
Location-Based Memory Fences

Edya Ladan-Mozes I-Ting Angelina Lee

MIT CSAIL

32 Vassar Street, Cambridge, MA 02139

{edya, angelee}@csail.mit.edu

Dmitry Vyukov∗

OOO Google

7 Balchug Street, Moscow, 115035, Russia

dvyukov@google.com

ABSTRACT

Traditional memory fences are program-counter (PC) based. That
is, a memory fence enforces a serialization point in the program
instruction stream — it ensures that all memory references before
the fence in the program order have taken effect before the exe-
cution continues onto instructions after the fence. Such PC-based
memory fences always cause the processor to stall, even when the
synchronization is unnecessary during a particular execution. We
propose the concept of location-based memory fences, which aim
to reduce the cost of synchronization due to the latency of memory
fence execution in parallel algorithms.

Unlike a PC-based memory fence, a location-based memory
fence serializes the instruction stream of the executing thread T1

only when a different thread T2 attempts to read the memory loca-
tion which is guarded by the location-based memory fence. In this
work, we describe a hardware mechanism for location-based mem-
ory fences, prove its correctness, and evaluate its potential perfor-
mance benefit. Our experimental results are based on a software
simulation of the proposed location-based memory fence, which
incurs higher overhead than the proposed hardware mechanism
would. Even though applications using the software prototype im-
plementation do not scale as well compared to the traditional mem-
mory fences due to the software overhead, our experiments show
that applications can benefit from using location-based memory
fences. These results suggest that a hardware support for location-
based memory fences is worth considering.

Categories and Subject Descriptors: C.1.m [Processor Architec-
tures]: Miscellaneous; D.1.3 [Programming Techniques]: Concur-
rent Programming—Parallel programming

General Terms: Design, Performance, Theory

Keywords: location-based memory fences, memory fences, asym-
metric synchronization, the Dekker duality, the Dekker protocol,
biased locks
∗This work was conducted by the author outside of Google.
This research was supported in part by the National Science Foundation

under Grant CNS-1017058 and in part by the Angstrom Project funded by
the Defense Advanced Research Projects Agency UHPC program under
Agreement Number HR0011-10-9-0009.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’11, June 4–6, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0743-7/11/06 ...$10.00.

Initially L1 = L2 = 0;

Thread 1

T1.1 L1 = 1;
T1.2 if(L2 == 0) {
T1.3 /* critical
T1.4 section */
T1.5 }
T1.6 L1 = 0;

Thread 2

T2.1 L2 = 1;
T2.2 if(L1 == 0) {
T2.3 /* critical
T2.4 section */
T2.5 }
T2.6 L2 = 0;

Figure 1: A simplified version of the Dekker protocol (omitting the mech-
anism to allow the threads to take turns), assuming sequential consistency.

1. INTRODUCTION
On many modern multicore architectures, threads1 typically

communicate and synchronize via shared memory. Classic syn-
chronization algorithms such as Dekker [10], Dijkstra [9], Lamport
(Bakery) [18], and Peterson [22] use simple load-store operations
on shared variables to achieve mutual exclusion among threads. All
these algorithms employ an idiom, referred as the Dekker dual-

ity [6], in which every thread writes to a shared variable to indicate
its intent to enter the critical section and reads the other’s variable
to coordinate access to the critical section.

Crucially, the correctness of such idiom rely on that the memory
model exhibits sequential consistency (SC) [19], where all proces-
sors observe the same sequence of memory accesses, and within
this sequence, the accesses made by each processor appear in its
program order. While the SC memory model is the most intuitive
to the programmer, existing systems typically implement weaker
memory models that relax the memory ordering to achieve higher
performance. The reordering does not affect the correctness of soft-
ware execution for the most part, but in some cases, such as in the
Dekker duality, it is important that the execution follows the pro-
gram order, and the processors observe the relevant accesses in the
same relative order.

Consider the following code segment shown in Figure 1, which
is a simplified version of the Dekker protocol [10]2 using the idiom
to synchronize access to the critical section among two threads.
If the read in line T1.2 gets reordered with the write in line T1.1
(and similarly for Thread 2), or if Thread 1 and Thread 2 observe
different order of when the writes (lines T1.1 and T2.1) occur, an

1Throughout the paper, we use the terms thread and processor interchange-
ably. In particular, we use thread in the context of describing an algorithm
and processor in the context of describing hardware features.
2This simplified version is vulnerable to livelock, where both threads simul-
taneous try to enter the critical section — each thread sets its own flag, reads
the other thread’s flag, retreats, and retries. Without some way of breaking
the tie, the two threads can repeatedly conflict with each other and retry
perpetually. The full version is augmented with mechanism to allow the
threads to take turns and thus guarantees progress. For the sake of clarity,
we present the simplified version here.

incorrect execution may result, causing the two threads to enter the
critical section concurrently.

To ensure a correct execution in such cases, these architectures
provide serializing instructions and memory fences to force a spe-
cific memory ordering when necessary. Thus, a correct implemen-
tation of the Dekker protocol for such systems would require a pair
of memory fences between the write and the read (between lines
T1.1 and T1.2, and lines T2.1 and T2.2 in Figure 1), ensuring that
the write becomes visible to all processors before the read is ex-
ecuted. Memory fences are costly, however, taking many more
cycles to complete than regular reads and writes. Furthermore,
a memory fence incurs overhead on the program execution even
when the program is executed serially, or when the synchronization
is unnecessary. For instance, the overhead incurred by the fence is
unnecessary if only one thread intends to enter the critical section,
and its write eventually becomes visible before another thread tries
to enter the critical section.

Traditional implementation of memory fences is program-
counter (PC) based. One cannot avoid the overhead incurred by a
PC-based memory fence: upon execution the processor must stall,
waiting for all outstanding writes before the fence in the instruc-
tion stream to become globally visible. The stalling is unnecessary,
however, when no other threads are performing a read on these
updated memory locations. In this work, we propose a location-

based memory fence, which causes the executing thread to “serial-
ize” only when another thread tries to access the memory location
associated with the memory fence. Location-based memory fences
aim to reduce the latency in program execution incurred by mem-
ory fences. Unlike a PC-based memory fence, a location-based
memory fence is conditional and remotely enforced — whether the
executing thread serializes the memory accesses or not depends on
whether there exists another thread that attempts to access the mem-
ory location associated with the memory fence.

Applications that employ the Dekker duality can benefit from
location-based memory fences. While the Dekker duality seems to
apply only to applications that synchronize between two threads,
the idiom is commonly used to optimize applications involving
multiple threads that exhibit asymmetric synchronization patterns,
where one thread, the primary thread, enters a particular critical
section much more frequently than the other threads running in the
same process, referred as the secondary threads. Such applica-
tions typically employ an augmented version of the Dekker proto-
col: the secondary threads first compete for the right to synchronize
with the primary thread (by grabbing an ordinary lock); once ob-
taining the right, the winning secondary thread then synchronizes
with the primary thread using the Dekker protocol. The augmented
Dekker protocol intends to speedup the execution path of the pri-
mary thread, even at the expanse of the secondary threads; there-
fore, it is particularly desirable to optimize away the overhead of
memory fences on the primary thread’s execution path, when the
application executes serially or when there is no contention.

