-the-fly pipeline programs

Cilk-P’s linguistic model supports both fork-join and pipeline parallelism, which can be
nested arbitrarily. For convenience, we shall refer to programs containing nested fork-
join and pipeline parallelism simply as pipeline programs. Cilk-P’s on-the-fly pipelining
model allows the programmer to specify a pipeline whose structure is determined during the
pipeline’s execution. This section shows how on-the-fly parallelism is supported in Cilk-P
using a “pipe_while” construct.

To support on-the-fly pipeline parallelism, Cilk-P provides a pipe_while keyword. A
pipe_while loop is similar to a serial while loop, except that loop iterations can execute in
parallel in a pipelined fashion. The body of the pipe_while can be subdivided into stages,
with stages named by user-specified integer values that strictly increase as the iteration
executes. Each stage can contain nested fork-join and pipeline parallelism.

The boundaries of stages are denoted in the body of a pipe_while using the special
functions pipe_stage and pipe_stage_wait. These functions accept an integer stage ar-
gument , which is the number of the next stage to execute and which must strictly increase
during the execution of an iteration. Every iteration i begins executing stage 0, represented
by node (i, 0). While executing a node (i, j0), if control flow encounters a pipe_stage(j)
or pipe_stage_wait(j) statement, where j0 < j, then node (i, j0) ends, and control flow
proceeds to node (i, j). A pipe_stage(j) statement indicates that node (i, j) can start
executing immediately, whereas a pipe_stage_wait(j) statement indicates that node (i, j)
cannot start until node (i � 1, j) completes. The pipe_stage_wait(j) in iteration i cre-
ates a cross edge from node (i � 1, j) to node (i, j) in the pipeline dag. Thus, by design
choice, Cilk-P imposes the restriction that cross-edge pipeline dependencies only go between
adjacent iterations. As we shall see in Section 7.9, this design choice facilitates the “lazy
enabling” and “dynamic dependency folding” runtime optimizations.

The pipe_stage and pipe_stage_wait functions can be used without an explicit stage
argument. Omitting the stage argument while executing stage j corresponds to an implicit
stage argument of j + 1, meaning that control moves onto the next stage.

Cilk-P’s semantics for pipe_stage and pipe_stage_wait statements allow for stage
skipping , where execution in an iteration i can jump stages from node (i, j0) to node
(i, j), even if j > j0 + 1. If control flow in iteration i + 1 enters node (i + 1, j00) after a
pipe_stage_wait, where j0 < j00 < j, then we implicitly create a null node (i, j00) in the
pipeline dag, which has no associated work and incurs no scheduling overhead. We implicitly
insert stage edges from (i, j0) to (i, j00) and from (i, j00) to (i, j), as well as a cross edge from
(i, j00) to (i+ 1, j00) in the pipeline dag, to capture the dependencies on this null node.

143

7.3 On-the-fly pipelining of x264

To illustrate the use of Cilk-P’s pipe_while loop, this section describes how to parallelize
the x264 video encoder [408].

We begin with a simplified description of x264 . Given a stream hf0, f1, . . .i of video
frames to encode, x264 partitions the frame into a two-dimensional array of “macroblocks”
and encodes each macroblock. A macroblock in frame f

i

is encoded as a function of the
encodings of similar macroblocks within f

i

and similar macroblocks in frames “near” f
i

. A
frame f

j

is near a frame f
i

if i � b j i + b for some constant b. In addition, we
define a macroblock (x0, y0) to be near a macroblock (x, y) if x � w x0 x + w and
y � w y0 y + w for some constant w.

The type of a frame f
i

determines how a macroblock (x, y) in f
i

is encoded. If f
i

is an I-frame , then macroblock (x, y) can be encoded using only previous macroblocks
within f

i

— macroblocks at positions (x0, y0) where y0 < y or y0 = y and x0 < x. If f
i

is
a P-frame , then macroblock (x, y)’s encoding can also be based on nearby macroblocks
in nearby preceding frames, up to the most recent preceding I-frame,2 if one exists within
the nearby range. If f

i

is a B-frame , then macroblock (x, y)’s encoding can also be based
on nearby macroblocks in nearby preceding or succeeding frames, specifically, frames in the
interval between the most recently preceding I-frame and the next succeeding I- or P-frame.

Based on these frame types, an x264 encoder must ensure that frames are processed in
a valid order such that dependencies between encoded macroblocks are satisfied. A parallel
x264 encoder can pipeline the encoding of I- and P-frames in the input stream, processing
each set of intervening B-frames after encoding the latest I- or P-frame on which the B-frame
may depend.

Figure 7-2 shows Cilk-P pseudocode for an x264 linear pipeline. Conceptually, the x264
pipeline begins with a serial stage (lines 8–17) that reads frames from the input stream and
determines the type of each frame. This stage buffers all B-frames at the head of the input
stream until it encounters an I- or P-frame. After this initial stage, s hybrid stages process
this I- or P-frame row by row (lines 18–25), where s is the number of rows in the video
frame. After all rows of this I- or P-frame have been processed, the PROCESS_BFRAMES stage
processes all B-frames in parallel (lines 27–29), and then the END stage updates the output
stream with the processed frames (line 31).

Two issues arise with this general pipelining strategy, both of which can be handled using
on-the-fly pipeline parallelism. First, the encoding of a P-frame must wait for the encoding
of rows in the previous frame to be completed, whereas the encoding of an I-frame need not.
These conditional dependencies are implemented in lines 20–24 of Figure 7-2 by executing
a pipe_stage_wait or pipe_stage statement conditionally based on the frame’s type. In
contrast, many construct-and-run pipeline mechanisms assume that the dependencies on a
stage are fixed for the entirety of a pipeline’s execution, making such dynamic dependencies
more difficult to handle. Second, the encoding of a macroblock in row x of P-frame f

i

may depend on the encoding of a macroblock in a later row x + w in the preceding I- or
P-frame f

i�1. The code in Figure 7-2 handles such offset dependencies on line 17 by skipping
w additional stages relative to the previous iteration. A similar stage-skipping trick is used
on line 26 to ensure that the processing of a P-frame in iteration i depends only on the
processing of the previous I- or P-frame, and not on the processing of preceding B-frames.
Figure 7-3 illustrates the pipeline dag corresponding to the execution of the code in Figure 7-

2To be precise, up to a particular type of I-frame called an IDR-frame.

144

01 // Symbolic names for important stages
02 const uint64_t PROCESS_IPFRAME = 1;
03 const uint64_t PROCESS_BFRAMES = 1 << 40;
04 const uint64_t END = PROCESS_BFRAMES + 1;
05 int i = 0;
06 int w = mv_range/pixel_per_row;
07

08 pipe_while(frame_t *f = next_frame()) {
09 vector<frame_t *> bframes;
10 f->type = decide_frame_type(f);
11 while(f->type == TYPE_B) {
12 bframes.push_back(f);
13 f = next_frame();
14 f->type = decide_frame_type(f);
15 }
16 int skip = w * i++;
17 pipe_stage_wait(PROCESS_IPFRAME + skip);
18 while(mb_t *macroblocks = next_row(frame)) {
19 process_row(macroblocks);
20 if(f->type == TYPE_I) {
21 pipe_stage;
22 } else {
23 pipe_stage_wait;
24 }
25 }
26 pipe_stage(PROCESS_BFRAMES);
27 cilk_for(int j = 0; j < bframes.size(); ++j) {
28 process_bframe(bframes[j]);
29 }
30 pipe_stage_wait(END);
31 write_out_frames(frame, bframes);
32 }

Figure 7-2: Example C++-like pseudocode for the x264 linear pipeline. This pseudocode uses
Cilk-P’s linguistics to define hybrid pipeline stages on the fly, specifically with the pipe_stage_wait
on line 17, the input-data dependent pipe_stage_wait or pipe_stage on lines 20–24, and the
pipe_stage on line 26.

2, assuming that w = 1. Skipping stages shifts the nodes of an iteration down, adding null
nodes to the pipeline, which do not increase the work or span.

7.4 Computation-dag model

Although the pipeline-dag model provides intuition for programmers to understand the
execution of a pipeline program, it is not precise enough to prove theoretical performance
guarantees. For example, a pipeline dag has no real way of representing nested fork-join or
pipeline parallelism within a node. This section describes how to represent the execution
of a pipeline program as a more refined computation dag. First, we present an example
of a simple pipeline program using pipe_while loops, and explain how to transform it into
an ordinary Cilk program with special function calls to enforce non-fork-join dependencies.
Then we describe how to model these transformed programs as computation dags.

Intuitively, we shall model an execution of a pipeline program as a (pipeline) com-
putation dag by augmenting a traditional dag model for fork-join parallel computations
(described in Chapter 2) with cross and throttling dependencies. More formally, to generate
a pipeline computation dag for an arbitrary pipeline-program execution, we use the following
three-step process:

145

I

B	

P	

B	

P	

B	

P	

B	

I	

B	

P	

B	

P	

B	

I	

B	

P	

B	

P	

B	

P	

B	

P	

B	

s

Figure 7-3: The pipeline dag generated for x264 . Each iteration processes either an I- or P-frame,
each consisting of s rows. As the iteration index i increases, the number of initial stages skipped in
the iteration also increases. This stage skipping produces cross edges into an iteration i from null
nodes in iteration i� 1. Null nodes are represented as the intersection between two edges.

1. Transform the executed code in each pipe_while loop into ordinary Cilk code, aug-
mented with special functions to implement cross and throttling dependencies.

2. Model the execution of this augmented Cilk program as a fork-join computation dag,
ignoring cross and throttling dependencies.

3. Augment the fork-join computation dag with cross and throttling edges derived from
the special functions.

The remainder of this section examines each of these steps in detail.

Code transformation for a pipe_while loop

Let us first consider the process of translating a pipe_while loop into ordinary Cilk code.
Conceptually, a pipe_while loop is transformed into an augmented ordinary Cilk program in
which an ordinary while loop sequentially spawns off each iteration of the pipe_while loop.
In the body of this while loop, each iteration first executes stage 0. Upon executing the
first pipe_stage or pipe_stage_wait instruction in iteration i, the remainder of iteration
i is spawned off, allowing the remaining stages of iteration i to execute in parallel with
iteration i+1. By executing stage 0 of a pipe_while iteration before spawning the remaining
stages, stage 0 is ensured to execute sequentially across all iterations of the while loop.
Each iteration can execute additional runtime functions to enforce cross and throttling
dependencies between iterations.

This conceptual transformation of a pipe_while loop is complicated by specific semantic

146

33 int fd_out = open_output_file();
34 bool done = false;
35 pipe_while (!done) {
36 chunk_t *chunk = get_next_chunk();
37 if (chunk == NULL) {
38 done = true;
39 } else {
40 pipe_stage_wait(1);
41 bool isDuplicate = deduplicate(chunk);
42 pipe_stage(2);
43 if (!isDuplicate)
44 compress(chunk);
45 pipe_stage_wait(3);
46 write_to_file(fd_out, chunk, isDuplicate);
47 }
48 }

Figure 7-4: Cilk-P pseudocode for the parallelization of the dedup compression program as an
SSPS pipeline.

features of pipe_while iterations. For example, an ordinary cilk_spawn creates a (func-
tion) frame — activation record — for the spawned child, and then immediately spawns
the child subcomputation. For a pipe_while iteration, however, although stage 0 of each
iteration executes before the remaining stages of each iteration are spawned, the runtime
executes each iteration, including stage 0, within its own frame to ensure that all stages of an
iteration operate on the same set of iteration-local variables. Furthermore, to ensure that an
iteration executes pipeline stages sequentially, the runtime executes an implicit cilk_sync
at the end of each stage, which syncs all child functions spawned within the stage before
allowing the next stage to begin.

To more precisely illustrate the semantic features of pipe_while iterations, including
how the Cilk-P runtime manages frames and iterations of a pipe_while loop, let us consider
a Cilk-P implementation of a specific pipeline program, namely, the dedup compression
program from PARSEC [45,46]. The benchmark can be parallelized by using a pipe_while
to implement an SSPS pipeline. Figure 7-4 shows Cilk-P pseudocode for dedup, which
compresses the provided input file by removing duplicated “chunks,” as follows. Stage 0
(lines 36–38) of the program reads data from the input file and breaks the data into chunks
(line 36). As part of stage 0, it also checks the loop-termination condition and sets the done
flag to true (line 38) if the end of the input file is reached. If there is more input to be
processed, the program begins stage 1 (line 41), which calculates the SHA1 signature of a
given chunk and queries a hash table whether this chunk has been seen using the SHA1
signature as key. Stage 1 is a serial stage as dictated by the pipe_stage_wait on line 40.
Stage 2 (line 44), which the pipe_stage on line 42 indicates is a parallel stage, compresses
the chunk if it has not been seen before. The final stage (line 46) is a serial stage that writes
either the compressed chunk or its SHA1 signature to the output file depending on whether
it is the first time the chunk has been seen.

Figure 7-5 illustrates how the Cilk-P runtime system manages frames and pipeline iter-
ations for the pipe_while loop for dedup presented in Figure 7-4. This code transformation
has six key components, which illustrate the general structure of parallelism in pipeline
programs.

1 As shown in lines 51–95, a pipe_while loop is “lifted” using a C++ lambda function [376,
Sec.11.4] and converted to an ordinary while loop whose iterations correspond to
iterations of the pipeline. This lambda function declares a control frame object pcf

147

49 int fd_out = open_output_file();
50 bool done = false;
51 [&]() {
52 _Cilk_pipe_control_frame pcf(0);
53 while (true) {
54 _Cilk_pipe_iter_frame* next_iter_f = pcf.get_new_iter_frame(pcf.i);
55 // Stage 0 of an iteration.
56 [&]() {
57 next_iter_f->continue_after_stage0 = false;
58 if (!done) {
59 next_iter_f->chunk = get_next_chunk();
60 if (next_iter_f->chunk == NULL)
61 done = true;
62 else
63 next_iter_f->continue_after_stage0 = true;
64 }
65 cilk_sync;
66 }();
67 // Spawn the remaining stages of iteration pcf.i, if they exist.
68 if (next_iter_f->continue_after_stage0) {
69 cilk_spawn [&](_Cilk_pipe_iter_frame* iter_f) {
70 // assert(iter_f->stage_counter < 1);
71 iter_f->stage_counter = 1;
72 // node (i,1) begins
73 iter_f->stage_wait(1);
74 iter_f->isDuplicate = deduplicate(iter_f->chunk);
75 cilk_sync;
76 // assert(iter_f->stage_counter < 2);
77 iter_f->stage_counter = 2;
78 // node (i,2) begins
79 if (!iter_f->isDuplicate) compress(iter_f->chunk);
80 cilk_sync;
81 // assert(iter_f->stage_counter < 3);
82 iter_f->stage_counter = 3;
83 // node (i,3) begins
84 iter_f->stage_wait(3);
85 write_to_file(fd_out, iter_f->chunk, iter_f->isDuplicate);
86 cilk_sync;
87 iter_f->stage_counter = INT64_MAX;
88 }(next_iter_f);
89 } else break;
90 // Advance to next iteration and check for throttling.
91 pcf.i++;
92 pcf.throttle(pcf.i - pcf.K);
93 }
94 cilk_sync;
95 }();

Figure 7-5: Pseudocode resulting from translating the execution of the Cilk-P dedup implemen-
tation from Figure 7-4 into Cilk Plus code augmented by cross and throttling dependencies, imple-
mented by iter_f->stage_wait and pcf.throttle, respectively. The unbound variable pcf.K is the
throttling limit.

(on line 52) to keep track of runtime state needed for the pipe_while loop, including
a variable pcf.i to index iterations, which line 52 initializes to 0.

2 Each iteration of the while loop allocates an iteration frame to store local data for
each pipeline iteration. Before starting a pipeline iteration pcf.i, the loop allocates a
new iteration frame next_iter_f for iteration pcf.i, as shown in line 54. The itera-
tion frame stores local variables declared in the body of an iteration that persist across
pipeline stages. For dedup, for example, Figure 7-4 shows that the local variable chunk

148

is used through all stages. The iteration frame also stores a stage-counter variable,
iter_f->stage_counter, to track the currently executing stage for the iteration. Al-
though Figure 7-5 shows iteration frames of a generic type Cilk_pipe_iter_frame, in
practice, a compiler would generate a unique iteration frame type for each pipe_while
loop body, since the local variables stored in the frame are specific to the loop body.

3 The body of this while loop is split into two nested lambda functions, the first for
stage 0 of the iteration (lines 56–66), and the second for the remaining stages in the
iteration (lines 69–88), if they exist. This transformation guarantees that stage 0 is
always a serial stage, since the first lambda function is directly called in the body of
the while loop. The test condition of the pipe_while loop is evaluated as part of
stage 0, as demonstrated in line 58. In contrast, the cilk_spawn in line 69 allows the
remaining stages of an iteration to execute in parallel with the next iteration of the
loop. The cilk_sync immediately after the end of the while loop (line 94) ensures
that all spawned iterations complete before the pipe_while loop finishes.

4 The last statement in the while loop (line 92) is a call to a special function throttle,
defined by the control frame pcf, which enforces the throttling dependency that iter-
ation pcf.i can not start until iteration pcf.i - pcf.K has completed.

5 A pipe_stage statement in the original pipe_while loop is transformed into an update
to iter_f->stage_counter, while a pipe_stage_wait statement is transformed into an
update followed by a call to iter_f->stage_wait, which enforces the cross dependency
on the previous iteration. In dedup, stages 1, 2, and 3 are thus delineated by updates to
iter_f->stage_counter in lines 71, 77, and 82, respectively. The end of the iteration
is delineated by setting iter_f->stage_counter to its maximum value, such as in
line 87.

6 At the end of each stage (lines 65, 75, 80, and 86), a cilk_sync guarantees that any
nested fork-join parallelism is enclosed within the stage, that is, any functions spawned
in cilk_spawn statements within the stage, return before the next stage begins.

For dedup, Figure 7-5 is able to use lambda functions to capture the parallel control
structure of Figure 7-4 directly in Cilk, without changing the semantics of the cilk_spawn or
cilk_sync keywords. This transformation introduces an additional variable in the iteration
frame, continue_after_stage0, so that execution can resume correctly at the continuation
of stage 0 in the second lambda function in each iteration. The lambda functions in line 51
and line 56 exist only to create nested scopes for parallelism and ensure the desired behavior
for a cilk_sync statement. Without the lambda function in line 51, the last cilk_sync in
line 94 would also synchronize with any functions that were spawned in the enclosing function
before calling the pipe_while loop. Similarly, the lambda for stage 0 in line 56 exists only
to guarantee that the cilk_sync in line 65 joins only the parallelism within stage 0, and not
with any of the lambda functions spawned in line 69. All the lambda functions in Figure 7-
5 capture the environment of the enclosing function by reference because the body of the
pipe_while loop is allowed to access variables declared in the enclosing function, such as
fd_out and done.

While Figure 7-5 illustrates the semantics that Cilk-P requires for compiling the code
in Figure 7-4, it is not intended to be a complete compiler transformation for pipe_while
loops. In practice, we expect it to be simpler and more efficient for compiler transforms
for pipe_while loops to operate and produce output at a lower level than ordinary Cilk
code. For example, a more complicated pipeline iteration in which stage 0 may end in
the middle of a loop is tricky to express using lambdas and ordinary Cilk code, because of
the scoping of local variables and the semantics of cilk_sync statements. At a lower level,

149

B

B

B

z0	x0	

B

B

z1	x1	

B

z2	x2	

B

B

B

zn-3	xn-3	

B

B

B

zn-2	xn-2	

B

B

B

zn-1	xn-1	

B

B

B

z3	x3	 zn	

a0,	0	

a0,	1	

a1,	0	

a1,	1	

b0,	0	

b0,	1	

a0,	2	 a1,	2	

b0,	2	

a0,	3	

b0,	3	

b1,	0	

b1,	1	

b1,	2	

a2,	0	

a2,	3	

b2,	0	

b2,	3	

To	x2	

From	s1,	end	

To	x3	 To	x4	 To	x5	 To	xn-1	

.	.	.	

.	.	.	

.	.	.	

.	.	.	

.	.	.	

B
a1,	3	

b1,	3	

B

B

b2,	1	

b2,	2	

a2,	1	

a2,	2	

From	sn-5,	end	 From	sn-4,	end	 From	sn-3,	end	From	s0,	end	

To	zn	 To	zn	 To	zn	 To	zn	 To	zn	 To	zn	 To	zn	

From	all	si,	end	

s0,	1	

s0,	2	

s0,	3	

s0,	end	

s1,	1	

s1,	2	

s1,	3	

s1,	end	

s2,	1	

s2,	2	

s2,	3	

s2,	end	

B

xn	

To	xn	

From	sn-2,	end	

B B B B B B B

Figure 7-6: An example pipeline computation dag for a pipe_while loop with n iterations, m = 4
stages, and throttling limit K = 2, corresponding to the transformation shown in Figure 7-5. The
vertices are organized to reflect their organization in a pipeline dag. Each rounded box contains the
vertices corresponding to the execution of a node. A double-dashed line indicates a computation
subdag whose structure is not shown. A column of these boxes corresponds to an iteration of the
pipe_while, while a row of these boxes corresponds to a stage. Additional vertices and edges appear
in this dag to denote instructions executed by the runtime to handle iterations of a pipe_while, as
well as their parallel control dependencies. Cross and throttling edges are colored blue, while edges
in typical Cilk programs are colored black.

however, a compiler could handle the end of stage 0 by directly generating code that saves the
program state analogously to an ordinary cilk_spawn. The compiler might also be able to
eliminate one or more of the nested lambda functions from Figure 7-5, and instead generate
code directly for modified versions of cilk_sync and cilk_spawn statements specifically for
pipe_while loop transformations. The generated code would not be directly expressible in
Cilk, but would likely be simpler and more efficient.

Similarly, although Figure 7-5 describes an iteration as being split into two lambda
functions — one for stage 0 and one for the subsequent stages of the iteration — in practice,
it may be simpler to merge those lambda functions. Instead of using an ordinary cilk_spawn
to spawn the rest of the stages of an iteration separately from stage 0, for example, a system
might instead try to spawn a single lambda function for the entire iteration. Then, the
system might allow other workers to steal the continuation of the spawn of the iteration
only after the iteration finishes its stage 0, not immediately after the spawn occurs.

Pipeline computation dag for dedup

Given the transformed code for a pipe_while loop, the second and third steps generate a
pipeline computation dag that models the execution of this transformed loop. The second
step models the execution of the transformed code when ignoring all calls to stage_wait and
throttle, and then the third step augments the resulting fork-join computation dag with

150

cross and throttling edges derived from those calls. Figure 7-6 illustrates the salient features
of the final pipeline computation dag that corresponds to executing the code in Figure 7-5.
Let us examine the structure of the dag in Figure 7-6 by first considering the vertices and
edges that model the execution of Figure 7-5, ignoring calls to stage_wait and throttle,
and then examining the cross and throttling edges added by these calls.

Let us first see how the vertices in Figure 7-6 correspond to the lines of code in Figure 7-5.
Let i and j be integers where 0 i n and j is nonnegative.

The vertices labeled x
i

and z
i

correspond to the execution of instructions inserted by the
runtime. Vertices x0 and z

n

correspond to the first and final instruction, respectively, of the
lambda for the pipe_while loop. Vertex x0, which is called the pipeline root , corresponds to
executing line 52 to create the control frame for the pipe_while loop, while vertex z

n

, which
is called the pipeline terminal , corresponds to executing line 94. The remaining vertices
z
i

and x
i

are called iteration-increment and iteration-throttle vertices, respectively.
Between each iteration of the while loop, the iteration-increment vertices z

i

correspond to
executing line 91, and the iteration-throttle vertices x

i

correspond to executing line 92.
The computation subdag rooted at a

i,j

and terminated at vertex b
i,j

corresponds to the
execution of node (i, j) in the pipeline dag. These computation subdags are guaranteed to
each have a single root and a single terminal, through the use of cilk_sync statements at
the end of each stage. We call vertex a

i,j

the node root , and we call vertex b
i,j

the node
terminal .

The computation subdag for node (i, 0) corresponds to executing stage 0 and associated
runtime instructions for managing the while loop in iteration i. Node root a

i,0 corresponds
to executing line 53. Node terminal b

i,0 corresponds to executing the cilk_spawn statement
on line 69, except when i = n, in which case b

n,0 corresponds to executing line 89. The
vertices in Figure 7-6 on paths from a

i,0 to b
i,0 correspond to executing the intervening

instructions in lines 53–69. The cilk_sync statement in the lambda for stage 0 ensures that
vertex b

i,0 is the single leaf vertex for this computation subdag.
The computation subdag for node (i, j) for i < n and j > 0 is similar to that for node

(i, 0). For example, in iteration i, node root a
i,1 corresponds to executing line 73 — the

first instruction in node (i, 1) — and node terminal b
i,1 corresponds to executing line 75 —

the final instruction in node (i, 1). The vertices on paths from a
i,1 to b

i,1, in Figure 7-6,
correspond to executing the intervening instructions in lines 73–75. Notice that, if node
(i, j) is the destination of a cross edge, then a

i,j

corresponds to executing stage_wait. The
cilk_sync statement at the end of each stage — lines 75, 80, and 86 for stages 1, 2, and 3,
respectively — ensure that b

i,j

is the single leaf in the computation subdag corresponding
to the execution of node (i, j).

The stage-counter vertices s
i,end and s

i,j

for j > 0 correspond to updates in iteration i
to the iteration frame’s stage_counter variable. For example, s

i,2 corresponds to executing
line 77 in iteration i. Vertex s

i,end corresponds to executing line 87 in iteration i, which
terminates the iteration. We call s

i,end the terminal vertex for iteration i.
The correspondence between instructions in Figure 7-5 and the vertices of Figure 7-6

describes most of the edges in Figure 7-6, based on the structure of fork-join computation
dags. For example, the code in Figure 7-5 shows that, for each i where 0 i n, edge
(x

i

, a
i,0) is a serial edge, edge (b

i,0, si,1) is a spawn edge, and edge (b
i,0, zi) is a continue

edge. Meanwhile, for each iteration i where 0 i < n, edge (z
i

, x
i+1) is a serial edge,

reflecting the fact that stage 0 is a serial stage. Similarly, for j > 1, the edges (b
i,j�1, si,j)

and (s
i,j

, a
i,j

) that connect the node terminal of (i, j � 1) to the node root of (i, j) are
serial edges, reflecting the fact that each iteration of the pipeline executes the pipeline

151

stages sequentially. Finally, for each iteration i where 0 i < n, edge (b
i,3, s

i,end) is a
serial edge, and edge (s

i,end , zn) is a return edge. These vertex and edge definitions are
established by modeling an execution of the transformed code as an ordinary Cilk program,
when stage_wait and throttle instructions are ignored.

Finally, we consider the cross and throttling edges in Figure 7-6 enforced by stage_wait
and throttle instructions.

For each iteration i where 0 < i < n, a call to stage_wait implements a cross edge,
which connects a stage-counter vertex in iteration i � 1 to a node root in iteration i. For
example, in each iteration i of the loop in Figure 7-5, the stage_wait call on line 73 imple-
ments the cross edge (s

i�1,2, ai,1), and the stage_wait call on line 84 implements the cross
edge (s

i�1,end , ai,3). Conceptually, because a stage-counter vertex s
i,j

occurs after the node
terminal for stage j � 1 and before the node root for stage j, a cross edge (s

i�1,j , ai,j�1)
ensures that node (i, j�1) in iteration i executes after node (i�1, j�1). When j is the final
stage in an iteration i � 1, the iteration terminal s

i�1,end fills the role of the stage-counter
vertex s

i�1,j+1.
A throttling edge connects the terminal of iteration i n �K to the iteration-throttle

vertex x
i+K

in iteration i + K, where K is the throttling limit. Figure 7-6 illustrates
throttling edges when K = 2 and shows that a throttling edge exists from s

i,end to x
i+2

for each iteration i where 0 i < n � 2. These throttling edges thus prevent node (i, 0)
from executing before all nodes in iteration i�K complete, thereby limiting the number of
iterations that may execute simultaneously.

General pipeline computation dags

To generalize the structure of the pipeline computation dag in Figure 7-6 for arbitrary Cilk-P
pipelines, we must specify how null nodes are handled. In some iteration i, for stage j > 0,
suppose that node (i, j) is a null node. In this case, none of the stage-counter vertices s

i,j

,
node roots a

i,j

, node terminals b
i,j

, nor any of the vertices on paths between these, map to
executed instructions, and therefore these vertices do not exist in the computation dag. To
demonstrate what happens to the edges that would normally enter and exit these vertices,
we can pretend that the computation dag is originally constructed with dummy vertices s

i,j

,
a
i,j

, and b
i,j

connected in a path, and then all three of these vertices are contracted into the
stage-counter vertex following b

i,j

. Because a
i,j

is a dummy vertex, it does not correspond
to a call to stage_wait, and thus it has no incoming cross edge. Furthermore, this method
for handling null nodes can cause multiple cross edges to exit the same stage-counter vertex.
We shall see that this is does not pose a problem for the Piper scheduler.

7.5 The Piper scheduler

Piper executes a pipeline program on a set of P workers using work-stealing, as this section
describes in detail. For the most part, Piper’s execution model can be viewed as a modifi-
cation of the scheduler described by Arora, Blumofe, and Plaxton [24] (henceforth referred
to as the ABP model) for computation dags arising from pipeline programs. Piper devi-
ates from the ABP model in one significant way, however, in that it performs a “tail-swap”
operation, a special operation introduced to handle throttling of pipeline iterations.

We describe the operation of Piper in terms of the pipeline computation dag G = (V,E).
Each worker p in Piper maintains an assigned vertex corresponding to the instruction that
p executes on the current time step. We say that a vertex u is ready if all its predecessors

152

have been executed. Executing an assigned vertex v can enable a vertex u that is a direct
successor of v in G by making u ready. Each worker maintains a deque of ready vertices.
Normally, a worker pushes and pops vertices from the tail of its deque. A thief, however,
may try to steal a vertex from the head of another worker’s deque. It is convenient to define
the extended deque hv0, v1, . . . , vri of a worker p, where v0 2 V is p’s assigned vertex and
v1, v2, . . . , vr 2 V are the vertices in p’s deque in order from tail to head.

On each time step, each Piper worker p follows a few simple rules for execution based
on the type of p’s assigned vertex v and how many direct successors are enabled by the
execution of v, which is at most 2. In particular, although v may have multiple immediate
successors in the next iteration due to cross-edge dependencies from null nodes, executing v
can enable at most one such vertex, because the nodes in the next iteration execute serially.
To simplify the mathematical analysis, we assume that all rules are executed atomically.3

We first consider the cases where the assigned vertex v of a worker p is not the terminal
of an iteration.

• If executing v enables only one direct successor u, then p simply changes its assigned
vertex from v to u.

• If executing v enables two successors u and w, then p changes its assigned vertex from
v to one successor u, and pushes the other successor w onto its deque. The decision
of which successor to push onto the deque depends on the type of v. If v is a vertex
corresponding to a normal spawn, then u follows the spawn edge (u is the child), and
w follows the continue edge (w is the continuation).4 If v is a stage-counter vertex in
iteration i that is not the terminal of iteration i, then u is the node root of the next
node in iteration i, and w is the node root of a node in iteration i+ 1.

• If executing v enables no successors and the deque of p is not empty, then p pops the
bottom element u from its deque and changes its assigned vertex from v to u.

• If executing v enables no successors and the deque of p is empty, then p becomes a
thief. As a thief, p randomly picks another worker to be its victim and tries to steal
the vertex at the head of the victim’s deque. If such a vertex u exists, the thief p sets
its assigned vertex to u. Otherwise, the victim’s deque is empty, p’s assigned node
becomes null, and p remains a thief.

These cases are consistent with the normal ABP model.
Piper handles the terminal of an iteration a little differently, because of throttling edges.

Suppose that a worker p has an assigned vertex v which is the terminal of an iteration. When
p executes v, it can enable some combination of a pipeline terminal, an iteration-throttle
vertex, or the destination a cross edge, if there is a cross edge leaving v. We can distinguish
these cases, however, based on whether or not v enables an iteration-throttle vertex.

• Suppose that executing v does not enable an iteration-throttle vertex. Then, p acts
as it would in the normal ABP model. In particular, p can only enable either the
destination a of a cross edge or a pipeline terminal z, if it enables any vertex. In this
situation, p executes as it normally would when enabling zero or one vertices.

• Suppose that executing v does enable an iteration-throttle vertex x. If executing v

3This assumption, which is also implicit in the ABP model, need not correspond to an actual imple-
mentation. Work-stealing schedulers can typically optimize away many atomic operations by using more
sophisticated synchronization.

4This choice to have a worker follow the spawn edge instead a continue edge is consistent with traditional
“parent-stealing” execution model of Cilk, which on a spawn begins executing the spawned child function
and leaves the continuation in the parent frame to be stolen. Unlike child stealing, parent stealing allows us
to prove a bound on space in Section 7.8.

153

also enables the destination a of a cross edge, then p behaves as it would in the normal
ABP model, pushing x onto its deque and setting its assigned vertex to a. If executing
v does not enable the destination of a cross edge, then p performs two actions. First,
p changes its assigned vertex from v to x. Second, if p has a nonempty deque, then p
performs a tail swap: it exchanges its assigned vertex x with the vertex at the tail of
its deque.

This tail-swap operation is designed to empirically reduce Piper’s space usage and cause
Piper to favor retiring old iterations over starting new ones. Without the tail swap, in a
normal ABP-style execution, when a worker p finishes an iteration i that enables a vertex
via a throttling edge, p would conceptually choose to start a new iteration i + K, even
if iteration i + 1 were already suspended and on its deque. With the tail swap, p resumes
iteration i+1, leaving i+K available for stealing. The tail swap also enhances cache locality
by encouraging p to execute consecutive iterations.

It may seem, at first glance, that a tail-swap operation might significantly reduce the
parallelism, since the vertex z enabled by the throttling edge is pushed onto the bottom of
the deque. Intuitively, if there were additional work above z in the deque, then a tail swap
could significantly delay the start of iteration i + K. Lemma 44 in Section 7.6 will show,
however, that a tail-swap operation only occurs on deques with exactly 1 element. Thus,
whenever a tail swap occurs, z is at the top of the deque and is immediately available to be
stolen.

7.6 Structural invariants

During the execution of a pipeline program by Piper, the worker deques satisfy two struc-
tural invariants, called the “contour” property and the “depth” property. This section states
and proves these invariants.

Intuitively, we would like to describe the structure of the worker deques in terms of
frames, because these frames implement a cactus stack [178, 238] that reflects the parallel
control structure of the program. In variants of Cilk, every spawned function creates a
new frame, and every iteration of a parallel loop executes in its own frame. The cactus
stack ensures that every function is allowed to access the variables in its frame and its
parent frames, in spite of their parallel execution. For non-pipelined computation dags, the
creation of new frames matches the parallel control structure, and pushing a vertex onto a
worker’s deque corresponds to creating a new frame.

We would like to have an analogous structure for pipe_while loops. As Section 7.4
describes, Piper creates a new frame for each iteration and executes all stages of the it-
eration using that frame. The creation of these per-iteration frames does not match how
Piper manipulates the worker deques, however. In particular, stage 0 of an iteration exe-
cutes using that iteration’s frame before the remaining stages of the iteration are spawned.
Consequently, the iteration’s frame is created before stage 0 executes, but no vertex from
this iteration is pushed onto a worker’s deque until after stage 0 completes.

To get around this problem with frames, we introduce “contours” to model how deques are
modified during the execution of a pipe_while loop. Consider a computation dag G = (V,E)
that arises from executing a pipeline program. A contour is a path in G composed only
of serial and continue edges. A contour must be a path, because there can be at most one
serial or continue edge entering or leaving any vertex. We call the first vertex of a contour
the root of the contour, which is the only vertex in the contour that has an incoming spawn

154

edge (except for the initial instruction of the entire computation, which has no incoming
edges). Consequently, contours can be organized into a tree hierarchy, where one contour is
a parent of another if the first contour contains a vertex that spawns the root of the second.
Given a vertex v 2 V , let c(v) denote the contour to which v belongs. For convenience,
we shall assume that all contours are maximal, meaning that no two vertices in distinct
contours are connected by a serial or continue edge.

Figure 7-7 illustrates contours for a simple function F with both nested fork-join and
pipeline parallelism. For the pipe_while loop in G, stage 0 of pipeline iteration 0 (a7 and a8)
is considered part of the same contour that starts the pipe_while loop, not part of contour
f which represents the rest of the stages of iteration 0. In terms of function frames, however,
it is natural to consider stage 0 as sharing a function frame with the rest of the stages in
the same iteration, as Section 7.4 describes. Although contour boundaries happen to align
with function boundaries when we consider only fork-join parallelism in Cilk, pipe_while
loops highlight the fact that contours and function frames are actually distinct, orthogonal
concepts.

One important property of contours, which can be shown by structural induction, is
that for any function invocation F the vertices p and q corresponding to the first and last
instructions in F belong to the same contour, that is, c(p) = c(q). Using this property and
the identities of its edges, one can show the following facts about contours in a pipeline
computation dag.

Fact 1. For a given pipe_while loop on n iterations all of the following vertices lie in
the same contour: the pipeline root x0, pipeline terminal z

n

, iteration-increment vertices
z1, z2, . . . , zn�1, iteration-throttle vertices x1, x2, . . . , xn, the node roots a0,0, a1,0, . . . , an,0
for stage 0, and the node terminals b0,0, b1,0, . . . , bn,0 for stage 0. In other words we have
c(x

i

) = c(a
i,0) = c(b

i,0) = c(z
i

) for all integers i where 0 i n.

Fact 2. For an iteration i of a pipe_while loop and j = 1, 2, . . . ,m � 1, if node (i, j) is
not a null node, then the stage-counter vertices s

i,j

and s
i,end and the node root a

i,j

and
node terminal b

i,j

for node (i, j) all lie in the same contour, that is, c(s
i,end) = c(s

i,j

) =
c(a

i,j

) = c(b
i,j

).

For convenience, we say that the root of a pipe_while iteration i is the first stage-counter
vertex in iteration i, specifically, the stage-counter vertex in iteration i that is the destination
of a spawn edge from the stage-0 node terminal for iteration i. Consequently, the root of
the contour containing the stage-counter vertices for an iteration i is the root of iteration i.

The following two lemmas describe two important properties exhibited in the execution
of a pipeline program. The first lemma observes that no two distinct workers can contain
vertices from the same contour at the same time in their deques.

Lemma 42 Only one vertex in a contour can belong to any extended deque at any time.

Proof. The vertices in a contour form a chain and are, therefore, enabled serially.

The second lemma describes how the endpoints of a cross edge or a throttling edge are
related in terms of contours. In particular, the structure of a pipe_while guarantees that
each iteration creates a separate contour for all its stages after stage 0, and that all contours
for iterations of the pipe_while share a common parent in the contour tree, namely the
contour containing stage 0 of all loop iterations.

155

96 void F(int n) {
97 if (n < 2)
98 G(n);
99 else {

100 cilk_spawn F(n-1);
101 F(n-2);
102 cilk_sync;
103 }
104 }

105 void G(int n) {
106 if (n == 0) {
107 int i = 0;
108 pipe_while(i < 2) {
109 ++i; // Stage 0
110 pipe_stage_wait(1);
111 H(); // Stage 1.
112 }
113 }
114 }

115 void H() {
116 cilk_spawn foo();
117 bar();
118 cilk_sync;
119 }

`	

f7

d1 b4

a1

a19

a17

a3 c1

c15

b1

b7

F(2)	

F(3)	

F(4)	

b3

c3 a5

F(2)	

c4—c12

G(0)	

F(1)	
G(1)	

G(1)	
G(0)	

G(0)	

d2

d3

G(1)	

e1

e2

e3

F(1)	

b5

F(1)	

c14

c2

b2

b6

a2

a18

a16

a4

a6—a14

a6 a9 a14

a8

a7

f6

a10 a13

a12

a11

g6

g7

f1 g1

f2 g2

H()	

h1

f6

f4

f5

f3
f2

c13 a15

F(0)	 F(0)	

foo()	 bar()	

Figure 7-7: Contours for a computation with fork-join and pipeline parallelism. The fork-join
function F contains nested calls to a function G that contains a pipe_while loop with two iterations.
The function G itself calls a fork-join function H in stage 1 of each iteration. Each letter a through
h labels a contour in the dag for F(4). The vertices a1, b1, . . . , h1 are contour roots. For example,
the root of c(ak) is a1 for all k. Similar to Figure 7-6, the rounded rectangles in the subdag for G(0)
represent pipeline stages. A double-dashed line represents an additional subdag whose structure is
not shown.

Lemma 43 If an edge (u, v) is a cross edge, then c(u) and c(v) are siblings in the contour
tree and correspond to adjacent iterations in a pipe_while loop. If an edge (u, v) is a
throttling edge, then c(v) is the parent of c(u) in the contour tree.

Proof. This lemma follows naturally from the structure of pipeline computation dags.
For i > 0, every cross edge (u, v) connects a stage-counter vertex in iteration i�1 (that is, u

156

equals either s
i�1,j for some j or s

i�1,end) to a node root v = a
i,k

in iteration i in the same
pipe_while loop. By Fact 2, the root of the contour c(u) is the root of iteration i� 1. Thus
the contour c(u) is a child of the contour c(b

i�1,0) in the contour tree. Similarly, the root of
the contour c(v) = c(a

i,k

) is a child of the contour c(b
i,0) containing the node terminal b

i,0.
Because b

i�1,j and a
i,k

belong to iterations of the same pipe_while loop, Fact 1 implies that
c(b

i�1,0) = c(b
i,0). Because c(u) and c(v) are both children of this contour, c(u) and c(v)

are siblings in the contour tree, showing the first part of the lemma.
For a pipe_while loop of n iterations with throttling limit K, a throttling edge (u, v)

connects u, the terminal of an iteration i < n�K, to a vertex v = x
i+K

in the computation
dag. By the reasoning above, u must be in a child contour of c(b

i,0). By Fact 1, we know
c(b

i,0) = c(x
i+K

) = c(v). Thus, u is in a child contour of c(v), showing the second part of
the lemma.

During Piper’s execution of a pipeline program, the workers’ deques are highly struc-
tured with respect to contours. As the following definition details, with one exception, the
contours for two adjacent vertices in a worker’s extended deque obey a strict parent-child
relationship. The sole exception to this property is that, for any particular pipe_while loop,
an extended deque can contain at most two vertices that belong to contours for iterations
of that loop. These two vertices will be adjacent in the extended deque, and the contours
that contain them will correspond to sibling pipe_while loop iterations.

Definition 3 At any time during an execution of a pipeline program which produces a com-
putation dag G = (V,E), consider the extended deque hv0, v1, . . . , vri of a worker p. This
deque satisfies the contour property if, for all k = 0, 1, . . . r � 1, one of the following two
conditions holds:

1. Contour c(v
k+1) is the parent of c(v

k

).
2. The root of c(v

k

) is the root for some iteration i, the root of c(v
k+1) is the root for the

next iteration i+ 1, and if k+ 2 r, then c(v
k+2) is the common parent of both c(v

k

)
and c(v

k+1).

The following lemma shows that, when a worker p performs a tail-swap operation, if p’s
deque satisfies the contour property, then p’s deque must have a specific structure.

Lemma 44 At any time during an execution of a pipeline program which produces a com-
putation dag G = (V,E), suppose that worker p enables a vertex x via a throttling edge
as a result of executing its assigned vertex v0, which is the terminal of iteration i of some
pipe_while loop. If p’s deque satisfies the contour property (Definition 3), then one of the
following conditions holds:

1. Worker p’s deque is empty and x becomes p’s new assigned vertex.
2. Worker p’s deque contains a single vertex v1, where the root of c(v1) is the root of

iteration i + 1 of the same pipe_while loop, and v1 becomes p’s new assigned vertex
while x is pushed onto p’s deque.

Proof. Let hv0, v1, . . . , vri denote the vertices in p’s extended deque at the time v0 is
executed. If r = 0, then x becomes p’s assigned vertex, satisfying Case 1 of the lemma.
Otherwise, we have r � 1, and we shall show that, in fact, r = 1 and the root of c(v1) is the
root of iteration i+1. In this situation, Case 2 of the lemma is satisfied as follows: because
x is enabled by a throttling edge, a tail swap occurs, making v1 the assigned vertex of p and
pushing x onto p’s deque.

Now we will show that, if r � 1, then we must have r = 1 and the root of c(v1) is the
root of iteration i + 1. Because x is enabled by a throttling edge, v0 must be the terminal

157

of some iteration i, and Lemma 43 implies that c(x) is the parent of c(v0). The contour
property (Definition 3) applied to v0 states that either c(v1) = c(x) or c(v1) is the root of
iteration i + 1. The first case, c(v1) = c(x), is impossible, because Lemma 42 implies that
vertices v1 and x cannot simultaneously inhabit p’s deque. We therefore have that c(v1) is
the root of iteration i+1. In this case, the contour property and Lemma 42 imply that r = 1
as follows: if r � 2, then the contour property implies that c(v2) = c(x), and Lemma 42
implies that v2 and x cannot simultaneously inhabit p’s deque.

Sections 7.7 and 7.8 use the structure of the workers’ deques to bound the time and
space, respectively, that Piper uses to execute a pipeline program. While Section 7.8
uses contours directly, Section 7.7 uses a property that Piper maintains while upholding
the contour property. Intuitively, the analysis in Section 7.7 uses a measurement of the
“distance” of each vertex in a worker’s deque from the final vertex in the computation dag.
To formalize this intuition, for a computation dag G = (V,E), we define the enabling tree
G

T

= (V,E
T

) as the tree containing an edge (u, v) 2 E
T

if u is the last predecessor of v
to execute. The enabling depth d(u) of u 2 V is the depth of u in the enabling tree G

T

.
Section 7.7 performs its analysis using the following “depth property,” which roughly states
that, except perhaps for the topmost vertex, the vertices in a worker’s deque are sorted from
bottom to top in order of decreasing depth:

Definition 4 At any time during an execution of a pipeline program which produces a com-
putation dag G = (V,E), consider the extended deque hv0, v1, . . . , vri of a worker p. This
deque satisfies the depth property if the following conditions hold:

1. For k = 1, 2, . . . , r � 1, we have d(v
k�1) � d(v

k

).
2. For k = r, we have d(v

k�1) � d(v
k

) or v
k

has an incoming throttling edge.
3. The inequalities are strict for k > 1.

The depth property handles the topmost vertex in a worker’s deque as a special case because
the tail swap operation impedes our ability to relate the depth of this vertex to the depths
of the other vertices in the deque. Although this special case prevents us from analyzing
Piper by simply applying the analysis of Arora et al. [24], Section 7.7 extends the analysis
of Arora et al. to overcome this hurdle.

The following theorem shows that, during the execution of a pipeline program by Piper,
all workers’ extended deques satisfy both the contour and the depth properties.

Theorem 45 At all times during an execution of a pipeline program by Piper, all extended
deques satisfy the contour and depth properties (Definitions 3 and 4).

Proof. The proof follows a similar induction to the proof of Lemma 3 from [24]. Intu-
itively, we replace the “designated parents” discussed in [24] with contours, which exhibit
similar parent-child relationships.

The claim holds vacuously in the base case, which is any empty deque.
Assuming inductively that the statement is true, consider the possible actions of Piper

that modify the contents of the deque. For r � 1, let v0, v1, . . . , vr denote the vertices on
p’s extended deque before p executes v0, and let v00, v

0
1, . . . , v

0
r

0 denote the vertices on p’s
extended deque afterwards. Worker p can execute its assigned vertex v0, thereby enabling
0, 1, or 2 vertices, or another worker q can steal a vertex from the top of the deque.

Worker q steals a vertex from p’s deque. The statement holds because the identities
of the remaining vertices in p’s deque are unchanged. Similarly, the claim holds vacuously
for q because q’s extended deque has only the stolen vertex.

158

Executing v0 enables 0 vertices. Worker p pops v1 from the bottom of its deque to
become its new assigned vertex v00. This action shifts all vertices in the deque down, that is,
r0 = r � 1 and for all k where 0 k r0 we have v0

k

= v
k+1. The statement holds because

the identities of the remaining vertices in p’s deque are unchanged.
Executing v0 enables 1 vertex u. Worker p changes its assigned vertex from v0 to

v00 = u and leaves all other vertices in the deque unchanged, that is, r0 = r and v0
k

= v
k

for
all k > 1. For vertices v2, v3, . . . , vr, if they exist, both Definitions 3 and 4 hold by induction.
We therefore only need to consider the relationship between u and v1.

The contour property holds by induction if c(u) = c(v0), that is, if the edge (v0, u) is a
serial or continue edge. The depth property also holds by induction because we are replacing
v0 on the extended deque with a successor node u, and thus d(u) > d(v0). Consequently,
we need only consider the cases where (v0, u) is either a spawn edge, a return edge, a cross
edge, or a throttling edge.

• Edge (v0, u) cannot be a spawn edge because executing a spawn always enables 2
children.

• If (v0, u) is a return edge, then c(u) is the parent of c(v0). In this case, we can show
that p’s deque is empty, which implies that the properties hold vacuously. For the
sake of contradiction, suppose that p’s deque contains a vertex v1. By the inductive
hypothesis, we have two cases:

1. Contour c(v1) is the parent of contour c(v0). In this case, we have c(v1) = c(u).
Lemma 42 tells us, however, that u and v1 cannot simultaneously inhabit p’s
deque. Therefore, v1 cannot exist in p’s deque.

2. The root of c(v0) is the root of some iteration i of a pipe_while loop and the root
of c(v0) is the root of some iteration i+1 of that loop. In this case, u terminates
the pipe_while loop. One of u’s predecessors, however, is the terminal vertex
s
i+1,end of iteration i+1, which vertex v1 precedes in the dag. Vertex v1 therefore

cannot exist in p’s deque.
• If (v0, u) is a throttling edge, then Lemma 44 specifies the structure of worker p’s

extended deque. In particular, Lemma 44 states that the deque contains at most 1
vertex. If r = 0 then the deque is empty and the properties hold vacuously. Otherwise
r = 1 and the deque contains one element v1, in which case the tail-swap operation
assigns v1 to p and puts u into p’s deque. The contour property holds, because c(u)
is the parent of c(v1). The depth property holds, because z is enabled by a throttling
edge.

• Suppose that (v0, u) is a cross edge. Lemma 43 shows that a cross edge (v0, u) can
only exist between vertices in sibling iteration contours. By the inductive hypothesis,
c(v1) must be either the parent of c(v0) or equal to c(u). In the latter case, however,
enabling u would place two vertices from c(u) on the same deque, which Lemma 42
says is impossible. Contour c(v1) is therefore the common parent of c(v0) and c(u),
and thus setting v00 = u maintains the contour property. The depth property holds
because u is a successor of v0, and d(u) > d(v0).

Executing v0 enables 2 vertices, u and w. Without loss of generality, assume that
Piper pushes the vertex w onto the bottom of its deque and assigns itself vertex u. Hence,
we have r0 = r + 1, vertex v00 = u, vertex v01 = w, and vertex v0

k

= v
k�1 for all 1 < k r0.

Definition 4 holds by induction, because the enabling edges (v0, u) and (v0, w) imply that
d(v0) < d(u) = d(w). For vertices v2, v3, . . . , vr, if they exist, Definition 3 holds by induction.
We therefore need only verify Definition 3 for vertices u and w.

To enable 2 vertices, v0 must have at least 2 outgoing edges. We therefore have only

159

three cases for v0: either v0 executes a cilk_spawn, or v0 is the terminal of some iteration i
in a pipe_while loop, or v0 is a stage-counter vertex.

• If v0 executes a cilk_spawn, then c(w) = c(v0) and c(u) is a child contour of c(v0),
maintaining Definition 3.

• If v0 is the terminal of an iteration i, then it might have up to 3 outgoing edges: a
cross edge (v0, a), a throttling edge (v0, x), and a return edge (v0, z). We first observe
that at most one of x or z is enabled, because both x and z belong to the same contour
— the parent contour of c(v0) — and Lemma 42 therefore precludes enabling both x
and z simultaneously. Consequently, u is the destination a of the cross edge and w is
one of x or z.
We now justify that the new contents of the deque satisfy Definition 3. By Lemma 43,
we have that c(v0) and c(u) are sibling contours corresponding to the adjacent itera-
tions i and i + 1, respectively, of a pipe_while loop, and c(w) is the parent of both
c(v0) and c(u). Furthermore, we can show as follows that p’s deque is otherwise empty.
Lemma 44 specifies that the deque contains at most one vertex v1, where the root of
c(v1) is the root of iteration i + 1. We therefore have c(u) = c(v1), and therefore,
Lemma 42 states that u and v1 cannot simultaneously appear on p’s deque. Because
executing v0 enabled u, vertex v1 cannot exist on p’s deque, implying that p’s deque
is empty.

• If v0 is a stage-counter vertex that is not the terminal of an iteration, then w must be
the destination of a cross edge. In this case, vertex u is a node root in the same contour
c(u) = c(v0), and by Lemma 43, c(u) and c(w) are adjacent siblings in the contour
tree. As such, we need only show that c(v1), if it exists, is their parent. Suppose
that c(v1) is not the parent of c(v0) = c(u), for the sake of contradiction. Then, by
induction, it must be that c(u) and c(v1) are adjacent siblings. We therefore have that
c(v1) = c(w), which Lemma 42 shows is impossible.

7.7 Time analysis of Piper

This section bounds the completion time for Piper, showing that Piper executes pipeline
program asymptotically efficiently. Specifically, suppose that a pipeline program produces
a computation dag G = (V,E) with work T1 and span T1 when executed by Piper on P
processors. We show that for any ✏ > 0 the running time is T

P

 T1/P + O(T1 + lgP +
lg(1/✏)) with probability at least 1 � ✏, which implies that the expected running time is
T
P

 T1/P + O(T1). This bound is comparable to the work-stealing bound for fork-join
dags originally proved in [58].

We adapt the potential-function argument of Arora et al. [24], because Piper executes
computation dags in a style similar to the their work-stealing scheduler, except for tail
swapping. Although Arora et al. ignore the issue of memory contention, we handle it using
the “recycling game” analysis of Blumofe and Leiserson [58], which contributes the additive
O(lgP) term to the high-probability bounds.

The crux of the analysis is to bound the number of steal attempts performed during
the execution of a computation dag in terms of its span. Following the analysis of Arora
et al., we measure progress through the computation by defining a potential function for a
vertex in the computation dag based on its depth in the enabling tree. Consider a particular
execution of a computation dag G = (V,E) with span T1 by Piper. For that execution,

160

we define the weight of a vertex v as w(v) = T1 � d(v), and we define the potential of
vertex v at a given time as

�(v) =

(
32w(v)�1 if v is assigned ,

32w(v) otherwise .

We define the potential of a worker p’s extended deque hv0, v1, . . . , vri as �(p) =
P

r

k=0 �(vk).
The total potential of a computation at a given time is simply the sum of the potentials of
each worker’s deque. Arora et al. show that every action of their scheduler decreases the
total potential over the course of the program’s execution. We likewise use decreases in the
total potential to measure the progress Piper makes in executing a computation.

Given this potential function, the proof of the time bound follows the same overall
structure as the analysis of Arora et al.. Conceptually, their analysis relies on the fact that
the topmost node in each worker’s deque has the smallest depth of all of the nodes in the
deque, and therefore it accounts for a constant fraction of the total potential of the deque.
Arora et al. use this property to argue that, after P steal attempts, with high probability, the
topmost vertex in a particular deque is being executed. Consequently, the deque’s potential
has dropped by a constant fraction and progress therefore has been made.

Our potential-function analysis differs from that of Arora et al. because of the addition
of the tail-swap operation in Piper. First, we show that the potential of a worker’s deque
decreases when a tail-swap occurs. Second, as the depth property (Definition 4) shows,
the tail-swap causes the topmost vertex in each worker’s deque to not necessarily have
the smallest depth. Consequently, this topmost vertex does not necessarily account for
a constant fraction of the deque’s total potential, meaning that the analysis of Arora et
al. does not directly apply to Piper. Conceptually, our analysis overcomes this hurdle by
arguing that the top two vertices in each deque account for a constant fraction of the deque’s
potential. Hence, after 2P steal attempts, with high probability, a given deque’s potential
has probably decreased by a constant fraction, implying that progress has been made. The
following lemmas and theorem formalize this conceptual approach.

First, we prove that a constant fraction of the potential of a worker’s deque lies in its top
two vertices and that every action of Piper on a deque decreases that deque’s potential.

Lemma 46 At any time during an execution of a pipeline program which produces a com-
putation dag G = (V,E), the extended deque hv0, v1, . . . , vri of every worker p satisfies the
following properties:

1. �(v
r

) + �(v
r�1) � 3�(p)/4.

2. Let �0 denote the potential after p executes v0. Then we have

�(p)� �0(p) = 2 (�(v0) + �(v1)) /3 ,

if p performs a tail swap, and

�(p)� �0(p) � 5�(v0)/9

otherwise.

Proof. The analysis to show Property 1 is analogous to the analysis of Arora et al. [24,
Lemma 6]. Because the result holds trivially for r 1, we focus on the case where r � 2.

161

Because Theorem 45 shows that p’s extended deque satisfies the depth property, we have

d(v0) � d(v1) > d(v2) > · · · > d(v
r�2) > d(v

r�1) .

The definition of the weight of a vertex, w(v) = T1 � d(v), therefore gives us

w(v0) w(v1) < w(v2) < · · · < w(v
r�2) < w(v

r�1) .

Because all weights are integers, we have that w(v
k�1) w(v

k

) � 1 for k = 2, 3, . . . , r � 1.
Equivalently, we can bound all w(v

k

) in terms of w(v
r�1) as

w(v
k

)
(
w(v

r�1)� (r � 1� k) if 1 k (r � 1) ,

w(v
r�1)� (r � 2) if k = 0 .

For r � 2, we therefore have

�(p) =
rX

k=1

32w(vk) + 32w(v0)�1

= 32w(vr) + 32w(vr�1) +

r�2X

k=1

32w(vk) +
1

3
· 32w(v0)

 32w(vr) + 32w(vr�1) +

r�2X

k=1

1

32(r�k�1)

!
· 32w(vr�1) +

1

3
· 1

32(r�2)
· 32w(vr�1)

= 32w(vr) + 32w(vr�1) +

✓
1

8
+

5

24 · 32(r�2)

◆
· 32w(vr�1)

 32w(vr) + 32w(vr�1) +
1

3
· 32w(vr�1)

= 32w(vr) +
4

3
· 32w(vr�1)

 4

3
·
⇣
32w(vr) + 32w(vr�1)

⌘
,

and thus �(v
r

) + �(v
r�1) � 3�(p)/4.

Now we argue that, in any time step t during which worker p executes its assigned vertex
v0, the potential of p’s extended deque decreases. Let �0 denote the potential after the time
step. If v0 is the terminal of an iteration i and Piper performs a tail swap after executing
v0, then Lemma 44 dictates the state of the deque before and after p executes v0, from which
we deduce that �(p) � �0(p) = 2 (�(v0) + �(v1)) /3. The remaining cases follow from the
analysis of Arora et al. [24], which shows that �(p)� �0(p) � 5�(v0)/9.

Similarly to Arora et al., we analyze the behavior of workers randomly stealing from
each other using a balls-and-weighted-bins analog. We want to analyze the case where the
top 2 elements are stolen out of any deque, however, not just the top element. To address
this case, we modify Lemma 7 of [24] to consider the probability that 2 out of 2P balls land
in the same bin.

Lemma 47 Consider P bins, where for p = 1, 2, . . . , P , bin p has weight W
p

. Suppose that
2P balls are thrown independently and uniformly at random into the P bins. For bin p,

162

define the random variable X
p

as

X
p

=

(
W

p

if at least 2 balls land in bin p ,

0 otherwise .

Let W =
P

P

p=1Wp

and X =
P

P

p=1Xp

. For any � in the range 0 < � < 1, we have
Pr {X � �W} > 1� 3/(1� �)e2.

Proof. For each bin p, consider the random variable W
p

�X
p

. It takes on the value W
p

when 0 or 1 ball lands in bin p, and otherwise it is 0. Thus, we have

E [W
p

�X
p

] = W
p

 ✓
1� 1

P

◆2P

+ 2P

✓
1� 1

P

◆2P�1✓ 1

P

◆!

= W
p

✓
1� 1

P

◆2P (3P � 1)

(P � 1)
.

Since (1� 1/P)P approaches 1/e and (3P � 1)/(P � 1) approaches 3, we have

lim
P!1

E [W
p

�X
p

] = 3W
p

/e2 .

In fact, one can show that E [W
p

�X
p

] is monotonically increasing, approaching the limit
from below, and thus E [W �X] 3W/e2. By Markov’s inequality, we have that

Pr {(W �X) > (1� �)W} < E [W �X] /(1� �)W ,

from which we conclude that Pr {X < �W} 3/(1� �)e2.
To use Lemma 47 to analyze Piper, we divide the time steps of the execution of G into

a sequence of rounds, where each round (except the first, which starts at time 0) starts
at the time step after the previous round ends and continues until the first time step such
that at least 2P steal attempts — and hence less than 3P steal attempts — occur within
the round. The following lemma shows that a constant fraction of the total potential in all
deques is lost in each round, thereby demonstrating progress.

Lemma 48 Consider the execution of a pipeline program by Piper on P processors. Sup-
pose that a round starts at time step t and finishes at time step t0. Let � denote the potential
at time t, let �0 denote the potential at time t0, let � =

P
P

p=1 �(p), and let �0 =
P

P

p=1 �
0(p).

Then we have Pr {�� �0 � �/4} > 1� 6/e2.

Proof. We first show that stealing twice from a worker p’s deque contributes a potential
drop of at least �(p)/2. The proof follows a similar case analysis to that in the proof
of Lemma 8 in [24] with two main differences. First, we use the two properties of � in
Lemma 46. Second, we must consider the case unique to Piper, where p performs a tail
swap after executing its assigned vertex v0.

We first observe that, if p is the target of at least 2 steal attempts, then Piper’s actions on
p’s extended deque between time steps t and t0 contribute a potential drop of at least �(p)/2.
Let hv0, v1, . . . , vri denote the vertices on p’s extended deque at time t, and suppose that at
least 2 steal attempts target p between time step t and time step t0.

• If p’s extended deque is empty, then �(p) = 0, and the statement holds trivially.

163

• If r = 0, then p’s extended deque consists solely of a vertex v0 assigned to p, and
�(p) = �(v0). By time t0, worker p has executed vertex v0, and Property 2 in Lemma 46
shows that the potential decreases by at least 5�(p)/9 � �(p)/2.

• Suppose that r > 1. By time t0, both v
r

and v
r�1 have been removed from p’s deque,

either by being stolen or by being assigned to p. In either case, the overall potential
decreases by more than 2�(v

r

)/3+2�(v
r�1)/3 — the decrease in potential from simply

assigning v
r

and v
r�1 — which is 2 (�(v

r

) + �(v
r�1)) /3 � 2 (3�(p)/4) /3 = �(p)/2 by

Lemma 46.
• Suppose that r = 1. If executing v0 causes p to perform a tail swap, then by Lemma 46,

the potential drops by at least 2 (�(v0) + �(v1)) /3 � �(p)/2, since �(p) = �(v0) +
�(v1). Otherwise, by Lemma 46, the execution of v0 results in an overall decrease in
potential of 5�(v0)/9, and because p is the target of at least 2 steal attempts, v1 is
assigned by time t0, decreasing the potential by 2�(v1)/3.

