
A Minicourse onMultithreaded ProgrammingCharles E. LeisersonHarald ProkopMIT Laboratory for Computer Science545 Technology SquareCambridge, Massachusetts 02139fcel,prokopg@lcs.mit.eduJuly 17, 1998AbstractThese notes contain two lectures that teach multithreaded algorithms using a Cilk-like [7, 9, 11] model. These lectures were designed for the latter part of the MITundergraduate class 6.046 Introduction to Algorithms. The style of the lecture notesfollows that of the textbook by Cormen, Leiserson, and Rivest [8], but the pseudocodefrom that textbook has been \Cilki�ed" to allow it to describe multithreaded algo-rithms.The �rst lecture teaches the basics behind multithreading, including de�ning themeasures of work and critical-path length. It culminates in the greedy schedulingtheorem due to Graham and Brent [10, 6]. The second lecture shows how parallelapplications, including matrix multiplication and sorting, can be analyzed using divide-and-conquer recurrences.1 Multithreaded programmingAs multiprocessor systems have become increasingly available, interest has grown in parallelprogramming. Multithreaded programming is a programming paradigm in which a singleprogram is broken into multiple threads of control which interact to solve a single problem.These notes provide an introduction to the analysis of multithreaded algorithms.This research was supported in part by the Defense Advanced Research Projects Agency (DARPA)under Grant F30602-97-1-0270.
1

1.1 ModelOur model of multithreaded computation is based on the procedure abstraction found in vir-tually any programming language. As an example, the procedure Fib gives a multithreadedalgorithm for computing the Fibonacci numbers:1Fib(n)1 if n < 22 then return n3 else x spawn Fib(n� 1)4 y spawn Fib(n� 2)5 sync6 return (x+ y)A spawn is the parallel analog of an ordinary subroutine call. The keyword spawnbefore the subroutine call in line 3 indicates that the subprocedure Fib(n�1) can execute inparallel with the procedure Fib(n) itself. Unlike an ordinary function call, however, wherethe parent is not resumed until after its child returns, in the case of a spawn, the parentcan continue to execute in parallel with the child. In this case, the parent goes on to spawnFib(n�2). In general the parent can continue to spawn o� children, producing a high degreeof parallelism.A procedure cannot safely use the return values of the children it has spawned until itexecutes a sync statement. If any of its children have not completed when it executes async, the procedure suspends and does not resume until all of its children have completed.When all of its children return, execution of the procedure resumes at the point immediatelyfollowing the sync statement. In the Fibonacci example, the sync statement in line 5 isrequired before the return statement in line 6 to avoid the anomaly that would occur if xand y were summed before each had been computed.The spawn and sync keywords specify logical parallelism, not \actual" parallelism.That is, these keywords indicate which code may possibly execute in parallel, but what ac-tually runs in parallel is determined by a scheduler , which maps the dynamically unfoldingcomputation onto the available processors.We can view a multithreaded computation in graph-theoretic terms as a dynamicallyunfolding dag G = (V;E), as is shown in Figure 1 for Fib. We de�ne a thread to bea maximal sequence of instructions not containing the parallel control statements spawn,sync, and return. Threads make up the set V of vertices of the multithreaded computationdag G. Each procedure execution is a linear chain of threads, each of which is connected toits successor in the chain by a continuation edge. When a thread u spawns a thread v, thedag contains a spawn edge (u; v) 2 E, as well as a continuation edge from u to u's successorin the procedure. When a thread u returns, the dag contains an edge (u; v), where v is thethread that immediately follows the next sync in the parent procedure. Every computationstarts with a single initial thread and (assuming that the computation terminates), ends1This algorithm is a terrible way to compute Fibonacci numbers, since it runs in exponential time whenlogarithmic methods are known [8, page 850], but it serves as a good didactic example.2

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����

����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���

���
���
���
���

fib(3)

fib(2)

fib(1)

fib(1)

fib(2)

fib(1) fib(0)

fib(0)

fib(4)

