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Chapter 1
IntroductionA network of workstations provides a natural platform for running parallel applications. Sincethese workstations are unreliable and since workstations are usually intended for primary use bysome particular user, these parallel jobs must be adaptive: As resources change, the jobs mustbe able to expand or contract to match the environment. Empirical evidence shows that networkworkstations do generally remain idle|typically over half the time|so overcoming the problemsof adaptive, secure, fault tolerant, parallel computing is indeed a worthwhile endeavor to provide acheap, e�ective pool of computational power. This thesis addresses the issues of running multipleparallel job on such a network of workstations; these issues include fault tolerance, security, fair ande�cient distributed scheduling, and detection of idleness.A natural division of the work of implementing such an adaptively parallel system is to di�erenti-ate \macro-level" and \micro-level" scheduling. Here, \macro-level" scheduling, or macroscheduling,refers to recruiting idle workstations and assigning parallel jobs to them. Each job has a \micro-level"scheduler, or microscheduler, that uses this varying set of workstations, assigned by the macrosched-uler, to execute its single parallel job. This thesis presents a macroscheduler which was designedand implemented for use with the Cilk Network of Workstations (Cilk-NOW) microscheduler [1, 2].Other research in scheduling on networks of workstations tends to focus on only one of these twolevels of scheduling. Systems such as Piranha [5] focus on running a single job in parallel, using anoversimpli�ed model to balance jobs among processors. Other systems, such as Condor focus onlyon running single-processor, nonparallel batch jobs on an idle workstation. (See [6] for a comparisonof various batch job systems.) The former approach neglects the practicality that multiple users maywant to exploit the network of workstations to accomplish their work, while the latter approach fails7



to utilize a signi�cant portion of idle workstations when the number of jobs is not enough to occupyall of the workstations and generally relies on a centralized scheduler. By combining the Cilk-NOWadaptively parallel, fault-tolerant microscheduler with a distributed, fault-tolerant macroscheduler,Cilk-NOW o�ers the best of both worlds.The main features of this macroscheduler are as follows:Ease of use. The macroscheduler is easy to use. A user can submit a job to the macroschedulerwith practically no e�ort, as if the job were only being run on the local workstation. TheCilk-NOW runtime system automatically submits the job to the macroscheduler, while non-Cilk-NOW jobs can also be submitted explicitly with a simple command-line program.Fault Tolerance. The macroscheduler can recover from temporary network problems automati-cally, without requiring users to restart daemons or resubmit jobs to the scheduler. Further-more, workstation outages do not impede progress on a parallel job. Fault tolerance is alsoessential to ensure ease of use, as constant user intervention to recover from network andworkstation faults is tedious and results in lost computation time.Flexibility. The macroscheduler is con�gurable, allowing the conditions used to determine theidleness of workstations to be set dynamically, in accordance with the tastes of the users andthe owners of the machines whose cycles are being stolen.Security. The macroscheduler uses secure protocols that do not open a workstation to unauthorizedusers running foreign code on a machine. The desired degree of security is that which a givensystem uses to authenticate its remote execution (rsh) protocol. To provide this security, Ihave created an abstraction on top of active messages [10] called \secure" active messageswhich o�ers a quick, point-to-point, secure communication mechanism, which is then used toimplement the various protocols in the macroscheduler.Fairness. The macroscheduler should allocate processors \fairly" among the jobs present. Here,\fairness" means that each job should have an equal share of the processors. The algorithmpresented can be extended fairly easily to allow jobs to be assigned relative priorities.Distributed Scheduling. The scheduling algorithm is random and distributed among the proces-sors, wherever possible. This helps with reliability and fault tolerance, as it limits dependenceon centralized, global components of the system. Furthermore, a distributed algorithm couldpotentially work faster than a global algorithm since a global algorithm must talk to all of8



the processors, while a distributed algorithm likely only needs to talk to a few at a time.Some global information is permissible, however, such as what other processors are presentfor scheduling at any time, and how many processors are currently involved in each job. Notethat this global information may not be perfectly up-to-date, as scheduling decisions are madein parallel, so updated global values take time to propagate to all the processors.E�ciency. The macroscheduler converges to within one processor per job of the fair allocation ina short period of time, which simulations suggest to be O(logP ), where P is the number ofprocessors. Figure 1-1 shows the convergence of 100 jobs on 10000 processors to the \fair"balance.
0 5 10 15

0

2000

4000

6000

8000

10000
Stabilization of 100 jobs on 10000 nodes

Quantum

N
od

es
 in

 e
ac

h 
jo

b

0 5 10 15
0

100

200

300

400

500

Quantum

N
od

es
 in

 e
ac

h 
jo

b

Figure 1-1: Example scheduling run.In chapter 2, I lay out the basic architecture of the macroscheduler and argue that it gives riseto fault tolerance. In chapter 3, I present secure active messages, the abstraction that guaranteesthe security of the system. In chapter 4, I present the distributed scheduling algorithm and arguewith simulation evidence that it is indeed fair and e�cient, i.e., that it achieves an almost-evendistribution of processors in O(logP ) time. In chapter 5, I re�ne the notion of \idleness" andpresent evidence that networks of workstations provide a sizable and useful computational resource.Finally, in chapter 6, I evaluate the macroscheduler and discuss further work to be done related tothis thesis. 9



