
Managing Storage for Multithreaded ComputationsbyRobert D. BlumofeSc.B., Brown University (1988)Submitted to the Department of Electrical Engineering and Computer Sciencein partial ful�llment of the requirements for the degree ofMaster of Scienceat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYSeptember 1992c
 Massachusetts Institute of Technology 1992Signature of Author : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Department of Electrical Engineering and Computer ScienceSeptember 8, 1992Certi�ed by : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Charles E. LeisersonProfessor of Electrical Engineering and Computer ScienceThesis SupervisorAccepted by : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :Campbell L. SearleChairman, Departmental Committee on Graduate Students



2



3Managing Storage for Multithreaded ComputationsbyRobert D. BlumofeSubmitted to the Department of Electrical Engineering and Computer Scienceon September 8, 1992, in partial ful�llment of therequirements for the degree ofMaster of ScienceAbstractMultithreading has become a dominant paradigm in general purpose MIMD parallel computa-tion. To execute a multithreaded computation on a parallel computer, a scheduler must orderand allocate threads to run on the individual processors. The scheduling algorithm dramaticallya�ects both the speedup attained and the space used when executing the computation. We con-sider the problem of scheduling multithreaded computations to achieve linear speedup withoutusing signi�cantly more space-per-processor than required for a single-processor execution.We show that for general multithreaded computations, no scheduling algorithm can si-multaneously make e�cient use of space and time. In particular, we show that there existmultithreaded computations such that any execution schedule X that achieves P -processor ex-ecution time TP (X ) � T1=�, where T1 is the minimum possible serial execution time, must usespace at least SP (X ) � 14(� � 1)pT1 + S1, where S1 is the space used by an e�cient serialexecution. For such a computation, even achieving a factor of 2 speedup (� = 2) requires spaceproportional to the square root of the serial execution time.By restricting ourselves to a class of computations we call strict computations, however,we show that there exist schedulers that can provide both e�cient speedup and use of space.Speci�cally, we show that for any strict multithreaded computation and any number P of pro-cessors, there exists an execution schedule X that achieves time TP (X ) � T1=P + T1, whereT1 is a lower bound on execution time even for arbitrarily large numbers of processors, andspace SP (X ) � S1P . We demonstrate such schedules by exhibiting a simple centralized algo-rithm to compute them. We give a second, somewhat more e�cient, algorithm that computesequally good execution schedules; this algorithm is online and should be practical for moderatenumbers of processors, but its use of a centralized queue makes it ine�cient for large numbersof processors.To demonstrate an algorithm that is e�cient even for large machines, we give a ran-domized, distributed, and online scheduling algorithm that computes an execution scheduleX that achieves guaranteed space SP (X ) = O(S1P lg P ) and expected time E [TP (X )] =O(T1=P+T1 lg P ). Though this algorithm uses a lg P factor more space than the centralized al-gorithm, it can still achieve linear expected speedup | that is E [TP (X )] = O(T1=P ) | provided



4the computation has su�cient average available parallelism | that is T1=T1 = 
(P lg P ). Fur-thermore, this algorithm is e�cient in that on a PRAM or various low-latency, high-bandwidth�xed-connection networks, the overhead in computing the schedule is only a constant fractionof the execution time.We also show that some nonstrictness can be allowed in an otherwise strict computation in away that may improve performance, but does not adversely a�ect the time and space bounds.Thesis Supervisor: Charles E. LeisersonTitle: Professor of Electrical Engineering and Computer Science



ContentsAcknowledgments 71 Introduction 92 A model for multithreaded computation 133 Time and space 194 Lower bound 275 Scheduling algorithms for strict multithreaded computations 356 Distributed scheduling algorithms 457 Scheduling nonstrict, depth-�rst multithreaded computations 638 Related work 719 Conclusions 77Bibliography 79
5



6 Contents



AcknowledgmentsA few days ago, I was looking over my old research notes, and I was struck by just how muchthis research project has evolved. As I began this project, I was trying to understand how thespace complexity of various parallel tree-search algorithms relates to the serial space used bya depth-�rst search and how probabilistic phenomenon a�ect the space usage of randomized,distributed tree-search algorithms. Over time, a model crystallized, questions formed, andeventually, answers gelled. When I described this evolution to my friend Arthur Lent, he said,\Now that's how research should be." Well, he wouldn't have said that if the project had notproduced results, and the project would not have produced results had its evolution not beenguided by someone who knew which directions to steer | someone who with each glimmer ofunderstanding seemed to know where to look for the next insight that might turn the glimmerinto vision. That someone is my advisor, Charles Leiserson.As a grad student, I really only need one good project to keep me going, but a professorneeds enough good ideas to keep a small 
ock of grad students busy with projects. Lookingat the work of Charles' advisees past and present, it should come as no real surprise that Itoo have been the bene�ciary of a great research project. I have truly enjoyed working on thisproject, and I look forward to continuing this line of research. Thank you, Charles.Picking Charles as an advisor may be the smartest thing I've done since arriving in Boston,but the luckiest thing is surely my meeting the Bar-Yams: Miriam, Zvi, Yaneer, Aureet, andSageet. The Bar-Yams are my landlords and my friends, but they have always treated meas family. They are among my favorite people on this planet, and its no wonder since theBar-Yams are the nicest people on the planet | I've checked.This research was supported in part by the Defense Advanced Research Projects Agency under Grant N00014-91-J-1698 and by a National Science Foundation Graduate Research Fellowship.7



8 AcknowledgmentsMy sincere appreciation to:� Tom Leighton: I learned most of the technique used in this research from courses taughtby and papers written by Tom.� Tom Cormen: If there is any quality in the �gures and formatting in this thesis, I owe itto THC.� William Ang, Be Hubbard, David Jones, Cheryl Patton, and Denise Sergent: Things workand social events happen because of their e�orts.� Bonnie Berger, Tom Cormen, Esther Jesurum, Michael Klugerman, Bradley Kuszmaul,Tom Leighton, Arthur Lent, and Greg Papadopoulos: for many insightful discussions.� Bradley Kuszmaul, Atul Shrivastava, and Ethan Wolf: for careful proofreading.� The faculty, sta�, and students past and present of the Theory Group: for making myyears here (so far) thoroughly enjoyable.Finally, my thanks and appreciation goes to my family. Joanna, Brad, Benjamin, andBrandon | we may not be the closest family, but its nice to have some of the family here inBoston. Most of all, I thank my older brother, Michael. From my earliest recollections, Michaelwas my role model. I would not be who I am or where I am without Michael's enthusiasm formath and science and his patience in teaching me to program when I was still quite young.Cambridge, Massachusetts Robert D. BlumofeSeptember 8, 1992



Chapter 1IntroductionIn the course of investigating schemes for general purpose MIMD parallel computation, manydiverse research groups have converged on multithreading as a dominant paradigm. As an ex-ample, modern data
ow systems [9, 11, 16, 24, 25, 26, 31, 32] partition the data
ow instructionsinto �xed groups called threads and arrange the instructions of each thread into a �xed sequen-tial order at compile time. At run time, a scheduler employs data
ow concepts to dynamicallyorder execution of the threads. Other systems have schedulers that dynamically order threadsbased on the availability of data in shared memory multiprocessors [1, 4, 13] or on the arrivalof messages in message-passing multicomputers [2, 10, 20, 35].Rapid execution of a multithreaded computation on a parallel computer requires exposingand exploiting parallelism in the computation by keeping enough threads concurrently activeto keep the processors of the computer busy. If processors are busy most of the time, theexecution schedule X of the computation exhibits linear speedup: the running time TP (X )with P processors is order P times faster than the optimal running time T1 with 1 processor,that is, TP (X ) = O(T1=P ).In attempting to expose parallelism, however, schedulers often end up exposing more par-allelism than the computer can actually exploit, and since each active thread requires the useof a certain amount of memory, such schedulers can easily overrun the memory capacity of themachine [8, 12, 14, 30, 34]. To date, the space requirements of multithreaded computationshave been managed with heuristics or not at all [7, 8, 12, 14, 17, 23, 30, 34]. In this thesis,we use algorithmic techniques to address the problem of managing storage for multithreadedThis thesis describes joint work with Charles E. Leiserson.9



10 Chapter 1. Introductioncomputations. Our goal is to develop scheduling algorithms that expose su�cient parallelismto obtain linear speedup, but without exposing so much parallelism that the space requirementsbecome excessive.We compare the amount of space SP (X ) required by a P -processor execution schedule fora multithreaded computation with the space S1 used by a space-optimal 1-processor execution.We wish to use as little space as possible, and we argue that a space-e�cient execution scheduleexhibits linear expansion of space, that is, SP (X ) = O(S1 � P ).Our �rst result shows that in general, it is not possible to achieve both linear speedup andlinear expansion of space. We exhibit a multithreaded computation such that any executionschedule X that achieves P -processor execution time TP (X ) � T1=� must use space at leastSP (X ) � 14(� � 1)pT1 + S1. For such a computation, even achieving a factor of 2 speedup(� = 2) requires space proportional to the square root of the serial execution time.In order to cope with this negative result, we restrict our attention to the class of strictmultithreaded computations. Intuitively, a strict computation is one in which no subroutineis called until all its parameters are available. We show that for any strict multithreadedcomputation and any number P of processors, there exists an execution schedule X that achievestime TP (X ) � T1=P+T1, where T1 is a lower bound on execution time even for arbitrarily largenumbers of processors, and space SP (X ) � S1P . Such a schedule exhibits linear expansion ofspace and linear speedup, TP (X ) = O(T1=P ), provided the average available parallelism, whichwe de�ne as T1=T1, is at least proportional to P , that is, T1=T1 = 
(P ). We demonstratesuch schedules by exhibiting a simple centralized algorithm to compute them. We give asecond, somewhat more e�cient, algorithm that computes equally good execution schedules;this algorithm is online and should be practical for moderate numbers of processors, but its useof a centralized queue makes it ine�cient for large numbers of processors.To demonstrate an algorithm that is e�cient even for large machines, we give a random-ized, distributed, and online scheduling algorithm that achieves space expansion proportionalto P lgP for any strict computation and linear expected speedup for any strict computationwith average available parallelism at least proportional to P lg P , that is, T1=T1 = 
(P lgP ).



11This algorithm is e�cient in that on a PRAM or various low-latency, high-bandwidth �xed-connection networks, the overhead in computing the schedule is only a constant fraction of theexecution time.We also show that some nonstrictness can be allowed in an otherwise strict computation ina way that may improve performance, but does not adversely a�ect the time and space bounds.The remainder of this thesis is organized as follows. Chapter 2 develops a formal modelof multithreaded computation and execution schedules. In Chapter 3 we characterize mul-tithreaded computations with three parameters and prove some basic bounds relating theseparameters to execution time and space. The lower bound for general multithreaded compu-tations is presented in Chapter 4, and the upper bound for strict computations is presentedin Chapter 5. Chapter 6 presents and analyzes a distributed scheduling algorithm for strictcomputations. In Chapter 7 we present a technique to allow nonstrictness without degradingthe space and time bounds obtainable by a strict execution. Finally, in Chapter 8 we discusssome related work, and in Chapter 9 we conclude with some perspective on our results andsome open problems.



12 Chapter 1. Introduction



Chapter 2A model for multithreaded computationThis chapter de�nes the model of multithreaded computation that we use in this thesis. Wealso de�ne what it means for a parallel computer to execute a multithreaded computation.A multithreaded computation is composed of a set of threads, each of which is a sequentialordering of unit-size tasks. In Figure 2.1, for example, each shaded block is a thread with circlesrepresenting tasks and the horizontal edges, called continue edges, representing the sequentialordering. The tasks of a thread must execute in this sequential order from the �rst (leftmost)task to the last (rightmost) task. In order to execute a thread, we allocate for it a chunk ofmemory, called an activation frame, that the tasks of the thread can use to store the values onwhich they compute.An execution schedule for a multithreaded computation determines which processors of aparallel computer execute which tasks at each step. An execution schedule depends on theparticular multithreaded computation and the number of processors in the parallel computer.In any given step of an execution schedule, each processor either executes a single task or sitsidle.During the course of its execution, a thread may create, or spawn, other threads. Spawninga thread is like a subroutine call, except that the calling routine can operate concurrently withthe called routine. We consider spawned threads to be children of the thread that did thespawning. In this way, threads are organized into a tree hierarchy as indicated in Figure 2.1 bythe shaded edges, called spawn edges. Each spawn edge goes from a speci�c task, the task thatactually does the spawn operation, in the parent thread to the �rst task of the child thread.When a thread executes its last task, it terminates.13



14 Chapter 2. A model for multithreaded computation
Figure 2.1: An example multithreaded computation. The tasks are partitioned into threads,represented by the shaded regions, and the tasks in each thread are compiled into a sequentialorder, represented by the continue edges shown horizontal in each thread. A task can spawna thread, as shown by the shaded spawn edges, and this spawning organizes the threads intoa tree hierarchy. The data dependency edges, shown by the curved edges, impose additionalordering constraints as required by producer/consumer relationships.For an execution schedule to be valid, the task execution order must obey the constraintsgiven by the edges of the computation. For example, before a task can execute, its predecessor| which connects to it via either a continue or spawn edge | must �rst execute.There is one more kind of dependency that a valid execution schedule must respect. Considera task that produces a data value that is consumed by another task. Such a producer/consumerrelationship precludes the consuming task from executing until after the producing task. Inorder to enforce such orderings, we introduce data dependency edges as shown in Figure 2.1 bythe curved edges. If the execution of a thread arrives at a consuming task before the producingtask has executed, execution of the consuming thread cannot continue | the thread stalls.Once the producing task executes, the data dependency is resolved, and the consuming threadcan proceed with its execution | the thread becomes ready.We quantify the space used in executing a multithreaded computation in terms of activationframes. When a task spawns a thread, it allocates an activation frame for use by the newly