Figure 1: A dag representing the multithreaded computation of Fib(4). Threads are shown ascircles, and each group of threads belonging to the same procedure are surrounded by a roundedrectangle. Downward edges are spawns dependencies, horizontal edges represent continuation de-pendencies within a procedure, and upward edges are return dependencies.with a single �nal thread . Since the procedures are organized in a tree hierarchy, we canview the computation as a dag of threads embedded in the tree of procedures.1.2 Performance MeasuresTwo performance measures su�ce to gauge the theoretical e�ciency of multithreaded algo-rithms. We de�ne the work of a multithreaded computation to be the total time to executeall the operations in the computation on one processor. We de�ne the critical-path lengthof a computation to be the longest time to execute the threads along any path of dependen-cies in the dag. Consider, for example, the computation in Figure 1. Suppose that everythread can be executed in unit time. Then, the work of the computation is 17, and thecritical-path length is 8.When a multithreaded computation is executed on a given number P of processors, itsrunning time depends on how e�ciently the underlying scheduler can execute it. Denoteby TP the running time of a given computation on P processors. Then, the work of thecomputation can be viewed as T1, and the critical-path length can be viewed as T1.The work and critical-path length can be used to provide lower bounds on the runningtime on P processors. We have TP � T1=P ; (1)since in one step, a P -processor computer can do at most P work. We also haveTP � T1 ; (2)since a P -processor computer can do no more work in one step than an in�nite-processorcomputer. 3

The speedup of a computation on P processors is the ratio T1=TP , which indicates howmany times faster the P -processor execution is than a one-processor execution. If T1=TP =�(P), then we say that the P -processor execution exhibits linear speedup. The maximumpossible speedup is T1=T1, which is also called the parallelism of the computation, becauseit represents the average amount of work that can be done in parallel for each step along thecritical path. We denote the parallelism of a computation by P .1.3 Greedy SchedulingThe programmer of a multithreaded application has the ability to control the work andcritical-path length of his application, but he has no direct control over the scheduling of hisapplication on a given number of processors. It is up to the runtime scheduler to map thedynamically unfolding computation onto the available processors so that the computationexecutes e�ciently. Good on-line schedulers are known [3, 4, 5] but their analysis is compli-cated. For simplicity, we'll illustrate the principles behind these schedulers using an o�-line\greedy" scheduler.A greedy scheduler schedules as much as it can at every time step. On a P -processorcomputer, time steps can be classi�ed into two types. If there are P or more threads ready toexecute, the step is a complete step, and the scheduler executes any P threads of those readyto execute. If there are fewer than P threads ready to execute, the step is an incompletestep, and the scheduler executes all of them. This greedy strategy is provably good.Theorem 1 (Graham [10], Brent [6]) A greedy scheduler executes any multithreaded com-putation G with work T1 and critical-path length T1 in timeTP � T1=P + T1 (3)on a computer with P processors.Proof. For each complete step, P work is done by the P processors. Thus, the numberof complete steps is at most T1=P , because after T1=P such steps, all the work in thecomputation has been performed. Now, consider an incomplete step, and consider the subdagG0 of G that remains to be executed. Without loss of generality, we can view each of thethreads executing in unit time, since we can replace a longer thread with a chain of unit-timethreads. Every thread with in-degree 0 is ready to be executed, since all of its predecessorshave already executed. By the greedy scheduling policy, all such threads are executed, sincethere are strictly fewer than P such threads. Thus, the critical-path length of G0 is reducedby 1. Since the critical-path length of the subdag remaining to be executed decreases by 1each for each incomplete step, the number of incomplete steps is at most T1. Each step iseither complete or incomplete, and hence Inequality (3) follows.Corollary 2 A greedy scheduler achieves linear speedup when P = O(P).Proof. Since P = T1=T1, we have P = O(T1=T1), or equivalently, that T1 = O(T1=P).Thus, we have TP � T1=P + T1 = O(T1=P). 4