Chapter 2
ArchitectureThe macroscheduler consists of four di�erent types of programs distributed across the network, ajob broker, node managers, job managers, and several di�erent utilities.1 A single machine runsa central \job broker" which is a program called CilkJobBroker running as a UNIX daemon ata well-known address on this machine. Each workstation runs a \node manager" daemon whichmonitors the machine's idleness and spawns or kills workers when appropriate. Each node manageris an instance of the CilkNodeManager program. Each job has a \job manager," which is programrun on the workstation that starts the computation. The Cilk-NOW runtime system initializationcode includes the code necessary to start the CilkJobManager program, which acts as that job'sjob manager. In addition, there are a variety of utility programs (CilkPs, CilkNodes, CilkPred,xCilkNodeInfo) that allow the system status and con�guration to be displayed and changed. Sec-tion 2.1 de�nes the protocols' assumption that a quick, unreliable, secure way to send messagesexists; this mechanism will turn out to be secure active messages . Section 2.2 describes the pro-tocols that take a job through its life cycle: node manager registration, job manager registration,scheduling, and job termination. Section 2.3 describes the various utilities that are provided for usewith the macroscheduler. Section 2.4 argues that the architecture of the macroscheduler as presentedautomatically guarantees all facets of fault tolerance with one special exception, which involves acrash of the original worker that started the parallel computation.1Much of the architecture was designed in consultation with Robert Blumofe, now of the University of TexasDepartment of Computer Science.
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2.1 Communication mechanismBefore exploring the basic protocols used by the macroscheduler, some background about the com-munication mechanism they use is needed. All these programs communicate with each other usingprotocols implemented with the secure active message abstraction, which is fully de�ned in chap-ter 3. For now, these messages can be thought of as simple, quick, unreliable, unforgeable datagramssent from one program to another; in this section, I discuss the need for speed, unreliability, andunforgeability.Speed is important, as all of the macroscheduler's operations are performed through communica-tion. Some operations, such as distributed scheduling, require a fairly large number of messages tobe sent between large numbers of workstations in order to scheduling jobs. Because several roundsof these messages are required to achieve a fair schedule, the latency of message delivery for eachround must be fairly low. For this reason, message delivery should be as quick as reasonably possible,though speed is not as important as for, say, a highly communication-intensive parallel program.An unreliable protocol is preferable, as using a \reliable" delivery protocol such as TCP/IPserves little purpose, since one cannot guarantee delivery of a message to a node that might failor across a network which might fail. Since the macroscheduler protocols must be adequatelyrobust to handle any failure gracefully, there is little to gain from a \reliable" protocol; in fact, theoverhead of bu�ering messages that might need to be resent might outweigh the bene�ts that arereaped from such a strategy. Furthermore, the datagram model is particularly appropriate, sincethe distributed scheduler requires each workstation to be able to talk to every other workstation,which means a connection-based protocol would either have to track and maintain connections withall the other workstations or else incur the additional overhead of establishing a new connectioneach time the distributed scheduling algorithm needs to talk to a di�erent node. Using datagrams,the macroscheduler components can merely send a message to any address on the network, andthat message will be delivered. Secure active messages themselves are implemented using an activemessage communication library which in turn uses simple UDP/IP packets to transfer data.Finally, unforgeability is crucial. Without this assurance from the communication system, anintruder could run unauthorized programs on networked workstations, compromising the network'ssecurity. Furthermore, including the security guarantees directly into the communication mechanismensures that all aspects of the protocol are protected from extraneous or unauthorized messages.Also, by abstracting away the actual underlying security mechanism, secure active messages allowthe protocol to operate without signi�cant concern for that security mechanism.11
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3.Figure 2-1: Node manager registration.Hence, these quick, unreliable, unforgeable datagrams are an appropriate form of communicationfor the macroscheduler's protocols, which will be explored below.2.2 Life cycle of a typical jobThis section presents the life cycle of a typical job. Before a job can be run, node managers mustregister with the job broker. Once the actual job is started, the job manager must register with thejob broker. Then, the job is scheduled. Once the job terminates, the job must be removed fromthe job broker's list of jobs. Each of these major steps, node manager registration, job managerregistration, scheduling, and job termination, is covered in turn below.2.2.1 Node manager registrationWell before a user wants to run a parallel job, node manager daemons start on all of the machinesand register with the job broker so that the job broker will be able to assign jobs to these nodemanagers. In this section, I de�ne the basic node manager registration protocol and explain whenthe node registers and when it reregisters.When a node manager daemon starts, say on a machine called thrush, it registers its addresswith the job broker, running for example on a machine named vulture (see �gure 2-1). The jobbroker assigns the node manager a unique job-broker-speci�c node id which is used to identify thatnode for the lifetime of the job broker, and responds with an acknowledgement. Once the node12



manager is registered, the job broker can begin sending jobs to the node manager to be run onthrush. If the node manager fails to register after several attempts, it waits a minute or so and triesto register again. This process repeats until the registration succeeds.The node manager, once it is registered, goes to sleep, waking up every few minutes to check theidleness of the workstation. This poll rate is increased to once every few seconds whenever a job isrunning to ensure that when a user returns to his workstation, the parallel job retreats immediately.Whenever the node's status changes, i.e., the node becomes idle, is no longer idle, is now running ajob, is no longer running a job, etc., the node manager reregisters with the job broker so that thejob broker has reasonably recent information about the node manager's status.Every few minutes, the node manager attempts to reregister with the job broker by sending itanother registration message. Whenever a node manager has not registered with the job broker insome time greater than the registration interval, the job broker assumes the workstation has failedor is no longer reachable on the network and removes the node from its list of nodes that can be usedto schedule jobs. If the workstation is actually present, but couldn't get through due to networkdi�culty, the node reregistration will succeed once the registration requests are again able to bedelivered. Hence, if the machine hosting the job broker crashes, only small amounts of computationtime might be lost, as the node manager reregisters at some point reasonably soon after the jobbroker has restarted, though the distributed scheduling protocol to be discussed can often operateeven when the job broker is not reachable.2.2.2 Job manager registrationOnce the node managers have registered, a user can begin running a job. When the user starts thejob, a job manager will be started which will register with the job broker, allowing scheduling tobegin; the details of this job manager registration are discussed below.For example, a user on a machine called penguin can run a parallel program with a simplecommand line such asqueens 12to begin the N-queens program on a 12 by 12 board (see �gure 2-2). The Cilk-NOW runtime systemstarts up a special process on penguin known as the clearinghouse, an instance of the suppliedCilkChouse program. This clearinghouse acts as a central hub for information pertaining to theparticipants in a given parallel job, and hence is part of the microscheduler. This clearinghouse, inturn, begins the macroscheduling of the job by spawning a job manager on penguin, passing it as a13