Many examples of such applications exist. For example, Java
Monitors are implemented with biased locking [7, 16, 21], which
uses an augmented version of the Dekker protocol to coordinate be-
tween the bias-holding thread (primary) and a revoker thread (sec-
ondary). Java Virtual Machine (JVM) employs the Dekker dual-
ity to coordinate between mutator threads (primary) executing out-
side of JVM (via Java Native Interface) and the garbage collec-
tor (secondary) [7]. In a runtime scheduler that employs a work-
stealing algorithm [2–5, 11, 12, 17], the “victim” (primary) and a
given “thief” (secondary) coordinate the steal using an augmented
Dekker-like protocol. Finally, in network package processing ap-
plications, each processing thread (primary) maintains its own data

structures for its group of source addresses, but occasionally, a
thread (secondary) might need to update data structures maintained
by a different thread [23].

Such applications motivate our study of location-based memory
fences. In these applications, we would like to tune the algorithm
so that the primary thread operates on the fast path and avoid the
overhead of memory fences when possible; only when a secondary
thread attempts to enter the critical section, the secondary thread
takes measures to ensure that the primary thread serializes, thereby
achieving synchronization.

To evaluate the feasibility of location-based memory fences, we
use a software prototype to simulate the effect of location-based
memory fences and evaluate two applications with the software
prototype. While the software implementation incurs higher over-
head than the proposed hardware mechanism would, our experi-
ments show that applications still benefit from the software im-
plementation. These results suggest that a hardware support for
location-based memory fences is worth considering.

The rest of the paper is organized as follows. Section 2 gives
a abbreviated background on why reordering occurs in architec-
tures that support a weaker memory model. Section 3 presents the
proposed hardware mechanism for location-based memory fences.
Section 4 formally defines the specification of location-based mem-
ory fences, proves that the proposed hardware mechanism imple-
ments the specification, and lastly shows that the Dekker protocol
using location-based memory fences provides mutual exclusion.
Section 5 evaluates the feasibility of location-based memory fences
using a software prototype implementation with two applications.
Section 6 gives a brief overview on related work. Finally, Section 7
draws concluding remarks.

2. STORE BUFFERS AND MEMORY

ACCESSES REORDERING
In this section, we briefly review features of modern architec-

ture design, which are necessary for our proposed hardware mech-
anism for location-based memory fences. In particular, throughout
the rest of the paper, we assume that the target architecture im-
plements either the Total-Store-Order (TSO) model (implemented
by SPARC-V9 [24]) or the Process-Ordering (PO) model (imple-
mented by Intel 64, IA-32 [15], and AMD64 architectures [1]). We
also describe how memory reordering can occur, i.e., how the ob-
servable order in which memory locations are accessed can differ
from the program order. Memory reordering can be introduced ei-
ther by the compiler or the underlying hardware. Compiler fences
that prevent the compiler from reordering have relatively small
overhead, whereas the memory fences that prevent the reordering at
the hardware level are much more costly. In this section, we focus
on the reordering at the hardware level.

The target architecture we are considering supports out-of-order
execution, but “commits” executed instructions in order. While the
underlying hardware can freely reorder instructions, the result of
committed instructions must still obey rules defined by the memory
model implemented by the hardware. Specifically, the TSO and
PO models conform to the following ordering principles for regular
reads and writes issued by a given processor:3

1. Reads are not reordered with other reads;

2. Writes are not reordered with older reads;

3There are more ordering principles when one considers the interleaving
of memory accesses issued by multiple processors and when one accounts
for serializing instructions and memory fences; for the purpose of explain-
ing the hardware mechanism, we only include a relevant subset. We refer
interested readers to [1, 15, 24] for full details.

Memory

Buffer

Interconnect
Store
Buffer

Store

Cache

CacheCPU 1

CPU 0

Figure 2: A simplified illustration of the relationship between the CPUs,
the store buffers, and the memory hierarchy. Each CPU is connected
with its own private cache. In addition, a store buffer is placed between
the CPU and the cache, so that a write issued by the CPU is first stored
in the store buffer and flushed out to the cache at later time. A read may
be served by the cache, or by the store buffer if the store buffer contains
a write to the same target address as the read.

3. Writes are not reordered with other writes; and

4. Reads may be reordered with older writes if they have differ-
ent target locations (but they are not reordered if they have
the same target location).

Principle 4 violates the Dekker duality, because it allows the read
in line T1.2 of Figure 1 to appear to Thread 2 as if it has occurred
before line T1.1, even though it appears as executed in order for
Thread 1. The reason behind Principle 4 is to allow a typical opti-
mization that modern architectures implement — writes performed
by the processing unit are queued up in a private store buffer, which
is a first-in-first-out (FIFO) queue instead of being written out to the
memory hierarchy.

Figure 2 is a simplified illustration of the relationship between
the processors (CPUs), the store buffers, and the memory hierar-
chy. Though not explicitly shown in Figure 2, the memory hierar-
chy in modern architectures typically consists of several levels of
private and shared caches and the main memory. The further away
the memory hierarchy is from the processor, the higher the latency
it incurs. The use of a store buffer improves the performance of
the program, because writing to a store buffer avoids the latency
incurred by writing out to the cache. A write in the store buffer
is only visible to the executing processor but not to other proces-
sors, however. Thus, from other processors’ perspective, it appears
as if the read has taken place before the older write (in program
order). On the contrary, assuming that a cache coherence proto-
col is employed, a write becomes globally visible once its writ-
ten to the cache, since the coherence protocol mandates accesses
to data and enforces sequentially consistent view of the accessed
data among the caches of all processors. As required by the pro-
posed hardware mechanism for location-based memory fences, we
assume that the target architecture employs the MESI cache coher-
ence protocol [15], although the mechanism can be adapted to other
variants such as MSI [13] and MOESI [1].

Now we define more precisely what we mean by committing the
executed instructions in order. A read instruction is considered to
be committed once the data is available (in at least Shared state)
in the processor’s private cache. A read may be speculatively ex-
ecuted out of order, but it must be committed in order. That is,
the processor may perform a speculative read and fetch the cache
line early, but if the cache line gets invalidated between the spec-
ulative read and when the read should commit in program order,
the processor must reissue the read and fetch the cache line again.
Once a read is committed successfully, the read value can be used
in subsequent instructions.

A write instruction, on the other hand, has two phases: “com-
mitted” and “completed.” A write is considered to be committed

once it is written to the store buffer, although its effect is not yet
visible by other processors. A write is considered to be completed,

when it is flushed from the store buffer and written to the proces-
sor’s cache. Once a write is completed, its effect becomes globally
visible, since the cache coherence protocol ensures that all proces-
sors have a consistent view (the processor must gain Exclusive state
on the flushed location before it update the value in the cache).

Since the guarantee is only that instructions must be commit-
ted in order, once the write is committed, the processor is free to
continue executing subsequent instructions. A subsequent read in-
struction (with a different target address) may freely commit, even
though an older write may still be in the store buffer. Thus, the re-
sulting behavior observable by the other processors is that the read
appears to have taken place before the older write.