1.4 Cilk and ?SocratesCilk [4, 7, 11] is a parallel, multithreaded language based on the serial programming lan-guage C. Instrumentation in the Cilk scheduler provides an accurate measure of work andcritical path. Cilk's randomized scheduler provably executes a multithreaded computationon a P -processor computer in TP = T1=P +O(T1) expected time. Empirically, the schedulerachieves TP � T1=P +T1 time, yielding near-perfect linear speedup if P � P . You can readmore about Cilk on the Web at http://theory.lcs.mit.edu/~cilk.Among the applications that have been programmed in Cilk are the ?Socrates andCilkchess chess-playing programs. These programs have won numerous prizes in interna-tional competition and are considered to be among the strongest in the world. An interestinganomaly occurred during the development of ?Socrates which was resolved by understandingthe measures of work and critical-path length.The ?Socrates program was initially developed on a 32-processor computer at MIT, but itwas intended to run on a 512-processor computer at the National Center for SupercomputingApplications (NCSA) at the University of Illinois. A clever optimization was proposed which,during testing at MIT, caused the program to run much faster than the original program.Nevertheless, the optimization was abandoned, because an analysis of work and critical-pathlength indicated that the program would actually be slower on the NCSA machine.Let us examine this anomaly in more detail. For simplicity, the actual timing numbershave been simpli�ed. The original program ran in T32 = 65 seconds at MIT on 32 processors.The \optimized" program ran in T 032 = 40 seconds also on 32 processors. The originalprogram had work T1 = 2048 seconds and critical-path length T1 = 1 second. Using theformula TP = T1=P + T1 as a good approximation of runtime, we discover that indeedT32 = 65 = 2048=32+1. The \optimized" program had work T1 = 1024 seconds and critical-path length T1 = 8 seconds, yielding T 032 = 40 = 1024=32+8. But, now let us determine theruntimes on 512 processors. We have T512 = 2048=512+1 = 5 and T 0512 = 1024=512+8 = 10,which is twice as slow! Thus, by using work and critical-path length, we can predict theperformance of a multithreaded computation.Exercise 1-1. Sketch the multithreaded computation that results from executing Fib(5).Assume that all threads in the computation execute in unit time. What is the work ofthe computation? What is the critical-path length? Show how to schedule the dag on2 processors in a greedy fashion by labeling each thread with the time step on which itexecutes.Exercise 1-2. Write a multithreaded procedure Sum(A), where A[1 : : n] is an array, whichuses divide-and-conquer to sum the elements of the array A in parallel.Exercise 1-3. Prove that a greedy scheduler achieves the stronger boundTP � (T1 � T1)=P + T1 : (4)Exercise 1-4. Prove that the time for a greedy scheduler to execute any multithreadedcomputation is within a factor of 2 of the time required by an optimal scheduler.5

Exercise 1-5. For what number P of processors do the two chess programs described inthis section run equally fast?Exercise 1-6. Professor Tweed takes some measurements of his (deterministic) multi-threaded program, which is scheduled using a greedy scheduler, and �nds that T4 = 80seconds and T64 = 10 seconds. What is the fastest that the professor's computation couldpossibly run on 10 processors? Use Inequality (4) and the two lower bounds from Inequalities(1) and (2) to derive your answer.2 Analysis of multithreaded algorithmsWe now turn to the design and analysis of multithreaded algorithms. Because of the divide-and-conquer nature of the multithreaded model, recurrences are a natural way to express thework and critical-path length of a multithreaded algorithm. We shall investigate algorithmsfor matrix multiplication and sorting and analyze their performance.2.1 Parallel Matrix MultiplicationTo multiply two n�n matrices A and B in parallel to produce a matrix C, we can recursivelyformulate the problem as follows: C11 C12C21 C22 ! = A11 A12A21 A22 ! � B11 B12B21 B22 != A11B11 + A12B21 A11B12 + A12B22A21B11 + A22B21 A21B12 + A22B22 ! :Thus, each n�n matrix multiplication can be expressed as 8 multiplications and 4 additionsof (n=2) � (n=2) submatrices. The multithreaded procedure Mult multiplies two n � nmatrices, where n is a power of 2, using an auxiliary procedure Add to add n� n matrices.This algorithm is not in-place.Add(C; T; n)1 if n = 12 then C[1; 1] C[1; 1] + T [1; 1]3 else partition C and T into (n=2)� (n=2) submatrices4 spawn Add(C11; T11; n=2)5 spawn Add(C12; T12; n=2)6 spawn Add(C21; T21; n=2)7 spawn Add(C22; T22; n=2)8 sync
6