penguin

vulture

Job broker

Job broker assigns job id "1" to job manager on penguin and adds the job to its list of jobs.

queens 12
Worker

Clearinghouse

Job manager

queens 12

penguin 1thrush 1

Job manager sends registration request to job broker.

Job broker requests the actual job information.
Job manager sends the job information.

The new worker spawns a clearinghouse and registers with it.

The clearing house spawns a job manager, which launches the macroscheduling of the job.

User starts a job by typing:

4

5

6

7

3

2

1

1.
2.
3.
4.
5.
6.
7.

queens 12

Figure 2-2: Job manager registration.command line argument the command line to start other workers. For this example, the commandline might beCilkJobManager -- queens -NoChouse -Host=penguin -Port=clearinghouse-port --Everything after the �rst \--" is part of the command line to be run by subordinate workers;speci�cally, it instructs the new workers not to start their own clearinghouse, but instead to use theone found on penguin at the speci�ed port.When this job manager is started, it registers itself with the job broker by telling the job brokerat what address the job manager is running. The job broker adds that job manager to its list ofall jobs that can be run. Upon receiving the registration request, the job broker assigns the job ajob id which is then used to identify that job for the lifetime of that job broker and acknowledgesthe registration request, including the new job id. The job broker still does not have the actualjob information for the job; to obtain this information, the job broker sends a request to the job14
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a job manager to begin running that job.2 As long as each job is assigned to at least one workstation,any imbalance in the jobs is corrected by distributed scheduling operations.The actual information about the job is retrieved by the node manager directly from the jobmanager. Since only the job manager is trusted to represent the user, this architecture allowsstronger security claims to be achieved, as described in chapter 3.Once the job information is received, the node manager on thrush spawns a new worker, pass-ing in the command line speci�ed above. This worker's microscheduler then registers with thejob's clearinghouse, which in turn informs the new worker of the other workers for that job. Themicroscheduler can then start scheduling work on the new worker.The distributed macroscheduling protocol operates between pairs of nodes, say for the sake ofillustration, thrush and stork. (See �gure 2-4.) The actual distributed macroscheduling protocolinvolves random pairs of node managers contacting each other and possibly changing jobs. (Thefull details of when and how these pairings occur is detailed in chapter 4; this section focuses on theprotocols that actually perform the pairing and, possibly, switch jobs.) In order for node managers to�nd other node managers, they must know where the other idle node managers are on the network;the job broker provides updates to the node managers whenever workstations become idle or busy, sothe node managers can maintain a list of idle workstations and their node managers' addresses. Also,the node managers must have estimates of the number of workers participating in the local worker'sjob. This information comes from two places: First, the job broker updates the node managersperiodically when node counts change, and second, the workers can send their worker count to thenode manager, as the Cilk-NOW microscheduler knows this number, as well.3 Of course, all thisinformation is typically a little out of date as jobs are started and stopped all over the network in anunsynchronized fashion. When a node manager wants to pair with another node manager, it picks arandom node manager from its list of node managers. A message is then sent requesting the remotenode count, job manager address, and job id; the other node manager replies with this information.Then, based on the distributed scheduling algorithm of chapter 4, the node manager may choose toswitch jobs. If this switch happens, the node manager contacts the speci�ed job manager to get theactual job information for the job and also reregisters with the job broker to indicate that it is now2In order to save network tra�c when the system is completely idle, if no job is running on a registered nodemanager, it does not seek jobs by distributed scheduling; for this reason, the �rst job started is actually started bythe job broker on every node manager that is available to run jobs. When a node manager is not registered, i.e., ithas not received a registration acknowledgement recently, it begins the distributed scheduling process to look for jobs.3Having the job broker as well as workers provide node counts allows jobs that do not provide node counts to theirnode managers to be scheduled using the macroscheduler whiel the job broker is operational, if need be.16
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2.2.4 Job terminationThe �nal step in the life cycle of a job is termination of the job. When a job �nishes executing,the job manager detects that the job's clearinghouse has terminated and then unregisters the jobfrom the job broker using a protocol which is almost identical to the original registration, and thenthe job manager terminates. The global and/or distributed macroschedulers then reassign jobs torebalance them among the nodes.2.3 UtilitiesVarious utilities communicate with the job broker and provide a variety of useful functions:CilkPs allows users to list the current jobs being scheduled. This utility is analogous to the UNIXps utility.CilkNodes allows users to list all of the nodes currently known to the job broker, as well as theircurrent status (not idle, running a particular job, waiting for a job to run, etc.).CilkPred allows users to examine and modify the conditions, or \predicates," used to specifyidleness.xCilkNodeInfo allows users to open an X-window display of activity on a given node.These utilities are all implemented using an interface consisting of a variety of useful servicesprovided by the job broker. The protocols that these services use are extremely simple, as theygenerally only require the job broker to gather or change information and then respond to the utility.Viewing or updating idleness conditions is a little more involved, since it can require contacting anode manager to gather information and then echoing the resulting information back to the utility.These utilities provide the mechanisms needed to administer and monitor the macroscheduler'soperation.2.4 Fault toleranceThe architecture of the system and the protocols described above automatically provide the frame-work for the system's fault tolerance, with one exception involving the machine hosting the jobmanager. In this section, I argue that indeed the above protocols address the problems of faulttolerance, and then I suggest an additional protocol to �x the one exception.18