The executing processor does not observe this reordering and
always sees its own write, however, since the hardware employs
store-buffer forwarding, so that a read with a target address that
appears in the store buffer is serviced by the store buffer instead
of by the cache. The store-buffer forwarding also enforces the or-
dering principle that a read is not reordered with an older write if
they have the same target address. Furthermore, due to store-buffer
forwarding, when two writes from two processors, say P1 and P2,
interleave, the write ordering observed by P1 may differ from the
write ordering observed by P2, because each processor always sees
its own write as soon as it commits, but not the write performed by
the other processor until the write reaches the cache.4

Whenever the system bus is available, the store buffer flushes
the oldest entry to memory, so that each write becomes complete
in FIFO order, ensuring that a write is never reordered with other
writes (Principle 3). In the event that a context switch, an interrupt,
or a serializing instruction (e.g., a memory fence) is encountered,
the entire store buffer is drained as well, stalling the processor until
all writes in the store buffer become globally visible.

3. LOCATION-BASED MEMORY FENCES
In this section, we describe location-based memory fences, or

l-mfence in detail, including its informal specification, usage, and
a proposed hardware implementation. The formal specification, as
well as a correctness proof, is presented in Section 4. The proposed
hardware mechanism that implements the l-mfence assumes an
underlying architecture as described in Section 2.

Informal Specification and Usage of l-mfence

To describe the informal specification of l-mfence, we need to di-
gress a bit and first describe the specification of an ordinary mem-
ory fence, or mfence. In Section 4 we give a formal definition of
these ordering before we formally define the specification of the
l-mfence.

The mfence instruction can be used to prevent other processors
from observing reordering of the executing processor’s instruction
stream, at the point of a mfence execution — mfence simply forces
the processor to stall until its store buffer is drained, flushing all its
entries out to the cache in FIFO order. We say that the executing
processor “serializes” its instruction stream at the point of mfence,
meaning that the executing processor completes all the memory ac-
cesses prior to mfence, before executing instructions after mfence.

An l-mfence, unlike an ordinary memory fence, executes a
memory fence “on demand.” It takes in two inputs: a location l

guarded by the fence and a value v to store in l (see Figure 3(a)),
and it serializes the instruction stream of the executing processor
only when another processor attempts to access the guarded mem-
ory location.

4While P1 and P2 may observe different orders, the other processors in the
system will observe a consistent ordering of the two writes.

Primary Thread

K1 l-mfence(&L1 ,1);
K2 if(L2 == 0) {
K3 /* critical
K4 section */
K5 }
K6 L1 = 0;

Secondary Thread

J1 L2 = 1;
J2 mfence();
J3 if(L1 == 0) {
J4 /* critical
J5 section */
J6 }
J7 L2 = 0;

(a)

Instruction translation for l-mfence(L1,1) (line K1 in Thread 1)

K1.1 MOV LEBit <- 1 //set LEBit
K1.2 MOV LEAddr <- &L1 //LEAddr gets addr of l

K1.3 LE &L1 //load l in E mode
K1.4 ST [&L1] <- 1 //store l=v

K1.5 BNQ LEBit , 0, DONE //Go to DONE if LEBit != 0
K1.6 MFENCE //else execute mfence
K1.7 DONE:
K1.8 //the rest of the program (line K2)

(b)

Figure 3: (a) The asymmetric Dekker protocol using location-based mem-
ory fences. The code for the primary thread is shown in lines K1–K6, and
the code the secondary thread is shown in lines J1–J7. (b) The instructions
generated for l-mfence shown in line K1 in the code for the primary thread
in (a).

The serialization of P’s instruction stream enforces a relative
ordering between the store S associated with the execution of
l-mfence and the other accesses performed by P. The ordering
between S and an access A are observed consistently across proces-
sors, including the processor executed the l-mfence and A. That
is, from P’s perspective, if P executed S before (after) A, all proces-
sors observe that S “happened” before (after) A. The serialization
does not enforce any relative ordering between accesses that hap-
pen before (after) S, however, meaning that the l-mfence ensures
that all processors (including P) consistently observe that A1 and A2

happened before (after) S, but they may not have a consistent view
of the relative ordering between A1 and A2. The relative ordering
between these accesses is still defined by the TSO / PO memory
model.

The use of l-mfence is very similar to the use of mfence, except
that the l-mfence is associated with a specific store. A in mfence,
when l-mfence is used in the program, an implicit compiler fence
should be inserted in place to prevent reordering at the compiler
level. Threads synchronizing via l-mfence need to coordinate with
each other and be careful as to where to place the l-mfence and
which memory location to guard / read after. Since a l-mfence

does not guarantee atomic read-modify-write operation, its correct
usage typically involves single writer only. Note that l-mfence
prevents other processors from observing the reordering of the ex-
ecuting processor’s instruction stream, but it does not prevent the
executing processor from observing reordering of other processors’
instruction streams. Therefore, correct usages of l-mfence typi-
cally consist of a pair of memory fences. For instance, to ensure
correct execution in the case of the Dekker protocol, it is crucial
that both processors insert memory fences between the write and
the read, to prevent the other processor from observing reordering.
For l-mfence, the pairing can be with either another l-mfence or
an ordinary mfence.

Hardware Implementation of l-mfence

Our proposed implementation of l-mfence requires a new hard-
ware mechanism, called load-exclusive / store, or LE/ST. Con-
ceptually, the LE/ST mechanism allows the processor to setup a
“link” to keep track of the status of the store associated with the
l-mfence (i.e., whether the store to guarded location is committed

or completed as defined in Section 2). It also allows the processor
to coordinate with the cache controller to monitor attempts to ac-
cess the guarded location. Another processor’s attempt to access
the guarded location causes the processor to clear the link and trig-
gers actions necessary to serialize the instruction stream. On the
other hand, if the store becomes complete before another processor
attempts to access the guarded location, the processor clears the
link and thus stops guarding the location.

LE/ST requires one new instruction and two additional hardware
registers. The new instruction, LE, takes one operand — the lo-
cation of the variable to load, and obtains Exclusive state on that
location. Therefore, once LE is committed, the processor has the
location in its cache in Exclusive state, and no other processors
have a valid copy of the location in their cache. Since LE is very
similar to a regular load, except the requirement for Exclusive state
on the location, it can be easily implemented by modern architec-
tures using the MESI coherency protocol. The two additional hard-
ware registers are LEBit and LEAddr, both readable and writable by
the processor, and readable by the cache controller. The processor
must update these register to enable the link and guard the memory
location specified by the l- mfence. First we describe how the
processor updates these registers to setup the link, and then we de-
scribe how the processor and the cache controller coordinate with
each other to guard the memory location.

Figure 3(b) presents the assembly-like translation for the
l-mfence(l,v) where l == L1 and v == 1.5 Initially, LEBit and
LEAddr are cleared. As part of the l-mfence(&L1,1), the proces-
sor starts to create the link to the guarded location by setting the
LEBit with 1 and LEAddr with L1 (lines K1.1 and K1.2 in Fig-
ure 3(b)). Next, the LE instruction in line K1.3 loads L1 into the
cache in Exclusive state, so that no other processor holds a copy of
L1 in its cache. At this point we say that the link is set. The ST

instruction in line K1.4 stores the value 1 to L1, committing it into
the store buffer. If for any reason the link is broken, implied by the
zero value in LEBit (line K1.5), the processor executes a MFENCE

(line K1.6). The MFENCE causes the processor to serialize its execu-
tion — it flushes the store buffer, and by that it completes the store
of the guarded location, making it globally observable by other pro-
cessors. If the link is not broken when the ST in line K1.4 commits,
the processor may continue without flushing the store buffer.