Mult(C;A;B; n)1 if n = 12 then C[1; 1] A[1; 1] �B[1; 1]3 else allocate a temporary matrix T [1 : : n; 1 : : n]4 partition A, B, C, and T into (n=2)� (n=2) submatrices5 spawn Mult(C11; A11; B11; n=2)6 spawn Mult(C12; A11; B12; n=2)7 spawn Mult(C21; A21; B11; n=2)8 spawn Mult(C22; A21; B12; n=2)9 spawn Mult(T11; A12; B21; n=2)10 spawn Mult(T12; A12; B22; n=2)11 spawn Mult(T21; A22; B21; n=2)12 spawn Mult(T22; A22; B22; n=2)13 sync14 spawn Add(C; T; n)15 syncThe matrix partitionings in line 4 of Mult and line 3 of add take O(1) time, since only aconstant number of indexing operations are required.To analyze this algorithm, let AP (n) be the P -processor running time of Add on n� nmatrices, and let MP (n) be the P -processor running time of Mult on n� n matrices. Thework (running time on one processor) for Add can be expressed by the recurrenceA1(n) = 4A1(n=2) + �(1)= �(n2) ;which is the same as for the ordinary double-nested-loop serial algorithm. Since the spawnedprocedures can be executed in parallel, the critical-path length for Add isA1(n) = A1(n=2) + �(1)= �(lgn) :The work for Mult can be expressed by the recurrenceM1(n) = 8M1(n=2) + A1(n)= 8M1(n=2) + �(n2)= �(n3) ;which is the same as for the ordinary triple-nested-loop serial algorithm. The critical-pathlength for Mult is M1(n) = M1(n=2) + �(lgn)= �(lg2 n) :7

Thus, the parallelism for Mult is M1(n)=M1(n) = �(n3= lg2 n), which is quite high. Tomultiply 1000 � 1000 matrices, for example, the parallelism is (ignoring constants) about10003=102 = 107. Most parallel computers have far fewer processors.To achieve high performance, it is often advantageous for an algorithm to use less space,because more space usually means more time. For the matrix-multiplication problem, wecan eliminate the temporary matrix T in exchange for reducing the parallelism. Our newalgorithmMult-Add performs C C +A �B using a similar divide-and-conquer strategyto Mult.Mult-Add(C;A;B; n)1 if n = 12 then C[1; 1] C[1; 1] + A[1; 1] �B[1; 1]3 else partition A, B, and C into (n=2)� (n=2) submatrices4 spawn Mult-Add(C11; A11; B11; n=2)5 spawn Mult-Add(C12; A11; B12; n=2)6 spawn Mult-Add(C21; A21; B11; n=2)7 spawn Mult-Add(C22; A21; B12; n=2)8 sync9 spawn Mult-Add(C11; A12; B21; n=2)10 spawn Mult-Add(C12; A12; B22; n=2)11 spawn Mult-Add(C21; A22; B21; n=2)12 spawn Mult-Add(C22; A22; B22; n=2)13 syncLet MAP (n) be the P -processor running time of Mult-Add on n � n matrices. Thework for Mult-Add is MA1(n) = �(n3), following the same analysis as for Mult, but thecritical-path length is now MA1(n) = 2MA1(n=2) + �(1)= �(n) ;since only 4 recursive calls can be executed in parallel.Thus, the parallelism is MA1(n)=MA1(n) = �(n2). On 1000� 1000 matrices, for exam-ple, the parallelism is (ignoring constants) still quite high: about 10002 = 106. In practice,this algorithm often runs somewhat faster than the �rst, since saving space often saves timedue to hierarchical memory.
8

A
B

� A[l=2] � A[l=2]1
1

l
m

l=2
j + 1j� A[l=2] � A[l=2]?Figure 2: Illustration of P-Merge. The median of array A is used to partition array B, and thenthe lower portions of the two arrays are recursively merged, as, in parallel, are the upper portions.2.2 Parallel Merge SortThis section shows how to parallelize merge sort. We shall see the parallelism of the algorithmdepends on how well the merge subroutine can be parallelized.The most straightforward way to parallelize merge sort is to run the recursion in parallel,as is done in the following pseudocode:Merge-Sort(A; p; r)1 if p < r2 then q b(p+ r)=2c3 spawn Merge-Sort(A; p; q)4 spawn Merge-Sort(A; q + 1; r)5 sync6 Merge(A; p; q; r)The work of Merge-Sort on an array of n elements isT1(n) = 2T1(n=2) + �(n)= �(n lgn) ;since the running time of Merge is �(n). Since the two recursive spawns operate in parallel,the critical-path length of Merge-Sort isT1(n) = T1(n=2) + �(n)= �(n) :Consequently, the parallelism of the algorithm is T1(n)=T1(n) = �(lgn), which is puny. Theobvious bottleneck is Merge.The following pseudocode, which is illustrated in Figure 2, performs the merge in parallel.