We now consider all P workers and 2P steal attempts between time steps t and t0. We
model these steal attempts as ball tosses in the experiment described in Lemma 47. Suppose
that we assign each worker p a weight of W

p

= �(p)/2. These weights W
p

sum to W = �/2.
If we think of steal attempts as ball tosses, then the random variable X

p

from Lemma 47
bounds from below the potential decrease due to actions on p’s deque. Specifically, if at
least 2 steal attempts target p’s deque in a round (which corresponds conceptually to at
least 2 balls landing in bin p), then the potential drops by at least W

p

. Moreover, X
is a lower bound on the potential decrease within the round, that is, X � � �0. By
Lemma 47, we have Pr {X � W/2} > 1 � 6/e2. Substituting for X and W , we conclude
that Pr {(�� �0) � �/4} > 1� 6/e2.

We are now ready to prove the completion-time bound.

Theorem 49 Consider an execution of a pipeline program by Piper on P processors which
produces a computation dag with work T1 and span T1. Then the expected running time is
T
P

 T1/P + O(T1), and for any ✏ > 0, the running time is T
P

 T1/P + O(T1 + lgP +
lg(1/✏)) with probability at least 1� ✏.

Proof. On every time step, consider each worker as placing a token in a bucket depending
on its action. If a worker p executes an assigned vertex, p places a token in the work bucket .
Otherwise, p is a thief and places a token in the steal bucket . There are exactly T1 tokens
in the work bucket at the end of the computation. The interesting part is bounding the size
of the steal bucket.

Divide the time steps of the execution of G into rounds. Recall that each round contains
at least 2P and less than 3P steal attempts. Call a round successful if after that round
finishes, the potential drops by at least a 1/4 fraction. From Lemma 48, a round is successful
with probability at least 1� 6/e2 � 1/6. Since the potential starts at �0 = 32T1�1, ends at
0, and is always an integer, the number of successful rounds is at most (2T1�1) log4/3(3) <
8T1. Consequently, the expected number of rounds needed to obtain 8T1 successful rounds
is at most 48T1, and the expected number of tokens in the steal bucket is therefore at most
3P · 48T1 = 144PT1.

For the high-probability bound, suppose that the execution takes n = 48T1+m rounds.
Because each round succeeds with probability at least p = 1/6, the expected number of
successes is at least np = 8T1 + m/6. We now compute the probability that the number
X of successes is less than 8T1. As in [24], we use the Chernoff bound Pr {X < np� a} <

164

e�a

2
/2np, with a = m/6. Choosing m = 48T1 + 24 ln(1/✏), we have

Pr {X < 8T1} < e
�(m/6)2

16T1+m/3 < e
�(m/6)2

m/3+m/3 = e�m/24 ✏ .

Hence, the probability that the execution takes at least n = 96T1+24 ln(1/✏) rounds is less
than ✏, and the number of tokens in the steal bucket is at most 288T1 + 72 ln(1/✏).

The “recycling game” analysis of Blumofe and Leiserson [58, Lemma 6] bounds the delay
that might be incurred when multiple processors try to access the same deque in the same
time step in randomized work stealing. This analysis adds O(T1) to the expected value of
T
P

and O(T1 + lgP + lg(1/✏)) to the high-probability bound.

7.8 Space analysis of Piper

This section derives bounds on the stack space required by Piper by extending the bounds of
Blumofe and Leiserson [58] for fully strict fork-join parallelism to include pipeline parallelism.
We show that Piper on P processors uses S

P

 P (S1 + fDK) stack space for pipeline
iterations, where S1 is the serial stack space, f is the “frame size,” D is the depth of nested
linear pipelines, and K is the throttling limit.

To model Piper’s usage of stack space, we partition the vertices of a pipeline compu-
tation dag G into a tree of contours, in a similar manner to that described in Section 7.6.
We assume that every contour c of G has an associated frame size representing the stack
space consumed by c while it or any of its descendant contours are executing. The space
used by Piper on any time step is the sum of frame sizes of all contours c which are either
active — c is associated with a vertex in some worker’s extended deque — or suspended
— the earliest unexecuted vertex in the contour is not ready.

As Section 7.4 describes, the contours of a pipe_while loop do not directly correspond
to the control and iteration frames allocated for the loop. In particular, as demonstrated in
the code transformation in Figure 7-5, stage 0 allocates an iteration frame for all stages of
the iteration and executes using that iteration frame. To account for the space used when
executing an iteration i of a pipe_while loop, consider an active or suspended contour c, and
let v be either the vertex in c on a worker’s deque, if c is active, or the earliest unexecuted
vertex in c, if c is suspended. If v lies on a path in c between a stage 0 node root a

i,0 and
its corresponding node terminal b

i,0 for some iteration i of a pipe_while loop, then v incurs
an additional space cost equal to the size of i’s iteration frame.

The following theorem bounds the stack space used by Piper. Let S
P

denote the
maximum over all time steps of the stack space Piper uses during a P -worker execution
of G. Thus, S1 is the stack space used by Piper for a serial execution. Define the pipe
nesting depth D of G as the maximum number of pipe_while contours on any path
from leaf to root in the contour tree. The following theorem generalizes the space bound
S
P

 PS1 from [58], which deals only with fork-join parallelism, to pipeline programs.

Theorem 50 Consider a pipeline program with pipe nesting depth D executed on P proces-
sors by Piper with throttling limit K. The execution requires S

P

 P (S1 + fDK) stack
space, where f is the maximum frame size of any contour of any pipe_while iteration and
S1 is the serial stack space.

Proof. We show that, at each time step during Piper’s execution of a pipeline program,
Piper satisfies a variant of the “busy-leaves property” [58] with respect to the tree of active

165

and suspended contours during that time step. This proof follows a similar induction to that
in [58, Thoerem 3], with one change, namely, that a leaf contour c may stall if the earliest
unexecuted vertex in c is the destination of a cross edge.

If v is the destination of a cross edge, then v must be associated with some pipe_while
loop, specifically, as a node root a

i,j

for some iteration i in the loop. The source of this
cross edge must be in a previous iteration of the same pipe_while loop. Consider the
leftmost iteration i0 < i of this pipe_while loop, that is, the iteration with the smallest
iteration index that has not completed. By definition of the leftmost iteration, all previous
iterations in this pipe_while have completed, and thus no node root a

i

0
,j

in iteration i0

may be the destination of a cross edge whose source has not executed. In other words, the
contour associated with this leftmost iteration must be active or have an active descendant.
Consequently, each suspended contour c is associated with a pipe_while loop, and for each
such contour c, there exists an active sibling contour associated with the same pipe_while
loop.

We account for the stack space Piper uses by separately considering the active and
suspended leaf contours. Because there are P processors executing the computation, at
each time step, Piper has at most P active leaf contours, each of which may use at most S1

stack space. Each suspended leaf contour, meanwhile, is associated with a pipe_while loop,
whose leftmost iteration during this time step either is active or has an active descendant.
Any pipe_while loop uses at most fK stack space to execute its iterations, because the
throttling edge from the terminal of its leftmost iteration precludes having more than K
active or suspended iterations in any one pipe_while loop. Thus, for each vertex in its
deque that is associated with an iteration of a pipe_while loop, each worker p accounts for
at most fK stack space in suspended sibling contours for iterations of the same pipe_while
loop, or fDK stack space overall. Summing the stack space used over all workers gives
PfDK additional stack-space usage.

7.9 Cilk-P runtime design

This section describes the Cilk-P implementation of the Piper scheduler. We first introduce
the data structures Cilk-P uses to implement a pipe_while loop. Then we describe the
two main optimizations that the Cilk-P runtime exploits: “lazy enabling” and “dynamic
dependency folding.”

Data structures

Like the Cilk-M runtime [238] on which it is based, Cilk-P organizes runtime data into
frames. The transformed code in Figure 7-5 reflects the frames Cilk-P allocates to execute a
pipe_while loop. In particular, Cilk-P executes a pipe_while loop in its own control frame,
which handles the spawning and throttling of iterations. Furthermore, each iteration of a
pipe_while loop executes as an independent child function with its own iteration frame.
This frame structure is similar to that of an ordinary while loop in Cilk-M, where each
iteration spawns a function to execute the loop body. Cross and throttling edges, however,
may cause the iteration and control frames to suspend.

Cilk-P’s runtime employs a simple mechanism to track progress of an iteration i. As
seen in Figure 7-5, the frame of iteration i maintains a stage counter, which stores the stage
number of the currently executing or suspended node in i. In addition, the iteration i’s

166

frame maintains a status field, which indicates whether i is suspended due to an unsatisfied
cross edge. Because executed nodes in an iteration i have strictly increasing stage numbers,
checking whether a cross edge into iteration i is satisfied amounts to comparing the stage
counters of iterations i and i� 1. Any iteration frame that is not suspended corresponds to
either a currently executing or a completed iteration.

Cilk-P implements throttling using a join counter in the control frame. Normally
in Cilk-M, a frame’s join counter simply stores the number of active child frames. Cilk-P
also uses the join counter to limit the number of active iteration frames in a pipe_while
loop to the throttling limit K. Starting an iteration increments the join counter, while
returning from the earliest active iteration decrements it. (For implementation simplicity,
Cilk-P additionally ensures that iterations return in order.) If a worker tries to start a new
iteration when the control frame’s join counter is K, the control frame suspends until a child
iteration returns.

Using these data structures, one could implement Piper directly, by pushing and pop-
ping the appropriate frames onto deques as specified by Piper’s execution model. In partic-
ular, the normal THE protocol [146] in Cilk could be used for pushing and popping frames
from a deque, and frame locks could be used to update fields in the frames atomically. Al-
though this approach directly matches the model analyzed in Sections 7.7 and 7.8, it incurs
unnecessary overhead for every node in an iteration. Cilk-P implements “lazy enabling” and
“dynamic dependency folding” to reduce this overhead.

Lazy enabling

In the Piper algorithm, when a worker p finishes executing a node in iteration i, it may
enable an instruction in iteration i+1, in which case p pushes this instruction onto its deque.
To implement this behavior, intuitively, p must check right — read the stage counter and
status of iteration i + 1 — whenever it finishes executing a node. The work to check right
at the end of every node can amount to substantial overhead in a pipeline with fine-grained
stages.

Lazy enabling allows p’s execution of an iteration i to defer the check-right operation,
as well as avoid any operations on its deque involving iteration i + 1. Conceptually, when
p enables work in iteration i + 1, this work is kept on p’s deque implicitly. When a thief
q tries to steal iteration i’s frame from p’s deque, q first checks right on behalf of p to see
whether any work from iteration i+ 1 is implicitly on the deque. If so, q resumes iteration
i+1 as if it had found it on p’s deque. In a similar vein, the Cilk-P runtime system also uses
lazy enabling to optimize the check-parent operation — the enabling of a control frame
suspended due to throttling.

Lazy enabling requires p to behave differently when p completes an iteration. When p
finishes iteration i, it first checks right, and if that fails (because iteration i + 1 need not
be resumed), it checks its parent. It turns out that these checks find work only if p’s deque
is empty, that is, if all other work on p’s deque has been stolen. Therefore, p can avoid
performing these checks at the end of an iteration if its deque is not empty.

Lazy enabling is an application of the work-first principle [146]: minimize the schedul-
ing overheads borne by the work of a computation, and amortize them against the span.
Requiring a worker to check right every time it completes a node adds overhead proportional
to the work of the pipe_while in the worst case. With lazy enabling, the overhead can be
amortized against the span of the computation. For programs with sufficient parallelism,
the work dominates the span, and the overhead becomes negligible.

167

CPU AMD Opteron 8354
Clock 2GHz
Cores per processor chip 4
Processor chips (sockets) 4
L1 data cache/core 64KiB
L2 cache/core 512KiB
L3 cache/socket 2MiB
DRAM 128GiB DDR3
Compiler GCC (G++ for TBB) 4.4.5
Operating system MIT CSAIL Debian 6.08 (squeeze), custom Linux kernel 3.4.0

Figure 7-8: Technical specifications of the AMD Opteron 8354 system used for one set of ex-
periments. The Linux kernel was patched with support for thread-local memory mapping for
Cilk-M [238].

Dynamic dependency folding

In dynamic dependency folding , the frame for iteration i stores a cached value of the
stage counter of iteration i� 1, hoping to avoid checking already satisfied cross edges. In a
straightforward implementation of Piper, before a worker p executes each node in iteration
i with an incoming cross edge, it reads the stage counter of iteration i� 1 to see if the cross
edge is satisfied. Reading the stage counter of iteration i � 1, however, can be expensive.
Besides the work involved, the access may contend with the worker q executing iteration
i� 1, because q might be frequently updating the stage counter of iteration i� 1.

Dynamic dependency folding mitigates this overhead by exploiting the fact that an iter-
ation’s stage counter must strictly increase. By caching the most recently read stage-counter
value from iteration i � 1, worker p can sometimes avoid reading this stage counter before
each node with an incoming cross edge. For instance, if q finishes executing a node (i�1, j),
then all cross edges from nodes (i�1, 0) through (i�1, j) are necessarily satisfied. Thus, if p
reads j from iteration i�1’s stage counter, p need not reread the stage counter of i�1 until
it tries to execute a node with an incoming cross edge (i, k) where k > j. This optimization
is particularly useful for fine-grained stages that execute quickly.

7.10 Evaluation

This section presents empirical studies of the Cilk-P prototype system. We investigated the
performance and scalability of Cilk-P using the three PARSEC [45,46] benchmarks that we
ported, namely ferret , dedup, and x264 . The results show that Cilk-P’s implementation of
pipeline parallelism has negligible overhead compared to its serial counterpart. We compared
the Cilk-P implementations to TBB and Pthreaded implementations of these benchmarks.
We found that the Cilk-P and TBB implementations perform comparably, as do the Cilk-P
and Pthreaded implementations for ferret and x264 . The Pthreaded version of dedup out-
performs both Cilk-P and TBB, because the bind-to-element approaches of Cilk-P and TBB
produce less parallelism than the Pthreaded bind-to-stage approach. Moreover, the Pthread-
ing approach benefits more from “oversubscription,” that is, using more threads than the
number of available hardware cores. We study the effectiveness of dynamic dependency
folding on a synthetic benchmark called pipe-fib, demonstrating that this optimization can
be effective for applications with fine-grained stages.

We ran two sets of experiments on two different machines. The first set was collected
on the AMD Opteron system described in Figure 7-8. The second set was collected on

168

CPU Intel Xeon E5-2665
Clock 2.4GHz
Cores per processor chip 8
Processor chips (sockets) 2
L1 data cache/core 32KiB
L2 cache/core 256KiB
L3 cache/socket 20MiB
DRAM 32GiB DDR3
Compiler GCC (G++ for TBB) 4.6.3
Operating system Fedora 16, custom Linux kernel 3.6.11

Figure 7-9: Technical specifications of the Intel Xeon E5-2665 system used for one set of ex-
periments. The Linux kernel was patched with support for thread-local memory mapping for
Cilk-M [238].

the Intel Xeon system described in Figure 7-9. The benchmarks were compiled using -O3
optimization, except for x264 , which by default comes with -O4. The Intel Xeon machine is
several years newer than the AMD machine, which precludes a direct comparison between
these systems.

Performance evaluation on PARSEC benchmarks

We implemented the Cilk-P versions of the three PARSEC benchmarks by hand-compiling
the relevant pipe_while loops using techniques similar to those described in [238]. We then
compiled the hand-compiled benchmarks with GCC. The ferret and dedup applications can
be parallelized as simple pipelines with a fixed number of stages and a static dependency
structure. In particular, ferret uses the 3-stage SPS pipeline shown in Figure 7-1, while
dedup uses a 4-stage SSPS pipeline as described in Figure 7-4.

For the Pthreaded versions, we used the code distributed with PARSEC. The PARSEC
Pthreaded implementations of the ferret and dedup benchmarks employ the oversubscrip-
tion method [328], a bind-to-stage approach that creates more than one thread per pipeline
stage and utilizes the operating system for load balancing. For the Pthreaded implemen-
tations, when the user specifies an input parameter of Q, the code creates Q threads per
stage, except for the first (input) and last (output) stages which are serial and use only one
thread each. To ensure a fair comparison, for all applications, we ran the Pthreaded imple-
mentation using taskset to limit the process to P cores (which corresponds to the number
of workers used in Cilk-P and TBB), but experimented to find the best setting for Q.

We used the TBB version of ferret that came with the PARSEC benchmark, and we
implemented the TBB version of dedup. Both TBB implementations use the same pipelining
strategies as their Cilk-P counterparts. TBB’s construct-and-run approach proved inade-
quate for the on-the-fly nature of x264 , however, and indeed, in their study of these three
applications, Reed, Chen, and Johnson [328] say, “Implementing x264 in TBB is not impos-
sible, but the TBB pipeline structure is not suitable.” Thus, we had no TBB benchmark for
x264 to include in our comparisons.

For each benchmark, we throttled all versions similarly, unless specified otherwise in the
figure captions. For Cilk-P on the AMD Opteron system, we used the default throttling
limit of 4P , where P is the number of cores. This default value seems to work well in
general, although since ferret scales slightly better with less throttling, we used a throttling
limit of 10P for ferret in our experiments. Similarly, for the Intel Xeon system, we used
a throttling limit of 10P for our experiments, which seemed to work well. TBB supports

169

Processing Time (TP) Speedup (TS/TP) Scalability (T1/TP)

P Cilk-P Pthreads TBB Cilk-P Pthreads TBB Cilk-P Pthreads TBB

1 432.4 430.0 432.7 1.01 1.01 1.00 1.00 1.00 1.00
2 220.4 212.2 223.8 1.97 2.05 1.94 1.96 2.03 1.93
3 146.9 140.8 147.0 2.96 3.09 2.96 2.94 3.05 2.94
4 111.5 106.0 111.8 3.90 4.10 3.89 3.88 4.06 3.87
5 89.2 89.9 90.8 4.87 4.83 4.79 4.85 4.78 4.77
6 74.8 73.8 76.1 5.81 5.88 5.71 5.78 5.82 5.67
7 64.7 64.2 65.9 6.71 6.76 6.59 6.68 6.70 6.57
8 57.3 57.0 57.7 7.58 7.62 7.53 7.54 7.54 7.50
9 51.1 49.8 52.9 8.50 8.72 8.34 8.46 8.64 8.31
10 46.4 45.5 47.3 9.36 9.55 9.19 9.32 9.46 9.16
11 42.5 41.7 43.2 10.22 10.41 10.05 10.18 10.30 10.01
12 39.4 38.6 40.0 11.03 11.26 10.85 10.98 11.15 10.81
13 36.6 37.2 37.6 11.87 11.67 11.54 11.82 11.55 11.49
14 34.4 35.0 35.3 12.64 12.41 12.29 12.58 12.28 12.25
15 32.2 32.9 33.5 13.48 13.19 12.96 13.42 13.06 12.91
16 30.7 31.3 31.8 14.17 13.89 13.67 14.07 13.75 13.61

Figure 7-10: Performance comparison of the three ferret implementations running on the AMD
Opteron system. The experiments were conducted using native, the largest input data set that
comes with the PARSEC benchmark suite.4 The left-most column shows the number of cores used
(P). Subsequent columns show the running time (TP), speedup (TS/TP) over serial running time
TS = 434.4 seconds, and scalability (T1/TP) for each system. The throttling limit was K = 10P .

a settable parameter that serves the same purpose as Cilk-P’s throttling limit. For the
Pthreaded implementations, we throttled the computation by setting a size limit on the
queues between stages, although we did not impose a queue size limit on the last stage of
dedup (the default limit is 220), since doing so causes the program to deadlock.

Figures 7-10 through 7-12 show the performance results for the different implementations
of the three benchmarks running on the AMD Opteron system. Each data point in the study
was computed by averaging the results of 10 runs. The standard deviation of the numbers
was less than 5% for a majority of the data points, except for a couple outliers for which the
standard deviation was about 10%. We suspect that the superlinear scalability obtained for
some measurements is due to the fact that more L1- and L2-cache is available when running
on multiple cores.

The tables from Figures 7-10 and 7-11 show that the Cilk-P and TBB implementations of
ferret and dedup are comparable, indicating that there is no performance penalty incurred by
these applications for using the more general on-the-fly pipeline instead of a construct-and-
run pipeline. Recall that both Cilk-P and TBB execute using a bind-to-element approach.

The dedup performance results (Figure 7-11) for Cilk-P and TBB are inferior to those for
Pthreads, however. The Pthreaded implementation scales to about 8.5 on 16 cores, whereas
Cilk-P and TBB seem to plateau at around 6.7. There appear to be two reasons for this
discrepancy.

First, the dedup benchmark on the test input has limited parallelism. We modified
the Cilkview scalability analyzer [180] to measure the work and span of our hand-compiled
Cilk-P dedup programs, and we measured the parallelism of dedup to be merely 7.4. The

4We dropped four out of the 3500 input images from the original native data set, because those images
are black-and-white, which trigger an array index out of bound error in the image library provided.

170

Processing Time (TP) Speedup (TS/TP) Scalability (T1/TP)

P Cilk-P Pthreads TBB Cilk-P Pthreads TBB Cilk-P Pthreads TBB

1 56.4 51.7 55.9 1.04 1.13 1.05 1.00 1.00 1.00
2 29.5 23.5 29.5 1.99 2.49 1.98 1.91 2.20 1.89
3 20.1 15.8 20.4 2.91 3.71 2.88 2.80 3.28 2.75
4 15.8 12.4 16.1 3.71 4.73 3.64 3.57 4.17 3.47
5 13.5 11.3 13.7 4.33 5.19 4.28 4.16 4.58 4.09
6 11.9 10.5 12.1 4.92 5.56 4.85 4.73 4.90 4.63
7 10.8 9.5 11.0 5.42 6.18 5.33 5.22 5.45 5.09
8 10.1 8.6 10.2 5.82 6.81 5.73 5.61 6.01 5.48
9 9.5 7.6 9.6 6.15 7.69 6.09 5.92 6.79 5.81
10 9.1 7.1 9.2 6.42 8.28 6.35 6.18 7.31 6.07
11 8.8 6.8 9.0 6.65 8.61 6.54 6.40 7.59 6.24
12 8.6 6.7 8.8 6.80 8.75 6.67 6.54 7.72 6.37
13 8.5 6.7 8.7 6.93 8.80 6.76 6.67 7.76 6.46
14 8.3 6.5 8.6 7.04 9.04 6.79 6.78 7.98 6.49
15 8.3 6.2 8.6 7.08 9.48 6.84 6.82 8.37 6.54
16 8.2 6.0 8.5 7.12 9.76 6.88 6.85 8.61 6.57

Figure 7-11: Performance comparison of the three dedup implementations running on the AMD
Opteron system. The experiments were conducted using native, the largest input data set that
comes with the PARSEC benchmark suite. The column headers are the same as in Figure 7-10. The
serial running time TS was 58.6 seconds. The throttling limit was K = 4P .

bind-to-stage Pthreaded implementation creates a pipeline with a different structure from
the bind-to-element Cilk-P and TBB versions, which enjoys slightly more parallelism.

Second, since file I/O is the main performance bottleneck for dedup, the Pthreaded im-
plementation effectively benefits from oversubscription and its strategic allocation of threads
to stages. Specifically, since the first and last stages perform file I/O, which is inherently
serial, the Pthreaded implementation dedicates one thread to each of these stages, but ded-
icates multiple threads to the other compute-intensive stages. While the writing thread is
performing file I/O to write data out to the disk, the OS can deschedule it, allowing the
compute-intensive threads to be scheduled. This behavior explains how the Pthreaded im-
plementation scales by more than a factor of P for P = 1–4, even though the computation
is restricted to only P cores using taskset. Moreover, when we ran the Pthreaded imple-
mentation without throttling on a single core, the computation ran about 20% faster than
the original serial implementation of dedup. This performance boost might be explained by
the computation and file I/O operations are effectively overlapped. Oversubscription with
throttling, meanwhile, improves the performance of the Pthreaded implementation because
throttling appears to inhibit threads working on stages that are further ahead, allowing
threads working on heavier stages to obtain more processing resources, thereby balancing
the load.

Figures 7-13 through 7-15 show the performance results for the different implementations
of the three benchmarks running on the Intel Xeon system. For each benchmark, the relative
performance between the three implementations follows similar trends as in the results for
the AMD Opteron system.

The results from the two systems differ in the following ways. First, the serial running
time across implementations for each benchmark is about 2–3 times faster on the Intel Xeon
system than on the AMD Opteron system. This discrepancy of serial running times can be
explained by the fact that the Intel Xeon processors have higher clock frequency and that the

171

Encoding Time (TP) Speedup (TS/TP) Scalability (T1/TP)

P Cilk-P Pthreads Cilk-P Pthreads Cilk-P Pthreads

1 211.1 219.8 1.04 0.99 1.00 1.00
2 99.1 103.5 2.21 2.11 2.13 2.12
3 65.3 67.8 3.35 3.22 3.23 3.24
4 49.6 51.6 4.40 4.23 4.25 4.26
5 40.9 42.0 5.34 5.21 5.16 5.24
6 34.4 35.8 6.35 6.11 6.13 6.14
7 29.9 31.5 7.31 6.94 7.06 6.98
8 26.7 28.5 8.20 7.66 7.92 7.70
9 23.9 25.8 9.13 8.49 8.82 8.53
10 22.0 23.0 9.92 9.50 9.58 9.55
11 20.5 21.0 10.68 10.41 10.31 10.47
12 19.1 19.5 11.47 11.18 11.07 11.25
13 18.0 18.7 12.12 11.69 11.70 11.76
14 17.1 17.4 12.82 12.56 12.38 12.63
15 16.4 16.5 13.34 13.21 12.88 13.28
16 15.8 16.0 13.81 13.67 13.34 13.75

Figure 7-12: Performance comparison between the Cilk-P implementation and the Pthreaded
implementation of x264 (encoding only) running on the AMD Opteron system. The experiments
were conducted using native, the largest input data set that comes with the PARSEC benchmark
suite. The column headers are the same as in Figure 7-10. The serial running time TS was 218.6
seconds. The throttling limit was K = 4P .

system overall has more memory. In addition, the memory bandwidth on the Intel system
is about 2–3 times higher than on the AMD system5, depending on the data size accessed
by the computation. Second, as shown in Figure 7-14, we observed less speedup from
dedup across the three implementations on the Intel system than on the AMD system. The
reason for this reduced speedup is because the number of last-level cache misses is increased
substantially on the Intel system between a serial execution and a parallel execution. This
increase in number of cache misses causes the time spent in the user code to double when
running on 16 processors compared with running serially. The AMD system, on the other
hand, does not appear to exhibit the same cache behavior. We are unsure of what exactly
creates this discrepancy in cache behavior between the two systems, but our measurements
suggest that these additional cache misses come mostly from the compress library used by
dedup, for which we lack the source code.

In summary, Cilk-P performs comparably to TBB while admitting more expressive se-
mantics for pipelines. Cilk-P also performs comparably to the Pthreaded implementations
of ferret and x264 , although its bind-to-element strategy seems to suffer on dedup com-
pared to the bind-to-stage strategy of the Pthreaded implementation. Despite losing the
dedup “bake-off,” Cilk-P’s strategy has the significant advantage that it allows pipelines to
be expressed as deterministic programs. In contrast, the Pthreaded pipelines are inherently
nondeterministic, which complicates their debugging and maintenance.

Evaluation of dynamic dependency folding

We also studied the effectiveness of dynamic dependency folding. Since the PARSEC bench-
marks are too coarse grained to permit such a study, we implemented a synthetic benchmark,

5We measured the memory latencies using version 3.0-a9 of lmbench [279].

172

Processing Time (TP) Speedup (TS/TP) Scalability (T1/TP)

P Cilk-P Pthreads TBB Cilk-P Pthreads TBB Cilk-P Pthreads TBB

1 153.2 152.5 151.5 1.04 1.04 1.05 1.00 1.00 1.00
2 77.5 89.7 77.0 2.05 1.77 2.06 1.98 1.70 1.97
3 51.8 56.9 53.5 3.07 2.79 2.97 2.96 2.68 2.83
4 39.9 42.8 40.0 3.99 3.72 3.98 3.84 3.57 3.79
5 32.3 34.4 32.5 4.93 4.63 4.89 4.75 4.44 4.66
6 27.4 29.7 27.6 5.81 5.36 5.75 5.59 5.14 5.48
7 23.5 25.7 24.0 6.76 6.18 6.61 6.51 5.93 6.30
8 21.0 22.7 21.3 7.57 7.00 7.45 7.29 6.72 7.10
9 19.0 21.8 19.4 8.37 7.31 8.20 8.07 7.01 7.81
10 17.3 18.8 17.8 9.19 8.46 8.94 8.86 8.11 8.52
11 15.8 17.3 16.4 10.05 9.20 9.68 9.68 8.82 9.23
12 14.7 15.8 15.3 10.81 10.08 10.37 10.42 9.67 9.88
13 13.8 14.6 14.5 11.52 10.88 10.98 11.10 10.43 10.47
14 13.0 13.7 13.8 12.20 11.64 11.56 11.76 11.17 11.02
15 12.2 12.9 13.1 12.98 12.30 12.15 12.51 11.80 11.58
16 11.6 12.2 12.5 13.77 13.02 12.70 13.26 12.48 12.10

Figure 7-13: Performance comparison of the three ferret implementations running on the Intel
Xeon system. The experiments were conducted using native, and the column headers are the same
as in Figure 7-10. The serial running time TS was 159.0 seconds. The throttling limit was K = 10P .

called pipe-fib, to study this optimization technique. The pipe-fib benchmark computes the
nth Fibonacci number F

n

in binary. It uses a pipeline algorithm that operates in ⇥(n2) work
and ⇥(n) span. To construct the base case, pipe-fib allocates three arrays of size ⇥(n) and
initializes the first two arrays with the binary representations of F1 and F2, both of which
are 1. To compute F3, pipe-fib performs a ripple-carry addition on the two input arrays and
stores the sum into the third output array. To compute F

n

, pipe-fib repeats the addition
by rotating through the arrays for inputs and output until it reaches F

n

. In the pipeline
for this computation, each iteration i computes F

i+2, and a stage j within the iteration
computes the jth bit of F

i+2. Since the benchmark stops propagating the carry bit as soon
as possible, it generates a triangular pipeline dag in which the number of stages increases
with iteration number. Given that each stage in pipe-fib starts with a pipe_stage_wait,
and each stage contains little work, it serves as an excellent microbenchmark to study the
overhead of pipe_stage_wait.

Figure 7-16 shows the performance results6 on the AMD Opteron system, obtained by
running the ordinary pipe-fib with fine-grained stages, as well as pipe-fib-256 , a coarsened
version of pipe-fib in which each stage computes 256 bits instead of 1. As the data in the first
row show, even though the serial overhead for pipe-fib without coarsening is merely 13%,
it fails to scale and exhibits poor speedup. The reason is that checking for dependencies
due to cross edges has a relatively high overhead compared to the little work in each fine-
grained stage. As the data for pipe-fib-256 in the second row show, coarsening the stages
improves both serial overhead and scalability. Ideally, one would like the system to coarsen
automatically, which is what dynamic dependency folding effectively achieves.

Further investigation revealed that the time spent checking for cross edges increases no-
ticeably when the number of workers increases from 1 to 2. It turns out that when iterations
are run in parallel, each check for a cross-edge dependency necessarily incurs a true-sharing

6Figure 7-16 shows the results from runs with a single input size, but these data are representative of
other runs with different input sizes.

173

Processing Time (TP) Speedup (TS/TP) Scalability (T1/TP)

P Cilk-P Pthreads TBB Cilk-P Pthreads TBB Cilk-P Pthreads TBB

1 29.6 29.2 30.1 1.01 1.02 0.99 1.00 1.00 1.00
2 18.0 14.6 21.1 1.65 2.03 1.41 1.64 2.00 1.43
3 12.8 10.0 18.6 2.32 2.96 1.60 2.30 2.92 1.62
4 10.4 8.2 15.7 2.85 3.62 1.89 2.83 3.56 1.92
5 9.3 7.5 15.4 3.20 3.95 1.94 3.19 3.89 1.96
6 8.5 8.0 14.5 3.48 3.71 2.05 3.46 3.65 2.08
7 8.0 7.2 13.7 3.70 4.12 2.17 3.68 4.05 2.20
8 7.6 6.5 13.9 3.89 4.55 2.13 3.86 4.48 2.16
9 7.5 7.2 13.3 3.94 4.13 2.24 3.92 4.06 2.27
10 7.5 6.7 12.5 3.95 4.42 2.38 3.93 4.35 2.41
11 7.6 7.1 12.1 3.91 4.17 2.45 3.89 4.10 2.49
12 7.8 7.3 11.2 3.81 4.05 2.65 3.79 3.98 2.69
13 8.1 7.5 11.1 3.67 3.97 2.68 3.65 3.90 2.72
14 8.5 7.8 11.0 3.50 3.84 2.70 3.48 3.77 2.74
15 8.8 8.8 10.4 3.38 3.36 2.85 3.36 3.30 2.89
16 9.3 9.1 10.4 3.21 3.26 2.86 3.19 3.20 2.90

Figure 7-14: Performance comparison of the three dedup implementations running on the Intel
Xeon system. The experiments were conducted using native, and the column headers are the same
as in Figure 7-10. The serial running time TS was 29.7 seconds. The throttling limit was K = 10P
for Cilk-P and TBB, and 4P for Pthreads, because the Cilk-P and TBB implementations performed
better with throttling limit of 10P than 4P , whereas the Pthreaded implementation was the other
way around.

conflict between the two adjacent active iterations, in which parallel workers simultaneously
access the same shared memory location. Dynamic dependency folding eliminated much of
this overhead for pipe-fib, as shown in the third row of Figure 7-16, leading to scalability
that is much closer to the coarsened version without the optimization, although a slight
price is still paid in speedup. Employing both optimizations, as shown in the last row of the
table, produces the best numbers for both speedup and scalability.

We have done a similar performance study on the Intel Xeon system, and the relative
performance of pipe-fib and pipe-fib-256 , with and without dependency folding, show similar
trends as in the results on the AMD system. The parallel running times on the Intel system
are affected more by the cache misses due to false sharing on the three arrays, in which
parallel workers access different locations in these arrays that happen to lie in the same
cache line. This false sharing causes dependency folding to produce less speedup for pipe-fib
on the Intel system, specifically, a speedup of 8.8. This false-sharing effect disappears if
pipe-fib is modified to employ a larger data type for the array and is coarsened slightly.

In this section, we have empirically evaluated the performance and scalability of the
Cilk-P prototype system. Provided that the application has ample parallelism, such as
in the case of ferret and x264 , Cilk-P demonstrates good scalability on machines that we
tested, which each contain 16 cores. One might wonder, can one expect Cilk-P to continue to
scale as future multicore systems contain increasingly more cores? Since Cilk-P implements
Piper, its provably good time bound predicts near-linear speedup assuming the application
contains ample parallelism. Due to scheduling overhead, however, one would not expect
an application to scale linearly up to T1/T1 processors, even though theory predicts that
the application could use that many processors. The question then becomes how much
parallelism is considered ample for the application to scale linearly with respect to the

174

Encoding Time (TP) Speedup (TS/TP) Scalability (T1/TP)

P Cilk-P Pthreads Cilk-P Pthreads Cilk-P Pthreads

1 95.1 95.2 1.02 1.02 1.00 1.00
2 49.4 51.9 1.97 1.87 1.93 1.83
3 33.4 35.5 2.91 2.73 2.85 2.68
4 25.5 27.9 3.82 3.48 3.74 3.41
5 20.8 22.6 4.66 4.30 4.56 4.21
6 17.5 19.6 5.53 4.97 5.42 4.86
7 15.3 16.9 6.36 5.74 6.22 5.62
8 13.4 14.9 7.24 6.50 7.08 6.37
9 12.2 13.4 7.97 7.26 7.80 7.11
10 11.1 12.1 8.73 8.01 8.55 7.84
11 10.4 11.0 9.37 8.83 9.17 8.65
12 9.6 10.2 10.07 9.54 9.85 9.34
13 9.2 9.5 10.55 10.21 10.32 10.00
14 8.8 9.0 11.04 10.80 10.80 10.58
15 8.3 8.6 11.68 11.34 11.43 11.12
16 8.0 8.3 12.08 11.77 11.82 11.53

Figure 7-15: Performance comparison between the Cilk-P implementation and the Pthreaded
implementation of x264 (encoding only) running on the Intel Xeon system. The experiments were
conducted using native, and the column headers are the same as in Figure 7-10. The serial running
time TS was 97.1 seconds. The throttling limit was K = 10P for Cilk-P and 4P for Pthreads,
because the Cilk-P implementation performed better with throttling limit of 10P than 4P , whereas
the Pthreaded implementation was the other way around.

Dependency Serial Speedup Scalability
Program Folding TS T1 T16 Overhead TS/T16 T1/T16

pipe-fib no 20.7 23.5 4.7 1.13 4.40 4.98
pipe-fib-256 no 20.7 21.7 1.7 1.05 12.32 12.90
pipe-fib yes 20.7 21.7 1.8 1.04 11.65 12.17
pipe-fib-256 yes 20.7 21.7 1.7 1.05 12.43 13.02

Figure 7-16: Performance evaluation using the pipe-fib benchmark on the AMD Opteron system.
We tested the Cilk-P system with two different programs, the ordinary pipe-fib, and pipe-fib-256 ,
which is coarsened. Each program is tested with and without the dynamic dependency folding
optimization. For each program for a given setting, we show the running time of its serial counter
part (TS), running time executing on a single worker (T1), on 16 workers (T16), its serial overhead,
scalability, and speedup obtained running on 16 workers.

number of processors. Unfortunately the answer depends on the architecture, since it is
dictated by, for example, how much additional bookkeeping is necessary to enable parallel
execution and how many cache misses are incurred due to data migration on a successful
steal. Nevertheless, we believe that applications written in Cilk-P should generally scale as
well as applications with comparable parallelism written using the baseline Cilk, since the
additional work that the runtime performs for pipeline parallelism is within a small constant
factor of the original scheduling overhead. Applications in Cilk-P also incur overhead in the
form of cache misses to check cross edges. This overhead is akin to the spawn overhead in
that one can amortize the overhead against the work done within the stage corresponding
to the cross edge. Thus, as long as each stage contains substantial amount of work, this
overhead should not impede scalability.

175

7.11 Pipeline throttling

What impact does throttling have on theoretical performance? Piper relies on throttling
to achieve its provable space bound and avoid runaway pipelines. Ideally, the user should
not worry about throttling, and the system should perform well automatically, and indeed,
Piper’s throttling of a pipeline computation is encapsulated in Cilk-P’s runtime system.
But what price is paid?

We can pose this question theoretically in terms of a pipeline computation G’s un-
throttled dag : the dag bG = (V, bE) with the same vertices and edges as G, except without
throttling edges. How does adding throttling edges to an unthrottled dag affect span and
parallelism?

The following two theorems provide two partial answers to this question. We first con-
sider uniform pipelines, which contain no hybrid stages and in which, for each stage j,
node (i, j) is nearly identical across all iterations i. For uniform pipelines, we show that
throttling does not affect the asymptotic performance of Piper executing bG.

Theorem 51 Let bG = (V, bE) denote the unthrottled pipeline computation dag for a uniform
linear pipeline program, and consider the execution of this program by Piper on P processors
with a throttling limit of K = aP for some constant a > 1. Let cT1 and cT1 denote the work
and span, respectively, of bG. Then, for some sufficiently large constant x, the expected
running time is T

P

 (1+c/a)cT1/P +ccT1, and for any ✏ > 0, with probability at least 1� ✏,
the running time is T

P

 (1 + c/a)cT1/P + c(cT1 + lgP + lg(1/✏)).

Proof. For convenience, let us suppose that each stage has exactly the same cost in every
iteration. It is straightforward to generalize the result such that the cost of a stage can vary
by a constant amount between iterations.

We first establish some notation. Let n denote the number of iterations in bG, and let m
denote the number of stages in each iteration. Let W be the total work in each iteration. We
assume that W includes the work performed within each stage in an iteration as well as the
cost incurred to check any cross-edge dependencies from the previous iteration. Similarly,
let S be the work of the most expensive serial stage in an iteration.

We can bound the work and span of bG. The work of bG is cT1 = nW . Meanwhile, any
longest path from the beginning of any node (i, 0) to the end of any node (i + x,m � 1)
has cost W + xS. In particular, any path connecting these nodes is represented by some
interleaving of m vertical steps and x horizontal steps. For any path, the work of all vertical
steps is exactly W , since the vertical steps must execute each stage 0 through m�1. Each of
the x horizontal steps, meanwhile, executes exactly one serial stage, whose cost is at most S.
Consequently, the length of any longest path from (i, 0 to (i+ x,m� 1) is at most W + xS,
and therefore the length of a longest path from (0, 0) to (n� 1,m� 1) is cT1 = W + nS.

Now we bound the work T1 and the span T1 of the throttled dag G in terms of the
work and span of the unthrottled dag bG. Because G adds n�K zero-cost throttling edges
to bG, we have T1 = cT1; the work remains the same. The throttling edges can increase
the span, however. Consider a critical path ` through G, which has cost T1. Suppose
this path ` contains � 0 throttling edges. Label the throttling edges along ` in order
of increasing iteration number, with throttling edge k connecting the node terminal of (the
subdag corresponding to the execution of node) (i

k

,m�1) to the node root of (i
k

+K, 0), for
1 k . Removing all throttling edges from ` splits ` into +1 segments `0, `1, . . . , `.
More precisely, let `0 denote the path from the beginning of node (0, 0) to the end of
(i1,m� 1), and let `

k

denote the path from the beginning of node (i
k

+K, 0) to the end of

176

(i
k+1,m� 1), where i

+1 = n� 1. By our previous result, the cost of `0 is W + (i1 + 1)S,
and the cost of each segment `

k

is W + (i
k+1 � i

k

�K)S. We thus have that T1, which is
the total cost of `, satisfies

T1 = W + (i1 + 1)S +
X

k=1

(W + (i
k+1 � i

k

�K)S)

= W + W + (i
+1 + 1)S � KS

= W + W + (n� K)S

= W + nS + (W �KS)

= cT1 + (W �KS) .

A cut-and-paste argument shows that throttling edges in G can only increase the span if we
have W > KS; otherwise, one can create an equivalent or longer path by going horizontally
through K copies of the most expensive stage, rather than down an iteration i, and across
a throttling edge that skips to the beginning of iteration i+K.

We now combine these bounds on T1 and T1 with Theorem 49. We describe the analysis
of the high-probability bound; the expectation bound follows similarly.

From Theorem 49, we know that, with probability 1� ✏, Piper executes G in time

T
P

 T1

P
+ c (T1 + lgP + lg(1/✏))

=
cT1

P
+ c(cT1 + lgP + lg(1/✏)) + c(W �KS) .

If = 0, then the extra c(W �KS) term is 0, giving the desired bound. Otherwise, assume
 > 0. Since every throttling edge skips ahead K iterations, we know that the critical path
uses at most < n/K throttling edges. Using this bound for and letting K = aP for
some constant a > 1, we can rewrite the expression for T

P

as

T
P

cT1

P
+ c(cT1 + lgP + lg(1/✏)) +

cn

aP
(W � aPS)

=
cT1

P
+ c(cT1 + lgP + lg(1/✏)) +

⇣ c
a

⌘✓nW

P

◆✓
1� aPS

W

◆

=
cT1

P
+ c(cT1 + lgP + lg(1/✏)) +

⇣ c
a

⌘ cT1

P

!✓
1� aPS

W

◆

=

✓
1 +

c

a

✓
1� aPS

W

◆◆ cT1

P
+ c(cT1 + lgP + lg(1/✏)) .

The theorem follows from the fact that, for throttling edges to be included in a critical path,
we must have W � KS, and therefore W � aPS.

Second, we consider nonuniform pipelines, where the cost of a node (i, j) can vary
across iterations. It turns out that nonuniform pipelines can pose performance problems,
not only for Piper, but for any scheduler that uses a small amount of space. Figure 7-
17 illustrates the dag for a pathological nonuniform pipeline for any scheduler that uses
throttling. In this dag, T1 work is distributed across (T 1/3

1 + T 2/3
1)/2 iterations such that

any T 1/3
1 + 1 consecutive iterations consist of 1 heavy iteration, with T 2/3

1 work, and T 1/3
1

177

...

(T1
2/3 + T1

1/3)/2
T1

1/3 + 1 T1
1/3 + 1 T1

1/3 + 1

...

Figure 7-17: Sketch of the pathological unthrottled linear pipeline dag, which can be used to prove
Theorem 52. Small circles represent nodes with unit work, medium circles represent nodes with
T 1/3
1 � 2 work, and large circles represent nodes with T 2/3

1 � 2 work. The number of iterations per
cluster is T 1/3

1 + 1, and the total number of iterations is (T 2/3
1 + T 1/3

1)/2.

light iterations of T 1/3
1 work each. Intuitively, achieving a speedup of 3 on this dag requires

having at least 1 heavy iteration and ⇥(T 1/3
1) light iterations active simultaneously, which

is impossible for any scheduler that uses a throttling limit of K = o(T 1/3
1). The following

theorem formalizes this intuition.

Theorem 52 Let bG = (V, bE) denote the nonuniform unthrottled linear pipeline computa-
tion dag shown in Figure 7-17, with work T1 and span T1 2T 2/3

1 . Let S1 denote the
optimal stack-space usage when bG is executed on 1 processor. Any P -processor execu-
tion of bG that achieves T

P

 T1/⇢, where ⇢ satisfies 3 ⇢ O(T1/T1), uses space
S
P

� S1 + (⇢� 2)T 1/3
1 /2.

Proof. Consider the pipeline computation shown in Figure 7-17. Suppose that a scheduler
executing the pipeline dag requires S1 + x� 1 space to execute x iterations of the pipeline
simultaneously, that is, S1 � 1 stack space to execute the function containing the pipeline,
plus unit space per pipeline iteration the scheduler executes in parallel. Consequently, the
scheduler executes the pipeline serially using S1 space, and incurs an additional unit space
overhead per pipeline iteration it executes in parallel. Furthermore, suppose that each node
is a serial computation, that is, no nested parallelism exists in the nodes of Figure 7-17.

Consider a time step during which the scheduler is executing instructions from k heavy
iterations in parallel. Because stage 0 of the pipeline in Figure 7-17 is serial, to execute
instructions from k heavy iterations in parallel requires executing the node for stage 0 in at
least (k � 1)T 1/3

1 + 1 consecutive iterations. Because stage 2 is serial, the scheduler must
have executed stage 0, but not stage 2, for at least (k� 1)T 1/3

1 +1 iterations. Consequently,
the scheduler requires at least S

P

� S1 + (k � 1)T 1/3
1 stack space to execute instructions

from k heavy iterations in parallel.
We now bound the number k of heavy iterations the scheduler must execute in parallel to

achieve a speedup of ⇢. The total time T
P

the scheduler takes to execute the instructions of
the pipeline in Figure 7-17 is at least the total time it takes to execute all T 2/3

1 ·T 1/3
1 /2 = T1/2

instructions in heavy iterations. Assuming the scheduler executes instructions from k heavy
iterations simultaneously on each time step it executes any instruction from a heavy iteration,
we have T

P

� T1/(2k). Rearranging terms gives us that k � T1/(2TP

) = ⇢/2.
Combining these bounds shows that the scheduler requires at least S

P

� S1 + (⇢ �
2)T 1/3

1 /2 space to achieve a speedup of ⇢ when executing the pipeline in Figure 7-17.
Intuitively, these two theorems present two extremes of the effect of throttling on pipeline

dags. One interesting avenue for research is to determine what are the minimum restrictions
on the structure of an unthrottled linear pipeline G that would allow a scheduler to achieve
parallel speedup on P processors using a throttling limit of only ⇥(P).

178

7.12 Conclusion

This chapter introduces Cilk-P, a system that extends the Cilk parallel-programming model
to support on-the-fly pipeline parallelism. In this chapter, we describe new language con-
structs — the pipe_while loop and the pipe_stage_wait and pipe_stage statements —
that extend fork-join parallel languages such as Cilk to support on-the-fly pipeline paral-
lelism. Cilk-P thus supports principled approaches to writing programs that exhibit pipeline
parallelism. We present Piper, a work-stealing scheduler that executes computations con-
taining pipe_while loops in a provably time- and space-efficient manner. We have incor-
porated these linguistics and the scheduler into a prototype Cilk-P implementation. We
demonstrate effectiveness of Cilk-P in practice by parallelizing three benchmarks from the
PARSEC suite using our Cilk-P prototype and showing that these implementations are com-
petitive with alternative versions coded using TBB or Pthreads. In particular, we show that
pipe_while loops are expressive enough for parallelizing x264 , a benchmark with a compli-
cated pipelining structure which is difficult to express using the pipeline model supported
by TBB. By employing an efficient implementation of Piper, our Cilk-P prototype thus
supports a theory of performance for pipeline programs that is borne out in practice. Cilk-P
thus support a scientific approach to writing and reasoning about programs that exhibit
pipeline parallelism.

Our investigation also highlights several limitations of our language constructs, which
represent potential areas for future study. First, because our constructs only allow program-
mers to specify dependencies between consecutive pipe_while loop iterations, it is natural
to ask whether one might extend the loop construct to support more generic pipelines. For
example, one could imagine extending the pipe_stage_wait construct to allow for dependen-
cies on the same stage in multiple preceding iterations, or perhaps even different stages from
preceding iterations. In our study, we chose to limit dependencies to only adjacent iterations
because this limitation simplifies the semantics of the language construct for pipelining and
allows for an efficient implementation. The design of Piper and the lazy enabling optimiza-
tion both depend on the fact that dependencies are only between consecutive iterations. In
a pipe_while loop, when computation of a node in iteration i finishes, the only node in
a future iteration that might be enabled is node in iteration i + 1. Both the runtime im-
plementation and the mathematical analysis become more complicated if nodes in multiple
iterations might be enabled by the completion of node in iteration i. On the other hand,
extending the loop construct to allow dependencies within a constant-sized sliding window
of iterations might be useful for some applications. An interesting open question is whether
one can support a more expressive pipeline loop construct without a significant increase in
complexity in the linguistic interface or runtime implementation.

It might also be interesting to study how pipe_while loops might simplify programs
written using other parallel programming models or runtimes. In this work, we focus on
integrating pipe_while loops with Cilk-like languages, which typically focus on fork-join
parallelism and utilize a work-stealing scheduler. The pipe_while construct itself is agnos-
tic, however, to the scheduling technique used by the underlying runtime. For example,
the semantics of a pipe_while loop should be equally useful for programs written using
OpenMP, which more often than not assume a work-sharing environment. Depending on
the nature of the workload and the available parallelism in the application, alternative
scheduler implementations might improve performance.

Finally, an open question about pipeline parallelism is whether one might be able to
improve the interaction of pipe_while loops with file I/O. For instance, the Pthreaded im-

179

plementation of dedup seems to gain a performance advantage by using a single designated
thread to handle the file I/O. In a dynamic multithreaded language such as Cilk-P, the file
I/O stage for different iterations likely ends up being processed by different workers, because
the runtime does not distinguish between I/O stages and computation stages when schedul-
ing a pipe_while loop. In principle, one might see improved performance if the scheduler
and runtime are aware of the I/O characteristics of pipelines and schedule accordingly.

7.13 Recent developments

Several developments related to this work have occurred since its publication. Intel used
this work on Cilk-P to produce an open-source prototype library that supports “on-the-fly”
pipeline parallelism [379,380]. Dimitrov et al. developed a provably good determinacy-race
detector for programs whose computations can be modeled as a 2D lattice, which includes
Cilk-P programs. With regards to handling expensive I/O operations efficiently, as was
an issue for the dedup benchmark, Muller and Acar presented a randomized work-stealing
scheduler that effectively hides the latency of such operations [291].

180

Chapter 8

The Cilkprof Scalability Profiler

This chapter presents the Cilkprof scalability profiler [346]. This work was conducted in
collaboration with Bradley C. Kuszmaul, I-Ting Angelina Lee, Charles E. Leiserson, and
William M. Leiserson.

8.1 Introduction

When a Cilk multithreaded program fails to attain linear speedup when scaling up to large
numbers of processors, there are four common reasons [180]:
Insufficient parallelism: The program contains serial bottlenecks that inhibit its scala-

bility.
Scheduling overhead : The work that can be done in parallel is too fine grained to be

worth distributing to other processors.
Insufficient memory bandwidth: The processors simultaneously access memory (or a

level of cache) at too great a rate for the bandwidth of the machine’s memory network
to sustain.

Contention: A processor is slowed down by simultaneous interfering accesses to synchro-
nization primitives, such as mutex locks, or by the true or false sharing of cache lines.

Performance engineers can benefit from profiling tools that identify where in their program
code these problems might be at issue, as well as eliminate consideration of code that does
not have issues so that the detective work can be properly focused elsewhere. Profiling
tools measure each part of a program to give performance engineers visibility into where
the program spends its execution time or computing resources. These tools thus enable a
principled approach to finding performance bottlenecks and directing optimization effort.
This chapter introduces a scalability profiler, called Cilkprof, which can help identify the
causes of insufficient parallelism and scheduling overhead in a Cilk multithreaded program.

Cilkprof builds on the approach taken by Cilkview [180], which measures the work and
span of a Cilk computation and reports on its parallelism. To help programmers diagnose
scalability bottlenecks, Cilkview provides an API to control which portions of a Cilk pro-
gram should be analyzed. This API allows a programmer to restrict Cilkview’s analysis by
designating “start” and “stop” points in the code, similarly to the how the programmer can
measure the execution time of various portions of a C program by inserting gettimeofday
calls. But using this API requires the programmer to manually probe portions of the code,
which can be cumbersome and error prone for large and complex codebases, such as code-
bases that contain recursive functions.

181

In contrast, Cilkprof profiles the parallelism, much as gprof [171] profiles execution time.
Unlike gprof, however, which uses asynchronous sampling, and Cilkview, which uses dynamic
binary instrumentation using Pin [267], Cilkprof uses compiler instrumentation (see, for
example, [350,351]) to gather detailed information about a Cilk computation. Conceptually,
during a serial run of an instrumented Cilk program, Cilkprof analyzes every call site , that
is, every location in the code where a function is either called or spawned. It determines how
much of the work and span of the overall computation is attributable to the subcomputation
that begins when the function invoked at that call site is called or spawned and that ends
when that function returns. Cilkprof calculates work and span in terms of processor cycles,
but it can also use other measures such as execution time, instruction count, cache misses,
etc. Cilkprof’s analysis allows a programmer to evaluate the scalability of that call site
— the scalability of the computation attributable to that call site — and how it affects
the overall computation’s scalability. In particular, by embedding work-span analysis into
its evaluation of program scalability, Cilkprof produces a profile whose results conform to
the theory of performance that programmers use to reason about the scalability of Cilk
programs.

Although we implemented Cilkprof to analyze Cilk Plus [196] programs, in principle, the
same tool could be implemented for any of the variants of Cilk, including MIT Cilk [146] or
Cilk++ [246]. More generally, the Cilkprof algorithm could be adapted to profile any parallel
program whose span can be computed during a serial execution. Because Cilkprof runs on a
serial execution of the program under test, it does not capture variations in work and span
that may occur in a nondeterministic program.

Cilkprof can help Cilk programmers quickly identify scalability bottlenecks within their
programs. We used Cilkprof to analyze our implementation of PBFS, an 1800-line code
that is described in Chapter 3. After about two hours of poring over Cilkprof data, we were
able to identify a serial bottleneck within PBFS, fix it, and confirm that our modification
improved parallelism by a factor of 5. Cilkprof allowed us to eliminate insufficient parallelism
as the code’s scalability bottleneck and, thereby, to focus on the real bottleneck, which is
memory bandwidth. Section 8.8 describes this case study.

Efficiently computing the work and span of every call site is harder than it may appear.
Let us consider some simple approaches.

Suppose first that we measure the execution time of every strand and aggregate the
results after the execution completes. Although smaller than the total number of executed
instructions, these data would be huge for many parallel applications, with space rivaling
T1, the normal serial running time of the program being analyzed. The data thus cannot
reasonably be stored for later analysis, and the computation must be performed on the fly.

Intuitively, however, computing these results on the fly poses its own challenges. Be-
cause a strand’s execution affects all the call sites on the call stack, a naive strategy could
potentially blow up the running time to as much as ⇥(DT1), where D is the maximum
depth of the call stack. Of course, if a function f calls another function g, then the profile
for f must include the profile for g. We could therefore compute local profiles for each
function and update the parent with the profile of the child whenever a child returns, but
this strategy could be just as bad or worse than updating each function on the call stack.
If the profile contains S call sites, each function return could involve ⇥(S) work, blowing
up the running time to as much as ⇥(ST1). Furthermore, even if one computed the work
with these methods, computing the span, which is similar to computing the longest path in
a directed acyclic graph, would add considerable complexity to the computation.

182

By using a carefully constructed algorithm and an amortized prof data structure to
represent profiles, Cilkprof computes work and span profiles with remarkable alacrity. The-
oretically, Cilkprof computes the profiles in ⇥(T1) time and O(DS) space, where T1 is the
work of the original Cilk program, D is the maximum call-stack depth, and S is the number
of call sites in the program. In practice, the overheads are strikingly small. We implemented
Cilkprof by instrumenting the Cilk Plus/LLVM compiler [195], a branch of the LLVM com-
piler that contains the Cilk linguistic extensions. On a set of 16 application benchmarks,
Cilkprof incurred a geometric-mean multiplicative slowdown of 1.9 and a maximum slow-
down of 7.4, compared to the uninstrumented serial running times of these benchmarks.

Cilkprof’s measurements seem ample for debugging scalability bottlenecks. Naturally,
the Cilkprof instrumentation introduces some error into measurements of the program under
test. Cilkprof compensates by subtracting estimates of its own overhead from the work and
span measurements it gathers in order to reduce the effects of compiler instrumentation.
Furthermore, it generally suffices to measure the parallelism of a program to within a bi-
nary order of magnitude in order to diagnose whether the program suffers from insufficient
parallelism [180]. The overhead introduced by Cilkprof instrumentation appears to deliver
work and span numbers within this range. Moreover, if one considers the errors in work and
span to be similarly biased, the computation of their ratio, the parallelism, should largely
cancel them.

Cilkprof as described herein does not have a sophisticated user interface. The current
Cilkprof “engine” simply dumps the computed profile to a file in comma-separated-value
format suitable for inputting to a spreadsheet. We view the development of a compelling
user interface for Cilkprof as an open research question.

This chapter makes the following contributions:
• The Cilkprof algorithm for computing the work and span attributable to each call site

in a program, which provably operates with only constant overhead.
• The prof data structure for supporting amortized ⇥(1)-time updates to profiles.
• An implementation of Cilkprof which runs with little slowdown compared to the unin-

strumented program under test.
• Two case studies — parallel quicksort and parallel breadth-first search of a graph —

demonstrating how Cilkprof can be used to diagnose scalability bottlenecks.
This remainder of this chapter is organized as follows. Section 8.2 illustrates how the

profile data computed by Cilkprof can help to analyze the scalability of a simple parallel
quicksort program. Sections 8.3 and 8.4 describe how the Cilkprof algorithm works and
proves that Cilkprof incurs ⇥(1) amortized overhead per program instruction. Section 8.5
presents an implementation of the prof data structure and shows that profile statistics
can be updated in ⇥(1) amortized time. Section 8.6 describes the profile of work and
span measurements that Cilkprof computes for a Cilk program. Section 8.7 overviews the
implementation of Cilkprof and analyzes its empirical performance. Section 8.8 describes
how Cilkprof was used to diagnose a scalability bottleneck in PBFS. Section 8.9 discusses
Cilkprof’s relationship to related work, and Section 8.10 provides some concluding remarks.

8.2 Parallel quicksort

This section illustrates the usefulness of Cilkprof by means of a case study of a simple
parallel quicksort program coded in Cilk. Although the behavior of parallel quicksort is
well understood theoretically, the profile data computed by Cilkprof allows a programmer

183

01 int partition(long array[], int low, int high) {
02 long pivot = array[low + rand(high - low)];
03 int l = low - 1;
04 int r = high;
05 while (true) {
06 do { ++l; } while (array[l] < pivot);
07 do { --r; } while (array[r] > pivot);
08 if (l < r) {
09 long tmp = array[l];
10 array[l] = array[r];
11 array[r] = tmp;
12 } else {
13 return (l == low ? l + 1 : l);
14 }
15 }
16 }
17

18 void pqsort(long array[], int low, int high) {
19 if (high - low < COARSENING) {
20 // base case: sort using insertion sort
21 } else {
22 int part = partition(array, low, high);
23 cilk_spawn pqsort(array, low, part);
24 pqsort(array, part, high);
25 cilk_sync;
26 }
27 }
28

29 int main(int argc, char *argv[]) {
30 int n;
31 long *A;
32 // parse arguments
33 // initialize array A of size n
34 pqsort(A, 0, n);
35 // do something with A
36 return 0;
37 }

Figure 8-1: Cilk code for a parallel quicksort that sorts an array of 64-bit integers. The variable
COARSENING is a constant defining the maximum number of integers to sort in the base case. We
used COARSENING=32.

to diagnose quicksort’s partitioning subroutine as serial bottleneck without understanding
the theoretical analysis.

Figure 8-1 shows the Cilk code for a quicksort [186] program that has been parallelized
using the Cilk parallel keywords cilk_spawn and cilk_sync. The cilk_spawn on line 23
spawns the recursive call to pqsort, allowing this pqsort instantiation to execute in parallel
with the recursive call to pqsort on line 24. In principle, the call to pqsort on line 24 could
also have been spawned, but since the continuation of that call does nothing but synchronize
the children, spawning the call would not increase the parallelism and would increase the
overhead. The cilk_sync on line 25 ensures that the computation performed by the spawn
on line 23 finishes before pqsort returns.1

Parallel quicksort provides a good example to illustrate what Cilkprof does, because its
behavior is well understood theoretically. With high probability, pqsort performs ⇥(n log n)
work to sort an array of n elements. The call to partition in line 22 performs ⇥(n) work

1Although the cilk_sync on line 25 is not strictly necessary, because functions in Cilk automatically sync
when they return, we include the cilk_sync in this code to clarify when pqsort syncs.

184

Line T1 T1 T1/T1

22 408,150,528 408,150,528 1.0
23 741,312,781 116,591,841 6.4
24 761,041,165 125,360,000 6.1
34 790,518,060 141,902,681 5.6

Figure 8-2: A subset of the on-work profile that Cilkprof reports for running the parallel quicksort
code in Figure 8-1 to sort an array of 10 million random 64-bit integers. The on-work profile records
data for all instantiations in the computation. For each call site, the “T1” column gives the sum of
the work of all invocations of that call site, and the “T1” column gives the sum of the spans of those
invocations. The “T1/T1” column gives the parallelism of each call site, as computed from the “T1”
and “T1” values for that call site. All times are measured in nanoseconds.

Line T1 T1 T1/T1 Local T1 Local T1

22 141,891,291 141,891,291 1.0 141,891,291 141,891,291
23 597,298,216 98,119,730 6.1 4,340 3,823
24 691,808,220 118,447,199 5.8 7,068 6,682
34 790,518,060 141,902,681 5.6 885 885

Figure 8-3: A subset of the on-span profile that Cilkprof reports for running the parallel quicksort
code in Figure 8-1 to sort an array of 10 million random 64-bit integers. The on-span profile records
data only for instantiations that fall on the critical path of the computation. For each call site, the
“T1,” “T1” and “T1/T1” columns are similar to their on-work counterparts, shown in Figure 8-2.
The “Local T1” column contains, for each call site, the cumulative work of all invocations of that
call site on the critical path, excluding all work in children of the instantiated function. The “Local
T1” column is similar, except that it presents the cumulative span. All times are measured in
nanoseconds.

to partition an array of n elements and is a major contributor to the critical path of the
computation, precluding pqsort from exhibiting more than O(log n) parallelism. (For a
similar analysis of merge sort, see [100, Ch. 27.3].) A more careful analysis — one that
pays attention to the constants hidden inside the big-Oh — indicates that on an array of
10 million elements, pqsort exhibits a parallelism of approximately ln 106 = 16. To achieve
linear speedup, however, a program should exhibit substantially more parallelism than there
are processors on the machine [146]. This parallel quicksort program has too little parallelism
to keep more than a few processors busy.