We now explain how the cache controller interacts with the pro-
cessor to guard the location stored in LEAddr. Whenever both
LEBit and LEAddr are set, the cache controller listens to cache co-
herency traffic, and notifies the processor if any request requires the
controller to either (1) downgrade the cache line corresponding to
the memory location stored in LEAddr from Exclusive state; or (2)
evicts the cache line. The cache controller then waits for the pro-
cessor’s response before it takes any actions regarding the guarded
location, since these events break the link to the guarded location.

When the processor receives the notification from the cache con-
troller, it clears the LEBit and LEAddr, flushes the store buffer, and
replies to the cache controller. At the time the processor replies the
cache controller, the most up-to-date value of the guarded location
is already in the cache. When the cache controller gets the pro-
cessor’s reply, it resumes the actions it needs to take regarding the
guarded location. By clearing the LEBit, the processor remembers
that the link to the guarded location is broken. In the event that the
link is broken before ST (line K1.4) was committed, the code for

5The code shown is not strictly assembly. First, we are not using a partic-
ular instruction set. Second, for the sake of clarity, we choose to use the
store instruction (line K1.4) instead of using the regular move instructions
to specify instructions that write to memory (i.e., non registers).

l-mfence takes the branch that executes an MFENCE, causing the
store buffer to flush (line K1.5) after the store commits.

The link remains set for as long as the primary processor still has
the cache line, until the corresponding store to the guarded location
is complete. When the corresponding store in the store buffer is
flushed, possibly due to other internal reasons (for instance, the
store is naturally flushed as the oldest entry in the buffer, the buffer
is full, or a context switch occurs), upon completing the store, the
processor also clears LEBit and LEAddr. The guarded location can
still remain in the cache in Exclusive (or Modify) state if there is
no request to evict or downgrade it.

In the context of the Dekker protocol, since LE ensures that the
primary processor has the cache line for L1 in Exclusive state be-
fore the ST in line K1.4, its cache controller must receive a down-
grade request from a secondary processor before the secondary pro-
cessor can access L1. Furthermore, since the cache controller of
the primary processor cannot respond to the downgrade request un-
til the primary processor replies, the secondary processor will see
the most up-to-date value of L1. Essentially, we piggyback on the
cache coherence protocol to detect another processor’s attempt to
access the guarded location. We also rely on the coherency proto-
col to deliver the most up-to-date value to the other processor, since
the store buffer is flushed before the cache controller replies to the
secondary processor. It is necessary for the cache controller to no-
tify the processor when it needs to evict the cache line, since the
cache controller can no longer help guarding the memory location,
if the given cache line is evicted.

The design of this hardware mechanism is intended to be light-
weight and efficient. Since we assume only one pair of LEBit and
LEAddr are allocated per processor, if a processor encounters a sec-
ond LE/ST while the link from the first LE/ST is still in effect, the
processor must flush the store buffer, clear LEBit and LEAddr, be-
fore it can proceed with the second LE/ST. unless the second LE/ST
has the same target load address as the first LE/ST.

Expected Overhead of the LE/ST Mechanism

The LE/ST mechanism ensures that the primary processor, when
running alone, will not execute any memory fences, and perform
only regular stores; it still needs to perform LE regardless, but that
should not incur much overhead — the hope is that the target cache
line of LE stays in the primary processor’s cache. Furthermore,
the target cache line of LE only gets invalidated whenever the sec-
ondary processor attempts to enter the critical section. Assuming
the secondary processor synchronizes infrequently, the target cache
line stays in primary processor’s cache between the secondary pro-
cessor’s synchronization attempts. Finally, the primary processor
flushes the store buffer only when the secondary processor attempts
to enter the critical section when the link is in effect, so the primary
processor should perform regular store for the most part. On the
other hand, the secondary processor could stall for a while when
waiting for the primary processor to flush its store buffer, but the
assumption is that the secondary processor can incur overhead if it
improves the performance of the primary processor.

If the secondary processor synchronizes frequently, each use of
l-mfence may result in one store buffer flush, which is compa-
rable to a regular mfence. There is once case in which the /Fast
processor will flush the buffer twice – if a downgrade request (due
to a secondary processor attempts to access the guarded memory
location) arrives at the primary processor between the commit of
LE (line K1.3) and ST (line K1.4). The first flush is performed
when the processor is notified, and the second flush is performed
after the ST commits, via taking the branch (lines K1.5 and K1.6).
During the first flush, the guarded location is not committed to the

store buffer yet. We choose to flush the store buffer at this point,
because it results a more intuitive specification for the l-mfence.
The second flush, on the other hand, is essential to guarantee cor-
rectness. Without the second flush, one could construct a scenario
in which the secondary processor enters the critical section twice,
once before the primary processor commits its store to L1 and once
after, wrongfully allowing both processors to execute in the crit-
ical section concurrently. Even though the processor flushes the
store buffer twice, the second flush contains only on location, the
guarded location.

Lastly, the cache controller needs to compare the incoming re-
quest from cache coherence traffic against the address stored in
LEAddr when the LE/ST mechanism is in effect. We believe that
this comparison can be done in parallel with other operations that
the cache controller already performs to handle the request, and
thus it should not incur additional performance penalty.

4. FORMAL SPECIFICATION AND

CORRECTNESS OF L-MFENCE
In this section, we formally define the specification of l-mfence

and prove that the hardware mechanism described in Section 3 im-
plements the specification.6 Then, based on the specification of
l-mfence, we prove that the asymmetric Dekker Protocol using
l-mfence (as shown in Figure 3(a)) achieves mutual exclusion.

Formal Specification of l-mfence

To formally define the specification of l-mfence, we first define
the serialization order for a given memory location.

DEFINITION 1. Given a memory location l, the serialization

order of accesses to l performed by all processors is as follows.

1. A load L from location l is serialized after a store S of v to

l if and only if L observes v.

2. A store S of v to location l performed by a processor P is

serialized after a store S′ of v′ to l if at the time of completion

of S, had P executed a load, the load would have observed v′

from S′.

3. A load L from l is serialized before a store S of v to l if

there exists a store S′ to l such that L is serialized after S′,

and S is also serialized after S′.

Note that the serialization order involving stores are defined by
the time of completion, not commit. To complete a store of v to l,
the executing processor P must gain Exclusive state on l, and thus
it can be viewed as if the store was preceded by a load from l, since
the value of l exists in P’s cache in Exclusive state. Furthermore,
since the serialization order on a location l is defined by the com-
pletion time of stores, all processors agree on a single serialization
order.

Definition 1 defines the serialization order on a given memory
location that is globally consistent. Program order, on the other
hand, is defined for a given processor, which is the order of mem-
ory accesses occurred in a processor P’s instruction stream from
P’s perspective. If we consider all memory accesses from every
processor to every memory location, there exists a global visibil-

ity order on these accesses (a posteriori), where the visibility order
is consistent with the serialization order for each memory location
and the ordering priciples defined by the TSO / PO model relative
to each processor’s program order.

6The definitions we describe in this section in order to formally define the
specification for l-mfence are similar to certain definitions described in
[14], although we use different notations and terminology, and define only
the terms we need.

Given the visibility order of a particular execution, we say that a
memory access A1 happened before (after) another access A2 if A1

precedes (follows) A2 in the visibility order, or A1 < A2. From P’s
perspective, we say that a memory access A1 occured before (after)

another access A2 if A1 precedes (follows) A2 in P’s program order,
or A1 ≪ A2.

Now we define the specification of l-mfence formally.