9

P-Merge(A[1 : : l]; B[1 : :m]; C[1 : : n])1 if m > l � without loss of generality, larger array should be �rst2 then spawn P-Merge(B[1 : :m]; A[1 : : l]; C[1 : : n])3 elseif n = 14 then C[1] A[1]5 elseif l = 1 � and m = 16 then if A[1] � B[1]7 then C[1] A[1]; C[2] B[1]8 else C[1] B[1]; C[2] A[1]9 else �nd j such that B[j] � A[l=2] � B[j + 1] using binary search10 spawn P-Merge(A[1 : : (l=2)]; B[1 : : j]; C[1 : : (l=2 + j)])11 spawn P-Merge(A[(l=2 + 1) : : l]; B[(j + 1) : :m]; C[(l=2 + j + 1) : : n])12 syncThis merging algorithm �nds the median of the larger array and uses it to partition thesmaller array. Then, the lower portions of the two arrays are recursively merged, and inparallel, so are the upper portions.To analyze P-Merge, let PM P (n) be the P -processor time to merge two arrays A andB having n = m + l elements in total. Without loss of generality, let A be the larger of thetwo arrays, that is, assume l � m.We'll analyze the critical-path length �rst. The binary search of B takes �(lgm) time,which in the worst case is �(lgn). Since the two recursive spawns in lines 10 and 11 operatein parallel, the worst-case critical-path length is �(lgn) plus the worst-case critical path-length of the spawn operating on the larger subarrays. In the worst case, we must mergehalf of A with all of B, in which case the recursive spawn operates on at most 3n=4 elements.Thus, we have PM1(n) � PM1(3n=4) + �(lgn)= �(lg2 n) :To analyze the work of Merge, observe that although the two recursive spawns mayoperate on di�erent numbers of elements, they always operate on n elements between them.Let �n be the number of elements operated on by the �rst spawn, where � is a constant inthe range 1=4 � � � 3=4. Thus, the second spawn operates on (1 � �)n elements, and theworst-case work satis�es the recurrencePM 1(n) = PM 1(�n) + PM 1((1� �)n) + �(lgn) : (5)We shall show that PM 1(n) = �(n) using the substitution method. (Actually, the Akra-Bazzi method [2], if you know it, is simpler.) We assume inductively that PM 1(n) � an �b lgn for some constants a; b > 0. We havePM1(n) � a�n� b lg(�n) + a(1� �)n� b lg((1� �)n) + �(lgn)= an� b(lg(�n) + lg((1� �)n)) + �(lgn)10

= an� b(lg� + lgn+ lg(1� �) + lgn) + �(lgn)= an� b lgn� (b(lgn+ lg(�(1� �)))� �(lgn))� an� b lgn ;since we can choose b large enough so that b(lgn+lg(�(1��))) dominates �(lgn). Moreover,we can pick a large enough to satisfy the base conditions. Thus, PM 1(n) = �(n), which isthe same work asymptotically as the ordinary, serial merging algorithm.We can now reanalyze the Merge-Sort using the P-Merge subroutine. The workT1(n) remains the same, but the worst-case critical-path length now satis�esT1(n) = T1(n=2) + �(lg2 n)= �(lg3 n) :The parallelism is now �(n lgn)=�(lg3 n) = �(n= lg2 n).Exercise 2-1. Give an e�cient and highly parallel multithreaded algorithm for multiply-ing an n � n matrix A by a length-n vector x that achieves work �(n2) and critical path�(lgn). Analyze the work and critical-path length of your implementation, and give theparallelism.Exercise 2-2. Describe a multithreaded algorithm for matrix multiplication that achieveswork �(n3) and critical path �(lgn). Comment informally on the locality displayed by youralgorithm in the ideal cache model as compared with the two algorithms from this section.Exercise 2-3. Write a Cilk program to multiply an n1 � n2 matrix by an n2 � n3 matrixin parallel. Analyze the work, critical-path length, and parallelism of your implementation.Your algorithm should be e�cient even if any of n1, n2, and n3 are 1.Exercise 2-4. Write a Cilk program to implement Strassen's matrix multiplication al-gorithm in parallel as e�ciently as you can. Analyze the work, critical-path length, andparallelism of your implementation.Exercise 2-5. Write a Cilk program to invert a symmetric and positive-de�nite matrixin parallel. (Hint: Use a divide-and-conquer approach based on the ideas of Theorem 31.12from [8].)Exercise 2-6. Akl and Santoro [1] have proposed a merging algorithm in which the �rststep is to �nd the median of all the elements in the two sorted input arrays (as opposed tothe median of the elements in the larger subarray, as is done in P-Merge). Show that if thetotal number of elements in the two arrays is n, this median can be found using �(lgn) timeon one processor in the worst case. Describe a linear-work multithreaded merging algorithmbased on this subroutine that has a parallelism of �(n= lg2 n). Give and solve the recurrencesfor work and critical-path length, and determine the parallelism. Implement your algorithmas a Cilk program. 11