Parallel quicksort’s scalability profile

Suppose that we did not already know where the serial bottleneck in the code in Figure 8-1
lies, however. Let us see how we can use Cilkprof to discover that partition is the main
culprit.

Figures 8-2 and 8-3 present an excerpt of the data Cilkprof reports from running pqsort
on an array of 10 million 64-bit integers, cleaned up for didactic clarity. Cilkprof computes
two “profiles” for the computation: an “on-work profile” and an “on-span profile.” Each
profile contains a record of work and span data for each call site in the computation.
A record in the on-work profile (Figure 8-2) accumulates work and span data for every
invocation of a particular call site in the computation. A record in the on-span profile
(Figure 8-3) accumulates work and span data only for the invocations of a particular call
site that appear on the critical path of the computation. Section 8.6 describes precisely
what work and span values each record stores and how Cilkprof accommodates recursive

185

functions.
Let us explore the data in Figures 8-2 and 8-3 to see what these data tell us about the

scalability of this quicksort code. The on-work profile shows us that the work and span of the
computation is dominated by line 34, the instantiation of pqsort from main. The “T1/T1”
value in Figure 8-2 for this line tells us that this call to pqsort exhibits a parallelism of only
5.6, even less than the 16-fold parallelism that our analysis predicted. To see why this call
to pqsort exhibits poor parallelism, we can examine what different call sites contribute to
the span of the computation.

Let us start by examining Cilkprof’s “local T1” data in its on-span profile, Figure 8-3.
Conceptually, the “local T1” for a call site s that calls or spawns a function f specifies
how much of the span comes from instructions executed under s, not including instructions
executed under f’s call sites. For the quicksort code in Figure 8-1, we can observe two
properties of these “local T1” data. First, the sum of the “local T1” values in the on-span
profile (Figure 8-3) for the three call sites in pqsort (lines 22, 23, and 24) and the call to
pqsort from main (line 34) equals the “T1” value in the on-work profile (Figure 8-2) for
the call to pqsort from main. These four call sites therefore account for the entire span of
line 34. Second, line 22 in the on-span profile, the “local T1” of accounts for practically all of
the span of line 34, indicating that line 22 is the parallelism bottleneck for the instantiation
of pqsort from main.

What else does Cilkprof tell us about line 22? The “T1/T1” for line 22 in the on-span
profile shows that all instances of this call site on the critical path are serial. Consequently,
parallelizing this call site is key to improving the parallelism of the computation. From
examining the code, we therefore conclude that we must parallelize partition to improve
the scalability of pqsort, as we expect from our understanding of quicksort’s theoretical
performance. Cilkprof’s data allows the serial bottleneck in quicksort to be identified without
prior knowledge of its analysis.

8.3 Computing work and span

This section describes how Cilkprof computes the work and span of a Cilk computation.
Cilkprof’s algorithm for work and span is based on a similar algorithm from [180]. After
defining some useful concepts, we describe the “work-span” variables used to perform the
computation. We give the algorithm and describe the invariants it maintains. We show that
on a Cilk program under test that executes in T1 work and has stack depth D, Cilkprof’s
work-span algorithm runs in O(T1) time using O(D) extra storage. Section 8.4 will extend
this work-span algorithm to compute profiles.

Definitions

Let us first define some terms. The program under test is a Cilk binary executable containing
a set I of instructions. Some of the instructions in I are functions — they can be called
or spawned — and some are call sites — they call or spawn a function. The (mathematical)
function ' maps a call site to the function in which the call site resides.

When the program is executed serially, it produces a sequence XI of executed instruc-
tions. The function � : XI ! I indicates which instruction i 2 I was executed to produce
a given executed instruction xi 2 XI . A contiguous subsequence of instructions in XI is
called a trace . For a given executed call site xi 2 XI , the trace of xi , denoted Trace(xi), is
the contiguous subsequence of XI starting with xi ’s successor — the first instruction of the

186

F spawns or calls G:
1 G.w = 0
2 G.p = 0
3 G.` = 0
4 G.c = 0

Called G returns to F :
5 G.p += G.c
6 F.w += G.w
7 F.c += G.p

Spawned G returns to F :
8 G.p += G.c
9 F.w += G.w

10 if F.c +G.p > F.`
11 F.` = G.p
12 F.p += F.c
13 F.c = 0

F syncs:
14 if F.c > F.`
15 F.p += F.c
16 else

17 F.p += F.`
18 F.c = 0
19 F.` = 0

F executes an instruction:
20 F.w += 1
21 F.c += 1

Figure 8-4: Pseudocode for Cilkprof’s work-span algorithm. For simplicity, this pseudocode com-
putes work and span by incrementing the work and continuation at each instruction, rather than by
any of several more efficient methods to compute instruction counts.

executed function that was called or spawned — and ending with the corresponding return
from the executed function.

For simplicity, assume that work and span are measured by counting instructions. It
is straightforward to adapt the Cilkprof algorithm to measure work and span in terms of
processor cycles, execution time, or even cache misses and other measures. The work of
a trace T , denoted Work(T), is the number of instructions in T . The span of a trace T ,
denoted Span(T), is the maximum number of instructions along any path of dependencies
from the first instruction in T to the last instruction in T .

Work-span variables

Cilkprof measures the work and span of a Cilk computation in a manner similar to the
Cilkview algorithm [180]. As Cilkprof serially executes the Cilk program under test, it
computes the work and span of each instantiated function.

For each instantiated function F , four work-span variables are maintained in a frame
for F on a shadow stack which is pushed and popped in synchrony with the function-call
stack. Let T denote the trace of F executed so far. The work variable F.w corresponds to
the work on T . The remaining three span variables are used to compute the span of F .
Conceptually, Cilkprof maintains the executed cilk_spawn instruction u in T that, since F
last synced, spawned the child instantiation of F that realizes the span of T . The location u
is not explicitly maintained, however, but the values of the three variables reflect its position
in T . Specifically, the three span variables are defined as follows:

• The prefix F.p stores the span of the trace starting from the first instruction of F
and ending with u. The path that realizes F.p is guaranteed to be on the critical path
of F .

• The longest-child F.` stores the span of the trace from the start of F through the
return of the child that F spawns at u.

• The continuation F.c stores the span of the trace from the continuation of u through
the most recently executed instruction in F .

187

The work-span algorithm

Figure 8-4 gives the pseudocode for the basic Cilkprof algorithm for computing work and
span. At any given moment during Cilkprof’s serial execution of the program under test,
each nonzero work-span variable z holds a value corresponding to a trace, which we define as
the trace of the value and denote by Trace(z). The pseudocode maintains three invariants:

Invariant 53 The trace of the value in a variable is well defined, that is, it is a contiguous
subsequence of XI .

Invariant 54 If z is a work variable, then z = Work(Trace(z)).

Invariant 55 If z is a span variable, then z = Span(Trace(z)).

These invariants can be verified by induction on instruction count by inspecting the pseu-
docode in Figure 8-4. For example, just before G returns from a spawn, we can assume
inductively that G.p and G.c hold the spans of their traces. At this point, the trace of G.p
starts at the first instruction of G and ends with u, traversing all called and spawned children
in between. The trace of G.c starts at the continuation of u and continues to the current
instruction, also traversing all called and spawned children in between. Thus, they have
explored the entire trace of G between them. Consequently, when line 8 executes, the trace
of G.p becomes the entire trace of G, and G.p becomes Span(Trace(G .p)), maintaining the
invariants. Other code sequences succumb to similar reasoning.

Performance

The next theorem bounds the running time and space usage of Cilkprof’s algorithm for
computing work and span.

Lemma 56 Cilkprof computes the work and span of a Cilk computation in ⇥(T1) time using
⇥(D) space, where T1 is the work of the Cilk computation and D is the maximum call-stack
depth of the computation.

Proof. Inspection of the pseudocode from Figure 8-4 reveals that a constant number of
operations on work-span variables occur at each function call or spawn, each sync, and each
function return in the computation. Consequently, the running time is ⇥(T1). Since there
are 4 work-span variables in each frame of the shadow stack, the space is ⇥(D).

8.4 The basic profile algorithm

This section describes the basic algorithm that Cilkprof uses to compute profiles for a Cilk
computation. We first introduce the abstract interface for the prof data structure, whose
implementation is detailed in Section 8.5. We show how to augment the work-span algo-
rithm to additionally compute profiles for the computation. We analyze Cilkprof under the
assumption, borne out in Section 8.5, that the prof data structure supports all of its meth-
ods in ⇥(1) amortized time. We show that Cilkprof executes a Cilk computation in O(T1)
time, where T1 is the work of the original Cilk computation.

188

The prof data structure

As it computes the work and span of a Cilk computation, Cilkprof updates profiles in a prof
data structure, which records work and span data for each call site in the computation. Let
us see how Cilkprof computes these profiles, in terms of the abstract interface to the prof
data structure. Section 8.5 describes how a prof can be implemented efficiently.

The prof data structure is a key-value store R that maintains a set of key-value pairs
hs, vi as elements, where the key s is a call site and the value v is a record containing a
work field v.work and a span field v.span. The following methods operate on prof’s:

• Init(R): Initialize prof R to be an empty profile, deleting any key-value pairs stored
in R.

• Update(R, hs, vi): If no element hs, v0i already exists in R, store hs, vi into R. If such
an element exists, store hs, v0 + vi, where corresponding fields of v0 and v are summed.

• Assign(R,R0): Move the contents of prof R0 into R, deleting any old values in R,
and then initialize R0.

• Union(R,R0): Update the prof R with all the elements in the prof R0, and then
initialize R0.

• Print(R): List all the key-value pairs in the prof R, and initialize R.
We shall show in Section 8.5 that each of these methods can be implemented to execute in
⇥(1) amortized time.

Profiles

What profiling data does Cilkprof compute? Consider a call site s. During a serial execution
of the program, the function '(s) containing s may call or spawn a function (or functions, if
the target of the call or spawn is a function pointer) at s. Let OW be the set of executed call
sites for which xi 2 OW implies that �(xi) = s. For each xi 2 OW , recall that Trace(xi) is
the set of instructions executed after the call or spawn at the call site until the corresponding
return. Intuitively, the work-on-work for s is the total work of all of these calls, which is to
say X

xi2OW

Work(Trace(xi)) ,

and the span-on-work for s is
X

xi2OW

Span(Trace(xi)) .

The work-on-span and span-on-span for s are similar, where the sum is taken over OS , the set
of instructions along the span of the computation for which xi 2 OS implies that '(xi) = s.
These definitions are inadequate, however, for recursive codes, because two instantiations of
s on the call stack cause double counting. Rather than complicate the explanation of the
algorithm at this point, let us defer the issue of recursion until Section 8.6 and assume for
the remainder of this section that no recursive calls occur in the execution, in which case
these profile values for s are accurate.

Cilkprof computes these profile values for all call sites in the program by associating a
prof data structure with each work-span variable in Figure 8-4. For a variable z, let z.prof
denote z’s prof, let z.prof [s].work denote the value of the work field for a call site s 2 I in
the profile data for z, and let z.prof [s].span denote the value of z.prof ’s span field for s.

189

The Cilkprof algorithm

As Cilkprof performs the algorithm in Figure 8-4, in addition to computing the work and
span, it also updates the prof associated with each work-span variable. First, just before
each of lines 6 and 9, Cilkprof executes

Update(G.w .prof , hs, [work : G.w , span : G.p]i)
Update(G.p.prof , hs, [work : G.w , span : G.p]i) ,

where s is the call site where F spawns or calls G. In addition, Cilkprof performs the
following calculations, where y and z denote two distinct variables in the pseudocode:

• Whenever the pseudocode assigns y = 0, Cilkprof also initializes its prof, executing
Init(y.prof).

• Whenever the pseudocode assigns y = z, Cilkprof also assigns z’s prof to y’s prof,
executing Assign(y.prof , z.prof).

• Whenever the pseudocode executes y += z, Cilkprof also unions their prof’s, execut-
ing Union(y.prof , z.prof).

As a point of clarification, executing lines 20–21 causes no additional calculations to be
performed on prof data structures, because 1 is not a variable.

Correctness

Recall that each work-span variable z in Figure 8-4 defines a trace Trace(z). For each
variable z and call site s 2 I, Cilkprof maintains the invariant

z.prof [s].work =
X

xi2Trace(z) : �(xi)=s

Work(Trace(xi))

and a similar invariant for z.prof [s].span. One can verify by induction on instruction count
that the Cilkprof algorithm maintains these invariants.

Analysis of performance

The next theorem bounds the running time and space usage of Cilkprof. This analysis
assumes that all prof methods execute in ⇥(1) amortized time and that a single prof
occupies O(S) space, where S is the number of call sites in the Cilk computation. Section 8.5
shows how prof can achieve these bounds.

Theorem 57 Cilkprof executes a Cilk computation in ⇥(T1) time using O(DS) space, where
T1 is the work of the Cilk computation, D is the maximum stack depth of the computation,
and S is the number of call sites in the computation.

Proof. By Lemma 56, the work-span algorithm contributes negligibly to either time or
space, and so it suffice to analyze the contributions due to method calls on the prof data
structure. Inspection of the pseudocode from Figure 8-4, together with the modifications to
make it handle profiles, reveals that a constant number of operations on work-span variables
occur at each function call or spawn, each sync, and each function return in the computation.
Returning from a function causes a constant number of method calls on the prof to be
performed, and each operation on a variable induces at most a constant number of method
calls on its associated prof, each of which takes ⇥(1) amortized time, as Theorem 58 in

190

Section 8.5 will show. Consequently, each operation performed by Cilkprof to compute the
work and span incurs at most constant overhead, yielding ⇥(T1) for the total running time
of Cilkprof.

The space bound is the product of the maximum depth D of function nesting and the
maximum size of a frame on the shadow stack. Each frame of the shadow stack contains
4 work-span variables and their associated prof data structures, each of which has size at
most S. Thus, since the size of a frame on the shadow stack is O(S), the total space is
O(DS).

8.5 The prof data structure

This section describes how the the prof data structure employed by Cilkprof is implemented.
We first assume that the number of call sites is known a priori. We investigate the problems
that arise when implementing a prof as an array or linked list, and then we see how a hybrid
implementation can achieve ⇥(1) amortized time for all its methods. We then remove the
assumption and extend prof to the situation when call sites are discovered dynamically on
the fly while still maintaining a ⇥(1) amortized time2 for each of its methods.

The basic data structure

To simplify the description of the implementation of the prof data structure, assume for the
moment that Cilkprof magically knows a priori the number S of call sites in the computation.
The compiler sets up a global hash table h mapping each call site s to a distinct index
h(s) 2 {0, 1, . . . , S � 1}.

The prof data structure is a hybrid of two straightforward implementations: an array
and a list. Separately, each implementation would use too much time or space, but in
combination they yield the desired space and time.

The array implementation represents a prof R as an S-entry array R.arr [0 . . S � 1].
In this implementation, the Init method allocates a new S-entry array R.arr and zeroes it,
costing ⇥(S) time. The call Update(R, hs, vi) updates the entry with R.arr [h(s)]+v (where
+ performs fieldwise addition on the work and span fields of the records), taking only ⇥(1)
time. Union(R,R0) iterates through the entries of R0 and updates the corresponding entries
in R, zeroing R0 as it goes, costing ⇥(S) time. Finally, Assign(R,R0) iterates through the
arrays copying the elements of R0 to R, zeroing R0 as it goes, also costing ⇥(S) time. The
inefficiency in the array implementation is due to the ⇥(S)-time methods.

The list implementation represents a prof R as a linked list R.`` that logs updates
to the elements stored in R. The linked list R.`` is a singly linked list with a head and a
tail pointer to support ⇥(1)-time concatenation. The Init, Update, and Union functions
are implemented using straightforward ⇥(1)-time linked list operations. The Init method
first deallocates any previous linked list, freeing the entries of R.`` in ⇥(1) amortized time,
because each entry it frees must have been previously appended by Update. Then Init
allocates an empty linked list with null head and tail pointers. Calling Update(R, hs, vi)
appends a new linked-list element to R.`` containing hs, vi. Performing Union(R,R0) con-
catenates the linked lists R.`` and R0.``, and sets R0.`` to an empty linked list. Similarly,
Print operates in ⇥(1) amortized time. The inefficiency in this implementation is space.

2Technically, the bound is ⇥(1) expected time, because the implementation uses a hash table, but except
for this one nit, the amortized bound better characterizes the performance of the data structure.

191

Init(R)

22 Free R.arr
23 Free R.``
24 R.`` = ;
25 R.arr = ;

Assign(R,R0)

26 Init(R)
27 R.`` = R0.``
28 R.arr = R.arr
29 R0.`` = ;
30 R0.arr = ;

_FlushList(R)

31 if R.arr == ;
32 R.arr = new Array(S)
33 for hs, vi 2 R.``
34 R.arr [h(s)] += v
35 Free R.``

Update(R, hs, vi)
36 if R.arr 6= ;
37 R.arr [h(s)] += v
38 else Append(R.``, hs, vi)
39 if |R.``| == S
40 _FlushList(R)

Union(R,R0)

41 if R.arr 6= ;
42 if R0.arr 6= ;
43 for i = 0 to S � 1
44 R.arr [i] += R0.arr [i]
45 Free R0.arr
46 else R.arr = R0.arr
47 Concatenate(R.``, R0.``)
48 if |R.``| � S
49 _FlushList(R)
50 R0.arr = ;
51 R0. ll = ;

Print(R)

52 _FlushList(R)
53 for i = 0 to S � 1
54 Output R.arr [i]
55 Init(R)

Figure 8-5: Pseudocode for the methods of the prof data structure, including a helper routine
_FlushList. A prof R consists of a linked-list component R.`` and an array component R.arr .
The linked list R.`` is a singly linked list with a cardinality field to keep track of the number of
elements in the list and a head and tail pointer to enable ⇥(1)-time list concatenation.

Because every call to Update allocates space for an update, the linked list uses space pro-
portional to the total number of updates, which, for a Cilk computation with work T1, is
⇥(T1) space.

The hybrid implementation that Cilkprof actually uses represents a prof R using
both an array R.arr and a linked list R.``. Figure 8-5 gives the pseudocode for the prof
methods. Conceptually, Update and Union use the linked list R.`` to handle elements
until R.`` contains at least S updates. At this point, the elements in R.`` are updated into
the array R.arr , the linked list R.`` is emptied, and Update and Union use the array
R.arr to handle future operations.

Intuitively, by combining the linked-list and array implementations, the prof data struc-
ture R enjoys the time efficiency of the linked list implementation with the space efficiency
of the array implementation. Because Update and Union move elements from R.`` into
R.arr when R.`` contains at least S elements, R occupies O(S) space. By initially storing
elements in a linked list, the prof data structure can avoid performing an expensive Union
operation until it can amortize that expense against the elements that have been inserted.
The following theorem formalizes this intuition.

Theorem 58 The prof data structure uses at most ⇥(S) space and supports each of Init,
Assign, Update, Union, and Print in ⇥(1) amortized time.

Proof. The time bound follows from an amortized analysis carried out using the account-

192

ing method [100, Ch. 17]. The amortization maintains the following invariants.

Invariant 59 Each linked-list element carries 2 tokens of amortized time.

Invariant 60 Each array A carries |A| tokens of amortized time.

We analyze each of the prof methods in turn.
A call to Init(R) takes ⇥(1) time to free R.arr and spends 1 token on each element in

R.`` to cover the cost of freeing that element. Then Init performs ⇥(1) operations in ⇥(1)
time to reinitialize the data structure, for a total of ⇥(1) amortized time.

A call to Assign is ⇥(1) time plus a call to Init, for a total amortized time of ⇥(1).
The helper routine _FlushList(R) is called only when its linked list R.`` attains at

least S elements. The routine may spend ⇥(S) time to create a new array of size S, the
entries of which are initialized to 0. This routine can use 1 token from each element in R.``
to transfer that element’s update to R.arr , free that element, transfer the element’s other
token to R.arr , and cover the ⇥(1) real cost to initialize one entry of R.arr . Consequently,
_FlushList takes ⇥(1) amortized time and produces an array R.arr with |R.``| � S =
|R.arr | tokens, maintaining Invariant 60.

A call to Update(R, hs, vi) exhibits one of three behaviors. First, if the call executes
line 37, then it takes ⇥(1) real time. Otherwise, the call executes line 38, which is charged
⇥(1) real time plus 2 amortized time units to append a new linked-list element with 2 tokens
onto R.`` while maintaining Invariant 59. At this point, if |R.``| = S, then line 40 calls
_FlushList, which costs ⇥(1) amortized time. Thus, Update takes ⇥(1) amortized time
in every case.

A call to Union(R,R0) uses the tokens on R0.arr to achieve a ⇥(1) amortized running
time. If the call executes lines 43–45, then each iteration charges 1 token from R0.arr to
cover the ⇥(1) real cost to update an entry in R.arr with an entry in R0.arr . Lines 43–45
therefore take ⇥(1) amortized time. Line 47 takes ⇥(1) time to concatenate two linked
lists, and the analysis of lines 48–49 corresponds to that for lines 39–40 of Update. The
amortized cost of Union is therefore ⇥(1).

A call to Print(R) executes _FlushList in line 52 in ⇥(1) amortized time, and spends
the S available tokens in R.arr to pay for sequencing through all the elements of R. Adding
in the cost to call Init in line 55 gives ⇥(1) total amortized cost of printing.

The space bound on a prof data structure R follows from observing that the array R.arr
occupies ⇥(S) space, and only line 38 in Update and line 47 in Union increase the size
of the linked-list R.``. Because lines 39–40 in Update and lines 48–49 in Union move the
elements of R.`` into R.arr once the size of R.`` is at least S, the linked list R.`` never
contains more than 2S elements, and R therefore occupies O(S) total space.

Discovering call sites dynamically

Let us now remove the assumption that the number S of call sites is known a priori. To
handle call sites discovered dynamically as the execution unfolds, Cilkprof tracks the number
S of unique call sites encountered so far. Cilkprof maintains the global hash table h using
table doubling [100, Sec. 17.4], which can resize the table as it grows while still providing
amortized ⇥(1) operations. When Cilkprof encounters a new call site s, it increments S and
stores h(s) = S � 1, thereby mapping the new call site to the new value of S � 1.

We must also modify the helper function _FlushList. First, line 31 must check whether
the size of the existing array matches the current value of S, rather than simply checking if

193

it exists. If a new array is allocated, in addition to the linked-list elements being transferred
to the new array, the old array elements must also be transferred. At the end, the old array
must be destroyed.

We must also modify the Update and Union methods to ensure that both Update and
Union maintain the same invariants in their amortization as stated in the proof of Theo-
rem 58. Thus, the changes do not affect the asymptotic complexity of the prof data struc-
ture. Specifically, line 36 in the pseudocode for Update must be modified as in _FlushList
to check whether the size of the existing array matches the current value of S. With this
change, a call to Update adds a record to the linked list whenever the array is too small,
even if the array already stores some records. Lines 41–46 in the pseudocode for Union
must also be modified to copy the elements of the smaller array into the larger.

8.6 The profile

This section describes the profile that Cilkprof computes. Although Section 8.4 describes
how Cilkprof can measure the work and span of each call site assuming the program contains
no recursive functions, in fact, Cilkprof must handle recursive functions with care to avoid
overcounting their work and span. We define the “top-call-site,” “top-caller,” and “local”
measurements that Cilkprof accumulates for each call site, each of which we found to be
easy to compute and useful for analyzing the contribution of that call site to the work and
span of the overall program. We describe how to compute these measures.

A Cilkprof measurement for a call site s consists of the following values for a set of
invocations of s:

• an execution count — the number of invocations of s accumulated in the profile;
• the call-site work — the sum of the work of those invocations;
• the call-site span — the sum of the spans of those invocations.

Cilkprof additionally computes the parallelism of s as the ratio of s’s call-site work and
call-site span.

If programs contained no recursive functions, Cilkprof could simply aggregate all execu-
tions of each call site, but generally, it must avoid overcounting the call-site work and call-site
span of recursive functions. Of the many ways that Cilkprof might accommodate recursive
functions, we have found three sets of measurements of a call site, called the “top-call-site,”
“top-caller,” and “local” measurements, to be particularly useful for analyzing the scalabil-
ity of Cilk computations. These measurements maintain the basic algorithm’s performance
bounds given in Theorems 57 and 58 while also handling recursion.

Top-call-site measurements

A “top-call-site” measurement aggregates how much of the entire work or span of the com-
putation can be attributed to a call site. Conceptually, the “top-call-site” measurement for
a call site s aggregates the work and span of every execution of s that is not a recursive
execution of s. Formally, an executed call site xs 2 XI is a top-call-site invocation if no
executed call site xi 2 XI exists such that

xs 2 Trace(xi) ^ �(xs) = �(xi) .

Cilkprof’s top-call-site measurement for s aggregates all top-call-site invocations of s.

194

(a) (b)

38 int fib(int n) {
39 if (n < 2) return n;
40 int x, y;
41 x = cilk_spawn fib(n-1);
42 y = fib(n-2);
43 cilk_sync;
44 return (x + y);
45 }
46

47 int main(int argc, char *argv[]) {
48 int n, result;
49 // parse arguments
50 result = fib(n);
51 return 0;
52 }

main()'

fib(4)'

1" 2"

fib(3)'

fib(2)'

fib(1)'

fib(1)'

fib(0)'

fib(2)'

fib(1)' fib(0)'

1"

1"

1" 2"2"

2"

Figure 8-6: Cilk pseudocode and example invocation tree for a recursive program to compute
Fibonacci numbers. (a) Cilk pseudocode for the program. (b) An invocation tree from running the
program in (a) to compute the 4th Fibonacci number. Each rounded rectangle denotes a function
instantiation, and an edge between tow rounded rectangles denotes the upper instantiation invoking
the lower. The circled labels 1 and 2 on edges identify the call sites on lines 41 and 42, respectively,
in the code in (a).

Top-call-site Top-caller

Line T1 T1 T1/T1 T1 T1 T1/T1

41 450,321,639 113,267 3,975.8 279,094,680 39,643 7,040.2
42 450,307,915 250,302 1,799.1 171,229,726 14,688 11,657.8
50 450,325,186 40,331 11,165.7 450,325,186 40,331 11,165.7

Figure 8-7: Top-call-site and top-caller work and span values in the on-work profile Cilkprof
collects for running the recursive Fibonacci program in Figure 8-6 to compute fib(30). All times
are measured in nanoseconds.

An executed call site can be identified as a top-call-site invocation from the computation’s
invocation tree. Consider the invocation tree in Figure 8-6(b) for the parallel recursive Cilk
program in Figure 8-6(a). Each edge in this tree corresponds to an invocation — an
executed call site that either calls or spawns a child — and the labels on edges denote the
corresponding call site. From Figure 8-6(b), we see that the executed call site spawning
fib(3) is a top-call-site invocation, because no other execution of line 41 appears above
fib(3) in the invocation tree. The spawning of fib(2) by fib(3) is not a top-call-site
invocation, however, because both fib(2) and fib(3) above it in the tree are invoked from
the same call site.

Cilkprof’s top-call-site measurements are useful for assessing the parallelism of each call
site. For a call site s, the ratio of the call-site work over the call-site span from the top-call-
site data of s gives the parallelism of all nonrecursive executions of s in the computation, as
if the computation performed each such call-site execution in series. This parallelism value
can be particularly helpful for measuring the parallelism of executed call sites that occur on
the critical path of the computation.

In a function containing multiple recursive calls, however, such as the fib routine in
Figure 8-6(a), the top-call-site measurements are less useful for comparing the relative con-
tribution of different call sites. For example, consider the top-call-site work and span values

195

in Figure 8-7, which Cilkprof collected from running the code in Figure 8-6(a). As Figure 8-7
shows, the top-call-site work values for the recursive fib invocations on line 41 and line 42
are similar to that of the call to fib on line 50, and the top-call-site span values of these
recursive invocations exceed that of line 50.

These large top-call-site measurements occur because the measurement aggregates multi-
ple top-call-site executions of a call site under the same top-level call to fib. For example, as
the invocation tree in Figure 8-6(b) shows, the invocations of fib(2) from fib(4), fib(1)
from fib(3), and fib(0) from fib(2) under fib(3) are all top-call-site invocations for
line 42. Similarly, the invocations of fib(3) from fib(4) and of fib(1) from fib(2) under
fib(4) are both top-call-site invocations for line 41.

Top-caller measurements

“Top-caller” measurements aim to measure the relative contribution of different call sites
in the same function to that function’s work and span. In contrast to top-call-site mea-
surements, the “top-caller” measurement for a call site s conceptually aggregates the work
and span of every execution of s from a nonrecursive invocation of its caller. Formally, an
executed call site xs 2 XI is a top-caller invocation if no executed call site xi 2 XI exists
such that

xs 2 Trace(xi) ^ '(�(xs)) = '(�(xi)) .

Cilkprof’s top-caller measurement for a call site s aggregates all top-caller invocations
of s.

Like top-call-site invocations, top-caller invocations can be identified from the compu-
tation’s invocation tree. Once again, consider the code in Figure 8-6(a) and its example
invocation tree in Figure 8-6(b). The invocation producing fib(3) is a top-caller invocation,
because no instantiation of fib exists above fib(4), the function instantiation containing
this invocation, in the tree. The invocation producing fib(1) under the right child of fib(4)
is not a top-caller invocation, however, because between fib(1) and fib(4) is an instanti-
ation of fib, namely, the instantiation of fib(2). The top-caller invocations that occur in
the invocation tree in Figure 8-6(b), therefore, are from main() to fib(4) and from fib(4)
to each of its children.

Top-caller measurements can be useful for comparing call sites in the same function. The
top-caller measurements in Figure 8-7, for example, show that the ratio of the aggregate
work of the top-caller invocations of lines 41 and 42 is 279 094 680/171 229 726 ⇡ 1.63, which
is approximately the golden ratio � = (1 +

p
5)/2 ⇡ 1.61. This relationship makes sense,

because fib(n) theoretically incurs ⇥(�n) work.
The top-caller measurements provide no information for call sites that are never reached

from a top-level instantiation of a function, however. Consider the divide-and-conquer
matrix-multiplication program in Figure 8-8(a) and its invocation tree illustrated in Fig-
ure 8-8(b). As Figure 8-8(b) shows, the function base called in the base case of mm is never
called by the top-caller invocation of mm from main. Consequently, as the top-caller measure-
ments in Figure 8-9 for this program show, Cilkprof measures the top-caller call-site work
and span values for base to be 0. From these top-caller values, one cannot conclude that
most of the computation of mm, in fact, occurs under calls to base.

196

(a) (b)

53 void mm(double *C, double *A, double *B,
54 size_t dim, size_t n) {
55 if (n < COARSENING)
56 return base(C, A, B, dim, n);
57 #define X(M,r,c) (M + (r * dim + c)*(n/2))
58 cilk_spawn mm(X(C,0,0), X(A,0,0), X(B,0,0),
59 dim, n/2);
60 cilk_spawn mm(X(C,0,1), X(A,0,0), X(B,0,1),
61 dim, n/2);
62 cilk_spawn mm(X(C,1,0), X(A,1,0), X(B,0,0),
63 dim, n/2);
64 mm(X(C,1,1), X(A,1,0), X(B,0,1),
65 dim, n/2);
66 cilk_sync;
67

68 cilk_spawn mm(X(C,0,0), X(A,0,1), X(B,1,0),
69 dim, n/2);
70 cilk_spawn mm(X(C,0,1), X(A,0,1), X(B,1,1),
71 dim, n/2);
72 cilk_spawn mm(X(C,1,0), X(A,1,1), X(B,1,0),
73 dim, n/2);
74 mm(X(C,1,1), X(A,1,1), X(B,1,1),
75 dim, n/2);
76 cilk_sync;
77 }
78

79 int main(int argc, char *argv[]) {
80 double *C, *A, *B;
81 int n;
82 // parse arguments
83 // initialize C, A, and B
84 mm(C, A, B, n, n);
85 return 0;
86 }

main()'

mm()'

mm()'

base()' base()'

mm()'mm()'

base()'

�

mm()' mm()'mm()' �

�

8

8

8

Figure 8-8: Cilk pseudocode and an example invocation tree for a divide-and-conquer parallel
matrix-multiplication program. (a) Cilk pseudocode for the matrix-multiplication program. The
recursive mm routine in this program calls the function base in its base case. The variable COARSENING
is a fixed constant defining the maximum size of matrices to multiply in the base case. (b) An
invocation tree for the matrix-multiplication program in (a). Each rectangle denotes a function
instantiation, and an edge from one rectangle to a rectangle below it denotes the upper invocation
calling the lower.

Local measurements

Cilkprof also computes “local” work and span measurements for each call site, which exclude
child functions spawned or called from that call site. The local measurement for a call site
aggregates a “local work” and a “local span” for every execution of that call site. The local
work of an executed call site xs 2 XI is the work in Trace(xs) minus the work in the traces
of the functions that xs invokes. By ignoring the contributions of its children, the local work
and local span values for all executions of a call site can be aggregated without overcounting
executed instructions in recursive calls.

The local measurements call sites are often useful for examining functions invoked in the
base case of a recursive routine. The local measurements in Figure 8-10 for the mm program,
for example, make it clear that most of the total work of the call to mm from main occurs in
calls to base. Furthermore, as we observed in the quicksort example in Section 8.2, these

197

Top-call-site Top-caller

Line T1 T1 T1/T1 T1 T1 T1/T1

56 185,830,187 185,830,187 1.0 0 0 —
58 77,417,401 22,010,873 3.5 23,473,633 405,947 57.8
60 77,475,639 21,983,150 3.5 23,384,174 411,099 56.9
62 77,440,990 21,988,390 3.5 23,403,194 402,281 58.2
64 77,262,499 21,853,710 3.5 23,378,967 387,880 60.3
68 77,400,652 21,966,823 3.5 23,384,823 391,066 59.8
70 77,429,530 21,945,602 3.5 23,362,153 387,466 60.3
72 77,330,287 21,890,345 3.5 23,390,504 389,726 60.0
74 77,241,198 21,834,699 3.5 23,371,773 388,095 60.2
84 187,150,784 803,122 233.0 187,150,784 803,122 233.0

Figure 8-9: Top-call-site and top-caller work and span values in the on-work profile Cilkprof
produces for running the divide-and-conquer matrix multiplication code in Figure 8-8 to multiply
two 512⇥ 512 matrices of doubles. All times are measured in nanoseconds.

Line T1 T1 T1/T1

56 185,830,187 185,830,187 1.0
58 195,079 177,786 1.1
60 183,232 168,249 1.1
62 187,472 169,541 1.1
64 110,374 97,656 1.1
68 181,666 161,616 1.1
70 177,803 163,037 1.1
72 174,297 155,647 1.1
74 109,111 96,262 1.1
84 1,563 957 1.6

Figure 8-10: Local work and span values in the on-work profile Cilkprof produces for running the
divide-and-conquer matrix multiplication code in Figure 8-8 to multiply two 512 ⇥ 512 matrices of
doubles. All times are measured in nanoseconds.

local work and span values can effectively identify which functions contribute directly to the
span of the computation.

Local measurements can also provide a breakdown of the work or span of a top-caller
invocation that complements the breakdown provided by top-caller measurements. The local
work measurements in Figure 8-10 for the mm program, for example, sum to the top-caller
work of line 84. Furthermore, the sum of the top-caller work values in Figure 8-9 for the
call sites in mm (lines 56–74) plus the local work measurement for line 84 gives the top-caller
work of line 84. These two breakdowns complement each other. While the breakdown by
top-caller work demonstrates that the work of line 84 is distributed roughly evenly between
its recursive calls (lines 58–74), the breakdown by local work demonstrates that the majority
of the work under line 84 lies in its base case.

The local parallelism of a call site s — the ratio of the local work and local span of s —
does not accurately reflect the parallelism of s, however. As Figure 8-10 shows, by excluding
the work and span contributions of each executed call site’s children, most local-parallelism
values are close to 1, even for call sites such as line 84 which exhibit ample parallelism.

The top-call-site, top-caller, and local measurements for a call site s each measure qual-
itatively different things about s. These measurements provide different, complementary
perspectives on the work and span of a Cilk program, and they each seem to be useful for

198

CPU Intel Xeon E5-2665
Clock 2.4GHz
Hyperthreading Disabled
Turbo Boost Enabled
Cores per processor chip 8
Processor chips (sockets) 2
L1 data cache/core 32KiB
L2 cache/core 256KiB
L3 cache/socket 20MiB
DRAM 32GiB
Operating system Fedora 16, custom Linux kernel 3.6.11

Figure 8-11: Technical specifications of the machine used for benchmarking. The kernel was
patched with support for thread-local memory mapping used in Cilk-M [238]. This patch was
irrelevant to the experiment, and we do not believe it affects the numbers.

analyzing a program in different ways. An interesting open question is whether there are
other measurements that are as useful as these three for diagnosing scalability bottlenecks.

8.7 Empirical evaluation

To implement Cilkprof, we modified a branch [195] of the LLVM [232] compiler that sup-
ports Cilk Plus [196] to instrument function entries and exits, as well as calls into the Cilk
runtime from the program for handling cilk_spawn and cilk_sync statements. A Cilk pro-
gram is compiled with the modified compiler to produce a binary executable that executes
the Cilkprof algorithm as a shadow computation. On a suite of 16 benchmark programs,
we compared the Cilkprof running time of each benchmark with the benchmark’s serial
running time compiled with the unmodified compiler, both executions using optimization
level -O3. Compared with this “native” serial execution, Cilkprof incurs a geometric-mean
multiplicative slowdown of 1.9 and a maximum slowdown of 7.4.

Results

We compared the running time of Cilkprof on each benchmark to the native serial running
time of the benchmark, that is, the running time of the benchmark when compiled with no
instrumentation. Figure 8-11 summarizes the specifications of the benchmarking machine
used for our experiments.

To study the empirical overhead of Cilkprof, we compiled a suite of 16 application bench-
marks, as Figure 8-12 describes. The mm, quicksort, and fib benchmarks correspond to
the Cilk pseudocode in Figures 8-8, 8-1 and 8-6, respectively. The pbfs benchmark is a
parallel breadth-first search code that implements the PBFS algorithm of Chapter 3. We
converted the dedup and ferret benchmarks from the PARSEC benchmark [45, 46] to use
Cilk linguistics and a reducer_ostream (which is part of Cilk Plus) for writing output de-
terministically. The leiserchess program performs a parallel speculative game-tree search
using Cilk. The hevc benchmark is a 30,000-line implementation of the H265 video encoder
and decoder [386] that we parallelized using Cilk. The remaining benchmarks are the same
benchmarks included in the Cilk-5 distribution [146].

Figure 8-12 presents our empirical results. As the figure shows, the Cilkprof imple-
mentation incurs a geometric mean slowdown of 1.9⇥ on these benchmarks compared to

199

Benchmark Description Input size Overhead

mm Square matrix multiplication 2048⇥ 2048 matrix 0.99
dedup Compression program large 1.03
lu LU matrix decomposition 2048⇥ 2048 matrix 1.04
strassen Strassen matrix multiplication 2048⇥ 2048 matrix 1.06
heat Heat diffusion stencil 4096⇥ 1024⇥ 40 spacetime 1.07
cilksort Parallel mergesort 10M elements 1.08
pbfs Parallel breadth-first search |V | = 8M, |E| = 55.8M 1.10
fft Fast Fourier transform 8 388 608 1.15
quicksort Parallel quicksort 100M elements 1.20
nqueens n-Queens problem 12⇥ 12 board 1.27
ferret Image similarity search large 2.04
leiserchess Speculative game-tree search 5.8M nodes 3.72
collision Collision detection in 3D 528 032 faces 4.37
cholesky Cholesky decomposition 2 k ⇥ 2 k matrix, 16 k nonzeros 4.54
hevc HEVC video encoding and decoding 5 frames 6.25
fib Recursive Fibonacci 35 7.36

Figure 8-12: Application benchmarks demonstrating the performance overhead of the Cilkprof
prototype tool. The benchmarks are sorted in order of increasing overhead. For each benchmark,
the Overhead column gives the ratio of its running time with when compiled with the Cilkprof
implementation over its running time without instrumentation. Each ratio is computed as the
geometric mean ratio of 5 runs with Cilkprof and 5 runs without Cilkprof. We used a modified
version of the Cilk Plus/LLVM compiler to compile each benchmark with Cilkprof, and we used the
original version of the Cilk Plus/LLVM compiler to compile the benchmarks with no instrumentation.
The Cilkprof implementation and benchmark codes were compiled using the -O3 optimization level.

the uninstrumented version of the benchmark. Furthermore, the maximum multiplicative
overhead we observed on any benchmark was 7.4.

Optimizations

Our Cilkprof implementation contains several optimizations:
• For basic timing measurements, we chose to use a cycle counter to measure blocks of

instructions, rather than naively incrementing a counter for every instruction executed,
as in the basic pseudocode from Figure 8-4. We also adjust the measured numbers to
compensate for the time it takes Cilkprof to execute the instrumentation.

• For a function F with no cilk_spawn’s, the implementation maintains only the prefix
span variable F.p to store the span of F , rather than all 3 span variables.

• If a function G calls F , then the implementation sets the prof data structure for F.p
to be the prof data structure for either G.p, if G has no outstanding spawned children
when it calls F , or G.c, otherwise.

• When the span variable associated with a prof data structure R is set to 0, the
implementation simply clears the nonempty entries of the array R.arr , rather than
freeing its memory.

• The implementation maintains the set of nonempty entries in each prof data structure
array in order to optimize the processes of combining and clearing those entries.

These optimizations together reduced Cilkprof’s overhead on the fib benchmark by a factor
of 5 and its overhead on the leiserchess benchmark dropped by a factor of 9.

At the risk of losing some information, Cilkprof declines to instrument inlined functions,
which, in Intel Cilk Plus, cannot spawn. To do so, we modified the compiler such that, when

200

it inlines a function, it removes the instrumentation for the inlined version of that function.
When this program runs with Cilkprof, therefore, the work of the inlined function influences
the work and span of its parent, but it will not create a separate entry in the profile Cilkprof
produces.

We feel that this optimization is reasonable because inlined functions are typically un-
likely to be scalability bottlenecks on their own. For example, the compiler often inlines C++
object methods to extract or set fields of that object, which the programmer wrote to provide
a convenient abstraction in the program code, but which the compiler can often implement
with a handful of data movement instructions in the caller. If Cilkprof instruments such a
function, then Cilkprof incurs overheads to measure and record very few instructions. The
cost of instrumenting such functions therefore seems to outweigh the benefits to scalability
analysis.

We examined Cilkprof’s overhead when inlined functions are instrumented on the ap-
plication benchmarks. For all benchmarks except lu, leiserchess, collision, and hevc,
Cilkprof incurred less than 2 times the overhead it incurred when inlined functions in that
benchmark were not instrumented. On the leiserchess and collision benchmarks, how-
ever, instrumenting inlined functions increased Cilkprof’s overhead by a factor of 8 to 10.
Both of these benchmarks make extensive use of small functions that simply get or set fields
of an object, which are particularly light weight when inlined. Although this optimization
does not affect every benchmark, it can dramatically improve Cilkprof’s performance on the
benchmarks it does affect.

8.8 Case study: PBFS

One of our first successes with Cilkprof3 came when diagnosing a parallelism bottleneck
in PBFS, the 1800-line parallel breadth-first search Cilk program described in Chapter 3.
After just 2 hours of work using Cilkprof, we were able to identify a parallelism bottleneck
in the PBFS code. Fixing this bottleneck enhanced the parallelism of the code by a factor of
about 5. This section presents our experience diagnosing a scalability bottleneck in the PBFS
code. You should not need to understand either the PBFS algorithm or its implementation
to follow this case study.

After designing and building PBFS, we observed that the code failed to achieve linear
speedup on 8 processors. For example, PBFS was achieving a parallel speedup of 4 to 5
on our Grid3D200 benchmark graph, a 7-point finite-difference mesh generated using the
Matlab Mesh Partitioning and Graph Separator Toolbox [159], on which PBFS explored 8M
vertices and 55.8M edges during a search of depth 598. A back-of-the-envelope calculation
suggested that the measured parallelism of PBFS should be around 200� 400, ample for 8
processors, if one follows the rule of thumb that a program should have at least 10 times
more parallelism than the number of processors for scheduling overhead to be negligible.

We suspected that the scalability of this PBFS code suffered from insufficient memory
bandwidth on the machine. For example, when we artificially inflated the amount of com-
putation that the code performed in the base case of its recursive helper functions, then
the code did exhibit linear speedup. The problem with this test, however, is that it also
increased the parallelism of the code. We ran Cilkview on the original PBFS code to en-

3Actually, the original case study used the (much slower) Cilkprof Pintool [193] we built in collaboration
with Intel. Since the data from this early experiment have since been lost, we recreated the experiment with
our LLVM-based Cilkprof implementation.

201

sure that insufficient parallelism was not the issue. Cilkview, however, reported that the
parallelism of this PBFS code was merely 12, which is not ample parallelism for 8 processors.

We ran the PBFS code with Cilkprof and examined Cilkprof’s profiles. The on-work
profile showed us that the call to pbfs — our parallel BFS routine — from main accounted
for most of the work of the program, and that the parallelism of pbfs was small, just as
Cilkview had found. To discover what methods contributed most to the span, we sorted
Cilkprof’s data by decreasing local T1 on span. Viewing the data from this perspective
showed us that the following three methods contributed the most to the span of the program
overall:

1. First was a call to parseBinaryFile, a serial function that parses the input graph.
2. Second was a call to the serial Graph constructor to create the internal data structure

storing the graph from the input.
3. Third was a call to pbfs_proc_Node, a function that processes a constant-sized array

of graph vertices.
Although the top two entries were not called from pbfs, the third entry for pbfs_proc_Node
was called in the base case of the recursive helper methods of pbfs. Comparing the local
T1 on span of pbfs_proc_Node to the top-caller T1 of bfs showed us that this method
accounted for 66% of the span of bfs. Furthermore, the top-call-site parallelism values from
Cilkprof showed us that all invocations pbfs_proc_Node were serial.

These data led us to look more closely at pbfs_proc_Node. We discovered that this
method evaluates a constant-sized array of vertices in the graph. Because the input array
has constant size, this method evaluated the contents of this array serially. In the code,
however, the size of this array was tuned to optimize the insertion of vertices into the array.
The constant size of this array was therefore too large for pbfs_proc_Node, causing the serial
execution of pbfs_proc_Node to become a scalability bottleneck.

We parallelized the pbfs_proc_Node function to process its input array in parallel with
an appropriate base-case size. We then ran our modified PBFS code through Cilkprof and
sorted the new data by local T1 on span to examine the effect of our efforts. We found that,
although pbfs_proc_Node was still the third-largest contributor to the span of the program,
the local T1 on span is a factor of 6 larger. Furthermore, the parallelism of pbfs is now 60,
a factor of 5 larger than its previous value. Finally, pbfs_proc_Node accounts for 48% of
this span. We also confirmed that reducing the new base-case size of pbfs_proc_Node can
increase the parallelism of pbfs to 100, at the cost of scheduling overhead.

8.9 Related work

This section reviews related work on performance tools for parallel programming.
We chose to implement Cilkprof using compiler instrumentation (e.g., [350, 351]), but

there are other strategies we could have used to examine the behavior of a computation,
such as asynchronous sampling (e.g., [171]) and binary instrumentation (e.g., [72,129,267,
296]). Although asynchronous sampling provides low-overhead solutions for some analytical
tools, we do not know of a way to measure the span of a multithreaded Cilk computation by
sampling. Cilkview [180] is implemented using the Pin binary-instrumentation framework
[267] augmented by support in the Intel Cilk Plus compiler [198] for low-overhead annotations
[192], and we collaborated with Intel to build a prototype Cilkprof as a Pintool. Because
we found that this prototype Cilkprof ran slowly, we chose to implement Cilkprof using
compiler instrumentation in order to improve its performance. In fact, because it uses

202

compiler instrumentation, the Cilkprof implementation outperforms the existing Cilkview
implementation, which only computes work and span for the entire computation and does
not produce profiles of work and span for every call site as Cilkprof does.

Many parallel performance tools examine a parallel computation and report performance
characteristics specific to that architecture and execution. Tools like HPCToolkit [3], Intel
VTune Amplifier [199], and others [74, 219, 355] measure system counters and events, and
provide reports based on a program execution. HPCToolkit, in particular, is an integrated
suite of tools to measure and analyze program performance that sets a high standard for
capability and usability. HPCToolkit uses statistical sampling of timers and hardware perfor-
mance counters to measure a program’s resource consumption, and attributes measurements
to full calling contexts.

Other approaches for identifying scalability bottlenecks include normalized processor
time [17] or the more precise parallel idleness metric [383]. The idea is that, in a work-
stealing concurrency platform, if at some particular point in time some worker threads are
idle, then we can assign blame to the function that is running on the other workers: if
that function were more parallel, then the idle threads would be doing something useful.
These are helpful metrics for identifying bottlenecks on the current architecture, and answer
the question as to whether the program, run on a P -processor machine has at least P -fold
parallelism. But they don’t provide scalability analysis beyond P processors.

In contrast to all of these applications and approaches, Cilkprof’s analysis applies to
the measured work and span. Work and span are good metrics for inferring bounds on
parallel speedup on architectures with any number of processors. A program compiled for
Cilkprof will generate profile information that is generally applicable, rather than just for
the architecture on which it was run. Additionally, Cilkprof is distinguished in that it uses
direct instrumentation rather than statistical sampling.

Whereas Cilkprof computes the parallelism of call sites in a parallel program, the Krem-
lin [149, 207] and Kismet [206] tools analyze serial programs to suggest parallelism oppor-
tunities and to predict the impact of parallelization. Kremlin can suggest which parts of
a serial program might benefit from parallelization. It estimates the parallelism of a serial
program using “hierarchical critical-path analysis” and connects to a “parallelism planner” to
evaluate many possible parallelizations of the program. Based on its determination of which
regions (loops and functions) of the program should be parallelized, it computes a work-
span profile of the program, computing a “self-parallelism” metric for each region, which
estimates the parallelism that can be obtained from parallelizing that region separate from
other regions. The analysis produces a textual report as output suggesting which regions
should be parallelized. Kismet, which is a product of the same research group, attempts to
predict the actual speedup after parallelization, given a target machine and runtime system.

8.10 Conclusion

Cilkprof enables performance engineers to profile the scalability of a Cilk program, just
as they might profile the running time of a serial algorithm. Cilkprof thereby supports a
principled approach to tracking down serial bottlenecks in Cilk codes. Our work on Cilkprof
has left us with some interesting research questions. We conclude by addressing issues
of Cilkprof’s user interface, parallelizing Cilkprof, and making Cilkprof functionally more
“complete.”

Chief among the open issues is user interface. How should the profiles produced by

203

Cilkprof be communicated to a Cilk programmer? Although we ourselves used just a spread-
sheet to divine important scalability properties of PBFS, for example, we do not recommend
this method to others. A good UI integrated with the development environment would make
diagnosing scalability issues much easier for average programmers.

Even though Cilkprof analyzes parallel programs, it still runs them serially. As the
number of processors grows, it becomes less and less acceptable to resort to a serial execution.
In principle, nothing precludes Cilkprof from running in parallel, but we have thus far been
unable to create a provably good algorithm. One problem is that amortization plays havoc
with the critical path of a parallel program. At some cost in programming complexity, we
could deamortize the prof data structures, but it is also tricky to parallelize the strategies
for handling recursion.

Cilkprof offers many opportunities for functional enhancements. The on-work and on-
span profiles seem natural enough, but maybe there are better alternatives to top-call-site,
top-caller, and local measurements. In addition, Cilkprof computes on-span profiles only for
call sites that lie on the global critical path. Sometimes, the critical path of a computation
can be qualitatively different depending on the size of the program input. For example, two
computations A and B are run in parallel, where the span of A is smaller than the span of B
for small inputs, but the reverse is true for large inputs. Rather than run at scale, it could
be more productive if Cilkprof were to report span-on-span profiles not just for the global
critical path, but for all critical paths within all functions. Although the space required
might be quadratic in call sites, such a profile would greatly speed detective work, and
the cross-product of sites might be considerably sparse for many programs. Unfortunately,
we do not yet see a way to calculate such a profile without also blowing up the overheads
significantly.

204

Chapter 9

Race Detection for Cilk Programs
That Use Reducer Hyperobjects

This chapter presents the Rader race detector [240]. This work was conducted in collabora-
tion with I-Ting Angelina Lee.

9.1 Introduction

A multithreaded Cilk program that is “ostensibly deterministic” can nevertheless behave
nondeterministically due to programming errors in the code. Typically these errors, also
called races , occur when the program fails to coordinate parallel operations on a shared
variable, causing accesses and updates to be performed on the variable in a nondeterministic
order based on scheduling happenstance. Although provably efficient and correct race de-
tection algorithms exist for Cilk computations1 [37, 134,197], they do not provide the same
guarantees when the program under test employs a reducer hyperobject [144], an advanced
linguistic feature supported in various Cilk dialects. Races involving the use of a reducer
are particularly challenging to debug, because such races can expose the nondeterminism
in how the Cilk runtime system manages a reducer. This chapter addresses the question of
how to efficiently and correctly detect races in Cilk programs that use reducers.

Reducer hyperobjects [144], which are supported by Cilk dialects including Intel Cilk
Plus [196], Cilk++ [246], and Cilk-M [238], provide a general reduction mechanism for Cilk
programs and exhibit several useful properties.

• Reducers operate on arbitrary Cilk code. They are not tied to any particular linguistic
construct.

• Reducers can operate on any abstract data type, including a set, a linked list, or even
a user-defined data type, so long as the user supplies an appropriate Reduce operator.

• To produce a deterministic result, a reducer’s update and Reduce operations do not
need to be commutative; associativity suffices.

In contrast, other reduction mechanisms, such as OpenMP’s reduction clause [306] or Mi-
crosoft’s PPL’s combinable objects [278], tie the reduction mechanism to a particular con-
struct, such as a parallel loop, or require reductions to be commutative.

1Throughout this chapter, when we discuss a Cilk program, we shall mean the program with a given
input. When we discuss a Cilk computation, we shall mean a particular execution of a Cilk program with a
given input.

205

Although these properties make reducers a powerful general-purpose reduction mecha-
nism, they leave open opportunities for programming errors that can produce races involving
reducers. Such errors can, in particular, expose the nondeterminism in the Cilk runtime sys-
tem’s efficient management of reducers, which includes two significant optimizations [144].
First, a new reducer view is created only when a worker thread steals some parallel subcom-
putation. Second, views are reduced together in an opportunistic fashion, causing reductions
to occur in a nondeterministic order. Consequently, the state of a reducer’s view at a partic-
ular program point, the number of views created throughout the execution, and the partial
order in which views are reduced together are all nondeterministic, depending on how the
scheduling plays out. This nondeterminism is typically encapsulated by the reducers when
used and programmed correctly, but it can become observable due to programming errors.

The incorrect use of a reducer gives rise to two unique types of races.
The first type of race, called a view-read race , occurs when a Cilk computation reads

the value of a reducer at a program point where the read might produce a nondeterministic
value, such as before all previously spawned subcomputations that might update the reducer
have necessarily returned. Because the Cilk runtime system creates and reduces views based
on scheduling, such a read can cause multiple runs of the same Cilk program to produce
different results.

The second type of race is a determinacy race, which occurs when two logically parallel
instructions operate on the same memory location, and at least one of them is a write.
Although ordinary Cilk programs can contain determinacy races, a Cilk program that uses
a reducer can contain a determinacy race that involves a view-aware instruction — an
instruction executed in creating, updating, or reducing views of a reducer. (In contrast, we
refer to all other instructions that do not operate on views as view oblivious .) Such a deter-
minacy race is particularly challenging to debug, because a view-aware instruction involved
in a race might not execute at all if the Cilk runtime system schedules the computation
differently and thus manages the views differently.

Existing algorithms for detecting determinacy races in Cilk computations, including the
SP-bags algorithm [134], the SP-order algorithm [37], and the SP-hybrid algorithm [37], do
not support detecting races involving reducers. Extending these race detection algorithms to
handle reducers while providing provable guarantees is non-trivial for two reasons. First, the
use a reducer generates parallel control dependencies that violate the structural assumptions
that these algorithms depend on. Specifically, the computation can no longer be modeled as
a series-parallel dag [134], which is a property that existing algorithms rely on. Second, dif-
ferent runs of a Cilk program that uses a reducer can cause different view-aware instructions
to be executed, depending how the scheduling plays out. Providing complete coverage could
potentially require executing exponentially many different schedules to elicit all possible
view-aware instructions. Consequently, existing tools that embody the SP-bags algorithm,2
such as the Nondeterminator [134] and Cilkscreen [197], cannot guarantee correctness when
one of the instructions involved in a race is executed to operate on a reducer view.

Contributions

In this chapter, we show how to efficiently and correctly detect these two types of races in a
Cilk computation that uses reducers. Our race detection algorithms embed the programming
and execution models of reducers into race-detection algorithms to locate races involving

2To the best of our knowledge, no implementation of the SP-order and SP-hybrid algorithms exists.

206

reducers in a provably effective and efficient manner. Consequently, these race-detection
algorithms allow performance engineers to quickly zero in on programming bugs that involve
reducers. Specifically, we make the following contributions.

The Peer-Set algorithm. We present the Peer-Set algorithm, which executes a Cilk
computation serially and analyzes its logical parallelism to detect view-read races. The
algorithm is provably correct, meaning it reports a view-read race if and only if the Cilk
computation contains one. For a Cilk computation that runs in time T on one processor, the
Peer-Set algorithm executes in time O(T↵(v, v)), where ↵ is Tarjan’s functional inverse of
Ackermann’s function [384], a very slowly growing function which, for all practical purposes,
is bounded above by 4.

The SP+ algorithm. We present the SP+ algorithm, which detects determinacy races
in Cilk computations that use reducers. The SP+ algorithm extends Feng and Leiserson’s
SP-bags algorithm [134] for detecting determinacy races in ordinary Cilk programs that do
not employ reducers. The SP+ algorithm takes as input a Cilk program, its input, and a
steal specification that effectively fixes the schedule. That is, a steal specification specifies
the program points at which steals occur and which Reduce operations execute. Like the
Peer-Set algorithm, SP+ executes the computation serially while it simulates the steals
according to the steal specification to detect determinacy races. The SP+ algorithm is
provably correct, meaning it reports a determinacy race in the computation if and only if
one exists, regardless of whether that determinacy race occurs due to an operation on a
reducer. Furthermore, the SP+ algorithm executes efficiently in time O((T +M⌧)↵(v, v)),
where T is the work of the Cilk program on the given input excluding the runtime’s work
to create or reduce views, M is the number of steals in the steal specification, and ⌧ is the
worst-case running time of a Reduce operation. The SP+ algorithm thus incurs overhead
over the SP-bags algorithm only to execute Reduce operations and simulate necessary
steals.

Implementation and empirical evaluation of the algorithms. We have developed
a prototype tool, called Rader , that implements both the Peer-Set and SP+ algorithms
to debug Cilk computations that use reducers. Rader implements the Peer-Set and SP+
algorithms by using compiler instrumentation to track memory accesses and parallel control
dependencies. Using Rader, we empirically demonstrate the efficiency of both algorithms
in practice. We ran Rader on six application benchmarks that use reducers. Compared to
running each benchmark without instrumentation, Rader incurred geometric-mean multi-
plicative overheads of 2.56 and 16.94 to run the Peer-Set and SP+ algorithms, respectively.

Analysis of SP+’s coverage guarantees. We show how the SP+ algorithm can be
used to efficiently check all executions of an “ostensibly deterministic” Cilk program for de-
terminacy races that involve at least one view-oblivious instruction. A single run of the
SP+ algorithm detects determinacy races in one possible schedule and thus has limited cov-
erage; it elicits only a subset of all possible view-aware instructions. While this behavior is
useful for debugging methodologies such as regression testing, a single run of SP+ does not
guarantee that no execution of the program will exhibit a determinacy race. Although an
exponential number of steal specifications exist for a given Cilk program, one can do better
for most Cilk programs. Most Cilk programs are written to be ostensibly deterministic,

207

meaning that, in the absence of a race, its view-oblivious instructions are fixed across all
executions regardless of scheduling, and it employs only reducers with semantically associa-
tive Reduce operations. For such Cilk programs, we show how to construct a polynomial
number of steal specifications to elicit all possible view-aware instructions. The SP+ algo-
rithm can use these steal specifications to exhaustively check for determinacy races between
view-oblivious and view-aware instructions.

The remainder of this chapter is organized as follows. Section 9.2 presents an exam-
ple program that illustrates how races involving reducers can arise. Sections 9.3 and 9.4
present the Peer-Set algorithm, along with intuition and a formal proof of its correctness.
Section 9.5 presents the SP+ algorithm and a high-level intuition for its correctness. To
formally argue for SP+’s correctness, Section 9.6 first introduce the “spawn parse tree” and
the “view parse tree,” two concepts that we use in the formal proof, and then Section 9.7
formally shows that SP+ algorithm correctly detects determinacy races. Section 9.8 shows
that executing SP+ with polynomial number of different steal specifications is necessary
and sufficient to elicit all possible view-aware instructions in a ostensibly deterministic Cilk
program, thereby providing the stated coverage guarantees. Section 9.9 describes our pro-
totype implementation of Rader and empirically evaluates its performance. Section 9.10
discusses related work and Section 9.11 provides concluding remarks.

9.2 Examples of races that involve a reducer

This section provides an motivational example to illustrate how races that involve operations
on a reducer can occur. We walk through the example to illustrate how a subtle programming
error can trigger a race between user code and a reduce operation on a reducer.

Chapter 2 describes the basics of how the Cilk runtime system supports reducers. To
simplify the description of races on reducers, we shall assume that the reducer supports
a single, serial Update method, which the program can invokes to modify the current
view of the reducer. The race-detection techniques described in this chapter generalize to
handle reducers with a variety of serial or parallel update operations. Formally, a view-
aware strand occurs when the Cilk computation executes a Update, Create-Identity,
or Reduce operation. Other strands in the Cilk computation are view-oblivious strands.

Example view-read race

To illustrate how a view-read race can occur, let us consider the code for the update_list
routine shown in Figure 9-1. The function update_list takes in as parameters an integer
n and a user-defined list of type MyList that implements a singly linked list with a head
pointer and a tail pointer to enable fast list concatenation. The update_list routine spawns
foo with n and list_reducer to perform some computation, which can execute in parallel
with the continuation on lines 5–7, a parallel loop that inserts n elements into the linked
list. To coordinate parallel accesses to the list, update_list wraps the given linked list in
a reducer on line 2. Since the reducer has a user-defined view type, the programmer must
also supply the functions for implementing the reducer’s Create-Identity and Reduce
operations, which are defined via the list_monoid type. (The actual implementation of
list_monoid is not shown in the pseudocode.) Assuming that list_monoid implements
these functions correctly, update_list does not itself contain a determinacy race, because
the runtime coordinates parallel updates to the linked list via the use of a reducer.

