
Performance Nonmonotonicities:A Case Study of the UltraSPARC ProcessorbyNathaniel A. KushmanSubmitted to the Department of Electrical Engineering and Computer Sciencein partial ful�llment of the requirements for the degrees ofBachelor of Science in Electrical Engineering and Computer ScienceandMaster of Engineering in Electrical Engineering and Computer Scienceat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYJune 1998c Nathaniel A. Kushman, MCMXCVIII. All rights reserved.The author hereby grants to MIT permission to reproduce and distribute publiclypaper and electronic copies of this thesis document in whole or in part, and to grantothers the right to do so.
Author .Department of Electrical Engineering and Computer ScienceJune 1, 1998Certi�ed by. .Volker StrumpenPostdoctoral AssociateThesis SupervisorCerti�ed by. .Charles E. LeisersonProfessorThesis SupervisorAccepted by .Arthur C. SmithChairman, Department Committee on Graduate Students

2

Performance Nonmonotonicities:A Case Study of the UltraSPARC ProcessorbyNathaniel A. KushmanSubmitted to the Department of Electrical Engineering and Computer Scienceon June 1, 1998, in partial ful�llment of therequirements for the degrees ofBachelor of Science in Electrical Engineering and Computer ScienceandMaster of Engineering in Electrical Engineering and Computer ScienceAbstractModern microprocessor architectures are very complex designs. Consequently, they exhibit many id-iosyncrasies. In fact, situations exist in which the addition or removal of a single instruction changesthe performance of a program by a factor of 3 to 4. I call such situations performance anomalies.Avoiding these situations requires detailed understanding of the underlying architecture. Unfor-tunately, due to market competition, microprocessor vendors are unwilling to release the detailedimplementation information necessary to understand an architecture until long after the micropro-cessors have been on the market. Through a case study of the SUN UltraSPARC, I show how theseanomalies can be concealed, although only limited information is provided by the vendor. I explainthe cause of four performance anomalies observed on the UltraSPARC, and present an algorithm toconceal each of them. I implemented these algorithms in an assembly code restructuring tool whichyields speedups of 2.2% on average for the SPECint benchmark suite, and up to 8.9% on individualbenchmarks.Thesis Supervisor: Volker StrumpenTitle: Postdoctoral AssociateThesis Supervisor: Charles E. LeisersonTitle: Professor

3

AcknowledgmentsFirst and foremost, I am indebted to Dr. Volker Strumpen. His unending persistence in workingthrough problems down to the last detail has allowed me to gain a more complete understandingof the UltraSPARC. Additionally, his constant desire for clarity and precision in all forms of ex-planation, has allowed this document to reach it's current form. Without his willingness to spendhours working through my explanations, many parts of this thesis would have remained unclear andimprecise. For all of this, I give Volker my perpetual gratitude.I would like to thank the other members of the Cilk group and the Computer Architecture groupfor their insights into the problems, and their suggestions on this document. I would especially liketo thank Charles for his suggestions on this thesis, and on academic life in general.The research in this thesis was supported in part by the Defense Advanced Research ProjectsAgency (DARPA) under Grant F30602-97-1-0270. Additionally, I would like to thank Sun Microsys-tems for the use of the Xolas UltraSPARC SMP cluster.Lastly, I would like to thank my friends and family for their support through many late nights.Therefore, I thank Greg Christiana and Carissa Little for helping me survive the last few weeksspent writing this document. I would also especially like to thank my parents; my mom for puttingup with me when I didn't return her phone calls because I was too busy; and my dad for his constantsupport throughout my four years at MIT.