15spawned thread. Once a thread has been spawned and its frame has been allocated, we saythe thread is active. Recall that at any time, an active thread can be either stalled or ready,but even if it stalls, its activation frame remains allocated. The thread remains active until itterminates; at that point its frame can be deallocated.We make the simplifying assumption that a parent thread remains active until all its childrenterminate, and thus, a thread does not deallocate its activation frame until all its children'sframes have been deallocated. Although this assumption is not strictly necessary, it gives theexecution a natural structure, and it will simplify our analyses of space utilization. We alsoassume that the frames hold all the values used by the computation; there is no global storageavailable to the computation outside the frames. Therefore, the space used at a given time inexecuting a computation is the total size of all frames used by all active threads at that time,and the total space used in executing a computation is the maximum such value over the courseof the execution.It is important to note here the di�erence between what we are calling a multithreadedcomputation and a program. A program may have conditionals, and therefore, the order ofinstructions (or even the set of instructions) executed in a thread may not be known untilthe thread is actually executed. Thus, what we are calling a thread actually represents aparticular execution of a program thread. In general, a multithreaded computation is not astatically determined object, rather the computation unfolds dynamically during execution asdetermined by the program and the input data. We can think of a multithreaded computationas encapsulating both the program and the input data. The computation then reveals itselfdynamically during execution.An exampleThe multithreaded computation shown in Figure 2.2 contains 21 tasks, v1; v2; : : : ; v21, and 5threads, �1;�2; : : : ;�5. Execution begins with the root thread �1 active and ready. Thread �1has activation frame size F(�1) = 3, so the execution begins with 3 units of space in use. Atthe �rst step of the execution, a processor executes task v1. At the end of the �rst step, �1 is



16 Chapter 2. A model for multithreaded computation
v21v20

v18v17v16

v15v14

v13v12v11

v9

v8v7

v6

v5v4v3

v2v1

v10

v19

(Γ1) = 3F

(Γ2) = 6F (Γ3) = 3F

(Γ4) = 2F

(Γ5) = 7FFigure 2.2: A multithreaded computation. This computation has 21 tasks, v1; v2; : : : ; v21, and5 threads, �1;�2; : : : ;�5, with activation frame sizes, F(�1) = 3, F(�2) = 6, F(�3) = 3,F(�4) = 2, and F(�5) = 7.still the only active (and ready) thread, and therefore, at the second step, a processor executestask v2. Task v2 spawns a child thread �2 with activation frame size F(�2) = 6. Consequently,the second step ends with 3+ 6 = 9 units of space in use and both �1 and �2 active and ready.Then if the parallel machine executing this computation has at least two processors, task v6from �1 and task v3 from �2 can execute concurrently during the third step. Executing task v6spawns another thread which further increases the amount of space in use. Eventually, whentask v5 executes, thread �2 terminates and decreases the amount of space in use. Furthermore,executing v5 resolves the data dependency (v5; v20). When the execution of thread �1 reachesv20, the thread stalls until both data dependencies (v5; v20) and (v19; v20) resolve.Figures 2.3 and 2.4 show two di�erent 2-processor execution schedules for the computationof Figure 2.2. The schedule of Figure 2.3 takes 14 time steps and 13 units of space. Theschedule of Figure 2.4 takes 15 time steps and 21 units of space; for a period of time during theexecution of this schedule, every thread in the computation is active.



17Time Tasks executed Active threads Space in use0 �����1 31 v1 �����1 32 v2 �����1 �����2 93 v3 v6 �����1 �����2 �����3 124 v4 v7 �����1 �����2 �����3 125 v5 v8 �����1 �����3 �����4 86 v9 v11 �����1 �3 �����4 87 v10 v14 �����1 �����3 68 v12 v15 �1 �����3 �����5 139 v13 v16 �1 �����5 1010 v17 �1 �����5 1011 v18 �1 �����5 1012 v19 �����1 313 v20 �����1 314 v21Figure 2.3: An execution schedule for the computation illustrated in Figure 2.2 with two pro-cessors. Each row represents one time step of the computation as indicated in the �rst column.The second column lists the tasks that execute at the associated time step. The third columnlists the threads that are active at the end of the associated time step; threads that are alsoready are shown circled. The last column shows how much space is in use at the end of theassociated time step. This execution takes 14 time steps and 13 units of space.



18 Chapter 2. A model for multithreaded computationTime Tasks executed Active threads Space in use0 �����1 31 v1 �����1 32 v2 �����1 �����2 93 v3 v6 �����1 �����2 �����3 124 v4 v14 �����1 �����2 �����3 125 v7 v15 �1 �����2 �����3 �����5 196 v8 v16 �1 �����2 �����3 �����4 �����5 217 v11 v17 �1 �����2 �3 �����4 �5 218 v5 v9 �1 �3 �����4 �5 159 v10 �1 �����3 �5 1310 v12 �1 �����3 �5 1311 v13 �1 �����5 1012 v18 �1 �����5 1013 v19 �����1 314 v20 �����1 315 v21Figure 2.4: Another execution schedule for the computation illustrated in Figure 2.2 with twoprocessors. This execution takes 15 time steps and 21 units of space.



Chapter 3Time and spaceWe shall characterize the time and space of an execution of a multithreaded computation interms of three fundamental parameters: work, computation depth, and activation depth. We�rst introduce work and computation depth, which relate to the execution time, and then wefocus on activation depth, which relates to the storage requirements.The two time parameters are based on the underlying graph structure of the multithreadedcomputation. If we ignore the shading in Figure 2.1 that organizes tasks into threads, ourmultithreaded computation is just a directed, acyclic graph, or dag. We de�ne the work of thecomputation to be the total number of tasks and the computation depth to be the length ofa longest directed path in the dag. For example, the computation of Figure 2.1 has work 17and computation depth 10, and the computation of Figure 2.2 has work 21 and computationdepth 13.We quantify and bound the execution time of a computation on a P -processor parallelcomputer in terms of the computation's work and depth. For a given computation, let TP (X )denote the time to execute the computation with P processors using execution schedule X , andlet TP = minX TP (X )denote minimum time execution with P processors | the minimum being taken over all validexecution schedules for the computation. Then T1 is the work of the computation, since a 1-processor computer can only execute one task at each step, and T1 is the computation depth,since even with arbitrarily many processors, each task on a path must execute serially.19



20 Chapter 3. Time and spaceStill viewing the computation as a dag, we borrow some basic results on dag scheduling tobound TP . A computer with P processors can execute at most P tasks per step, and sincethe computation has T1 tasks, TP � T1=P . And, of course, we also have TP � T1. Brent'sTheorem [5, Lemma 2] yields the bound TP � T1=P + T1. The following theorem extendsBrent's Theorem minimally to show that this upper bound on TP can be obtained by greedyschedules: those in which at each step of the execution, if at least P tasks are ready, then Ptasks execute, and if fewer than P tasks are ready, then all execute; both of the schedules shownin Figures 2.3 and 2.4 are greedy.Theorem 1 For any multithreaded computation with work T1 and computation depth T1, forany number P of processors, any greedy execution schedule X achieves TP (X ) � T1=P + T1.Proof: Let G = (V;E) denote the underlying dag of the computation. Thus, we have jV j = T1,and a longest directed path in G has length T1. Consider a greedy execution schedule X wherethe set of tasks executed at time i, for i = 1; 2; : : : ; k, is denoted Ei, with k = TP (X ). The Eiform a partition of V .We shall consider the progression hG0; G1; G2; : : : ; Gki of dags, where G0 = G, and fori = 1; 2; : : : ; k, we have Vi = Vi�1 � Ei and Gi is the subgraph of Gi�1 induced by Vi. In otherwords, Gi is obtained from Gi�1 by removing from Gi�1 all the tasks that are executed by Xat step i and all edges incident on these tasks. We shall show that each step of the executioneither decreases the size of the dag or decreases the length of the longest path in the dag.We account for each step i according to jEij. Consider a step i with jEij = P . In this case,jVij = jVi�1j � P , so since jV j = T1, there can be at most bT1=Pc such steps. Now considera step i with jEij < P . In this case, since X is greedy, Ei must contain every vertex of Gi�1with in-degree 0. Therefore, the length of a longest path in Gi is one less than the length of alongest path in Gi�1. Since the length of a longest path in G is T1, there can be no more thanT1 steps i with jEij < P .Consequently, the time it takes schedule X to execute the computation is TP (X ) � bT1=Pc+T1 � T1=P + T1.



21Theorem 1 can be interpreted in two important ways. First, the time bound given bythe theorem says that any greedy schedule yields an execution time that is within a factorof 2 of an optimal schedule, which follows because T1=P + T1 � 2maxfT1=P; T1g and TP �maxfT1=P; T1g. Second, Theorem 1 tells us when we can obtain linear parallel speedup, thatis, when we can �nd an execution schedule X such that TP (X ) = �(T1=P ). Speci�cally, whenthe number P of processors is no more than the average available parallelism T1=T1, thenT1=P � T1, which implies that for a greedy schedule X , we have TP (X ) � 2T1=P . We shall beespecially interested in the regime where P = O(T1=T1) and linear speedup is possible, sinceoutside this regime, linear speedup is impossible to achieve because TP � T1.These results on dag scheduling have been known for many years. A multithreaded compu-tation, however, adds further structure to the dag: the partitioning of tasks into threads. Thisadditional structure allows us to quantify the space used in executing a multithreaded com-putation. Once we have quanti�ed space usage, we will look back at Theorem 1 and considerwhether there exist execution schedules that achieve similar time bounds while also makinge�cient use of space. Of course, we will have to quantify a space bound to capture what wemean by e�cient use of space.We shall focus on a space parameter for a multithreaded computation which is based onthe tree structure of threads. If we collapse each thread into a single node and consider justthe spawn edges, the multithreaded computation becomes a rooted tree with the spawn edgesas child pointers. We call this tree the activation tree. We de�ne the activation depth of athread to be the sum of the sizes of the activation frames of all its ancestors, including itself.The activation depth of a multithreaded computation is the maximum activation depth of anythread. For example, in the computation of Figure 2.2, thread �4 has activation depth 8, andthe computation has activation depth 10, since the deepest thread �5 has activation depth 10.We shall have occasion to consider subcomputations and subcomputation activation depth.A subcomputation is the portion of a computation rooted at a given thread in the activation tree,and the activation depth of a subcomputation is the activation depth of the subcomputationwhen considered in isolation as a multithreaded computation. For example, in the computation



22 Chapter 3. Time and spaceof Figure 2.2, the subcomputation rooted at thread �3 consists of 7 tasks, v7; v8; : : : ; v13, and 2threads, �3 and �4, and has activation depth 3 + 2 = 5.We shall denote the space required by a P -processor execution schedule X of a multithreadedcomputation by SP (X ). Recall that SP (X ) is just the maximum, over all steps in X , of thesum of the sizes of the activation frames of the active threads at that step. Since we can alwayssimulate a P -processor execution with a 1-processor execution that uses no more space, we haveS1(X ) � SP (X ). The minimum space used by any execution with any number of processors istherefore S1 = minX S1(X ).The following simple theorem shows that the activation depth of a computation is a lowerbound on the space required to execute it.Theorem 2 Let A be the activation depth of a multithreaded computation, and let X be a P -processor execution schedule of the computation. Then SP (X ) � A, and hence, S1 � A.Proof: In any schedule, the leaf thread with greatest activation depth must be active at sometime step. Since we assume that if a thread is active, its parent is active, when the deepest leafthread is active, all its ancestors are active, and hence, all its ancestors' frames are allocated.But, the sum of the sizes of its ancestors' activation frames is just the activation depth. SinceSP (X ) � A holds for all X and all P , it holds for the minimum-space execution schedule, andhence, S1 � A.Given the lower bound of activation depth on the space used by a P -processor schedule, it isnatural to ask whether the activation depth can be achieved as an upper bound. In general, theanswer is no, since all the threads in a computation may contain a cycle of data dependenciesthat force all of them to be simultaneously active in any execution schedule. For the class ofdepth-�rst computations, however, space equal to the activation depth can be achieved by a1-processor schedule.A depth-�rst computation is a multithreaded computation in which a left-to-right depth-�rstsearch of tasks in the activation tree always visits all the tasks on which a given task dependsbefore it visits the given task. In fact, this depth-�rst search produces a 1-processor execution



23schedule which is just the familiar stack-based execution: The serial depth-�rst execution beginswith the root thread and executes its tasks until it either spawns a child thread or terminates.If the thread spawns a child, the parent thread is put aside to be resumed only after the childthread terminates; the scheduler then begins work on the child, executing the child until iteither spawns or terminates. For the computation of Figure 2.2, the 1-processor executionschedule that executes tasks in the order v1; v2; v3; : : : ; v20; v21 is the serial depth-�rst schedule.Theorem 3 For any depth-�rst computation, S1 = A.Proof: At any time in a serial depth-�rst execution of the computation, the set of activethreads always forms a path from the root. Therefore, the space required is just the activationdepth of the computation. By Theorem 2, S1 � A, and thus the the space used is the minimumpossible.We now turn our attention to determining how much space SP (X ) a P -processor executionschedule X can use and still be considered e�cient with respect to space usage. Our strategyis to compare the space used by a P -processor schedule with the space required by an optimal1-processor schedule. Of course, we can always ignore P � 1 of the processors and obtain thesame space bounds, and therefore, our goal is to use small space while obtaining linear speedup.Even for depth-�rst computations, a P -processor schedule may use nearly P times the spaceof a 1-processor schedule. We exhibit a depth-�rst computation with activation depth A = S1that for any number P � T1=T1 of processors, requires space nearly S1P in order to achievelinear parallel speedup. In the computation, the root thread, which we refer to as the loop,spawns many children, and each child thread is the root of a large subcomputation, which werefer to as an iteration. The root thread has an activation frame of size 1, and each iterationhas activation depth S1 � 1. See Figure 3.1. In addition, data dependencies force a serialordering on the tasks within each iteration, but there are no data dependencies between tasksin di�erent iterations. In other words, the entire computation has no available parallelismwithin an iteration; parallelism can only be realized by the concurrent execution of multipleiterations. Executing P iterations concurrently, uses space P (S1 � 1) + 1 which is nearly S1P .