208

01 void update_list(int n, MyList<int>& list) {
02 cilk::reducer< list_monoid<int> > list_reducer;
03 list_reducer.set_value(list);
04 int x = cilk_spawn foo(n, list_reducer);
05 cilk_for (int i = 0; i < n; ++i) {
06 list_reducer.view().insert(i);
07 }
08 // If run, the following commented-out statement
09 // would produce a view-read race.
10 // list = list_reducer.get_value();
11 cilk_sync;
12 list = list_reducer.get_value();
13 }
14

15 void race(int n, MyList<int>& list) {
16 int length = 0;
17 MyList<int> copy(list);
18 length = cilk_spawn scan_list(list);
19 update_list(n, copy);
20 cilk_sync;
21 return;
22 }

Figure 9-1: Example Cilk program that contains a determinacy race on the Reduce operation of
a custom linked-list reducer. The MyList type is a user-defined list type that implements a singly
linked list with a head pointer and a tail pointer to enable fast list concatenation. The list_monoid
type implements a reducer whose view type is MyList. The actual implementation of list_monoid
is not shown.

As written, the routine does not exhibit a view-read race, because line 3 initializes
the value of list_reducer before anything is spawned, and line 12 retrieves the value of
list_reducer after all spawned subcomputations that can use the reducer have returned.
If, however, the commented-out call to get_value on line 10 were executed, then the code
would contain a view-read race, because foo might be accessing the reducer in parallel at
that point.

Example determinacy race

To illustrate how a determinacy race involving a reducer can occur, let us consider the code
for race in Figure 9-1, which calls the update_list routine. In this code, the race routine
invokes scan_list, which iterates through the elements of list until one is found with a
null pointer to the next element. Because scan_list is spawned, it can run in parallel with
its continuation on line 19, which calls update_list. Because update_list might actually
insert into the list, the race routine makes a copy of the list first at line 17 and passes the
copy to update_list, so as to allow scan_list to scan the snapshot of the list without the
new inserts performed by update_list.

Despite this precaution, this code contains a determinacy race, assuming the programmer
did not implement a custom copy constructor for MyList. The default copy constructor for
MyList, which line 17 invokes, only performs a shallow copy. As a result, even though copy
is a new MyList object, created with its own distinct head and tail pointers, both list and
copy still point to the same set of linked-list elements, leading to a determinacy race in
the code. In particular, whenever scan_list reaches the last linked-list node of list and
reads its pointer to the next element, some parallel subcomputation in update_list might
be writing to that same pointer to insert an element. This determinacy race means that the

209

a

b

d

f

c

e

1

2 3

4

6

12

13

5 8 9

10

11 14

15 16

7

Figure 9-2: Example Cilk computation dag. Dark circles represent strands, and edges represent
parallel control dependencies between strands. The strands are numbered according to their serial
execution order. Light rectangles correspond to function instantiation and enclose the strands that
execute within that instantiation.

scan_list can scan a nondeterministic number of elements in the list.
The location where determinacy race occurs is subtle. Because update_list employs a

reducer to coordinate parallel inserts on its input list, any insert into list can occur on
a distinct view local to the subcomputation performing the insertion. The operation that
eventually writes to the pointer at the last element in list and realizes the determinacy
race is a Reduce operation that eventually appends to the original view of list_reducer,
as initialized in line 3. A tool such as Cilk Screen [197] will not catch this particular
race, because the determinacy race involves a view-aware instruction executed in a Reduce
operation.

9.3 The Peer-Set algorithm

This section presents the Peer-Set algorithm for detecting view-read races. View-read
races are defined formally in terms of the “peer-set semantics” that reducers obey. We
describe peer-set semantics in terms of the dag computation model presented in Chapter 2.
We formally define the view-read races based on peer-set semantics, and we describe how
the Peer-Set algorithm detects such race.

Let us first define some terms. For any two strands u and v in a Cilk computation, we
say that u precedes v, denoted as u � v, if there exists a path from u to v in the dag.
Two strands u and v are logically in series if either u � v or v � u; otherwise they are
logically parallel , denoted as u k v. In the example computation dag in Figure 9-2, for
example, strands 4 and 9 are logically in series, because strand 4 precedes strand 9, while
strands 9 and 10 are logically in parallel. For convenience, we shall assume that strands
respect boundaries of Cilk functions — functions that can spawn — meaning that calling
or spawning a Cilk function terminates a strand, as does returning from a Cilk function.
Each strand thus belongs to exactly one Cilk function invocation. We shall not worry for
now about modeling the execution of view-aware strands in the computation dag.

Peer-set semantics

“Peer-set semantics” dictate which updates are guaranteed to be reflected in the view of a
reducer h observed at strand u in terms of the peers of u — the set of strands in parallel
with u, denoted by peers(u) = {w 2 V : w k u}. Conceptually, “peer-set semantics” dictate
that the view visible to a strand v is guaranteed to reflect the updates since a previous
strand u if u and v have the same peers. In Figure 9-2, for example, these semantics dictate

210

that the view of a reducer at strand 9 is guaranteed to reflect the updates since strand 5,
because strands 5 and 9 have the same peers. The view at strand 14, meanwhile, is not
guaranteed to reflect the updates since strand 10, because strands 10 and 14 do not share
the same peers — strands 12 and 13 are in the peer set of strand 14, but not that of 10.
Formally, peer-set semantics are defined as follows:

Definition 5 (Peer-set semantics) Let h be a reducer with an associative operator ⌦.
Consider a serial walk of G, and let a1, a2, . . . , a

k

denote the updates to h after the start of
instruction u and before the start of instruction v. Let h(u) and h(v) denote the views of h
at strands u and v respectively. If peers(u) = peers(v), then h(v) = h(u)⌦a1⌦a2⌦ . . .⌦a

k

.

One can show, by induction on the updates associated with each view, that the imple-
mentation of reducers in Cilk [144] ensures that reducers obey peer-set semantics.

View-read races

Formally, a view-read race occurs when two accesses to reducers, called “reducer-reads,”
occur at strands with different peers. Here, we broadly define a reducer-read as creating
a reducer, resetting a reducer’s value, or querying the reducer to retrieve its value. On the
other hand, invoking Create-Identity, Update, or Reduce on a reducer does not count
as a reducer-read, because those functions operate on a reducer’s underlying view instead of
on the reducer itself. A common instance of a view-read race occurs when between a strand
u that queries the value of a reducer and the last strand v before u in the serial execution
order to create or reset the reducer’s value. In terms of peer-set semantics, a view-read race
exists between these two strands if peers(u) 6= peers(v).

Given this definition of a view-read race, a Cilk program with a view-read race might
nevertheless behave deterministically. For instance, in the code example shown in Figure 9-
1, suppose that the programmer moves the call to list_reducer.set_value(list) to after
cilk_spawn at line 4, thereby creating a view-read race. If foo does not modify list,
however, then the update_list routine could behave deterministically, rendering the view-
read race benign . We nevertheless declare this to be a race because the reducer-reads violate
their peer-set semantics.

Detecting view-read races

The Peer-Set algorithm executes a Cilk computation serially and evaluates its strands in
their serial execution order to check for view-read races. The Peer-Set algorithm employs
several data structures to track which strands perform reducer-reads and which strands have
the same peer set.

During program execution, the Peer-Set algorithm assigns a unique ID to every Cilk
function instantiation, and for each instantiated Cilk function F , it maintains a shadow
frame for F on a shadow stack , which is pushed and popped in synchrony with the
function-call stack. The shadow frame for F holds two scalars, F. ls and F.as , and three
“bags,” F.I , F.C , and F.O . Each bag stores a set of ID’s for completed function instanti-
ations in a fast disjoint-set data structure [100, Ch. 21]. The contents of these scalars and
bags are defined as follows.

• The scalar F.as stores the ancestor-spawn count — the total number of spawns
that each ancestor F 0 of F has performed since F 0 last synced.

211

When F calls or spawns G:
1 if F spawns G
2 F. ls += 1
3 F.O [= F.C
4 F.C = ;
5 G.as = F.as + F. ls
6 G. ls = 0
7 G.I = MakeBag({G})
8 G.C = MakeBag(;)
9 G.O = MakeBag(;)

When G returns to F :
10 F.O [= G.O
11 if F spawned G
12 F.O [= G.I
13 elseif F. ls = 0
14 F.I [= G.I
15 else

16 F.C [= G.I

When F syncs:
17 F. ls = 0
18 F.O [= F.C
19 F.C = MakeBag(;)

When F reads reducer h:
20 if FindBag(reader (h)) is a O-bag or

reader (h) .s 6= F.as + F. ls
21 a view-read race exists
22 reader (h) = F
23 reader (h) .s = F.as + F. ls

Figure 9-3: Pseudocode for the Peer-Set algorithm. The MakeBag routine creates a new bag
with a specified initial contents. The FindBag routine finds the bag containing the specified element
by finding the corresponding set in the disjoint-set data structure.

• The scalar F. ls stores the local-spawn count — the number of spawns F has executed
since F last synced.

• The I-bag F.I contains the ID’s of all completed descendants of F with the same
peers as the first (i.e., initial) strand of F .

• The C-bag F.C contains the ID’s of all completed descendants of F with the same
peers as the last continuation strand executed in F . If F has not spawned since it last
synced, then F.C is empty.

• The O-bag F.O contains the ID’s of all other completed descendants of F not in F.I
or F.C .

For each Cilk function F , we refer to the sum of the ancestor-spawn and local-spawn counts,
F.as + F. ls , as the spawn count of F , which corresponds to the total number of spawn
statements executed by F and F ’s ancestors since each last synced. As an example of
ancestor- and local-spawn counts, consider the dag in Figure 9-2. In this dag, the ancestor-
spawn count for function c when strand 8 executes is 2, because its ancestor, function
a, spawned at strands 1 and 4 before strand 8 executes. The local-spawn count for c,
meanwhile, is 1, because strand 5 in c spawned before strand 8 executes. As a result, the
spawn count for strand 8 is 3.

The Peer-Set algorithm also maintains a shadow space of shared memory, called
reader , which maps each reducer to the strand that accessed it last, along with a corre-
sponding spawn count. Specifically, for each reducer h, reader (h) stores the ID of the Cilk
function F that last read h, and the associated field reader (h) .s stores the spawn count of
F when it last read h.

Figure 9-3 gives the pseudocode of the Peer-Set algorithm, which maintains the bags
and scalars for each function frame F as follows. When created, frame F inherits its ancestor-
spawn count from the spawn count of its parent, and it initializes its local-spawn count F. ls
to 0. As F executes, it increments F. ls when F spawns, and resets F. l to 0 when F syncs.
Frame F ’s bags are updated when a child frame G returns to F , based on whether F has
spawned since it last synced. Although the bag G.O is always combined with F.O , the bag
G.SS is combined with F.I only if F has not spawned since it last synced; otherwise G.I is

212

combined with F.C . The bag G.C is guaranteed to be empty when G returns to F because
Cilk functions implicitly sync before they return.

The following theorem justifies that the Peer-Set algorithm runs in nearly linear time.

Theorem 61 Consider a Cilk program that executes in time T on one processor and ref-
erences x reducer variables. The Peer-Set algorithm checks this program execution for a
view-read race in O(T↵(x, x)) time, where ↵ is Tarjan’s functional inverse of Ackermann’s
function.

Proof. The pseudocode in Figure 9-3 shows that, at each point in the program execution,
the Peer-Set algorithm performs at most a constant number of operations on bags plus a
constant amount of additional work. Furthermore, the shadow space reader maintained by
the Peer-Set algorithm stores only x entries, one for each reducer variable. The theorem
follows from a similar analysis as that for the SP-bags algorithm [134, Thm. 1].

9.4 Correctness of the Peer-Set algorithm

This section presents a proof that the Peer-Set algorithm correctly detects view-read races.
We sketch the intuition for why the Peer-Set algorithm is correct. To formally argue that
the Peer-Set is correct, we describe the representation of a Cilk computation dag as an
“SP parse tree,” and we show how peer-set semantics can be modeled simply within an “SP
parse tree.” Finally, we argue mathematically for its correctness.

Intuition

To understand how the Peer-Set algorithm works, consider its behavior as it executes a
Cilk function. We shall use the dag illustrated in Figure 9-2 as a running example. We shall
examine in particular how bags are maintained.

Consider the contents of the bags associated with a Cilk function G when it returns.
Because G is guaranteed to be synced, the pseudocode in Figure 9-3 shows that the bag
G.C is empty, the bag G.I contains descendants of G with the same peer set as the first
strand in G, and the bag G.O contains all other descendants of G. In the dag in Figure 9-2,
for example, when c returns, bag c.I contains the ID for c, and bag c.O contains the ID
for d.

When G returns to its caller or spawner F , the Peer-Set algorithm merges the content
of G.O and G.I into the bags in its parent F . Let us see how this merger captures the
peer-set relationships of these descendant functions with the strands in F .

Because the functions identified in G.O do not share the same peer set as the first strand
of G or the last continuation strand executed by G, they must have a different peers from
any strand in F , regardless of whether G is called or spawned. Therefore, G.O is always
unioned with F.O . In the example dag in Figure 9-2, when c returns to a, unioning bag
c.O with bag a.O correctly identifies that d has a distinct peer set from every strand in a.

As for G.I , we consider two cases.
Suppose that F spawned G. By definition of a spawn, all descendants of G must therefore

have a different peer set from strands in F ; in particular, the continuation strand in F after
the spawn is a peer of the descendants of G. The bag G.I is thus unioned with the bag
F.O when G returns. In the example dag in Figure 9-2, because a spawned c at strand 4,

213

a

b

S

S P S P S S S P

c e f

1 4 1210

15

16

Figure 9-4: The canonical SP parse tree for the function instantiation a in the computation dag
in Figure 9-2. The internal nodes of a sync block are indicated by the darkened rectangle outlined
by a dashed line.

every strand in c is in parallel with strand 10, implying that c has a distinct peer set from
all strands in a.

Now suppose that F called G. If F had no outstanding spawned children, then the first
strand in G has the same peer set as the first strand in F , and the bag G.I is therefore
unioned with F.I . Otherwise, F called G when F ’s local-spawn count was nonzero, meaning
that F had at least one outstanding spawned child. The first strand in G therefore has a
distinct peer set from that of the first strand in F , but the same peer set as the last
continuation strand executed in F . The G.I bag is therefore unioned with F.C , where it
remains until F either spawns again or syncs. In the example dag in Figure 9-2, strand 11
has a distinct peer set from strand 1, but the same peer set as strand 10, the caller of e.
When e returns to a, therefore, unioning the bag e.I with a.C correctly identifies that the
peer set of strand 11 matches that of strand 10.

Ideally we’d like to keep only two bag F.I and F.O , for descendants that have the same
peers as F ’s first strand and that don’t, but that is insufficient. Consider an example where
F spawned off G; before F syncs, it reads a reducer, calls some Cilk function, and reads the
reducer again. These two reads share the same peers, but this peer set differs from that of
F ’s first strand. Thus, the Peer-Set algorithms keeps F.C as a special place holder that
holds descendants with the same peer set as F ’s last-executed continuation strand.

Now let us consider detecting a view-read race. If a strand v reads a reducer h, and
reader (h) is in some ancestor’s O-bag F.O , then it certainly has a different peer set from
v, and the Peer-Set algorithm thus correctly declares a view-read race. If reader (h) is in
F.I for some ancestor F , however, then reader (h) has the same peers as a strand u that is
F ’s first strand, and the currently executing strand v may or may not have the same peers
as u. To handle this case, the Peer-Set algorithm compares the spawn count of v against
the spawn count of reader (h) stored in reader (h) .s , which must match the spawn count
as u. As long as v has this same spawn count, then no ancestor of v below F added a peer to
v that is not a peer of u, meaning that u and v have the same peer set. A similar argument
holds for F.C and the strand u that is the last continuation strand executed in F .

SP parse trees

To argue formally for the Peer-Set algorithm’s correctness, we adopt the representation of
a Cilk computation dag as an “SP parse tree” as introduced by Feng and Leiserson [134]. As
Feng and Leiserson show, the dag modeling a Cilk computation (that does not use reducers)
is a series-parallel dag , which has a distinguished source vertex s and a distinguished
sink vertex t and can be constructed recursively with series and parallel compositions. This
recursive construction can be represented by a binary tree, which we call an SP parse tree .

214

Figure 9-4 illustrates the SP parse tree corresponding to function a in the dag in Figure 9-
2. The leaves of the SP parse tree are strands in the dag, and each internal node is either
an S-node, denoting a series composition of its two children, or a P-node, denoting parallel
composition of its two children. The SP parse tree in Figure 9-4 is a canonical parse
tree [134], meaning that its internal nodes are laid out as follows. The sync strands in a Cilk
function F partition the strands in F into sync blocks. The canonical SP parse subtree for
a sync block is a chain of S-nodes and P-nodes, where the left child of each node is either a
strand in F or the root of the canonical parse tree for a subcomputation spawned or called
in F , and the right child is the next S- or P-node at the root of the SP parse subtree for the
vertices following the left subchild in the serial order. A chain of S-nodes, called the spine ,
links the sync blocks within F .

Feng and Leiserson prove the following lemma [134, Lemma 4] that shows that the series-
parallel relationship between two strands u and v in a Cilk computation is encoded in their
least common ancestor in the SP parse tree, denoted LCA(u, v), which is the deepest
node in the tree that is a common ancestor of both u and v.

Lemma 62 Let u and v be distinct strands in a Cilk computation dag, and let LCA(u, v)
be their least common ancestor in the SP parse tree for the dag. Then u k v if and only if
LCA(u, v) is a P-node.

Proof of correctness

Peer-set semantics can be modeled simply in terms of the SP-parse-tree representation of a
Cilk computation. The following lemma relates peer-sets to the SP parse tree. In particular,
we show that two strands share the same peer set if and only if the path connecting them
in the SP parse tree consists only of S-nodes.

Lemma 63 Two strands u and v have the same peer set, peers(u) = peers(v), if and only
if the path connecting u to v in the SP parse tree consists entirely of S-nodes.

Proof. We first argue that LCA(u, v) must be an S-node. If LCA(u, v) is a P-node, then
u k v, and therefore u 2 peers(v). Because u /2 peers(u), we have that peers(u) 6= peers(v).

()) Suppose that the path in the SP parse tree from LCA(u, v) to u contains a P-
node. Then there must exist a strand w such that LCA(u,w) is this P-node, which implies
that u k w and, therefore, that w 2 peers(u). Because this P-node is on the path from
LCA(u, v) to u, we have that LCA(w, v) = LCA(u, v), which is an S-node. Therefore,
w , v, and thus w /2 peers(v). This P-node therefore implies that peers(u) 6= peers(v), so if
peers(u) = peers(v), then no such P-node can exist. A symmetric argument shows that no
P-node can exist on the path from LCA(u, v) to v.

(() Suppose that peers(u) 6= peers(v), and without loss of generality, suppose that u
executes before v in the serial order. If v 2 peers(u), then u k v and LCA(u, v) is a P-
node. Otherwise, we have u � v and there exists some strand w in exactly one of peers(u)
or peers(v). Suppose that w 2 peers(u) and w /2 peers(v). Then w k u and w , v. By
Lemma 62, we have that LCA(w, u) is a P-node and LCA(w, v) is an S-node. The nodes
LCA(w, u) and LCA(w, v) therefore differ, and one can show that LCA(u, v) is one of these
two. Either way, the P-node LCA(w, u) appears on the path from u to v in the SP parse
tree. The case where w /2 peers(u) and w 2 peers(v) is similar.

We now argue that the Peer-Set algorithm identifies strands that are connected by
S-nodes in the SP parse tree, which implies that they share the same peer set. As in [134],

215

we define the procedurification function F as the map from strands and nodes in the SP
parse tree to Cilk function instantiations.

Lemma 64 Consider an execution of the Peer-Set algorithm on a Cilk computation. Sup-
pose that strand u executes before strand v, and let F be the procedurification function map-
ping the SP parse tree to Cilk function invocations. Let a = LCA(u, v) be the least common
ancestor of u and v in the SP parse tree. Then both of the following conditions hold if and
only if the path from u to v in the SP parse tree consists entirely of S nodes.

1. The ID for F(u) belongs to either the I-bag or the C-bag of F(a) when v executes.
2. The spawn count for F (a) when u executes equals the spawn count for F(v) when v

executes.

Proof. ()) We first show that, if there exists a P-node on the path from u to v in the
SP parse tree, then one of the conditions is violated. Let b be the first such P-node.

Suppose that b lies on the path between a (inclusive) and u. Then u must lie in a subtree
of b. If u is in the left subtree of b, then F(b) spawned a function F 0 which is either F(u)
or an ancestor of F(u). The pseudocode in Figure 9-3 shows that, when F 0 returns, the
procedure ID of F(u) is placed in the O-bag of F(b), violating condition 1. Suppose instead
that u is in the right subtree of b. Then the Peer-Set algorithm’s pseudocode in Figure 9-3
shows that F(u) is added to either a O- or an C-bag. Moreover, v is not in a subtree of
b, because u executes before v in the serial order. Because b is a P-node, the structure of
the canonical SP parse tree implies that b lies inside a sync block and all strands in the
right subtree of b are in or invoked from the same sync block. Therefore, u and v are in
subtrees under different sync blocks in F(b), which implies that the Peer-Set algorithm
must have executed a sync between the time it executed u and the time it executed v. From
the pseudocode in Figure 9-3, F(u) is placed in a O-bag when this sync executes. Because
no action of the pseudocode moves ID’s from a O-bag into either an I- or C-bag, F(u) always
lies in the O-bag of an ancestor of F(b) after F(b) returns, violating condition 1.

Suppose instead that b lies on the path between a (exclusive) and v. Then b must lie in
the right subtree of a by construction of the canonical SP parse tree. Consequently, F(b)
spawned a child Cilk function invocation F 0 that it did not sync before v executed. From
the pseudocode in Figure 9-3, F(b) incremented its local-spawn count when it spawned F 0.
The spawn count for F(v) is therefore at least one larger than that of F(a) when u executed,
violating condition 2.

(() We now show that, if one of the conditions is violated, then there exists a P-node
on the path in the SP parse tree from u to v.

Suppose that the spawn count for F(a) when u executes does not match that for F(v)
when v executes, violating condition 2. Then either F 0. ls 6= 0 for some ancestor F 0 of F(v)
below and including F(a), or F(a). ls changed value between executing u and v. In the first
case, F 0 spawned a child computation that it did not sync before v executed. By construction
of the SP parse tree, there therefore exists a P node on the path from a to v. In the second
case, if F(a). ls increased, then before v executed, F(a) spawned a subcomputation in the
same sync block that invoked the subcomputation containing v, and a P node therefore
exists on the path from a to v. Otherwise, F(a). ls was non-zero when u executed and was
reset to 0 between the executions of u and v, implying that F(a) executed a sync between
executing u and v. By construction of the canonical SP parse tree, a P node therefore lies
on the path from a to u.

Now suppose that the ID for F(u) belongs to a O-bag of F(a) when v executes, violating
condition 1. If F(u) is in a O-bag, then the pseudocode in Figure 9-3 shows that F(u) must

216

have been placed in a O-bag or an C-bag of one of its ancestors F 0 below and including F(a).
Consequently, the pseudocode implies that F 0. ls was nonzero when F(u) was added to one
of its bags, meaning that F 0 spawned a subcomputation that it did not sync before u
executed. If F 0 is below F(a), then there must therefore be a P-node on the path from u
to a. Otherwise F 0 = F(a), and either F(a) spawned the subcomputation containing u,
implying that a is a P-node, or F(a). ls changed value between the executions of u and v,
in which case the argument above shows that a P-node lies on the path from u to v.

We now argue that the Peer-Set algorithm detects a view-read race if only if one exists.

Theorem 65 The Peer-Set algorithm detects a view-read race in a Cilk computation if
and only if a view-read race exists.

Proof. Let F be the procedurification function mapping the SP parse tree to Cilk function
invocations.

()) We first argue that, if the Peer-Set algorithm detects a view-read race, then one
exists. If the Peer-Set algorithm detects a view-read race on a reducer h when executing
strand v, then Figure 9-3 shows that either reader (h) belongs to a O-bag or the spawn count
reader (h) .s does not match F(v).as +F(v). ls . Lemma 64 therefore implies that a P node
exists on the path from u to v in the SP parse tree, meaning that peers(u) 6= peers(v) by
Lemma 63. Consequently, a view-read race exists.

(() We now argue that, if a view-read race exists on a reducer h, then the Peer-Set
algorithm detects it. Let u and v be two strands involved in a view-read race on reducer
h, where u executes before v in the serial order and, if several such races exist, we choose
the race for which v executes earliest in the serial order. The definition of a view-read race
implies that peers(u) 6= peers(v).

When v executes, suppose that reader (h) = F(w) for some strand w. If w = u, then
because peers(u) 6= peers(v), Lemmas 63 and 64 imply that a view-read race is reported. If
w 6= u, then w must have executed after u in the serial order, in order to overwrite reader (h).
We must also have that peers(w) = peers(u); otherwise Lemmas 63 and 64 imply that a
view-read race exists between w and u, and the fact that both w and u executed before
v contradicts strand v being the earliest strand in the serial order for which a view-read
race exists on h. Because peers(u) 6= peers(v), we have that peers(w) 6= peers(v), and by
Lemmas 63 and 64, a view-read race is detected.

9.5 The SP+ algorithm

This section presents the SP+ algorithm for detecting determinacy races in Cilk computa-
tions that use reducers. A parallel execution of a Cilk program that uses reducers contains
view-aware strands, both from calls to update the reducer in the user code and from runtime-
invoked Create-Identity and Reduce operations. The SP+ algorithm extends the SP-
bags algorithm [134] to handle this additional complexity. The SP+ algorithm models the
execution of a Cilk program that uses a reducer as a “performance dag,” which was intro-
duced in Chapter 3. We review the salient details of this performance-dag model here.We
identify the circumstances in which a determinacy race can exist in a computation that uses
reducers. We describe how the SP+ algorithm detects such determinacy races. Finally, we
provide some high-level intuition for the SP+ algorithm’s correctness.

217

To handle the nondeterminism of how the Cilk runtime system manages views of a
reducer, the SP+ algorithm takes a steal specification as part of its input. The steal specifi-
cation dictates which continuations in the computation are stolen, when new reducer views
are created, and the partial order in which views are reduced together. The steal specifi-
cation thereby identifies a particular execution of a Cilk program that uses a reducer. We
shall refer to the particular execution of a Cilk program dictated by a steal specification as
a steal-specified Cilk computation .

To simplify the description, we shall assume that the Cilk program uses a single reducer,
and that the Reduce, Create-Identity, and Update methods all execute serial code.3
As a result, the execution of each of these functions can be modeled as a single strand in the
computation dag. As in Chapter 3, we shall refer to a strand that arises from the runtime
system’s implicit execution of Reduce as a reduce strand , and a strand that arises from
the runtime’s implicit execution of Create-Identity as an init strand .

Review the performance dag model

To describe the SP+ algorithm, we build upon the execution model for Cilk programs
that use reducers introduced in Chapter 3, which models a computation as a “performance
dag.” The “performance dag” model first represents the Cilk computation A as an ordinary
computation dag called the user dag A

⌫

= (V
⌫

, E
⌫

), which does not contain any reduce or
init strands. Let h(v) denotes the view of h that a strand v 2 V

⌫

can access. In terms of
the user dag, the runtime system tracks the views of a reducer h according to the following
invariants, which Chapter 3 presented and we reiterate here:

Invariant 1 If u 2 V
⌫

has out-degree 1 and (u, v) 2 E
⌫

, then h(v) = h(u).

Invariant 2 Suppose that u 2 V
⌫

is a spawn strand with outgoing edges (u, v), (u,w) 2 E
⌫

,
where v 2 V

⌫

is the first strand of the spawned subroutine and w 2 V
⌫

is the continuation in
the parent. Then, we have h(v) = h(u) and

h(w) =

(
h(u) if u was not stolen
new view otherwise.

Invariant 3 If v 2 V
⌫

is a sync strand, then h(v) = h(u), where u is the first strand of v’s
function.

When a new view h(w) is created according to Invariant 2, the new view h(w) is a parallel
view to h(u). We say that the old view h(u) dominates h(w), which we denote by h(u) >
h(w). For a set H of views, we say that two views h1, h2 2 H are adjacent if there does
not exist h3 2 H such that h1 > h3 > h2.

For each parallel view created according to Invariant 2, the runtime system eventually
calls Reduce to reduce that view with another view. Let u be a spawn strand with outgoing
edges (u, v), (u,w) 2 E

⌫

, where v 2 V
⌫

is the first strand of the spawned subroutine and
w 2 V

⌫

is the continuation in the parent. Let y be the sync strand to which the subroutine
spawned by u returns. If h(w) is a new view, then the runtime system executes a Reduce
operation to reduce h(w) before executing y. As Chapter 3 describes, each reduce strand
reduces two adjacent views h1 and h2 together, destroying the dominated view in the pair.

3It is generally the case in practice that the Reduce and Create-Identity methods of a reducer execute
serial code.

218

a

b

d

f

c

e

α

α α

β

β

γ

γ

α

β β β

γ

γ γ

δ

α

α
γ

β r0

r1

r2

Figure 9-5: An example of performance dag, which corresponds to augmenting the user dag in
Figure 9-2 in Section 9.2 with reduce strands r0, r1, and r2, and init strands (not shown). A vertical
bar across an edge indicates that the following continuation strand is stolen. Each strand is labeled
with its associated view ID. Strands with the same view ID are highlighted with the same color.

Chapter 3 describes precisely how the user dag A
⌫

= (V
⌫

, E
⌫

) of a steal-specified Cilk
computation A can be augmented into a performance dag A

⇡

= (V
⇡

, E
⇡

) that additionally
models reduce and init strands. The primary complication in the performance dag concerns
the modeling of reduce strands. For each sync strand v in A

⌫

, a set R of reduce strands
must execute before v to destroy the views of the views of the immediate predecessors of v
in A

⌫

. For each reduce strand r 2 R, we say that v is the sync responsible for r. Chapter 3
describes how the reduce strands in R form a reduce tree , a rooted binary tree interposed
in the performance dag between v and the immediate predecessors of v in A

⌫

. In particular,
each predecessor of v in the user dag A

⌫

becomes a predecessor of a leaf of the reduce tree
in A

⇡

, and the root of the reduce tree becomes the immediate predecessor of v.
Figure 9-5 illustrates an example of a performance dag, which corresponds to augmenting

the user dag shown in Figure 9-2 with reduce strands. In this dag, three different continu-
ation points in function a are stolen, each causing a new view to be generated, leading to
a total of 4 views in a. For each newly created view, a corresponding reduce strand in a
destroys that view. The reduce strand r0, for example, reduces the views ↵ and �, destroy-
ing � and inheriting the view ID ↵. Figure 9-5 also shows how these reduce strands form a
reduce tree before the final strand in a, which is a sync strand. The reduce strands and the
structure of the reduce trees are both functions of the execution schedule, which is fixed by
the input steal specification.

Determinacy races that involve view-aware strands

View-aware strands complicate the circumstances under which a determinacy race occurs.
For example, in the performance dag shown in Figure 9-5, let u be the first strand in
function d, and let v be the second strand in function c. Suppose that u and v access the
same memory location ` with one being a write, and suppose that v is a view-aware strand
generated from executing Update. Because v is a continuation that is not stolen in this
execution, the same worker executes v immediately after returning from d, and both u and
v observe the same view � of the reducer, as Figure 9-5 shows. Because v is view-aware, in a
different execution in which v is stolen, v would observe a different view and might therefore
write to different memory locations. If location ` is part of view �, for example, then in this
alternate scenario, v might not write to `, precluding a determinacy race with u. Because
v is view-aware, its logical parallelism with u is not sufficient for it to definitively race with
u; it must also operate on a parallel view.

We summarize the conditions under which a determinacy race exists between two strands
u and v in a Cilk computation that uses a reducer. Suppose that v follows u in the serial

219

F spawns or calls G:
24 G.S = MakeBag({G},Top(F).vid)
25 p = MakeBag(;,Top(F).vid)
26 G.P = hpi

F syncs:
27 F.S [= Top(F.P)
28 p = MakeBag(;, F.S .vid)
29 Top(F.P) = p

Spawned G returns to F :
30 Top(F.P) [= G.S

Called G returns to F :
31 F.S [= G.S

F executes a stolen continuation:
32 p = MakeBag(;,new view ID)
33 Push(F.P , p)

F calls Reduce R:
34 p = Pop(F.P)
35 Top(F.P) [= p
36 R.S = MakeBag({R},Top(F.P).vid)Reduce R returns to F :

37 Top(F.P) [= R.S

Figure 9-6: Pseudocode for the SP+ algorithm to maintain bags. Each bag is a set with a vid
field, which tracks the view ID of that bag. (The view ID of an S-bag matches that of the first
P-bag in the P-stack.) This vid field is set when the bag is first created and remains invariant as
the bag’s contents are modified. In particular, when two P-bags are unioned together, the view ID
of the destination P-bag is preserved. For a given P-stack x, Push(x) pushes an element on top of
x, and Pop(x) pops x. Top(x) reads the topmost bag of x without modifying x. MakeBag(S, v)
creates a new bag with view ID v that contains the elements of S.

order, both u and v access the same location `, and at least one of them writes to `.
• If v is a view-oblivious strand, then a determinacy race exists between u and v if and

only if u and v are logically in parallel.
• If v is a view-aware strand, then a determinacy race exists between u and v if and only

if u and v are both logically in parallel and h(u) and h(v) are distinct, parallel views
of reducer h.

Detecting determinacy races that involve reducers

Like the Peer-Set and SP-bags algorithms, the SP+ algorithm is a serial algorithm
that evaluates the strands of a Cilk computation in their serial order to detect determinacy
races. As it executes, SP+ employs several data structures to keep track of the parallel
views created in a steal-specified Cilk computation and to determine the series-parallel
relationships between strands, including reduce strands.

Like the SP-bags algorithm, SP+ maintains two shadow spaces of shared memory, called
reader and writer . Each shadow space contains an entry for each memory location that the
computation accesses. During the execution, each Cilk function instantiation is given a
unique ID. Each location ` in reader stores the ID of the function instantiation that last
read `, while each location ` in writer stores the ID for the function instantiation that last
wrote `.

For each Cilk function F on the call stack, the SP+ algorithm also maintains a shadow
frame containing a set of bags. Each bag stores a set of ID’s for completed procedures in a
fast disjoint-set data structure [100, Ch. 21]. In particular, when executing a strand u, the
bags associated with a function F on the call stack have the following contents:

• The S-bag F.S contains the ID’s of F ’s completed descendants that precede u, as well
as the ID for F itself.

• The P-stack F.P contains a stack of P-bags. Together, the P-bags in F.P contain
the set of ID’s of F ’s completed descendants that are logically in parallel with u. The
separate P-bags p 2 F.P partition this set into subsets based on the parallel views

220

read a shared location ` by a view-oblivious strand in F :
38 if FindBag(writer (`)) is a P-bag
39 a determinacy race exists
40 if FindBag(reader (`)) is an S-bag
41 reader (`) = F

write a shared location ` by a view-oblivious strand in F :
42 if FindBag(reader (`)) is a P-bag or FindBag(writer (`)) is a P-bag
43 a determinacy race exists
44 if FindBag(writer (`)) is an S-bag
45 writer (`) = F

read a shared location ` by a view-aware strand in F :
46 if FindBag(writer (`)) is a P-bag and FindBag(writer (`)).vid 6= Top(F.P).vid
47 a determinacy race exists
48 if FindBag(reader (`)) is an S-bag or

(F is an invocation of Reduce and FindBag(reader (`)).vid == Top(F.P).vid)
49 reader (`) = F

write a shared location ` by a view-aware strand in F :
50 if FindBag(reader (`)) is a P-bag and FindBag(reader (`)).vid 6= Top(F.P).vid
51 a determinacy race exists
52 if FindBag(writer (`)) is a P-bag and FindBag(writer (`)).vid 6= Top(F.P).vid
53 a determinacy race exists
54 if FindBag(writer (`)) is an S-bag or

(F is an invocation of Reduce and FindBag(writer (`)).vid == Top(F.P).vid)
55 writer (`) = F

Figure 9-7: Pseudocode for the SP+ algorithm to detect races. As described in the corresponding
pseudocode in Figure 9-6, each bag is a set with a vid field, which tracks the view ID of that bag.
For a P-stack x, Top(F.P) reads the topmost P-bag of F.P without modifying F.P . FindBag(f)
finds the bag that contains f .

created.
Figures 9-6 and 9-7 give the pseudocode of the SP+ algorithm, where Figure 9-6 gives

the pseudocode for maintaining bags, and Figure 9-7 gives the pseudocode for detecting
races. Like the SP-bags algorithm, the SP+ algorithm pushes and pops shadow frames
onto a shadow stack in synchrony with the program execution pushing and popping Cilk
functions on the call stack.

The SP+ algorithm extends the SP-bags algorithm to additionally push and pop P-bags
on a P-stack when reducer views are created or reduced together. Conceptually, each P-
stack in SP+ replaces a P-bag in the SP-bags algorithm in order to keep track of views.
Each P-bag p has an associated view ID , denoted p.vid , which is a unique ID associated
with the P-bag on its creation. Executing a stolen continuation pushes a new P-bag with
a new view ID onto the top of the P stack. Executing a Reduce operation in F combines
the top two P-bags in the P-stack F.P , unioning the newer P-bag into the older one.

Determinacy races are detected by the code in Figure 9-7. As the pseudocode shows,
different codes are used depending on whether the second strand is view-oblivious or view-
aware.

Let us examine how the SP+ algorithm operates by supposing it executes on the com-
putation modeled by the performance dag shown in Figure 9-5. When it executes the fifth
strand u in function a — the stolen continuation labeled with � — it pushes a new empty

221

P-bag corresponding to view �. At this point, the P-stack a.P contains two other P-bags:
{b, c, d}, associated with view ↵, and {e, f}, associated with view �. The first P-bag resulted
from unioning the P-bags corresponding to views ↵ and � before executing r0. After SP+
executes u and encounters r1, the steal specification dictates that the top two P-bags —
the empty one representing strand u and the one containing {e, f} — are unioned before
executing r1. Thus, if r1, a view-aware strand, happens to write to location ` last accessed
by the first strand in f labeled with �, SP+ will not report a race, because f belongs to the
top P-bag of a when r1 executes. If the last access of ` before r1 is performed by a strand
in c, however, a race will be reported, since c is not in the top P-bag of a.

The following theorem analyzes the running time of the SP+ algorithm.

Theorem 66 For a steal-specified Cilk computation A, let Work(A
⇡

) denote the work of
the performance dag of A, and let v denote the number of shared memory locations accessed
by A. The SP+ algorithm checks A for a determinacy race in O(Work(A

⇡

) ·↵(v, v)) time.

Proof. The pseudocode in Figures 9-6 and 9-7 shows that, at each point in the program
execution, the Peer-Set algorithm performs at most a constant number of operations on
bags plus a constant amount of additional work. The theorem thus follows from a similar
analysis as that for the SP-bags algorithm [134, Thm. 1].

Corollary 67 For a steal-specified Cilk computation A, let T = Work(A
⌫

) denote the work
of the user dag of A, let M be the number of specified steals, and let ⌧ be the worst-case
running time of any Reduce or Create-Identity operation. The SP+ the number of
shared memory locations accessed by A. The SP+ algorithm checks A for a determinacy
race in O((T +M⌧)↵(v, v)) time.

Proof. Each specified steal can incur one Create-Identity operation and Reduce
operation, which are not accounted for in the user dag. The work of the performance dag is
therefore O(Work(A

⌫

) +M⌧), and the corollary thus follows from Theorem 66.

Intuition for correctness

With respect to detecting races between two view-oblivious strands, it is straightforward
to see that SP+ provides the same correctness guarantee as the SP-bags algorithm [134].
Like the SP-bags algorithm, as it executes, SP+ maintains, for every active Cilk function
F , two sets of ID’s corresponding to F ’s completed descendants: one set (in the S-bag F.S)
for those that are logically in series with the currently executing strand, and one set (in the
P-stack F.P) for those that are logically in parallel with that strand. Both SP-bags and
SP+ maintain these sets and use them to detect determinacy races between view-oblivious
strands in effectively the same way. SP+ differs only in that it partitions the strands that
are logically in parallel across multiple P-bags.

With respect to detecting races between a view-oblivious strand and a view-aware strand,
SP+ needs to manage multiple P-bags per Cilk function to handle two complications arising
from the use of reducers. First, when a view-aware strand is involved, a race between two
strands exists only if two conditions are met: the strands are logically in parallel, and they
operate on parallel views. Consequently, the SP+ algorithm must keep track of the views
that strands might operate on. Second, the SP+ algorithm must also keep track of different
sets of strands within the a Cilk function F that may end up serialized with some reduce
strand executed in F .

222

SP+ maintains P-bags and their concomitant view ID’s in a manner that imitates the
Cilk runtime’s management of views. Each P-bag has a view ID. When a function F is first
spawned or called, it inherits the same view ID as its parent’s top P-bag. Whenever SP+
executes a stolen continuation in F in the steal-specified Cilk computation, it pushes a new
P-bag onto the top of F.P with a brand new view ID. For a currently executing function
F , its top P-bag thus has the view ID corresponding to the view of its currently executing
strand. Whenever a Reduce operation occurs in the steal-specified Cilk computation, the
SP+ algorithm pops the top P-bag off of F.P and unions it into the next P-bag on top,
imitating how a reduce strand combines adjacent views and destroys the dominated view.
Because a necessary set of Reduce operations must occur to destroy all parallel views that
reach a sync, when F syncs, SP+ maintains the invariant that only a single P-bag is left in
F.P , which is the same P-bag (with the same view ID) that F had when it started. The
view ID effectively simulates how the runtime manages views.

In addition to keeping track of parallel views via view ID’s, the multiple P-bags differ-
entiate the sets of strands that can serialize with different Reduce operations. Specifically,
whenever a spawned function G returns to F , the ID’s corresponding to G’s descendants,
including G itself, get unioned into F ’s top P-bag. Each P-bag in F.P thus contains a set of
ID’s corresponding to F ’s descendants whose initial strands share the same view. Whenever
a Reduce operation occurs, the top two P-bags have the view ID’s corresponding to the
views that the Reduce operation will combine, and the set of ID’s they contain correspond
to the set of F ’s descendants that serialize with the reduce operation. Because everything
that comes after this reduce strand, including this reduce strand, is in series with the descen-
dants corresponding to the ID’s in the top two P-bags, SP+ can safely union them together
immediately before the reduce strand executes.

To detect a potential race with a view-aware strand, SP+ checks that not only are the
two strands in parallel, but also that they operate on parallel views, as verified by comparing
the view ID’s of the last access and currently executing strand. Note that the union of the
top two P-bags occurs before the invocation of the corresponding Reduce operation, and
thus any memory access performed by the reduce strand will have the same view ID’s as the
descendants in those P bags, achieving the desired effect — the reduce strand is in series
with descendants in these two P-bags.

Figure 9-7 shows one subtlety in how SP+ handles the shadow memory. SP+ replaces
the last reader and writer only if the last access is in an S-bag or if the current access is
performed by a reduce strand that shares the same view as the last access. Call the last
access in the shadow memory u and the currently executing strand v. By “pseudotransitivity
of k” [134], we know that there is no need to replace u in the shadow memory with v if v
is logically in parallel with u, because any strand that comes later in serial order that races
with v will race with u as well. We need only to update the last reader/writer if v is in
series with u. In the case where v is a reduce strand, however, v is in series with u even if
u belongs to a P-bag, as long as the P-bag shares the same view ID.

9.6 The spawn parse tree and the view parse tree

To argue formally that the SP+ algorithm is correct, we must show that the execution
of SP+ captures the series-parallel relationships between strands and their views in the
performance dag. This section introduces the “spawn parse tree” and “view parse tree”
to capture these series-parallel relationships between strands and views, respectively, in

223

a"

b"

d"

f"

c"

e"

α

α α

β

β

γ

γ

α

β β β

γ

γ γ

δ α α γ

β r0

r1 r2

Figure 9-8: The spawn dag for the performance dag in Figure 9-5. Strands are labeled and colored
similarly as in Figure 9-5.

a	

r0

15

r2

r1

b	

S

S P S P S S S P

c	 e	 f	

1 4 12 10

16

S S

S

Figure 9-9: The spawn parse tree for the performance dag in Figure 9-5. This spawn parse tree
augments the SP parse tree in Figure 9-4 with reduce chains, which are indicated by the dark
rectangles outlined by dotted lines. Strands, which appear at the leaves of the tree, are labeled
with either their label in Figure 9-2 or, for reduce strands, by their label r0, r1, or r2 in Figure 9-5.
Strands with the same view ID are colored similarly, as in Figure 9-5.

a performance dag. We illustrate some example parse trees, and we show several useful
properties that these trees exhibit.

The spawn parse tree and view parse tree together address two complications in showing
that the SP+ algorithm correctly detects determinacy races in a steal-specified Cilk com-
putation. First, unlike the SP-bags algorithm, the SP+ algorithm must identify when a
view-aware strand can modify its view in parallel with another strand, that is, when two
strands operate on distinct, parallel views. Second, unlike its user dag, the performance
dag is not in general a series-parallel dag, and thus the logical series-parallel relationships
between strands cannot be simply represented using an SP parse tree.

Intuitively, the spawn parse tree maintains the series-parallel relationships among strands
in a performance dag, and the view parse tree identifies which strands can operate on their
views in parallel. Although this intuition breaks down for reduce strands, the spawn and
view parse trees together suffice to identify races involving reduce strands.

The spawn parse tree

The spawn parse tree augments the SP parse tree with reduce strands to model nearly all
of the series-parallel relationships between strands in a performance dag. A spawn parse tree
correctly models all of the series-parallel relationships between non-reduce strands, as well
as some of the relationships involving reduce strands. In particular, the spawn parse tree
captures the series-parallel relationships between strands based on cilk_spawn statements.

The spawn parse tree of a performance dag A
⇡

is constructed from a version of the
performance dag, called the spawn dag , in which some edges have been replaced to produce

224

a series-parallel dag. For example, Figure 9-8 illustrates the spawn dag for the performance
dag in Figure 9-5. As Figure 9-8 illustrates, for each reduce strand r, all but one edge into r
is replaced with an edge into the sync strand responsible for r. The one edge into r that is
not modified is the edge from the last strand to execute before r in the serial order. Formally,
for each reduce strand r in the performance dag, let u1, u2, . . . , u

k

be the k predecessors of r
in the serial order, and let v denote the sync strand responsible for r. For each of the k � 1
edges (u, r) where u = u1, u2, . . . , u

k�1, replace edge (u, r) with an edge (u, v).
The following lemma shows that spawn dag is a series-parallel dag.

Lemma 68 The spawn dag corresponding to a given steal-specified Cilk computation is a
series-parallel dag.

Proof. To construct a spawn dag recursively using series and parallel compositions, for
each function F in the spawn dag, the reduce strands in F before a particular sync strand
y are composed in series with F and its spawned subcomputations that sync at y.

The spawn parse tree of a performance dag is the canonical SP parse tree for the cor-
responding spawn dag. Figure 9-9 illustrates the spawn parse tree for the performance dag
shown in Figure 9-5. Similarly to how a performance dag A

⇡

augments a corresponding user
dag A

⌫

with reduce and init strands, one can view the spawn parse tree as adding reduce and
init strands to the SP parse tree of A

⌫

. This property is illustrated in the comparison be-
tween the spawn parse tree in Figure 9-9 and the SP parse tree in Figure 9-4. As Figure 9-9
shows, the spawn parse tree appends chains of S-nodes, called reduce chains, to each sync
block in its corresponding SP parse tree. These reduce chains connect the existing strands
in the SP parse tree to the reduce strands in a manner that reflects their series-parallel
relationships in the spawn dag. Furthermore, because the edge into each reduce strand r in
the spawn dag comes from the last predecessor of r in the serial execution order, the serial
execution order of the strands in the performance dag and spawn dag are the same. Conse-
quently, a serial execution of the performance dag corresponds to the depth-first, left-to-right
traversal of its corresponding spawn parse tree.

The spawn dag captures a subset of the parallel control dependencies between strands
in the performance dag, but it can mistakenly show reduce strands as being in parallel with
other strands. In the spawn parse tree in Figure 9-9, for example, the least common ancestor
between r1 and any strand in f is a P node, even though the performance dag in Figure 9-5
shows that r1 follows the entire execution of f.

The following two lemmas show that, except for reduce strands, two strands are logically
in parallel in the performance dag if and only if their least-common ancestor in the spawn
parse tree, denoted as LCAS, is a P-node.

Lemma 69 Let u and v be strands in a performance dag, where v follows u in the serial
execution order. If u k v then LCAS(u, v) is a P-node.

Proof. The spawn dag is a version of the performance dag where some paths have been
removed. Consequently, if u k v, then no path connects u to v in either the performance dag
or the spawn dag. The construction of the spawn parse tree from the spawn dag therefore
guarantees that LCAS(u, v) is a P-node.

Lemma 70 Let u and v be strands in a performance dag, where v follows u in the serial
execution order. If v is not a reduce strand and LCAS(u, v) is a P-node, then u k v.

225

1 2 3

4 6

12 13

r0
5 8 9

10 11 14

15

r2

16
r1

7
α α α

γ γ γ γ γ

β β β β β β

δ γ

α

α

α

Figure 9-10: The view tree for the performance dag in Figure 9-5. Strands are labeled with either
their label in Figure 9-2 or, for reduce strands, by their label r0, r1, or r2 in Figure 9-5. Strands are
additionally labeled with their view ID and colored to reflect their view ID.

S
S 16

r2P
S S

r0P r1P
S

15S 14
S 13

S 12
10 11

S
S 9

S 8
S 7

S 6
4 5

S
S 3

1 2

Figure 9-11: The view parse tree for the performance dag in Figure 9-5. Strands, which appear
at the leaves of the tree, are labeled with either their label in Figure 9-2 or, for reduce strands, by
their label r0, r1, or r2 in Figure 9-5. Strands are colored to reflect their view ID.

Proof. Compared to the original performance dag, the spawn dag only removes edges
that end at reduce strands, replacing an edge that enters reduce strand r with an edge into
the sync strand responsible for r in the performance dag. Because v is not a reduce strand,
if a path from u to v contained a reduce strand r in the performance dag, then it must also
contain the sync strand responsible for r. Therefore, a path from u to v must therefore exist
in the spawn dag as well. The lemma therefore follows from the analysis of SP parse trees
by Feng and Leiserson, specifically, [134, Lemma 4].

For convenience, we show the following property of dags, which generalizes the property
shown in [134, Lemma 6].

Lemma 71 Suppose that three strands a, b, and c are encountered in order in a depth-first
traversal of a dag G. If a path exists in G from a to b and no path exists from b to c, then
no path exists from a to c.

Proof. Assume for the purpose of contradiction that v � w. Because u � v, we have
u � w by transitivity, contradicting the assumption that u k w.

The view parse tree

The view parse tree captures which strands in a steal-specified Cilk computation can
modify their views in parallel and which strands cannot. The view parse tree is derived

226

from an alternative representation of the performance dag, called the view tree , which is a
directed tree that models the series-parallel relationships between the views. These series-
parallel relationships are implied by the creation of views according to Invariant 2 and the
destruction of views by Reduce operations.

A view tree is constructed from the performance dag of a steal-specified Cilk computa-
tion by considering the strands of the dag in their serial execution order and applying the
following rules in order:

1. A strand u for which h(u) is a new, identity view is a leaf in the view tree. (Strand u
is either the first strand in the computation or a continuation strand, by Invariant 2.)

2. If a strand u has the same view as the strand v immediately before it in the serial
execution order — meaning that h(u) = h(v) — then u is the sole successor of v in
the view tree.

3. A reduce strand r that combines the views h(u) and h(v) has incoming edges from u
and v in the view tree.

Figure 9-10 illustrates the view tree for the performance dag in Figure 9-5. Figure 9-10
illustrates two features of how view trees model reduce strands. First, in Rule 2, the strand u
is never a reduce strand, because the view of the strand immediately before a reduce strand
r in the serial execution order is always destroyed by r. Furthermore, a reduce strand r
always has two predecessors u and v in the view tree, where u and v are the latest strands
before r in the serial execution order with the views h(u) and h(v), respectively, that are
reduced together by r.

The proof of correctness for SP+ relies on several properties, shown in the following
lemma, on the structure of the view tree and its relationship to the performance dag.

Lemma 72 Consider the view tree of a performance dag, and let G be a subtree of that view
tree rooted at a strand v. Let u denote the first strand in G to execute in the serial order of
execution. The following properties hold:
(a) The views h(u) and h(v) are the same.
(b) There exists a path in the performance dag from any strand in G to v.
(c) There exists a path in the performance dag from u to any strand in G.
(d) Every path in the performance dag that begins at a strand outside of G and ends at a

strand inside of G includes u.

Proof. The lemma follows by induction on the construction of the view tree. The cases
of a leaf strand, created by Rule 1, and a chain of strands created by repeated applications
of Rule 2 are straightforward. We therefore focus on Rule 3.

In the case where a reduce strand r has incoming edges from two strands in the view tree,
let G1 and G2 denote the two child subtrees of r, where G1 executes before G2 in the serial
execution order. By construction of the view tree, the strands in G2 execute immediately
after the strands in G1 in the serial execution order. Let h1 and h2 denote the two views
reduced together at r, where h1 and h2 are adjacent and h1 > h2. Then the root of G1 has
view h1 and the root of G2 has view h2. We justify each of the properties.

Property (a): By induction, the first strand in G1 has the view h1. Therefore, r shares
the same view as the first strand in the subtree rooted at r.

Property (b): Because the roots of G1 and G2 both connect to r in the performance dag,
by induction, there exists a path from any strand in either G1 or G2 to r.

227

Property (c): By induction, h2 is the view of the first strand x in G2. Because G1 and
G2 are not connected in the view tree and all strands with the same view are connected
in the view tree, no strand in G1 shares the view h2. By Invariant 2 (on reducer views),
strand x must be the strand where h2 is created, and therefore, x is a continuation strand
of a spawn strand x0 in G1. Because, by induction, there exists a path from u to x0, a path
from x0 to x, and a path from x to any strand in G2, we know that there is a path in the
performance dag from u to any strand in G.

Property (d): By the same argument above, any path in the performance dag into G2

must therefore include strand x0 in G1. By induction, we thus have that any path from
a strand outside of G1 to a strand in either G1 or G2 must include the strand in G1 that
executes first in the serial execution order.

The view parse tree represents the series-parallel composition of subtrees in the view
tree, just as the SP parse tree represents a series-parallel dag. Figure 9-11 illustrates the
view parse tree for the view tree in Figure 9-10. As Figure 9-11 illustrates, a strand u with
a single predecessor v in the view tree is composed in series with the subtree rooted at v. If
a reduce strand r has two predecessors u and v in the view tree, then the subtrees rooted
at u and v are composed in parallel, and r is composed in series with the subtree modeling
parallel composition.

The view parse tree thus captures the series-parallel relationships between views of a
reducer. Consider two strands u and v in the performance dag, where u executes before v
in the serial execution order. Strands u and v can modify their respective views in parallel,
denoted h(u) k h(v), only if their least common ancestor in the view parse tree, denoted as
LCAV(u, v), is a P-node. Otherwise, the value of h(v) reflects updates in the value of h(u),
denoted h(u) � h(v), and u and v therefore do not operate on parallel views. The following
lemma makes this intuition formal.

Lemma 73 For two strands u and v in a performance dag, we have that h(u) k h(v) if and
only if LCAV(u, v) is a P-node.

Proof. ()) Suppose for the purpose of contradiction that h(u) k h(v) and LCAV(u, v)
is an S-node a. Without loss of generality, suppose that u executes before v in the serial
execution order. Let G1 and G2 denote the view subtrees corresponding to the two children
of a, where G1 contains u and G2 contains v. By construction of the view parse tree, there
exists a path from u to the root of G1. Furthermore, because a is an S-node, G2 contains
only v and is composed in series with the root of G1. Consequently, there exists a path from
u to v in the view tree, contradicting the assumption that h(u) k h(v).

(() Assume for the purpose of contradiction that h(u) � h(v) and LCAV(u, v) is a
P-node a. Let G1 and G2 denote the view subtrees corresponding to the two children of
a, where G1 contains u and G2 contains v. Because h(u) � h(v), there must exist a path
from u to v in the view tree. By construction of the view parse tree, because a is a P-node,
G1 and G2 must be two parallel subtrees in the view tree whose roots point to a common
reduce strand r. There therefore exists a path in the view tree from one subtree of r to the
other subtree of r, contradicting the fact that the view tree is a directed tree.

We conclude this section with four lemmas on the structure of the view parse tree and
spawn parse tree for a given performance dag, which the proofs in Section 9.7 use to show
the correctness of SP+.

228

Lemma 74 Let u, v, and w be three strands in a performance dag that execute in order
in the serial execution order. Suppose that h(u) k h(v) and h(v) k h(w). Then we have
h(u) k h(w).

Proof. In the view parse tree for the performance dag, let a = LCAV(u, v) and b =
LCAV(v, w). Lemma 73 implies that both a and b are P-nodes. Because u, v, and w execute
in order, one can observe that LCAV(u,w) must be one of LCAV(u, v) or LCAV(v, w), and
either way, LCAV(u,w) is a P-node. Lemma 73 thus implies the lemma.

Lemma 75 Let u, v, and w be three strands in a performance dag that execute in order in
the serial execution order. If u � v and u k w and h(u) k h(w), then h(v) k h(w).

Proof. Assume for the purpose of contradiction that h(v) � h(w). If h(u) � h(v), then
there is a path in the view tree from v to w, contradicting the fact that h(u) k h(w). If
h(u) k h(v), then let w0 be the first strand for which h(w0) � h(v). By construction of the
view tree, strand w0 is a continuation strand that executes between u and v in the serial
execution order, and h(u) k h(w0). Lemma 72 thus implies that w0 � w (Property (c)) and
u � w0 (Property (d)). Hence, we have that u � w, contradicting the fact that u k w.

Lemma 76 For two strands u and v in a performance dag, if LCAS(u, v) is a P-node and
LCAV(u, v) is a P-node, then u k v.

Proof. Without loss of generality, assume that v follows u in the serial execution order.
Because Lemma 70 implies the lemma for non-reduce strands, suppose that v is a reduce
strand. Assume for the purpose of contradiction that u � v in the performance dag and
LCAS(u, v) and LCAV(u, v) are P-nodes. Then Lemma 73 implies that h(u) k h(v). Let G
denote the subtree of the view tree rooted at v. Because u executes before v in the serial
execution order and h(u) k h(v), Lemma 72 implies that any path from u to v must contain
the strand w, the first strand in G to execute in the serial execution order. Because w is
not a reduce strand (by Invariant 2 on reducer views) and u � w, Lemma 70 implies that
LCAS(u,w) is an S-node. Furthermore, by construction of the spawn parse tree, reduce
strand v occurs in the right subtree of LCAS(u,w), meaning that LCAS(u,w) must be an
ancestor LCAS(w, v). Consequently, LCAS(u, v) is an S-node, contradicting our assumption
that LCAS(u, v) is a P-node.

Lemma 77 Suppose that three strands u, v, and w execute in order in the serial execution
order of a performance dag. If u k v and v k w and h(v) k h(w), then u k w.

Proof. If u k v and v k w, then Lemma 69 implies that both LCAS(u, v) and LCAS(v, w)
are P-nodes. One can show that either LCAS(u, v) or LCAS(v, w) is the least common
ancestor of u and w in the spawn parse tree, meaning that LCAS(u,w) is a P-node. If w is
not a reduce strand, then Lemma 70 implies that u k w.

Suppose instead that w is a reduce strand, and assume for the purpose of contradiction
that u � w. Because LCAS(u,w) is a P-node, by construction of the spawn dag, u � w
only when u is in series with an immediate predecessor of w other than the last immediate
predecessor of w in the serial execution order. In the view tree, consider the child subtrees
G1 and G2 of strand w, where G1 executes before G2 in the serial execution order. Because
LCAS(u,w) is a P-node and u � w, strand u must be in G1. Meanwhile, the fact that
h(v) k h(w) implies that v is in parallel with both G1 and G2 in the view tree. Consequently,
v must come either before u or after w in the serial execution order, contradicting the fact
that v executes between u and w in the serial execution order.

229

9.7 Correctness of the SP+ algorithm

This section presents a proof that the SP+ algorithm correctly detects determinacy races in
a steal-specified Cilk computation. For simplicity, this proof assumes that the Cilk compu-
tation operates on a single reducer. It is straightforward to extend the argument to handle
more general cases. This section focuses on how SP+ detects races in a single steal-specified
Cilk computation. Section 9.8 discusses how a polynomial number of such SP+ runs can
provide the desired coverage for ostensibly deterministic Cilk programs, and Section 9.9
describes how steal specifications can be given inexpensively.

To formally argue that the SP+ algorithm correctly detects determinacy races, we relate
the execution of the SP+ algorithm to the spawn and view parse trees for a steal-specified
Cilk computation. From the construction of the spawn and view parse trees, each Cilk func-
tion invocation is represented by an assembly of strands and internal nodes in the spawn
and view parse trees. Similarly to what’s done in Section 9.4, we define the procedurifica-
tion function F as the map from strands and nodes in these parse trees to Cilk function
invocations.

We start with the following two lemmas that relate the execution of the SP+ algorithm to
the structure of the spawn parse tree for a steal-specified Cilk computation. First, Lemma 78
shows that, when the SP+ algorithm executes a sync instruction in a function F , the P-
stack of F consists of just one P-bag. Consequently, the action of the SP+ algorithm to
move the contents of that P-bag into the S-bag of F is analogous to the action taken by the
SP-bags algorithm at a sync strand. Using this result, Lemma 79 then relates the structure
of the spawn parse tree to the contents of the S-bags and P-bags that SP+ maintains.

Lemma 78 Consider the execution of SP+ on a steal-specified Cilk computation. When
SP+ executes a sync strand in function F , the P-stack F.P contains only a single P-bag.

Proof. The code for the SP+ algorithm in Figure 9-6 shows that two operations affect
the view ID of the topmost P-bag in F.P or the P-stack of any descendent function of F :
executing a stolen continuation, which pushes a new P-bag with a new view ID on top of a
P-stack, and calling Reduce, which combines the top two P-bags in a P-stack. Because any
view that is created at a continuation strand w in F are destroyed by a Reduce operation
r executed before the sync strand following w, any new P-bag pushed onto F.P when SP+
executes w is popped off of F.P when SP+ subsequently executes r. Consequently, when
SP+ executes a sync strand in F , the P-stack F.P contains only a single P-bag, namely,
the P-bag it contained when F was invoked.

Lemma 79 Consider the execution of SP+ on a steal-specified Cilk computation. Suppose
that strand u executes before strand v, and let F be the procedurification function mapping
the spawn parse tree to Cilk function invocations. Let a = LCAS(u, v) be the least common
ancestor of u and v in the spawn parse tree.

• If a is a P-node, then the procedure ID for F(u) belongs to a P-bag of F(a) when v is
executed.

• If a is an S-node and v is not a reduce strand, then the procedure ID for F(u) belongs
to the S-bag of F(a) when v is executed.

• If a is an S-node and v is a reduce strand, then the procedure ID for F(u) belongs to
either the S-bag or the topmost P-bag in the P-stack of F(a) when v is executed.

230

Proof. The proof extends the argument in [134, Lemma 8], which relates the behavior
of the SP-bags algorithm to the SP parse tree for a Cilk computation. We extend this
argument to account for the reduce operations and reduce chains in spawn parse trees. We
justify that, because the spawn parse tree is the canonical SP parse tree of the spawn dag
and the SP+ and SP-bags algorithms are analogous with respect to non-reduce strands,
then Lemma 8 in [134] completes the proof.