Generally, recovery from workstation failures and temporary network failures is as simple asreregistering after the failure has ended. If a machine hosting a node manager crashes, the workeron that machine will be lost; the Cilk-NOW microscheduler, however, is able to tolerate such a fault.Once the node manager restarts, it will reregister and begin running jobs again; in the mean time,the other node managers will rebalance the jobs among the remaining nodes. Should the networkbecome unavailable temporarily, all components will cease to function, as communication is essentialto a parallel system; however, when the network becomes operational again, all of the job managersand node managers will reregister, and proper scheduling will continue almost immediately.The only workstation, other than the one hosting the job manager, that can stop a job from beingscheduled if it is down for prolonged periods of time is the job broker, but distributed schedulinga�ords a bit of leeway here. Without the job broker, new jobs cannot be scheduled, and newly idlenodes cannot receive jobs, though as long as a job is running somewhere and nodes stay available,it continues to be scheduled.4Hence, as long as job broker outages are not permanent and the \root" worker (i.e., the originalworker that spawned the job manager) of the computation stays up, a job continues to be scheduledon the network of workstations. This makes the parallel execution of a program essentially as reliableas the microscheduler being macroscheduled.Unfortunately, if the machine hosting the root of the computation crashes, all traces of thecomputation, as managed by the above protocols, are lost. The Cilk-NOW microscheduler hassupport for recovering a computation whose root participant and/or clearinghouse was abnormallyterminated using checkpoint �les written periodically during the computation. In order to recover,however, a new job manager must be started on the same node as the original root was started(for security reasons, among others). Hence, whenever a job manager registers, the job broker mustinstruct a node manager on the same node as the root of the computation receive a \backup"copy of all the job information in case recovery is necessary; this information is stored in persistentstorage, such as in a �le on the local hard drive, so that the information survives a workstationcrash. Whenever a node manager registers freshly, either because it or the job broker has restarted,the node manager must inform the job broker of all of the pending \crashed" jobs. When the jobbroker deems it appropriate, it must send a special command to the node manager to spawn a newjob manager, which then registers the crashed job and starts up a new root worker, instructing it to4In order for jobs to continue to be scheduled, nodes must not switch between being idle and being busy toofrequently. This is generally the case, as described in section 5.3.19



recover the checkpoint �les. This procedure is not currently implemented in the macroscheduler.In this way, the architecture of the system naturally encompasses all but one concern of faulttolerance, namely, recovery from the crash of a root worker or clearinghouse; the system, however,can be adapted with only a small amount of added complexity to support automatic checkpointrecovery.
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Chapter 3
SecurityThis chapter de�nes the security requirements of the macroscheduler and discusses how they are ad-dressed. In the �rst section, I present these security requirements and the \secure" active messageprotocol which I created to address these concerns. The key issue to security is that the macrosched-uler allows UNIX programs to be run remotely across the network, so the security must be at least asstrong as a system's remote execution protocol. Then, I consider the implications that this securitymodel has on the architecture of the macroscheduler; in particular, security concerns force the jobmanager to provide all node managers independently and directly with all job information. Finally,I present an implementational variation on secure active messages, the secure active message server,that eases administration and strengthens security in some cases.3.1 Security modelThe security requirements of the macroscheduler are quite similar to those of a remote executionprotocol: The macroscheduler allows programs originally started on a user's local machine to berun on remote computers. For this reason, the macroscheduler must be at least as secure as themachine's remote execution (rsh) protocol. Because di�erent installations use di�erent protocolsto administer remote execution, the macroscheduler must be easily adaptable to a variety of dif-ferent authentication schemes, such as the standard UNIX rsh protocol [8, chs 9&14] or Kerberos[7]. Di�erent authentication schemes present di�erent demands and use di�erent fundamental se-curity models. Encapsulating the actual authentication protocols in a simple abstraction and thenusing the strictest assumptions used by any of the authentication protocols in the design of the21