24 Chapter 3. Time and space
S1

T1/T∞Figure 3.1: The activation tree of a multithreaded computation for which any execution scheduleX requires space SP (X ) = 
(S1P ) in order to achieve linear speedup. The root thread is aloop and each child thread is the root of a subcomputation that forms an iteration. The datadependencies in each iteration (not shown) link the tasks of the iteration into a sequentialorder, so there is no parallelism within the iteration. Between iterations, however, there are nodata dependencies, so multiple iterations can be executed concurrently. The average availableparallelism T1=T1 equals the number of iterations. Therefore, for any number P � T1=T1 ofprocessors, there is an execution schedule X (any greedy schedule for example) that achievesTP (X ) = �(T1=P ) and space SP (X ) = P (S1 � 1) + 1 = �(S1P ).Thus, for any number P � T1=T1 of processors, this computation has an execution scheduleX (any greedy schedule, for example) that achieves linear speedup, TP (X ) = �(T1=P ), at thecost of space SP (X ) = �(S1P ).In fact, a P -processor schedule that uses only P times the space of a single processor isarguably e�cient, since on average, each of the P processors only needs as much memory as isused by the 1 processor. We would, of course, like to do better, but an expansion in space thatis linear in the number of processors, while achieving linear speedup, is quite good, since thetime-space product is bounded by a constant:TP (X )SP (X ) = O(T1S1) :We shall show in Chapter 4 that achieving linear speedup and linear expansion of space simul-



25taneously is impossible in general, even for depth-�rst computations. For a restricted class ofcomputations that we call strict, however, Chapter 5 shows that one can achieve both.To summarize, we can parameterize a multithreaded computation with three measures:� T1 denotes the work of the computation,� T1 denotes its computation depth,� A denotes its activation depth.For depth-�rst computations, S1 = A. For any number P = O(T1=T1) of processors, we wouldlike to �nd an execution schedule X with the following time and space bounds:� TP (X ) = O(T1=P ),� SP (X ) = O(S1P ).



26 Chapter 3. Time and space



Chapter 4Lower boundIn this chapter we show that there exist multithreaded computations for which no executionschedule can achieve both linear speedup and linear expansion of space. In particular, for anyamount of serial space S and any (reasonably large) serial execution time T , we can exhibit adepth-�rst multithreaded computation with work T1 = T and activation depth A = S but withprovably bad time/space tradeo� characteristics. Being depth-�rst, we know from Theorem 3that our computation can be executed using serial space S1 = A. Furthermore, we know fromTheorem 1 that for any number P of processors, any greedy P -processor execution scheduleX achieves TP (X ) � T1=P + T1. Our computation has computation depth T1 approximatelypT1, and consequently, for P = O(pT1), a greedy schedule X yields TP (X ) = O(T1=P ) |linear speedup. We show, however, that for this computation, any schedule achieving TP (X ) =O(T1=P ) must use space SP (X ) = 
(pT1(P � 1)). Of course, pT1 may be much larger thanS1, hence, this space bound is nowhere near linear in its space expansion.We construct a multithreaded computation having this poor time/space performance byplacing tasks that are computationally deep into the same portion of the computation as tasksthat are computationally shallow. If we look at just the dag structure of the computation, itappears, from a distance, as shown in Figure 4.1 | the dag in Figure 4.1 is just missing a few ofthe tasks and edges that organize the computation into a tree hierarchy. The dag consists of m(a value we will specify later) components C0; C1; : : : ; Cm�1 that we call jobs. From this dag, wesee that with any number P � m of processors, we can obtain linear speedup by simultaneouslyexecuting P jobs. Doing so, however, uses up lots of memory. To execute a job Ci, we beginwith a group of computationally shallow tasks called headers (see Figure 4.1). Each header is27



28 Chapter 4. Lower bound
blockers

C0 C1 C2 Cm–1
headers

Figure 4.1: The tasks in the leaf threads are organized into m jobs, C0; C1; : : : ; Cm�1. The blackheader tasks have shallow computation depth. The white tasks form the trunk of the job. Thegrey blocker tasks have deep computation depth.part of a separate subcomputation with fairly large activation depth, so to execute a headertask we must begin execution of its associated subcomputation by allocating the necessaryactivation frames. Each of these subcomputations also contains a computationally deep task,called a blocker (see Figure 4.1), from the previous job Ci�1. Therefore, these subcomputationscannot complete, and the associated memory cannot be deallocated until the blockers from theprevious job execute. But in order to achieve speedup, jobs must execute concurrently, andconsequently, the headers must execute early and the blockers must execute late. Therefore, inthis scenario, many subcomputations begin early, but cannot �nish until late, hence the heavydemands on storage.Theorem 4 For any amount of serial space S � 4 and serial time T � 16S2, there exists adepth-�rst multithreaded computation with work T1 = T , computation depth T1 � 8pT1, andactivation depth A = S, such that for any number P of processors and any value � in the range1 � � � 18T1=T1, if X is a valid P -processor execution schedule that achieves TP (X ) � T1=�,then SP (X ) � 14(�� 1)pT1 + S1.



29Proof: To exhibit a depth-�rst multithreaded computation with work T1, computation depthT1, and activation depth A = S1, we �rst consider the dag structure of the computation. If welook at just the tasks in the leaf threads and ignore a few of the edges, the dag appears as inFigure 4.1. The tasks are organized into m = pT1=8(nearly) separate components C0; C1; : : : ; Cm�1 that we call jobs.1 Each job begins with� = pT1=S1tasks that we call headers. After the headers, each job contains� = 6pT1tasks organized into a chain that we call the trunk. There are no dependencies between theheaders, but the �rst task of the trunk cannot execute until after all the headers. At the endof each job, there are � blockers. Each job, therefore, consists of 2�+ � = 2(pT1=S1) + 6pT1tasks. Since there arem = pT1=8 jobs, the total number of tasks accounted for by them jobs is(2pT1=S1 + 6pT1)pT1=8 = 34T1+ 14T1=S1, and this number is no more than 1316T1 since S1 � 4.The remaining (at least) 316T1 tasks form the parts of the computation not shown in Figure 4.1.When we consider how the tasks of each job are organized into the threads of the com-putation, we will exhibit an organization such that each header task is part of a separatesubcomputation with activation depth at least 12S1. This organization will also be such thateach of these subcomputations contains a blocker task from a di�erent job. In particular, eachjob Ci, for i = 1; : : : ; m�1, has each of its header tasks in a subcomputation that also contains ablocker task of the previous job Ci�1. For each such subcomputation, the blocker task is placed1In what follows, we refer to a number x of objects (such as tasks) when x may not be integral. Roundingthese quantities to integers does not a�ect the correctness of the proof. For ease of exposition, we shall notconsider the issue.



30 Chapter 4. Lower boundto ensure that the subcomputation cannot complete until the blocker task executes. Therefore,from the time the header task of job Ci executes until the time the blocker task of job Ci�1 exe-cutes, all of the (at least) 12S1 space used by the subcomputation remains active. Furthermore,if all of the headers of Ci execute before any of the blockers of Ci�1, then during the interveningtime period, � of these subcomputations are active, and these active subcomputations take upat least 12S1� = 12pT1 space. We will show that in fact, this space consuming scenario mustoccur in any execution schedule that achieves any amount of parallel speedup.For any number P of processors, consider any valid P -processor execution schedule X . Foreach job Ci, let t(s)i denote the time step at which X executes the �rst trunk task of Ci, andlet t(f)i denote the �rst time step at which X executes a blocker task of Ci. Since the trunkhas length � and no blocker task of Ci can execute until after the last trunk task of Ci, wehave t(f)i � t(s)i � �.Now consider two jobs, Ci and Ci�1, and suppose t(s)i < t(f)i�1; this is the scenario we describedas using at least 12pT1 space. In this case, we consider the time interval from t(s)i (inclusive) tot(f)i�1 (exclusive) during which we say that job Ci is exposed, and we let �i = t(f)i�1� t(s)i denote theamount of time job Ci is exposed. See Figure 4.2. If t(s)i � t(f)i�1 then job Ci is never exposed andwe let �i = 0. As we have seen, over the time interval during which a job is exposed, it uses atleast 12pT1 space. We will show that in order to achieve speedup � | that is TP (X ) � T1=� |there must be some time step during the execution at which at least �34��� 1 jobs are exposed.If schedule X is such that TP (X ) � T1=�, then we must have t(f)m�1� t(s)0 � T1=�, and we canexpand this inequality out asT1=� � t(f)m�1 � t(s)0= t(f)0 + m�1Xi=1 (t(f)i � t(f)i�1)� t(s)0= t(f)0 � t(s)0 + m�1Xi=1 �(t(f)i � t(s)i ) + (t(s)i � t(f)i�1)�= m�1Xi=0 (t(f)i � t(s)i )� m�1Xi=1 (t(f)i�1 � t(s)i ): (4.1)



31
t0

(f)

t0
(s)

t1
(s)

t1
(f)

t2
(f)

t2
(s)

t3
(s)

t3
(f)

t4
(f)

t4
(s)

tm–1
(s)

tm–1
(f)

τ1

τ3

τ4

0

T1/ρFigure 4.2: Scheduling the execution of the jobs. A solid vertical interval from t(s)i to t(f)i indicatesthe time during which the trunk of job Ci is being executed. When t(s)i < t(f)i�1, we can de�ne aninterval, shown dashed, of length �i = t(f)i�1 � t(s)i , during which job Ci is exposed.Considering the �rst sum, we recall that t(f)i � t(s)i � �, hence,m�1Xi=0 (t(f)i � t(s)i ) � m�: (4.2)Considering the second sum of Inequality (4.1), when t(f)i�1 > t(s)i (so Ci is exposed), we have�i = t(f)i�1 � t(s)i , and otherwise, �i = 0 � t(f)i�1 � t(s)i . Therefore,m�1Xi=1 (t(f)i�1 � t(s)i ) � m�1Xi=1 �i: (4.3)Substituting Inequality (4.2) and Inequality (4.3) back into Inequality (4.1), we obtainT1=� � m� � m�1Xi=1 �i;



32 Chapter 4. Lower boundfrom which m�1Xi=1 �i � m� � T1=�:Let exposed(t) denote the number of jobs exposed at time step t, and observe thatT1=�Xt=0 exposed(t) = m�1Xi=i �i:Then the average number of exposed jobs per time step is1T1=� T1=�Xt=0 exposed(t) = 1T1=� m�1Xi=1 �i� 1T1=� (m� � T1=�)= m�T1 �� 1= 34�� 1since m = pT1=8 and � = 6pT1. There must be some time step t� for which exposed(t�) is atleast the average, and consequently,exposed(t�) � �34��� 1:Now recalling that each exposed job uses space 12pT1, we haveSP (X ) � 12 ��34��� 1�pT1� 14(�� 1)pT1 + S1for S1 � pT1=4 (which is true since T1 � 16S21).All that remains is exhibiting the organization of the tasks of each job into a depth-�rstmultithreaded computation with work T1, computation depth T1 � 8pT1, and activation depthA = S1 in such a way that for each job, each header task is placed in a subcomputation with a



33
Figure 4.3: Laying out the jobs into the threads of a multithreaded computation. In thisexample, each activation frame has unit size so A = 6. Also, in this example � = 2, � = 8, andonly the �rst 2 out of the m tasks in the root thread are shown. Each task of the root threadspawns a child, and each child thread contains � + 1 = 3 tasks; the �rst � of these spawn achild thread which is the root of a subcomputation with activation depth A � 2 = 4, and thelast one spawns a leaf thread with the � = 8 trunk tasks of a single job.blocker task from the previous job and that each such subcomputation has activation depth atleast S1=2. There are actually many ways of creating such a computation. One such way, thatuses unit size activation frames for each thread, is shown in Figure 4.3.For the multithreaded computation of Figure 4.3, the root thread contains m tasks, each ofwhich spawns a child thread. Each child thread contains �+ 1 tasks; the �rst � of these spawna child thread which is the root of a subcomputation with activation depth S1�2 � S1=2 (sinceS1 � 4), and the last one spawns a leaf thread with the � trunk tasks of a single job. Eachof these subcomputations contains a single header from one job and a single blocker from theprevious job (except in the case of the �rst group of �) as shown in Figure 4.3. The header andblocker in a subcomputation are organized such that in order to execute the header, all S1 � 2of the threads in the subcomputation must be made active, and none of them can terminateuntil the blocker executes. We can verify from Figure 4.3 and from the given values of m, �,and � that this construction actually has work slightly less than T1; in order to make the work



34 Chapter 4. Lower boundequal to T1 we can just add the extra tasks evenly among the threads that contain the trunk ofeach job (thereby increasing � by a bit). Also, we can verify that T1 � 8pT1. Finally, lookingat Figure 4.3 we can see that this computation is indeed depth-�rst.The construction of a multithreaded computation with provably bad time/space character-istics as just described can be modi�ed in various ways to accommodate various restriction tothe model while still obtaining the same result. For example, some real multithreaded systemsrequire limits on the number of tasks in a thread, data dependencies that only go to the �rsttask of a thread, limited fan-in for data dependencies, or a limit on the number of children athread can have. Simple changes to the construction just described can produce multithreadedcomputations that accommodate any or all of these restrictions and still have the same provablybad time/space tradeo�. Thus, the lower bound of Theorem 4 holds even for multithreadedcomputations with any or all of these restrictions.Theorem 4 tells us that for any amount of serial space S and any (reasonably) large serialexecution time T , there exists a multithreaded computation that can be executed serially in thegiven amount of time and space, has su�cient average available parallelism to achieve linearspeedup over a wide range of numbers of processors, but in order to achieve any speedup atall, requires (potentially) extreme amounts of space. For example, in order to achieve linearspeedup when the number of processors is close to the average available parallelism, such acomputation requires space proportional to T1 | the serial execution time. Even to achievespeedup of 2 (� = 2), such a computation requires space proportional to pT1 | not quite T1,but still potentially huge compared to S1.There are actually many ways of stating a lower bound as in Theorem 4, but they allcome down to the same thing: There exist multithreaded computations with arbitrary serialexecution time and space and with arbitrarily large amounts of average available parallelism,such that achieving any amount of speedup ranging from 1 (no speedup) up to the averageavailable parallelism requires space that ranges from the serial space up to nearly the serialtime correspondingly.