Suppose that a is in a reduce chain. By construction of the spawn parse tree, a is an
S-node, v is a reduce strand in the right subtree of a, and F(u) is either F(a), a spawned sub-
computation of F(a), or an invocation of Reduce in the same reduce chain. If F(u) = F(a),
then the procedure ID for F(u) is stored in the S-bag F(a).S . Otherwise the pseudocode
in Figure 9-6 shows that, when F(u) returns, its procedure ID is placed in the topmost
P-bag of the P-stack F(a).P . Because reduce chains consist entirely of S-nodes, no stolen
continuation executes in F(a) between the time that the procedure ID for F(u) is placed in
a P-bag and the execution of v. Consequently, the procedure ID for F(u) is stored in the
topmost P-bag of F(a).P when v is executed.

Suppose that a is in the spine or a sync block of F(a). By comparing the pseudocode
of the SP+ algorithm in Figure 9-6 to that of the SP-bags algorithm [134], we observe that
the SP+ algorithm moves procedure ID’s among S-bags and P-stacks analogously to how
the SP-bags algorithm moves procedure ID’s among its S-bags and P-bags. In particular,
Lemma 78 implies that, when a function F executes a sync strand, the P-stack F.P contains
just a single P-bag. The SP+ pseudocode executed at that sync strand therefore merges
all procedure ID’s in F.P into F.S , equivalently to how the SP-bags algorithm moves the
contents of its P-bag for F into its S-bag for F . Furthermore, the parent of any reduce chain
in the spawn parse tree is a P-node. Therefore, for any strand v that executes after a reduce
strand u, if LCAS(u, v) is this P-node, then the procedure ID for F(u) belongs to a P-bag
in F(a) as expected.

Consider the execution of the SP-bags algorithm on the spawn dag of the steal-specified
Cilk computation, whose SP parse tree is the spawn parse tree. By induction on the spawn
dag, we conclude that, when a is in the spine or a sync block of F(a), if the SP-bags algorithm
stores a procedure ID in an S-bag in F(a), then the SP+ algorithm stores the same procedure
ID in an S-bag in F(a). Similarly, if the SP-bags algorithm stores a procedure ID in the
P-bag in F(a), then the SP+ algorithm stores the same procedure ID in a P-bag in the
P-stack of F(a).

Next, the following lemma shows how the view ID’s associated with the P-bags main-
tained by SP+ relate to the structure of the view parse tree.

Lemma 80 Consider the execution of SP+ on a steal-specified Cilk computation. Suppose
that strand u executes before strand v. Let F be the procedurification function mapping the
view parse tree to Cilk function invocations, and let a = LCAV(u, v) be the least common
ancestor of u and v in the view parse tree. Suppose that the procedure ID for F(u) belongs to
a P-bag p in the P-stack F(a).P when v is executed. If a is an S-node, then p.vid , the view
ID of p, matches the view ID of the topmost P-bag in F(v).P . Similarly, if a is a P-node,
then p.vid does not match the view ID of the topmost P-bag in F(v).P .

Proof. The code for the SP+ algorithm in Figure 9-6 shows that, when u is initially
added to some P-bag in F(a).P , it is added to the topmost P-bag in F(a).P . Operations
that affect the view ID of the topmost P-bag in F(a).P or the P-stack of any descendent
function of F(a) include executing a stolen continuation, which pushes a new P-bag with a

231

new view ID on top of a P-stack, and calling Reduce, which combines the top two P-bags
in a P-stack. Furthermore, calling or spawning a function G from a function F propagates
the view ID of the topmost P-bag in G to that in F .

If a = LCAV(u, v) is an S-node, then h(u) � h(v), meaning that between executing u and
v, for every stolen continuation w that SP+ executes, SP+ executed a Reduce operation
that destroyed the view created at w. Consequently, between the time when u is added to
the topmost P-bag in F(a).P and the execution of v, any P-bag pushed onto a function’s
P-stack (other than the first P-bag, which is always on the P-stack) is subsequently popped
off. The topmost P-bag in F(v).P therefore has the same view ID as p.

If a is a P-node, then h(u) k h(v), meaning that between executing u and v, SP+
executed a stolen continuation to create a new view, but did not execute the Reduce
operation that destroys that view. Because all views created at continuation strands in a
function are destroyed before a function returns, this stolen continuation must have been in
a function G on the call stack between F(a) and F(v) inclusive. Consequently, the view ID
of the topmost P-bag in G’s P-stack does not match p.vid . Because F(v) is equal to or a
descendant of G, the view ID of the topmost P-bag in F(v).P also does not match p.vid .

Finally, we combine Lemmas 79 and 80 with the lemmas in Section 9.6 concerning the
structure of the spawn and view parse trees to prove that the SP+ algorithm is correct.

Theorem 81 The SP+ algorithm detects a determinacy race in a steal-specified Cilk com-
putation A that uses a reducer if and only if a determinacy race exists.

Proof. Suppose that SP+ detects a determinacy race when executing a strand v. If v is
a view-oblivious strand, then a determinacy race between v and a strand u that executes
before v in the serial execution order requires only that u k v. By Lemmas 69, 70 and 79,
the SP+ algorithm correctly maintains this logical parallelism relation when v is a view-
oblivious strand, and the theorem follows from the argument for the proof of correctness of
the SP-bags algorithm [134, Theorem 10].

()) Suppose that v is a view-aware strand. Let F be the procedurification function
mapping strands to Cilk function invocations. The pseudocode in Figure 9-7 shows that
one of the following three cases occurs (where Top gets the top-most element of the given
P-stack without modifying that P-stack):

1. Strand v performs a write and reader (`) belongs to a P-bag p where p.vid does not
equal Top(F(v).P).vid .

2. Strand v performs a write and writer (`) belongs to a P-bag p where p.vid does not
equal Top(F(v).P).vid .

3. Strand v performs a read and writer (`) belongs to a P-bag p where p.vid does not
equal Top(F(v).P).vid .

In the first case, suppose that the ID in reader (`) is set by a strand u, which executes
before v. Because p.vid 6= Top(F(v).P).vid , Lemma 80 shows that LCAV(u, v) must be a
P-node, and therefore Lemma 73 implies that h(u) k h(v). If v is not a reduce strand, then
because reader (`) belongs to a P-bag p, Lemma 79 implies that LCAS(u, v) is a P-node.
Otherwise, v is a reduce strand, and because reader (`) belongs to a P-bag p such that
p.vid 6= Top(F(v).P).vid , Lemma 79 implies that LCAS(u, v) is a P-node. Either way, we
have that both LCAS(u, v) and LCAV(u, v) are P-nodes, and therefore Lemma 76 implies
that u k v. Because both u k v and h(u) k h(v), a determinacy race exists between u and v.
The other two cases are similar.

(() Now suppose that there exists a determinacy race in A on a location `. Let u and v
be two strands involved in such a race, where u executes before v and, if there are multiple

232

such determinacy races, we choose the determinacy race for which the second strand executes
earliest in the serial order. Suppose again that v is a view-aware strand. By definition of a
determinacy race, we have that u k v and h(u) k h(v).

A determinacy race occurs in one of three ways:
1. Strand u writes ` and strand v reads `.
2. Strand u writes ` and strand v writes `.
3. Strand u reads ` and strand v writes `.

In each case, let F be the procedurification function mapping the spawn and view parse
trees to Cilk function invocations. We explicitly prove Case 3. The remaining cases are
similar.

Suppose that u reads ` and v writes `. When v is executed, let w be the strand such
that reader (`) stores the procedure ID of F(w). If w = u, then u k v implies that
reader (`) belongs to a P-bag p (by Lemmas 69 and 79), and h(u) k h(v) implies that
p.vid 6= Top(F(v).P .vid) (by Lemmas 73 and 80). Consequently, the pseudocode in Fig-
ure 9-7 shows that a determinacy race is reported. If w 6= u, then we consider the two cases
of whether or not u updates reader (`) when it executes.

If u updates reader (`), then consider the sequence of updates to reader (`) from the time
u executes up to and including the time w executes. Let the strands performing the updates
be u1, u2, . . . u

k

, where u1 = u and u
k

= w. From the pseudocode in Figures 9-6 and 9-7,
we have that for i = 1, 2, . . . , k � 1 that, when u

i+1 executes, one of the following two cases
applies.

• The procedure ID of F(u
i

) is in an S-bag, in which case Lemmas 79 and 70 imply that
u
i

� u
i+1.

• Strand u
i+1 is a reduce strand, the procedure ID of F(u

i

) is in a P-bag p, and p.vid ==
Top(F(u

i+1).P).vid . In this case, Lemma 80 implies that LCAV(ui, ui+1) is an S-
node, and therefore Lemma 76 implies that u

i

� u
i+1.

In either case, we have u
i

� u
i+1 for i = 1, 2, . . . , k � 1, which implies that u � w by

transitivity. Because u k v, Lemma 71 implies that w k v, and Lemmas 69 and 79 imply
that w is in a P-bag p0. Furthermore, Lemma 75 implies that h(w) k h(v), and Lemmas
73 and 80 imply that p0.vid 6= Top(F(v).P).vid . The pseudocode in Figure 9-7 therefore
shows that a determinacy race is reported.

If u does not update reader (`), then when u executes, we must have that the procedure
ID of F(w) equals reader (`) for some strand w k u that executes before u. Because u k v
and h(u) k h(v), Lemma 77 implies that w k v, and Lemmas 69 and 79 imply that w is in
a P-bag p. Furthermore, Lemmas 71 and 74 imply that, regardless of whether h(w) � h(u)
or h(w) k h(u), we have that h(w) k h(v), and Lemmas 73 and 80 imply that p.vid 6=
Top(F(v).P).vid . The pseudocode in Figure 9-7 therefore shows that a determinacy race
is reported.

9.8 Analysis of the SP+ algorithm

This section discusses how the SP+ algorithm can be used to check if any execution on
a given input of an ostensibly deterministic Cilk program that uses reducers contains a
determinacy race involving a view-oblivious strand. If D is the maximum depth of nested
spawns and K is the maximum number of continuations in any sync block, then we show
that ⌦(max{KD,K3}) steal specifications are needed to elicit every possible view-aware
strand, and O(KD + K3) steal specifications suffice. The proofs in this section can be

233

adapted to construct these O(KD +K3) steal specifications.
The following theorem bounds the number of steal specifications needed to elicit all

possible update strands. In a Cilk computation, if D is the Cilk depth and K is the maximum
number of continuations in any sync block, then the following theorem implies that O(KD)
steal specifications are needed. The following theorem considers the Cilk computation’s user
dag, not its performance dag.

Theorem 82 In a Cilk computation, all possible strands resulting from calls to Update can
be elicited in ⇥(W) steal specifications, where W is the maximum number of continuations
not followed by a sync strand in the same Cilk function along any path in the computation
dag.

Proof. Consider the canonical SP parse tree for the user dag. Let a denote an internal
node in this tree whose left child is l and whose right child is r. If a is an S-node, then
the subcomputation under r inherits the value of the view h(l). Because the reducer is a
monoid, the value of h(l) is the same, regardless of how the subcomputation under l was
scheduled. The same situation holds if a is a P-node unless the subcomputation under r is
stolen, in which case the subcomputation under r executes on a new, identity view. In this
case, because the reducer is a monoid, the value of h(r) does not depend on the computation
executed before r.

For a strand u in the user dag, consider the root-to-u path p in the SP parse tree. From
the argument above, the value of h(u) depends only on the closest P-node a 2 p such that
the right child of a inherits an identity view. The number of different values of h(u) is
therefore the number of P-nodes a in p for which u is in the right subtree of a.

A root-to-u path in the canonical SP parse tree passes through at most one sync block in
each nested Cilk function F , and each P-node in F on that path corresponds to a continua-
tion on the path to u in that sync block. Consequently, ⌦(W) steal specifications are needed
to elicit all possible update strands at the location of u. Because there exists a unique path
in the SP parse tree from the root to each strand u, one can choose continuations to steal
in a breadth-first manner, where two continuations w1 and w2 are stolen in the same speci-
fication if the same number of P nodes occur on the root-to-w1 and root-to-w2 paths in the
tree. Consequently, O(W) steal specifications suffice to elicit all possible strands resulting
from calls to Update.

We now consider the number of steal specifications needed to elicit all possible reduce
strands, assuming that the Reduce operation is associative. Because a Reduce operation
always combines two adjacent views that have not yet been destroyed, given a sequence
 = hk1, k2, . . . , kKi of K views, every Reduce operation on can be seen as combining
two adjacent subsequences of . There are therefore

�
K

3

�
distinct reduce strands that can

be elicited on the views in , and therefore O(K3) specifications can elicit all possible
reduce strands. The following theorem shows the lower bound that ⌦(K3) specifications are
necessary to elicit every reduce strand.

Theorem 83 Let = hk1, k2, . . . , kKi be an ordered set of K adjacent views. Any collection
R of reduce trees on that contains each possible reduce strand at least once has size |R| =
⌦(K3).

Proof. To bound the number of reduce trees in R, let us characterize a Reduce operation
by the size of its larger input view. Each view h of a reducer that can be produced from
combining views in corresponds to some subsequence of , and the size of h is the length

234

of the subsequence corresponding to h. For example, a reduce strand that reduces the views
represented by the subsequences hk

a

, k
a+1, . . . , k

b�1i and hk
b

, k
b+1, . . . , kc�1i of reduces a

view of size b� a with one of size c� b. Let us consider reduce strands for which the size of
its larger input is at least n/2 + 1.

To count the number of reduce trees containing such reduce strands, we imagine iter-
atively constructing the collection R of reduce trees by considering different view sizes in
increasing order. For each size s, each view h of size s can be an input to multiple distinct
possible reduce strands. Because s � n/2+1, each reduce tree in R can contain at most one
view h of size s and at most one reduce strand r on such a view. A reduce tree in R that
produces h might already contain r already; otherwise a new reduce tree must be added to
R that contains r.

We can lower bound the number of reduce trees added to R for each size s using the
following observations:

• There are n� s+ 1 distinct views of size s.
• For each view h of size s, there are n � s distinct reduce strands that take h as an

input.
• For each view h of size s, at most 2 reduce trees in R can produce h from a smaller

view of a particular size s0, where n/2 + 1 s0 < s. Consequently, there are at most
2(s� n/2� 1) reduce trees already in R that contain distinct reduce strands on h.

These observations show that, for a particular size s � n/2+1, there are (n�s+1)(n�s)
different reduce strands on views of size s, and at most (n � s + 1)2(s � n/2 � 1) of these
reduce strands can be exist in reduce trees already in R. For each size s, we must therefore
add at least (n � s + 1)(2n � 3s + 2) new reduce trees to R. This bound holds as long as
2n � 3s + 2 > 0, implying that s < 2(n + 1)/3. Summing over the applicable sizes s, we
have that

|R| �
2(n+1)/3�1X

s=n/2+1

(n� s+ 1)(2n� 3s+ 2)

= ⌦(n3) .

9.9 Rader

This section presents Rader, our prototype race detector that implements both the Peer-
Set and SP+ algorithms. We evaluated Rader on six benchmarks. When running the
Peer-Set algorithm, Rader incurs a geometric-mean multiplicative overhead of 2.56 (with a
range of 1.01 to 6.65) over running the benchmarks without instrumentation. When running
the SP+ algorithm, Rader incurs an overhead of 16.94 (with a range of 2.94 to 47.74). Both
algorithms are implemented using compiler instrumentation, which accounts for some of this
overhead. We measured the overhead of Rader over running the benchmarks with empty
instrumentation , that is, where each instrumented program point calls a function that
simply returns. When running the Peer-Set algorithm, Rader incurs a geometric-mean
multiplicative overhead of 2.31 (with a range of 1.00 to 4.64) over running the benchmarks
with empty instrumentation. When running the SP+ algorithm, Rader incurs an overhead
of 7.93 (with a range of 2.73 to 24.27). These averages are computed without including

235

overhead for ferret, an outlier that has very little overhead, which we explain later in the
section.

Implementation

The implementation of Rader consists of three parts: the library that implements the Peer-
Set and SP+ algorithms, described in Sections 9.3 and 9.5; modification to the compiler to
insert instrumentation that calls into the library; and modification to the Cilk runtime to
execute a Cilk computation serially with steals and Reduce operations dictated by a given
steal specification.

We modified GCC 4.9 to insert instrumentation to identify parallel control constructs in
the execution, akin to the Low Overhead Annotations [192] for Intel’s Cilk Plus compiler. For
instrumenting memory accesses, we piggyback on the ThreadSanitizer instrumentation [351],
which has been supported in GCC since version 4.8 [385].

To implement the SP+ algorithm, Rader must execute a steal-specified Cilk compu-
tation, meaning that it must simulate steals according to the input steal specification. To
accomplish this, Rader appropriately “promotes” various runtime data structures that would
be modified if, after a worker executes the corresponding spawn, the continuation of the par-
ent had been stolen [144]. When the worker resumes the parent later, it acts as if it has
stolen the parent, and appropriately creates a new reducer view for the continuation. These
promoted data structures also prompt the worker to check if it should execute any reduction.

Since Rader needs to check particular reductions according to the steal specification,
the worker may need to hold off on a reduction instead of reducing eagerly, which is how
Cilk runtime normally operates. We have modified the runtime so that the worker, when
simulating steals, calls back to Rader to see if it should execute a reduction. Although
the modified runtime no longer always performs reduction eagerly, we optimized the steal
specifications that Rader uses as follows to use only constant space per steal.

Steal specifications

Although constructing the steal specification naively can cause the input to be as large as
the computation dag, one can do better. Let D be the maximum depth of nested spawns,
and let K be the maximum number of continuations in any sync block. Because Section 9.8
shows that ⌦(max

�
KD,K3

) executions are necessary to guarantee completeness and that

O(KD + K3) suffice, no time is saved asymptotically if the system checks for more than
one particular reduction or update per sync block. We therefore only need to make sure
that Rader checks at least one reduction or update per sync block in a given execution.
Consequently, the steal specification can be as simple as specifying which three continuations
to steal in a sync block, to check Reduce operations, or which continuations at a particular
depth to steal, to check Update operations. Each steal specification can steal the same
continuations in every sync block, and the completeness guarantee still stands, as long as
Rader is run with O(K3) different specifications. In practice, Rader takes as an input either
three values specifying the continuations to be stolen, or a random seed and a value for K,
in which case three different points are chosen randomly for each sync block. If a race is
detected, Rader reports the labels corresponding to the stolen continuations that triggered
the race, making it easy to repeat the run for regression tests.

236

Benchmark Description Input size

collision 3D Collision detection 13 k pts, 264 k faces
dedup File compression large
ferret Image similarity search large
fib Recursive Fibonacci 28
knapsack Recursive knapsack 26
pbfs Breadth-first search |V | = 2.5M, |E| = 12.76M

Figure 9-12: Description of the benchmarks used, including input sizes.

Running time with instr. (s)

Benchmark Spawns Syncs Cilk frames Mem. acc. None Cilk Cilk + mem

collision 1.67⇥ 104 7.94⇥ 104 5.22⇥ 104 1.97⇥ 108 0.603 0.607 1.437
dedup 9.40⇥ 104 3.00 9.40⇥ 104 8.39⇥ 108 11.596 11.577 12.467
ferret 2.58⇥ 102 3.00 2.59⇥ 102 3.82⇥ 104 8.058 8.108 8.142
fib 1.49⇥ 107 4.48⇥ 107 4.48⇥ 107 1.34⇥ 108 1.219 1.750 3.553
knapsack 3.53⇥ 106 3.96⇥ 106 7.06⇥ 106 2.37⇥ 108 0.459 0.527 1.387
pbfs 6.23⇥ 106 6.24⇥ 106 1.25⇥ 107 1.33⇥ 108 0.686 0.697 1.350

Figure 9-13: Basic measurements for benchmarks used, including execution characteristics, such
as the number of cilk_spawn and cilk_sync statements, the number of Cilk frames created (which
corresponds to the number of Cilk function instantiations), and the number of memory accesses.
The Running time with empty instr. columns give the 1-processor running times in seconds of each
benchmark with various amounts of empty instrumentation. The “None” column gives the running
time of each benchmark when no instrumentation is inserted, which is the ordinary 1-processor
running time of that benchmark. The “Cilk ” column gives the running time of each benchmark
with empty instrumentation only for Cilk’s parallel constructs. The “Cilk + mem” column gives the
running time of each benchmark with empty instrumentation for both Cilk’s parallel constructs and
memory accesses.

CPU Intel Xeon E5-2665
Clock 2.4GHz
Hyperthreading Disabled
Turbo Boost Enabled
Cores per processor chip 8
Processor chips (sockets) 2
L1 data cache/core 32KiB
L2 cache/core 256KiB
L3 cache/socket 20MiB
DRAM 32GiB
Operating system Fedora 16, custom Linux kernel 3.6.11

Figure 9-14: Technical specifications of the machine used for benchmarking. The kernel was
patched with support for thread-local memory mapping used in Cilk-M [238]. This patch was
irrelevant to the experiment, and we do not believe it affects the numbers.

Experimental evaluation

We empirically evaluated Rader on the six benchmark applications described in Figure 9-12.
Properties of these benchmark applications are described in Figure 9-13. We converted the
pipeline programs dedup and ferret from the PARSEC benchmark suite [45] to use Cilk
linguistics and a reducer_ostream, an output-stream reducer that is distributed with Intel
Cilk Plus [196], to write its output. The synthetic fib benchmark uses a reducer_opadd,

237

Benchmark Peer-Set SP+ (no steals) SP+ (updates) SP+ (reduce)

collision 1.00 12.94 12.89 13.11
dedup 1.01 2.94 2.95 2.94
ferret 1.01 1.02 1.01 1.01
fib 6.65 16.99 16.99 44.33
knapsack 3.61 28.84 32.60 43.44
pbfs 4.52 44.22 44.47 47.74

Figure 9-15: Rader’s overhead over running six benchmarks without instrumentation. The Peer-
Set column shows the overhead over the one-processor running time without instrumentation when
running the Peer-Set algorithm for checking view-read races only. The rest of the columns show
the overhead when running the SP+ algorithm with different configurations. The “no steals” column
corresponds to checking for determinacy races without eliciting any steals or Reduce operations.
The “update” column corresponds to checking for determinacy races with steals at middle continu-
ation of every sync block. The “reduce” column corresponds to checking for determinacy races with
randomly chosen steal points to elicit a subset of possible reductions.

Benchmark Peer-Set SP+ (no steals) SP+ (updates) SP+ (reduce)

collision 1.00 5.43 5.40 5.50
dedup 1.01 2.73 2.74 2.73
ferret 1.00 1.00 1.01 1.00
fib 4.64 5.83 5.80 15.21
knapsack 3.15 9.55 10.79 14.38
pbfs 4.45 22.48 22.60 24.27

Figure 9-16: Rader’s overhead over running six benchmarks with empty instrumentation. The
columns match those of Figure 9-15. Because Peer-Set does not use memory instrumentation,
the overheads for Peer-Set are computed with respect to the “Cilk ” running times in Figure 9-13.
The SP+ overheads, meanwhile, are computed with respect to the “Cilk + mem” running times in
Figure 9-13.

which is also part of Cilk Plus. All other benchmarks use user-defined reducers, including the
bag data structure for pbfs, which is described in Chapter 3; a “hypervector” for collision;
and a user-defined struct for knapsack [143]. Rader itself, including the modified runtime,
and all of the benchmarks were compiled with -O3 optimizations. Each running time is an
average over 5 runs. Figure 9-14 summarizes the specifications of the benchmark machine
used for all of the experiments.

Figure 9-15 presents the overhead of Rader over running each benchmark without instru-
mentation. As Figure 9-15 shows, the Peer-Set algorithm incurs little overhead. Because
the overhead of Peer-Set mainly comes from creating and managing bags in the shadow
frames upon spawns and syncs, benchmarks with high spawn, sync, and frame counts, such
as fib, knapsack, and pbfs, exhibit slightly higher overhead.

For the SP+ algorithm, fib, knapsack, and pbfs also exhibit high overhead, because
these benchmarks perform very little work per strand. Moreover, a large part of the work
of these benchmarks involves accessing memory — stack memory, specifically, for fib and
knapsack — which incurs overhead from instrumentation and accessing the shadow memory.
Once we account for the instrumentation overhead (i.e., comparing overhead in Figure 9-15
and Figure 9-16), the overhead of SP+ for these benchmarks is reduced by a factor of 2 to 3.
The collision benchmark falls somewhere in the middle, because it has many fewer spawns
and syncs. Both dedup and ferret, on the other hand, incur very little overhead. Even
though dedup performs many memory accesses, its running time is primarily dominated

238

by file I/O. Finally, ferret is an outlier, both in terms of overhead and the number of
instrumented events. It turns out that, among all of the library code that comes with
PARSEC, ferret exhibits many determinacy races.4 Because the reporting of races throws
off timing due to printouts, we opted to instrument only the main ferret code without
the rest of the library, meaning that only a small fraction of memory accesses within the
computation are instrumented.

Let us look more closely at the overhead for SP+ for the three high-overhead benchmarks,
fib, knapsack, and pbfs. SP+ incurs much higher overhead on fib and knapsack when
checking races with randomly chosen steal points (which corresponds to the “SP+ (reduce)”
column in Figures 9-15 and 9-16) compared with the other configurations, but running
pbfs does not exhibit such a behavior. The reason for this behavior is that both fib and
knapsack have very “small” sync blocks, specifically, each sync block contains essentially one
spawn. Thus, randomly choosing the steal points in each sync block boils down to stealing
almost every continuation, and thus the additional overhead incurred per sync block is
significant compared to the work in the sync block. Running pbfs with randomly chosen
steal points does not exhibit much more overhead compared to the other configurations
because it has a sync blocks with as many as 21 continuations. Finally, SP+ with the other
configurations does incur a much higher overhead on pbfs compared to fib and knapsack.
This overhead comes from the relatively large memory footprint of pbfs. Even though all
three benchmarks perform similar numbers of memory accesses, fib and knapsack, unlike
pbfs, generally access stack space, which is frequently reused during a serial execution. The
use of a shadow memory in SP+ exacerbates the large memory footprint in pbfs, and thus
SP+ incurs many more cache misses when running pbfs compared to running fib and
knapsack.

9.10 Related work

Race detection is a rich area actively being worked on. Roughly speaking, approaches
to race detection either use static analysis [1, 7, 64, 131, 293, 319, 399] or dynamic analysis
[89,90,115,132,137,303,318,343,398,415]. We focus our discussion on the dynamic-analysis
approach, the category our work falls under. In particular, we shall focus on related work
that supports a similar language model, namely work on detecting determinacy races in
programs with nested parallelism.

Nudler and Rudolph [302] proposed an English-Hebrew labeling scheme that labels
“parallel tasks” in a computation based on two different traversal orders, such that comparing
the labels suffice to tell whether the two tasks are logically in parallel. This scheme uses
static labels, meaning that, once assigned, the labels do not change. The label size can grow
proportionally to the maximum number of fork points in the program, that is, the number
of execution points where parallel branches are spawned off.

Dinning and Schonberg [122] proposed a task-recycling scheme that improves upon
the English-Hebrew labeling scheme by recycling labels for tasks, at the expense of failing
to detect some races. They empirically demonstrated that the task-recycling scheme can be
implemented efficiently.

Mellor-Crummey [280] proposed a different labeling scheme called offset-span labeling ,
where the label sizes grow proportionally to the nesting depth, improving on the bound of
the English-Hebrew labeling scheme. He also observed that, for parallel determinacy race

4We separately confirmed that these races exist using Intel’s Cilkscreen race detector [197].

239

detection, it suffices to keep only two readers in shared memory, namely, the “left-most”
and “right-most” parallel readers, which are the least and most recent reads in the serial
execution order of the computation.

Feng and Leiserson proposed the SP-bags algorithm [134], which employs a disjoint-set
data structure to maintain series-parallel relationships. SP-bags executes the computation
serially and incurs near-constant overhead per check. They also observed that the logical
parallel relationship is pseudotransitive, and thus it suffices to store only a single reader in
the shadow memory.

Bender et al. proposed the SP-hybrid algorithm [37] that employs a scheme similar to
English-Hebrew labeling, but manages the labels in a concurrent order-maintenance data
structure, which allows for dynamic labeling and supports checks with constant overhead.

Raman et al. proposed ESP-bags [324] algorithm, which is similar to the SP-bags algo-
rithm but extended to handle async and finish in Habanero-Java [82]. They subsequently
proposed SPD3 detectors [325], also for Habanero-Java that maintains series-parallel rela-
tionships by keeping track of the entire computation tree, which has a simple implementation
and executes in parallel.

Because our algorithms both extend the SP-bags algorithm and similarly use a disjoint-
set data structure, they enjoy similar time and space bounds to SP-bags, with SP+ exhibit-
ing additional overhead for simulating steals and reductions. Like SP-bags, however, they
execute the computation serially. One distinct difference between our work and these algo-
rithms is that SP+ handles race detection on computations with reducers, which correspond
to non-series-parallel dags. To our knowledge, the SP+ algorithm is the first determinacy
race detector that provides provable guarantees for computations that are not series-parallel.
Nevertheless, the SP+ algorithm, albeit sound for a given execution, requires polynomial
number of executions to guarantee complete coverage, due to the inherent nondeterminism
in how the runtime manages reducers.

9.11 Conclusion

This chapter presented the Peer-Set and SP+ algorithms for detecting two unique types
of races that arise from the incorrect use of reducer hyperobjects. Both algorithms are
provably efficient and correct with respect to a given execution, and they incur modest
overhead in practice. We have also shown that for an ostensibly deterministic Cilk program,
polynomially many SP+ executions with different steal specifications suffice to elicit all
possible view-aware strands, thereby providing the desired coverage. These algorithms, and
the Rader tool that implements them, thus allows performance engineers to methodically
detect programming errors that lead to nondeterministic behavior.

Both algorithms execute the computation serially, however, and a natural question is
whether they can be parallelized to execute Cilk computations in parallel, so as to achieve
better execution time for race detection. In particular, the Peer-Set algorithm has demon-
strated negligible overhead when run serially, and an efficient parallel algorithm can lead
to a light-weight always-on view-read race detection tool. Here, we lay out some of the
challenges that we foresee in parallelizing these algorithms.

One challenge to parallelizing the Peer-Set algorithm is to figure out what minimal
information needs to be stored in the shadow memory to correctly detect view-read races.
The Peer-Set algorithm maintains the shadow memory to keep track of last readers in
order to properly check whether two reads to a given reducer have the same peer set. If

240

the algorithm executes the computation in parallel, there is no longer a clear notion of the
last reader. For detecting determinacy races in parallel, Mellor-Crummey has demonstrated
that it is sufficient to store only a “left-most” and a “right-most” reader [280]. Such a scheme
works for detecting accesses that are logically in parallel, but it is unfortunately insufficient
for checking for peer-set equivalence. Storing all parallel reads encountered, meanwhile,
incurs non-constant space usage per reducer and time overhead per check.

The main challenge to an efficient parallel SP+ algorithm, on the other hand, is to
achieve the desired time bound so that one can get speedup during parallel execution. Recall
that the SP+ algorithm executes the computation according to a steal specification, which
dictates what continuations to steal and what Reduce operations to execute in what order.
The constraints imposed by a steal specification can cause worker threads to be blocked at
certain execution points, which can adversarially affect load-balancing. Conforming to the
steal specification while maintaining good load balance seems to be an obstacle.

9.12 Recent developments

Since this work was originally published, some progress was made in the general domain
of dynamic determinacy-race detection. Dimitrov et al. present a provably good algorithm
for detecting determinacy races in programs whose computations can be modeled as 2D
lattices [119]. Although a performance dag can be modeled as a 2D lattice, Cilk programs
that use reducer hyperobjects exhibit additional complications to determinacy-race detec-
tion, including what qualifies as a determinacy race involving a view-aware strand and the
nondeterminism of how the runtime system manages reducer views. Utterback et al. present
a provably good and parallel determinacy-race detector [392] that can detect determinacy
races in ordinary Cilk programs practically efficiently and in asymptotically optimal parallel
running time.

241

242

Chapter 10

Tapir: Embedding Fork-Join
Parallelism into LLVM’s Intermediate
Representation

This chapter presents the Tapir compiler intermediate representation [347] for fork-join
parallel programs supported by dynamic multithreading concurrency platforms. This work
was conducted in collaboration with William Moses and Charles E. Leiserson.

10.1 Introduction

Mainstream compilers, such as GCC [369], ICC [198], and LLVM [232], now offer linguis-
tic support for dynamic multithreading, such as is provided by the Cilk Plus [196] and
OpenMP [26, 306] linguistic extensions for fork-join parallelism. But today’s mainstream
compilers that support fork-join parallelism fail to do a good job optimizing in the face
of linguistic constructs for parallelism. As a result, parallelizing a program using dynamic
multithreading incurs undue performance costs that undermine performance engineering ef-
forts, causing performance engineers to struggle to realize the performance of theoretically
efficient programs in practice.

Consider, for example, the parallel cilk_for loop on lines 4–5 in Figure 10-1, which
indicates that iterations of the loop are free to execute in parallel. In the serialization of
this loop, where the cilk_for keyword is replaced by an ordinary for keyword, each of
the compilers GCC 5.3.0, ICC 16.0.3, and Cilk Plus/LLVM 3.9.0 observes that the call to
norm on line 5 produces the same value in each iteration of the loop, and they optimize
the loop by computing the value only once, before the loop executes. This optimization
dramatically reduces the total time to execute normalize, from ⇥(n2) to ⇥(n). Although
this same optimization can, in principle, be performed on the actual parallel loop in the
figure, none of these compilers performs this code-motion optimization. The same is true
when the parallel loop is written using OpenMP.

This failure to optimize stems from how these compilers implement parallel linguistic
constructs. To understand this problem, let us first review how compiler operate for serial
languages. The compiler for a serial language, such as C [215] or C++ [376], can be viewed as
consisting of three phases: a front end, a middle end, and a back end. The front end parses
and type-checks the input program and translates it to an intermediate representation
(IR), which typically represents the control flow of the program as a more-or-less language-

243

01 __attribute__((const)) double norm(const double *A, int n);
02

03 void normalize(double *restrict out, const double *restrict in, int n) {
04 cilk_for (int i = 0; i < n; ++i)
05 out[i] = in[i] / norm(in, n);
06 }

Figure 10-1: A function that GCC, ICC, and Cilk Plus/LLVM all fail to optimize effectively. The
cilk_for loop on lines 4–5 allows each iteration of the loop to execute in parallel. The norm function
computes the norm of a vector in ⇥(n) time. The call to norm on line 5 can be safely moved outside
of the loop.

independent control-flow graph (CFG) [8, Sec. 8.4.3]. In a CFG, a vertex denotes a
basic block — a sequence of instructions with a single entry point for incoming branches
and a single exit point for outgoing branches — and edges denote control flow between basic
blocks. The middle end consists of many optimization passes that transform the IR into
a more-efficient form. These optimizations tend to be independent of the instruction-set
architecture of the target machine. The back end takes the optimized IR and translates it
into machine code, performing low-level code-dependent optimizations.

GCC, ICC, and Cilk Plus/LLVM all lower parallel constructs for dynamic multithread-
ing in the front end — the front end reduces the parallel constructs to a more-primitive
representation. To compile the loop in Figure 10-1, for example, the front-end translates
the cilk_for loop into IR in two steps. First, the loop body (line 5) is lifted into a helper
function. Next, the loop itself is replaced with a call to a library function implemented in
the Cilk runtime system, which takes as arguments the loop bounds and the helper function,
and handles the spawning of the loop iterations for parallel execution. Since this process
occurs in the front end, it renders the parallel loop unrecognizable to middle-end loop-
optimization passes, such as code motion. Thus, these compilers treat parallel constructs
as syntactic sugar for opaque runtime calls, which confounds the many middle-end analyses
and optimizations.

Previous research

This chapter aims to enable middle-end optimizations involving fork-join control flow by em-
bedding parallelism directly into the compiler IR, an endeavor that has historically proven
challenging [255, 256]. For example, it is well documented that traditional compiler trans-
formations for serial programs can jeopardize the correctness of parallel programs [282]. In
general, three types of approaches have been proposed to embed parallelism in a mainstream
compiler IR.

First, the compiler can use annotations, called metadata , to denote logical parallelism.
The parallel_loop_access metadata in LLVM [259], for example, indicates that a memory
access within a loop has no dependence on instructions in other iterations of the same loop.
LLVM can only conclude that a loop is parallel if all its memory accesses are labeled with
this metadata. Unfortunately, encoding parallel loops in this way is fragile, since a compiler
transformation that moves code into a parallel loop risks serializing the loop from LLVM’s
perspective.

Second, the compiler can use a separate IR to encode logical parallelism in the program.
Rather than embed parallelism into the IR, the HPIR [35,420], SPIRE [216], and INSPIRE
[211] representations, for example, model parallel constructs using an alternative IR, such
as one based on the program’s abstract syntax tree [8, Sec. 2.5.1]. Such an alternative IR

244

(a) (c)

07 int fib(int n) {
08 if (n < 2) return n;
09 int x, y;
10 x = cilk_spawn fib(n - 1);
11 y = fib(n - 2);
12 cilk_sync;
13 return x + y;
14 }

x = alloca i64
br (n < 2), exit, if.else

entry:

detach det, contif.else:

x0 = fib(n-1)
store x0, x
reattach cont

det:

y = fib(n-2)
sync
x1 = load x
add = x1 + y
br exit

cont:

rv = �([n,entry],[add,cont])
return rv

exit:

F

T

detach

continue

reattach(b)
br (n < 2), exit, if.elseentry:

parbeginif.else:

x = fib(n-1)
br join

y = fib(n-2)
br join

parend
add = x+y
br exit

join:

rv = �([n,entry],[add,cont])
return rv

exit:

F

T

Figure 10-2: Comparison of a traditional CFG with symmetric parallelism versus Tapir’s CFG
with asymmetric parallelism. (a) A Cilk function fib, which computes Fibonacci numbers. The
cilk_spawn on line 10 allows the two recursive calls to fib to execute in parallel, and the cilk_sync
on line 12 waits for the spawned call to return. A serial execution of fib executes fib(n-1) before
fib(n-2). (b) Illustration of the parallel flow graph [173, 364] of fib. Rectangles denote basic
blocks, which contain C-like pseudocode for fib. Edges denote control flow between basic blocks.
The parbegin and parend statements create and synchronize the parallel calls to fib. The br
instruction either unconditionally branches to the named basic block or, based on the predicate,
conditionally branches to either the first or second named basic block. The true and false edges
from the conditional branch in entry are labeled T and F, respectively. The � instruction, used to
support a static single assignment (SSA) form [8, Sec. 6.2.4] of the program, takes as its arguments
a pair associating a value with each predecessor of the current block. At runtime, the � instruction
returns the value associated with the predecessor basic block that executed immediately before the
current basic block. (c) Illustration of the Tapir CFG for fib using the same format as (b). The
alloca instruction allocates shared-memory storage for a local variable. Section 10.2 defines the
detach, reattach, and sync instructions, as well as the detach, reattach, and continue edge types.

can support optimizations across parallel control flow without requiring changes to existing
analyses and transformations for CFG’s. But adopting a separate IR into a mainstream
compiler has historically been criticized [257] as requiring considerable effort to engineer,
develop, and maintain the additional IR for the same standards as the compiler’s existing
serial IR.

Third, the compiler can augment its existing IR to encode logical parallelism, which
is the approach that Tapir follows. Unlike Tapir, all prior research on parallel prece-
dence graphs [365, 366], parallel flow graphs [173, 364], concurrent control-flow graphs or
“SSA” [242,301], and parallel program graphs [341,342] represent parallel tasks as symmet-
ric entities in a CFG. For example, for the parallel fib function in Figure 10-2(a), the
parallel flow graph in Figure 10-2(b) illustrates the symmetry of forked subcomputations.

245

Compiler component LLVM 3.8 Tapir/LLVM

Instructions 148,558 900
9
>>=

>>;
1,939

Memory behavior 10,549 588
Optimizations 140,842 255
Code generation 205,378 145
Parallelism lowering 0 1,903
New parallel optimizations 0 1,332
Other 2,854,566 0

Total 3,359,893 5,174

Figure 10-3: Breakdown of the lines of code added, modified, or deleted in LLVM 3.8 to implement
the Tapir/LLVM prototype.

Some of these representations struggle to handle common parallel constructs, such as parallel
loops [216,242], while others exhibit problems when subjected to standard compiler analyses
and transformations for serial programs [173, 218, 242, 336, 341, 365, 366]. For example, the
compiler analyses and optimizations in LLVM make an implicit assumption, which we call
the lineage assumption , for ordinary CFG’s for serial programs that a basic block with
multiple predecessors observes the variables of only one predecessor at runtime. Lee et al.
observe, however, that parallel flow graphs break the lineage assumption [242]. For the par-
allel flow graph in Figure 10-2(b), for example, instructions in the join block must observe
the values of x and y from both of its predecessors. Parallel loops exacerbate this problem by
allowing a dynamic number of tasks to join at the same block. Previous research [4,336] has
proposed solutions to these problems, including additional representations of the program
and augmented analyses that account for interleavings of parallel modifications to variables.
Adopting these techniques into a mainstream compiler, however, seems to require extensive
changes to the existing codebase.

The Tapir approach

This chapter introduces Tapir, a compiler IR that represents logical fork-join parallelism
asymmetrically in the program’s CFG. The asymmetry corresponds to the assumption of
serial semantics [146], which means it is always semantically correct to execute parallel
tasks in the same order as an ordinary serial execution.

Tapir adds three instructions — detach, reattach, and sync— to the IR of an ordinary
serial compiler to express fork-join parallel programs with serial semantics. Figure 10-2(c)
illustrates the Tapir CFG for the fib function. As with the symmetric parallel flow graph
in Figure 10-2(b), Tapir places the logically parallel recursive calls to fib in separate blocks.
But these blocks do not join at a synchronization point symmetrically. Instead, one block
connects to the other, reflecting the serial execution order of the program.

Tapir’s asymmetric representation of logically parallel tasks makes it relatively simple
to integrate Tapir into an existing compiler’s intermediate representation such as LLVM
IR [259]. Figure 10-3 documents the lines of code added, modified, or deleted to implement
Tapir/LLVM, a prototype of Tapir in LLVM. As Figure 10-3 shows, Tapir/LLVM was
implemented with about 5000 lines, compared to LLVM’s roughly 3-million-line codebase.
Moreover, fewer than 2000 lines of code were needed to adapt LLVM’s existing compiler
analyses and transformations to Tapir.

The breakdown of lines is as follows. The lines for “Instructions” add Tapir’s instructions
to LLVM IR and adapt LLVM’s routines for reading and writing LLVM IR and bitcode

246

files. Conceptually, these changes allow LLVM to correctly compile a Tapir program to a
serial executable with no optimizations. The lines for “Memory behavior” control how Tapir
instructions interact with memory operations, preventing the compiler from creating any
determinacy races in race-free codes. The lines for “Optimizations” perform any adjustments
required for LLVM analyses and transformations to compile a Tapir program at optimization
level -O3. Most of these modifications are not necessary for creating a correct executable but
are added to allow the compiler to perform additional optimizations, such as parallel tail-
recursion elimination as described in Section 10.5. The lines for “Code generation” fixed a
bug in LLVM’s implementation of setjmp which is independent of the implementation Tapir.
The lines for “Parallelism lowering” translate Tapir instructions into Cilk Plus runtime calls
and allow Tapir programs to be race-detected using a custom implementation of the SP-
bags algorithm [134]. Finally, the lines for “New parallel optimizations” implement new
optimization passes specifically for parallel code.

Tapir enables existing compiler optimizations to optimize across parallel control flow.
The prototype implementation of Tapir/LLVM, for example, can move the call to norm in
Figure 10-1 outside of the parallel loop, just as it can for the serialization of the loop. Tapir
enables other optimizations, including common-subexpression elimination [290, Sec. 12.2],
loop-invariant-code motion [290, Sec. 13.2], and tail-recursion elimination [290, Sec. 15.1],
to optimize across parallel control flow and produce substantial performance improvements
in practice. Tapir also enables new optimizations on parallel control flow. Tapir therefore
allows the compiler to optimize a parallel program comparably to its serial counterpart,
thereby helping performance engineers understand the performance of a parallel program in
terms of the performance of its serial counterpart.

Tapir makes minimal assumptions about memory consistency [61, 321] for concurrent
memory accesses. Tapir assumes only that memory is shared among all parallel tasks and
that register state is local to each task. Although logically parallel tasks can access the same
memory locations, Tapir does not specify semantics for concurrent accesses, and it does not
restrict the compiler’s optimizations based on any particular concurrency semantics. Because
of its independence from any specific memory model, the Tapir approach is applicable to a
variety of languages that support fork-join parallelism.

Tapir supports fork-join parallelism as expressed by parallel-language constructs such as
those provided by Cilk and OpenMP. Although Tapir/LLVM happens to lower the parallel
constructs to Intel’s Cilk Plus runtime system, in principle, different lowering passes could
be built to lower Tapir to other runtime systems, such as OpenMP’s. By targeting the
popular fork-join parallel models supported by various dynamic multithreading concurrency
platforms, Tapir provides a language- and platform-independent way to embed parallelism
into LLVM IR.

Cross-compiler comparison

Figure 10-4 compares the “work efficiency” of a suite of benchmark Cilk Plus programs when
compiled with Tapir/LLVM versus the three mainstream Cilk compilers. For each of the
four compilers, we evaluated each benchmark as follows. We compiled the benchmark with
-O3 optimizations and ran it on a single processor core, thereby measuring its work T1. We
also serialized each benchmark — replacing the Cilk linguistic constructs with their serial
equivalents — to produce an equivalent serial C/C++ code, and then we compiled that code
with each compiler using -O3 optimizations and ran it on a single processor core to produce
a serial running time T

S

for the benchmark. We then computed the work efficiency

247

0.4

0.5

0.6

0.7

0.8

0.9

1

Cho
les

ky

FFT

NQue
en

s

QSort

Rect
mul

Stra
sse

n

Avg
Filte

r

Man
de

l

nd
MIS

inc
MIS

rad
ixS

ort

SpM
V

pR
an

ge

kd
Tree

CHull

inc
ST

pa
ral

lel
SF

nd
ST

nd
BFS

de
tB

FS

Tapir/LLVM Intel GCC CilkPlus/LLVM

Figure 10-4: The work efficiency of mainstream compilers and Tapir/LLVM on the Cilk Plus
benchmarks described in Section 10.7. For each compiler — Tapir/LLVM, ICC 16.0.3 (denoted as
“Intel”), GCC 5.3.0 (denoted as “GCC”), and Cilk Plus/LLVM 3.9.0 (denoted as “Cilk Plus/LLVM”)
— the bar for each benchmark shows the ratio TS/T1, where the serial running time Ts is running
time of the benchmark when the Cilk control constructs are replaced with their serial equivalents,
and the 1-processor running time T1 is the running time of the parallel Cilk code on 1 processor. A
missing bar indicates that the compiler failed to correctly compile the code.

T
S

/T1 of the benchmark, which is plotted as a bar in Figure 10-4.
As the figure shows, Tapir/LLVM routinely exhibits higher work efficiency than the

three mainstream compilers. A higher bar in the figure is better, because it means that
the work of the parallel code exhibits less overhead compared to its serial equivalent. A
value of 1.0 indicates perfect work efficiency — no overhead is incurred to enable parallel
execution — while a value of 0.5 means that the work of the parallel code is twice that of
its serial equivalent. Because the serial code avoids all the overheads introduced to support
parallel execution, we normally expect the serial code to be faster than the parallel code on
1 processor, meaning that all bars should be at most 1.0. Due to the unpredictable nature
of compilers, however, sometimes the 1-processor parallel execution outperforms the serial
execution, as in the case of the incST benchmark, despite the overhead for parallelism.

This cross-compiler comparison of work efficiency can be misleading, however, as a com-
piler that produces more-optimized code may show a lower work efficiency than a compiler
that produces less-optimized code, even if they have exactly the same overhead. For example,
ICC tends to perform register allocation better than the other compilers, which translates
to faster execution times for some benchmarks. Nevertheless, as Section 10.7 documents,
the Tapir approach generally produces faster code than approaches that lower parallelism
in the compiler front end.

Contributions

This chapter makes the following research contributions:
• The design of Tapir, a compiler IR for fork-join parallelism with asymmetric parallelism

constructs that enables existing serial optimizations — such as common-subexpression

248

elimination, loop-invariant code motion, and tail-recursion elimination — to operate
across parallel control flow, as well as allows for parallel optimizations.

• Denotational semantics for Tapir and a proof that, if an execution of a Tapir program
exhibits no determinacy races, then it has serial semantics.

• The implementation of the Tapir/LLVM prototype compiler, which is implemented on
top of the LLVM compiler by modifying only about 5000 source lines of code (⇠1.5%).

• The implementation of parallel optimizations such as “unnecessary-synchronization
elimination” and “parallel-loop spawning.”

• Experiments which demonstrate that parallel programs exhibit lower overhead when
compiled with Tapir/LLVM rather than other mainstream compilers.

• Experiments demonstrating the advantage of embedding fork-join parallelism into a
compiler’s IR, instead of handling parallel linguistics only in the compiler’s front end.

Outline

The remainder of this chapter is organized as follows. Section 10.2 describes Tapir’s repre-
sentation and properties, as well as how Cilk and some OpenMP programs can be expressed
using Tapir. Section 10.3 discusses how analysis passes can be adapted to operate on Tapir
programs. Section 10.4 presents the denotational semantics of Tapir and argues for the serial
semantics of determinacy-race-free Tapir programs. Section 10.5 describes various optimiza-
tions on parallel control flow that Tapir enables. Section 10.6 describes auxiliary software
we developed to exercise and test Tapir/LLVM. Section 10.7 discusses our evaluation of the
effectiveness of Tapir. Section 10.8 discusses related work. Section 10.9 concludes.

10.2 Tapir

This section describes Tapir and how it represents logically parallel tasks asymmetrically
in the CFG of a program to support serial semantics. Tapir extends the compiler IR with
three instructions — detach, reattach, and sync— to express fork-join parallel control flow.
We describe these instructions and how they interact with static single-assignment (SSA)
form [8, Sec. 6.2.4]. We describe how fork-join parallel language constructs from Cilk and
OpenMP can be expressed using Tapir. Although we describe Tapir as an extension to
LLVM IR [259], we see no fundamental reason why Tapir cannot be similarly implemented
in other compilers.

Tapir instructions

Tapir extends LLVM IR with three instructions: detach, reattach, and sync. The detach
and reattach instructions designate logically parallel tasks, and the sync instruction imposes
synchronization on parallel tasks. To describe these instructions precisely, let A = (V,E, v0)
be a CFG, where v0 2 V is the designated entry point of A where an execution of A must
begin. Conceptually, the detach instruction is similar to a function call, and the reattach
instruction is similar to a return. The three instructions have the following syntax:

detach label b, label c
reattach label c
sync

249

where b and c are (labels of) basic blocks in V . In LLVM IR terminology, both detach and
reattach are terminator instructions that conclude the instructions in a basic block and
implement outgoing control-flow edges.

A detach instruction takes a detached block b and a continuation block c as its
arguments, and it allows b and c to operate in parallel. At runtime, a detach instruction
in a block a terminates a and spawns a parallel task starting at b which can execute in
parallel with the continuation block c. The CFG contains a detach edge (a, b) 2 E and
a continue edge (a, c) 2 E. The block b must be a single-entry block for which every
exit from the sub-CFG reachable from b — the parallel task spawned by a — is terminated
by a reattach whose continuation c matches the continuation in the corresponding detach
instruction — the detach instruction reattached by the reattach. For each such reattach
instruction, the CFG contains the reattach edge (b0, c) 2 E, where b0 is the block terminated
by the reattach.

In a sense, detach works like a function call to b that resumes at c after the subcompu-
tation rooted at b returns, whereas reattach acts like a return. Unlike a function call and
return, however, b is a block within the CFG of the function containing it, rather than a
different function in the program, and b and c can operate in parallel. A detach does not
require that b and c execute in parallel, but simply allows the runtime system to schedule
them for parallel execution, if it so desires.

Tapir assumes that every CFG A = (V,E, v0) obeys the following invariants:

Invariant 84 A reattach instruction reattaches one detach instruction.

Invariant 85 For each reattach instruction j that reattaches a detach instruction i, every
path from v0 to the block terminated by j passes through the detach edge of i.

Invariant 86 Every path starting from the detached block of a detach instruction i must
reach a block containing a reattach instruction that reattaches i.

Invariant 87 If a path from a detach instruction i to a reattach instruction j that reat-
taches i passes through the detach edge of another detach instruction i0, then it must also
pass through a reattach instruction j0 that reattaches i0.

Invariant 88 Every cycle containing a detach instruction i must pass through a reattach
instruction that reattaches i.

Invariant 89 Any immediate successor of a reattach instruction cannot contain “� in-
structions.”

These invariants imply that, at runtime, a detach instruction with detached block b and
continuation c spawns the execution of the single-entry sub-CFG induced by the blocks on
any path from b inclusive to c exclusive. We say that the detach instruction detaches this
sub-CFG, and c is the continuation of the detached CFG.

Although memory state is shared among all parallel tasks in Tapir, it is organized as a
tree of parallel contexts. A new parallel context is created as a child of the current context
when control enters a function or follows a detach edge. When control executes a reattach
instruction or leaves a function the context is destroyed, and the parent’s context becomes
the current context. An alloca instruction allocates shared memory in the current context.

Tapir adopts LLVM’s strategy for register availability. A register x defined in a basic
block a is only available to subsequent instructions in a, but not to instructions before

250

the definition. The register is only available within any basic block b if all paths from v0
to b must pass through a, that is, a dominates b. As a result, a register defined in the
CFG detached by a detach instruction is not available across reattach edges. That is, to
communicate data out of a detached sub-CFG, the data must be transferred through shared
memory and not through registers. In addition to preserving the fundamental invariants
of LLVM, which simplifies the implementation of Tapir/LLVM, this behavior mimics what
a runtime system must do more accurately than a design in which registers from multiple
parallel tasks are all available after the tasks join.

At runtime, a sync instruction dynamically waits for the (dynamic) set of parallel tasks
spawned within its parallel context and any of its descendant contexts to each execute their
corresponding reattach instructions. We say that a sync instruction j syncs a detach
instruction i if i and j belong to the same parallel context and the execution of the parallel
task spawned by i might not have completed when j executes. The detach instructions that
j might sync correspond to all detach instructions reachable in a reverse traversal of the
CFG from j that does not pass through another sync instruction nor traverses a detach or
a reattach edge.

Let us return to the Tapir CFG in Figure 10-2(c) and see how the three instructions are
used to express the logical parallelism of the fib program in Figure 10-2(a). The detach
instruction terminating the if.else block in Figure 10-2(c) allows blocks det and cont to
execute in parallel. The detach instruction thus creates the detach edge (if.else, det) 2 E
and the continue edge (if.else, cont) 2 E. The reattach instruction in the det block
reattaches the detach instruction in the if.else block, terminating the basic block det and
creating the reattach edge (det, cont) 2 E. The sync instruction in the cont block simply
waits for the execution of the det block to complete. Unlike reattach instructions, sync
instructions are not explicitly associated with detach instructions, and they, in fact, can be
executed within conditionals.

Static single-assignment form

LLVM IR uses static single-assignment (SSA) form [8, Sec. 6.2.4], which must be adapted
for Tapir programs. SSA form ensures that at most one instruction in a program function
sets each register variable. LLVM IR employs the � instruction [8, Sec 6.2.4] to combine
definitions of a variable from different predecessors of a basic block. In adapting SSA to
Tapir, a concern is that a � instruction might allow registers defined in a detached sub-CFG
to be used in its continuation. A basic block containing a � instruction must avoid inheriting
register definitions from predecessors that are connected by reattach edges. Otherwise, a
register defined in a detached sub-CFG might not have been computed by the time the
continuation executes.

We implement this constraint by simply forbidding reattach edges from going into basic
blocks with � instructions. But what if the continuation c of a detach instruction begins
with a � instruction? In this case, we create a new basic block c0 containing only a branch
instruction to c. We reroute the reattach and continuation edges originally going to c so
that they go instead to c0. All other edges going to c are left in place.

The reason this solution works is as follows. No reattach edges in the resulting CFG
go to blocks containing � instructions. Because a detached sub-CFG does not dominate
any outside block, registers in the detached sub-CFG can only be used in � instructions
of the immediate successors of the detached sub-CFG. Since the continuation is the only
immediate successor of the detached sub-CFG and it contains no � instructions, no registers

251

br (0 < n), head, exitentry:

i0 = �([0,entry],[i1,inc])
detach body, inc

head:

norm0 = norm(in,n)
out[i0] = in[i0] / norm0
reattach inc

body:

i1 = i0 + 1
br (i1 < n), head, exitinc:

sync
returnexit:

T

detach

continue

reattach

T

F

F

Figure 10-5: Tapir CFG for the parallel loop in Figure 10-1, using a similar format as the CFG’s
in Figure 10-2.

from the detached sub-CFG can be accessed in the continuation.

Asymmetry in Tapir

The detach and reattach instructions express parallel tasks asymmetrically both syntacti-
cally in the structure of the CFG and semantically in the way memory state is managed.
Both asymmetries are illustrated by the example in Figure 10-2(c).

First, the CFG detached by a detach instruction is connected by a reattach edge to
the continuation block of that instruction, even though they can execute in parallel. For
example, the reattach edge between det and cont in Figure 10-2(c) breaks the symmetry
between them. Reattach edges reflect the serial semantics of a Tapir program, which dictates
that a serial execution of the program executes the detached CFG to completion before
starting to execute its continuation. In contrast, parallel flow graphs and similar previously
explored representations join logically parallel tasks in the CFG at a synchronization point.
By supporting separate reattach and sync instructions, Tapir decouples the termination of
a parallel task from its synchronization.

Second, although memory state is shared among all parallel tasks in Tapir, values in
register variables are not guaranteed to be preserved across reattach edges. For example,
the continuation block cont cannot assume that the register value x0 returned by fib(n-1)
in block det will be accessible, because the two blocks belong to different parallel contexts.
Thus, cont must load it again after the sync instruction.

Section 10.3 shows how Tapir’s asymmetric representation makes it easy for existing
compiler analyses to work with Tapir CFG’s.

Expressiveness of Tapir

Tapir can express logical fork-join parallelism in parallel programs with serial semantics.
For example, it can express the parallelism encoded by the cilk_spawn and cilk_sync
linguistics from Cilk++ [246] and Cilk Plus [196], as Figure 10-2 illustrates. Tapir can also
concisely express the parallelism encoded by OpenMP task and taskwait clauses [26], as
well OpenMP parallel sections [306]. Other parallel constructs can be represented as well,
although operations that do not encode fork-join parallelism, such as OpenMP’s ordered
clause, cannot be represented directly using detach, reattach, and sync instructions.

252

Tapir can also express parallel loops, including cilk_for loops and OpenMP parallel
loops that have serial semantics. Figure 10-5 illustrates Tapir’s default representation of
the parallel loop in Figure 10-1. As Figure 10-5 shows, Tapir can represent a parallel loop
in the CFG as an ordinary loop, where the head block detaches the body block, and the
exit block syncs all spawned executions of the body block. Section 10.5 describes how this
representation of parallel loops allows existing compiler loop optimizations to operate on
Tapir parallel loops with only minor modifications. Although this loop structure can exhibit
poor parallel performance, when the loop body is small, separate optimization passes in
Tapir/LLVM (see Section 10.5) transform this parallel-loop representation into alternative
forms (see [277, Sec. 8.3], for example) that exhibit good performance.

10.3 Analysis passes

This section describes how LLVM’s analysis passes can be adapted to operate on Tapir
programs. We first discuss constraints on how Tapir programs can be safely transformed.
We overview how LLVM’s dominator analysis [8, Ch. 9], alias analysis [8, Ch. 12], and
data-flow analysis [8, Ch. 9] were minimally modified to support Tapir.

Constraints on transformations

To be correct, a code transformation on a Tapir program must respect two properties: it
must preserve the program’s serial semantics and it must not introduce any new behaviors
into the program’s set of behaviors, although it may safely reduce the set of behaviors.

A program can exhibit more than one behavior if it contains a determinacy race [134].
A determinacy race can cause the program to execute nondeterministically depending on
the order in which the two sections of code accesses the variable. Conceptually, to avoid
introducing new behaviors, code transformations must not create determinacy races.

One way a code transformation can preserve the two correctness properties is by serial-
izing a portion of the CFG: constraining parallel tasks to execute in their serial order, rather
than allowing the runtime system to order things as it sees fit. An entire Tapir program can
be serialized as follows:

• Replace every detach instruction by an unconditional branch to its detached block,
which effectively removes the continue edge from the CFG.

• Replace every reattach instruction that reattach a detach instruction i with an un-
conditional branch to the continuation block of i.

• Remove all sync instructions.
The resulting program is called the serial elision [146] of the Tapir program, because all
the parallelism has been elided. The serial elision contains no Tapir keywords and is a serial
LLVM program that employs standard LLVM IR.

Alias analysis

Alias analysis [8, Ch. 12] determines whether different memory instructions might refer-
ence the same locations in memory. LLVM uses alias analysis to determine, for example,
whether two memory instructions can be reordered. If they always reference different lo-
cations, it is generally safe to reorder them, but if they might refer to the same location,
their order must be preserved. In addition to maintaining LLVM’s invariants, code transfor-

253

mations in a Tapir program must avoid reordering instructions that introduce determinacy
races.

To handle Tapir programs, alias analysis in LLVM treats detach and sync instructions as
if they access memory. This adaptation involves examining the following four cases in which
k is an arbitrary memory instruction, i is a detach instruction, and j is a sync instruction:

1. The instruction k moves from before i to after i.
2. The instruction k moves from after i to before i.
3. The instruction k moves from before j to after j.
4. The instruction k moves from after j to before j.

Neither Case 2 nor Case 3 can introduce a determinacy race, because both motions serialize
the execution of k with respect to the sub-CFG spawned by i. Cases 1 and 4 might introduce
a determinacy race, however, if k accesses a memory location that is also accessed by the
CFG spawned by i. To avoid such problematic code motion, detach and sync are treated
as instructions that access memory. Specifically, to handle Case 1, i is treated as if it
were a function call that accesses all memory locations accessed in the CFG detached by i.
Similarly, for Case 4, j is treated as if it were a function call that accesses all memory
locations accessed by all instructions that j might sync. With these modifications, LLVM’s
alias analysis properly works on Tapir code.

Dominator analysis

Many optimization passes in the compiler middle end use dominator analysis [8, Ch. 9]
to determine what basic blocks in the CFG must execute before or after what other basic
blocks. Dominator analysis tells us when one instruction is guaranteed to execute before
another instruction, and conversely, postdominator analysis tells us when one instruction is
guaranteed to execute after another instruction.

Ideally, dominators and postdominators should work almost identically as in the serial
elision of the Tapir program to ensure that serial code is optimized correctly. When given a
parallel task, however, the analysis must understand that the spawned task is not guaranteed
to execute before the continuation, and likewise that the continuation is not guaranteed to
execute after the spawned task.

Ignoring the names of edges, the difference between the Tapir program’s CFG A =
(V,E, v0) and its serial elision’s CFG A0 = (V,E0, v0) is the set E � E0 of continue edges,
each of which connects a detach instruction to its continuation. A continue edge short-
cuts the detached sub-CFG, changing the continuation’s immediate dominator from the
detached sub-CFG to the block containing the detach instruction itself. This configuration
of detach, reattach, and continue edges looks much like an ordinary if construct in which the
detached sub-CFG is conditionally executed. In a sense, for the sake of dominator analysis,
the continuation can act as if the lineage assumption holds for its predecessors. As a result,
LLVM’s dominator analysis requires no changes to handle Tapir programs.