DEFINITION 2. Given a store S associated with l-mfence

executed by a processor P, and an access A also performed by P,

the l-mfence enforces that if A ≪ S then A < S, and vice versa,

without breaking the TSO / PO ordering principles.

An l-mfence(l,v) performed by processor P executes a store
S of v to l, and enforces a happened-before (after) relation between
S and any other access A performed by P that is consistent with S

and A’s relative ordering in P’s program order. That is, if access
A occurred before (after) l-mfence in P’s instruction stream, A

appears to all processors that it has happened before (after) S in the
global visibility order.

Correctness Proof of the LE/ST Mechanism

We start by some definition and lemmas that will help us show that
the LE/ST mechanism (which includes the code sequence shown in
Figure 3(b)) implements the specification of l-mfence.

DEFINITION 3. Given the LE/ST mechanism and a particular

instance of l-mfence(l,v), a link for the l-mfence is set if

LEBit contains 1, LEAddr contain l, and the cache line for l is

in the executing processor’s private cache in Exclusive or Modified

state. If any of these conditions is not met, the link is clear.

LEMMA 1. Given a particular instance of l-mfence(l,v),

if LEBit contains 1 when the store commits (line K1.4), the link

must be set.

PROOF. By committing instructions shown in lines K1.1–K1.3,
the executing processor set up the link. Since LEBit is set as the
first instruction of the l-mfence execution, if the link was bro-
ken at any point before the commit of ST in line K1.4, the LE/ST
mechanism clears LEBit as part of breaking the link. Once the
link is broken, LEBit is never set again until the next instance of
l-mfence.

LEMMA 2. The LE/ST mechanism maintains the ordering prin-

ciples defined by the TSO / PO memory model.

PROOF. The LE/ST mechanism uses regular loads7, stores, and
memory fences, which maintains the FIFO ordering in the store
buffer and the fact that instructions are committed in order. Thus,
the TSO / PO principles are maintained.

LEMMA 3. The LE/ST mechanism ensures that, before P1 com-

mits the next instruction following l-mfence(l,v), either the

store S to l in line K1.4 is already complete, or any other access to

l from another processor P2 must happen after S.

PROOF. There are two cases to consider — either the link is
clear at the time when S commits (Case 1), or the link is still set
(Case 2).

Case 1: By Lemma 1, we know that if the link is clear, the LEBit
must be 0. Therefore, by the code for LE/ST mechanism (Fig-
ure 3(b)), the condition for the branch (line K1.5) is false, and thus

7As explained in Section 2, the LE instruction is very similar to a regu-
lar load and can be implemented using the existing architecture and cache
coherency protocol.

P1 must execute the MFENCE in line K1.6, causing S to complete
before the next instruction (line K2 in Figure 3(a)) commits.

Case 2: If the link is set, by Definition 3, we know that P1 has
l in Exclusive / Modify state. Therefore, any processor P2 will
issue coherence traffic to P1 before P2 can commit a load from l or
complete a store to l (a store must acquire Exclusive state on the
location before it can complete). Since the link is set, P1’s cache
controller will notify the processor when such request arrives. By
the LE/ST mechanism upon notification, P1 clears the link, flushes
its store buffer to complete S, and replies to the cache controller.
Only after that, the cache controller responds to P2’s request. Thus,
P2’s access to l happened after S.

THEOREM 4. The LE/ST mechanism implements the specifica-

tion of l-mfence as defined in Definition 2.

PROOF. To show that the LE/ST mechanism implements the
specification of l-mfence, we show that l-mfence enforces that
if A ≪ S then A < S and vice versa. By Lemma 2, we know that
the LE/ST mechanism maintains the TSO / PO principles. Thus,
the case where A ≪ S (for A being either a load or a store) is triv-
ially true. Similarly, the case where S ≪ A where A is another store
to a different location is also trivially true. Moreover, since the vis-
ibility order is always consistent with the serialization order to a
given location, the case where S ≪ A where A loads from or stores
to the same target location as S, is also trivially true. Thus, the only
case we need to analyze is S ≪ A, where A is a load with a different
target location, and we show that S < A.

Let P1 be the processor executing the l-mfence(l1,v), and its
program order dictates that the store S to l1 (associated with the
l-mfence) happened before a load A from location l2. Assume for
the purpose of contradiction, that some processor P2 observes that S

happened after A. The only way that P2 can observe such happened-
after relation is if P2 performs some operations B accessing l2 and
C accessing l1 in such way that S is forced to happen after A. That
is, based on the TSO / PO principles and the serialization order
observed by P2 during execution, S cannot happen before A.

We consider possible candidates for B and C. In order to enforce
an ordering on B and C in visibility order, we cannot have B being
a store and C being load, because the TSO / PO principles does
not enforce that B < C if B ≪ C. We will not consider B being
a load, because we wish to enforce a visibility order between A

(also a load) and B based on the serialization order of l2, which is
determined by stores completed on l2. Involving an additional store
on l2 to force a serialization order between A and B is essentially
the same effect as simply choosing B as a store. Thus, we only
consider the case in which both B and C are store operations.

With B storing to l2 and C storing to l1, we construct a scenario
to obtain the visibility order A < B < C < S. Since B ≪ C in
P2’s program order, we have B < C as dictated by the TSO / PO
model (Principle 3 in Section 2). We can obtain A < B via the
serialization order, since they both operate on memory location l2
(assuming B is serialized after A). Similarly, we can obtain C <
S via the serialization order, since they both operate on memory
location l1.

Given this visibility order, we know that A (a load) must commit
before B completes, otherwise A would observe the value stored
by B and therefore serialize after B. Similarly, C must complete
before S completes, otherwise S would serialize before C. We also
know that B must complete before C completes, by the TSO / PO
principles. That means, A must commit before S completes. There
are two cases to consider here.

Case 1: The link for the l-mfence that S is associated with is
clear when A commits. By Lemma 3, since S must complete before

the next instruction (following l-mfence) commits, we know that
this visibility order cannot occur, and S < A.

Case 2: The link is set when A commits. In this case, S is com-
mitted but not yet complete when A commits. Let’s name the next
immediate access to l1 that completes as D (possibly from any pro-
cessor). By Lemma 3, D must happen after S, i.e., S < D. If D

turns out be C, then S < C, and there is no reason why we cannot
rearrange the visibility order to obtain S < A < B < C, since there
is no ordering constraint that prevents S from moving upward. If D

is not C, then C must complete and happen after D, so we still have
S < C. With the same reasoning, we can rearrange the visibility
order to obtain S < A < B < C.

In both cases, we have S < A, which agrees with P1’s program
order, S ≪ A.

Theorem 4 proves that the LE/ST mechanism correctly imple-
ments the specification of l-mfence. In the following subsection,
we prove that this specification is sufficient to guarantee mutual ex-
clusion if it is used by the primary thread in the asymmetric Dekker
protocol.

Correctness Proof of the Asymmetric Dekker Algo-
rithm using l-mfence

We now prove that the l-mfence(l,v) specification is sufficient
for achieving mutual exclusion when it is used in the asymmet-
ric Dekker protocol, such as shown in Figure 3(a). The proof is
based on two lemmas, each shows that if one thread is running in
its critical section, the other one is prevented from entering it. For
brevity, we name the primary thread executing the l-mfence T 1
(lines K1–K6 in Figure 3(a)) and the secondary thread T 2 (lines
J1–J7 in Figure 3(a)).