4

Contents
1 Introduction 92 Related Work 153 UltraSPARC Case Study 193.1 The Architecture of the UltraSPARC-I . 213.2 Next Field Predictor . 243.3 Fetching Logic . 273.4 Grouping Logic . 313.5 Branch Prediction Logic . 334 Experimental Results 375 Conclusion 47

5

6

List of Figures1-1 Program A runs in between 6.3 and 8.4 seconds and Program B runs in 2.1 seconds. 113-1 Snippets of the assembly code generated from the C-code in Figure 1-1, used to createa microbenchmark. 193-2 A microbenchmark created from the assembly code in Figure 3-1. 203-3 The nine-stage pipeline of the UltraSPARC. 213-4 The design of the front end of the UltraSPARC. 223-5 The NFP's for code without any predicted-taken CTI's point to the succeeding I-cachegroup. 233-6 The NFP's for I-cache groups containing the delay slot of a predicted-taken CTI,point to the target of the CTI. 243-7 Assembly code fragment demonstrating the NFP misprediction problem. 253-8 State of NFP's when foo returns. 263-9 Assembly code fragment similar to Figure 3-7, that does not exhibit next �eld mis-prediction. 273-10 Assembly code demonstrating the Fetching Limitation Problem. 283-11 I-cache alignment of the code in Figure 3-10 that executes in 3 cycles per iteration. . 293-12 I-cache alignment of the code in Figure 3-10 that executes in 6 cycles per iteration. . 293-13 Assembly code loop which is executed at the maximum execution rate of 4 instructionsper cycle. 313-14 Assembly code loop produced by exchanging two instruction in the code in Figure 3-13, which cannot execute at the rate of 4 instructions per cycle because of the groupinglimitation. 323-15 Assembly code fragments demonstrating the odd-fetch performance anomaly. 34
7

8

Chapter 1
IntroductionIn early computers, most instructions were executed in the same amount of time, and the overallexecution time could be estimated by counting the number of instructions executed [9]. As ma-chines became more complex, however, this situation changed quickly. Machines were pipelined,and dependencies between instructions became important. When caches were developed, the lay-out of instructions and data in memory became important. With the introduction of superscalarprocessors, evaluating processor performance has become problematic. In these processors, mul-tiple instructions are executed at each stage of a multiple-stage pipeline. There may be multipleoutstanding memory references, and the dependencies between instructions a�ect their executionsequence. These processors are so complex that it is di�cult to predict their performance.Because of this complexity, signi�cant time and e�ort in the design of a processor is spent onperformance modeling [15]. The e�ect of individual design decisions on the overall performanceis often unclear without tools to aid the designers' intuitions. Therefore, hardware designers useperformance models to assist them in making di�cult design decisions. Unfortunately, the validityof these models is debatable. If these models are in fact invalid, as argued by Black and Shen [6],a huge potential for performance anomalies exists. These performance anomalies are the focus ofthis thesis.In the remainder of this chapter, I introduce a taxonomy of performance anomalies, I givean example to show how performance anomalies can be revealed in a computer system, I discussthe di�culty in avoiding performance anomalies and I present the approach to the problem ofperformance anomalies that underlies this thesis.Performance AnomaliesA performance anomaly is an unexpected runtime behavior of a program. I present three typesof performance anomalies|discontinuity, nonmonotonicity, and nondeterminism|and de�ne them9

according to the relationship of work (W) and execution time (T). I use the term work to refer tothe total number of instructions executed to completion.In general, as the amount of work in a program increases, the execution time increases propor-tionally. Performance anomalies are situations in which this is not the case. The following de�nitionsprovide an intuition into the understanding of performance anomalies, but are not rigorous de�ni-tions. For each anomaly, I assume that a program has work W and executes in time T . Modifyingthis program produces a second program that has work W 0 and executes in time T 0.Performance Discontinuity: A performance discontinuity is an unexpected, disproportionatejump in execution time.If work increases from W to W 0, then T 0 increases disproportionately compared to T :W 0 > W) T 0 � TIf work decreases from W to W 0, T 0 decreases disproportionately compared to T :W 0 < W) T 0 � TPerformance Nonmonotonicity: If work and execution time change in opposite directions, aperformance nonmonotonicity is revealed.Although work W does not increase, execution time T increases:W 0 �W) T 0 > TAlthough work W does not decrease, execution time T decreases:W 0 �W) T 0 < TPerformance Nondeterminism: If the same program is executed twice without changing workW , and the execution time T changes, then a performance nondeterminism is revealed:W 0 =W) T 0 6= TA common type of performance anomaly in today's computer systems is performance disconti-nuity. Bailey [4] shows that caching causes machines to exhibit performance discontinuities. Fourexamples of performance discontinuities are presented in this thesis. Each of them is also an exampleof a performance nonmonotonicity.This thesis focuses on avoiding performance nonmonotonicities. If the relationship of work andexecution time of a program contains performance nonmonotonicities, it is almost impossible for aprogrammer to converge on a high-performing version of his code. Programming for performance iseven more di�cult if the relationship of work and execution time contains discontinuous performancenonmonotonicities. An example of nonmonotonic performance in the Intel Pentium is presentedby Krech [10]. Krech's example of nonmonotonicity was exhibited when performing a particularsequence of memory reads. In Chapter 3, I present four examples of performance nonmonotonicitieson the SUN UltraSPARC and show how to conceal them.10