macroscheduler ensure that the macroscheduler is secure and yet not overwhelmed with the com-plexity of authentication and authorization; the secure active message abstraction captures thisnotion.3.1.1 Secure active messagesSecure active messages provide a highly e�cient, unreliable (i.e., no guarantee of delivery) messagingsystem that ful�lls these fairly rigorous security requirements. The sender and receiver of secureactive messages are not just network addresses, but instead principals , which encompass a networkaddress and a claim as to the identity of the sender. The receiver of any secure active message thatis successfully delivered is provided with the identity of the sending principal, as well as additionalauthentication information about the message. Each secure active message also contains informationas to which handler on the remote machine should receive the message. In this section, I describehow secure active messages are sent and received and describe the cautions to be observed whenusing them to ensure a secure system.Speed is fairly important, as the distributed scheduling algorithm requires nodes to pair up withmany other nodes. The actual remote execution utilities whose security is to be emulated (i.e.,rsh, rcmd) are typically fairly slow to use directly, and they cannot be made to perform distributedscheduling securely and e�ciently, as each communication path between workstations would requireits own secure remote execution channel. For this reason, a leaner secure communication system isneeded, and secure active messages ful�ll this need.Because the requirements of secure active messages are quite similar to those of active messagesbut with added security, the secure active message layer is actually implemented as an additionallayer above an existing active message implementation.1 An active message system encapsulates ineach message the address of a procedure to execute on the remote node and data that is passedto that procedure. Theoretically, such a protocol could be implemented with a minimum of bu�ercopying, etc., providing an extremely low overhead messaging system.2 [10]In order to make active messages secure, function addresses cannot be passed directly over thenetwork without being con�rmed for correctness at the receiving end. Instead of incurring this1Actually, there is an intervening layer which splits long messages into many active messages and sends them tothe remote host, where they are reassembled, and presented to the secure active message layer as if they were a singleactive message. Small messages are sent directly as active messages, and so do not incur any overhead beyond a sizecomparison. This layering is reminiscent of that used by the Strata communications library [4].2The active message implementation utilized by the macroscheduler works on top of UNIX's socket interface, andso does not achieve the maximal theoretical throughput. 22
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to be deliveredFigure 3-1: Secure active message format, including the active message header which wraps thesecure active message data.veri�cation overhead on each message, and realizing that di�erent workstations might not load aprogram at the same address, or even that the sending and receiving programs may be di�erentprograms altogether, these addresses are replaced by indices into a handler table. This handler tablethen contains all of the functions that have been speci�cally registered as active message handlers .To provide actual authentication, all secure active messages are sent to a special active messagehandler that receives the active messages and performs the appropriate authentication on them. Aspecial header before the original message contains information about which authentication scheme(UNIX rsh, Kerberos, etc.) is being used on this message, who the sending principal is, whatremote authentication is being sought, and which handler should be invoked when authentication iscomplete, as well as any authentication scheme speci�c data (see �gure 3-1). The handlers that areinvoked once a secure active message has passed the authentication step are chosen from a secondhandler table, since these functions need additional arguments to convey information about thesending principal and the authentication type used. Only messages which pass the authenticationstep get delivered to the handler; other messages are ignored.23



Although all secure active messages have passed an authentication step, the actual authorizationneeded to run a given handler must be checked by the handler itself, allowing a handler's authoriza-tion policy to be arbitrarily complicated. Each handler must therefore ensure that the sender is au-thorized to perform the requested service, and that the authentication method used was adequate forthat service. When the sending principal is already known, a simple routine (SAmsgVerifySender)allows a simple one-line check to ensure that the sender is the expected sender.The secure active message system does not make any guarantee about the contents of the secureactive message, other than that they are what the sending principal intended them to be. Formaximal security, all handlers should assume that the remote party is malicious and not let invalidor missing data compromise the operation or security of the program.3.2 Architectural implicationsWhen an actual job gets run, the node manager should know that the job to be run is actuallyauthorized by the user that wants to run the program; if the node manager does not have a solidassurance of the user's identity, an intruder could start an unauthorized process on a machine, allow-ing him to view, modify, or destroy the user's data. In this section, I argue that the job manager'sdesign maintains this authorization assurance for even the the strongest of security primitives.In the case of standard UNIX rsh authentication, the system architecture is not very restricted,as all components must fully trust all other components that are running on trusted machines.However, with a system such as Kerberos, the superuser on any machine cannot be trusted torepresent a user; only a user that possesses tickets should have this authority.For this reason, whenever the job broker or a node manager needs information about a job, it getsthat information directly from the job manager. This is not necessary for a system such as UNIXrsh but is essential to keep the security model of a system such as Kerberos intact. Because thejob authentication is always directly from the job manager to the node manager, the authenticationscheme is essentially equivalent to that used by the Kerberos version of rsh.Another nice bene�t of always getting job information from the job manager is that if additionalauthentication information needs to be transferred to the remote machines in order to give themaccess to �le systems, etc., the job manager could be easily modi�ed to transfer this additional datadirectly to the node managers with each job request.
24



3.3 Secure active message serverSome authentication schemes prevent an ordinary user program from performing authentication.In this section, I explore the problems associated with this restriction and present an implementa-tional variation on secure active messages, the \secure active message server," that addresses theseconcerns.As an example of this problem, the UNIX rsh protocol requires superuser access to bind toa \reserved" port. Each program utilizing secure active messages would then need to be tagged\setuid root" by the system administrator. Furthermore, all code that uses secure active messagesmust then be thoroughly trusted not to abuse root access to the workstation. In fact, the problem iseven more severe, as a program which has root access in the UNIX rsh scheme has universal accessas all other principals on all other machines.For these reasons, a drop-in replacement for the secure active message library allows the actualsecure active message system to be run as a server in a separate process. Using this server, userscan write utilities that talk to the various components of the macroscheduler without the extremedi�culty of having to get their programs entrusted with superuser privileges. Furthermore, less codeneeds to be trusted when writing utilities, as the utility itself runs without the additional permissionsneeded to perform authentication. Of course, authentication schemes which do not require specialpermissions, such as Kerberos, may bypass this extra unneeded layer of protection by linking directlyagainst the actual secure active message library.
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Chapter 4
SchedulingThe scheduling subsystem of the macroscheduler ensures that the processors (i.e., workstationsrepresented by node managers) are allocated fairly among all the jobs.1 The schedule sought isone with a static allocation of jobs to processors, so the number of processors, P , must exceed thenumber of jobs, J . An underlying assumption of this objective is that the jobs represent independenttasks that require large numbers of processors each. Like a round-robin time-shared environmentsuch as UNIX, the objective is to give each user an equal share of computation time. Issues suchas scarce resource sharing, often considered a part of scheduling problems, are not a concern, aseach workstation has approximately equivalent resources. Furthermore, as jobs are independent,there is no \critical path" to be optimized. The objective of this scheduler is to provide a simple,very-low-computation algorithm to achieve this even split quickly and e�ciently. As a practicalconcern, jobs may be given relative priorities; the given algorithm can be extended to account forthese priorities. Furthermore, if some jobs do not need all of their even share, the excess processorsshould be distributed among the jobs that can utilize them; this issue is not addressed here, butsome ideas are given in chapter 6.The actual macroscheduler is divided into two parts, a minimal centralized global macroschedulerrun by the job broker and a distributed macroscheduler run by all of the node managers. Theglobal scheduler provides the mechanism to start jobs and change the set of idle workstations;the distributed scheduler provides an e�cient, fair scheduling of the jobs. Essentially, the global1The following people have made very signi�cant contributions to the scheduling algorithm: Charles Leisersonof the M.I.T. Laboratory for Computer Science, Robert Blumofe and David Zuckerman of the University of TexasDepartment of Computer Science, and Aravind Srinivasan of the National University of Singapore.26