Exercise 2-7. Generalize the algorithm from Exercise Exercise 2-6 to �nd arbitrary orderstatistics. Describe a merge-sorting algorithm with �(n lgn) work that achieves a parallelismof �(n= lgn). (Hint: Merge many subarrays in parallel.)Exercise 2-8. The length of a longest-common subsequence of two length-n sequencesx and y can be computed in parallel using a divide-and-conquer multithreaded algorithm.Denote by c[i; j] the length of a longest common subsequence of x[1 : : i] and y[1 : : j]. First,the multithreaded algorithm recursively computes c[i; j] for all i in the range 1 � i � n=2and all j in the range 1 � j � n=2. Then, it recursively computes c[i; j] for 1 � i � n=2 andn=2 < j � n, while in parallel recursively computing c[i; j] for n=2 < i � n and 1 � j � n=2.Finally, it recursively computes c[i; j] for n=2 < i � n and n=2 < j � n. For the basecase, the algorithm computes c[i; j] in terms of c[i � 1; j � 1], c[i � 1; j], and c[i; j � 1] inthe ordinary way, since the logic of the algorithm guarantees that these three values havealready been computed.That is, if the dynamic programming tableau is broken into four pieces I IIIII IV ! ;then the recursive multithreaded code would look something like this:spawn Isyncspawn IIspawn IIIsyncspawn IVsyncAnalyze the work, critical-path length, and parallelism of this algorithm. Describe andanalyze an algorithm that is asymptotically as e�cient (same work) but more parallel. Makewhatever interesting observations you can. Write an e�cient Cilk program for the problem.References[1] Selim G. Akl and Nicola Santoro. Optimal parallel merging and sorting without memorycon
icts. IEEE Transactions on Computers, C-36(11), November 1987.[2] M. Akra and L. Bazzi. On the solution of linear recurrence equations. ComputationalOptimization and Application, 10:195{210, 1998.[3] Robert D. Blumofe. Executing Multithreaded Programs E�ciently. PhD thesis, De-partment of Electrical Engineering and Computer Science, Massachusetts Institute ofTechnology, September 1995. 12

[4] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,Keith H. Randall, and Yuli Zhou. Cilk: An e�cient multithreaded runtime system.In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice ofParallel Programming (PPoPP), pages 207{216, Santa Barbara, California, July 1995.[5] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computationsby work stealing. In Proceedings of the 35th Annual Symposium on Foundations ofComputer Science (FOCS), pages 356{368, Santa Fe, New Mexico, November 1994.[6] Richard P. Brent. The parallel evaluation of general arithmetic expressions. Journal ofthe ACM, 21(2):201{206, April 1974.[7] Cilk-5.2 (Beta 1) Reference Manual. Available on the Internet fromhttp://theory.lcs.mit.edu/~cilk.[8] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algo-rithms. MIT Press and McGraw Hill, 1990.[9] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of theCilk-5 multithreaded language. In ACM SIGPLAN '98 Conference on ProgrammingLanguage Design and Implementation (PLDI), pages 212{223, Montreal, Canada, June1998.[10] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on AppliedMathematics, 17(2):416{429, March 1969.[11] Keith H. Randall. Cilk: E�cient Multithreaded Computing. PhD thesis, Department ofElectrical Engineering and Computer Science, Massachusetts Institute of Technology,May 1998.

13