foo(){}main(){ int i;for (i = 0; i < 100000000; ++i)foo();}
foo(){}main(){ int i;foo();for (i = 0; i < 100000000; ++i)foo();}Program A Program BFigure 1-1: Program A runs in between 6.3 and 8.4 seconds and Program B runs in 2.1 seconds.Nondeterministic performance anomalies are the most extreme type of performance anomaly.It is nearly impossible to program for performance if the relationship of execution time and workis nondeterministic. Performance nondeterminism is often observed in timeshared environments,even if the system is used by only one user. The operating system, and speci�cally, the virtualmemory page mapping algorithms are often identi�ed as the cause of this nondeterminism [5]. Ihave found, however, that the processor itself also exhibits performance nondeterminism. Two ofthe performance nonmonotonicities identi�ed on the UltraSPARC are also examples of performancenondeterminism. I shall present algorithms to conceal the performance nondeterminisms, but I wasunable to determine their cause.An ExampleThe code fragment in Figure 1-1 Program A exhibits all three performance anomalies to the user:performance discontinuity, performance monotonicity, and performance nondeterminism. ProgramA in Figure 1-1 iterates a hundred million times in a loop calling an empty function foo. Compilingthis code with Sun's C-compiler (cc) using -O and executing it on a SUN UltraSPARC (143MHz)yields nondeterministic execution times between 6.3 and 8.4 seconds. If work is added to thatprogram by inserting a call to the empty function foo before the loop, the program executes deter-ministically in 2.1 seconds. The modi�ed program is shown in Figure 1-1 as programB. Surprisingly,adding a tiny amount of work reduces execution time by a factor of 3 or 4. Consequently, this codefragment is an example of all three performance anomalies: performance discontinuity, performancenonmonotonicity, and performance nondeterminism. We shall revisit this code fragment in Chap-ter 3.The DilemmaAvoiding performance anomalies seems even more di�cult than avoiding correctness bugs. I hy-pothesize that this issue will become more signi�cant as microprocessor complexity increases. The11

sti� competition in the microprocessor industry prevents vendors from releasing implementationdetails to the public until long after the processors have been on the market. Consequently, mostperformance anomalies that exist in an architecture remain a mystery to the users of the system.Users are left with little or no information about the cause of these performance problems, and nosystematic way to avoid them exists to date. Additionally, since the introduction of RISC, micropro-cessor complexity has been increasing steadily. If this increase continues to the one-billion transistormicroprocessors of the future [24], I fear that the performance problems caused by the complexityof current microprocessors will increase without bound. I propose the following resolution to thisdilemma.The ResolutionUnless processors are designed without performance anomalies, a method to prevent programmersfrom observing these anomalies is desired. Experience has shown us that it is di�cult to avoidperformance anomalies in the design of current microprocessors. We should be able to concealthese anomalies from the programmer, however, such that they are never observed in the executionof compiled code. I do this by �rst understanding the cause of each performance anomaly, and thendeveloping an instruction scheduling algorithm to conceal it.I wish to understand a microprocessor to the extent that I can characterize the situations inwhich it exhibits nonmonotonic performance. Yet, in general, we have very little information onthe implementation details of the processor itself. This situation is comparable to that of a chemistwho wishes to understand a chemical reaction without a-priori knowledge of how the reaction works.I present an approach to the problem of performance anomalies that is based on the methods ofexperimental science.I employ an iterative approach that uses the data derived from microbenchmarks in conjunctionwith information provided by the microprocessor vendor to create a model of the machine. Incontrast to the performance models created in the past [25], I create a very detailed model ofparticular aspects of the architecture. This model allows me to focus speci�cally on the architecturalfeatures which cause performance anomalies. I attempt to verify the accuracy of my model throughthe use of microbenchmarks. The results from these microbenchmarks are used to re�ne the modeland create more microbenchmarks. This iterative process is repeated until the performance anomalyis understood to the extent that an instruction scheduling algorithm can be developed to concealthe anomaly from the user.Outline of the ThesisIn order to identify and conceal processor performance anomalies I decompose the problem intothree constituent parts: (1) �nding, (2) understanding, and (3) concealing performance anomalies.12