macroscheduler watches what processors are running what jobs, and if it notices a job with noprocessors, it assigns some processor to that job. This is the mechanism by which a newly submittedjob �rst gets started. Furthermore, if all the processors running a particular job happen to go down,the job broker detects that the job is no longer being run and assigns it a processor. The mechanismused by the global macroscheduler to change the active job is indicated in section 2.2.3. Thedistributed macroscheduler then balances all of the jobs fairly among all the workstations available;this distributed macroscheduler is the focus of the remainder of this chapter.The distributed macroscheduler uses a simple, randomized algorithm to balance processors be-tween jobs. In the following sections, I shall argue the basic structure of the distributed schedulerand present an analytical justi�cation for its form. Then, I argue on the basis of simulation evidencethat this algorithm achieves a near-perfect allocation (to within one) in O(logP ) time.4.1 Distributed macroscheduler formIn this section, I discuss several alternatives for a randomized distributed scheduler and argue thatthe form used by the macroscheduler, unlike the others discussed, is a viable alternative for e�cient,fair scheduling.The fundamental idea is to have each processor periodically pick another processor at randomand see whether that processor's job is more in need of resources than the local job. If so, thejob may be switched, depending on the outcome of some locally run algorithm. A prede�ned (butunsynchronized) interval that is used to determine when to perform a scheduling step and is calleda quantum; each processor engages in the scheduling algorithm once in each of these quanta.The simplest imaginable switching policy is to switch whenever the other processor's job is morein need of resources. Unfortunately, the naivete of this scheme back�res rather severely, since theprocessor counts may be up to a quantum out of date: So many processors switch jobs that theimbalance of processors switches polarity, often leaving the magnitude of the mismatch greater thanit was to start. Simulations of this strategy reveal that it is completely unstable, often to the pointthat one job ends up with all the processors within a small number of quanta.A slightly more complicated switching policy, but still inadequate, would be to switch when animbalance is seen with some prede�ned �xed probability, or with some probability determined bythe total number of processors and/or the total number of jobs. The former strategy fails as the sizeof the scheduling problem that can be handled is determined by the value of the constant, while thelatter requires more global information, and does not achieve equilibrium quickly, as the constant27



must be low enough that overswitching is unlikely even when two processors are almost balanced;hence, the imbalance is taken up at most about one processor per quantum, meaning this algorithmis 
(P ).The algorithm employed by the distributed macroscheduler is quite similar to the previous one,except that the switching probabilities are determined by some function of a recent processor countof the local job and a recent processor count of the remote job. The following derivation suggestssuch a function, which simulations according to simulations achieves the desired almost-fair schedulein O(logP ) quanta.4.2 DerivationIn this section, I present an analytic derivation for a randomized macroscheduler algorithm using theswitching policy just mentioned for the case of two jobs; this algorithm attempts to make maximalprogress toward equilibrium at all times without a high risk of overshooting that equilibrium. Then,I argue on the basis of simulation evidence that the behavior for three or more jobs is still withinthe desired O(logP ) quanta.The actual algorithm is derived for the case of only two jobs (J = 2), job A and job B, and thenlater extended to many jobs. At any time, job A has NA processors and job B has NB = P �NAprocessors. For any processor p, denote the number of processors working on the same job as p asN(p). To model the delay in processor count updates, the algorithm uses a processor count denotedm(p) which is equal to N(p) at the beginning of the quantum. Since any processors p and q workingon the same job C has m(p) = m(q), we de�ne mC � m(p) = m(q). Without loss of generality,assume NA < NB at the beginning of a quantum, so mA < mB . Hence, only processors runningjob B consider switching jobs during this quantum. The pairings made by processors running jobA then do not a�ect the number of switches made, since for any job q, m(q) � mA. The remainingmB processors running job B each pick a random partner, which is running job A with probabilityNA=P . If processors that switch from job B to job A do not engage in further pairings for the rest ofthe quantum, this probability becomes mA=P . The expected number of processors, expected(B;A),running job B that �nd a processor running job A (which can then induce a job switch) isexpected(B;A) = mA �mBP :The requirement that nodes stop pairing is ful�lled in the actual macroscheduler by the fact that a28