Chapter 5Scheduling algorithms for strict multithreadedcomputationsGiven a multithreaded computation, a scheduling algorithm for a P -processor parallel computermust compute a valid P -processor execution schedule. In computing such a schedule, thealgorithm does not know the entire computation; the computation actually unfolds dynamicallyduring the course of execution, and consequently, the scheduling algorithm must be online. Atany given time during the execution, the scheduler has a set of active threads some of whichare ready and some of which are stalled. There might be some extra information attached toeach thread that the scheduling algorithm can use in deciding which ready threads get executedby which processors, but the scheduler cannot know about the structure of the portion of thecomputation not yet executed.Besides being able to compute an e�cient execution schedule, we would like the schedulingalgorithm itself to be e�cient. In computing the execution schedule, the algorithm incurs coststhat we can broadly classify into three categories: queueing costs, synchronization costs, andcommunication costs. The scheduling algorithm maintains active threads in one or more queues.By enqueuing and dequeuing threads over the course of execution, the scheduler incurs queueingcosts. If the scheduling algorithm requires the use of any shared data or global values, it incurssynchronization costs. Suppose that at some time during the computation, the schedulingalgorithm decides that a processor p should execute a task from thread �, and then at somelater time, the scheduler decides that a di�erent processor p0 6= p should execute a task from thesame thread �. In this case, some information about �, possibly the entire activation frame,must be moved from processor p to processor p0. In doing so, the scheduling algorithm incurs35



36 Chapter 5. Scheduling algorithms for strict multithreaded computations
AAA
AAA
A
A

(a) (b)Figure 5.1: (a) This multithreaded computation is nonstrict since it has data dependencies, shown bold,that go to non-ancestor threads. (b) If we replace the o�ending data dependencies with new ones, shownbold, we obtain a strict computation since all data dependencies go from a child thread to an ancestorthread.some communication cost.With a P -processor parallel computer and a scheduling algorithm, given a depth-�rst mul-tithreaded computation with work T1, computation depth T1, and activation depth A = S1possessing average available parallelism T1=T1 = 
(P ), we would like the scheduling algorithmto compute an execution schedule X with TP (X ) = O(T1=P ) and SP (X ) = O(S1P ).In light of the lower-bound, we consider scheduling algorithms for a speci�c class of depth-�rst multithreaded computations. In particular, we consider multithreaded computations inwhich all data dependencies go from a child thread to an ancestor thread as illustrated inFigure 5.1.Requiring that all data dependencies go from a child thread to an ancestor thread can beviewed as requiring all function invocations (in a functional language) to be strict, and therefore,we refer to this class of computations as strict multithreaded computations. For example, manylanguages express parallelism with the future construct [12, 15, 21].



37The expression (future X), where X is an arbitrary expression, creates a task toevaluate X and also creates an object known as a future to eventually hold thevalue of X . When created, the future is in an unresolved, or undetermined, state.When the value of X becomes known, the future resolves to that value, e�ectivelymutating into the value of X and losing its identity as a future. Concurrency arisesbecause the expression (future X) returns the future as its value without waitingfor the future to resolve. Thus, the computation containing (future X) can proceedconcurrently with the evaluation of X . [21]Consider the following code fragment:(let ((a (future A))(b (future B)))(+ C (F a b)))Such a code fragment could appear for example in a Mul-T [21] program. Figure 5.2(a) illus-trates the corresponding multithreaded computation. In this example, the thread evaluatingthis code can spawn child threads to evaluate expressions A and B concurrently; to the parentthread, identi�ers a and b are futures until they resolve. Furthermore, evaluation of A andB can proceed concurrently with the parent thread's evaluation of expression C. Once theparent thread has evaluated C (and F ) it can go ahead and spawn a child thread to evaluatethe invocation (F a b) even if the arguments have not resolved. When a function is invokedwith an argument that is a future, the invocation is called nonstrict, hence, we call the spawnnonstrict as well. To make this computation strict, we must ensure that the function value of Fis not invoked until the arguments a and b resolve. In Mul-T, this strictness can be expressedwith the touch construct as shown in the following code fragment:(let ((a (future A))(b (future B)))(+ C (F (touch a) (touch b))))In this case, before the parent thread goes to spawn the invocation (F a b), it touches thearguments a and b, thereby forcing the thread to stall until those arguments resolve. Thenwhen it performs the spawn, the arguments are no longer futures, and consequently, the spawnis strict. Figure 5.2(b) illustrates the computation corresponding to this strict version of the



38 Chapter 5. Scheduling algorithms for strict multithreaded computationscode | notice that the data dependencies now conform to the strictness condition. The strictversion of this computation still has parallelism: The expressions A, B, and C can still byevaluated concurrently; it's just that evaluation of A and B can no longer operate in parallelwith the invocation (F a b).Strict computations are also depth-�rst since requiring all data dependencies to go from achild thread to an ancestor prohibits any data dependency going from one subcomputation ofa thread to another subcomputation of that thread.For strict multithreaded computations, once a thread � has been spawned, a single processorcan complete the execution of � and all of its descendant threads by using a depth-�rst scheduleeven if no other progress is made on other parts of the computation. In other words, from thetime the thread � is spawned until the time � terminates, there is always at least one threadfrom the subtree rooted at � that is ready. This property allows us to derive algorithms toschedule the execution of these computations with e�cient use of both time and space.We �rst show that for any strict multithreaded computation, there exists an execution sched-ule that achieves linear speedup with linear expansion of space. We demonstrate such schedulesby exhibiting a completely synchronous scheduling algorithm that we callGDF (stands for globaldepth-�rst). On a P -processor parallel computer, for any strict multithreaded computation withwork T1, computation depth T1, and activation depth A = S1 possessing average available par-allelism T1=T1 = 
(P ), algorithm GDF computes a schedule X such that TP (X ) = O(T1=P )and SP (X ) = O(S1P ). This algorithm uses a centralized priority queue that is shared by allP processors, hence, the synchronization cost of this algorithm makes it impractical for anyreasonably large number of processors.By modifying GDF we can exhibit an algorithm that is e�cient for moderately sized ma-chines. This algorithm, which we call GDF', uses fewer accesses to the global queue while stillcomputing an equally good schedule.To obtain an algorithm that is e�cient for large machines, we use the technique of Karp andZhang [19] to replace the global priority queue with P local queues, one for each processor. Bycombining this technique with a new technique to throttle the execution and thereby maintain



39
A B

C

(F a b)

A
A
A

A
A
A

(a)

(b)

u

uFigure 5.2: (a) A nonstrict computation. The parent thread begins by spawning child threadsto evaluate expressions A and B. In parallel with the evaluation of A and B, the parent threadcan continue on to evaluate expression C. After evaluating C, the parent thread spawns a childthread to evaluate the invocation (F a b). This spawn can occur even before expression A or Bhas completed evaluation, in which case at least one of the corresponding identi�ers, a or b, isstill a future and the spawn is nonstrict. (b) A strict version of the same computation. In thiscase, the parent thread must stall at task u until both expressions A and B have completedevaluation. Thus, the corresponding identi�ers, a and b, are no longer futures when the spawnoccurs, and the spawn is strict.



40 Chapter 5. Scheduling algorithms for strict multithreaded computationsa modest degree of synchrony among the processors, we obtain a randomized algorithm thatwe call LDF (stands for local depth-�rst). For any strict multithreaded computation with lg Pslack in its average available parallelism | that is T1=T1 = 
(P lg P ) | algorithm LDFcomputes a schedule X with guaranteed space bound SP (X ) = O(S1P lgP ) and expected timebound E [TP (X )] = O(T1=P ). This algorithm is simple and distributed (it requires no globalcontrol nor any global data structures), and therefore, on a PRAM and certain low-latency,high-bandwidth �xed-connection networks, the scheduling costs are no more than a constantfactor of the execution time.Centralized scheduling algorithmsAlgorithm GDF maintains all active threads in a global queue prioritized by activation depth| the deepest threads get highest priority. At each step of the algorithm, the scheduler removesfrom the queue the P deepest ready threads (if there are fewer than P ready threads, it justremoves them all) and assigns them arbitrarily to the P processors so that each processorreceives at most one thread. Each processor that has an assigned thread then executes one taskfrom that thread. To complete the step, all surviving threads and all newly spawned threadsare placed back into the global queue.Theorem 5 For any number P of processors and any strict multithreaded computation withwork T1, computation depth T1, and activation depth A = S1, algorithm GDF computes aschedule X that achieves space SP (X ) � S1P and time TP (X ) � T1=P + T1.Proof: The time bound follows immediately from Theorem 1 since GDF always produces agreedy schedule.To prove the space bound, we show that the queue never contains more than P threads(ready or not) that span any activation depth. A thread � spans an activation depth d, if � hasactivation depth A(�) � d, and either � is the root or the parent thread �0 of � has activationdepth A(�0) < d. See Figure 5.3. For any time step t during the execution and any activationdepth d, let s(t; d) denote the number of active threads that span d at the start of step t. Then



41the total space s(t) being used at the start of time step t iss(t) = S1Xd=1 s(t; d): (5.1)By induction on the number of steps, we show that for all t, every activation depth d, hass(t; d) � P . With this bound, Equation (5.1) shows that s(t) � S1P for all time t, from whichthe space bound follows.The algorithm begins with just one active thread (the root), so for every activation depthd, we have s(1; d) � 1 � P . Now consider any activation depth d, and suppose that for timestep t, the induction hypothesis s(t; d) � P holds. The computation being strict means thatfor each of the s(t; d) active threads that span d at the start of step t, there is at least oneready thread with activation depth greater than or equal to d | remember, this property isthe crucial property that we get by having all data dependencies go from a child thread to anancestor thread. Therefore, step t begins with at least s(t; d) ready threads at or deeper than d.The depth-�rst ordering then ensures that no more than P � s(t; d) threads with depth lessthan d can execute at step t. Then since the only way to increase the number of threads thatspan d is to execute a thread shallower than d that spawns a child thread at or deeper than d,step t ends with at most s(t; d)+ (P � s(t; d)) = P active threads that span activation depth d.Therefore, s(t+ 1; d) � P , and the induction is complete.We can make this algorithm more e�cient by reducing the number of accesses to the globalqueue as follows. The algorithm begins with the root thread assigned to some arbitrary pro-cessor and the global queue empty. In general, at the start of a step, some processors have anassigned thread and some don't. Consider a step that begins with n processors that do not havea thread. In this case, to start the step, the scheduler removes from the queue the n deepestready threads (if there are fewer than n ready threads, it just removes them all) and assignsthem arbitrarily to the n processors so that each processor receives at most one thread. Eachprocessor (now considering all P of them) that has an assigned thread then executes one taskfrom that thread. Unless that thread spawns, terminates, or stalls, the processor can keep its



42 Chapter 5. Scheduling algorithms for strict multithreaded computations
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAS1

dFigure 5.3: The activation tree corresponding to the example computation of Figure 2.1. Eachblack node corresponds to a thread and the edges correspond to the spawn edges. Associatedwith each thread is an activation frame depicted by the grey rectangles drawn with heightequal to the size of the frame. Notice that the activation frames are located so that the top ofa thread's frame is just below the bottom of its parent's frame. In this way each thread's blacknode is drawn at its activation depth (depth increases in the downward direction). The threadsthat span activation depth d are indicated by highlighting the activation frame's border.thread so it will have a thread to start the next step. If the thread stalls, the processor mustreturn it to the global queue, and consequently, the processor will not have a thread to startthe next step. Similarly, if the thread terminates, the processor will not have a thread to startthe next step. Lastly, if the thread spawns, the processor returns the parent thread (the one itwas working on) to the global queue and keeps the child thread, and therefore, in this case, theprocessor will still have a thread to start the next step.This version of the algorithm, which we call GDF', achieves the same performance boundsas proved in Theorem 5, but requires access to the global queue only when threads spawn,terminate, or stall.



43Theorem 6 For any number P of processors and any strict multithreaded computation withwork T1, computation depth T1, and activation depth A = S1, algorithm GDF' computes aschedule X that achieves space SP (X ) � S1P and time TP (X ) � T1=P + T1.Proof: This proof follows the proof of Theorem 5, but we add the following assertion to theinduction hypothesis: For any activation depth d, if a step t begins with s(t; d) � P activethreads that span depth d, then step t begins with no more than P � s(t; d) processors thathave a thread with activation depth less than d. If this assertion is true at the start of step t,then at least s(t; d) processors get assigned to threads at or deeper than d, and step t+1 beginswith s(t+ 1; d)� P active threads spanning d. Also, since no more than P � s(t; d) processorswork on threads shallower than d during step t, step t+1 begins with no more than P � s(t; d)processors that have a thread shallower than d. We consider two cases based on the relative sizesof s(t; d) and s(t+1; d). If s(t+1; d)� s(t; d), then P �s(t; d) � P �s(t+1; d), and hence, stept+1 begins with no more than P�s(t+1; d) processors that have a thread with activation depthless than d. On the other hand, if s(t+ 1; d)> s(t; d), then s(t+ 1; d)� s(t; d) processors musthave executed a thread less deep than d that spawned a child thread at or deeper than d duringstep t. Each of these processors only keeps the thread with depth greater than or equal to d, andconsequently, step t+1 begins with no more than P�s(t; d)�(s(t+1; d)�s(t; d)) = P�s(t+1; d)processors that have a thread with activation depth less than d. In either case, step t+1 beginswith no more than P�s(t+1; d) processors having a thread less deep than d, thereby completingthe induction.This algorithm may be feasible for a modest number of processors, but for a large numberof processors, the cost of synchronization at the global queue becomes prohibitive. To derive atruly scalable and distributed algorithm, we need to split the global queue into P local queues| one for each processor.