To begin work on the problem of performance anomalies, code sequences must be found thatexhibit a performance anomaly. Figure 1-1 shows an example of such a code sequence. Thereappears to be no systematic way to �nd such code sequences, however. The performance anomaliesdiscussed in this thesis were found either from information provided by the microprocessor vendoror circumstantially.To conceal a performance anomaly, we must identify what aspect of the processor design is causingit. Then, we can design a code sequence to isolate the anomaly. Chapter 2 presents other methodsused for identifying and concealing performance anomalies and explains the problems with each. Iemployed the iterative approach described in the previous section to understand four performanceanomalies on the SUN UltraSPARC. This understanding is one of the main contributions of thisthesis and is presented in Chapter 3.Once an insight into the cause of a performance anomaly is gained, a general method for con-cealing it should be developed. Ideally, these methods should be implemented within the compiler.Generally, we are unable to modify SUN's compiler, however, so I have implemented these methodsthrough a restructuring tool for assembly code. The algorithms for the restructuring of assemblycode, are the second contribution of this thesis. In Chapter 4, I show how they were used to obtainspeedups of up to 9% on the SPECint benchmarks [23]. Finally, in Chapter 5, I conclude.

13

14

Chapter 2
Related WorkLittle research has been focused on the problem of processor performance anomalies. In this Chapter,I discuss �ve approaches to assessing hardware performance problems. The �rst three approaches,architecture simulation, hardware performance monitoring, and performance modeling can helpto understand a performance problem. The last two approaches, architectural design and coderestructuring, can be used to actually conceal known performance problems.Architecture SimulationA widely used technique for understanding and designing processors is architecture simulation. If notenough information can be obtained by running a program directly on the hardware, the architectureis simulated with su�cient detail to obtain the desired information.Architecture simulation ranges from the Instruction Set Architecture (ISA) level [12] down to thetransistor level [13]. Generally, the more detail the simulation provides, the worse the performance.The Stanford SIMOS project [17] provides an excellent example of the trade-o� between detail andspeed. This simulator provides several di�erent modes, each with a distinct locale in the trade-o�between detail and speed. In the so-called direct-execution mode, where the simulator runs the codedirectly on the host architecture, the simulated application runs only a factor of 2 slower than thecode running natively. Alternatively, when SIMOS is running with the highest level of detail, storinginformation on the movement of instructions through the pipeline, the simulation runs up to a factorof 50,000 slower than the native code.Architecture simulation has been used extensively for two purposes. First, it is the main ap-proach used to evaluate hardware design decisions during the design phase. Second, simulators forexisting architectures are used for performance tuning of programs that run on these machines. Atthe Swedish Institute of Computer Science, the SimICS system [12] has been used to show thatarchitecture simulators, when used for performance tuning, can achieve up to an order of magnitude15