Data-flow analysis

Data-flow analysis [8, Ch. 9] examines the flow of data along different paths through
a CFG A = (V,E, v0). A wide class of code transformations, including those that might
move instructions across a reattach edge, rely on this analysis technique. Fundamental to
data-flow analysis is an understanding of the set of possible program states at the beginning
and end of each basic block b 2 V , denoted in(b) and out(b), respectively.

254

To illustrate how LLVM’s data-flow analyses accomodate Tapir, let us examine the par-
ticular case of forward data-flow analysis; backward data-flow analysis is similar. In an
ordinary serial CFG, forward data-flow analysis evaluates in(b) as the union of out(a) for
each predecessor block a of b:

in(b) =
[

(a,b)2E

out(a) .

To handle Tapir CFG’s, data-flow analyses must be adapted specifically to handle contin-
uation blocks. Because Tapir’s asymmetric representation propagates register variables and
memory state differently across a reattach edge, the modifications to LLVM data analyses
consider registers and memory separately.

For variables stored in shared memory, the standard data-flow equations remain un-
changed. Thus, LLVM need not be modified to handle them for Tapir.

For register variables, however, LLVM must be modified. In particular, LLVM’s data-
flow analyses must exclude the values in registers from an immediate predecessor a of a basic
block b if the edge (a, b) 2 E is a reattach edge. Let E

R

denote the set of reattach edges
in E. For a Tapir CFG, forward data-flow analyses define in(b) for register variables as

in(b) =
[

(a,b)2E�ER

out(a) ,

that is, they ignore predecessors across a reattach edge. With this change, Tapir/LLVM
correctly propagates register variables through the CFG, never allowing register values in a
basic block to use register values set in a logically parallel detached sub-CFG.

10.4 Denotational semantics for Tapir

This section presents formal, denotational semantics [348, 387] for Tapir. Although work
has been done to develop formal semantics for LLVM [419], we examine the semantics of
Tapir with respect to a simple serial programming language, in order to focus on the essential
properties of these semantics. In particular, we show that, if an execution of a Tapir program
contains no determinacy races, then it exhibits serial semantics, that is, the same semantics
as its serial elision.

A simple integer language

We shall describe these semantics based on a simple serial programming language, Serial.
Figure 10-6 presents the abstract syntax for Serial, which is defined on the following
syntactic domains: P, the domain of programs; �, the domain of statements; E, the domain
of expressions; ⌅, the domain of variables; and O, the domain of binary arithmetic operators.
Serial is designed to illuminate the key semantic features of detach, reattach, and sync.
In particular, in Serial, all accesses to memory are handled by load and store statements.
Serial also supports the syntax {�} for executing a statement within its own “scope.”

The denotational semantics of Serial are straightforward. The state of a Serial pro-
gram consists of a memory M : Z ! Z, which maps locations to values; and an en-
vironment N : ⌅ ! Z; which maps program variables to values. The semantics of a
Serial program are defined by the expression evaluation function E : E ! N ! Z,

255

Syntactic domains
P : Programs
� : Statements
E : Expressions
⌅ : Variables
O : Binary arithmetic operators

Program production
P ::= �

Expression productions
E ::= Z | ⌅ | O E E

Statement productions
� ::= nop

| ⌅ = load E

| store ⌅, E

| ⌅ = E

| while E do �

| �1;�2

| {�}

Figure 10-6: Abstract syntax for the Serial language, which forms the basis in which we examine
the semantics of Tapir.

SSJx = load ✏K(M,N)

1 return (M,N [x/M(EJ✏K(N))])

SSJstore x, ✏K(M,N)

2 return (M [N(x)/EJ✏K(N)], N)

SSJs1; s2K(M,N)

3 return SSJs2KSSJs1K(M,N)

SSJ{s}K(M,N)

4 let (M 0, N 0) = SSJsK(M,N)
5 return (M 0, N)

Figure 10-7: Definition of the serial-statement-evaluation function SS for load statements, store
statements, statement sequencing (s1; s2), and statement scoping ({s}).

which maps the environment to an integer; and the serial-statement-evaluation func-
tion S

S

: � ! M ⇥N ! M ⇥N , which specifies how executing a statement transforms its
state. An execution of a Serial program is the ordered set of program states it adopts
when the statement evaluation function starts from a given input state and evaluates the
statements of the program.

Figure 10-7 presents the definitions of S
S

for load statements, store statements, state-
ment sequencing, and statement scoping, which are pertinent to our description of Tapir’s
semantics. As Figure 10-7 shows, the behavior of S

S

J{s}K produces a new memory, but
leaves the environment unchanged. This behavior resembles the behavior of a function call,
which does not allow the local variables of the caller to escape the frame of the caller. We
omit the definition of S

S

for other statements, as well as the definition of E , which are
straightforward and familiar from other serial languages [387]. In particular, statements
other than load and store do not read or write memory.

Semantics for Tapir

We describe the semantics for Tapir with respect to the semantics of Serial. We first define
the syntax of a Tapir program as an extension of the syntax for Serial. In particular, a
Tapir program supports the additional production rule for statements:

� ::= detach �1 reattach �2 | sync

We also adjust the production rule for the Tapir program itself as follows:

P ::= �; sync

To specify the semantics of a Tapir program, we augment the state of the program to

256

SP Jx = load ✏K(M,N,C,U)

6 let ` = EJ✏K(N)
7 if ` /2 U(A,P).wr [U(D,P).wr
8 return (M,N [x/M(`)], C, U [(D,S)/(U(D,S).rd [{`} , U(D,S).wr)])
9 else

10 A determinacy race exists

SP Jstore x, ✏K(M,N,C,U)

11 let ` = EJ✏K(N)
12 if ` /2 U(A,P).wr [U(A,P).rd [U(D,P).wr [U(D,P).rd
13 return (M [`/N(x)], N,C, U [(D,S)/(U(D,S).rd , U(D,S).wr [{`})])
14 else

15 A determinacy race exists

Figure 10-8: Definition of the Tapir-statement-evaluation function SP for load and store state-
ments.

SP Jdetach s1 reattach s2K(M,N,C,U)

16 let (M 0, N 0, C 0, U 0) = SP Js1K(M,N,new context,
U [(A,S)/U(A,S) [U(D,S)][(A,P)/U(A,P) [U(D,P)][(D,S)/;][(D,P)/;])

17 return SP Js2K(M 0, N,C, U [(D,P)/U(D,P) [U 0(D,S) [U 0(D,P)])

SP JsyncK(M,N,C,U)

18 return (M,N,C,U [(D,S)/U(D,S) [U(D,P)][(D,P)/;])
Figure 10-9: Definition of the Tapir-statement-evaluation function SP for detach and sync state-
ments.

keep track of parallel contexts and an “execution summary,” which summarizes the locations
in memory that are read and written in parallel.

To keep track of parallel contexts that arise in the evaluation of a Tapir program, each
context is assigned a unique integer, C : Z.

The execution summary maintains the logical series-parallel relationships among memory
accesses in order to detect determinacy races. Formally, the execution summary is defined
as follows. An access record A 2 2Z ⇥ 2Z is defined as a pair of sets of integers, where
one set, denoted A.rd , is the read set, and the other, denoted A.wr , is the write set. We
define an empty access record, denoted ;, as the pair of empty sets. Access records are
unioned element-wise, that is, for two access records A and A0, the result of A [A0 is the
pair (A.rd [acc0.rd , A.wr [A0.wr). An execution summary U : {A,D} ⇥ {S,P} !
A maintains four access records. Conceptually, two access records U(A,S) and U(A,P),
are maintained for “ancestor” parallel contexts, while two more, U(D,S) and U(D,P), are
maintained for the current context and any of its descendants. The access records U(A,S)
and U(D,S) record locations accessed logically in “series” with the current statement, while
the access records U(A,P) and U(D,P) record locations accessed logically in “parallel.”

To accomodate the augmented state of a Tapir program, we define the Tapir-statement-
evaluation function S

P

: � ! M ⇥N ⇥C⇥U ! M ⇥N ⇥C⇥U . Figure 10-8 presents the
definition of S

P

for load and store statements, and Figure 10-9 present its definition for
detach and sync statements. For all other statements, S

P

JsK produces the same memory
and environment as S

S

JsK while leaving the context and execution summary unchanged.
In the definition of S

P

Jdetach s1 reattach s2K, we say that the new context C 0 created for
S
P

Js1K is a descendant of the input context C, and C is an ancestor of C 0. Furthermore,

257

the descendant/ancestor relationship between contexts is transitive.
An execution of a Tapir program is the partial order of program states it observes as S

P

evaluates the program’s statements starting from a given input state. We shall show how
the execution of a Tapir program can be modeled as a series-parallel dag [134] A, where
each edge denotes a program state, and the vertices denote evaluated statements. As Feng
and Leiserson describe, a series-parallel dag has a designated source vertex and a designated
sink vertex and can be constructed via recursive “series” and “parallel” compositions. The
base case of the recursion is a single edge. A series composition between two disjoint dags
A1 and A2 identifies the sink of A1 with the source of A2. A parallel composition identifies
the source of A1 with the source of A2 and the sink of A1 with the sink of A2.

The following lemma shows that an execution of a Tapir program can be modeled as a
series-parallel dag.

Lemma 90 An execution of a Tapir program can be modeled as a series-parallel dag.

Proof. We first describe how an execution of a Tapir program can be modeled as a dag.
Consider the evaluation S

P

JsK of each statement of the Tapir program, starting from the
given input state. We separately consider detach statements, sync statements, and other
statements in the program.

Consider a statement s other than a detach or a sync statement. If the evaluation S
P

JsK
generates a new state from the given state, then it produces a new edge in the dag, which
corresponds to the base case of a series-parallel dag construction. If the evaluation recursively
evaluates a substatement, then the source of the dag modeling the recursive evaluation is
unified with the sink of its input state, which corresponds to a series composition.

We describe the evaluation of detach and sync statements as producing pseudo series-
parallel dags, which are constructed recursively like series-parallel dags except that two
such dags can be composed in parallel by either unifying their sources or their sinks, not
necessarily both. We shall then argue that the dag produced by evaluating all statements
in the Tapir program is in fact a series-parallel dag.

Consider the evaluation S
P

Jdetach s1 reattach s2K on the state �. Let A1 denote the
pseudo series-parallel dag modeling the recursive evaluation S

P

Js1K, and let A2 denote the
pseudo series-parallel dag modeling the recursive evaluation S

P

Js2K. The source of A2 is
unified with the source of A1, producing a pseudo series-parallel dag.

Consider the evaluation of S
P

JsyncK on state (M,N,C,U), which is modeled by the edge
(u, v). Let v1, v2, . . . , vn denote the sinks of previously generated states whose contexts match
or are descendants of C. All sinks v1, v2, . . . , vn are unified with the source u, producing a
pseudo series-parallel dag.

We now argue, by induction over the dags generated in evaluating substatements of
detach statements, that the dag model of the execution is in fact a series-parallel dag.
Consider the evaluation of detach s1 reattach s2 on the state �, and let A1 denote the dag
produced from evaluating S

P

Js1K. By induction, A1 is a series-parallel dag. We consider
two cases, depending on whether S

P

Js2K evaluates a sync in the same context as the context
of �.

Suppose that S
P

Js2K evaluates a sync statement in the same context as the context of
�, and let A2 denote the dag produced by the evaluation of S

P

Js2K up to the first such
sync. By induction, A2 is a series-parallel dag. The evaluation of the detach statement
unifies the sources of A1 and A2 and the evaluation of the sync statement unifies their sinks.
Hence A1 and A2 undergo a parallel composition of series-parallel dags, which produces a
series-parallel dag.

258

Suppose that S
P

Js2K never evaluates a sync statement in the same context as the context
of �. Let A2 denote the dag produced by S

P

Js2K, which is a series-parallel dag by induction.
The evaluation of the detach statement unifies the sources of A1 and A2. Because the final
statement in a Tapir program is a sync statement in the same context as the input state,
there must exist a sync statement in an ancestor context. The evaluation of such a sync
statement unifies the sinks of A1 and A2. Hence A1 and A2 undergo a parallel composition
of series-parallel dags, which produces a series-parallel dag.

We define some terminology based on this dag model. Consider two distinct program
states �1 and �2 in the execution of a Tapir program modeled by the dag A. We say that
�1 precedes �2, denoted �1 � �2, if there is a path from �1 to �2 in A. If either �1 � �2
or �2 � �1, then �1 and �2 are in series. Otherwise, �1 and �2 are in parallel , denoted
�1 k �2.

Series-parallel dags admit the following properties [134, Lemma 2]:

Lemma 91 Let G0 be a series-parallel dag, let G be a series-parallel subdag of G0, and let
u and v be the source and sink of G, respectively. Then the following properties hold:

• There exists a path in G from u to any edge in G.
• There exists a path in G from any edge to v.
• Every path in G0 that begins outside of G and enters G passes through u.
• Every path in G0 that begins within G and leaves G passes through v.

Proof of serial semantics

We now argue that a Tapir program that contains no determinacy races has the same
semantics as its serialization. The function : � ! � maps statements to statements. The
 function replaces serializes the given statement, replacing statements involving detach,
reattach, and sync with their serial equivalents, that is,

 (detach s1 reattach s2) = ({s1}; s2)
 (sync) = nop

For all other statements, trivially returns the statement produced by recursively running
 on all substatements. The serialization of a Tapir program is the result of recursively
applying to every statement in the program.

Conceptually, determinacy-race-free Tapir programs exhibit serial semantics because,
as long as S

P

does not detect a determinacy race, then as S
P

evaluates each statement
of a Tapir program, it modifies the program state in a manner corresponding to how S

S

modifies the program state as it evaluates the serialization of that statement. We must
first argue that S

P

maintains access records in a manner that detects a determinacy race if
and only if one exists. Although S

P

maintains access records in a manner that reflects the
execution of the SP-bags algorithm [134] or the ESP-bags algorithm [324], Tapir programs
are more general than the programs addressed by either of those algorithms, and the proofs
of those algorithms do not directly apply. We therefore argue for the serial semantics of
these programs by studying the behavior of S

P

as it evaluates the program’s statements.
The following lemma argues that the contents of the access records correctly identify

locations that are read and written in parallel for detecting determinacy races.

259

Lemma 92 Consider an execution A of a Tapir program. Let (M,N,C,U) denote a pro-
gram state observed during the execution of A before a determinacy race is encountered. The
following properties hold for each ` 2 Z:
(a) We have ` 2 U(D,P).rd if and only if a load statement in context C or a descendant

thereof reads M(`).
(b) We have ` 2 U(D,P).wr if and only if a store statement in context C or a descendant

thereof writes M(`).
(c) We have ` 2 U(A,P).rd if and only if a load statement in an ancestor context of C

reads M(`).
(d) We have ` 2 U(A,P).wr if and only if a store statement in an ancestor context of C

writes M(`).

Proof. The proof follows by induction over the evaluation of statements in the program
by S

P

. We consider detach, sync, load, and store statements in particular, because no
other statements read or write memory or modify the execution summary.

Statement detach s1 reattach s2. Let �0 = (M,N,C,U) be the state on which the
detach statement is evaluated. We first consider the evaluation S

P

Js1K. Let �1 denote
the state on which S

P

Js1K is performed. As Figure 10-9 shows, �1 includes the execution
summary U 0 in which

U 0(A,S) = U(D,S) [U(A,S) ,

U 0(A,P) = U(D,P) [U(A,P) , and
U 0(D,S) = ; .

Furthermore, �1 has a single immediate predecessor �0 in the dag A. Lemma 91 thus implies
that, for any previously observed state �, we have � � �1 if and only if � � �0, and otherwise
� k �1. The context of �1 is also a new, descendant context of C. The properties therefore
hold for �1.

Now consider the evaluation S
P

Js2K. Let (M 0, N 0, C 0, U 0) = S
P

Js1K�1. The properties
hold for (M 0, N 0, C 0, U 0) by induction. As Figure 10-9 shows, S

P

Js2K is performed on the
state �2 = (M 0, N,C, U 00) in which

U 00(D,P) = U(D,P) [U 0(D,S) [U 0(D,P) .

In the dag A, the state �2 has a single immediate predecessor �0. Lemma 91 thus implies
that, for any previously observed state �, we have � � �2 if and only if � � �0, and otherwise
� k �2. In particular, all of the states observed in the recursive evaluation of S

P

Js1K are in
parallel with �2. Finally, states �0 and �2 share the same context. The properties hold thus
for s2.

Statement sync. Let �0 = (M,N,C,U) be the state on which the sync statement is
evaluated. Figure 10-9 shows that, if �1 = S

P

JsyncK�0, then the execution summary U 0 of
�1 satisfies

U 0(D,S) = U(D,S) [U(D,P) and
U 0(D,P) = ; .

260

Let ⌃ denote the immediate predecessors of �1 in the dag A. Every state in ⌃ has a context
equal to or descended from C. Furthermore, Lemma 91 implies that a previously observed
state �0 precedes �1 if and only if �0 precedes some state in ⌃, and otherwise �0 k �1. The
properties therefore hold for �1.

Load and store statements. Consider the evaluation of S
P

Jx = load ✏K on state �0 =
(M,N,C,U). Figure 10-8 first shows that the evaluation first checks whether the location
` = EJ✏K(N) is in U(D,P).wr or U(A,P).wr . By induction, ` is in one of these sets only if a
previously evaluated store statement produced a state that is logically in parallel with �0,
which means that a determinacy race exists. If ` is in neither set, then Figure 10-8 shows
that �1 = S

P

Jx = load ✏K�0 contains the execution summary U 0 where

U 0(D,S).rd = U(D,S).rd [{`} .

Because �0 is the immediate predecessor of �1 in A, Lemma 91 implies that any other
previously observed state � precedes �1 if and only if it precedes �0, and otherwise � k �1.
Hence the properties hold. The evaluation of a store statement is similar.

The next lemma justifies that, if an execution of a Tapir program exhibits a determinacy
race, then S

P

detects a determinacy race.

Lemma 93 If an execution A of a Tapir program exhibits a determinacy race, then S
P

detects a determinacy race.

Proof. Let s1 and s2 denote the two evaluated statements (vertices in A) involved in a
determinacy race, where s2 is the earliest statement involved in a determinacy race with
a previously evaluated statement. Then s1 and s2 are logically in parallel. Let ` be the
memory location accessed by both s1 and s2, and let (M,N,C,U) denote the state on which
the evaluation S

P

Js2K is performed. Suppose that s2 is a load statement, which implies that
s1 is a store statement. Because s1 is evaluated before s2 and is logically in Lemma 92
implies that ` is in either U(A,P).wr or U(D,P).wr . Consequently, as Figure 10-8 shows
line 7 finds ` in one of these sets, and line 10 reports a determinacy race. The case where
s2 is a store is similar.

Finally, the following theorem shows that the execution of a Tapir program has serial
semantics if it exhibits no determinacy races.

Theorem 94 Suppose that the execution of a Tapir program exhibits no determinacy races.
If s is the Tapir program and s0 = (M0, N0, C0, U0) is the initial program state, then
S
P

JsKs0 = S
S

J (s)K(M0, N0).

Proof. The theorem follows by induction over the evaluation of the statements in the
program. At each step, we consider the parallel evaluation S

P

JsK(M,N,C,U) of a statement
s evaluated on the program state (M,N,C,U) and compare it to the serial evaluation
S
S

J (s)K(M
S

, N
S

) of (s) on the state (M
S

, N
S

). We justify that each step maintains two
invariants:

Invariant 95 The environments are equal: N = N
S

.

Invariant 96 For every ` 2 Z, if ` /2 U(A,P).wr [U(D,P).wr , then M(`) = M
S

(`).

261

The base case, the start of the program, holds trivially, because at the start of the
program execution, the memories are the same, M = M

S

; the environments are the same,
N = N

S

; and all access records in U are empty. We focus on the statements given in
Figures 10-8 and 10-9, which modify memory or perform a detach, reattach, or sync,
because S

P

JsK and S
S

J (s)K perform identical operations on memory and the environment
for all other statements, and S

P

JsK does not change U .

Statement x = load ✏. The load statement is its own serialization. By the inductive
hypothesis, we have N = N

S

, and therefore EJ✏K(N) = EJ✏K(N
S

). Let ` = EJ✏K(N). As the
evaluation rules in Figures 10-7 and 10-8 show, when evaluating the load statement, neither
S
S

nor S
P

modifies the memory, and S
P

does not modify either U(A,P).wr or U(D,P).wr .
Therefore, Invariant 96 is maintained. Because the program contains no determinacy races,
Lemma 93 implies that S

P

does not reach line 10 in Figure 10-8. Consequently, line 7 implies
that ` is not in U(A,P).wr [U(D,P).wr . Lemma 92 therefore implies all writes to M(`)
execute in series with the current statement. Hence, we have M(`) = M

S

(`). Both S
S

and
S
P

therefore produce the same environment, N [x/M(`)] = N
S

[x/M
S

(`), which maintains
Invariant 95.

Statement store x, ✏. Like the load statement, the store statement is its own serializa-
tion. The inductive hypothesis implies that N = N

S

, and therefore EJ✏K(N) = EJ✏K(N
S

)
and N(x) = N

S

(x). Let ` = EJ✏K(N). The evaluation rules in Figures 10-7 and 10-8 show
that evaluating s preserves the environment, and thus Invariant 95 is maintained. Because
we assume that the program contains no determinacy races, Lemma 93 implies that S

P

does
not reach line 15 in Figure 10-8, and line 12 implies that ` is not in any of U(A,P).wr ,
U(A,P).rd , U(D,P).wr , or U(D,P).rd . By Lemma 92, all reads and writes to M(`) exe-
cute in series before the current statement, which implies that M(`) = M

S

(`). Hence S
P

and S
S

produce M [`/N(x)] = M
S

[`/N
S

(x)]. The evaluation function S
P

, meanwhile, does
not modify either U(A,P).wr or U(D,P).wr . Hence Invariant 96 is maintained.

Statement detach s1 reattach s2. The serialization of detach s1 reattach s2 is {s1}; s2.
Let (M,N,C,U) be the state on which the detach statement is evaluated. As Figure 10-9
shows, S

P

first evaluates s1. Let (M 0, N 0, C 0, U 0) = S
P

Js1K(M,N,new context, U), and
let (M 0

S

, N 0
S

) = S
S

Js1K(MS

, N
S

). We first consider Invariant 96. The inductive hypothesis
implies that Invariant 96 holds between M 0, U 0, and M 0

S

. Figure 10-9 shows that S
P

ultimately produces S
P

Js2K(M 0, N,C, U 00), where U 00 only differs from U 0 in that it includes
additional locations in U 0(D,P).wr . Therefore Invariant 96 is maintained among M 0, U 00,
and M 0

S

. We now consider Invariant 95. Figure 10-7 shows that S
S

J{s1}K(MS

, N
S

) produces
(M 0

S

, N
S

), which implies that that

S
S

J (detach s1 reattach s2)K(MS

, N
S

) = S
S

J{s1}; s2K(MS

, N
S

)

= S
S

Js2K � SS

J{s1}K(MS

, N
S

)

= S
S

Js2K(M 0
S

, N
S

) .

The inductive hypothesis implies that N = N
S

, meaning that both S
P

and S
S

evaluate s2
on the same environment. Invariant 95 therefore holds by induction on s2.

Statement sync. The serialization of a sync is nop. By induction, we have that N = N
S

,

262

(a) (b)

15 void search(int low, int high) {
16 if (low == high) search_base(low);
17 else {
18 cilk_spawn search(low, (low+high)/2);
19 search((low+high)/2 + 1, high);
20 cilk_sync;
21 }
22 }

23 void search(int low, int high) {
24 if (low == high) search_base(low);
25 else {
26 int mid = (low+high)/2;
27 cilk_spawn search(low, mid);
28 search(mid + 1, high);
29 cilk_sync;
30 }
31 }

Figure 10-10: Illustration of common-subexpression elimination on a Cilk program. (a) The func-
tion search uses parallel divide-and-conquer to apply the function search_base to every integer in
the closed interval [low, high]. (b) An optimized version of search, where the common subexpres-
sion (low+high)/2 in lines 18 and 19 of the original version is computed only once and stored in the
variable mid in line 26 of the optimized version.

and because neither S
S

nor S
P

modify the environment, Invariant 95 is maintained. Fur-
thermore, the rule in Figure 10-9 shows that S

P

JsyncK, like S
S

JnopK, preserves the memory.
Figure 10-9 moves the locations in U(D,P).wr into U(D,S).wr . By Lemma 92, all writes
recorded in this set occur serially before the sync statement. Hence, for each ` 2 U(D,P).wr ,
we have M(`) = M

S

(`), and therefore Invariant 96 is maintained.

10.5 Optimization passes

Tapir enables LLVM’s existing optimization passes [261] to optimize across parallel control
flow. It also enables new optimization passes that specifically target Tapir’s fork-join parallel
constructs. This section discusses four representative optimizations. Common-subexpression
elimination [290, Sec. 12.2] illustrates an optimization pass that “just works” with the ad-
ditional Tapir instructions. Loop-invariant code motion [290, Sec. 13.2], and tail-recursion
elimination [290, Sec. 15.1] were the only two out of LLVM’s roughly 80 optimization passes
that required any modification to work effectively on parallel code. Parallel-loop spawning
serves as an example of a new optimization pass.

Common-subexpression elimination

The common-subexpression elimination (CSE) optimization identifies redundant calcula-
tions and transforms the code so that they are only computed once. For example, the
expression (low+high)/2 in Figure 10-10 is computed in both lines 18 and 19. Existing
mainstream compilers that support fork-join parallelism fail to perform CSE on this code
and compute (low+high)/2 twice, because they cannot optimize across the cilk_spawn con-
struct’s associated runtime calls. Tapir/LLVM, however, performs this optimization. Like
the vast majority of optimization passes in Tapir/LLVM, CSE “just works” on Tapir code
without any modifications to LLVM’s CSE pass.

Loop-invariant code motion

The loop-invariant code motion optimization (LICM) [290, Sec. 13.2] aims to move compu-
tations out of loop bodies if they compute the same value on every iteration of the loop.
LICM is responsible, for example, for moving the call to norm in the parallel loop in Fig-
ure 10-1 outside of the loop, as described in Section 10.1. By adapting LICM to handle

263

(a) (b)

32 void pqsort(int* start, int* end) {
33 if (begin == end) return;
34 int* mid = partition(start, end);
35 swap(end, mid);
36 cilk_spawn qsort(begin, mid);
37 qsort(mid+1, end);
38 cilk_sync;
39 return;
40 }

41 void pqsort(int* start, int* end) {
42 if (begin == end) return;
43

44 int* mid = partition(start, end);
45 swap(end, mid);
46 cilk_spawn qsort(begin, mid);
47

48 start = mid+1;
49 // Begin inlined code
50 if (begin == end) goto join;
51 mid = partition(start, end);
52 swap(end, mid);
53 cilk_spawn qsort(begin, mid);
54 qsort(mid+1, end);
55 cilk_sync;
56 goto join;
57 // End inlined code
58

59 join:
60 cilk_sync;
61 return;
62 }

(c)

63 void pqsort(int* start, int* end) {
64 pqsort_start:
65 if (begin == end) {
66 cilk_sync;
67 return;
68 }
69 int* mid = partition(start, end);
70 swap(end, mid);
71 cilk_spawn qsort(begin, mid);
72 start = mid+1;
73 goto pqsort_start;
74 }

Figure 10-11: Illustration of tail-recursion elimination on a parallel quicksort program. (a) A Cilk
function pqsort that sorts an array of integers in the range specified by the start and end pointers.
(b) A version of the Cilk function in (a), where the recursive tail call on line 37 has been replaced
by one round of inlining. (c) A version of the Cilk function in (a), where tail-recursion elimination
has removed the recursive tail call on line 37.

parallel loops in Tapir, Tapir/LLVM reduces the asymptotic work of this parallel loop from
⇥(n2) to ⇥(n).

Tapir/LLVM requires a minor change to LLVM’s LICM pass to handle parallel loops.
Consider the CFG illustrated in Figure 10-5, which models the parallel loop in Figure 10-1.
For the serial elision of the loop, which would have the same graph structure except with
the continue edge missing, LLVM attempts to find candidate computations to move outside
the loop by looking for instructions in the basic blocks of the loop body that dominate the
exit block of the loop, in this case the block inc. (The block labeled exit is the exit of the
function, not the loop exit.) For a parallel loop, however, this analysis fails to identify any
code to move due to the existence of the continue edge. As Figure 10-5 shows, with the
continue edge, blocks in the loop body can never dominate the exit block inc as they could
for the serial elision.

Tapir/LLVM modifies LLVM’s LICM pass to handle parallel loops by examining their
serial elision, which essentially means ignoring continue edges. For simple parallel loop
structures with a single continue edge, such as that shown in Figure 10-5, this modification
was implemented by finding blocks in the loop body that dominate the predecessors of the
loop exit. The modification required only 19 lines of LLVM’s LICM pass to be changed.

Tail-recursion elimination

Tail-recursion elimination (TRE) [290, Sec. 15.1] aims to eliminate a recursive call at the
end of a function, replacing it with a branch to the start of the function. By eliminat-

264

ing these recursive tail calls, TRE can avoid function-call overheads and reduce the stack
space they consume. This optimization can especially benefit fork-join parallel programs, as
many parallel runtime systems impose additional setup and cleanup overhead on a spawned
function.

LLVM’s existing TRE pass can perform the TRE optimization on Tapir programs with
just a minor modification. Specifically the TRE pass ignores sync instructions after the
tail-recursive call. Further, if TRE is applied and ignores a sync instruction, it must then
insert a sync instruction before any remaining returns.1

To see why these sync instructions can be safely ignored, consider Figure 10-11, which
illustrates how Tapir/LLVM’s TRE pass operates on the pqsort function, a parallel version
of Hoare’s quicksort algorithm [186]. The original tail-recursive code is shown in Figure 10-
11(a). Imagine inlining this tail recursive call as in Figure 10-11(b). For the inlined code,
all return statements are replaced with branches to the join label. Because there is a
cilk_sync at the start of join, the cilk_sync prior to the second return of the inlined
code can be eliminated. Because this reasoning can be applied to inlining the tail-recursive
call an arbitrary number of times, TRE can safely ignore a sync instruction after the final
tail-recursive call, assuming that it inserts a sync instruction before all remaining returns.
Modifying LLVM’s TRE pass to support Tapir required only 42 lines to be changed in
Tapir/LLVM.

Parallel-loop spawning

As discussed above and in Section 10.2, Tapir effectively represents parallel loops as a for
loop whose body is spawned each iteration. Depending on the number of iterations of
the loop and the amount of work inside each loop, however, spawning the iterations in
this way can be inefficient. For a parallel loop with n iterations, spawning each iteration
sequentially requires ⌦(n) span, whereas spawning the iterations in a divide-and-conquer
fashion [277, Sec. 8.3] requires ⌦(lgn) span. Although this distinction is significant when n
is large, for small n, such as a small constant, the divide-and-conquer approach can perform
poorly in practice due to function-call overheads.

Tapir/LLVM implements a brand new optimization pass that attempts to identify par-
allel loops and to transform them into divide-and-conquer loops when it seems beneficial.
This pass was implemented in 1281 lines of code. The bulk of this code implements the work
to identify parallel loops and to rewrite them to spawn iterations in a divide-and-conquer
manner.

Other optimization passes

In addition, Tapir/LLVM implements two minor parallel optimization passes: unnecessary-
synchronization elimination and puny task elimination. Unnecessary-synchronization
elimination identifies and eliminates sync instructions that do not sync any detach in-
structions. Puny-task elimination serializes detached sub-CFG’s that perform little to
no work. In particular, if the running-time overhead of creating a parallel task outweighs the
work in the task, the task might as well be run serially. Both of these optimization passes
were implemented by augmenting LLVM’s SimplifyCFG pass and required adding 51 lines
of code.

1Unlike Cilk programs, a function in a Tapir program does not implicitly sync before it returns.

265

10.6 Auxiliary software

This section describes auxiliary software that we developed to exercise and test Tapir/LLVM.
Although our research focuses on the middle end of the compiler and transformations on
Tapir programs, we also implemented a front end for Cilk Plus and a pass to lower Tapir
constructs to calls into the Intel Cilk Plus runtime. In addition, we developed compiler
instrumentation that allows us to interface to a determinacy-race detector, to verify the
correctness of the Tapir/LLVM implementation.

To create the front end, we created a modification of the Clang front end called PClang,
which translates Cilk Plus codes to Tapir. PClang handles all the particular semantics of
the Cilk Plus programming model, such as the implicit cilk_sync instructions that execute
before returns and the implicit evaluation of the arguments of a spawned function before
the spawn occurs. We also created a version of Clang that can handle some OpenMP codes.

Our lowering pass translates detach, reattach, and sync instructions into appropriate
Cilk Plus runtime calls [191]. This pass lifts detached CFG’s in the program into helper
functions and inserts Cilk runtime calls to allow those helper functions to run in parallel.
This pass, which amounts to approximately 1900 lines, allows us to run codes compiled with
Tapir to verify that parallel executions produce correct results and achieve parallel speedup.

We implemented two tools to test the correctness of Tapir/LLVM. First, we modified
LLVM’s internal verification pass to ensure that Tapir invariants are maintained. Second,
we augmented the lowering pass to optionally instrument detach, reattach, and sync in-
structions, as well as function entries and exits. This instrumentation allows us to use a
custom implementation of the SP-bags algorithm [134] to check Tapir programs for deter-
minacy races in a provably effective manner. This race detector allows us to quickly verify
whether code transformations mistakenly generate determinacy races. We used these tools
to test the correctness of Tapir/LLVM when run on the benchmarks from Section 10.7 and
on many other codes. The tools helped us find bugs as we developed our Tapir/LLVM
prototype, including bugs in LLVM itself, specifically within its code-generation passes. We
also ran Tapir/LLVM against LLVM’s internal regression suite and verified that Tapir did
not produce any additional failures.

10.7 Evaluation

To evaluate the effectiveness of the Tapir approach, we evaluated our Tapir/LLVM pro-
totype on 20 benchmarks. Although Tapir/LLVM performed well in the cross-compiler
experiments shown in Section 10.1, those experiments merely gave us confidence in the vi-
ability of the Tapir approach. They do not show plainly from where Tapir’s advantage
accrues, because different compilers can produce dramatically different code, making it hard
to ascertain whether the Tapir extensions to the IR are responsible for performance im-
provements or whether the improvements are due to something in the base compiler. For
example, differences in the compiler’s register-allocation algorithm alone can produce a 2⇥
gap in performance, introducing large amounts of error into a comparative study. Moreover,
seemingly small changes to the way a program is compiled can yield significant variations
in performance.

266

Parallel
Code

Tapir/LLVM

PClang

TAPIR

-O3

TAPIR

Lower

LLVM

-O3

LLVM

CodeGen

EXE

PClang

Parallel
Code

Reference

TAPIR

Lower

LLVM

-O3

LLVM

-O3

LLVM

CodeGen

EXE

PClang

Serial
Code

Serial

-O3

LLVM

LLVM

-O3

LLVM

CodeGen

EXE

Clang

Serial
Code

LLVM

-O3

LLVM

LLVM

CodeGen

EXE

Figure 10-12: Comparing the compilation pipelines for LLVM, Tapir/LLVM, Reference, and Serial.
Each block represents a compiler transformation, and each oval designates the format of the code at
that point in a pipeline.

Compilation pipelines

Thus, instead of performing more cross-compiler comparisons in the style of Figure 10-
4, this section seeks to conduct a more scientific evaluation. In particular, we focus on
understanding how much of Tapir’s performance improvement can be attributed to the
approach of embedding parallelism in the IR rather than lowering parallelism in the compiler
front end. Our study involves a single compiler pipeline which we modified to perform apples-
to-apples comparisons. Figure 10-12 shows four pipelines based on the LLVM infrastructure
that we used to conduct our experiments.

The first pipeline is for LLVM itself, which has the traditional three-phase structure. The
Clang front-end takes serial C/C++ code and emits LLVM IR. The -O3 middle-end optimizes
the IR, and the CodeGen back-end lowers LLVM IR to the machine code for a particular
hardware platform. The -O3 pass is actually the Tapir/LLVM version, but it doesn’t really
matter, since for LLVM IR as input, the Tapir/LLVM version operates identically to the
unmodified LLVM version.

The second pipeline shows how Tapir/LLVM is organized. The pipeline takes parallel
Cilk Plus code as input, and the PClang front end emits Tapir. The middle-end now consists
of three steps: -O3 optimization, a Lower pass to lower Tapir to LLVM IR, and another pass
at -O3 optimization. The first -O3 pass performs optimizations on the Tapir representation.
The lowering pass translates all the Tapir-specific constructs to LLVM IR, including calls
to the Intel Cilk Plus runtime. The second -O3 pass performs optimizations on the LLVM
IR, including optimizations on the function calls inserted by the lowering pass. Finally, the

267

Suite Benchmark Description

Cilk Cholesky Cholesky decomposition, 4000⇥ 4000 matrix, 8000 nonzeros
FFT Fast Fourier transform, 20M composites

NQueens n-Queens problem, n = 13
QSort Parallel quicksort, 50M elements

RectMul Cubic-time multiplication of 4096⇥ 4096 and 4096⇥ 2048 matrices
Strassen Strassen matrix multiplication, 4096⇥ 4096 matrices

Intel AvgFilter Averaging filter over an image
Mandel Mandelbrot set computation

PBBS ndMIS Nondeterministic maximal independent set algorithm
incMIS Incremental maximal independent set algorithm

radixSort Radix sort
SpMV Matrix-vector multiply using compressed sparse rows

pRange Range operations on a suffix array
kdTree Parallel k-d tree
CHull Convex hull
incST Incremental spanning tree algorithm

parallelSF Spanning forest
ndST Nondeterministic spanning tree algorithm

ndBFS Nondeterministic BFS algorithm
detBFS Deterministic BFS algorithm

Figure 10-13: Descriptions of the 20 application benchmarks used to evaluate Tapir. The “Cilk ”
benchmarks were taken from the MIT Cilk-5 benchmark suite [146]. The “Intel ” benchmarks were
taken from the collection of Intel Cilk Plus example programs [189]. The “PBBS ” benchmarks were
taken from the Problem-Based Benchmark Suite [360].

CodeGen back end lowers LLVM IR to machine code.
To study the effectiveness of the Tapir approach, we could compare the work a parallel

benchmark compiled with Tapir/LLVM to the running time of its serial elision compiled
with LLVM. This comparison would not be fair to LLVM, however, because it only executes
one -O3 pass and Tapir/LLVM executes two. Although one might think that a second pass
of -O3 would be redundant, it is not. For example, a simple matrix-multiplication code runs
13% faster after two rounds of optimization compared to just one. Moreover, although many
benchmarks run faster after two -O3 passes, some actually do run slower.

A fairer comparison is to execute the serial elision on the fourth pipeline Serial, which
executes two -O3 passes, just like Tapir/LLVM. In fact, this comparison is essentially the
same as running the serial elision of a benchmark through Tapir/LLVM, because the PClang
front end operates identically to Clang on serial code, and the Lower pass is a no-op for serial
code.

The third pipeline, called Reference, models how mainstream compilers work today,
where parallel language constructs are transformed into runtime calls before any optimiza-
tion can take place. The only difference between Reference and Tapir/LLVM is that the
order of the first -O3 pass and the Lower pass are switched. Although Reference lowers
the parallel constructs early, to ensure that the comparison is fair, two iterations of -O3
are executed. Additionally, Reference is implemented on the same codebase as Tapir/L-
LVM. Because it runs the identical compiler with identical optimization passes, Reference is
directly comparable to the Tapir/LLVM implementation. Thus, the Tapir/LLVM and Ref-
erence pipelines allow us to compare the impact of the Tapir strategy with the mainstream
compiler strategy keeping all — well perhaps, many — other things equal.

268

CPU Intel Xeon E5-2666 v3
Clock 2.9GHz
Hyperthreading Disabled
Turbo Boost Disabled
Cores per processor chip 9
Processor chips (sockets) 2
L1 data cache/core 32KiB
L2 cache/core 256KiB
L3 cache/socket 25MiB
DRAM 60GiB

Figure 10-14: Technical specifications of the Amazon c4.8xlarge spot instance used for bench-
marking. The system was quiesced to permit careful measurements by turning off Turbo Boost,
dvfs, hyperthreading, extraneous interrupts, etc.

Benchmarking

To evaluate the compiler pipelines, we assembled a collection of benchmark programs taken
from the MIT Cilk benchmark suite [146], Intel Cilk code samples [189], and the Problem-
Based Benchmark Suite [360]. From these benchmark suites, we selected stable benchmark
programs that tend to exhibit little performance difference when the number or order of
optimization passes is changed. Figure 10-13 describes the benchmarks tested in detail.

We compiled each program in our benchmark suite with both Tapir/LLVM and Refer-
ence, and we ran them on both 1 and 18 cores of our test machine. Additionally, we ran
the compilers on the serial elisions of the benchmarks. Each running time is the minimum
of 10 runs on an Amazon AWS c4.8xlarge spot instance, whose technical specifications are
given in Figure 10-14.

Overall performance

Figure 10-15 presents the results of our tests. Under each benchmark, the first two rows
give the running times of the serial elision under each compilation. These rows should show
essentially no difference between Tapir/LLVM and Reference, because for the serial elision
of a benchmark, the two pipelines do effectively the same thing. The next two rows gives
the work T1 for each of the two compilations of the parallel code, and the work-efficiency
advantage of Tapir/LLVM starts to show. The third pair of rows shows the running times if
the parallel code on 18 cores, and here we see some dramatic improvements. For example,
Tapir/LLVM is noticeably faster than Reference for AvgFilter, ndMIS, ndST, ndBFS, and
detBFS, most of which are codes that run on unstructured graphs. The fourth pair of
rows give work efficiency of each compilation. In theory, this value is at most 1.0,2 because
overheads preclude the parallel code to run as fast on 1 processing core as its serial elision.
Figure 10-16 shows this pair of rows as a bar graph. Finally, the last pair of rows shows
speedup on 18-processing-cores compared to the serial elision. Generally, the numbers favor
Tapir/LLVM, validating the efficacy of the Tapir approach.

2Occasionally, this value might be slightly larger than 1.0 if the parallel structure of the code admits
optimizations that cannot be justified for serial code, resulting in a faster 1-processor execution for the
parallel code than the corresponding serial execution. Such is the case for the incST benchmark and several
other benchmarks for the Tapir/LLVM compiler.

269

Cholesky FFT NQueens QSort Rectmul Strassen AvgFilter

TS
Ref. 2.549 5.861 2.729 4.305 8.004 6.251 8.868
Tapir 2.542 5.857 2.733 4.328 8.001 6.216 8.817

T1
Ref. 4.156 7.383 2.804 5.812 8.391 6.602 9.330
Tapir 4.012 7.087 2.741 5.372 8.172 6.228 8.859

T18
Ref. 0.375 0.490 0.170 0.572 0.535 1.113 17.113
Tapir 0.366 0.464 0.165 0.539 0.528 1.112 2.417

TS/T1
Ref. 0.613 0.794 0.973 0.741 0.954 0.947 0.950
Tapir 0.634 0.826 0.997 0.806 0.979 0.998 0.995

TS/T18
Ref. 6.797 11.961 16.053 7.526 14.961 5.616 0.518
Tapir 6.945 12.623 16.564 8.030 15.153 5.590 3.648

Mandel ndMIS incMIS radixSort SpMV pRange kdTree

TS
Ref. 22.144 7.580 4.223 3.037 1.132 1.974 4.303
Tapir 22.067 7.609 4.243 3.032 1.136 1.990 4.293

T1
Ref. 24.625 7.993 4.680 3.085 1.173 2.533 4.453
Tapir 22.063 7.583 4.296 3.065 1.158 2.420 4.440

T18
Ref. 1.519 10.293 0.463 0.315 0.100 0.448 0.317
Tapir 1.359 0.550 0.453 0.311 0.099 0.305 0.315

TS/T1
Ref. 0.899 0.948 0.902 0.984 0.965 0.779 0.966
Tapir 1.000 1.003 0.988 0.989 0.981 0.822 0.967

TS/T18
Ref. 14.580 0.736 9.121 9.641 11.320 4.406 13.574
Tapir 16.236 13.835 9.366 9.749 11.475 6.525 13.629

CHull incST parallelSF ndST ndBFS detBFS

TS
Ref. 0.644 3.283 4.003 2.266 2.273 2.753
Tapir 0.649 3.330 4.030 2.286 2.270 2.750

T1
Ref. 0.820 3.456 4.236 2.423 2.810 3.280
Tapir 0.784 3.266 3.996 2.353 2.303 2.736

T18
Ref. 0.094 0.294 0.349 7.310 1.194 2.480
Tapir 0.093 0.287 0.341 1.663 0.237 0.268

TS/T1
Ref. 0.785 0.950 0.945 0.935 0.809 0.839
Tapir 0.828 1.020 1.009 0.972 0.986 1.005

TS/T18
Ref. 6.851 11.167 11.470 0.310 1.904 1.110
Tapir 6.978 11.603 11.818 1.375 9.578 10.261

Figure 10-15: Comparison of the Reference compiler, denoted as “Ref.,” to Tapir/LLVM, denoted
as “Tapir,” across the benchmarks from Figure 10-13. Each measurement is the minimum of 10 runs.
The value TS indicates the running time of the benchmark’s serialization, and the values T1 and T18

indicate the running times of the parallel benchmark on 1 and 18 processing cores, respectively. All
running times are measured in seconds.

10.8 Related work

This section describes related work in representing parallelism in a compiler IR and analyses
and optimizations on parallel programs.

Prior work exploring compiler optimizations focuses on examining the interaction be-
tween unstructured parallel threads, in order to remove unnecessary synchronization in

270

0.6

0.7

0.8

0.9

1

Cho
les

ky

FFT

NQue
en

s

QSort

Rect
mul

Stra
sse

n

Avg
Filte

r

Man
de

l

nd
MIS

inc
MIS

rad
ixS

ort

SpM
V

pR
an

ge

kd
Tree

CHull

inc
ST

pa
ral

lel
SF

nd
ST

nd
BFS

de
tB

FS

Tapir/LLVM Reference

Figure 10-16: The work efficiency of Tapir/LLVM and the Reference compiler. For each compiler,
the bar for each benchmark shows the ratio TS/T1, where Ts is the running time of the serial elision
of the benchmark, and T1 is the running time of the parallel Cilk code on 1 processor core.

Java programs [10,335] and find references that are not affected by parallel threads and may
be safely optimized across parallel control flow [208]. Tapir embeds fork-join parallelism
expressed by dynamic multithreading linguistics into the compiler IR.

Compiler optimizations for fork-join parallel programs often evaluate what instructions
can happen in parallel [4], based on concurrency mechanisms supported by a particular
memory model. Barik, Sarkar, and Zhao [34, 35] use interprocedural analysis to perform
various optimizations affecting critical sections of X10 and Habanero Java programs. Tapir
embeds logical fork-join parallelism, as distinct from concurrency, into a compiler IR.

Pop and Cohen [316] propose a scheme to translate OpenMP parallel constructs into
function calls in the IR that convey their semantics. Although new optimizations can per-
form optimizations based on these function calls, existing compiler optimizations treat them
as opaque, which inhibits these passes from performing most optimizations to avoid creating
incorrect code. In contrast, Tapir enables existing compiler optimizations to operate across
parallel control flow.

Khaldi et al. [217] modify LLVM IR to support OpenSHMEM parallel programs, with the
aim of achieving performance in modern network interconnects that support efficient data
transfers. Based on SPIRE [216], Khaldi et al. augment functions, basic blocks, instructions,
identifiers, and types in LLVM IR with execution, synchronization, scheduling, and memory
layout information. In contrast, Tapir introduces 3 instructions into LLVM IR to encode
fork-join parallelism for shared memory machines, and enables optimizations across parallel
control flow.

Chatarasi et al. [88] examine polyhedral optimizations on OpenMP programs with serial
semantics. Chatarasi et al. combine dependency analysis and happens-before analysis in
a manner that allows traditional polyhedral optimizers to optimize parallel loops. Tapir
embeds fork-join parallelism with serial semantics into LLVM IR to enable general compiler
optimizations.

271

10.9 Conclusion

By embedding the serial semantics of dynamic multithreading programming models directly
into the compiler IR, Tapir allows existing compiler optimizations for serial code to effectively
optimize comparable parallel codes. As a result, the Tapir approach brings the performance
of the dynamic multithreaded codes it supports to be more in line with their serial counter-
parts, enhancing the degree to which the theoretical performance of these parallel codes is
borne out in practice. To conclude, we leave the reader with three interesting considerations
regarding the nature of asymmetry in parallelism, the future of parallel optimizations, and
extensions of Tapir-like systems to other models of parallel programming.

Reasoning about logically parallel tasks asymmetrically can sometimes simplify the un-
derstanding of a parallel program’s behavior. When a new task is spawned to execute in
parallel with another, it is natural to reason about the logically parallel tasks as symmetric,
because their instructions can execute in any relative order. For parallel programs with serial
semantics, however, it is always valid to execute the program on a single processor, which
asymmetrically executes one parallel task to completion before starting the other. Serial
semantics encourages an asymmetric representation of parallel control flow, which is similar
enough to its serial elision that most analyses and transformations for the serial elision work
on these parallel constructs without much modification.

One of the great benefits of Tapir is that its strategy for representing parallelism makes
it easy to write optimization passes specifically for parallel code. Section 10.5 briefly men-
tioned some parallel optimization passes we implemented, including parallel-loop spawning
and unnecessary-synchronization elimination. In addition to helping close the performance
gap between serial and parallel versions of code, we hope that the introduction of Tapir
will encourage the compiler community to develop and implement many more parallel-
optimization passes.

Finally, Tapir allows parallel programs written using a fork-join model of parallelism to
benefit from both serial and parallel optimizations. Moving forwards, it is natural to wonder
whether other models of parallelism, such as pipeline parallelism [125,239,295] or data-graph
computations [264,265,269,298,299,358,361], can take advantage of the Tapir approach.

272

Chapter 11

Comprehensive Static
Instrumentation for
Dynamic-Analysis Tools

This chapter presents the CSI compiler instrumentation framework [345]. This work was
conducted in collaboration with Damon Doucet, Tyler Denniston, Bradley C. Kuszmaul,
I-Ting Angelina Lee, and Charles E. Leiserson.

11.1 Introduction

Key to understanding and improving the behavior of any system is visibility — the ability
to know what is going on inside the system. For application and system software, pro-
gram instrumentation — adding special code to monitor the program — has emerged
as a popular way for programmers to gain visibility into how their programs are operat-
ing. Programmers today can avail themselves of a variety of dynamic-analysis tools, such
as race detectors [123,124,134,280,281,343,351], memory checkers [31,177,350], cache sim-
ulators [121, 377, 407], call-graph generators [171, 205], code-coverage analyzers [390, 397],
and performance profilers [171, 329, 401]. These tools generally operate as shadow com-
putations — executing behind the scenes while the program-under-test runs. Generally,
dynamic-analysis tools exploit one of two1 instrumentation strategies: “binary” instrumen-
tation or “compiler” instrumentation.

Binary instrumentation (e.g., [72,108,230,267,296,334,363,367]) works by translat-
ing the binary executable for a program-under-test into a tool-instrumented executable
(TIX) in which instrumentation code has been inserted by the tool writer using a framework
such as Pin [267], Dynamo Rio [72], or Valgrind [296]. Binary instrumentation has proved
valuable for gathering detailed information of an executing program, but running-time over-
heads can be significant, even using “just-in-time (JIT)” techniques. Additionally, the tools
are tied to a particular instruction-set architecture. Finally, using a binary-instrumentation
framework requires the tool writer to understand some amount about the instruction-set
architecture, although binary instrumentation frameworks try to insulate the tool writer as
much as possible from the details.

1Another strategy is asynchronous sampling (e.g., [77,171]), which can provide low-overhead solutions
for some analytical tools. Asynchronous sampling appears to be ineffectual for many important tools,
such as code coverage and memory checking.

273

Advantage Binary Compiler CSI

Tool works on third-party libraries. X — —
Tool writers do not need to know compiler internals. X — X
Tool writers do not need to know assembly language. — X X
Tool is platform independent. — X X
Tools can exploit compiler analyses and optimizations. — X X
Tools can rely on custom compiler analyses. — X —

Figure 11-1: A comparison of the advantages of binary-instrumented tools, compiler-instrumented
tools, and CSI-tools.

With compiler instrumentation (e.g., [133, 350, 352]), the tool writer modifies the
compiler to insert instrumentation code into the program-under-test, if a command-line
switch so indicates. Unlike binary instrumentation, compiler instrumentation can provide
detailed runtime information without tying tools to a specific architecture, but at the price of
requiring source code for any third-party libraries if those, too, are to be instrumented. Tools
can exploit compiler analyses to make the instrumentation more “surgical,” and the inserted
code itself can be optimized by the compiler. The source code for the compiler, however,
can become complex, as different tools demand overlapping, but different, instrumentation.
But perhaps the biggest downside of compiler instrumentation is that the development of
new tools requires compiler work, which many potential tool writers are ill equipped to do,
and thus raises the bar for building new and innovative tools.

Figure 11-1 compares the relative advantages of binary instrumentation and compiler
instrumentation, as well as the CSI approach taken in this chapter, which we next discuss.
Because no technique dominates any other, each has domains where it has proved more
useful than the others, and even mixed approaches (e.g., [129,180]) have been productive.

The CSI approach

CSI (comprehensive static instrumentation) focuses on compiler instrumentation and,
in particular, on making it easier for tool writers to build effective platform-independent
tools without doing compiler work themselves. CSI provides an application program in-
terface (API) consisting of functions — hooks — that are automatically inserted into the
compiled code of the program-under-test at every important location, such as function en-
try and exit, basic-block entry and exit, before and after memory operations, etc.2 Tool
writers can insert their own instrumentation into the program-under-test by simply writing
a library that defines the semantics of relevant hooks, and then statically linking their com-
piled library with the program-under-test to produce a TIX. When the TIX is executed,
the program-under-test performs normally while the tool-inserted instrumentation performs
shadow computation each time a hook is invoked.

At first glance, this brute-force method of inserting hooks at every salient location in the
program-under-test seems to be replete with overheads. For example, the instrumentation
of a memory operation incurs the function-call overhead of a hook (potentially two, since
we have defined the CSI API to insert one hook before and another hook after each memory
operation). If a tool does not use this hook, it provides only running-time overhead.

To overcome these overheads, CSI employs modern compiler features such as link-time
2Compare this to traditional compiler instrumentation, in which a tool instruments only the events it

requires.

274

optimization (LTO) [368]. LTO is now readily available in most major compilers, includ-
ing GCC [140] and LLVM [260]. LLVM with LTO enabled produces a bitcode file instead
of a native object file. We refer to a source file, an object file, or a bitcode file as a transla-
tion unit , or unit for short. A bitcode file encodes the compiler’s internal representation
of the unit, which allows LLVM to further optimize and transform the unit during the
linking stage. Thus, when the bitcode files of the program-under-test are statically linked
with bitcode files of a CSI-tool, the instrumented program-under-test can be optimized as a
whole. LTO elides unnecessary instrumentation, inlines many of the CSI-tool-defined hooks,
and otherwise optimizes the running time of both the program-under-test and the shadow
computation.

When the instrumented program-under-test is statically linked, it can be converted to a
production executable by linking against the null tool : the CSI-tool consisting entirely of
null hooks, where the hook simply returns without looking at its arguments. In this case,
LTO is robust enough to elide all the instrumentation, as we shall document in Section 11.5,
producing a TIX as efficient as a normally compiled executable. The CSI implementation we
have built for LLVM — CSI:LLVM — defines all hooks to be null using weak symbols [75,
p. 680]. Consequently, if a particular CSI-tool fails to define a hook with a strong symbol ,
the definition used is the null hook which the compiler automatically elides. The resulting
TIX runs as efficiently as if CSI had never inserted the unnecessary instrumentation.

CSI simplifies the rapid development and sharing of new tools. CSI allows tool writers
to implement novel tools simply as C libraries, without having to understand any specifics
of a mainstream compiler’s multimillion-line codebase.3 A tool writer can furthermore share
her new, prototype tool simply as library, without having to convince would-be tool users
to download and use her custom compiler or to convince compiler developers to accept her
modifications. CSI thus enhances the ability of programmers to examine the dynamic exe-
cution of a program in a principled manner, in order to deduce its behavior and performance
characteristics.

With traditional compiler instrumentation, the tool user not only has an executable for
each tool, he must keep track of which object files have been compiled with which switches.
In contrast, CSI-tool users avoid this, because they simply have one instrumented bitcode
file for each translation unit and a separate TIX for each CSI-tool.

CSI simplifies the compiler source. Because the number of tools based on compiler
instrumentation has been growing, the current LLVM compiler source contains custom in-
strumentation for many different tools, leading to a plethora of conditionals depending on a
host of command-line compiler options. CSI allows for a single option — to instrument or
not to instrument — which can significantly simplify the compiler source. The customiza-
tion for a particular CSI-tool occurs at link time, not at compile time. Section 11.5 shows
that LTO can be as efficient as compile-time optimization, and thus the delayed binding of
which calls to instrument does not cause performance to suffer.

Design considerations

The current API for CSI is not yet as “comprehensive” as we hope will evolve over time.
We prioritized which runtime events to instrument based on need (the demonstration tools
described in Section 11.5), but the CSI API is designed to be extensible, and so new in-
strumentation can be added as needs grow. CSI inserts hooks into the program-under-test

3At the time of writing, LLVM’s codebase is approximately 3M lines, and GCC’s is approximately 14M
lines.

275

for entry to and return from functions, the start and end of basic blocks, before and after
each function call, and before and after each memory operation. Many more kinds of hooks
could be implemented to instrument, e.g., atomic instructions, floating-point instructions,
front-end language features such as loop iteration events, etc. We chose a minimal set of
hooks that allowed us to build seven example CSI-tools, fully anticipating that the interface
will grow to encompass hooks needed by other CSI-tools. We chose to implement a minimal
“core” set, because we felt it was best to add new instrumentation on an as-needed basis in
order to keep the interface simple.

A potential concern of CSI, compared to traditional compiler instrumentation, is that a
CSI-tool cannot rely on tool-specific (custom) compiler analyses to decrease overheads. The
CSI API, however, allows the results of compiler analyses to be exported. Analysis results
used by many tools for optimization purposes can be exported through the hooks using
“properties.” A hook invoked on a memory operation, for example, might be called with a
“property” specifying that the location is guaranteed to be on the stack. If whether a given
“property” holds is known at link time and a tool branches depending on that condition,
LTO can constant-fold the test and properly elide the instrumentation if the condition does
not hold. Although CSI’s “property” mechanism is more than sufficient for the seven CSI-
tools we have implemented thus far, as CSI continues to develop, we anticipate using other
means, such as auxiliary tables, to export less frequently used analysis results.

The final piece of our design provides a set of front-end data (FED) tables that map
each instrumented IR object (e.g., basic block, function, memory load, etc.) to its location
in the source code. CSI assigns all instrumented IR objects unique ID’s which a tool writer
can track and iterate through.

Although this chapter focuses on how CSI can use LTO to overcome instrumentation
overheads, CSI does not, in fact, rely on LTO for correctness or performance. Linking the
object file of a CSI-tool with the object files of a program-under-test compiled with CSI
suffices to produce a correct TIX, albeit a potentially slow one. Furthermore, CSI provides
an additional advanced feature, called CSI:CTO , that allows tool users to link CSI-tool
bitcodes with a program-under-test at compile time. CSI:CTO enables ordinary compile-
time optimizations to elide unnecessary instrumentation. CSI:CTO thereby allows tool users
to avoid the potential build-time overheads of LTO and to use any standard linker to produce
an optimized TIX. To simplify the description of CSI, however, this chapter describes CSI’s
behavior with LTO.

Contributions

This chapter makes the following contributions:
• An API for CSI using compiler-instrumented hooks to build dynamic-analysis tools.

The results of compiler analyses are passed to hooks through “properties.” Tools can
associate instrumentation with source code using CSI’s runtime library.

• The implementation of CSI:LLVM, an LLVM implementation of CSI, by modifying
the LLVM compiler to insert CSI hooks into programs. When statically linked with
the null tool and link-time optimized, programs-under-test run as fast as they do with
ordinary compilation.

• A collection of demonstration CSI-tools that explore CSI’s utility, ease of program-
ming, and performance. The tools include the null tool, a dynamic call-graph gener-
ator, a memory-operations counter, a port of Google’s ThreadSanitizer [351], a cache
simulator, a lightweight performance profiler, and a code-coverage tool.

276

Outline

The remainder of this chapter is organized as follows. Section 11.2 presents the CSI API,
then Section 11.3 shows an example tool using the API. Section 11.4 overviews the im-
plementation of CSI:LLVM, and Section 11.5 describes seven CSI-tools we built to explore
the CSI approach. After reviewing related work in Section 11.6, we offer some concluding
remarks in Section 11.7.

11.2 The CSI instrumentation API

This section presents the CSI interface. We have collected a small set of hooks with which a
large variety of tools can be implemented. Section 11.5 describes several demonstration tools.
Although we have chosen the runtime events to instrument based on need and convenience,
the API is designed to be extensible, thus new instrumentation can be easily added as new,
unsupported tools come to light.

We have chosen to instrument the intermediate representation (IR) of programs-
under-test, which represents a middle ground between source code (dependent on program-
ming language) and compiled machine code (dependent on target architecture). The IR acts
as a simple virtual instruction-set architecture which translates easily to machine code. IR
is typically organized into a set of “basic blocks,” where each basic block is a sequence of
instructions with no incoming branches except to its entry point, and no outgoing branches
except from its exit point. We have focused on designing and implementing a small, core set
of instrumentation, and thus have left instrumentation specific to a front-end or a back-end4

to future research.
CSI’s instrumentation hooks are organized into five groups: initialization, functions,

basic blocks, call sites, and memory accesses. To provide flexibility to tool writers, a
hook exists both for just before the event, and just after. For example, one tool may
wish to save a memory address’s value before it is overwritten (and thus would use the
__csi_before_store function), while another may prefer to save the stored value (and thus
use __csi_after_store). Each hook provides parameters which describe the instrumenta-
tion (such as the number of bytes accessed in a memory reference). Importantly, LTO will
generally elide any parameters not used by a tool.

Other than hooks for initialization, each hook names an IR object, such as a basic block
or a memory operation. CSI gives each such IR object a unique integer identifier within one
of (currently) six IR-object categories:

• functions,
• function exits,
• basic blocks,
• call sites,
• loads, and
• stores.

Within each category, the ID’s are consecutively numbered from 0 up to the number of such
objects minus 1. The range of ID’s for each category is extended during unit initialization,
which happens at the beginning of the program and, in the case of dynamic linking, as new
units are loaded in. By maintaining a contiguous set of ID’s, the tool writer can easily track
IR objects and iterate through all IR objects in a category.

4Here, a front-end describes an application which translates source code to IR (such as LLVM’s Clang),
whereas a back-end translates IR to machine-specific code

277

01 typedef int64_t csi_id_t;
02

03 typedef struct {
04 csi_id_t num_func;
05 csi_id_t num_func_exit;
06 csi_id_t num_bb;
07 csi_id_t num_call;
08 csi_id_t num_load;
09 csi_id_t num_store;
10 } instrumentation_counts_t;
11

12 // Hooks to be defined by tool writer
13 void __csi_init();
14

15 void __csi_unit_init(const char * const file_name,
16 const instrumentation_counts_t * const counts);

Figure 11-2: CSI hooks for initialization.