44 Chapter 5. Scheduling algorithms for strict multithreaded computations



Chapter 6Distributed scheduling algorithmsIn a distributed scheduling algorithm, each processor works depth-�rst out of its own localpriority queue. Speci�cally, to get a thread to work on, a processor removes the deepest readythread from its local queue. Ideally, we would like the processor to then continue working onthat thread until it either stalls, terminates, or spawns, and when the processor does need toenqueue a thread (as in the case when the thread stalls or spawns) or dequeue a new thread,it does so by accessing only its local queue. Of course, this approach could result in processorswith empty queues sitting idle while other processors have large queues. Thus, we requireeach processor to have some access to non-local queues in order to facilitate some type of loadbalancing.The technique of Karp and Zhang [19] suggests a randomized algorithm in which threadsare located in random queues in order to achieve some balance. At the end of this chapter, weshow that the naive adoption of this technique does not work. In order to achieve the desiredresult, we modify the Karp and Zhang technique by incorporating a new mechanism to enforcea modest degree of synchrony among the processors.Algorithm LDF operates in iterations with each iteration consisting of a synchronizationphase followed by a computation phase and ending with a communication phase. In a syn-chronization phase, we compute a cuto� depth D that is a global value made available to allprocessors. During the following computation phase, only those threads with activation depthgreater than or equal to D can execute. Finally, the communication phase redistributes threadsto random locations. 45



46 Chapter 6. Distributed scheduling algorithmsThe operation of each phase is governed by a synchronization parameter r that a�ects boththe time and space performance of the algorithm. Let LDF(r) denote Algorithm LDF withsynchronization parameter r.In a synchronization phase of LDF(r), we use the synchronization parameter r to computethe cuto� depth D. Each processor pi, for i = 1; : : : ; P , computes the activation depth di of itsrth deepest ready thread. In other words, di is the activation depth for which processor pi hasfewer than r ready threads deeper than di but at least r ready threads at or deeper than di.Cuto� depth D is then computed simply byD = max1�i�P dias illustrated in Figure 6.1.During the computation phase of LDF(r), each processor executes one task from each readythread with activation depth greater than or equal to the cuto� depth D in its local queue. Wefurther forbid each processor from executing more than r spawns; if a processor has more thanr threads at or deeper than D that want to spawn, it may only execute r of them.The iteration ends with a communication phase during which each processor must moveeach ready thread with activation depth greater than or equal to D (as determined at thebeginning of the iteration) and each newly spawned thread from its local queue to a queueselected uniformly at random, independently for each thread.By using the synchronization parameter r to compute the cuto� depth and then ensuringthat each processor executes only tasks from threads at or deeper than the cuto� depth whileallowing at most r spawns, we get a guaranteed space bound.Lemma 7 For any number P of processors and any strict multithreaded computation with ac-tivation depth A = S1, Algorithm LDF(r) computes a schedule X such that SP (X ) � 2rS1P .Proof: We show by induction on the number of iterations that no activation depth ever hasmore than 2rP active threads that span it. Speci�cally, recalling the notation used in the proof



47
p1 p2 p3 p4

Cutoff
depthFigure 6.1: Computing the cuto� depth. Each column represents the local priority queue of a processor,and each row represents an activation depth with depth increasing in the downward direction. We depicteach thread by a circle located at its activation depth. The ready threads in each queue are ordered byactivation depth with ties broken arbitrarily. In this example, the synchronization parameter r = 12,and the rth deepest ready thread for each processor is shown in black. The deepest of these black threadsdetermines the cuto� depth. Only the ready threads at or deeper than the cuto� depth | those in theshaded region | can execute during the following computation phase.of Theorem 5, we show that for every activation depth d and every iteration t of the execution,s(t; d) � 2rP . The result then follows from Equation (5.1). As before, the base case is obvious.For any activation depth d and any iteration t of the execution, we consider 2 cases. Inthe �rst case, suppose iteration t begins with rP � s(t; d) � 2rP active threads spanningdepth d. Due to the strictness of the computation, there must be at least rP ready threadswith activation depth greater than or equal to d, and by pigeon-holing, some processor's localqueue must have at least r of them. Therefore, the cuto� depth D will be set with D � d.Consequently, during the computation phase of iteration t, no thread with activation depthless than d can execute and the iteration ends with no more active threads spanning depth dthan it started with. Now suppose iteration t begins with s(t; d) < rP active threads spanning



48 Chapter 6. Distributed scheduling algorithmsdepth d. In this case, during the computation phase, since each processor is only allowed rspawns, the number of active threads that span depth d can increase by at most rP , andtherefore, the iteration ends with no more than 2rP active threads spanning depth d. In eithercase, s(t+ 1; d) � 2rP , which completes the induction.In order to achieve speedup in the execution time, we must ensure that during the computa-tion phase of each iteration, each processor has some ready threads at or deeper than the cuto�depth. To ensure that the cuto� depth is not set too deep, we must use a large enough synchro-nization parameter r. On the other hand, the space bound of Lemma 7 is directly proportionalto r. By setting r = 6 lgP , the space bound of Lemma 7 becomes SP (X ) � 12S1P lg P , andwith high probability, most computation phases take O(lgP ) time and get at least P lg P tasksexecuted as we now show.To analyze the running time, we say that each iteration either succeeds or fails dependingon how many tasks execute. An iteration that begins with at least P lg P ready threads fails iffewer than P lgP of the ready threads get a task executed. An iteration that begins with fewerthan P lg P ready threads fails if not all of them get a task executed.We now show that with the synchronization parameter set to r = 6 lgP , each iteration failswith probability no more than P�5.Lemma 8 For any number P of processors, an iteration of Algorithm LDF(6 lgP ) fails withprobability no more than P�5.Proof: Consider an iteration that begins with at least P lgP ready threads, and suppose thatwhen two threads have the same activation depth, we give each thread a unique identi�er tobreak the tie so we can uniquely identify the P lg P deepest ready threads. If no local queuecontains more than 6 lgP of the P lg P deepest ready threads, then the synchronization phasesets the cuto� depth so that all P lg P of these deepest threads are at or deeper than the cuto�depth. Therefore, an iteration that begins with at least P lgP ready threads succeeds if nolocal queue contains more than 6 lgP of the P lg P deepest ready threads.Consider a particular processor pi and let the random variable Zi denote how many of the



49P lg P deepest ready threads start the iteration in the local queue of processor pi. Each threadis located independently at random, hence, the random variable Zi has a binomial distributionwith P lgP trials and success probability 1=P . Therefore,Pr fZi > 6 lgPg �  P lg P6 lgP !� 1P �6 lgP :Then from the bound  xy! � �exy �y (6.1)and the fact that 6 � 2e, we can upper bound Pr fZi > 6 lgPg byPr fZi > 6 lgPg � �eP lgP6 lgP �� 1P �6 lgP= �e6�6 lgP� P�6:Now let Z = max1�i�P Zi. For an iteration that begins with at least P lg P ready threads, theprobability of failure is no more than Pr fZ > 6 lgPg. We can use Boole's Inequality to upperbound Pr fZ > 6 lgPg by adding the individual probabilities, from which,Pr fZ > 6 lgPg � P � Pr fZi > 6 lgPg � P�5:For the case of an iteration that begins with fewer than P lg P ready threads, the failureprobability is still upper bounded by Pr fZ > 6 lgPg where the random variable Z has thedistribution just described.We now show that iterations fail independently of each other. Speci�cally, we show thatknowing whether an iteration t fails provides no information about whether any future iterationfails. The failure of an iteration depends only on how the ready threads are distributed amongthe processors. Therefore, we need to show that knowing whether iteration t fails provides noinformation about the distribution of threads at the end of the iteration. Suppose iteration t has



50 Chapter 6. Distributed scheduling algorithmscuto� depth D. No matter if iteration t fails or not, the iteration ends with a communicationphase in which every ready thread at or deeper than D gets moved to a random location. Thus,iteration t provides no information about the distribution of threads at or deeper than the cuto�depth. Now consider the threads less deep than D. The only part of an iteration that evenconsiders the threads shallower than the cuto� depth is the synchronization phase. Therefore,we need to show that computing the cuto� depth provides no information about the distributionof threads with activation depth less than D. Consider an alternative method for computingthe cuto� depth. Let all the processors work in synch from the bottom up. First each processorcounts the number of ready threads it has with activation depth S1. Then each processor addson the number of ready threads it has with activation depth S1�1. We continue in this manneruntil some processor reaches a count of r (the synchronization parameter). At this depth westop and set the cuto� depth. In this way the synchronization phase can compute the cuto�depth with the exact same result but without ever considering threads shallower than D. Thus,computing the cuto� depth provides no information about the distribution of threads shallowerthan the cuto� depth.With iterations failing independently of each other, we can bound the number of failediterations, thereby bounding the total number of iterations taken.Lemma 9 For any number P of processors and any strict multithreaded computation withwork T1 and computation depth T1, for any � > 0, with probability at least 1 � �, AlgorithmLDF(6 lgP ) computes a schedule X that takes O(T1=(P lg P ) + T1 + logP (1=�)) iterations.Proof: First we consider the failed iterations. Let the random variable f denote the numberof failed iterations. We will show that for any � > 0, the probability that f � eT1=(P lg P ) + bis no more than � when b = 13 logP (1=�). There are at most T1 iterations since each iterationalways results in at least one task being executed, and each iteration fails independently withprobability P�5. Therefore, f is bounded by a binomial distribution with T1 trials and success



51probability P�5, from whichPr�f � e T1P lg P + b� �  T1e T1P lgP + b!� 1P 5�e T1P lg P +b :Then using Inequality (6.1) we getPr�f � e T1P lgP + b� �  eT1e T1P lgP + b � 1P 5!e T1P lg P +b� �P lgPP 5 �e T1P lg P +b� � 1P 3�b= P�3b;and P�3b = � for b = 13 logP (1=�). Thus, with probability at least 1 � �, f = O(T1=(P lgP ) +logP (1=�)).Now consider the successful iterations. A successful iteration that begins with at leastP lg P ready threads, executes a task from at least P lg P of them, and a successful iterationthat begins with fewer than P lgP ready threads, executes a task from every ready thread.Therefore, we can think of each successful iteration as a step in a greedy schedule with P lg Pprocessors. Then, as in the proof of Theorem 1, we know that there can be no more thanT1=(P lgP ) + T1 successful iterations.Adding together the number of successful iterations and the number of failed iterationscompletes the proof.Now if we let the random variable Xi denote the time taken by the ith computation phaseof Algorithm LDF(6 lgP ), we can give the total time in computation phases as the randomvariable X = X1 + X2 + � � � + XY where Y is the random variable denoting the number ofiterations. The time taken by the ith computation phase is proportional to the maximumnumber of ready threads with activation depth greater than or equal to the cuto� depth inany processor. There can be a total of at most 18P lg P ready threads at or deeper than the



52 Chapter 6. Distributed scheduling algorithmscuto� depth | r = 6P lgP deeper than the cuto� depth and 12P lgP at the cuto� depth (fromLemma 7 with synchronization parameter r = 6 lgP ) | and each of these threads is locatedindependently at random. Thus, we can bound each Xi as the size of the largest bin whenthrowing 18P lg P balls at random into P bins. Furthermore, by the independence argument,the Xi's are independent. We can now bound the random variable X .Lemma 10 Let the random variable X denote the sum of Y mutually independent randomvariables, X = X1 +X2 + � � �+ XY with each Xi, for i = 1; : : : ; Y , distributed as the numberof balls in the fullest bin when throwing P lnP balls independently at random into P � 2 bins.Then for any � > 0, we have X = O(Y lnP + lg(1=�)) with probability at least 1� �.Proof: We have Pr fX � aY ln P + bg = PrneX=e � e(aY ln P+b)=eo� E heX=ei e�(aY lnP+b)=e (6.2)by Markov's inequality. By the independence of the Xi's,E heX=ei = YYi=1E heXi=ei : (6.3)From the de�nition of expectation,E heXi=ei = P lnPXj=lnP Pr fXi = jg ej=e:To bound E �eXi=e�, we break this sum into pieces. First we break out the terms from j = ln Pto j = e3 lnP � 1, which yieldsE heXi=ei = e3 ln P�1Xj=ln P Pr fXi = jgej=e + P lnPXj=e3 lnP Pr fXi = jg ej=e: (6.4)The �rst of these sums we bound by factoring out the largest term and upper-bounding the



53sum of probabilities by 1:e3 lnP�1Xj=lnP Pr fXi = jg ej=e � e3 ln P�1Xj=ln P Pr fXi = jg ee2 lnP= ee2 ln P e3 lnP�1Xj=lnP Pr fXi = jg� ee2 ln P : (6.5)To bound the second sum in Equation (6.4), we further break the range of the index variablej into smaller pieces indexed by k = 3; : : : ; dlnPe � 1, with piece k going from j = ek lnP toj = ek+1 ln P � 1:P ln PXj=e3 lnP Pr fXi = jgej=e = dln Pe�1Xk=3 0@ek+1 lnP�1Xj=ek lnP Pr fXi = jg ej=e1A� dln Pe�1Xk=3 0@eek lnP ek+1 ln P�1Xj=ek ln P Pr fXi = jg1A� dln Pe�1Xk=3 eek ln P Pr�Xi � ek lnP	= dln Pe�1Xk=3 P ek Pr�Xi � ek ln P	 : (6.6)Now we can bound Pr�Xi � ek ln P	 by the same technique as in Lemma 8, since Xi has thesame distribution has the random variable Z considered in the proof of Lemma 8:Pr�Xi � ek lnP	 � P P lnPek lnP!� 1P �ek ln P� Pe�(k�1)ek ln P= P�(k�1)ek+1:



54 Chapter 6. Distributed scheduling algorithmsSubstituting this bound into Inequality (6.6) yieldsP lnPXj=e3 lnP Pr fXi = jg ej=e � dlnPe�1Xk=3 P ekP�(k�1)ek+1� 1Xk=3P�(k�2)ek+1� 1; (6.7)since the sum is bounded by the geometric sum P1k=1 2�k = 1. Now, we can substitute Inequal-ity (6.5) and Inequality (6.7) back into Equation (6.4), producingE heXi=ei � ee2 ln P + 1� e(e2+1) ln P :Substituting this bound into Equation (6.3) and then substituting into Inequality (6.2), weobtain Pr fX � aY ln P + bg � e((e2+1) lnP )Y e�(aY lnP+b)=e= exp���ae � e2 � 1�Y ln P � be�� exp��be�for a � e3 + e. Thus, with b = e ln(1=�), we obtainPr �X � (e3 + e)Y lnP + e ln(1=�)	 � �:We can now characterize the time and space usage for execution schedules computed by theLDF algorithm with synchronization parameter r = 6 lgP .