speedup on some speci�c applications.To my knowledge however, architecture simulators have not been applied to the problem ofidentifying processor performance anomalies in processors currently on the market. I did not usesuch simulators, because speci�c information on the implementation of an architecture is requiredto produce the detailed simulators necessary to understand performance anomalies. In general,microprocessor vendors do not release information of su�cient detail to produce such simulators.Hardware Performance MonitoringMonitoring performance within the hardware avoids the problems presented by architecture sim-ulation. First, hardware monitors are implemented as part of the architecture, so no informationon the implementation of the architecture is necessary to use them. Secondly, they are designed tohave no e�ect on the execution of the program, which helps ensure that any performance problemsthat occur during the normal execution of a program also occur when using hardware performancemonitoring to observe the performance, and vice versa.Hardware performance monitoring is accomplished through hardware counters. These countersaccumulate the number of times that events occur within the architecture. The countable eventsinclude cache-misses, branch mispredictions, decoded instructions, retired instructions, and otherevents that might indicate the hardware is not performing optimally [14]. Hardware counters havebeen around for several years [20, 26]. Today, almost all mainstream microprocessors implementhardware counters. Additionally, many vendors have either developed special software to use thecounters [2, 3] or have integrated their use into their existing pro�ling packages [1, 28]. Somevendors do not distribute commercial packages, but use proprietary software for tuning benchmarksand commercial software packages.Hardware counters provide information on the number of times events occur within a sectionof code, but they do not allow a user to tell exactly which instruction triggered these events. Forthis reason, hardware counters are usually used in conjunction with other techniques such as pathpro�ling and continuous pro�ling [1, 2, 3].Work has been done to show the utility of hardware counters in improving the interaction betweenthe hardware and the software. To my knowledge, however, none of this work has included anydiscussion of processor performance anomalies. Nevertheless, hardware counters can be used to help�nd and understand performance anomalies. I use hardware counters to monitor the performance ofmicrobenchmarks, allowing me to isolate the particular instruction sequences that cause an anomaly.Performance ModelingPerformance models are mathematical models used to predict the performance of an application ona computer system. The performance of a computer system is represented using a small number of16

measurements. The mathematical model then uses these measurements to predict the performanceof an application on the given system [8, 18]. Toledo [25] presents a model where a small amount ofdynamic information is used to produce a more accurate model.Performance modeling techniques are focused on two areas: software design and hardware design.Performance models help a programmer discover what parts of the code are causing the hardwareto stall. They also help a hardware designer determine the performance bottlenecks in the designof an architecture. To my knowledge, however, performance modeling has not been applied tothe problem of identifying and �xing performance anomalies. Past techniques have included onlyISA-level modeling of an entire computer system. I use information provided by the vendor, andresults from running microbenchmarks to produce an architecture-level model of particular featuresof a processor. The model I produce is more than just a performance model though. My modelrepresents a detailed understanding of how the instruction sequence interacts with the particularfeatures of the architecture.
Architectural DesignThe ideal solution to the problem of processor performance anomalies is to avoid them altogetherin the design of the processor architecture. Currently, architectural designers spend a signi�cantamount of time and energy to avoid performance bottlenecks, making use of performance modelingtechniques to aid them in their design decisions [6, 7, 15]. Errors in these models, however, make itdi�cult to design an architecture for performance.Performance models used by hardware designers are attempts to extract the information thata�ects performance from the design. Unfortunately, there is no rigorous method for �nding errorsin these performance models. These errors are situations where the performance model incorrectlypredicts the performance of the hardware. Developers simply check the plausibility of the resultsthe models predict. If they �nd surprising results, they look for possible errors in their performancemodel. Unfortunately, this method of validation by inspection is error-prone, and research is beingdone to develop better methods for validating performance models. Even more rigorous methods ofvalidation, such as those proposed by Black and Shen [6], rely on developer-written test suites thatmay not test the model e�ectively.Improved methods for validation of performance models may eventually reduce the number ofperformance problems. The current method of avoiding performance anomalies during the hard-ware design phase, however, is still relatively haphazard, leaving processors with many performanceanomalies. 17