LEMMA 5. Assuming both T 1 and T 2 are concurrently at-

tempting to enter the critical section. If T 1 reads that L2 == 0
in line K2 and is therefore entering the critical section, T 2 will not

enter the critical section.

PROOF. If T 1 reads that L2 == 0 in line K2, we know that the
load in line K2 must have committed before the store in line J1
completed. That is, the load in line K2 happened before the store in
line J1. Since T 2 uses an mfence (line J2) between lines J1 and J3,
the load in line J3 cannot execute until the store in line J1 com-
pletes. Thus, the load in line K2 must also have happened before
the load in line J3. By the specification of l-mfence (Definition 2),
since the store to L1 associated with the l-mfence in line K1 must
appear to happen before the load in line K2 to all processors, T 2
must observe that the store in line K1 happened before the load
in line K2, which happened before the load in line J3. Therefore,
when T 2 executes the load in line J3, it must observe the store per-
formed in line K1, read L1 == 1 (assuming T 1 has not left the
critical section), and refrain from entering the critical section.

LEMMA 6. Assuming both T 1 and T 2 are concurrently at-

tempting to enter the critical section. If T 2 reads that L1 == 0
in line J3 and is entering the critical section, T 1 will not enter the

critical section.

PROOF. If T 2 reads that L1 == 0 in line J3, we know that the
load in line J3 must have been serialized before the store that is
associated with the l-mfence(L1, 1). Thus, the load in line J3
happened before the the store for l-mfence(&L1, 1) in line K1.
By the specification of l-mfence (Definition 2), T 2 must observe
that the store associated with line K1 happened before the load in
line K2, so the load in line J3 must also have happened before the
load in line K2. Since T 2 uses an mfence (line J2) between lines J1

and J3, the load in line J3 cannot execute until the store in line J1
completes, and thus the store in line J1 must also have happened
before the load in line K2. Thus, when T 1 executes the load in
line K2, T 1 must observe T 2’s store to L2 and read L2 == 1 (as-
suming T 2 has not left the critical section), and refrain from enter-
ing the critical section.

THEOREM 7. The asymmetric Dekker protocol using

l-mfence allows at most one thread to execute in the criti-

cal section at any given time.

PROOF. Follows form Lemmas 5 and 6.

As we have shown, the asymmetric Dekker protocol shown in
Figure 3(a) guarantees mutual exclusion. Nonetheless, it requires
additional tie-breaking code (similar to the original Dekker pro-
tocol) to avoid live lock situations in which both threads are kept
outside their critical sections.

The asymmetric Dekker protocol is designed to optimize away
the overhead incurred onto the primary thread at the expanse of
additional overhead on the secondary thread, which is advanta-
geous for applications that exhibit asymmetric synchronization pat-
terns. Hence, we use an mfence in the secondary thread instead of
l-mfence to avoid incurring additional overhead on the primary
thread. If the secondary thread was using an l-mfence, the pri-
mary thread may need to wait for the secondary thread to flush its
store buffer when it attempts to read L2 in line K2. Nevertheless,
the secondary thread has the option of executing the mirrored code
(using l-mfence(&L2,1) in line J2), and the protocol still provides
mutual exclusion in such case.

5. EVALUATION
To evaluate the feasibility of location-based memory fences, we

have implemented a software prototype of location-based memory
fences using signals. The idea of using signals to cause a thread
to serialize has been proposed by Dice et al. in [6], but was not
evaluated. We implemented the signal-based serialization method
similar to what [6] proposed, and use it as a basis for evaluating
the expected performance of the hardware mechanism for location-
based memory fences. We incorporate the software prototype of the
fences into two applications. In this section, we briefly summarize
the software prototype, the experimental setup, and the results of
our evaluation.

Software Prototype of l-mfence

The software prototype must correctly capture two main effects.
First, the primary thread must not reorder the write and the read
at the compiler level. We achieve this simply by inserting a com-
piler fence at the appropriate place. Second, before the secondary
thread attempts to read the primary thread’s flag, it must cause the
primary thread to serialize, and only proceed to read the flag when
it knows that the primary thread has performed serialization. We
achieve this via signals — a software signal generates an interrupt
on the processor receiving the signal, and the processor flushes its
store buffer before calling the signal handling routine. Thus, the
secondary thread sends a signal to the primary thread and waits for
an acknowledgment by spinning on a shared variable.8 Upon re-
ceiving the signal (which implicitly flushes the store buffer), the
primary thread executes a user-defined signal handler, which sets
the shared variable as an acknowledgment, thereby allowing the
secondary thread to resume execution.

8This is assuming that the signaling succeeds; the signaling would fail if
the primary thread has already terminated.

This software prototype implementation incurs overhead that the
proposed hardware mechanism would not. First, since the sig-
nal handler is user-defined, upon receiving the signal, the primary
thread would need to cross between kernel and user modes four
times, which incurs high overhead. The same overhead is incurred
on the secondary thread as well, since the secondary thread must
wait for the primary thread to acknowledge receiving the signal.
Second, the secondary thread may observe some latency if the pri-
mary thread is de-scheduled from the processor.9 The proposed
hardware mechanism would not observe these overheads.

On the other hand, in the software implementation, the fences
incur virtually no overhead on the primary thread when there is no
contention. This is not the case for the hardware mechanism, which
incurs a small overhead on the primary thread. This overhead re-
sults from the registers setup, the branch to check LEBit, and the
wait for Exclusive state on the guarded location. When there is
no contention, however, most of this overhead is eliminated by the
successful branch prediction and the fact that the location stays in
the primary thread cache in Exclusive or Modified state, because
no other thread is trying to access it. When there is contention,
we speculate that the signal handling overhead associated with the
software implementation are much higher compared to the hard-
ware mechanism. Even though the software implementation does
not faithfully simulate the overhead of the hardware mechanism, it
nonetheless gives us some idea as to whether the hardware mecha-
nism is worth investigating.

Experimental Setup

We incorporate the software prototype of the fences into two appli-
cations — the asymmetric Cilk-5 runtime system and an asymmet-
ric multiple-readers single-writer lock.

For the first application, we have modified the open-source Cilk-
5 runtime system [11]10 to incorporate the location-based memory
fence into its Dekker-like protocol employed by the runtime work
stealing scheduler, referred as the ACilk-5 runtime. In ACilk-5
runtime, when a thief (the secondary thread) needs to find more
work to do, it engages in the asymmetric Dekker-like protocol with
a given victim (the primary thread) in order to “steal” work from the
victim’s “deque.” If there are more than two thieves attempt to steal
from the same victim, the thieves must first compete for the right to
engage the victim via a lock acquisition, so that only a single thief
would engage in the Dekker protocol with the victim at any given
moment. Assuming the application contains ample parallelism, a
victim would access its own deque much more frequently than a
thief, because steal occurs infrequently.

For the second application, we have designed an asymmetric

multiple-readers single-writer lock, where the lock is biased to-
wards the readers, henceforth referred as the ARW lock. From
time to time, a reader (the primary thread) turns into a writer (the
secondary thread), and attempts to acquire the ARW lock in write
mode by engaging in the asymmetric Dekker protocol with each of
the registered readers. Similarly to ACilk-5, if there are more than
one writer at a given moment, the writers compete for permission
to write by first acquiring a lock, and only the winning writer is
allowed to engage in the Dekker protocol with the readers.