55Theorem 11 For any number P � 2 of processors and any strict multithreaded computationwith work T1, computation depth T1, and activation depth A = S1, Algorithm LDF(6 lgP )computes a schedule X that uses space SP (X ) = O(S1P lgP ), and for any � > 0, with probabilityat least 1� �, the schedule uses time TP (X ) = O(T1=P + T1 lg P + lg(1=�)).Proof: The space bound follows directly from Lemma 7 with synchronization parameter r =6 lgP . The time TP (X ) is the total time taken in computation phases. Let the random variableY denote the number of iterations. Then we can decompose TP (X ) as a sum of Y mutuallyindependent random variables, TP (X ) = X1 + X2 + � � � + XY with each Xi distributed asthe size of the fullest bin when throwing 18P lg P balls independently at random into P bins.Using �=2 as the value of � in Lemma 9, we obtain Y = O(T1=(P lg P ) + T1 + logP (1=�)) withprobability at least 1� �=2. Then, using �=2 as the value of � in Lemma 10, we obtain TP (X ) =O(Y lgP + lg(1=�)) with probability at least 1 � �=2 (using 18P lgP instead of P ln P onlya�ects the constant). Thus, with probability at least 1� �, the total time taken in computationphases is TP (X ) = O(T1=P + T1 lg P + lg(1=�)).Corollary 12 For any number P � 2 of processors and any strict multithreaded computationwith work T1 and computation depth T1, Algorithm LDF(6 lgP ) computes a schedule X withexpected execution time E [TP (X )] = O(T1=P + T1 lgP ).Proof: Just use � = 1=P in Theorem 11 to get TP (X ) = O(T1=P + T1 lgP ) with probabilityat least 1� 1=P . ThenE [TP (X )] � �1� 1P �O�T1P + T1 lg P�+ 1P T1= O�T1P + T1 lgP� :The LDF(6 lgP ) algorithm achieves linear expected speedup when the computation hasaverage available parallelism T1=T1 = 
(P lgP ).



56 Chapter 6. Distributed scheduling algorithmsWe can view the lgP factors in the space bound and the average available parallelismrequired to achieve linear speedup as the computational slack required by Valiant's bulk-synchronous model [33]. The space bound SP (X ) = O(S1P lgP ) indicates that AlgorithmLDF(6 lgP ) requires memory to scale su�ciently to allow each physical processor enoughspace to simulate lg P virtual processors. Given this much space, the time bound E [TP (X )] =O(T1=P + T1 lg P ) then demonstrates linear expected speedup provided the computation haslg P slack in the average available parallelism.Practical considerationsIn many models of parallel computation, the queueing, synchronization, and communicationcosts for Algorithm LDF(6 lgP ) are only a constant fraction of the execution time. If a globalmax across the P processors can be accomplished in O(lgP ) time, then each synchronizationphase takes only O(lgP ) time, and since each computation phase takes 
(lgP ) time, thesynchronization phases take at most a constant fraction of the total time. To ensure that thecommunication costs make up only a constant fraction of the total time, each processor mustbe able to send w = 
(lgP ) threads to random processors in O(w) time. For each thread, thecommunication may involve sending just a word or two of thread description, or it my involvesending the entire activation frame. When the amount of information that needs to be sent witheach thread is just some constant amount, then these requirements are met by a hypercube orindirect butter
y using Ranade's algorithm [28] to do the routing.In order to facilitate the analysis of the LDF algorithm, we had to use a rather large syn-chronization parameter, but in practice, we expect that Algorithm LDF can be implementedwith signi�cantly smaller values of r and a small constant in the expected time bound of Corol-lary 12. With greater care in the analysis, the synchronization parameter can be reduced from6 lgP to 4 lgP . This reduction in r, reduces the space bound of Theorem 11 from 12S1P lg Pto 8S1P lg P . The constant hidden in the expected time bound of Corollary 12 then works outto be slightly less than 69; as the number P of processors increases, however, this constantapproaches 34. These constants are, of course, artifacts of the analysis. A proper value for



57the synchronization parameter should be determined empirically. With fairly large machines,values of r much smaller than 4 lgP should work to yield small constants in both the space andexpected time bounds.If implemented, LDF(r) can be modi�ed to allow more asynchrony in the execution, re-quire less thread migration, and take better advantage of speci�c processor architectures. Inparticular, during an iteration, each processor can work on threads in any way it desires so longit obeys the following rules.1. Only threads at or deeper than the cuto� depth may execute.2. Only r spawns may be performed.3. Each thread at or deeper than the cuto� depth must �nish the iteration at a randomlocation.With these rules, an iteration can continue for an arbitrarily long time. The computationphase only has to end when a constant fraction of the processors no longer have work to do.In the case of a computation phase in which more than a constant fraction of the processorsgo idle before lg P steps, the phase cannot end until each of the other processors has executedat least one task from each of its threads at or deeper than the cuto� depth (modulo rule 2).Once enough processors go idle, the communication phase begins to ensure that each processorobserves rule 3 (and this last provision if necessary), and then the iteration ends. During thecomputation phase, some processors may want to interleave the execution of multiple threadswhile others may prefer long runs with a single thread.Bounding individual processor storage requirementsThe space bound of Theorem 11 is an aggregate bound, but in a distributed memory machine,we may want to bound the space associated with each individual processor's queue. In the LDFalgorithm, each active thread is located in the local queue of a processor chosen at random,so we assume that each activation frame is located in the local memory of the same randomlychosen processor as its associated active thread. Since Lemma 7 shows that the aggregate space



58 Chapter 6. Distributed scheduling algorithmsused by Algorithm LDF(r) is bounded by 2rS1P , we would like some way to ensure that eachindividual processor requires space bounded by O(rS1).Since activation frames are located in randomly chosen processors, we can show that atany given iteration, the expected spaced needed by any given processor is no more than 2rS1.Suppose that at some iteration t, there are k active threads with frame sizes F1;F2; : : : ;Fk.Consider a particular processor p, and let the random variable W denote the total space beingused by activation frames located in the memory of processor p. We can decompose W as theweighted sum of mutually independent indicator random variables:W = F1W1 + F2W2 + � � �+ FkWkwhere the random variable Wi indicates whether the ith active thread is located at processor p.Since each active thread is located at a processor chosen uniformly at random, the expectedvalue of Wi is given by E [Wi] = Pr fWi = 1g = 1=P . Then we can bound the expected valueof W by E [W ] = F1E [W1] + F2E [W2] + � � �+ FkE [Wk]= 1P kXi=1 Fi� 1P 2rS1P= 2rS1;since the sum of the frame sizes is bounded in Lemma 7 by 2rS1P .To show that for any given iteration t, with high probability, no processor uses more thanO(rS1) space for activation frame storage, we use the following result due to Raghavan [27,Theorem 1].



59Lemma 13 (Raghavan) Let a1; a2; : : : ; ak be reals in (0; 1]. Let  1;  2; : : : ;  k be independentBernoulli trials, and let 	 =Pki=1 ai i. Then for any � > 0,Pr f	 > (1 + �)E [	]g �  e�(1 + �)(1+�)!E[	] :Setting ai = Fi=S1, we can bound Pr fW > 2erS1g by applying Lemma 13 to the randomvariable 	 with E [	] = 2r. ThenPr fW > 2erS1g � Pr f	 > eE [	]g� �ee�1ee �E[	]= e�2r:If the synchronization parameter is set with r = r0 lnP where r0 � 1, this probability is nomore than P�2r0 . Then, since there are P processors, the probability that any processor usesmore than 2erS1 = O(rS1) space at iteration t is bounded by P�(2r0�1).This probabilistic bound shows that with an appropriate choice of synchronization param-eter, we can allow each processor O(rS1) space and ensure that no processor ever exceeds thisspace allotment by simply rerandomizing the thread locations any time a processor �lls up itsallotted space. As we just proved, the probability that rerandomizing is needed at any given it-eration is no more than P�(2r0�1). Therefore, the expected number of times that rerandomizingis needed over the course of the entire execution is no more than T1=P 2r0�1. If rerandomizingcan be accomplished in O(rS1) time | as is the case with a fully-connected, hypercube, orindirect butter
y network | then the total expected time taken by rerandomization is no morethan O� T1P 2r0�1rS1� = O� T1P 2r0�1 r0S1 lg P� :This total expected rerandomization time is O(T1=P ) provided r0 = 
(1 + logP S1). Thus, by



60 Chapter 6. Distributed scheduling algorithmssetting the synchronization parameter to r = �(lg P + lgS1) and rerandomizing thread loca-tions when any processor �lls its space allotment, the LDF algorithm achieves linear expectedspeedup (provided the computation has lgP slack in its average available parallelism) witheach processor's storage requirement bounded by O(S1(lgP + lg S1)). When S1 is bounded bya polynomial in P , this space bound is O(S1 lgP ).Simple strategies that don't workTo conclude this chapter, we now show that some simpler ways of adopting the Karp and Zhangtechnique do not work.The most natural thing to try is to have each processor work depth-�rst out of its localqueue and spawn new threads to random locations. Speci�cally, when a processor executes atask from a thread, if it spawns a new thread, the original thread is kept locally and the newchild thread is moved to the queue of a processor selected uniformly at random from all Pprocessors. With this method, once a thread gets spawned and placed into a random queue,it never has to migrate. Unfortunately, this method does not work as the following scenarioillustrates. Suppose a processor p has as its deepest thread a thread that just keeps spawningchildren | a loop with many iterations for example | and each child thread has a unit sizeactivation frame. Suppose also that this loop thread is at activation depth d and all the otherprocessors are busy executing long threads at activation depths greater than d + 1. In thiscase, most of the invocations (which have depth d+ 1) spawned by the loop thread land in thequeues of the other P � 1 processors and languish there. The occasional invocation that landsat processor p temporarily interrupts the loop thread, but if each loop invocation is just a shortthread, processor p quickly resumes executing the loop thread. Thus, the loop invocations justkeep piling up and eventually over
ow memory.To �x this problem, we must force threads to migrate. After a processor executes a taskfrom a thread, it moves that thread to the local queue of a processor selected uniformly atrandom, and as before, any newly spawned threads are placed at random. Unfortunately, eventhis method does not work as the following scenario illustrates. Consider an activation depth d



61and suppose the threads at d are long sequential threads with unit size activation frames andthe threads at depth d� 1 just keep spawning these long threads. At each step, if a processorhas a depth d thread, it just executes a task from that thread and then moves that thread toa random processor; otherwise, it executes a depth d� 1 thread which spawns a child at depthd. Therefore, if we look at the queues at depth d as bins and the threads as balls, we have thefollowing process. At each step, one ball is removed from each non-empty bin and P new ballsare thrown at random into the P bins. If we consider this process over n steps and consider theballs arriving in a particular bin, we have a binomial distribution with mean n and standarddeviation �(pn). Thus, we can show that the expected number of balls that arrive into thefullest bin is n+
(pn). During this time, at most n balls are removed from this bin, hence,this bin contains 
(pn) balls at the end of these n steps. Recall that each ball correspondsto an activation frame, and therefore, this probabilistic analysis shows that over time, somequeue's size grows as the square root of the elapsed time.The basic problem in the above scenario is that with a purely random process without anyglobal control, over time, processors get out of synch with each other. Even though there maybe lots of deep threads in the system, every once in a while, some processor will be withoutany of these deep threads and therefore will execute a task from a shallow thread that spawnsa child. Thus, over time, the number of threads in the system can just keep growing. Oursolution to this problem uses a moderate degree of global control to throttle the execution ofprocessors that get out of synch. We implement this throttle by maintaining a cuto� depthto ensure that all processors only execute threads that are among the deepest in the system;a processor that does not have any of these deepest threads cannot execute any tasks until itgets some of these deepest threads.



62 Chapter 6. Distributed scheduling algorithms



Chapter 7Scheduling nonstrict, depth-�rst multithreadedcomputationsThe algorithms of Chapterss 5 and 6 for strict multithreaded computations can also be used fornonstrict, depth-�rst computations | just change the computation to make it strict and thenexecute the strict computation. Transforming a computation to make it strict involves simplyadding data dependency edges as illustrated in Figures 5.1 and 5.2; we call this transformation,strictifying the computation. This transformation is always valid for depth-�rst computations.For arbitrary computations, however, there are examples for which strictifying adds data de-pendency edges that introduce cycles into the computation; for such computations, nonstrictspawns are required in any valid execution schedule.Consider an arbitrary depth-�rst multithreaded computation with work T1, computationdepth T1 and activation depth A = S1. Strictifying this computation produces a new compu-tation with the same work and activation depth but with a possibly larger computation depththat we denote T (s)1 . Executing the strict computation on a P -processor computer with algo-rithm GDF generates an execution schedule X with SP (X ) � S1P and TP (X ) � T1=P + T (s)1 .Such a schedule achieves linear speedup provided the strict computation has su�cient aver-age available parallelism; that is, provided T1=T (s)1 = 
(P ). In general, any of the algorithmsof Chapterss 5 and 6 achieve linear speedup (or linear expected speedup) provided the strictcomputation has average available parallelism su�ciently large relative to P (or P lgP ). WhenT (s)1 is much larger than T1, however, the strict computation may not have su�cient averageavailable parallelism even though the original (nonstrict) computation does. The fact that anonstrict computation may have far more parallelism than its strict counterpart is one of the63



64 Chapter 7. Scheduling nonstrict, depth-�rst multithreaded computationsreasons for nonstrictness. Hence, we would like a technique by which a scheduler can exploitat least some of the parallelism o�ered by nonstrict spawns.The lower bound of Theorem 4, however, should temper our expectations. The computationsdemonstrated in the proof of Theorem 4 are all depth-�rst, but they use extreme amounts ofnonstrictness in order to achieve parallelism. As the theorem shows, exploiting this nonstrictparallelism requires potentially unmanageable amounts of storage. Thus, we cannot hope fora technique that achieves parallel speedup from arbitrary uses of nonstrict spawns while stillmaintaining reasonable space bounds.In this chapter, we exhibit a technique that allows a scheduler to exploit some of the par-allelism available through nonstrict spawns. This technique allows the scheduler to performsome nonstrict spawns while still maintaining space bounds that are within a constant factorof the bounds it obtains for strict computations. Of course, this technique cannot guaranteeany speedup from the nonstrict spawns, but it does guarantee execution time that is no greaterthan the execution time obtained by strictifying and executing the strict computation.It is important to realize that when space is bounded, the use of nonstrict spawns whenexecuting a computation can actually result in an execution time that is longer than the exe-cution time that results from simply executing the stricti�ed computation. Suppose we couldexecute the computation as if it were stricti�ed, but at each step, if there is an idle processorand a thread that is stalled (due to the strictness condition) at a task that wants to spawn, welet the processor go ahead and execute that task thereby performing a nonstrict spawn. Forexample, in executing the computation of Figure 5.2(a), if at some time step t, execution ofthe parent thread is at the task u that spawns the invocation (F a b) and execution of eitherthe child thread evaluating expression A or the child thread evaluating expression B is notcomplete, then task u can only execute if a processor would otherwise go idle. Performing thespawn requires allocating an activation frame, and this is where the trouble lies as the followingscenario illustrates: Suppose there is a single thread � computing a value A that is used bylots of other threads. At step t, one processor executes a task from �, and instead of idling,some of the other processors perform nonstrict spawns | invoking functions that have A as