Code RestructuringThe term \code restructuring" has been used to refer to a variety of di�erent techniques. In the fol-lowing, code restructuring refers to transforming an executable code into a semantically equivalentexecutable code by rearranging the order of instructions.Code restructuring is useful in circumstances where the original source code is not readily avail-able. Often, older binaries are restructured to perform better on a new implementation of the sameISA [16]. For example, binaries compiled for the Pentium may be restructured to be optimized forthe Pentium Pro [19]. Analogously, restructuring can be used to reschedule executables to concealperformance anomalies.A disadvantage of code restructurers is that their construction involves signi�cant implementa-tion e�ort. Unfortunately, the process of restructuring code is not as simple as disassembling thecode, rearranging instructions, and then reassembling it. The di�culty arises from the fact thatrearranging code changes the the placement of branch targets within the code sequence. Therefore,the restructurer must ensure that the destination of each branch instruction is correct, requiringthe modi�cation of instructions rather than only reordering. Ensuring this condition becomes prob-lematic in the presence of indirect jumps, where branch targets are extremely hard to determine,because the target of some branches is actually stored as data. Additionally, some binaries containdata stored within the text segment, making it di�cult to even detect which sections of the binarycan be restructured and which must remain untouched. The engineering e�ort required to write acode restructuring tool may outweigh its possible bene�ts.Several tools have been introduced to aid in the process of developing code restructuring tools [11,16, 21]. These tools provide a high-level abstraction of the binary code which greatly simpli�es theprocess of writing a code restructurer. The abstraction layer presented by these tools, however, doesnot allow the user to control the exact layout of instructions because implementation details handledby the tools may require the insertion of additional instructions. I found that it was necessaryto control the exact layout of instructions in order to conceal processor performance anomalies.Therefore, I did not use such tools to write a code restructurer.I choose instead to conceal performance anomalies by restructuring the assembly code producedby the compiler. In this assembly code all branch targets are represented by labels. Consequently, allbranch targets can be assigned by the assembler, allowing changes to be made to the assembly codewithout worrying about the destination of branch instructions. Concealing performance anomaliesthrough the restructuring of assembly code requires access to the assembly code produced by thecompiler, but simpli�es the implementation e�ort considerably.
18

Chapter 3
UltraSPARC Case StudyTo show that performance anomalies constitute a serious problem on commercial microprocessors,I performed a case study of the UltraSPARC Microprocessor, developed by Sun Microsystems [22].The UltraSPARC is an implementation of the SPARC-V9 ISA1 [27]. Through this study, I identi�edfour performance anomalies caused by the design of the architecture. Each of these anomalies wascaused by a speci�c feature of the architecture: next �eld predictors, fetching logic, grouping logic,and branch prediction logic. I created a set of microbenchmarks for each feature. I use informationfrom the UltraSPARC User's Manual [14], and from the execution times of these microbenchmarksto identify the cause of each anomaly.foo: retlnop:.LL7: call foo,0add %l0,-1,%l0cmp %l0,0bg .LL7nopFigure 3-1: Snippets of the assembly code generated from the C-code in Figure 1-1, used to createa microbenchmark.The example from Chapter 1 is used to show the process of creating microbenchmarks. Theprocess is begun with a short code sequence that exhibits a performance anomaly. For this example,the code sequence in Figure 3-1 is used. This code sequence is produced by compiling the the Ccode in Figure 1-1, and thus exhibits all three types of performance anomalies. A code sequence is1This is an open standard developed by SPARC International, Inc.19

.LL7: (align 32)nopnopadd %l0,-1,%l0nopnopnopbr foonopnopnopnop.LL8: nopnopnopnopcmp %l0,0nopnopnopnopbg .LL7nop