In general, each (non-initialization) CSI hook additionally passes semantic information
and “properties” about the IR object it names. Conceptually, the semantic information
describes what the named IR object does. For example, the semantic information for a
load details what memory location is read and how many bytes are read from that location.
Intuitively, CSI hooks aim to pass sufficiently rich semantic information to allow a shadow
computation to mirror the operation on its own shadow data structures. CSI also passes
each hook an argument prop, which is a “property.” We describe in detail below the semantic
information and properties passed to each hook.

To relate a given IR object to locations in the source code, CSI provides “front-end data
(FED)” tables, which provide file name and source lines for each IR object given the object’s
ID.

The remainder of this section describes CSI’s API in detail.

Initialization

CSI provides two initialization hooks, shown in Figure 11-2. The __csi_init hook is called
when the TIX is run, before both the main function and the initialization of global variables.

Because the ordering of global constructors is undefined, tool writers must be careful,
because static data used by tools might not yet be initialized during the construction of
another global object. As is consistent with good coding style (see, for example, the section
on “Static and Global Variables” in the Google style guide [168]), we suggest that tool
writers ensure that objects with static storage duration (global variables, static variables,
static class member variables, and function static variables) be “plain old data”: only int’s,
char’s, float’s, pointers, or arrays of plain old data. To be safe, the tool writer should
allocate any global constructable objects used by a shadow computation dynamically with
malloc (and initialize them) in __csi_init, and then access them via a global static pointer.

To ensure that __csi_init is called before any other constructor, we assign it the highest
execution priority in the list of global constructors. However, if the program-under-test also
contains a constructor annotated with the highest priority (via the init_priority attribute),
the execution order of that constructor relative to __csi_init is undefined.

In addition to the global initialization hook, CSI also provides the translation-unit ini-
tialization hook __csi_unit_init. The file_name argument provides the name of the source

278

17 // Hooks to be defined by tool writer
18 void __csi_func_entry(const csi_id_t func_id, const uint64_t prop);
19 void __csi_func_exit(const csi_id_t func_exit_id, const csi_id_t func_id, const uint64_t prop);

Figure 11-3: CSI hooks for functions.

file corresponding to the translation unit.5 The hook provides parameters for the number
of each instrumentation type in the unit. This allows a tool to prepare any data structures
ahead of time (for example, an array with an element for each basic block). This hook is
invoked once for every unit that contributes to the TIX. When multiple contribute to the
TIX, the tool writer may not assume that the invocations of __csi_unit_init are called in
any particular order, except that they all occur before main. Once again, in the case of a
dynamic library compiled with CSI, __csi_unit_init is invoked once per translation unit
that contributes to the dynamic library at the time that the library loads.

Functions

Figure 11-3 lists the two API hooks for functions, which are instrumented on entry and exit.
The hook __csi_func_entry is invoked at the beginning of every instrumented function
instance after the function has been entered and initialized but before any user code has
run — in LLVM terminology, at the first insertion point of the entry block of the function.
The func_id parameter identifies the function being entered or exited. Correspondingly,
the hook __csi_func_exit is invoked just before the function returns (normally).6 Its
arguments include both a function-exit ID func_exit_id and the function ID func_id of
the function being exited from. The function-exit ID allows tool writers to distinguish the
potentially multiple exits from the same function. It could be argued that __csi_func_exit
does not technically need the func_id parameter, since the tool writer can maintain the
correspondence between function entries and exits. We nevertheless decided to include
the argument, because it encodes the semantics of the corresponding return instruction.
Beyond programming convenience, we felt that it would help tool writers to verify their
code by checking that each exit matches up to an entry from the same function.

In an early version of the CSI API, the function-entry and function-exit hooks contained
a pointer to the function itself to identify the function. Upon reflection, we determined
that function pointers were, in fact, a bad way to identify functions. When libraries are
dynamically loaded and unloaded, for instance, an aliasing situation can occur, where two
different functions share the same function pointer at different times. Thus, we abandoned
function pointers in favor of our own function ID’s, which CSI guarantees to be unique to
a function even in the face of dynamic loading and unloading. If the containing library for
a function is loaded and unloaded multiple times, however, the function can end up with
different func_id values at different times. While this eventuality could be worked around,
we felt that in most instances this minor anomaly would not matter much to a tool writer
or her users.

Function entry and exit hooks are inserted only for functions within instrumented trans-
lation units. External library functions, such as malloc, are not instrumented, because the
compiler has no access to the source code. Fortunately, link-time interpositioning [75,
Chapter 7.13] provides a workaround to instrument library functions, as we illustrate for

5All strings in the CSI API are zero-terminated.
6We have not yet defined the API for exceptions.

279

20 // Hooks to be defined by tool writer
21 void __csi_bb_entry(const csi_id_t bb_id, const uint64_t prop);
22 void __csi_bb_exit(const csi_id_t bb_id, const uint64_t prop);

Figure 11-4: CSI basic-block hooks.

23 // Value representing unknown CSI ID
24 #define UNKNOWN_CSI_ID ((csi_id_t)-1)
25

26 // Hooks to be defined by tool writer
27 void __csi_before_call(const csi_id_t call_id, const csi_id_t func_id, const uint64_t prop);
28 void __csi_after_call(const csi_id_t call_id, const csi_id_t func_id, const uint64_t prop);

Figure 11-5: CSI hooks for call sites.

malloc. The tool writer defines the function __wrap_malloc, which she makes call the real
malloc using the symbol __real_malloc. Within __wrap_malloc, arbitrary instrumentation
can be placed around the __real_malloc call. The tool writer now relies on her user to pass
the --wrap malloc option to the linker, which causes the symbol malloc to be replaced by
the symbol __wrap_malloc and the symbol __real_malloc to be resolved as malloc. The
result is that all calls to malloc in the original source, instead of invoking the real malloc,
now invoke __wrap_malloc, which performs any instrumentation and invokes the real malloc
through __real_malloc.

Link-time interpositioning also allows the tool writer to examine the parameters and
return values of an instrumented function, which is not passed directly its function-entry
or function-exit hooks. Intuitively, passing this information directly to these hooks is prob-
lematic because the parameters and return value of a particular function depend on its
signature, whereas the function-entry and function-exit hooks must have the same signature
for all functions. Therefore, while it might be technically possible to pass this information
to these hooks (e.g., by using variadic functions), doing so seems to significantly complicate
the API and place substantial burden on the tool writer to parse the information correctly.
Link-time interpositioning allows tool writers to insert arbitrary instrumentation for specific
functions without the burden manually parsing the function parameters and return type.

Basic blocks

Figure 11-4 shows the two CSI hooks for basic blocks. The hook __csi_bb_entry is called
when control enters a basic block, and __csi_bb_exit is called just before control leaves the
basic block. The bb_id parameter identifies the entered or exited basic block.

Call sites

Figure 11-5 lists the __csi_before_call and __csi_after_call hooks that instrument call
sites, the places in the code where functions are called. The call_id parameter identifies
the call site, and the func_id parameter identifies the function being called. It is not always
possible for CSI to statically produce the ID of the called function, such as when the function
is called indirectly through a function pointer or the function called is not instrumented. In
these scenarios, the value of func_id is UNKNOWN_CSI_ID, a special value defined by CSI to
represent an unknown function.

A tool writer should be aware that anomalies can occur when intermingling instrumented

280

29 // Hooks to be defined by tool writer
30 void __csi_before_load(const csi_id_t load_id, const void *addr,
31 const int32_t num_bytes, const uint64_t prop);
32 void __csi_after_load(const csi_id_t load_id, const void *addr,
33 const int32_t num_bytes, const uint64_t prop);
34 void __csi_before_store(const csi_id_t store_id, const void *addr,
35 const int32_t num_bytes, const uint64_t prop);
36 void __csi_after_store(const csi_id_t store_id, const void *addr,
37 const int32_t num_bytes, const uint64_t prop);

Figure 11-6: CSI memory-operation hooks.

and uninstrumented code. For example, if an instrumented function F calls an uninstru-
mented function G, which then calls another instrumented function H, the before-call hook
will be invoked for the call to G, but not for the call to H. Similarly, the function-entry hook
will be invoked for H but not for G. The tool writer must handle these situations herself if
she wishes her tool to support intermingling of instrumented and uninstrumented code.

Memory operations

Figure 11-6 shows the four CSI hooks for memory operations. The hooks __csi_before_load
and __csi_after_load are called before and after memory loads, respectively, and likewise,
__csi_before_store and __csi_after_store are called before and after memory stores.
The argument addr is the location in memory, and num_bytes is the number of bytes loaded
or stored.

Properties

The prop argument in each non-initialization hook is a property : a 64-bit unsigned integer
that CSI uses to export the results of compiler analysis and other information known at
compile time. A particular property, such as whether a function is pure, whether a call site
is indirect, whether a load is volatile, whether a memory location is guaranteed not to be
shared (useful for race detection), etc. is encoded as a bit field in prop. Figure 11-7 lists
some example properties.

To understand what properties are good for, imagine that a tool writer wishes to build
a race detector capable of detecting races on shared variables. If the tool writer were using
conventional compiler instrumentation, it would be a simple matter to avoid instrumenting
locations that could not possibly be involved in a race — such as a variable declared const
or a variable on the stack whose address does not escape the frame — or for which a check
would be redundant with other checks — such as a load that occurs before a store in the
same basic block. The prop argument gives the tool writer access to specific compile-time
information about the memory operation being instrumented.

For example, the tool writer might write the code in Figure 11-8. As the figure shows, the
tool writer can use standard bit-masking operations to check whether different properties
hold. In this example, the CSI_PROP_LOAD_IS_CONST mask indicates whether the loaded
value is const, the CSI_PROP_LOAD_IS_NOT_SHARED mask indicates whether it is guaranteed
not to be shared, and the CSI_PROP_LOAD_READ_BEFRE_WRITE_IN_BB mask indicates whether
it is followed by a store in the same block. By bitwise-OR’ing together these masks and
then bitwise-AND’ing the result with prop, the code efficiently checks whether any of these
properties hold. As we shall see in Section 11.4, once the hook is inlined, the linker constant-

281

38 // Function properties
39 // The function is constant.
40 #define CSI_PROP_FUNC_IS_CONST 0x1
41 // The function is pure.
42 #define CSI_PROP_FUNC_IS_PURE 0x2
43

44 // Basic-block properties
45 // The basic block is the entry block to the function.
46 #define CSI_PROP_BB_IS_FUNC_ENTRY 0x1
47 // The basic block is a loop header.
48 #define CSI_PROP_BB_IS_LOOP_HEADER 0x2
49 // The basic block is the exit of a loop.
50 #define CSI_PROP_BB_IS_LOOP_EXIT 0x4
51

52 // Call properties
53 // The call is indirect.
54 #define CSI_PROP_CALL_IS_INDIRECT 0x1
55

56 // Load properties
57 // The accessed value is aligned.
58 #define CSI_PROP_LOAD_IS_ALIGNED 0x1
59 // The location read is not shared.
60 #define CSI_PROP_LOAD_IS_VOLATILE 0x2
61 // The location read is not shared.
62 #define CSI_PROP_LOAD_IS_NOT_SHARED 0x4
63 // The load reads a constant value.
64 #define CSI_PROP_LOAD_IS_CONST 0x8
65 // The load is a read-before-write on the address in the same basic block.
66 #define CSI_PROP_LOAD_READ_BEFORE_WRITE_IN_BB 0x10
67

68 // Store properties
69 // The store is aligned.
70 #define CSI_PROP_STORE_IS_ALIGNED 0x1
71 // The location read is not shared.
72 #define CSI_PROP_LOAD_IS_VOLATILE 0x2
73 // The location written is not shared.
74 #define CSI_PROP_STORE_IS_NOT_SHARED 0x4

Figure 11-7: Example CSI properties.

75 void __csi_before_load(const csi_id_t load_id, const void *addr,
76 const int64_t num_bytes, const uint64_t prop) {
77 if (prop & (CSI_PROP_LOAD_IS_CONST |
78 CSI_PROP_LOAD_IS_NOT_SHARED |
79 CSI_PROP_LOAD_READ_BEFORE_WRITE_IN_BB))
80 return;
81 check_for_race_on_load(addr, num_bytes);
82 }

Figure 11-8: How properties might be used by a memory hook in a race detector.

folds and eliminates the conditional, and it elides the instrumentation for locations that
satisfy any of the three properties.

We debated using a struct to pass properties, which would make the API more extensible
in that we would not be limited to 64 binary properties. But structs raise issues of forward
compatibility, since all code needs to be recompiled whenever a version of the API changes
the struct definition. In contrast, an integer word allows new properties to be defined by a
new version without requiring the recompilation of old code. Of course, we might eventually
run out of property bits (although we cannot currently think of real use cases for more than

282

83 typedef struct {
84 char * name;
85 char * file_name;
86 int32_t line_number;
87 } source_loc_t;
88

89 // Accessors for various CSI FED tables.
90 // Return NULL when given an invalid ID.
91 source_loc_t const * __csi_get_func_source_loc(const csi_id_t func_id);
92 source_loc_t const * __csi_get_func_exit_source_loc(const csi_id_t func_exit_id);
93 source_loc_t const * __csi_get_bb_source_loc(const csi_id_t bb_id);
94 source_loc_t const * __csi_get_call_source_loc(const csi_id_t call_id);
95 source_loc_t const * __csi_get_load_source_loc(const csi_id_t load_id);
96 source_loc_t const * __csi_get_store_source_loc(const csi_id_t store_id);

Figure 11-9: Accessors for the FED tables.

a few properties), but in that eventuality, CSI will have proved itself to be of real utility,
and designing a completely new API will be mandated by community interest. Furthermore,
as CSI continues to develop, we anticipate using other means, such as auxiliary tables, to
export complex and infrequently used analysis results, such as dominator analysis.

Front-end data (FED) tables

The API as discussed up to this point is complete in the sense that functional tools can (and
have been) created using it. The utility of these tools, however, is limited without the ability
to relate runtime events back to locations in the source code. For example, a race detector
could report that a race occurred on a certain data address by an access at a certain code
address, but that would require the tool user to manually translate the code address to a
location within the source code, presenting a major usability issue for tool writers.

Thus, in addition to the API hooks for instrumentation, CSI also provides a runtime
interface to front-end data (FED) tables written by the compiler that translate the
ID parameters to corresponding source-line information. Presently, the only source-line
information we provide is file name and line number(s) within that file, but the design is
extensible enough to allow more information to be added with ease.

Figure 11-9 presents the FED accessors, as well as the source_loc_t structure that these
accessors return.7 We chose to provide accessor functions to the FED tables, rather than
allowing direct access to front-end data, so that we can change the representation of any
FED table over time without affecting the correctness of any tools.

We considered using the existing DWARF tables [126] in the executable to access source
information. The DWARF line table contains the mapping between memory addresses that
contain the executable code of a program and the source lines that correspond to these
addresses. By providing hooks with a memory address of the instrumentation call, one
could report on the source lines. We opted against this strategy for two reasons. First,
obtaining the memory location associated with a line of instrumentation turns out to be
problematic and is not implemented for most LLVM back ends. Second, it seemed strange
for a communication path between the front end and the IR to go through the architecture-
dependent back end. In the end LLVM provides enough information during compile-time to
insert CSI’s FED tables. Inserting and handling front-end specific source information (i.e.,

7A careful reader may notice that the line number is signed, which permits an error value of �1 for when
the line-number information is not available.

283

information besides files and line numbers) may be the target of future research.

CSI ID’s

CSI makes management of ID values within the instrumentation hooks simple for the tool
writer and fast during execution. Key to the design is that the ID values are contiguous,
which can greatly simplify a tool, because it allows the tool writer to use a flat structure, such
as a one-dimensional array, to track instrumentation points in the program. For example,
the tool writer can keep track of all basic blocks by simply allocating an array of length
num_bb, where the kth entry in the array corresponds to the kth basic block. The tool
writer is responsible for extending the array as new units are loaded, but this bookkeeping
can be straightforwardly done in __csi_unit_init. Fortunately, reallocating this array will
likely be dominated, either by startup cost for statically linked units, or by dynamic library
loading for units loaded that way.

Associating a unique ID to each hook could have been done in other ways. For example,
we considered separating each ID into two components: the translation-unit ID and the
ID of the hook within the unit. This design choice might have simplified CSI’s handling
of dynamically linked code, but it complicates the job of the tool writer. We felt that the
unit ID provides little to no benefit during program execution and requires tool writers to
maintain more complicated data structures (such as two-level arrays rather than a single,
flat array), thus slowing down the tool. We opted to make handling of ID values easier on
the tool writer, as well as faster during execution of the program-under-test, by making the
ID’s contiguous.

Another design alternative we considered and discarded was placing all instrumentation
hooks in the same ID space. We felt this strategy provides no benefits over the structured
approach in the final CSI design, and it loses the benefit to the tool writer of separate ID
spaces, namely, that a tool can quickly iterate over all ID’s in a given IR-object category. A
tool that wishes to iterate over all instrumentation is likely in the output phase after program
execution. It can do so with a nested loop: the outer loop iterates over each instrumentation
type, and the inner loop iterates over the ID ranges for those types.

We have considered providing additional information to convey the relationships between
the ID’s for different IR-object categories. For example, because the functions in a program
partition the basic blocks in the program, a set of basic-block ID’s8 are all associated with
the same function ID. Although we can compute all of these relationships between IR objects
and present them to the tool writer, through, for example, auxiliary tables, there are many
such relationships, and we have yet to find a tool that would benefit significantly from this
information. To keep the initial API of CSI relatively simple, we have opted not to provide
these tables for the time being.

11.3 An example CSI-tool

To illustrate the simplicity and expressiveness of CSI, we present a sample CSI-tool shown
in Figure 11-10. This tool measures the maximum depth of nested calls encountered during
the execution of a program-under-test using the instrumentation hooks provided by CSI.
It then associates this data to the original source code and prints the corresponding stack
trace using the FED tables.

8In fact, a contiguous range of basic-block ID’s.

284

97 typedef struct {
98 csi_id_t call_id;
99 csi_id_t func_id;

100 } callstack_entry_t;
101

102 static callstack_entry_t *callstack = NULL;
103 static callstack_entry_t *maxstack = NULL;
104 static unsigned callstack_depth = 0;
105 static unsigned max_depth = 0;
106

107 void report_and_cleanup() {
108 fprintf(stderr, "Max call stack:\n");
109 for (unsigned i = 0; i < max_depth; i++) {
110 callstack_entry_t entry = maxstack[i];
111 csi_id_t call = entry.call_id;
112 csi_id_t func = entry.func_id;
113 source_loc_t *const call_source_loc = __csi_get_call_source_loc(call);
114 source_loc_t *const func_source_loc = __csi_get_func_source_loc(func);
115 fprintf(stderr, "%s called by (%s:%d)",
116 func_source_loc.name,
117 call_source_loc.file_name,
118 call_source_loc.line_number);
119 }
120 free(callstack);
121 free(maxstack);
122 }
123

124 void __csi_init() {
125 callstack = (callstack_entry_t *)malloc(MAX_STACK_BYTES);
126 maxstack = (callstack_entry_t *)malloc(MAX_STACK_BYTES);
127 atexit(report_and_cleanup);
128 }
129

130 void __csi_before_call(const csi_id_t call_id, const csi_id_t func_id, const uint64_t prop) {
131 callstack[callstack_depth++] = (callstack_entry_t){ call_id, func_id };
132 }
133

134 void __csi_after_call(const csi_id_t call_id, const csi_id_t func_id, const uint64_t prop) {
135 if (callstack_depth > max_depth) {
136 max_depth = callstack_depth;
137 memcpy(maxstack, callstack, callstack_depth * sizeof(callstack_entry_t));
138 }
139 callstack_depth--;
140 }

Figure 11-10: The stack-track tool illustrates the CSI API. The tool measures and reports
the maximum stack depth and corresponding call stack. For simplicity, this tool assumes that the
entire program-under-test contains no uninstrumented code and no indirect calls. CSI allows the
tool writer to write only the hooks relevant to her tool. Other hooks default to null hooks.

Throughout the shadow computation, the tool maintains a shadow stack callstack
(line 102) by instrumenting call sites. The hook __csi_before_call is run just before the
TIX calls any function. The tool writer has defined __csi_before_call to push the ID of
the call and the ID of the callee onto its shadow stack (line 131). Just after the TIX returns
from the call, __csi_after_call is run. The tool writer has defined __csi_func_exit to
check the stack depth (line 135), conditionally update the maximum depth max_depth, and
capture a snapshot of the shadow stack (lines 136 and 137) if max_depth changes, and finally
pop a frame off the shadow stack (line 139),

The initialization code includes calling atexit (line 127) with the tool’s reporting and

285

CSI Libraries

Tool Writer Tool User

compilation
stage

static
linking

stage

translation-unit
source

translation-unit
source

TIX

tool
source

LLVM passes

CSI compile pass

LLVM passes

CSI compile pass

LLVM passes

Linker (LTO),
code generation

translation-unit
bitcode

translation-unit
bitcode

tool
 bitcode

null-tool bitcode

Linker

null-default
tool bitcode

CSI runtime

Figure 11-11: The implementation of CSI:LLVM. Gray rounded rectangles distinguish the con-
cerns of the tool user, the tool writer, and the CSI-provided libraries. The tan shapes represent
code (in some form) for the program-under-test. The blue shapes represent code for the tool or the
CSI system itself. The green boxes are compiler, linker, and code-generation components already
provided by LLVM. The orange boxes indicate new LLVM passes that implement CSI.

cleanup function report_and_cleanup, which causes this function to be invoked when the
TIX terminates. The code for report_and_cleanup scans the maximum callstack (lines 109–
119) and, for each entry in order, get the front-end data for the call site (lines 113 and 114)
and print it out (line 115). Finally, report_and_cleanup frees the memory used by the tool
(lines 120 and 121).

11.4 Implementation

This section describes the LLVM implementation of CSI. We shall describe the implementa-
tion of CSI that interacts with LTO, in order to simplify the description of how CSI allows
TIX’s to be optimized. We discuss the architecture and several important optimizations
that our architecture allows, and then we highlight some limitations.

Architecture

CSI is implemented within the LLVM compiler as two components: a CSI compile pass
and CSI runtime . Broadly, the compile pass inserts calls to the hooks, and the runtime
maintains the ID’s and aggregates front-end data. Figure 11-11 portrays the entire process
of translating program and tool source into a TIX.

Let us first describe how LLVM compiles programs when LTO is enabled. During the
compilation stage of a program, LLVM separately compiles each translation unit into
LLVM IR. The compilation stage supports many platform-independent intra-unit (within a
single unit) analyses and transformations over the LLVM IR. At the end of this compilation

286

stage, for each compiled unit, LLVM produces a bitcode file — a compact on-disk binary
representation interchangeable with LLVM IR — rather than a native object file. The bit-
code files carry all information and metadata produced by the compiler analyses during the
compilation stage, which allows further analysis and transformation during the subsequent
linking stage , when LTO is invoked.

The CSI compile pass, shown in Figure 11-11, is inserted as an additional compiler
pass at the end of the compilation stage, immediately before the generation of the bitcode
file. Thus, instrumentation is inserted after all intra-unit compiler optimizations, meaning
CSI instruments the optimized code. That is normally a good thing, but it does have
some consequences. For instance, if a function call is inlined at a particular call site, the
__csi_func_entry and __csi_func_exit hooks will not be instrumented for the function
instance invoked at that particular call site.

The CSI compile pass is implemented as an LLVM “module” pass. For each function
body, it inserts calls to the appropriate hooks at the designated points within the IR. For
properties, the compiler performs any analysis necessary to provide the property argument
for the appropriate hooks in the generated IR. Since property arguments are constants,
LTO can later constant-fold and propagate to eliminate conditional tests involving these
arguments. To assign the hook ID’s and create the FED tables, the CSI compile pass
creates a set of static global variables within the unit and inserts a call to the runtime’s
unit initialization function, __csirt_unit_init, with pointers to those variables. The CSI
pass prepends the __csirt_unit_init function to the unit’s global constructor list, thereby
ensuring unit initialization occurs before execution of the TIX’s main function or any other
global constructors.

Figure 11-12 shows __csirt_unit_init, the runtime’s unit initialization function. This
function works in concert with the CSI compile pass to set the ID values for all of the hooks
and to construct the FED tables. This function also calls the tool’s unit initialization hook.
To understand this function in detail, let us examine how CSI assigns ID’s and generates
FED tables.

Assigning ID values and building FED tables

Let us first examine how CSI assigns contiguous ID values to hooks. To illustrate the
process, consider compiling a unit with m basic blocks. The CSI compile pass numbers
the basic blocks in the unit with a local ID value from 0 through m � 1. It also creates
a static global variable, bb_base, inside the unit, which it passes by reference to the unit’s
call to __csirt_unit_init. As Figure 11-12 shows, the CSI runtime maintains a running
count of the total number of basic blocks in all loaded units, (line 147). When this unit
is initialized, suppose that the units initialized so far have n total basic blocks among
them. Then __csirt_unit_init sets the bb_base of the unit to n, its current running total
(line 159), and updates its total basic-block count to n+m (line 160). The ID for each basic
block hook is the result of adding its local ID value to the value of bb_base read when the
hook executes, which produces the values n, n+ 1, . . . , n+m� 1 for this unit.

Function ID’s pose an additional complication to this scheme, in order to support passing
them to the hooks for calls. In particular, a call hook (for a direct call) takes the ID of its
callee, which might be defined in another module. If unit A contains a call to a function
and is initialized before the unit B that contains the callee, then the ID of the callee is not
known when A is initialized.

To resolve this issue, the CSI compile pass generates a global, weak function-ID symbol

287

141 typedef struct {
142 source_loc_t *func;
143 source_loc_t *bb;
144 // ...Other FED tables...
145 } fed_tables_t;
146

147 instrumentation_counts_t total_counts;
148 fed_tables_t global_fed_tables;
149

150 void __csirt_unit_init(const char * const name,
151 const instrumentation_counts_t *unit_base_ids,
152 const fed_tables_t * const fed_tables,
153 const instrumentation_counts_t * const counts,
154 void (*set_func_ids)(void)) {
155 // Set the bases of the ID categories.
156 unit_base_ids->func_base = total_counts.num_func;
157 total_counts.num_func += counts->num_func;
158

159 unit_base_ids->bb_base = total_counts.num_bb;
160 total_counts.num_bb += counts->num_bb;
161 // ...
162

163 // Set the function ID’s.
164 set_func_ids();
165

166 // Construct the FED tables.
167 global_fed_tables.func = (source_loc_t *)realloc(
168 global_fed_tables.func, sizeof(source_loc_t) * total_counts.num_func);
169 for (csi_id_t i = 0; i < counts->num_func; ++i)
170 global_fed_tables.func[i + unit_base_ids->func_base] = fed_tables.func[i];
171 // ...
172

173 __csi_unit_init(name, counts);
174 }

Figure 11-12: CSI runtime’s unit initialization hook.

for every function defined or called in the unit, which is initialized to CSI_UNKNOWN_ID. The
call hooks then simply load the value of the callee’s function-ID symbol at runtime. The CSI
compile pass also generates a function, set_func_ids, for the unit, which sets the values
of the function-ID symbols for the functions defined in the unit. After __csirt_unit_init
sets the func_base for the unit, it calls back to this generated set_func_ids function in
the unit (line 164). Although multiple units might create function-ID symbols for the same
function, the weakness of these symbols ensures that only one function-ID symbols for each
function will survive. Furthermore the value of a function-ID symbol is only set when the
unit that defines the corresponding is initialized. Finally, the initialization of these symbols
ensures that call hooks will load the value CSI_UNKNOWN_ID as the ID of a function defined
in an uninstrumented unit.

To construct the FED tables, for each IR-object category, the CSI compile pass collects
front-end data for IR objects in that category into a static global array for the unit. This
array is passed to __csirt_unit_init, which copies the contents of the array onto the end
of a global FED table array, as lines 167–170 illustrate.

By using a runtime pass which sets ID values and FED tables when units are initialized,
CSI assigns ID values and FED tables correctly, regardless of whether units are statically or
dynamically linked.

288

(a)

175 void func(int i) {
176 global += i;
177 }

(b)

178 define void @_Z3funci(i32 %i) #0 {
179 call void @__csi_func_entry(...)
180 call void @__csi_bb_entry(...)
181 call void @__csi_before_load(...)
182 %1 = load i64, i64* @global, align 8
183 call void @__csi_after_load(...)
184 %2 = sext i32 %i to i64
185 %3 = add i64 %2, %1
186 call void @__csi_before_store(...)
187 store i64 %3, i64* @global, align 8
188 call void @__csi_after_store(...)
189 call void @__csi_bb_exit(...)
190 call void @__csi_func_exit(...)
191 ret void
192 }

(c)

193 define void @_Z3funci(i32 %i) #0 {
194 call void @__csi_func_entry(...)
195 %1 = sext i32 %i to i64
196 %2 = load i64, i64* @global, align 8
197 %3 = add i64 %2, %1
198 store i64 %3, i64* @global, align 8
199 call void @__csi_func_exit(...)
200 ret void
201 }

Figure 11-13: An example of null-hook elimination. (a) The original function. (b) The compiled
IR, where for clarity, IR instructions that set up the arguments for the various hook invocations, as
well as the arguments themselves, are not shown. (c) The optimized IR after linking with a tool
that only implements __csi_func_entry and __csi_func_exit. LTO elides all the null hooks.

Null-hook elimination

To ensure null-hook elimination occurs, meaning that hooks unimplemented by the tool
writer are properly defined, yet optimized away, the tool writer first links the bitcode files of
her tool with the null tool, and then with the program-under-test. The default implemen-
tation of all hooks in the null tool is simply an empty function, exported as a weak symbol.
By default, the implemented hooks in the tool writer’s tool are defined as strong symbols,
which override the same weak symbols in the null tool during linking. Thus, any hooks
not implemented by the tool writer’s tool use the default definitions from the null tool, all
of which are simply null hooks. Since LTO optimization passes automatically elide empty
functions as part of a dead-code elimination pass, when the definitions of the hooks become
available to the link-time optimizer, calls to null hooks are trivially marked as dead code.
Consequently, all function calls to the null hooks are removed from the final executable.

As an example of null-hook elimination, consider the source code in Figure 11-13(a),
a function that writes to a global variable. For this function, CSI:LLVM produces the
IR in Figure 11-13(b). Suppose that this IR is linked with a tool that only implements

289

__csi_func_entry and __csi_func_exit. LTO will produce the optimized IR in Figure 11-
13(c), because calls to hooks not implemented by the tool are eliminated by LTO.

Care must be taken to ensure that a CSI-tool written with to one version of the API is
not erroneously linked with an incompatible bitcode file compiled with a different version
of CSI:LLVM. Library versioning is a common headache and has provoked solutions such
as each library providing version numbers in their header files and at runtime, as support
from the automake tools [314], conventions such as Apache’s version numbering scheme [20],
using namespaces to handle versions, providing a variable whose name encodes the version
forcing a link-time error on mismatching, and simply changing the name of the library for
different versions. We intend to use a mix of these techniques eventually, but the current
implementation of CSI:LLVM punts on this problem, which we rationalize by the APR
versioning policy [20], which states that any library that has not reached 1.0.0 does not need
to worry about versioning.

Limitations

CSI:LLVM’s current approach to instrumentation does contain some limitations, however.
For example, the decision to instrument the IR and not the front or back end might lead
to a misunderstanding of results gathered by a CSI tool. For example, loads and stores
created during machine code generation (which occurs after IR generation) are not instru-
mented. This scenario occurs during register allocation whenever a register must be spilled
to the stack using load and store machine instructions. These memory operations cannot
be instrumented in the current implementation of CSI.

Another limitation occurs when instrumenting programs with dynamic libraries. Dy-
namic libraries must be compiled as position independent code (PIC) [75][Chp. 7.12],
and as the compiler cannot predict runtime addresses within the library, it must invoke
tool-provided hooks as PIC function calls. Although not a functional deficiency, we have
observed performance issues in this situation. We are investigating why, in these cases, LTO
can sometimes fail to perform optimizations to eliminate null hooks or dead code within
the hooks. To be conservative and avoid these penalties, libraries should be statically linked
with the TIX. Section 11.5 compares runtime overheads incurred by an instrumented library
when linked dynamically versus statically.

11.5 Demonstration CSI-tools

This section describes seven example CSI-tools that we built to investigate the properties
of the CSI:LLVM implementation:

• CSI-null: the null tool,
• CSI-cgg: a dynamic call-graph generator,
• CSI-memop: a memory-operations counter,
• CSI-TSan: a port of Google’s ThreadSanitizer [352] race-detection tool,
• CSI-prof : a lightweight performance profiler,
• CSI-reuser: a cache simulator,
• CSI-cov: a code-coverage tool.

Figure 11-14 summarizes the specifications of the benchmarking machine used for all of the
experiments.

290

CPU Intel Xeon E5-2695 v2
Clock 2.4GHz
Hyperthreading Enabled
Turbo Boost Disabled
Cores per processor chip 12
Processor chips (sockets) 2
L1 data cache/core 32KiB
L2 cache/core 256KiB
L3 cache/socket 30MiB
DRAM 128GiB DDR3
Compiler Clang 3.8.0
Operating system Linux kernel 3.13.0

Figure 11-14: Technical specifications of the machine used for benchmarking. We disabled Turbo
Boost to enhance the reliability of time measurements.

Running time Requests/second Slowdown

Configuration min max min max min max

Baseline 16.5 16.9 17,755 18,117 — —
CSI 16.6 16.7 17,946 18,062 0.98 1.01

Figure 11-15: The null tool CSI-null exhibits negligible running-time overheads on the Apache
server when compiled with static linking. The measurements show the fastest and slowest of three
runs. Running time is measured in seconds, and slowdown is computed based on running time.

The null tool

The null tool CSI-null demonstrates that if a CSI-tool does not use a particular part of
the CSI instrumentation, then the running-time cost is essentially zero and the build-time
overhead is reasonable. To measure the running-time overhead of CSI-null, we compiled
the Apache HTTP server (version 2.4.17) to build with and without CSI-null. We chose
Apache as a representative real-world program of moderate size. The SLOCcount tool [405]
reports 264 883 source lines of C code. We used the Apache benchmark harness from the
ThreadSanitizer repository [167] to issue 300 000 connections with a concurrency level of
20 (meaning up to 20 simultaneous requests may be issued). The benchmark harness then
reports a total running time and a mean measurement of the number of requests handled
per second.

Figure 11-15 reports the essentially zero running-time overhead of CSI-null for a statically
compiled Apache server. By default, the Apache server employs many dynamically loaded
libraries. As mentioned in Section 11.4, instrumentation of dynamically linked objects can
suffer in performance. Figure 11-16 measures the overhead of CSI-null when Apache is
configured to use dynamic libraries instead of statically linked ones. As can be seen in the
figure, the running-time overhead is 33% instead of 0 in this case. Even with dynamic tool-
instrumented libraries, CSI:LLVM optimizes each library separately against the null tool in
this experiment.

One possible concern that tool users might have regarding CSI:LLVM is that build time
might be increased unduly. Figure 11-17 summarizes the results of compiling the Apache
server with and without LTO and CSI. When CSI is enabled, we used CSI-null. We report
serial build times as well as parallelized build times with make -j24. When using 24 parallel
jobs, compiling Apache with CSI adds ⇠14.9 s to the elapsed build time, or 39% overhead.
Using 1 job, CSI increases build time by 14%. To understand how CSI scales with program

291

Running time Requests/second Slowdown

Configuration min max min max min max

Baseline 15.6 15.9 18,869 19,265 — —
CSI 20.7 20.8 14,408 14,473 1.30 1.33

Figure 11-16: The null tool CSI-null exhibits nontrivial running-time overheads on the Apache
server when compiled with dynamic linking. The measurements show the fastest and slowest of three
runs. Running time is measured in seconds, and slowdown is computed based on running time.

Jobs LTO CSI User (s) System (s) Elapsed (s)

1 — — 138.3 31.7 177.7
1 X — 138.4 31.7 181.2
1 X X 164.2 31.7 203.0
24 — — 134.4 30.6 38.2
24 X — 132.8 29.9 43.3
24 X X 158.6 29.7 53.1

Figure 11-17: Compile-time overhead of LTO and CSI when building Apache HTTPD. The first
three lines show the running times when make is run serially: with the default make, running the
default with LTO, and running the default with LTO and CSI. The last three lines show the running
times for 24 jobs. We measured the user, system, and elapsed time from /usr/bin/time.

Jobs Instrumentation User (s) System (s) Elapsed (s)

1 CSI-TSan 178.1 34.5 227.8
1 TSan 145.0 33.0 192.8
24 CSI-TSan 172.9 32.1 60.5
24 TSan 140.4 31.1 45.8

Figure 11-18: Compile-time overhead of a port (CSI-TSan) of the ThreadSanitizer race detector
to CSI compared to the original ThreadSanitizer (TSan), measured when building Apache HTTPD.

size, we compiled Apache both with the original ThreadSanitizer race detector [352] and
with CSI-TSan, which will be described shortly. Figure 11-18 shows the results: compiling
with CSI adds 32% build-time overhead over the original ThreadSanitizer when the tool is
built using 24 jobs and 18% when it is built using a single job.

Dynamic call-graph generator

Our second demonstration CSI-tool provides an opportunity to compare performance of the
CSI approach with binary instrumentation, and in particular, with a Pintool [267]. We
implemented a dynamic call-graph generator in CSI, called CSI-cgg, which was inspired by
the dynamic call-graph generator Pintool from the Pin documentation [194].

We measured running-time overhead using the Apache HTTP server compiled with and
without CSI-cgg. Because the Apache server configuration is multithreaded, we adapted
the original Pintool to be thread-safe, and we built CSI-cgg as the same tool using CSI.
Because the CSI:LLVM infrastructure does nothing special for multithreading, CSI-cgg must
implement multithreaded data structures. In particular, both CSI-cgg and the Pintool
construct a thread-local call graph to avoid unnecessary locking at runtime. The thread-
local call graphs are merged together and printed to a file when the application exits. We
used the GLib [161] binary search tree and linked list.

292

Configuration Running time (s) Requests/second Running-time slowdown

Baseline 15.4 19,454.6 —
Pintool 312.1 961.3 20.3
CSI-tool 113.9 2,633.2 7.4

Figure 11-19: Comparison of the CSI-cgg dynamic call-graph generator and the equivalent Pintool
on the Apache server compiled with dynamic libraries.

202 static long accesses_by_size[4];
203

204 void __csi_init(const char * const name) {
205 atexit(print_results);
206 }
207

208 void __csi_before_load(const uint64_t load_id,
209 const void *addr,
210 const int num_bytes,
211 const uint64_t prop) {
212 accesses_by_size[__builtin_ctz(num_bytes)]++;
213 }
214

215 void __csi_before_store(const uint64_t store_id,
216 const void *addr,
217 const int num_bytes,
218 const uint64_t prop) {
219 accesses_by_size[__builtin_ctz(num_bytes)]++;
220 }

Figure 11-20: The CSI-memop tool counts memory operations.

For CSI, we compiled the server daemon with CSI-cgg. For Pin, we started the daemon
under Pin control with an equivalent tool. The Pintool was configured not to instrument
system libraries to ensure as fair a comparison as possible. Figure 11-19 summarizes our
findings. Whereas use of the Pintool resulted in a server slowdown of 20.3⇥, CSI-cgg resulted
in only a 7.4⇥ slowdown.

Figure 11-19 presents running-time overhead measurements of both the CSI-cgg call-
graph generator and the equivalent Pintool in the same Apache benchmarking configuration.
These experiments used a dynamically linked Apache server (in which each of Apache’s
dynamic libraries is tool instrumented). CSI-cgg was approximately 2.7⇥ faster than the
equivalent Pintool in running time.

Memory-operations counter

The third CSI-tool, called CSI-memop, counts the number of loads and stores in a program
by incrementing a global counter for each memory operation. Counting memory operations
presents a great opportunity for optimization. The Pin documentation [194] describes how
to make an instruction-counting tool more efficient by counting the number of instructions
once for each basic block and then augmenting the global counter with that sum once every
time the basic block is executed, rather than incrementing once per instruction. To count
memory operations, the same idea can be used, but a Pintool writer must implement this
optimization herself. In contrast, the writer of a CSI-tool can write the natural increment-
for-each-memory-operation code, as shown in Figure 11-20, which CSI:LLVM optimizes
automatically.

293

We built a microbenchmark to evaluate CSI-memop and the optimized Pintool. The
microbenchmark consists of a billion iterations of a loop that reads several variables of
different types, increments them, and stores them back. CSI:LLVM was able to infer the loop
bounds, causing the instrumentation to be lifted out of the inner loop. The net result was
that the CSI-memop incurred essentially zero overhead compared to the baseline program.
In comparison, the Pintool exhibited measurable overhead for as few as four variables. The
goal of this experiment was not to show that CSI-memop was so many percent faster, but
rather that it leverages the inherent optimization capability of CSI:LLVM.

ThreadSanitizer

Our fourth tool, CSI-TSan, is a port of ThreadSanitizer [352], which performs race detection
by instrumenting every load and store and intercepting calls to pthread function calls, such
as accesses to condition variables [148]. The ThreadSanitizer tool provides an excellent
opportunity to compare the CSI approach with traditional compiler instrumentation. Our
studies with CSI-TSan demonstrate the following:

• An existing compiler-instrumentation tool, such as ThreadSanitizer, can be ported to
CSI remarkably easily.

• The ported CSI-TSan tool produces code that runs only marginally slower than the
original ThreadSanitizer tool.

• CSI properties can efficiently export compiler analyses to the CSI hooks at runtime.
• CSI can support a large tool compared to the other six example tools, all of which are

fairly small.
The standard ThreadSanitizer implementation has two parts: a compiler pass and a

runtime library. The compiler pass includes tool-specific optimizations as well as code to
instrument every load and store. One such tool-specific optimization is to omit instrumen-
tation of a load if there is a store to the same address in the same basic block.

CSI’s instrumentation interface differs slightly from that of ThreadSanitizer. For exam-
ple, ThreadSanitizer has a separate load instruction for each operand size (__tsan_read1
for 1-byte reads, __tsan_read2 for 2-byte reads, etc.), whereas CSI-TSan employs a single
function that takes an address and size. It turns out that underneath the width-specific
instructions, ThreadSanitizer employs a single function that takes an address and a size,
and CSI-TSan simply translates the API calls and invokes the original library functions,
requiring a total of 15 lines of code.

Of the 188 ThreadSanitizer regression tests, CSI-TSan passes all but 20. Those 20 tests
require the following features that CSI:LLVM does not currently support:

• ThreadSanitizer-specific annotations to help race detection, such as “x happens before
y,”

• atomic instructions and variables,
• Virtual pointers and C++ objects, and
• Races involving static variables initialized in functions.
Figure 11-21 presents a running-time-overhead comparison of ThreadSanitizer and CSI-

TSan with and without using CSI properties. CSI-TSan employs the “read before write”
property on the __csi_before_load hook. For a race detector, loads that occur before
stores in the same basic block need not be instrumented. CSI-TSan checks the value of this
property and only instruments loads for which it is false. The LTO process then can elide
any calls to the __csi_before_load hook whenever it can prove that the load is subsumed
by a write in the same basic block. This optimization reduces minimum overhead on the

294

Running time (s) Overhead

Configuration min max min max

Baseline 5.33 9.48 — —
ThreadSanitizer 13.64 21.12 1.43 3.96
CSI-TSan, no properties 28.02 43.73 2.95 8.20
CSI-TSan with properties 19.80 33.65 2.08 6.31

Figure 11-21: Comparison of running-time overheads for ThreadSanitizer and CSI-TSan without
and with using CSI properties.

running time of CSI-TSan from 295% to 208%.

Performance profiler

For our fifth example CSI-tool, we implemented a simple, lightweight function-based pro-
filer, called CSI-prof, which uses the read-timestamp-counter instruction rdtsc to measure
the time spent in the program. At each function entry and exit, the time since the last
measurement is computed and added into a global variable. A real profiler would do the
bookkeeping to assign those times to a function, but for this tool, we simply summed up all
the time measurements. CSI-prof demonstrates that CSI can do more than instrument code
for correctness: it can also measure performance.

We measured a classical doubly recursive Fibonacci program. We coarsened the base
case of the recursion so that we could vary the number of instructions compared to the
number of function calls. Given that the processors on our machine are clocked at 2.4GHz
and that the run-to-run variance was less than 1%, we calculated that the rdtsc instruction
was taking about 22.2 ns. The running time of the program could then be modeled as
T = 22.2 ns · C +N/2.4GHz, with a relative root-mean-square error of less than 0.7%.

A comparable tool is the profiler gprof [171], which employs asynchronous sampling, in-
terrupting the program periodically and looking at the call stack to record in which function
the program counter lies. In comparison, CSI-prof measures every single function call. Not
surprisingly, gprof suffers less overhead than CSI-prof. For example, for Fibonacci with no
coarsening, gprof slows down the program by about a factor of 5, and CSI slows it down by
another factor of 2. Sampling has the disadvantage, however, that it is inaccurate for short
runs. For example, some of our runs took only 0.36 seconds, and gprof’s measurements
varied by more than a factor of 2 from run to run, whereas CSI-prof produced the same
answer to within 1%.

Cache simulator

The sixth example CSI-tool is a cache simulator, called CSI-reuser, based on reuse-distance
analysis [121,377]. Reuse distance is essentially a plot of the cache-miss rate of a program as
a function of its cache size. To calculate reuse distances, CSI-reuser instruments every load
and store using a data structure similar to that of [121], which can calculate reuse distance
in O(n log n) time, where n is the total number of memory operations.

Other cache simulators, such as Cachegrind [296] and Loca [120, 412], employ binary
instrumentation. Cachegrind instruments every load and store, even in uninstrumented
libraries. The Pintool Loca employs a sampling strategy to reduce overhead. We found
Loca to be sensitive to the version of the kernel and of other system utilities, and we have

295

221 csi_id_t num_basic_blocks = 0;
222 bool *block_was_executed = NULL;
223

224 void report() {
225 fprintf(stderr, "Basic blocks not executed:\n");
226 for (csi_id_t i = 0; i < num_basic_blocks; i++) {
227 if (!block_was_executed[i]) {
228 if (source_loc_t *const source_loc = __csi_bb_get_source_loc(i))
229 fprintf(stderr, "%s:%d\n",
230 source_loc.filename,
231 source_loc.line);
232 }
233 }
234 free(block_was_executed);
235 }
236

237 void __csi_init(const char *const name) {
238 atexit(report);
239 }
240

241 void __csi_unit_init(const char * const name,
242 const instrumentation_counts_t * const counts) {
243 num_basic_blocks += counts->num_bb;
244 block_was_executed = (bool *)realloc(block_was_executed,
245 num_basic_blocks * sizeof(bool));
246 }
247

248 void __csi_bb_entry(const csi_id_t bb_id) {
249 block_was_executed[bb_id] = true;
250 }

Figure 11-22: The CSI-cov code-coverage tool, which reports lines of code that are not executed.

as yet been unable to get Loca to work because of incompatibilities with our system. We
hope to resolve those problems and compare Loca to CSI-reuser in future work.

Code coverage

Our seventh and final CSI-tool, called CSI-cov, illustrates the advantages of having con-
tiguous values for basic-block ID’s. CSI-cov tracks which basic blocks are executed over
the course of the program, reporting on exit the source-line data for basic blocks that were
never executed. The tool, which is shown in Figure 11-22, is simple. In 30 lines, the CSI
framework enables this useful compiler-based tool to be implemented as a library. Without
the CSI framework, this code-coverage tool would require considerably more development
effort, as well as an understanding of the internals of the compiler.

The code-coverage tool tracks which blocks were executed through the global array
block_was_executed by implementing the initialization hooks and __csi_bb_entry. The
__csi_init hook simply registers the output routine to be called when the program exits.
The __csi_unit_init hook extends the array to include the new basic blocks added by this
unit. The __csi_bb_entry hook marks when a basic block is executed.

At the end of the computation, the report function runs through all basic blocks, and if
a given basic block was not executed, it uses the basic-block FED table to report the source
location of the basic block to the user. The contiguity of bb_id values simplifies the compu-
tation. The for loop in lines 226–233 iterates through all the basic blocks straightforwardly,
even if basic blocks come from different units.

296

11.6 Related work

The CSI framework provides a standard collection of instrumentation hooks so that a tool
writer can develop compiler-based dynamic-analysis tools without needing to modify the
compiler. In this section, we survey the literature to provide context for CSI.

Complementing the compiler-instrumentation approach have been many general frame-
works developed to allow tools to rewrite or instrument arbitrary binaries in order to perform
dynamic analysis [72, 108, 230, 267, 296, 334, 363, 367]. Unlike CSI, a tool using binary in-
strumentation can instrument any executable without access to the source code. The main
downside is that most binary-instrumentation frameworks are platform specific, making the
tool platform dependent. A few notable exceptions include EEL [230], FIT [108], and Val-
grind [296], which target multiple back-ends.

Many frameworks have been developed for bytecode instrumentation [47,70,73,236,270,
394, 406]. These frameworks are tied to the Java Virtual Machine (JVM), even though the
JVM itself is designed to be platform independent.

Many dynamic-analysis tools have been developed using compiler instrumentation, such
as [134,149,171,206,240,281,346,350,351,415], where the tool modifies the compiler to insert
tool-specific instrumentation tailored to its needs. Few general compiler-instrumentation
frameworks extend beyond tool-specific instrumentation. Two exceptions are SASSI [373], a
low-level assembly-language instrumentation tool for GPU’s, and TAU [354], which focuses
on instrumenting high-level C++ language features. Both exhibit a different focus from CSI,
requiring users to insert source commands to instruct the compiler what to instrument.

The lack of a general compiler-instrumentation framework should not be surprising, since
LTO has only recently been widely available in mainstream compilers. Without the support
of LTO or comparable compiler technology, tools would be ridden with overhead, but CSI
demonstrates that a general compiler-instrumentation framework is viable today, providing
tool writers with a new avenue for instrumentation.

11.7 Conclusion

The CSI framework supports the rapid development of high-performing compiler-based
dynamic-analysis software tools, granting performance engineers insight into a program’s
behavior. We have implemented the framework in the LLVM compiler and demonstrated
its efficacy through demonstration tools. We are optimistic that the framework — or at
least the concepts of CSI — will be adopted by the community to assist in the develop-
ment of a wide range of tools. We hope that tool writers will give us feedback on how
best to enrich CSI with additional features while keeping the API simple and minimal. We
plan to release CSI:LLVM publicly under a liberal open-source license so that the commu-
nity can help evolve the instrumentation framework. To this end, we have initiated the
public code review process to upstream of CSI implementation into the main branch of
LLVM [111,112,258].

297

298

Chapter 12

Life after Moore’s Law

To conclude this thesis, let us return to the discussion in Chapter 1 on the end of Moore’s
Law and what it implies about the need to engineer software for performance. Mounting
evidence indicates that Moore’s Law will end within the next 5 years. The final International
Technology Roadmap for Semiconductors [203] states that, “By 2020–25. . . it will become
practically impossible to reduce [transistor sizes] any further.” Meanwhile Intel, the leader in
semiconductor-device technology, has stated that they plan to use their older 14 nm and next-
generation 10 nm transistor technologies for longer amounts of time [201, p. 14], indicating
a clear slowing from the historical Moore’s Law rate of doubling transistor densities on an
integrated circuit every two years.

Could other sources provide rapid growth in computer performance after Moore’s Law
ends? To tackle this question, I worked with a team of MIT researchers with broad exper-
tise in computing technology and economics, including Joel S. Emer, Bradley C. Kuszmaul,
Butler W. Lampson, Charles E. Leiserson, Daniel Sanchez, and Neil C. Thompson. Af-
ter examining a host of promising technologies, we have concluded that the answer is yes,
because there is plenty of opportunities to increase computer performance [247]. In partic-
ular, we find these opportunities in the higher levels of the computer stack : the layers of
technology built upon transistors and other semiconductor devices that deliver useful ap-
plications. These layers of technology organize the transistors at the “bottom” into circuits
that perform calculations (hardware architecture), coordinate those calculations as efficient
problem-solving routines (algorithms), and combine those routines into functionality avail-
able to the user (software). As semiconductor physics and silicon-fabrication technologies at
the bottom of the computer stack cease delivering performance gains, the top of the stack
will offer opportunities to drive up computer performance through performance engineer-
ing : restructuring a computation either to reduce the number of operations needed to solve
a problem or to perform the operations more quickly.

Whereas Moore’s Law has driven up performance on a predictable schedule, performance
engineering will produce opportunistic, uneven, and sporadic gains, typically improving just
one aspect of a particular computation at a given time rather than “lifting all boats” as
Moore’s Law has done. Moreover, Moore’s Law improvements have been largely invisible
to higher levels of the computer stack, meaning that other parts of the system don’t need
to adapt to obtain the advantages provided by those improvements. In contrast — and
unfortunately — performance-engineering changes are often visible, meaning that they may
require other parts of the system to change in order to exploit, or even tolerate, those
changes. When performance-engineering modifications percolate through a system, massive

299

engineering effort can be required to correctly implement and test the changes. How can
programmers contend with the complexity of performance-engineering and visible changes
in the post-Moore era?

Although some software technologies have historically found success in providing soft-
ware efficiency while sheltering programmers from performance concerns, these technologies
seem limited in their ability to address the software performance concerns of the post-Moore
era. Software performance engineers have developed high-performance libraries, such as the
Intel Math Kernel Library [200], to provide fast implementations of some commonly used
routines. For an arbitrary piece of code, however, programmers cannot always rely on an
optimized library being available. Meanwhile, compiler technology has been successful in en-
capsulating some software optimization tasks, such as register allocation and modifications
to program control flow. In the 1970’s and 1980’s, for example, optimizing compilers allowed
programmers to use high-level control-flow constructs in place of goto statements [410]. As
the matrix-multiplication case study presented in Chapter 1 illustrates, however, optimizing
compilers leave significant software performance on the table, even when compiling simple
programs. In particular, Figure 1-1 shows that, although the C implementation (Version 3)
is nearly 50 times faster than the Python implementation of the same code (Version 1), addi-
tional software-performance-engineering can increase the program’s performance by another
factor of 1000. Furthermore, compilers have thus far found limited success in exploiting
parallelism effectively without programmer input [308,417].

Rather than shelter programmers entirely from performance concerns, I believe that
programming technologies can be developed to make software performance engineering ac-
cessible to average programmers. This thesis presents nine artifacts that work towards this
goal by supporting principled approaches to reasoning about the behavior and efficiency of
fast multicore software. Although these artifacts do develop simple programming models
that encapsulate some performance concerns, these models do not solve the problem on their
own. Theories of performance that are borne out in practice can enable programmers to
use back-of-the-envelope calculations to predict the effect of a software change on efficiency
before they write an optimized implementation. Efficient diagnostic tools can automate
tasks in reasoning about program behavior and performance, augmenting a programmer’s
ability to reason about large and complex codebases. A simple framework, such as CSI, for
creating new efficient diagnostic tools opens the door to developing tools that are tailored
for a specific application or system. I believe that developing integrated programming tech-
nologies that support a science of fast code can enable average programmers to engage in
software performance engineering in the post-Moore era.

The artifacts in this thesis develop and integrate programming technologies that support
principled approaches to reasoning about software performance and efficiency, but more work
remains to advance a coherent engineering science of fast code. We need additional simple
programming models that support theories of performance that are borne out in practice.
We need to embed these abstract models and theories into efficient diagnostic tools, compiler
technology, and other parts of the software-development environment. We need to develop
systems that provide visibility into the dynamic execution of a program and support careful
measurement of that execution. And we need to educate programmers in how to use these
software-performance-engineering technologies and how to think critically about software
performance.

In summary, this thesis has shown that a more coherent science of fast code is feasible.
In particular, we can build simple and integrated programming technologies that remedy the
ad hoc and unprincipled nature of software performance engineering. Although developing

300

a coherent science of fast code may be challenging, I believe that doing so will be crucial if
we wish to see new transformative computing functionality emerge after Moore’s Law ends.

301

302

Bibliography

[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe locking: Static race detection
for Java. ACM Transactions on Programming Languages and Systems, 28(2):207–255,
2006.

[2] L. Adams and J. M. Ortega. A multi-color SOR method for parallel computation. In
ICPP, pages 53–56, 1982.

[3] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and
N. R. Tallent. HPCToolkit: Tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience, 22(6):685–701,
2010.

[4] S. Agarwal, R. Barik, V. Sarkar, and R. K. Shyamasundar. May-happen-in-parallel
analysis of X10 programs. In PPoPP, pages 183–193, 2007.

[5] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, September 1988.

[6] K. Agrawal, C. E. Leiserson, and J. Sukha. Executing task graphs using work-stealing.
In IPDPS, pages 1–12, 2010.

[7] R. Agrawal and S. D. Stoller. Type inference for parameterized race-free Java. In
Verification, Model Checking, and Abstract Interpretation, volume 2937 of Lecture
Notes in Computer Science, pages 149–160. 2004.

[8] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools. Second edition, 2006.

[9] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley Publishing Company, 1974.

[10] J. Aldrich, C. Chambers, E. G. Sirer, and S. Eggers. Static analyses for eliminating
unnecessary synchronization from Java programs. In Static Analysis, volume 1694 of
Lecture Notes in Computer Science, pages 19–38. 1999.

[11] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu, G. L. Steele
Jr., and S. Tobin-Hochstadt. The Fortress Language Specification Version 1.0. Sun
Microsystems, Inc., 2008.

[12] J. R. Allwright, R. Bordawekar, P. D. Coddington, K. Dincer, and C. L. Martin. A
comparison of parallel graph coloring algorithms. Technical report, Syracuse Univer-
sity, 1995.

303

[13] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms, 7:567–583, 1986.

[14] Amazon. Amazon Web Services (AWS) — cloud computing services [online]. 2016.
URL: https://aws.amazon.com/ [cited July 20, 2016].

[15] Amazon Web Services. Announcing Amazon Elastic Compute Cloud (Amazon EC2)
— beta [online]. 2006. URL: https://aws.amazon.com/about-aws/whats-new/2006/
08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/.

[16] Amazon Web Services. Amazon EC2 pricing [online]. 2016. URL: https://aws.
amazon.com/ec2/pricing/ [cited July 20, 2016].

[17] T. E. Anderson and E. D. Lazowska. Quartz: A tool for tuning parallel program
performance. In SIGMETRICS, pages 115–125, 1990.

[18] J. Ansel and C. Chan. PetaBricks: Building adaptable and more efficient programs for
the multi-core era. Crossroads, The ACM Magazine for Students (XRDS), 17(1):32–37,
2010.

[19] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M. O’Reilly,
and S. Amarasinghe. OpenTuner: An extensible framework for program autotuning.
In PACT, 2014.

[20] Apache Software Foundation. APR’s version numbering, 2015. URL: http://apr.
apache.org/versioning.html.

[21] L. Arge, M. T. Goodrich, M. Nelson, and N. Sitchinava. Fundamental parallel algo-
rithms for private-cache chip multiprocessors. In SPAA, pages 197–206, 2008.

[22] E. M. Arkin and E. B. Silverberg. Scheduling jobs with fixed start and end times.
Discrete Applied Mathematics, 1987.

[23] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing.
Communications of the ACM, 53(4):50–58, 2010.

[24] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multipro-
grammed multiprocessors. Theory of Computing Systems, pages 115–144, 2001.

[25] J. Aycock. A brief history of just-in-time. ACM Computing Surveys, 35(2):97–113,
2003.

[26] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel,
P. Unnikrishnan, and G. Zhang. The design of OpenMP tasks. IEEE Transactions on
Parallel and Distributed Systems, 20(3):404–418, 2009.

[27] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large
social networks: Membership, growth, and evolution. In SIGKDD, pages 44–54, 2006.

[28] D. Bader, J. Feo, J. Gilbert, J. Kepner, D. Keoster, E. Loh, K. Madduri, B. Mann,
and T. Meuse. HPCS scalable synthetic compact applications #2, 2007. Available at
http://www.graphanalysis.org/benchmark/HPCS-SSCA2_Graph-Theory_v2.2.doc.

304

https://aws.amazon.com/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/
http://apr.apache.org/versioning.html
http://apr.apache.org/versioning.html
http://www.graphanalysis.org/benchmark/HPCS-SSCA2_Graph-Theory_v2.2.doc

[29] D. A. Bader and K. Madduri. Designing multithreaded algorithms for breadth-first
search and st-connectivity on the Cray MTA-2. In ICPP, pages 523–530, 2006.

[30] H. C. Baker, Jr. and Carl H. The incremental garbage collection of processes. SIG-
PLAN Notices, 12(8):55–59, 1977.

[31] D. R. Barach, D. H. Taenzer, and R. E. Wells. A technique for finding storage allocation
errors in C-language programs. SIGPLAN Notices, 17(5):16–24, 1982.

[32] L. Barenboim and M. Elkin. Distributed (�+1)-coloring in linear (in �) time. In
STOC, pages 111–120, 2009.

[33] R. Barik, Z. Budimlić, V. Cavè, S. Chatterjee, Y. Guo, D. Peixotto, R. Raman,
J. Shirako, S. Taşırlar, Y. Yan, Y. Zhao, and V. Sarkar. The Habanero multicore
software research project. In OOPSLA, pages 735–736, 2009.

[34] R. Barik and V. Sarkar. Interprocedural load elimination for dynamic optimization of
parallel programs. In PACT, pages 41–52, 2009.

[35] R. Barik, J. Zhao, and V. Sarkar. Interprocedural strength reduction of critical sections
in explicitly-parallel programs. In PACT, pages 29–40, 2013.

[36] J. Barnat, L. Brim, and J. Chaloupka. Parallel breadth-first search LTL model-
checking. In ASE, pages 106–115, 2003.

[37] M. A. Bender, J. T. Fineman, S. Gilbert, and C. E. Leiserson. On-the-fly maintenance
of series-parallel relationships in fork-join multithreaded programs. In SPAA, pages
133–144, 2004.

[38] J. L. Bentley. Writing Efficient Programs. Prentice Hall, 1982.

[39] J. L. Bentley. More programming pearls - confessions of a coder. Addison-Wesley,
1988.

[40] S. Berchtold, C. Böhm, B. Braunmüller, D. A. Keim, and H.-P. Kriegel. Fast parallel
similarity search in multimedia databases. In SIGMOD, pages 1–12, 1997.

[41] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman. CoreDet: A compiler
and runtime system for deterministic multithreaded execution. In ASPLOS, 2010.

[42] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe multithreaded programming
for C/C++. In OOPSLA, pages 81–96, 2009.

[43] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, Inc., 1989.

[44] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia: A fast dynamic
language for technical computing. CoRR, abs/1209.5145, 2012.

[45] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite: Char-
acterization and architectural implications. In PACT, pages 72–81, 2008. doi:
10.1145/1454115.1454128.

305

http://dx.doi.org/10.1145/1454115.1454128
http://dx.doi.org/10.1145/1454115.1454128

[46] C. Bienia and K. Li. Characteristics of workloads using the pipeline programming
model. In ISCA, pages 161–171, 2010.

[47] W. Binder, A. Villazón, D. Ansaloni, and P. Moret. @J: Towards rapid development
of dynamic analysis tools for the Java Virtual Machine. In VMIL, pages 4:1–4:9, 2009.

[48] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway. UMAC: Fast and
secure message authentication. In CRYPTO, pages 216–233, 1999.

[49] G. E. Blelloch. Prefix sums and their applications. Technical report, Carnegie Mellon
University, 1990.

[50] G. E. Blelloch. NESL: A nested data-parallel language. Technical report, Carnegie
Mellon University, 1992.

[51] G. E. Blelloch. Programming parallel algorithms. Communications of the ACM,
39(3):85–97, 1996.