65an argument, for example. At the next step, the same thing happens, and this continues forawhile. Over time, memory gets �lled up with the activation frames of these threads that werespawned nonstrictly. To avoid over
owing memory bounds, eventually these nonstrict spawnsmust cease. At this point, thread � is still computing A, and lots of other threads are stalledwaiting for A. Now, if � wants to spawn a bunch of child threads to help it compute A, itcannot do so since memory is already full. In this case, the nonstrict spawns do not really addany useful parallelism since the spawned threads just stall waiting for A. Useful parallelismcould have come from the evaluation of A, but with memory full, that parallelism cannot beexploited. Thus, performing nonstrict spawns may increase processor utilization for a brief spellbut at the cost of forcing very low processor utilization for a potentially very long period oftime | a period of time that could have had very high processor utilization had those nonstrictspawns not been performed.To keep the nonstrict spawns from hindering the progress of other parts of the computation,we classify each active thread as either strict or nonstrict and then ensure that the nonstrictthreads do not �ll up too much memory. When a thread is spawned nonstrictly, we say thatthe thread itself is nonstrict. A nonstrict thread remains nonstrict until those data dependen-cies that caused the spawn to be nonstrict in the �rst place get resolved. Once those datadependencies get resolved, the thread is strict. For example, in executing the computationin Figure 5.2(a), if the child thread that evaluates the invocation (F a b) is spawned non-strictly, then that thread remains nonstrict until both the thread evaluating expression A andthe thread evaluating expression B terminate thereby resolving the associated data dependen-cies. A strictly spawned thread is considered strict and remains strict. Observe that from thetime an active thread � becomes strict until the time � terminates, there is always at least onethread from the subtree rooted at � that is ready. This crucial property of strict threads incombination with an enforced bound on the space used by nonstrict threads forms the basis fora technique that we call �-sequestering.To ensure that the activation frames of nonstrict threads do not interfere with the progressof strict threads, the �-sequestering technique allocates separate space | the amount is deter-



66 Chapter 7. Scheduling nonstrict, depth-�rst multithreaded computationsmined by the value of �| for use by the nonstrict threads. By maintaining a separate region ofmemory for the activation frames of nonstrict threads, �-sequestering allows nonstrictness with-out adversely a�ecting the running time. We execute the computation as if it were stricti�ed,but at each step, if there are idle processors and threads that are stalled (due to the strictnesscondition) at tasks that want to spawn, we allow processors to perform these nonstrict spawnsso long as the activation frames of the resulting nonstrict threads do not over
ow their regionof memory.We illustrate the e�ectiveness of �-sequestering in conjunction with the global depth-�rstalgorithm GDF. Suppose we allow nonstrict spawns only so long as no activation depth everhas more than �P active, nonstrict threads that span it. We are not specifying any speci�cway of prioritizing among nonstrict spawns | we are only saying that nonstrict spawns canonly occur when processors would otherwise go idle, and they can only occur so long as noactivation depth ever has more than �P active, nonstrict threads that span it. For this reason,we refer to this scheduling policy as the �-sequestered GDF method (rather than algorithm).Theorem 14 For any number P of processors and any depth-�rst multithreaded computationwith work T1, strict computation depth T (s)1 , and activation depth A = S1, the �-sequesteredGDF method computes a schedule X such that TP (X ) � T1=P +T (s)1 and SP (X ) � (1+�)S1P .Proof: The time bound follows from Theorem 1 since the schedule X is greedy with respectto the stricti�ed version of the computation.To prove the space bound, we show that no activation depth ever has more than (1 + �)Pactive threads that span it. Speci�cally, using the notation from the proof of Theorem 5, weshow that for every activation depth d and every time step t, the bound s(t; d) � (1 + �)Pholds. The space bound then follows from Equation (5.1). As before, we prove this bound byinduction on the number of time steps, and again, the base case is obvious.Now, consider a time step t that begins with s(t; d) � (1 + �)P active threads spanning d.Further, let s0(t; d) denote the number of these threads that are strict. With s0(t; d) active,strict threads spanning d, there must be at least s0(t; d) ready threads at or deeper than d. We



67consider two cases. In the �rst case, s0(t; d) � P . In this case, there are at least P ready threadsat or deeper than d, hence, no threads less deep than d execute at step t. Therefore, the numberof active threads that span d cannot increase during step t, so s(t + 1; d) � s(t; d) � (1 + �)P .In the other case, s0(t; d) < P , so as many as P � s0(t; d) threads less deep than d may executeduring step t. Consequently, the number of threads that span d may increase by as many asP � s0(t; d) but not more. Thus,s(t+ 1; d) � s(t; d) + (P � s0(t; d))= P + (s(t; d)� s0(t; d))� P + �Psince s(t; d)� s0(t; d) is the number of active, nonstrict threads that span d, and this number,by force of the method, is no more than �P . In both cases, s(t + 1; d) � (1 + �)P , and theinduction is complete.Exactly as with GDF, we can use the �-sequestering technique with algorithm GDF' toyield the �-sequestered GDF' method.Theorem 15 For any number P of processors and any depth-�rst multithreaded computationwith work T1, strict computation depth T (s)1 , and activation depth A = S1, the �-sequesteredGDF' method computes a schedule X such that TP (X ) � T1=P +T (s)1 and SP (X ) � (1+�)S1P .Proof: This proof follows the proof of Theorem 14, but we add the following assertion to theinduction hypothesis: For any activation depth d and time step t, if t begins with s0(t; d) active,strict threads that span d, then t also begins with no more than max(P � s0(t; d); 0) processorshaving a thread with activation depth less than d. Proving that this additional assertion holdsfollows the proof of Theorem 6.This �-sequestering technique can also be used with the local depth-�rst algorithm LDF.At each iteration, only those threads (strict or nonstrict) at or deeper than the cuto� depth



68 Chapter 7. Scheduling nonstrict, depth-�rst multithreaded computationscan execute, and each processor is allowed no more than r spawns (strict or nonstrict), wherer is the synchronization parameter. Nonstrict spawns are allowed only when a processor wouldotherwise go idle and only so long as no activation depth ever has more than �P active,nonstrict threads that span it. This �-sequestered LDF method achieves execution time asstated in Theorem 11 but with T1 replaced by T (s)1 ; this result follows by making the obviouschange in the proof of Lemma 9. The space bound is captured in the following theorem.Theorem 16 For any number P of processors and any depth-�rst multithreaded computationwith activation depth A = S1, the �-sequestered LDF(r) method computes a schedule X suchthat SP (X ) � (2r+ �)S1P .Proof: We show that for any activation depth d and any iteration t, the bound s(t; d) �(2r+�)P holds. Again, we prove this bound by induction on the number of iterations, and thebase case is obvious.Now, consider an iteration t that begins with s(t; d) � (2r+�)P active threads that span d.And as before, let s0(t; d) denote the number of active, strict threads that span d at the startof iteration t. Consider two cases. In the �rst case, s0(t; d) � rP . In this case there are at leastrP ready threads at or deeper than d and by pigeon-holing, some processor must have at leastr of them. Therefore, the synchronization phase sets the cuto� depth D with D � d, hence, nothread less deep than d executes at iteration t. Consequently, s(t+ 1; d) � s(t; d) � (2r+ �)P .In the other case, s0(t; d) < rP . In this case, the number of active threads that span d mayincrease but not by more than rP since no processor may execute more than r spawns duringan iteration. Then s(t + 1; d) � s(t; d) + rP= (s(t; d)� s0(t; d)) + (s0(t; d) + rP )� (s(t; d)� s0(t; d)) + 2rP� �P + 2rPsince s(t; d)� s0(t; d) is the number of active, nonstrict threads that span d, and this number,



69by force of the method, is no more than �P . In both cases, s(t + 1; d) � (2r + �)P , and theinduction is complete.By adjusting the value of �, the �-sequestering technique provides some control over thespace bounds and the allowable nonstrictness. With � = 0, the computation is forced to executestrictly. At the other extreme, with � = 1, the computation may execute with arbitraryamounts of nonstrictness (and achieve execution time within a factor of two of optimal by usinga greedy schedule) but with a potentially huge demand on space. In order to maintain spacebounds that are within a constant factor of those obtained with strict computations, the value �needs to be no more than a constant (forGDF orGDF') or proportional to the synchronizationparameter (for LDF).The �-sequestering technique does not specify how to schedule nonstrict spawns, it doesnot specify how to determine whether a particular spawn will be nonstrict, and it does notspecify how to keep track of the space being used by nonstrict threads. All of these furtherspeci�cation are needed for a real algorithm or implementation. Furthermore, �-sequesteringdoes not guarantee any speedup from the nonstrict parallelism. Nevertheless, with properlinguistic and runtime mechanisms, �-sequestering may prove feasible, and with new ways toprioritize the nonstrict spawns, �-sequestering may be able to exploit nonstrict parallelismwith small values of � and provable speedup for speci�c uses of nonstrictness in depth-�rstcomputations.



70 Chapter 7. Scheduling nonstrict, depth-�rst multithreaded computations



Chapter 8Related workStorage management for multithreaded computations has been a concern for a number of years.In 1985, Halstead [12] described this problem.A classical di�culty for concurrent architectures occurs when there is too muchparallelism in the program being executed. A program that unfolds into a very largenumber of parallel tasks may reach a deadlocked state where every task, to makeprogress, requires additional storage (e.g., to make yet more tasks), and no morestorage is available. This can happen even though a sequential version of the sameprogram requires very little storage. In e�ect, the sequential version executes thetasks one after another, allowing the same storage pool to be reused. By trying toexecute all tasks at the same time, the parallel machine may run out of storage.Nevertheless, precious little prior work has addressed this problem. To date, most existingtechniques for controlling storage requirements have consisted of heuristics to either boundstorage use by explicitly controlling storage as a resource or reduce storage use by modifyingthe scheduler's behavior. We are aware of no prior scheduling algorithms with proven time andspace bounds.The storage management problem, as described by Halstead, can be quite pronounced underthe execution of a fair scheduler. By executing threads in round-robin fashion, a fair schedulergives each ready thread a fair portion of the execution time. A fair scheduler aggressivelyexposes parallelism, often resulting in excessive space requirements. Consider the multithreadedcomputation of Figure 8.1. Let N denote the number of leaf threads (this computation performsa divide-and-conquer algorithm on an input of size N), and suppose each activation frame hasunit size. This computation has work T1 = �(N) and activation depth A = �(lgN). Notice alsothat this computation is depth-�rst (and strict), and therefore it can be sequentially executed71



72 Chapter 8. Related work
Figure 8.1: A multithreaded computation to perform a divide-and-conquer algorithm. Eachnon-leaf thread spawns two children. Each child computes a value that it passes back to itsparent. Once the parent gets a value back from each child, it computes a result value that itthen passes up to its parent.using space S1 = A = �(lgN). A parallel execution with a fair scheduler, however, executesthis computation in (nearly) breadth-�rst order; at some point in the execution, nearly everyleaf thread is active, and therefore, the fair schedule X (with any number P � 2 of processors)uses space SP (X ) = �(N) | an exponential blowup in storage requirements.In order to curb the excessive exposition of parallelism, and consequent excessive use ofspace, exhibited by fair scheduling, researchers from the data
ow community have developedheuristics to explicitly manage storage as a resource. The e�ectiveness of these heuristics isdocumented with encouraging empirical evidence but no provable time bounds. We considertwo of these heuristic techniques: bounded loops and the course-grain throttle.Culler's bounded loops technique [6, 7, 8] uses compile-time analysis to augment the programcode with resource management code. For each loop of the program, the resource managementcode computes a value called the k-bound ; a k-bounded loop can have at most k iterationssimultaneously active. The k-bound represents k tickets each of which buys the use of somestorage. Once the loop has spawned k iterations, it must wait until one of those iterationscompletes and relinquishes its ticket; then the loop can use that ticket to spawn another it-eration. The compile-time analysis that generates the code that computes the k-bounds isbased on heuristics developed from a systematic study of loops in scienti�c data
ow programs(programs employing only iteration and primitive recursion) [7]. These heuristics attempt toset the k-bounds so that the exposed parallelism is maximized under the constraint that space



73usage stays within the machine's capacity.Ruggiero's course-grain throttle technique [30] makes storage allocation decisions based onoverall machine activity at run-time. When a process (thread) wants to spawn a child, itmust request an activation name from the resource management system. When the overalllevel of activity in the machine is high, the resource manager defers these requests, therebysuspending the requesting processes. When the activity level falls below a certain threshold,the resource manager begins granting deferred requests giving priority to the lowest, leftmostsuspended processes in the process (activation) tree. Like the bounded loops technique, thegoal of the coarse-grain throttle is to maximize the exposed parallelism under a �xed spaceusage constraint.In contrast with these heuristic techniques, we have chosen to develop an algorithmic foun-dation that manages storage by allowing programmers to leverage their knowledge of storagerequirements for sequentially executed programs. The two techniques just described view stor-age as a resource that requires explicit management, and they actually modify execution be-havior based on these management policies. Such techniques, however, generally have not beenneeded for programs running on serial machines | when the machine runs out of memory, theprogram terminates. On most uniprocessor systems, the job of ensuring that the program doesnot use too much memory rests solely with the programmer, and such systems work becauseprogrammers understand the storage model and they understand the execution schedule thatorders the invocations of the program's procedures. On parallel systems, however, the storagemodel is somewhat more complex and predicting the execution order is somewhat more di�-cult. Nevertheless, this increased complexity does not require encumbering parallel machineswith responsibility for bounding storage requirements. Programmers should still be able to un-derstand the storage model, and by developing an algorithmic understanding of scheduling thatrelates parallel storage requirements to serial storage requirements, programmers should stillbe able to predict how much storage their programs will use when run on a parallel computer.Other researchers have also addressed the storage issue by attempting to relate parallel stor-age requirements to serial storage requirements. Halstead, in completing the quoted paragraph