We ran all experiments on an AMD Opteron system with 4 quad-
core 2 GHz CPU’s having a total of 8 GBytes of memory. Each core

9The correctness of the protocol is not affected by the primary thread be-
ing de-scheduled, because the de-scheduling constitutes a context switch,
which requires the store buffer to drain before the de-scheduling.

10The open-source Cilk-5 system is available at http://supertech.
csail.mit.edu/cilk/cilk-5.4.6.tar.gz.

Application Input Description
cholesky 4000/40000 Cholesky factorization
cilksort 108 Parallel merge sort
fft 226 Fast Fourier transform
fib 42 Recursive Fibonacci
fibx 280 Alternate between fib(n-1) and fib(n-40)
heat 2048×500 Jacobi heat diffusion
knapsack 32 Recursive knapsack
lu 4096 LU-decomposition
matmul 2048 Matrix multiply
nqueens 14 Count ways to place N queens
rectmul 4096 Rectangular matrix multiply
strassen 4096 Strassen matrix multiply

Figure 4: The 12 benchmark applications.

 0

 0.2

 0.4

 0.6

 0.8

 1

cholesky

cilksort

fft fib fibx heat
knapsack

lu matmul

nqueens

rectmul

strassen

as
ym

m
et

ric
 /

sy
m

m
et

ric

relative execution time on single processor

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

cholesky

cilksort

fft fib fibx heat
knapsack

lu matmul

nqueens

rectmul

strassen

as
ym

m
et

ric
 /

sy
m

m
et

ric

relative execution time on 16 processor

Figure 5: (a) The relative serial execution time of the ACilk-5 runtime
system compared to the original Cilk-5 runtime system for 12 Cilk bench-
marks. (b) The relative execution time of the ACilk-5 runtime system com-
pared to the original Cilk-5 runtime system for 12 Cilk benchmarks on 16
cores. A value below 1 means that the application runs faster on ACilk-5
than on Cilk-5; a value above 1 means the other way around. Each value is
calculated by normalizing the execution time of the benchmarks on ACilk-5
with that on Cilk-5.

on a chip has a 64-KByte private L1-data-cache and a 512-KByte
private L2-cache, but all cores on a chip share a 2-MByte L3-cache.

Evaluation Using ACilk-5

To evaluate the effect of location-based memory fences, we com-
pare the execution time of applications running on ACilk-5 versus
running on Cilk-5 across 12 benchmarks. Figure 4 provides a brief
description of each benchmark.

Figure 5(a) compares the performance of the benchmarks run on
ACilk-5 and Cilk-5 when executed serially. Figure 5(b) shows a
similar performance comparison when executed on 16 cores. For
each measurement, we took the mean of 10 runs (with standard
deviation of less than 3%). A value below 1 means that the applica-
tion runs faster on ACilk-5 than on Cilk-5. Not surprisingly, when
executed serially, ACilk-5 runs faster, because the victim executes
on the fast path with virtually no overhead from memory fences.
The improvement that ACilk-5 exhibits over Cilk-5 when running
a given benchmark is directly related to the number and the gran-
ularity of tasks that the benchmark generates. Since ACilk-5 saves
the overhead of executing the memory fence whenever the victim

accesses its deque, the more frequently a victim accesses its own
deque, the more overhead ACilk-5 saves compared to Cilk-5.

Figure 5(b) shows the same performance comparison when ex-
ecuted on 16 cores. For most benchmarks, the execution time fol-
lows the same trend, where the normalized execution time is com-
parable between the serial execution versus the parallel execution;
thus, the scalability of the two systems are comparable. The only
obvious differences are in cholesky and lu, which do not scale as
well under ACilk-5.

In the software implementation, the scalability of a benchmark
under ACilk-5 is correlated with the ability to amortizes the over-
head for sending / handling signals against successful steals. While
the analysis of the work-stealing algorithm (referred as the “work-
first” principle [11]) dictates that one should put the scheduling
overhead onto the steal path (thief’s path) instead of onto the work
path (victim’s path), one must be able to amortize the overhead
against successful steals in order to obtain good performance. In
all benchmarks besides cholesky and lu, at least 90% of the sig-
nals sent by the thieves realize to successful steals, while in the case
of cholesky, the signals-to-successful-steals ratio is only 53.6%,
and in the case of lu, the ratio is only 72.8%. This means that
high percentage of the signaling overhead in these two benchmarks
cannot be accounted towards successful steals, and thus the perfor-
mance suffers. With hardware support, the overhead in such case
would be similar to a cache miss for the victim and an ordinary
memory fence for the thief. Therefore we believe that the hardware
mechanism would scale better even for these applications.

Evaluation Using ARW Lock

We evaluate the effect of location-based memory fences by compar-
ing the read throughput of a microbenchmark using the ARW lock
to the read throughput using its symmetric counterpart: the same
design but uses the original symmetric Dekker protocol instead of
the asymmetric Dekker protocol, henceforth referred as the SRW

lock. Each thread performs read operations most of the time, and
only occasionally it performs a write. In the tests, the threads read
from and write to an array with 4 elements. The read-to-write ratio
is an input parameter to the microbenchmark: assuming the ratio is
N : 1, and there are P threads executing, then for every N/P reads,
a thread performs a write. With each configuration, we run the mi-
crobenchmark for 10 seconds, calculate the read throughput, and
compare the throughput using the ARW lock against the through-
put using the SRW lock.

Figure 6(a) shows the throughput comparison between the ARW
lock and the SRW lock. In the software prototype of location-based
memory fences, since a request for serialization translates to a sig-
nal, the writer ends up signaling a list of readers and waiting for
their responses one by one, which becomes a serializing bottleneck.
This is particularly inefficient when the thread counts is high, and
the read-to-write ratio is low.

We speculate that the lack of scalability is again due to the over-
head of sending signals in the software implementation. To confirm
this, we devised an ARW lock that implements a waiting heuris-

tic: when a writer wants to write, instead of sending signals to the
readers immediately, it first indicates intent to write and spin-waits
to see if any reader responds, acknowledging the writer’s intent to
write. Only after spin-waiting for a while, the writer sends signals
to readers who have not acknowledged. We refer to the ARW lock
with this heuristic as the ARW+ lock.

Figure 6(b) shows the throughput comparison between the
ARW+ lock and the SRW lock. A value above 1 means that the
ARW+ lock performs better. There are two main trends to notice.
First, as the number of threads increases, the ARW+ locks consis-

 0

 0.5

 1

 1.5

 2

 2.5

1 2 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Thread Counts

300:1 read−write ratio
500:1 read−write ratio
1000:1 read−write ratio
10000:1 read−write ratio
100000:1 read−write ratio

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 4 8 16
N

or
m

al
iz

ed
 T

hr
ou

gh
pu

t

Thread Counts

(b)

Figure 6: (a) The relative read throughput of execution using the ARW
lock compared to that using the SRW lock. (b) The relative throughput
of execution using the ARW+ lock (i.e., the ARW lock with the waiting
heuristics) compared to that using the SRW lock. Since we are comparing
the relative throughput, a value above 1 means that the ARW lock / ARW+
lock performs better; a value below 1 means that the SRW lock performs
better. Each value is calculated by normalizing the read throughput from
the execution using the ARW lock by that using the SRW lock.

tently have higher throughput compared to the SRW locks for each
specific read/write ratio, except for the 300 : 1 ratio. Second, as the
ratio between read and writes increases for a given thread count,
the ARW+ consistently outperforms SRW, with one noticeable out-
liner: the data point for ratio of 300 : 1 with two threads. This can
be explained by the fact that when there are only two threads, the
writer end up receiving the acknowledgment most of the times and
does not need to send signals. While the heuristic seems to work
well in the microbenchmarks, if the reader does not acquire/release
locks frequently in practice, the waiting heuristic would not help as
much, since a thread would only get a chance to check for pend-
ing intent during lock acquire and release. With that in mind, the
results inspire some confidence that ARW should exhibit good per-
formance when implemented with hardware support for location-
based memory fences.