[52] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun. Internally deterministic
parallel algorithms can be fast. In PPoPP, pages 181–192, 2012.

[53] G. E. Blelloch, J. T. Fineman, and J. Shun. Greedy sequential maximal independent
set and matching are parallel on average. In SPAA, pages 308–317, 2012.

[54] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha.
A comparison of sorting algorithms for the connection machine CM-2. In SPAA, pages
3–16, 1991.

[55] G. E. Blelloch and M. Reid-Miller. Pipelining with futures. In SPAA, pages 249–259,
1997.

[56] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou. Cilk: An efficient multithreaded runtime system. Journal of Parallel and
Distributed Computing, 37(1):55–69, 1996.

[57] R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of multithreaded com-
putations. SIAM Journal on Computing, 27(1):202–229, 1998.

[58] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work
stealing. Journal of the ACM, 46(5):720–748, 1999.

[59] R. D. Blumofe and D. Papadopoulos. Hood: A user-level threads library for multi-
programmed multiprocessors. Technical report, University of Texas at Austin, 1998.

[60] R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir. Parallel programming must
be deterministic by default. In HotPar, pages 4–4, 2009.

[61] H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency memory model. In
PLDI, pages 68–78, 2008.

[62] M. D. Bond and K. S. McKinley. Probabilistic calling context. In OOPSLA, pages
97–112, 2007.

306

[63] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practical auto-
matic polyhedral parallelizer and locality optimizer. In PLDI, pages 101–113, 2008.

[64] C. Boyapati and M. Rinard. A parameterized type system for race-free Java programs.
In OOPSLA, pages 56–69, 2001.

[65] D. Brélaz. New methods to color the vertices of a graph. Communications of the
ACM, 22(4):251–256, 1979.

[66] R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of the
ACM, 21(2):201–206, 1974.

[67] P. Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice University, Hous-
ton, TX, USA, 1992.

[68] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems, 30(1-7):107–117, 1998.

[69] A. Brodnik, S. Carlsson, E. D. Demaine, J. I. Munro, and R. Sedgewick. Resizable
arrays in optimal time and space. In WADS, pages 37–48, 1999.

[70] D. Brosius, T. Curdt, M. Dahm, and J. van Zyl. Byte code engineering library [online].
2012. URL: https://commons.apache.org/proper/commons-bcel/.

[71] R. G. Brown. Dieharder: A random number test suite [online]. August 2011. URL:
http://www.phy.duke.edu/~rgb/General/dieharder.php.

[72] D. Bruening, E. Duesterwald, and S. Amarasinghe. Design and implementation of a
dynamic optimization framework for Windows. In FDDO-4, 2001.

[73] E. Bruneton, R. Lenglet, and T. Coupaye. ASM: A code manipulation tool to imple-
ment adaptable systems. In In Adaptable and extensible component systems, 2002.

[74] H. Brunst, M. Winkler, W. E. Nagel, and H.-C. Hoppe. Performance optimization for
large scale computing: The scalable VAMPIR approach. In Computational Science —
ICCS 2001, volume 2074 of Lecture Notes in Computer Science, pages 751–760. 2001.

[75] R. E. Bryant and D. R. O’Hallaron. Computer Systems: A Programmer’s Perspective.
Pearson, 3rd edition, 2015.

[76] J. E. Burns. Mutual exclusion with linear waiting using binary shared variables. ACM
SIGACT News, 10(2):42–47, 1978.

[77] M. Callaghan and D. Mituzas. Poor man’s profiler [online]. 2009. URL: http://
poormansprofiler.org/ [cited August 18, 2016].

[78] D. Campbell. The coming in-memory database tipping point [online].
2012. URL: https://blogs.technet.microsoft.com/dataplatforminsider/2012/
04/09/the-coming-in-memory-database-tipping-point/ [cited July 18, 2016].

[79] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP: Stanford transac-
tional applications for multi-processing. In IISWC, 2008.

307

https://commons.apache.org/proper/commons-bcel/
http://www.phy.duke.edu/~rgb/General/dieharder.php
http://poormansprofiler.org/
http://poormansprofiler.org/
https://blogs.technet.microsoft.com/dataplatforminsider/2012/04/09/the-coming-in-memory-database-tipping-point/
https://blogs.technet.microsoft.com/dataplatforminsider/2012/04/09/the-coming-in-memory-database-tipping-point/

[80] J. L. Carter and M. N. Wegman. Universal classes of hash functions (extended ab-
stract). In STOC, pages 106–112, 1977.

[81] Ü. V. Çatalyürek, J. Feo, A. H. Gebremedhin, M. Halappanavar, and A. Pothen.
Graph coloring algorithms for multi-core and massively multithreaded architectures.
Parallel Computing, 38(10-11):576–594, 2012.

[82] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-Java: the new adventures of
old X10. In PPPJ, pages 51–61, 2011.

[83] G. J. Chaitin. Register allocation & spilling via graph coloring. In SIGPLAN, pages
98–105, 1982.

[84] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P. W.
Markstein. Register allocation via coloring. Computer Languages, 6(1):47–57, 1981.

[85] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive model for graph
mining. In SDM, pages 442–446, 2004.

[86] B. L. Chamberlain, S.-E. Choi, E. C. Lewis, C. Lin, L. Snyder, and W. D. Weathersby.
ZPL: A machine independent programming language for parallel computers. IEEE
Transactions on Software Engineering, 26(3):197–211, 2000.

[87] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar. X10: An object-oriented approach to non-uniform cluster
computing. In OOPSLA, pages 519–538, 2005.

[88] P. Chatarasi, J. Shirako, and V. Sarkar. Polyhedral optimizations of explicitly parallel
programs. In PACT, pages 213–226, 2015.

[89] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark. Detecting
data races in Cilk programs that use locks. In SPAA, pages 298–309, 1998.

[90] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan. Efficient
and precise datarace detection for multithreaded object-oriented programs. In PLDI,
pages 258–269, 2002.

[91] M. Christen, O. Schenk, and H. Burkhart. PATUS: A code generation and autotuning
framework for parallel iterative stencil computations on modern microarchitectures.
In IPDPS, pages 676–687, 2011.

[92] P. D. Coddington. Random number generators for parallel computers. Technical
report, Northeast Parallel Architectures Center, Syracuse University, Syracuse, New
York, 1997.

[93] R. Cole and U. Vishkin. Deterministic coin tossing and accelerating cascades: Micro
and macro techniques for designing parallel algorithms. In STOC, pages 206–219,
1986.

[94] T. F. Coleman and J. J. Moré. Estimation of sparse Jacobian matrices and graph
coloring problems. SIAM Journal on Numerical Analysis, 20(1):187–209, 1983.

[95] R. Colwell. The chip design game at the end of Moore’s Law. In HCS, pages 1–16,
2013.

308

[96] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat, and T. Wen. Solving
large, irregular graph problems using adaptive work-stealing. In ICPP, pages 536–545,
2008.

[97] Charles Consel, Hedi Hamdi, Laurent Réveillère, Lenin Singaravelu, Haiyan Yu, and
Calton Pu. Spidle: a DSL approach to specifying streaming applications. In GPCE,
pages 1–17, 2003.

[98] S. Contini, R. L. Rivest, M. J. B. Robshaw, and Y. L. Yin. The security of the
RC6 block cipher. 1998. URL: http://people.csail.mit.edu/rivest/publications.
html.

[99] M. E. Conway. A multiprocessor system design. In AFIPS, pages 139–146, 1963.

[100] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
The MIT Press, third edition, 2009.

[101] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. The MIT Press, Cambridge, MA, 1990.

[102] Rachel Courtland. The murky origins of “Moore’s Law” [online]. April 2015.
URL: http://spectrum.ieee.org/tech-talk/semiconductors/devices/the-murky-
origins-of-moores-law [cited March 14, 2016].

[103] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with “readers” and
“writers”. Communications of the ACM, 14(10):667–668, 1971.

[104] J. C. Culberson. Iterated greedy graph coloring and the difficulty landscape. Technical
report, University of Alberta, 1992.

[105] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramo-
nian, and T. von Eicken. Logp: Towards a realistic model of parallel computation. In
PPoPP, pages 1–12, 1993.

[106] J. S. Danaher, I-T. A. Lee, and C. E. Leiserson. Programming with exceptions in
JCilk. Science of Computer Programming, 63(2):147–171, 2006.

[107] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM
Transactions on Mathematical Software, 38(1):1:1–1:25, 2011.

[108] B. De Bus, D. Chanet, B. De Sutter, L. Van Put, and K. De Bosschere. The design and
implementation of FIT: A flexible instrumentation toolkit. In PASTE, pages 29–34,
2004.

[109] R. H. Dennard, F. H. Gaensslen, H.-N. Wu, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of ion-implanted MOSFET’s with very small physical dimensions.
IEEE Journal of Solid-State Circuits, 9(5):256–268, 1974.

[110] J. E. Dennis, Jr. and T. Steihaug. On the successive projections approach to least-
squares problems. SIAM Journal on Numerical Analysis, 23(4):717–733, 1986.

[111] T. Denniston. D21752 Comprehensive Static Instrumentation (1/2): LLVM pass [on-
line]. 2016. URL: https://reviews.llvm.org/D21752 [cited August 11, 2016].

309

http://people.csail.mit.edu/rivest/publications.html
http://people.csail.mit.edu/rivest/publications.html
http://spectrum.ieee.org/tech-talk/semiconductors/devices/the-murky-origins-of-moores-law
http://spectrum.ieee.org/tech-talk/semiconductors/devices/the-murky-origins-of-moores-law
https://reviews.llvm.org/D21752

[112] T. Denniston. D21753 Comprehensive Static Instrumentation (2/2): Clang flag [on-
line]. 2016. URL: https://reviews.llvm.org/D21753 [cited August 11, 2016].

[113] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Deterministic shared memory
multiprocessing. In ASPLOS, pages 85–96, 2009.

[114] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman. RCDC: A relaxed
consistency deterministic computer. In ASPLOS, pages 67–78, 2011.

[115] J. Devietti, B. P. Wood, K. Strauss, L. Ceze, D. Grossman, and S. Qadeer. RADISH:
Always-on sound and complete race detection in software and hardware. In ISCA,
pages 201–212, 2012.

[116] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger. Polynomial hash functions
are reliable. In ICALP, pages 235–246, 1992.

[117] K. Diks. A fast parallel algorithm for six-colouring of planar graphs. In Mathematical
Foundations of Computer Science, volume 233 of Lecture Notes in Computer Science,
pages 273–282. 1986.

[118] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocol verification as a hardware
design aid. In ICCD, pages 522–525, 1992.

[119] D. Dimitrov, M. Vechev, and V. Sarkar. Race detection in two dimensions. In SPAA,
pages 101–110, 2015.

[120] C. Ding and H. Xu. Program locality analysis tools, 2015. URL: https://github.
com/dcompiler/loca.

[121] C. Ding and Y. Zhong. Predicting whole-program locality through reuse distance
analysis. In PLDI, pages 245–257, 2003.

[122] A. Dinning and E. Schonberg. An empirical comparison of monitoring algorithms for
access anomaly detection. In PPoPP, pages 1–10, 1990.

[123] A. Dinning and E. Schonberg. Detecting access anomalies in programs with critical
sections. In PADD, pages 85–96, 1991.

[124] A. C. Dinning. Detecting Nondeterminism in Shared Memory Parallel Programs. PhD
thesis, Department of Computer Science, New York University, 1990.

[125] W. Du, R. Ferreira, and G. Agrawal. Compiler support for exploiting coarse-grained
pipelined parallelism. In SC, pages 8–21, 2003.

[126] DWARF Standards Committee. DWARF debugging information format version 4.
Available at http://dwarfstd.org/doc/DWARF4.pdf.

[127] C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory algorithms.
In STOC, pages 174–183, 1993. URL: http://doi.acm.org/10.1145/167088.167145,
doi:10.1145/167088.167145.

[128] D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup versus efficiency in parallel
systems. IEEE Transactions on Computers, 38(3):408–423, 1989.

310

https://reviews.llvm.org/D21753
https://github.com/dcompiler/loca
https://github.com/dcompiler/loca
http://dwarfstd.org/doc/DWARF4.pdf
http://doi.acm.org/10.1145/167088.167145
http://dx.doi.org/10.1145/167088.167145

[129] A. E. Eichenberger, J. Mellor-Crummey, M. Schulz, M. Wong, N. Copty, R. Dietrich,
X. Liu, E. Loh, and D. Lorenz. OMPT: An OpenMP tools application programming
interface for performance analysis. In OpenMP in the Era of Low Power Devices and
Accelerators, volume 8122 of Lecture Notes in Computer Science, pages 171–185. 2013.

[130] P. A. Emrath and D. A. Padua. Automatic detection of nondeterminacy in parallel
programs. In PADD, pages 89–99, 1988.

[131] D. Engler and K. Ashcraft. RacerX: Effective, static detection of race conditions and
deadlocks. In SOSP, pages 237–252, 2003.

[132] J. Erickson, M. Musuvathi, S. Burckhardt, and K. Olynyk. Effective data-race detec-
tion for the kernel. In OSDI, 2010.

[133] A. Eustace and A. Srivastava. ATOM: A flexible interface for building high perfor-
mance program analysis tools. In TCON, pages 25–25, 1995.

[134] M. Feng and C. E. Leiserson. Efficient detection of determinacy races in Cilk programs.
Theory of Computing Systems, 32(3):301–326, 1999.

[135] J. T. Fineman and C. E. Leiserson. Race detectors for Cilk and Cilk++ programs. In
Encyclopedia of Parallel Computing, pages 1706–1719. 2011.

[136] M. Fischetti, S. Martello, and P. Toth. The fixed job schedule problem with spread-
time constraints. Operations Research, 35(6):849–858, 1987.

[137] C. Flanagan and S. N. Freund. Fasttrack: efficient and precise dynamic race detection.
In PLDI, pages 121–133, 2009.

[138] National Science Foundation. CISE research infrastructure: Mid-scale infrastructure –
NSFCloud [online]. 2013. URL: http://www.nsf.gov/funding/pgm_summ.jsp?pims_
id=504951.

[139] P. Frederickson, R. Hiromoto, T. L. Jordan, B. Smith, and T. Warnock. Pseudo-
random trees in Monte Carlo. Parallel Computing, 1(2):175–180, 1984.

[140] Free Software Foundation, Inc. GCC LinkTimeOptimization [online]. 2009. URL:
https://gcc.gnu.org/wiki/LinkTimeOptimization [cited August 18, 2016].

[141] D. P. Friedman and D. S. Wise. Aspects of applicative programming for parallel
processing. IEEE Transactions on Computers, 27(4):289–296, 1978.

[142] M. Frigo. A fast Fourier transform compiler. In PLDI, 1999.

[143] M. Frigo. A Cilk++ program for the knapsack challenge [online]. 2009. URL: https:
//software.intel.com/en-us/courseware/249567 [cited August 18, 2016].

[144] M. Frigo, P. Halpern, C. E. Leiserson, and S. Lewin-Berlin. Reducers and other Cilk++
hyperobjects. In SPAA, pages 79–90, 2009.

[145] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious al-
gorithms. In 40th Annual Symposium on Foundations of Computer Science, pages
285–297, New York, New York, October 17–19 1999.

311

http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504951
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504951
https://gcc.gnu.org/wiki/LinkTimeOptimization
https://software.intel.com/en-us/courseware/249567
https://software.intel.com/en-us/courseware/249567

[146] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5
multithreaded language. In PLDI, pages 212–223, 1998.

[147] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, and
F. Rossi. GNU Scientific Library Reference Manual, 1.14 edition, 2010. URL: http:
//www.gnu.org/software/gsl/.

[148] F. Garcia and J. Ferndandez. POSIX thread libraries. Linux Journal, 70, 2000. URL:
http://www.linuxjournal.com/article/3184.

[149] S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor. Kremlin: rethinking and rebooting
gprof for the multicore age. In PLDI, pages 458–469, 2011.

[150] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoretical Computer Science, 1(3):237–267, 1976.

[151] GCC team. GCC 4.9 release series changes, new features, and fixes [online]. 2014.
URL: https://gcc.gnu.org/gcc-4.9/changes.html.

[152] GCC team. GOMP — an OpenMP implementation for GCC [online]. 2015. URL:
https://gcc.gnu.org/projects/gomp/.

[153] A. H. Gebremedhin and F. Manne. Scalable parallel graph coloring algorithms. Con-
currency: Practice and Experience, 12(12):1131–1146, 2000.

[154] A. H. Gebremedhin, D. Nguyen, M. M. A. Patwary, and A. Pothen. ColPack: Software
for graph coloring and related problems in scientific computing. ACM Transactions
on Mathematical Software, 40(1):1:1–1:31, 2013.

[155] A. E. Gelfand and A. F. M. Smith. Sampling-based approaches to calculating marginal
densities. Journal of the American Statistical Association, 85(410):398–409, 1990.

[156] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, PAMI-6(6):721–741, 1984.

[157] J. Giacomoni, T. Moseley, and M. Vachharajani. FastForward for efficient pipeline
parallelism: A cache-optimized concurrent lock-free queue. In PPoPP, pages 43–52,
2008.

[158] P. B. Gibbons. A more practical PRAM model. In SPAA, pages 158–168, 1989.

[159] J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric mesh partitioning: Implemen-
tation and experiments. SIAM Journal on Scientific Computing, 19(6):2091–2110,
1998.

[160] J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in Matlab: Design and
implementation. SIAM Journal on Matrix Analysis and Applications, 13(1):333–356,
1992.

[161] Gnome Project. GLib 2.46 Reference Manual, 2014. URL: https://developer.gnome.
org/glib/2.46/.

312

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.linuxjournal.com/article/3184
https://gcc.gnu.org/gcc-4.9/changes.html
https://gcc.gnu.org/projects/gomp/
https://developer.gnome.org/glib/2.46/
https://developer.gnome.org/glib/2.46/

[162] A. V. Goldberg, S. A. Plotkin, and G. E. Shannon. Parallel symmetry-breaking in
sparse graphs. SIAM Journal on Discrete Mathematics, 1(4):434–446, 1988.

[163] M. Goldberg and T. Spencer. A new parallel algorithm for the maximal independent
set problem. SIAM Journal of Computing, 18(2):419–427, 1989.

[164] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a ma-
trix. Journal of the Society for Industrial and Applied Mathematics Series B Numerical
Analysis, 2(2):205–224, 1965. arXiv:http://dx.doi.org/10.1137/0702016.

[165] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph: Distributed
graph-parallel computation on natural graphs. In OSDI, pages 17–30, 2012.

[166] Google. Google Cloud Computing, Hosting Services & Cloud Support — Google Cloud
Platform [online]. URL: http://cloud.google.com/ [cited January 25, 2015].

[167] Google, Inc. Apache benchmark script, 2014. URL: https://github.com/google/
sanitizers/blob/master/thread-sanitizer/benchmarks/apache/run.sh.

[168] Google, Inc. Google C++ Style Guide, 2015. URL: https://google.github.io/
styleguide/cppguide.html.

[169] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task, data,
and pipeline parallelism in stream programs. In ASPLOS, pages 151–162, 2006.

[170] R. L. Graham. Bounds for certain multiprocessing anomalies. The Bell System Tech-
nical Journal, 45(9):1563–1581, 1966.

[171] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: A call graph
execution profiler. In SIGPLAN, pages 120–126, 1982.

[172] T. Grosser, A. Größlinger, and C. Lengauer. Polly — performing polyhedral op-
timizations on a low-level intermediate representation. Parallel Processing Letters,
22(4), 2012.

[173] D. Grunwald and H. Srinivasan. Data flow equations for explicitly parallel programs.
In PPoPP, pages 159–168, 1993.

[174] R. H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Systems, 7(4):501–538, 1985.

[175] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson. Ordering heuristics
for parallel graph coloring. In SPAA, pages 166–177, 2014.

[176] W. C. Hasenplaugh. Parallel Algorithms for Scheduling Data-Graph Computations.
PhD thesis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA, 2016.

[177] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and access errors.
In Winter 1992 USENIX Conference, pages 125–138, 1992.

[178] E. A. Hauck and B. A. Dent. Burroughs’ B6500/B7500 stack mechanism. In AFIPS,
pages 245–251, 1968.

313

http://arxiv.org/abs/http://dx.doi.org/10.1137/0702016
http://cloud.google.com/
https://github.com/google/sanitizers/blob/master/thread-sanitizer/benchmarks/apache/run.sh
https://github.com/google/sanitizers/blob/master/thread-sanitizer/benchmarks/apache/run.sh
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html

[179] Y. He. Multicore-enabling discrete hedging in QuantLib [online]. 2009. URL:
http://software.intel.com/en-us/articles/multicore-enabling-discrete-
hedging-in-quantlib/.

[180] Y. He, C. E. Leiserson, and W. M. Leiserson. The Cilkview scalability analyzer. In
SPAA, pages 145–156, 2010.

[181] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fourth Edition: A Quan-
titative Approach. Morgan Kaufmann Publishers Inc., 2006.

[182] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for
lock-free data structures. In ISCA, pages 289–300, 1993.

[183] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers Inc., 2008.

[184] W. W. Hines and D. C. Montgomery. Probability and Statistics in Engineering and
Management Science. J. Wiley & Sons, third edition, 1990.

[185] F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. Studies
in Applied Mathematics, 6(1-4):164–189, 1927.

[186] C. A. R. Hoare. Algorithm 63: Partition; Algorithm 64: Quicksort; and Algorithm
65: Find. Communications of the ACM, 4(7):321–322, 1961.

[187] D. R. Hower, P. Dudnik, M. D. Hill, and D. A. Wood. Calvin: Deterministic or not?
Free will to choose. In HPCA, pages 333–334, 2011.

[188] Institute of Electrical and Electronic Engineers. Information technology — Portable
Operating System Interface (POSIX) — Part 1: System application program interface
(API) [C language]. IEEE Standard 1003.1, 1996 Edition.

[189] Intel Corporation. Intel® Cilk™ Plus samples [online]. URL: https:
//software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-
features/intelcilkplus [cited August 3, 2016].

[190] Intel Corporation. Intel Cilk++ SDK Programmer’s Guide, October 2009. Document
Number: 322581-001US.

[191] Intel Corporation. Intel Cilk Plus Application Binary Interface Specification,
2010. Document Number 324512-001US. URL: https://software.intel.com/sites/
products/cilk-plus/cilk_plus_abi.pdf.

[192] Intel Corporation. Intrinsics for low overhead tool annotations. Document Num-
ber 326357-001US, 2011. URL: https://www.cilkplus.org/open_specification/
intrinsics-low-overhead-tool-annotations-v10.

[193] Intel Corporation. Download Intel Cilk Plus software development kit [online].
2012. URL: https://software.intel.com/en-us/articles/download-intel-cilk-
plus-software-development-kit/.

[194] Intel Corporation. Pin 2.11 User Guide, 2012. URL: https://software.intel.com/
sites/landingpage/pintool/docs/49306/Pin/html/.

314

http://software.intel.com/en-us/articles/multicore-enabling-discrete-hedging-in-quantlib/
http://software.intel.com/en-us/articles/multicore-enabling-discrete-hedging-in-quantlib/
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/intelcilkplus
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/intelcilkplus
https://software.intel.com/en-us/code-samples/intel-compiler/intel-compiler-features/intelcilkplus
https://software.intel.com/sites/products/cilk-plus/cilk_plus_abi.pdf
https://software.intel.com/sites/products/cilk-plus/cilk_plus_abi.pdf
https://www.cilkplus.org/open_specification/intrinsics-low-overhead-tool-annotations-v10
https://www.cilkplus.org/open_specification/intrinsics-low-overhead-tool-annotations-v10
https://software.intel.com/en-us/articles/download-intel-cilk-plus-software-development-kit/
https://software.intel.com/en-us/articles/download-intel-cilk-plus-software-development-kit/
https://software.intel.com/sites/landingpage/pintool/docs/49306/Pin/html/
https://software.intel.com/sites/landingpage/pintool/docs/49306/Pin/html/

[195] Intel Corporation. CilkPlus/LLVM [online]. 2013. URL: http://cilkplus.github.
io/.

[196] Intel Corporation. Intel® Cilk™ Plus Language Extension Specification, Version 1.2,
2013. Document 324396-003US. URL: https://www.cilkplus.org/sites/default/
files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm.

[197] Intel Corporation. An introduction to the Cilk Screen race detector [online].
2013. URL: https://software.intel.com/en-us/articles/an-introduction-to-
the-cilk-screen-race-detector.

[198] Intel Corporation. Intel Cilk Plus [online]. 2015. URL: https://software.intel.
com/en-us/intel-cilk-plus.

[199] Intel Corporation. Intel VTune Amplifier XE 2015 [online]. 2015. URL: http://
software.intel.com/en-us/intel-vtune-amplifier-xe.

[200] Intel Corporation. Reference Manual for Intel Math Kernel Library 11.3-C, 2015.
URL: https://software.intel.com/en-us/mkl-reference-manual-for-c.

[201] Intel Corporation. Form 10-K (Annual Report). SEC filing, 2016. URL: http://files.
shareholder.com/downloads/INTC/867590276x0xS50863-16-105/50863/filing.pdf.

[202] International Telecommunications Union. ICT Facts and Figures 2016 [on-
line]. 2016. URL: http://www.itu.int/en/ITU-D/Statistics/Documents/facts/
ICTFactsFigures2016.pdf [cited August 14, 2016].

[203] ITRS. International Technology Roadmap for Semiconductors 2.0, Executive Report
[online]. 2015. URL: http://www.semiconductors.org/clientuploads/Research_
Technology/ITRS/2015/0_2015ITRS2.0ExecutiveReport.pdf.

[204] K. E. Iverson. A Programming Language. John Wiley & Sons, 1962.

[205] R. Jalan and A. Kejariwal. Trin-Trin: Who’s calling? a Pin-based dynamic call graph
extraction framework. International Journal of Parallel Programming, 40(4):410–442,
2012.

[206] D. Jeon, S. Garcia, C. Louie, and M. B. Taylor. Kismet: Parallel speedup estimates
for serial programs. In OOPSLA, pages 519–536, October 2011.

[207] D. Jeon, S. Garcia, C. Louie, S. K. Venkata, and M. B. Taylor. Kremlin: Like gprof,
but for parallelization. In PPoPP, pages 293–294, 2011.

[208] P. G. Joisha, R. S. Schreiber, P. Banerjee, H. J. Boehm, and D. R. Chakrabarti. A
technique for the effective and automatic reuse of classical compiler optimizations on
multithreaded code. In POPL, pages 623–636, 2011.

[209] M. T. Jones and P. E. Plassmann. A parallel graph coloring heuristic. SIAM Journal
on Scientific Computing, 14(3):654–669, 1993.

[210] M. T. Jones and P. E. Plassmann. Scalable iterative solution of sparse linear systems.
Parallel Computing, pages 753–773, 1994.

315

http://cilkplus.github.io/
http://cilkplus.github.io/
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
https://software.intel.com/en-us/articles/an-introduction-to-the-cilk-screen-race-detector
https://software.intel.com/en-us/articles/an-introduction-to-the-cilk-screen-race-detector
https://software.intel.com/en-us/intel-cilk-plus
https://software.intel.com/en-us/intel-cilk-plus
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/mkl-reference-manual-for-c
http://files.shareholder.com/downloads/INTC/867590276x0xS50863-16-105/50863/filing.pdf
http://files.shareholder.com/downloads/INTC/867590276x0xS50863-16-105/50863/filing.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2016.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2016.pdf

[211] H. Jordan, S. Pellegrini, P. Thoman, K. Kofler, and T. Fahringer. INSPIRE: The
Insieme parallel intermediate representation. In PACT, pages 7–18, 2013.

[212] R. K. Gjertsen Jr., M. T. Jones, and P. E. Plassmann. Parallel heuristics for improved,
balanced graph colorings. Journal of Parallel and Distributed Computing, 37(2):171–
186, 1996.

[213] T. Kaler, W. Hasenplaugh, T. B. Schardl, and C. E. Leiserson. Executing dynamic
data-graph computations deterministically using chromatic scheduling. ACM Trans-
actions on Parallel Computing, 3(1):2:1–2:31, 2016.

[214] R. M. Karp. A survey of parallel algorithms for shared-memory machines. Technical
report, Berkeley, CA, USA, 1988.

[215] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall,
Inc., second edition, 1988.

[216] D. Khaldi, P. Jouvelot, C. Ancourt, and F. Irigoin. SPIRE, a sequential to parallel
intermediate representation extension. Technical report, Technical Report CRI/A-487,
MINES ParisTech, 2012.

[217] D. Khaldi, P. Jouvelot, F. Irigoin, C. Ancourt, and B. Chapman. Llvm parallel inter-
mediate representation: Design and evaluation using openshmem communications. In
LLVM, pages 2:1–2:8, 2015.

[218] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free: Efficient and optimal bitvec-
tor analyses for parallel programs. ACM Transactions on Programming Languages and
Systems, 18(3):268–299, 1996.

[219] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M. S. Müller,
and W. E. Nagel. The Vampir performance analysis tool-set. In Tools for High
Performance Computing, pages 139–155, 2008.

[220] D. E. Knuth. An empirical study of fortran programs. Software: Practice and Expe-
rience, 1(2):105–133, 1971.

[221] D. E. Knuth. Structured programming with go to statements. In Classics in Software
Engineering, pages 257–321. 1979.

[222] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Program-
ming. Addison-Wesley, third edition, 1998.

[223] Donald E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Pro-
gramming. Addison-Wesley, first edition, 1969.

[224] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele Jr., and M. E. Zosel. The
High Performance Fortran Handbook. The MIT Press, 1994.

[225] R. E. Korf and P. Schultze. Large-scale parallel breadth-first search. In AAAI, pages
1380–1385, 2005.

[226] F. Kuhn. Weak graph colorings: Distributed algorithms and applications. In SPAA,
pages 138–144, 2009.

316

[227] F. Kuhn and R. Wattenhofer. On the complexity of distributed graph coloring. In
PODC, pages 7–15, 2006.

[228] A. Kyrola, G. E. Blelloch, and C. Guestrin. GraphChi: Large-scale graph computation
on just a PC. In OSDI, pages 31–46, 2012.

[229] M. Lam. Software pipelining: an effective scheduling technique for VLIW machines.
In PLDI, pages 318–328, 1988.

[230] J. R. Larus and E. Schnarr. EEL: Machine-independent executable editing. In PLDI,
pages 291–300, 1995.

[231] C. Lasser and S. M. Omohundro. The essential *Lisp manual, release 1,
revision 3. Technical Report 86.15, Thinking Machines, Cambridge, MA,
1986. URL: http://omohundro.files.wordpress.com/2009/03/omohundro86_the_
essential_starlisp_manual.pdf.

[232] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program analysis
& transformation. In CGO, pages 75–86, 2004.

[233] D. Lea. A Java fork/join framework. In JAVA, pages 36–43, 2000.

[234] C. Y. Lee. An algorithm for path connection and its applications. IRE Transactions
on Electronic Computers, EC-10(3):346–365, 1961.

[235] E. A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[236] H. B. Lee and B. G. Zorn. BIT: A tool for instrumenting Java bytecodes. In USITS,
pages 73–82, 1997.

[237] I-T. A. Lee. Memory Abstractions for Parallel Programming. PhD thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technol-
ogy, Cambridge, MA, 2012.

[238] I-T. A. Lee, S. Boyd-Wickizer, Z. Huang, and C. E. Leiserson. Using memory mapping
to support cactus stacks in work-stealing runtime systems. In PACT, pages 411–420,
2010.

[239] I-T. A. Lee, C. E. Leiserson, T. B. Schardl, J. Sukha, and Z. Zhang. On-the-fly pipeline
parallelism. ACM Transactions on Parallel Computing, 2(3):17:1–17:42, 2015. Special
Issue for SPAA 2013.

[240] I-T. A. Lee and T. B. Schardl. Efficiently detecting races in Cilk programs that use
reducer hyperobjects. In SPAA, pages 111–122, 2015. Invited to a special issue of
ACM Transactions on Parallel Computing.

[241] I-T. A. Lee, A. Shafi, and C. E. Leiserson. Memory-mapping support for reducer
hyperobjects. In SPAA, pages 287–297, 2012.

[242] J. Lee, S. P. Midkiff, and D. A. Padua. Concurrent static single assignment form and
constant propagation for explicitly parallel programs. In LCPC, pages 114–130, 1997.
URL: http://dl.acm.org/citation.cfm?id=645675.663619.

317

http://omohundro.files.wordpress.com/2009/03/omohundro86_the_essential_starlisp_manual.pdf
http://omohundro.files.wordpress.com/2009/03/omohundro86_the_essential_starlisp_manual.pdf
http://dl.acm.org/citation.cfm?id=645675.663619

[243] D. H. Lehmer. Mathematical methods in large-scale computing units. In Second
Symposium on Large-Scale Digital Calculating Machinery, pages 141–146, 1949.

[244] F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Array, Trees,
Hypercubes. Morgan Kaufmann Publishers Inc., 1992.

[245] D. Leijen and J. Hall. Optimize managed code for multi-core machines. MSDN Mag-
azine, 2007. URL: http://msdn.microsoft.com/magazine/.

[246] C. E. Leiserson. The Cilk++ concurrency platform. Journal of Supercomputing,
51(3):244–257, 2010.

[247] C. E. Leiserson, J. S. Emer, B. C. Kuszmaul, B. W. Lampson, D. Sanchez, T. B.
Schardl, and N. C. Thompson. There’s plenty of room at the top: What will
drive growth in computer performance after moore’s law ends? 2016. Unpublished
manuscript.

[248] C. E. Leiserson and T. B. Schardl. A work-efficient parallel breadth-first search algo-
rithm (or how to cope with the nondeterminism of reducers). In SPAA, pages 303–314,
2010.

[249] C. E. Leiserson, T. B. Schardl, and J. Sukha. Deterministic parallel random-number
generation for dynamic-multithreading platforms. In PPoPP, pages 193–204, 2012.

[250] J. Leskovec. SNAP: Stanford network analysis platform [online]. 2013. URL: http:
//snap.stanford.edu/data/index.html.

[251] J. Leskovec, D. Chakrabarti, J. M. Kleinberg, and C. Faloutsos. Realistic, mathemat-
ically tractable graph generation and evolution, using Kronecker multiplication. In
PKDD, pages 133–145, 2005.

[252] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community structure
in large networks: Natural cluster sizes and the absence of large well-defined clusters.
Internet Mathematics, 6(1):29–123, 2009.

[253] J. W. Lichtman, H. Pfister, and N. Shavit. The big data challenges of connectomics.
Nature Neuroscience, 17(11):1448–1454, 11 2014.

[254] N. Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

[255] LLVM developer list. [LLVMdev] [cfe-dev] SPIR provisional specification is now avail-
able in the Khronos website [online]. 2012. URL: http://lists.llvm.org/pipermail/
llvm-dev/2012-September/053293.html [cited November 20, 2015].

[256] LLVM developer list. [LLVMdev] [RFC] OpenMP Representation in LLVM IR [online].
2012. URL: http://lists.llvm.org/pipermail/llvm-dev/2012-September/053861.
html [cited November 20, 2015].

[257] LLVM developer list. [LLVMdev] LLVM Parallel IR [online]. 2015. URL: http://
lists.llvm.org/pipermail/llvm-dev/2015-March/083314.html [cited November 20,
2015].

318

http://msdn.microsoft.com/magazine/
http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html
http://lists.llvm.org/pipermail/llvm-dev/2012-September/053293.html
http://lists.llvm.org/pipermail/llvm-dev/2012-September/053293.html
http://lists.llvm.org/pipermail/llvm-dev/2012-September/053861.html
http://lists.llvm.org/pipermail/llvm-dev/2012-September/053861.html
http://lists.llvm.org/pipermail/llvm-dev/2015-March/083314.html
http://lists.llvm.org/pipermail/llvm-dev/2015-March/083314.html

[258] LLVM developer list. [llvm-dev] RFC: Comprehensive Static Instrumentation [online].
2016. URL: http://lists.llvm.org/pipermail/llvm-dev/2016-June/101162.html
[cited August 11, 2016].

[259] LLVM Project. LLVM Language Reference Manual, 2015. URL: http://llvm.org/
docs/LangRef.html.

[260] LLVM Project. LLVM link time optimization: Design and implementation, 2015.
URL: http://llvm.org/docs/LinkTimeOptimization.html.

[261] LLVM Project. LLVM’s Analysis and Transform Passes, 2015. URL: http://llvm.
org/docs/Passes.html.

[262] LLVM Project. OpenMP®: Support for the OpenMP language [online]. 2015. URL:
http://openmp.llvm.org/.

[263] L. Lovász, M. Saks, and W. T. Trotter. An on-line graph coloring algorithm with
sublinear performance ratio. Discrete Mathematics, 75(1–3):319–325, 1989.

[264] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein.
Distributed GraphLab: A framework for machine learning and data mining in the
cloud. Proceedings of the VLDB Endowment, 5(8):716–727, 2012.

[265] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
GraphLab: A new parallel framework for machine learning. In UAI, 2010.

[266] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
Journal on Computing, 15(4):1036–1053, 1986.

[267] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. In PLDI, pages 190–200, 2005.

[268] S. MacDonald, D. Szafron, and J. Schaeffer. Rethinking the pipeline as object-oriented
states with transformations. In HIPS, pages 12–21, 2004.

[269] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: A system for large-scale graph processing. In SIGMOD, pages
135–146, 2010.

[270] L. Marek, A. Villazón, Y. Zheng, D. Ansaloni, W. Binder, and Z. Qi. DiSL: A domain-
specific language for bytecode instrumentation. In AOSD, pages 239–250, 2012.

[271] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard. Cg: a system for pro-
gramming graphics hardware in a C-like language. In SIGGRAPH, pages 896–907,
2003.

[272] D. Marx. Graph colouring problems and their applications in scheduling. Periodica
Polytechnica, Electrical Engineering, 48(1):11–16, 2004.

[273] M. Mascagni and A. Srinivasan. Algorithm 806: SPRNG: a scalable library for pseudo-
random number generation. ACM Transactions on Mathematical Software, 26(3):436–
461, 2000.

319

http://lists.llvm.org/pipermail/llvm-dev/2016-June/101162.html
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LinkTimeOptimization.html
http://llvm.org/docs/Passes.html
http://llvm.org/docs/Passes.html
http://openmp.llvm.org/

[274] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Modeling
and Computer Simulation, 8(1):3–30, 1998.

[275] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring
algorithms. Journal of the ACM, 30(3):417–427, 1983. URL: http://doi.acm.org/
10.1145/2402.322385.

[276] A. McCallum. Cora data set [online]. 2012. URL: http://people.cs.umass.edu/
mccallum/data.html.

[277] M. McCool, A. D. Robison, and J. Reinders. Structured Parallel Programming: Pat-
terns for Efficient Computation. Elsevier Science, 2012.

[278] D. McCrady. Avoiding contention using combinable objects [online]. 2008. URL:
https://blogs.msdn.microsoft.com/nativeconcurrency/2008/09/25/avoiding-
contention-using-combinable-objects/ [cited August 19, 2016].

[279] L. McVoy and C. Staelin. lmbench: Portable tools for performance analysis. In
USENIX ATC, pages 279–294, 1996.

[280] J. Mellor-Crummey. On-the-fly detection of data races for programs with nested fork-
join parallelism. In SC, pages 24–33, 1991.

[281] J. Mellor-Crummey. Compile-time support for efficient data race detection in shared-
memory parallel programs. In PADD, pages 129–139, 1993.

[282] S. P. Midkiff and D. A. Padua. Issues in the optimization of parallel programs. In
ICPP, pages 105–113, 1990.

[283] S.-J. Min, C. Iancu, and K. Yelick. Hierarchical work stealing on manycore clusters.
In PGAS, 2011.

[284] T. Mitchell. NPIC500 data set [online]. 2009. URL: http://www.cs.cmu.edu/tom/
10709_fall2009/NPIC500.pdf.

[285] J. Mitchem. On various algorithms for estimating the chromatic number of a graph.
The Computer Journal, 19(2):182–183, 1976.

[286] E. F. Moore. The shortest path through a maze. In Proceedings of an International
Symposium on the Theory of Switching, pages 285–292, 1959.

[287] G. E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8),
1965.

[288] G. E. Moore. Progress in digital integrated electronics. In International Electron
Devices Meeting, volume 21, pages 11–13, 1975.

[289] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
Cambridge, England, 1995.

[290] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann,
1997.

320

http://doi.acm.org/10.1145/2402.322385
http://doi.acm.org/10.1145/2402.322385
http://people.cs.umass.edu/mccallum/data.html
http://people.cs.umass.edu/mccallum/data.html
https://blogs.msdn.microsoft.com/nativeconcurrency/2008/09/25/avoiding-contention-using-combinable-objects/
https://blogs.msdn.microsoft.com/nativeconcurrency/2008/09/25/avoiding-contention-using-combinable-objects/
http://www.cs.cmu.edu/tom/10709_fall2009/NPIC500.pdf
http://www.cs.cmu.edu/tom/10709_fall2009/NPIC500.pdf

[291] S. K. Muller and U. A. Acar. Latency-hiding work stealing: Scheduling interacting
parallel computations with work stealing. In SPAA, pages 71–82, 2016.

[292] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for approximate
inference: An empirical study. In UAI, pages 467–475, 1999.

[293] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for Java. In PLDI,
pages 308–319, 2006.

[294] National Institute of Standards and Technology. Secure Hash Standard (SHS), 2008.
Federal Information Standards Publication 180-3. URL: http://csrc.nist.gov/
publications/fips/fips180-3/fips180-3_final.pdf.

[295] A. Navarro, R. Asenjo, S. Tabik, and C. Cascaval. Analytical modeling of pipeline
parallelism. In PACT, pages 281–290, 2009.

[296] N. Nethercote and J. Seward. Valgrind: A framework for heavyweight dynamic binary
instrumentation. In PLDI, pages 89–100, 2007.

[297] R. H. B. Netzer and B. P. Miller. What are race conditions? ACM Letters on
Programming Languages and Systems, 1(1):74–88, 1992.

[298] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure for graph ana-
lytics. In SOSP, pages 456–471, 2013.

[299] D. Nguyen, A. Lenharth, and K. Pingali. Deterministic Galois: On-demand, portable
and parameterless. In ASPLOS, pages 499–512, 2014.

[300] K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of co-training.
In CIKM, pages 86–93, 2000.

[301] D. Novillo, R. Unrau, and J. Schaeffer. Concurrent ssa form in the presence of mutual
exclusion. In ICPP, pages 356–364, 1998.

[302] I. Nudler and L. Rudolph. Tools for the efficient development of efficient parallel
programs. In Proceedings of the First Israeli Conference on Computer Systems Engi-
neering, 1986.

[303] R. O’Callahan and J.-D. Choi. Hybrid dynamic data race detection. In PPoPP, pages
167–178, 2003.

[304] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient deterministic multi-
threading in software. In ASPLOS, pages 97–108, 2009.

[305] OpenMP Architecture Review Board. OpenMP Application Program Interface, Ver-
sion 3.0, 2008. URL: http://www.openmp.org/mp-documents/spec30.pdf.

[306] OpenMP Architecture Review Board. OpenMP Application Program Interface, Ver-
sion 4.0, 2013. URL: http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

[307] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread extraction with
decoupled software pipelining. In MICRO 38, pages 105–118, 2005.

321

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

[308] D. Padua. Parallelization, automatic. In Encyclopedia of Parallel Computing, pages
1442–1450. 2011.

[309] M. S. Papamarcos and J. H. Patel. A low-overhead coherence solution for multipro-
cessors with private cache memories. In ISCA, pages 348–354, 1984.

[310] S. S. Patil. Closure properties of interconnections of determinate systems. In Record of
the Project MAC Conference on Concurrent Systems and Parallel Computation, pages
107–116. 1970.

[311] M. Pǎtraşcu and M. Thorup. The power of simple tabulation hashing. In STOC,
pages 1–10, 2011.

[312] D. Patterson. An interview with stanford university president john hennessy. Com-
munications of the ACM, 59(3):40–45, 2016.

[313] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann Publishers Inc., 1988.

[314] D. E. Pettenò and D. J. Cozatt. Autotools mythbuster [online]. 2013. URL: https:
//autotools.io/ [cited August 19, 2016].

[315] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan, R. Kaleem, T.-H.
Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo, D. Prountzos, and X. Sui. The Tao
of parallelism in algorithms. In PLDI, pages 12–25, 2011.

[316] A. Pop and A. Cohen. Preserving high-level semantics of parallel programming anno-
tations through the compilation flow of optimizing compilers. In CPC, 2010.

[317] A. Pop and A. Cohen. A stream-computing extension to OpenMP. In HiPEAC, pages
5–14, 2011.

[318] E. Pozniansky and A. Schuster. MultiRace: Efficient on-the-fly data race detection in
multithreaded c++ programs. Concurrency and Computation: Practice and Experi-
ence, 19(3):327–340, 2007.

[319] P. Pratikakis, J. S. Foster, and M. Hicks. LOCKSMITH: Practical static race detection
for C. ACM Transactions on Programming Languages and Systems, 33(1):3:1–3:55,
2011.

[320] C. Prokopp. GraphChi: How a Mac Mini outperformed a 1,636 node Hadoop clus-
ter [online]. 2014. URL: http://www.semantikoz.com/blog/graphchi-mac-mini-
outperformed-1636-node-hadoop-cluster/ [cited July 22, 2016].

[321] W. Pugh. Fixing the Java memory model. In JAVA, pages 89–98, 1999.

[322] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. Johnson, D. Padua, M. Veloso, and
R. W. Johnson. SPIRAL: A generator for platform-adapted libraries of signal process-
ing algorithms. International Journal of High Performance Computing Applications,
18(1):21–45, 2004.

[323] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe.
Halide: A language and compiler for optimizing parallelism, locality, and recomputa-
tion in image processing pipelines. In PLDI, Seattle, WA, 2013.

322

https://autotools.io/
https://autotools.io/
http://www.semantikoz.com/blog/graphchi-mac-mini-outperformed-1636-node-hadoop-cluster/
http://www.semantikoz.com/blog/graphchi-mac-mini-outperformed-1636-node-hadoop-cluster/

[324] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Efficient data race detection
for async-finish parallelism. In Runtime Verification, volume 6418 of Lecture Notes in
Computer Science, pages 368–383. 2010.

[325] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav. Scalable and precise dynamic
datarace detection for structured parallelism. In PLDI, pages 531–542, 2012.

[326] A. G. Ranade. The delay sequence argument. In Handbook of Randomized Algorithms,
chapter 1. Kluwer Academic Publishers, 2001.

[327] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August. Decoupled software
pipelining with the synchronization array. In PACT, pages 177–188, 2004.

[328] E. C. Reed, N. Chen, and R. E. Johnson. Expressing pipeline parallelism using TBB
constructs: a case study on what works and what doesn’t. In SPLASH, pages 133–138,
2011.

[329] J. Reinders. VTune Performance Analyzer Essentials. Intel Press, 2005.

[330] J. Reinders. Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor
Parallelism. O’Reilly Media, Inc., 2007.

[331] M. C. Rinard and M. S. Lam. The design, implementation, and evaluation of Jade.
ACM Transactions on Programming Languages and Systems, 20(3):483–545, 1998.

[332] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin. The RC6 block cipher
[online]. 1998. URL: http://people.csail.mit.edu/rivest/publications.html.

[333] R. Rojas. Konrad Zuse’s legacy: The architecture of the Z1 and Z3. IEEE Annals of
the History of Computing, 19(2):5–16, 1997.

[334] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Bershad, and
B. Chen. Instrumentation and optimization of Win32/Intel executables using Etch.
In NT, pages 1–7, 1997.

[335] E. Ruf. Effective synchronization removal for Java. In PLDI, pages 208–218, 2000.

[336] R. Rugina and M. C. Rinard. Pointer analysis for structured parallel programs. ACM
Transactions on Programming Languages and Systems, 25(1):70–116, 2003.

[337] Y. Saad. SPARSKIT: A basic toolkit for sparse matrix computations. Research Insti-
tute for Advanced Computer Science, NASA Ames Research Center, 1990.

[338] J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw. Parallel random numbers:
as easy as 1, 2, 3. In SC, pages 16:1–16:12, 2011.

[339] D. Sanchez, D. Lo, R. M. Yoo, J. Sugerman, and C. Kozyrakis. Dynamic fine-grain
scheduling of pipeline parallelism. In PACT, pages 22–32, 2011.

[340] A. E. Sariyüce, E. Saule, and Ü. V. Çataryürek. Improving graph coloring on
distributed-memory parallel computers. In HiPC, pages 1–10, 2011.

[341] V. Sarkar. Analysis and optimization of explicitly parallel programs using the parallel
program graph representation. In LCPC, pages 94–113, 1997.

323

http://people.csail.mit.edu/rivest/publications.html

[342] V. Sarkar and B. Simons. Parallel program graphs and their classification. In LCPC,
pages 633–655, 1994.

[343] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A dynamic
race detector for multi-threaded programs. In SOSP, pages 27–37, 1997.

[344] T. B. Schardl. Design and analysis of a nondeterministic parallel breadth-first search
algorithm. Master’s thesis, Department of Electrical Engineering and Computer Sci-
ence, Massachusetts Institute of Technology, Cambridge, MA, 2010.

[345] T. B. Schardl, T. Denniston, D. Doucet, B. C. Kuszmaul, I-T. A. Lee, and C. E. Leis-
erson. Comprehensive static instrumentation for dynamic-analysis tools. Unpublished
manuscript, 2016.

[346] T. B. Schardl, B. C. Kuszmaul, I-T. A. Lee, W. M. Leiserson, and C. E. Leiserson.
The Cilkprof scalability profiler. In SPAA, pages 89–100, 2015.

[347] T. B. Schardl, W. S. Moses, and C. E. Leiserson. Tapir: Embedding fork-join paral-
lelism into LLVM IR. Submitted for publication, 2016.

[348] D. Scott and C. Strachey. Toward a mathematical semantics for computer languages.
Programming Research Group Technical Monograph PRG-6, Oxford University Com-
puting Lab., 1971.

[349] R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms. Addison-
Wesley Longman Publishing Co., Inc., 1996.

[350] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. AddressSanitizer: A fast
address sanity checker. In USENIX ATC, pages 309–318, 2012.

[351] K. Serebryany and T. Iskhodzhanov. ThreadSanitizer — data race detection in prac-
tice. In WABI, pages 62–71, 2009.

[352] K. Serebryany, A. Potapenko, T. Iskhodzhanov, and D. Vyukov. Dynamic race detec-
tion with LLVM compiler. Technical Report 37278, Google, 2011.

[353] N. Shavit. A multicore path to connectomics-on-demand. In SPAA, pages 211–211,
2016.

[354] S. Shende, A. D. Malony, J. Cuny, P. Beckman, S. Karmesin, and K. Lindlan. Portable
profiling and tracing for parallel, scientific applications using C++. In SPDT, pages
134–145, 1998.

[355] S. S. Shende and A. D. Malony. The Tau parallel performance system. International
Journal of High Performance Computing Applications, 20(2):287–311, 2006.

[356] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer. Phaser accumulators: a
new reduction construct for dynamic parallelism. In IPDPS, pages 1–12, 2009.

[357] J. Shun. Shared-Memory Parallelism Can Be Simple, Fast, and Scalable. PhD thesis,
School of Computer Science, Carnegie Mellon University, 2015.

[358] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing framework for
shared memory. In PPoPP, pages 135–146, 2013.

324

[359] J. Shun, G. E. Blelloch, J. T. Fineman, and P. B. Gibbons. Reducing contention
through priority updates. In SPAA, pages 152–163, 2013.

[360] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V. Simhadri,
and K. Tangwongsan. Brief announcement: the Problem Based Benchmark Suite. In
SPAA, pages 68–70, 2012.

[361] J. Shun, Laxman D., and G. E. Blelloch. Smaller and faster: Parallel processing of
compressed graphs with Ligra+. In DCC, pages 403–412, 2015.

[362] P. Singla and P. Domingos. Entity resolution with Markov logic. In ICDM, pages
572–582, 2006.

[363] M. D. Smith. Tracing with pixie. Technical Report CSL-TR-91-497, Stanford Univer-
sity, 1991.

[364] H. Srinivasan and D. Grunwald. An efficient construction of parallel static single
assignment form for structured parallel programs. Technical Report CU-CS-564-91,
University of Colorado at Boulder, 1991.

[365] H. Srinivasan, J. Hook, and M. Wolfe. Static single assignment for explicitly parallel
programs. In POPL, pages 260–272, 1993.

[366] H. Srinivasan and M. Wolfe. Analyzing programs with explicit parallelism. In LCPC,
pages 405–419, 1991.

[367] A. Srivastava and A. Eustace. ATOM: A system for building customized program
analysis tools. In PLDI, pages 196–205, 1994.

[368] A. Srivastava and D. W. Wall. A practical system for intermodule code optimization
at link-time. Technical Report 92/6, Digital Western Research Laboratory, 1992.

[369] R. M. Stallman and the GCC Developer Community. Using the GNU Compiler Col-
lection (for GCC version 6.1.0). Free Software Foundation, Inc., 2016.

[370] G. L. Steele Jr. Making asynchronous parallelism safe for the world. In POPL, pages
218–231, 1990.

[371] G. L. Steele Jr., D. Lea, and C. H. Flood. Fast splittable pseudorandom number
generators. In OOPSLA, pages 453–472, 2014.

[372] D. Stein and D. Shah. Implementing lightweight threads. In USENIX, pages 1–9,
1992.

[373] M. Stephenson, S. K. Sastry Hari, Y. Lee, E. Ebrahimi, D. R. Johnson, D. Nellans,
M. O’Connor, and S. W. Keckler. Flexible software profiling of GPU architectures. In
ISCA, pages 185–197, 2015.

[374] J. Stoer, R. Bulirsch, R. H. Bartels, W. Gautschi, and C. Witzgall. Introduction to
Numerical Analysis. Springer, New York, 2002.

[375] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,
14(3):354–356, 1969.

325

[376] B. Stroustrup. The C++ Programming Language. Addison-Wesley, fourth edition,
2013.

[377] R. A. Sugumar and S. G. Abraham. Efficient simulation of caches under optimal
replacement with applications to miss characterization. In SIGMETRICS, pages 24–
35, 1993.

[378] J. Sukha. Cilkpub: A library of community-contributed Cilk Plus code [online]. 2013.
URL: https://software.intel.com/en-us/forums/intel-cilk-plus/topic/384639.

[379] J. Sukha. Piper: Experimental support for parallel pipelines in Intel® Cilk™ Plus [on-
line]. 2013. URL: https://www.cilkplus.org/sites/default/files/experimental-
software/PiperReferenceGuideV1.0_0.pdf.

[380] J. Sukha. Brief announcement: A compiler-runtime application binary interface for
pipe-while loops. In SPAA, pages 83–85, 2015.

[381] M. A. Suleman, M. K. Qureshi, Khubaib, and Y. N. Patt. Feedback-directed pipeline
parallelism. In PACT, pages 147–156, 2010.

[382] M. Szegedy and S. Vishwanathan. Locality based graph coloring. In STOC, pages
201–207, 1993.

[383] N. R. Tallent and J. M. Mellor-Crummey. Effective performance measurement and
analysis of multithreaded applications. In PPoPP, pages 229–240, 2009.

[384] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of the
ACM, 22(2):215–225, 1975.

[385] GCC Team. GCC 4.8 release series changes, new features, and fixes [online]. 2014.
URL: https://gcc.gnu.org/gcc-4.8/changes.html.

[386] Telecommunication Standardization Sector. High efficiency video coding. Standard
H.265, International Telecommunication Union, 2014.

[387] R. D. Tennent. The denotational semantics of programming languages. Communica-
tions of the ACM, 19(8):437–453, 1976.

[388] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to exploiting
coarse-grained pipeline parallelism in C programs. In MICRO, pages 356–369, 2007.

[389] M. Thorup and Y. Zhang. Tabulation based 4-universal hashing with applications to
second moment estimation. In SODA, pages 615–624, 2004.

[390] M. M. Tikir and J. K. Hollingsworth. Efficient instrumentation for code coverage
testing. In ISSTA, pages 86–96, 2002.

[391] A. M. Turing. Rounding-off errors in matrix processes. The Quarterly Journal of
Mechanics and Applied Mathematics, 1(1):287–308, 1948.

[392] R. Utterback, K. Agrawal, J. T. Fineman, and I-T. A. Lee. Provably good and prac-
tically efficient parallel race detection for fork-join programs. In SPAA, pages 83–94,
2016.

326

https://software.intel.com/en-us/forums/intel-cilk-plus/topic/384639
https://www.cilkplus.org/sites/default/files/experimental-software/PiperReferenceGuideV1.0_0.pdf
https://www.cilkplus.org/sites/default/files/experimental-software/PiperReferenceGuideV1.0_0.pdf
https://gcc.gnu.org/gcc-4.8/changes.html

[393] Leslie G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103–111, August 1990.

[394] R. Vallée-Rai, E. Gagnon, L. Hendren, P. Lam, P. Pominville, and V. Sundaresan.
Optimizing Java bytecode using the Soot framework: Is it feasible? In CC, pages
18–34, 2000.

[395] A. van Heukelum, G. T. Barkema, and R. H. Bisseling. Dna electrophoresis studied
with the cage model. Journal of Computational Physics, 180(1):313–326, 2002.

[396] H. Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag
New York, Inc., 1999.

[397] W. von Hagen. The Definitive Guide to GCC, chapter 6. Apress, second edition, 2006.

[398] C. von Praun and T. R. Gross. Object race detection. In OOPSLA, pages 70–82,
2001.

[399] J. W. Voung, R. Jhala, and S. Lerner. Relay: Static race detection on millions of lines
of code. In ESEC-FSE, pages 205–214, 2007.

[400] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A library of automatically tuned
sparse matrix kernels. In Journal of Physics: Conference Series, volume 16, pages
521–530, 2005.

[401] D. W. Wall. Link-time code modification. Technical Report 89/17, Digital Western
Research Laboratory, 1989.

[402] M. N. Wegman and L. Carter. New hash functions and their use in authentication
and set equality. Journal of Computer and System Sciences, 22(3):265–279, 1981.

[403] D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of a
graph and its application to timetabling problems. The Computer Journal, 10(1):85–
86, 1967.

[404] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software. In
SC, pages 1–27, 1998.

[405] D. A. Wheeler. More than a gigabuck: Estimating GNU/Linux’s size [online]. 2001.
URL: http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html.

[406] A. White. Serp [online]. 2011. URL: http://serp.sourceforge.net/.

[407] J. Widendorfer. Sequential performance analysis with Callgrind and KCachegrind. In
Tools for High Performance Computing, pages 93–113, 2008.

[408] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra. Overview of the
H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for
Video Technology, 13(7):560–576, 2003.

[409] M. Wimmer. Wait-free hyperobjects for task-parallel programming systems. In IPDPS,
pages 803–812, 2013.

327

http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html
http://serp.sourceforge.net/

[410] W. A. Wulf. A case against the GOTO. In Classics in Software Engineering, pages
83–98. 1979.

[411] W. A. Wulf, R. K. Johnson, C. B. Weinstock, and C. M. Geschke. The design of an
optimizing compiler. American Elsevier Pub. Co., 1975.

[412] X. Xiang, C. Ding, H. Luo, and B. Bao. HOTL: a higher order theory of locality. In
ASPLOS, pages 343–356, 2013.

[413] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and Ü. Çatalyürek.
A scalable distributed parallel breadth-first search algorithm on BlueGene/L. In SC,
page 25, 2005.

[414] J. Yu and S. Narayanasamy. A case for an interleaving constrained shared-memory
multi-processor. In ISCA, pages 325–336, 2009.

[415] Y. Yu, T. Rodeheffer, and W. Chen. RaceTrack: Efficient detection of data race
conditions via adaptive tracking. In SOSP, pages 221–234, 2005.

[416] M. Zagha and G. E. Blelloch. Radix sort for vector multiprocessors. In SC, pages
712–721, 1991.

[417] G. Zhang, P. Unnikrishnan, and J. Ren. Experiments with auto-parallelizing
SPEC2000FP benchmarks. In LCPC, pages 348–362. 2005.

[418] Y. Zhang and E. A. Hansen. Parallel breadth-first heuristic search on a shared-memory
architecture. In AAAI Workshop on Heuristic Search, Memory-Based Heuristics and
Their Applications, 2006.

[419] J. Zhao, S. Nagarakatte, M. M. K. Martin, and S. Zdancewic. Formalizing the LLVM
intermediate representation for verified program transformations. In POPL, pages
427–440, 2012.

[420] J. Zhao and V. Sarkar. Intermediate language extensions for parallelism. In SPLASH,
pages 329–340, 2011.

328

	Introduction
	Shared-memory-multicore programming
	Developing simple programming models and theories of performance
	Enhancing the software-development environment
	Thesis statement
	Outline

	Dynamic Multithreading
	Linguistic extensions for fork-join parallelism
	The dag model
	Determinacy and races
	Work-span analysis
	Scheduling
	Parallel reduction mechanisms
	Worker-local storage

	A Work-Efficient Parallel Breadth-First Search Algorithm
	Introduction
	The PBFS algorithm
	The bag data structure
	Experimental results
	Modeling reducers
	Analysis of programs with nonconstant-time reducers
	Analyzing PBFS
	Conclusion

	Executing Dynamic Data-Graph Computations Deterministically Using Chromatic Scheduling
	Introduction
	The Prism algorithm
	The multibag data structure
	Analysis of Prism
	Empirical evaluation
	The Prism-R algorithm
	The multivector data structure
	Analysis and evaluation of Prism-R
	Conclusion

	Ordering Heuristics for Parallel Graph Coloring
	Introduction
	The Jones-Plassmann algorithm
	JP with random ordering
	The LF and SL heuristics
	Log ordering heuristics
	Empirical evaluation
	Implementation techniques
	Evaluation of serial ordering heuristics
	Related work
	Conclusion
	Recent developments

	Deterministic Parallel Random-Number Generation
	Introduction
	Pedigrees
	DotMix: A pedigree-based DPRNG
	Other pedigree-based DPRNG's
	A scoped DPRNG library interface
	Performance results
	Related work
	Concluding remarks
	Recent developments

	On-the-Fly Pipeline Parallelism
	Introduction
	On-the-fly pipeline programs
	On-the-fly pipelining of x264
	Computation-dag model
	The Piper scheduler
	Structural invariants
	Time analysis of Piper
	Space analysis of Piper
	Cilk-P runtime design
	Evaluation
	Pipeline throttling
	Conclusion
	Recent developments

	The Cilkprof Scalability Profiler
	Introduction
	Parallel quicksort
	Computing work and span
	The basic profile algorithm
	The prof data structure
	The profile
	Empirical evaluation
	Case study: PBFS
	Related work
	Conclusion

	Race Detection for Cilk Programs That Use Reducer Hyperobjects
	Introduction
	Examples of races that involve a reducer
	The Peer-Set algorithm
	Correctness of the Peer-Set algorithm
	The SP+ algorithm
	The spawn parse tree and the view parse tree
	Correctness of the SP+ algorithm
	Analysis of the SP+ algorithm
	Rader
	Related work
	Conclusion
	Recent developments

	Tapir: Embedding Fork-Join Parallelism into LLVM's Intermediate Representation
	Introduction
	Tapir
	Analysis passes
	Denotational semantics for Tapir
	Optimization passes
	Auxiliary software
	Evaluation
	Related work
	Conclusion

	Comprehensive Static Instrumentation for Dynamic-Analysis Tools
	Introduction
	The CSI instrumentation API
	An example CSI-tool
	Implementation
	Demonstration CSI-tools
	Related work
	Conclusion

	Life after Moore's Law