node manager that has just switched jobs refuses distributed scheduling requests until it receives aninitial node count from the job broker or the worker.The desired even split is NA = NB = P=2. Since each switch closes the gap between NA andNB by two processors, the desired number of switches, desired (B;A), isdesired(B;A) = mB �mA2 :Of all of the expected(B;A) pairings, desired (B;A) of them should succeed. If each processor switcheswith probability � = desired(B;A)expected(B;A)= (mB �mA)P2 �mA �mB= (mB �mA)(mB +mA)2mAmB= m2B �m2A2mAmB ;then, as long as � � 1, the expected number of switches is switches(B;A) = � � expected(B;A) =desired (B;A), the appropriate number to close the gap. Note that � may be greater than one;in this case, all processors presented with the opportunity to switch do so; this behavior makesmaximal progress toward equilibrium, without being in danger of overshooting it. When � � 1,switches(B;A) = expected(B;A) = mBmA=P . If we assume NA � NB , then � > 1 and mB=P � 1,so switches(B;A) � mA. Hence, while NA � NB , the number of processors running job A isexpected to double in each quantum. Without proof, it makes sense that the expected order ofgrowth of this algorithm is O(logP ) for the J = 2 case. (The proof must consider what happenswhen NA � NB does not apply but � > 1. One must also consider the actual distribution of switchesand the e�ect of possible overshoot in the distribution when more processors than expected decideto switch jobs.)When there are many jobs (J � 2), applying this same algorithm still works pretty well, untilall processors are within one processor of the even allocation. Each processor just picks anotherprocessor in each quantum, and compares the number of processors participating in each of theirjobs; no other jobs are considered when computing a switch probability. As long as a single job i isoutside this range, there is guaranteed to be an extremely high probability in each quantum of �nding29



a job j such that jNi�Nj j � 2, so swift progress is made toward equilibrium. The general behaviorobserved is that the job with the most processors and the job with the fewest processors tend tomake reasonable progress toward equilibrium while the intermediate jobs tend to stay sandwichedbetween these two jobs. However, when all jobs are within one of equilibrium, in order to makeprogress, a job one over equilibrium must �nd a job one under. In the worst case, all jobs but twoare in equilibrium with P = 2J , so NA = 1, NB = 3, Ni = 2 8i 6= A;B. In this case, job B �ndsjob A with probability approximately (NBNA)=P = 3=(2J) = O(1=J), and hence achieving perfectequilibrium takes 
(J) time in this case.Figure 4-1 shows the stabilization of 100 jobs on 10000 processors. Note that the job with themost processors falls o� very rapidly, and the jobs with the fewest processors rise in an exponentialfashion to the equilibrium when they are far away. The intermediate jobs are pulled away fromequilibrium at �rst, but as soon as they lie near the extreme, they begin falling o� with the maximaljob. In this example, all jobs are within one of the fair distribution by the sixteenth quantum.
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Figure 4-1: Example scheduling run.4.3 Simulation resultsExtensive simulations suggest that this algorithm is e�cient and stable. The stabilization for anynumber of processors and any number of jobs strongly resembles the behavior exhibited by �gure 4-130