74 Chapter 8. Related workabove, made the following observation:Ideally, parallel tasks should be created until the processing power of the parallelmachine is fully utilized (we may call this saturation) and then execution withineach task should become sequential. [12]To emulate this ideal behavior, Halstead considered an unfair scheduling policy. When aprocessor executes a thread that spawns a child, the processor places the parent thread into alocal LIFO pending queue and begins work on the child thread. If all the processors remainbusy, the parent thread stays in the local pending queue until the child thread terminates.(This execution is exactly the type of depth-�rst sequential execution that is so familiar toprogrammers.) If, however, another processor goes idle in the meantime, then it may steal thepending parent thread. Thus, so long as all the processors remain busy, each processor operatesdepth-�rst out of its local queue and each local queue's size is bounded by the maximum stackdepth in a serial execution. On the strict computation of Figure 8.1, for example, this unfairscheduling policy computes a P -processor execution schedule X with SP (X ) � S1P . When weconsider more complex computations, even if we just consider strict computations, however,this unfair scheduling policy may exhibit greater than linear space expansion, and in general,predicting or bounding space usage is quite di�cult.Characterizing the performance of Halstead's unfair scheduling policy is even more di�cultwhen we consider time bounds. Though this policy attempts to compute a greedy scheduleby allowing idle processors to steal pending threads from other processors, success depends onthe thread stealing algorithm. Other researchers [17, 23, 34] have considered variants of unfairscheduling, but none have fully developed or analyzed thread stealing algorithms.A multithreaded computation with no data dependency edges is equivalent to a backtracksearch problem, and in this context, Zhang [36] actually did develop and analyze a threadstealing algorithm. Zhang showed that in a fully connected processor model with P processors,if idle processors choose other processors at random to steal work from, then a binary tree ofsize N and height h can be search in O(N=P + h) time with high probability. In the contextof multithreaded computations with no data dependency edges, this bound translates into aschedule X that with high probability achieves TP (X ) = O(T1=P +T1). Though Zhang did not



75make the observation, his algorithm also demonstrates linear expansion of space: SP (X ) � S1P .Other researchers [18, 29] have considered backtrack search on �xed-connection networks, buttheir algorithms explore the tree in breadth-�rst order and consequently demonstrate poorspace performance.



76 Chapter 8. Related work



Chapter 9ConclusionsThe results of this thesis just begin to develop our algorithmic understanding of nonstrictnessin multithreaded computations. We have formalized a model of multithreaded computationsand developed a working de�nition to characterize e�cient execution schedules with respectto time and space usage. In general, it appears that arbitrary uses of nonstrictness can makee�cient parallel execution di�cult. In fact, we have demonstrated uses of nonstrictness thatmake e�cient parallel execution provably impossible. This di�culty stands in sharp contrast tothe situation with strict computations. For strict computations, we have shown the existenceof e�cient execution schedules for any number of processors, and further, we have exhibited(fairly) e�cient online and distributed algorithms to compute such schedules. Between theseextremes, we have a technique that allows the use of some nonstrictness in an otherwise strictcomputation without degrading the e�ciency, but this technique does not guarantee any bene�tfrom the nonstrictness.Even among the strict computations, some open problems still remain, most notably withrespect to e�cient and practical scheduling algorithms. For one thing, none of the algorithmspresented in this thesis deal with the space used by persistent data structures. Also, theLDF algorithm of Chapter 6 does not take any advantage of locality. An algorithm thatcan keep groups of closely related threads in the same processor or that can exploit speci�c�xed-connection networks to keep related threads close to one another would alleviate someof the communication costs. The work on lazy task creation [23] and the work on dynamictree embedding [3, 22] may provide some pointers in this direction. Of course, an algorithmthat removes the lgP factor from the space bound of LDF would be a nice improvement.77



78 Chapter 9. ConclusionsOther algorithmic improvements to LDF might include: an algorithm that performs less threadmigration, a technique to keep track of thread location when threads do migrate, a moreasynchronous algorithm, and an incremental rebalancing technique to keep the individual queuesbounded. Finally, it would be interesting to see if a deterministic distributed algorithm ispossible.Turning back to nonstrict computations, we �nd a vast range of uncharted territory. Cur-rently, �-sequestering is the only technique we know of that allows nonstrictness in the executionof multithreaded computations while maintaining reasonable space and time bounds. This tech-nique may be practical if e�cient support mechanisms can be developed. In this case, withsimple algorithms for scheduling the nonstrict spawns, the �-sequestered methods described inChapter 7 may perform well in practice using small values of �.We believe, however, that deriving any real bene�t from either �-sequestering or any othertechnique for executing nonstrict computations depends on developing a fundamental under-standing of how nonstrictness can be used to realize increased parallelism. Computations thatare inherently highly parallel can be packaged into programs in such a way that the parallelismcan only be exploited through such extensive use of nonstrictness that e�cient execution ona parallel computer is impossible. Therefore, we need to understand how to write programsin such a way that nonstrict parallelism can be exploited. Developing such an understandingmight involve identifying useful patterns of usage for nonstrictness and developing algorithmsto schedule computations that follow these patterns. Such advances would greatly increase theutility of nonstrictness and in general would expand the class of multithreaded computationsfor which e�cient methods of execution are known.



Bibliography[1] Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. APRIL: A pro-cessor architecture for multiprocessing. In Proceedings of the 17th Annual InternationalSymposium on Computer Architecture, pages 104{114, Seattle, Washington, May 1990.Also: MIT Laboratory for Computer Science Technical Report MIT/LCS/TM-450.[2] William C. Athas and Charles L. Seitz. Multicomputers: Message-passing concurrentcomputers. Computer, 21(8):9{24, August 1988.[3] Sandeep Bhatt, David Greenberg, Tom Leighton, and Pangfeng Liu. Tight bounds foron-line tree embeddings. In Proceedings of the Second Annual ACM-SIAM Symposium onDiscrete Algorithms, pages 344{350, San Francisco, California, January 1991.[4] Bob Boothe and Abhiram Ranade. Improved multithreading techniques for hiding com-munication latency in multiprocessors. In Proceedings of the 19th Annual InternationalSymposium on Computer Architecture, pages 214{223, Gold Coast, Australia, May 1992.[5] Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal of theACM, 21(2):201{206, April 1974.[6] David E. Culler. Resource management for the tagged token data
ow architecture. Mas-ter's thesis, Department of Electrical Engineering and Computer Science, MassachusettsInstitute of Technology, January 1980. Available as MIT Laboratory for Computer ScienceTechnical Report MIT/LCS/TR-332.[7] David E. Culler. Managing Parallelism and Resources in Scienti�c Data
ow Programs.PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts79



80 BibliographyInstitute of Technology, March 1990. Available as MIT Laboratory for Computer ScienceTechnical Report MIT/LCS/TR-446.[8] David E. Culler and Arvind. Resource requirements of data
ow programs. In Proceedingsof the 15th Annual International Symposium on Computer Architecture, pages 141{150,Honolulu, Hawaii, May 1988. Also: MIT Laboratory for Computer Science, ComputationStructures Group Memo 280.[9] David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von Eicken, and JohnWawrzynek. Fine-grain parallelism with minimal hardware support: A compiler-controlledthreaded abstract machine. In Proceedings of the Fourth International Conference on Ar-chitectural Support for Programming Languages and Operating Systems, pages 164{175,Santa Clara, California, April 1991.[10] William J. Dally, Linda Chao, Andrew Chien, Soha Hassoun, Waldemar Horwat, Jon Ka-plan, Paul Song, Brian Totty, and Scott Wills. Architecture of a message-driven processor.In Proceedings of the 14th Annual International Symposium on Computer Architecture,pages 189{196, Pittsburgh, Pennsylvania, June 1987. Also: MIT Arti�cial Intelligence LabMemo MIT/AI/TR-1069.[11] V. G. Grafe and J. E. Hoch. The Epsilon-2 hybrid data
ows architecture. In COMPCON90, pages 88{93, San Francisco, California, February 1990.[12] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACMTransactions on Programming Languages and Systems, 7(4):501{538, October 1985.[13] Robert H. Halstead, Jr. and Tetsuya Fujita. MASA: A multithreaded processor archi-tecture for parallel symbolic computing. In Proceedings of the 15th Annual InternationalSymposium on Computer Architecture, pages 443{451, Honolulu, Hawaii, May 1988.[14] Waldemar Horwat. Concurrent Smalltalk on the message-driven processor. TechnicalReport MIT/AI/TR-1321, MIT Arti�cial Intelligence Laboratory, September 1991.



Bibliography 81[15] Waldemar Horwat, Andrew A. Chien, and William J. Dally. Experience with CST: Pro-gramming and implementation. In Proceedings of the ACM SIGPLAN '89 Conferenceon Programming Language Design and Implementation, pages 101{109, Portland, Oregon,June 1989.[16] Robert A. Iannucci. Toward a data
ow / von Neumann hybrid architecture. In Proceedingsof the 15th Annual International Symposium on Computer Architecture, pages 131{140,Honolulu, Hawaii, May 1988. Also: MIT Laboratory for Computer Science, ComputationStructures Group Memo 275.[17] Suresh Jagannathan and Jim Philbin. A customizable substrate for concurrent languages.In Proceedings of the ACM SIGPLAN '92 Conference on Programming Language Designand Implementation, pages 55{67, San Francisco, California, June 1992.[18] Christos Kaklamanis and Giuseppe Persiano. Branch-and-bound and backtrack search onmesh-connected arrays of processors. In Proceedings of the Fourth Annual ACM Symposiumon Parallel Algorithms and Architectures, pages 118{126, San Diego, California, June 1992.[19] Richard M. Karp and Yanjun Zhang. A randomized parallel branch-and-bound procedure.In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pages290{300, Chicago, Illinois, May 1988.[20] Stephen W. Keckler and William J. Dally. Processor coupling: Integrating compile timeand runtime scheduling for parallelism. In Proceedings of the 19th Annual InternationalSymposium on Computer Architecture, pages 202{213, Gold Coast, Australia, May 1992.[21] David A. Kranz, Robert H. Halstead, Jr., and Eric Mohr. Mul-T: A high-performanceparallel Lisp. In Proceedings of the SIGPLAN '89 Conference on Programming LanguageDesign and Implementation, pages 81{90, Portland, Oregon, June 1989.[22] Tom Leighton, Mark Newman, Abhiram G. Ranade, and Eric Schwabe. Dynamic treeembeddings in butter
ies and hypercubes. In Proceedings of the 1989 ACM Symposium onParallel Algorithms and Architectures, pages 224{234, Santa Fe, New Mexico, June 1989.



82 Bibliography[23] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy task creation: A techniquefor increasing the granularity of parallel programs. IEEE Transactions on Parallel andDistributed Systems, 2(3):264{280, July 1991. Also: MIT Laboratory for Computer ScienceTechnical Report MIT/LCS/TM-449.[24] Rishiyur S. Nikhil and Arvind. Can data
ow subsume von Neumann computing? InProceedings of the 16th Annual International Symposium on Computer Architecture, pages262{272, Jerusalem, Israel, May 1989. Also: MIT Laboratory for Computer Science,Computation Structures Group Memo 292.[25] Rishiyur S. Nikhil, Gregory M. Papadopoulos, and Arvind. �T: A multithreaded mas-sively parallel architecture. In Proceedings of the 19th Annual International Symposiumon Computer Architecture, pages 156{167, Gold Coast, Australia, May 1992. Also: MITLaboratory for Computer Science, Computation Structures Group Memo 325{1.[26] Gregory M. Papadopoulos and Denneth R. Traub. Multithreading: A revisionist view ofdata
ow architectures. In Proceedings of the 18th Annual International Symposium onComputer Architecture, pages 342{351, Toronto, Canada, May 1991. Also: MIT Labora-tory for Computer Science, Computation Structures Group Memo 330.[27] Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: Approximat-ing packing integer programs. Journal of Computer and System Sciences, 37(2):130{143,October 1988.[28] Abhiram Ranade. How to emulate shared memory. In Proceedings of the 28th AnnualSymposium on Foundations of Computer Science, pages 185{194, Los Angeles, California,October 1987.[29] Abhiram Ranade. Optimal speedup for backtrack search on a butter
y network. In Pro-ceedings of the Third Annual ACM Symposium on Parallel Algorithms and Architectures,pages 40{48, Hilton Head, South Carolina, July 1991.



Bibliography 83[30] Carlos A. Ruggiero and John Sargeant. Control of parallelism in the Manchester data
owmachine. In Functional Programming Languages and Computer Architecture, number 274in Lecture Notes in Computer Science, pages 1{15. Springer-Verlag, 1987.[31] Mitsuhisa Sato, Yuetsu Kodama, Shuichi Sakai, Yoshinori Yamaguchi, and YasuhitoKoumura. Thread-based programming for the EM-4 hybrid data
ow machine. In Pro-ceedings of the 19th Annual International Symposium on Computer Architecture, pages146{155, Gold Coast, Australia, May 1992.[32] Kenneth R. Traub. Sequential Implementation of Lenient Programming Languages. PhDthesis, Department of Electrical Engineering and Computer Science, Massachusetts Insti-tute of Technology, 1988. Available as MIT Laboratory for Computer Science TechnicalReport MIT/LCS/TR-417.[33] Leslie G. Valiant. A bridging model for parallel computation. Communications of theACM, 33(8):103{111, August 1990.[34] Mark T. Vandevoorde and Eric S. Roberts. WorkCrews: An abstraction for controllingparallelism. International Journal of Parallel Programming, 17(4):347{366, August 1988.[35] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser.Active messages: a mechanism for integrated communication and computation. In Pro-ceedings of the 19th Annual International Symposium on Computer Architecture, pages256{266, Gold Coast, Australia, May 1992.[36] Yanjun Zhang. Parallel Algorithms for Combinatorial Search Problems. PhD thesis, De-partment of Electrical Engineering and Computer Science, University of California atBerkeley, November 1989. Available as University of California at Berkeley, ComputerScience Division, Technical Report UCB/CSD 89/543.