6. RELATED WORK
Our work is closely related to studies performed on biased locks

and asymmetric synchronization, so we focus on these in the sec-
tion. Several researchers studied this area, mainly in the context of
improving performance for Java locks.

[23] describes a fast biased lock algorithm, which allows the pri-
mary thread to avoid executing memory fences, until a secondary
thread attempts to enter the critical section. In which case, the sec-

ondary thread must wait for the primary thread to grant access in
order to continue execution. While this request and grant proto-
col is performed via shared variables and therefore fairly efficient,
this implementation can potentially deadlock if the biased lock is
nested within another lock (or any resource that can block).

The studies in [7] and [21] describe similar biased lock imple-
mentations, where the owner of the lock is on the fast path for ac-
cessing the lock, and other threads need to revoke it and compete
for ownership, and the lock ownership may transfer. Both algo-
rithms use the “collocation” trick, where the status field and the
lock field are allocated on the same word. They first write to one
field and then the whole word is read. The correctness of the algo-
rithm depends on the fact that hardware typically does not reorder
read before older write when the addresses overlap. This colloca-
tion trick, while interesting, is not guaranteed to be safe, and on
systems which this trick works correctly, the collocation always
forces a memory fence to be issued regardless of whether there is
contention [8].

Serialization using signal and notify was proposed in [6], as well
as other more heavy-weight serialization mechanisms. Their work
focus on software means to cause serialization in another thread,
while decreasing synchronization overhead on the primary thread
in applications that exhibit asymmetric synchronization patterns.

Finally, in [20], Lin et al. propose a hardware mechanism for
conditional memory fences, whose aim is also to reduce the over-
head of memory fences when synchronization is unnecessary. In
[20], however, the assumption is that the compiler would automat-
ically insert memory fences in order to enforce sequential consis-
tency everywhere, and there may be multiple outstanding memory
fences for a given thread at a given moment. Thus, their hardware
mechanism is much more heavyweight compared to ours, so as to
handle multiple outstanding fences at a given moment. Our mecha-
nism is designed for applications that are hand-tuned with manually
inserted fences, and we aim to provide a lightweight solution which
does not handle multiple outstanding fences.

7. CONCLUSION
In this work, we propose location-based memory fences, which

aim to reduce the overhead incurred by memory fences in par-
allel algorithms. Location-based memory fences are particularly
well-suited for algorithms that exhibit asymmetric synchronization
patterns. We describe a hardware mechanism to support location-
based memory fences, proved its correctness and evaluate the fea-
sibility of the fences using a software prototype. Our evaluation
with the software prototype inspires confidence that the suggested
LE/ST mechanism for supporting location-based memory fences in
hardware is worth considering.

Finally, location-based memory fences lend itself to a different
way of viewing programs compared to the traditional PC-based
memory fences. It would be interesting to investigate what other
algorithms can benefit from location-based memory fences, as well
as other mechanisms that exploit the location-based model.

8. ACKNOWLEDGMENTS
We like to thank Joel Emer of Intel Corporation and MIT, David

Dice of Oracle Labs, and William Hasenplaugh, Charles Leiserson,
Jim Sukha, and other members of the SuperTech Group at MIT
CSAIL for helpful discussions.

9. REFERENCES

[1] Advanced Micro Devices. AMD64 Architecture Programmer’s

Manual Volume 2: System Programming, June 2010.

[2] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread
scheduling for multiprogrammed multiprocessors. In SPAA ’98,
pages 119–129, June 1998.

[3] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An
efficient multithreaded runtime system. In PPoPP ’05, pages
207–216, July 1995.

[4] Robert D. Blumofe and Charles E. Leiserson. Scheduling
multithreaded computations by work stealing. JACM,
46(5):720–748, September 1999.

[5] Robert D. Blumofe and Dionisios Papadopoulos. Hood: A user-level
threads library for multiprogrammed multiprocessors. Technical
Report, University of Texas at Austin, 1999.

[6] Dave Dice, Hui Huang, and Mingyao Yang. Asymmetric dekker
synchronization. Technical report, Sun Microsystems Inc., July
2001.

[7] Dave Dice, Mark Moir, and William Scherer III. Quickly
reacquirable locks. Technical report, Sun Microsystems Inc., 2003.

[8] David Dice. David Dice’s Weblog: http://blogs.sun.com/dave/
entry/biased_locking_in_hotspot#comments, 2006.

[9] E. W. Dijkstra. Solution of a problem in concurrent programming
control. Communications of the ACM, 8(9):569, September 1965.

[10] E. W. Dijkstra. Co-operating sequential processes. In Programming

Languages. 1968.

[11] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The
implementation of the Cilk-5 multithreaded language. In PLDI ’98,
pages 212–223, 1998.

[12] Robert H. Halstead, Jr. Multilisp: A language for concurrent
symbolic computation. ACM TOPLAS, 7(4):501–538, October 1985.

[13] John L. Hennessy and David A. Patterson. Computer Architecture: a

Quantitative Approach. Morgan Kaufmann, San Francisco, CA,
fourth edition, 2007.

[14] Intel Corporation. A Formal Specification of Intel Itanium Processor

Family Memory Ordering, October 2011.

[15] Intel Corporation. Intel R© 64 and IA-32 Architectures Software

Developer’s Manual Volume 3A: System Programming Guide, Part

1, January 2011.

[16] Kiyokuni Kawachiya, Akira Koseki, and Tamiya Onodera. Lock
reservation: Java locks can mostly do without atomic operations. In
OOPSLA ’02, pages 130–141, 2002.

[17] David A. Kranz, Robert H. Halstead, Jr., and Eric Mohr. Mul-T: A
high-performance parallel Lisp. In PLDI ’89, pages 81–90, June
1989.

[18] Leslie Lamport. A new solution of dijkstra’s concurrent
programming problem. Communications of the ACM,
17(8):453–455, 1974.

[19] Leslie Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE Transactions on

Computers, C-28(9):690–691, September 1979.

[20] Changhui Lin, Vijay Nagarajan, and Rajiv Gupta. Efficient
sequential consistency using conditional fences. In PACT ’10, pages
295–306, 2010.

[21] Tamiya Onodera, Kiyokuni Kawachiya, and Akira Koseki. Lock
reservation for java reconsidered. In ECOOP ’04, pages 559–583,
2004.

[22] G. L. Peterson. Myths about the mutual exclusion problem.
Information Processing Letters, 12(3):115–116, June 1981.

[23] Nalini Vasudevan, Kedar S. Namjoshi, and Stephen A. Edwards.
Simple and fast biased locks. In PACT ’10, pages 65–74, 2010.

[24] David L. Weaver and Tom Germond, editors. The SPARC

Architecture Manual, Version 9. PTR Prentice Hall, 1994.