and described in the previous section. Numerous simulations with di�erent numbers of processorsand jobs were run; the average number of quanta required to reach the almost-fair schedule areindicated in �gure 4-2. Note that the two-job case along the left side of the graph shows beautiful
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Figure 4-2: Distributed scheduler simulation results.logarithmic growth, as does the P = 10J case along the diagonal front. Some of the intermediatecases are a little higher than these end points, but it nonetheless appears that the algorithm would �tunder a plane speci�ed by O(logP +logJ), with the P = 10J case doing better than this asymptoticbound. Since P > J by assumption, O(logP + log J) = O(logP ), which was the desired bound.
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Chapter 5
IdlenessTo utilize workstations only when they are \idle" or \unused" requires a concrete speci�cation ofwhen a workstation is idle, which may vary from installation to installation. Several indications,such as idle times and load averages, lend themselves to determining workstation idleness. Theseindicators, which have been used successfully in systems such as Piranha [5], must be combinedwith conditions on when they are applicable to form a useful and exible set of idleness criteria. Itis also desirable for the idleness criteria to be fairly non-volatile, so a machine declared idle tendsto remain idle for at least a few minutes, preferably much longer, preventing the microschedulerfrom being forced to spend too much time adapting to the changing set of workstations. In thischapter, I discuss techniques for detecting idleness, de�ne the macroscheduler's notion of idleness\predicates," and �nally, I present experimental evidence that networks of workstations managed inthis way present a useful computational resource.5.1 Detecting idlenessThis section discusses how idle times, the number of users, and load averages each provide some infor-mation about the idleness of a workstation [5]. Used in combination, they can gather large amountsof processing time which is practically transparent to the users of the workstations. Section 5.3provides experimental results con�rming this claim.
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5.1.1 Idle TimesOne useful measure of idleness is the time since the various input channels to a computer were lastused. The macroscheduler can �nd this information both for the tty devices, which represent bothlocal and remote users, and for the keyboard device, which represents a local user. Unfortunately,activity on some X windows which are displayed on a remote host do not have easily measurableidle times; in fact, kernel modi�cations are often required to detect such activity. For simplicity,the macroscheduler relies on other measures, mainly load averages, to try to detect this \invisible"activity.5.1.2 Number of UsersMeasuring the number of users on a system, i.e., the number of open tty ports, can provide someindication of the use of a system. Unfortunately, it is common practice for remote users to staylogged in to a machine with no activity for days, placing essentially no load on the machine. Onthe other hand, a user might be running a very processor-intensive application in the backgroundwithout even being logged in. For these reasons, the number of users is not generally a very goodgauge of workstation idleness, but is provided in the macroscheduler for the rare circumstances whenthis measure is meaningful.5.1.3 Load AveragesUnlike idle times and number of users, load averages provide useful insight into whether a programhas been left running unattended, as such a job does not show up in any of the user idle timemeasurements, but it increases the load average of a workstation. Load averages are a little tricky,though, since the parallel job being run increases the load average. Without special treatment, theparallel job would run until the load average became too high, and would then be killed. Then,the load average would fall, causing a parallel job to be started again. Fortunately, the algorithmused by most operating systems to compute load averages is a fairly straightforward weighted run-ning average, so computing the e�ect of the single parallel job on the load average is simple. Bysubtracting these predicted e�ects from the load average before comparing with a threshold, themacroscheduler considers only the e�ect of the non-macroscheduled processes, i.e., the local users'jobs, when deciding on the idleness of the workstation.
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5.2 PredicatesSome users may have particular demands for the workstations that they use, or for the workstationthat sits on their desk: They don't want other people's jobs interfering with their work. For thisreason, users can establish idleness conditions that only apply on their workstations or on whateverworkstations they happen to be using. The system administrator can also establish system-wideglobal conditions, which serve as a minimum requirement for idleness. Each of these conditions iscalled a predicate. A predicate speci�es one of the above types of conditions, i.e., idle time, numberof users, or load average, along with associated parameters (e.g., idletime=10 seconds), and aspeci�cation for when the predicate is applicable, i.e., always, on a particular workstation, when acertain user is logged in anywhere, or when a certain user is logged in on a particular workstation.In order for a workstations to be declared idle, all applicable predicates must be satis�ed.These predicates are maintained by the job broker and node managers, and can be viewed orupdated using the CilkPred utility.5.3 Experimental resultsIn this section, I present to sets of experimental results: The �rst shows that networks of workstationscan provide a sizeable and useful computational resource, while the second supports the claim thata combination of idleness detection methods is required.To evaluate the amount of time that these idleness criteria can gather, a 10-day experiment wasrun on the Theory of Computation group's network at M.I.T.'s Laboratory for Computer Science,consisting of 45 Sun Sparcstations and using two simple idleness criteria: an idle time of 15 minutesand load averages not to exceed 0.80, 0.60, and 0.501 (averaged over 1 minute, 5 minutes, and 15minutes, respectively). Over this period, an average of 23.4 machines, or 52%, were working on thecomputation at any time. Figure 5-1 shows the the daily cycles in machine availability. Note thatuser activity di�ers by about a factor of two between nighttime (the idleness peaks) and daytime (theidleness dips). The average consecutive time a typical node participated was just under 40 minutes,though a couple of workers stayed for days at a time. The amount of processor time associated withdi�erent lengths of participation is shown in �gure 5-2. These results show fairly high utilization1These numbers are a little inated since the load average check used here requires running a program each timethe load average was to be checked. This is quite ine�cient, and raises the load average a bit. The actual numbersused to consider a machine newly idle were 0.35, 0.30, and 0.25. This experiment was run using an oversimpli�edmodel of load averages, so slightly less time was gathered than would be by the �nal macroscheduler.34



of the workstations for the computation, especially at night when the workstations were not beingused much, with rather long blocks (typically 40 minutes) of continuous computation time.A similar experiment run on 7 machines for about 20 days revealed that both of these idlenessconditions were necessary. Idle time measurements but not load averages detected about 15% of thetime workstations were used, while load average measurements2 but not idle times detected 71% ofthis time. Both criteria concurrently detected only 14% of this time. Hence, each criterion alonewould have missed a fairly considerable amount of user activity on these machines.

2Here the 0.35, 0.30, 0.25 numbers were used since the checks were performed less frequently and no jobs werebeing run during the experiment. 35
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Figure 5-1: Participation in 10-day experiment.
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Chapter 6
EvaluationThe macroscheduler presented here succeeds in achieving its primary goals. It is easy to use, faulttolerant, exible, and secure. Furthermore, the scheduler e�ciently allocates workstations to variousjobs using a simple distributed algorithm in O(logP ) expected time, according to the simulationsthat have been run. Several ideas relevant to this thesis, such as re�ning fairness to account forparallel jobs that only need a few processors and a proof of the algorithm's convergence rate, however,warrant further exploration, and will be subsequently discussed.The idea of fairness should include the notion that a job may not be nable to utilize its fullshare of processors at some point in time; when a job needs fewer processors than P=J , the excessprocessors should be distributed among those jobs that can utilize them. To facilitate this, theCilk-NOW microscheduler, or other parallel job, must be able to indicate to the macroschedulersomething about its current degree of parallelism. Monitoring the parallelism in a Cilk-NOW jobmight be accomplished by tracking steal attempts, whose rate is related to total communication,which in turn is closely related to the amount of work and the critical path length the job [3].The steal rate might be used to estimate the average parallelism of a job. This information mustthen be integrated with the scheduling algorithm in such a way that jobs can grow rapidly whenthey need more processors, but not grow when the current supply of processors su�ces. Likely,the microscheduler will take some amount of time, possibly a half a minute or more, to initializeitself and gather enough information about steal attempts to provide a reasonable idea as to thecurrent degree of parallelism present. It would be preferable to have a scheduling algorithm that didnot require waiting for these long amounts of time to perform a single quantum of the schedulingalgorithm, as long quanta would slow down the scheduler signi�cantly.37



A proof of the convergence rate of the actual macroscheduling algorithm (or an approximatedversion of it) would also be bene�cial. The derivation in chapter 4 suggests that this algorithm shouldbe O(logP ), and the the simulations concur, however a formal proof of this would be very helpful.Furthermore, a proof that when J > 2 the algorithm is still fairly e�cient is needed. Currently,work is under way to provide such proofs.
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