foo: (align 32)nopnopnopnopnopnopnopnopbr .LL8nop
Figure 3-2: A microbenchmark created from the assembly code in Figure 3-1.then created that is similar to the original, yet does not exhibit any performance anomalies. Sucha code sequence is shown in Figure 3-2. This code sequence was created from the code sequence inFigure 3-1 by inserting nops to isolate all instructions and replacing the call and return instructionswith explicit branch instructions. Finally, this code sequence is carefully changed to produced a setof microbenchmarks, each of which is intended to test one possible cause of the performance anomaly.This process allowed the code sequence in Figure 3-1 to be decomposed into two microbenchmarks,each exhibiting only one performance anomaly.I have observed four performance anomalies, on the UltraSPARC processor, each caused by aspeci�c feature of it's design. In the remainder of this chapter, I present my understanding of thedesign of the UltraSPARC and explain how the speci�c features cause performance anomalies. Inthe �rst section I give an overview of the portion of the architecture that is the source of all fourobserved performance anomalies. I describe two architectural features, the I-bu�er and the next �eldpredictors, both of which are important to understanding the observed performance anomalies. Thefollowing four sections describe the features of the architecture that cause the observed performanceanomalies. These features include the next �eld predictor table, the fetching logic, the groupinglogic, and the branch prediction logic. For each of these features I provide a description of myunderstanding of the logic design, a characterization of the associated performance anomaly, themicrobenchmarks used to identify the anomalies, and the algorithm used to conceal the anomaly.20

In
te

ge
r

Pi
pe

lin
e

Fl
oa

tin
g-

Po
in

t a
nd

an
d

G
ra

ph
ic

s
Pi

pe
lin

e

 F
et

ch

D

ec
od

e

G
ro

up

E
xe

cu
te

 C

ac
he

N

1

N
2

R
eg

is
te

r

X

1

 X
2

X

3

 N

Fr
on

t E
nd

Figure 3-3: The nine-stage pipeline of the UltraSPARC.3.1 The Architecture of the UltraSPARC-IThis section gives an overview of the front-end of the UltraSPARC processor which is the source ofthe observed performance anomalies. The UltraSPARC processor produced by Sun Microsystemscontains the nine stage pipeline shown in Figure 3-3. The �rst three stages (Fetch, Decode andGroup) constitute the front end of the processor, and are shown in detail in Figure 3-4. I identi�edthe front end to be the source of all four performance anomalies, therefore I do not describe theremaining stages. In the front end, the instructions are loaded from memory, decoded, and thengrouped together to be passed to the execution stage. It is essential for optimal performance thatthe front end maintain a rate of instructions ow, from the I-cache to the execution units, thatis not smaller than that which the execution units can handle. If this rate cannot be maintained,the execution units become underutilized, and the processor performance drops. The instructionsequence determines which instructions must be fetched from the I-cache. Consequently, this se-quence can have a signi�cant e�ect on the performance of the front end. The following two sectionsdescribe the instruction bu�er and the next �eld predictor. Understanding these features aids in theunderstanding of the observed performance anomalies.Instruction Bu�erThe UltraSPARC executes instructions at a maximum rate of 4 instructions per cycle. To moveinstructions from the I-cache to the execution units at this rate, an instruction-bu�er (I-bu�er)that holds 12 instructions is used, as shown in Figure 3-4. I assume the I-bu�er is implemented21

N
ex

t F
ie

ld
 R

eg
is

te
r

N
FP

 P
re

di
tio

n
T

ab
le

1
en

tr
y

pe
r

4
in

st
.

B
ra

nc
h

Pr
ed

ic
tio

n
T

ab
le

 1
2-

bi
t e

nt
ry

pe
r

2
in

st
.

 I

ns
tr

uc
tio

n
B

uf
fe

r

po
in

te
r

to
 n

ex
t e

m
pt

y
I-

bu
ff

er
 g

ro
up

25
6

Se
ts

 -
-

2
w

ay

I-
C

ac
he

8
in

st
ru

ct
io

ns
/li

ne

G
ro

up
in

g
L

og
ic

4
in

st
. m

ax

Figure 3-4: The design of the front end of the UltraSPARC.as a circular bu�er, managed by two pointers2. During each cycle, up to 4 instructions are loadedfrom the I-cache into the I-bu�er. Simultaneously up to 4 instructions, previously loaded into theI-bu�er, are passed to the grouping logic.Next Field PredictorThe UltraSPARC associates a Next Field Predictor (NFP) with each half of an I-cache line.The NFP predicts the index of the I-cache line of the instruction to be scheduled for execution next,which allows the throughput of 4 instructions per cycle to be maintained when loading instructionsfrom the I-cache in the presence of Control Transfer Instructions (CTI's). Each I-cache linecontains 8 instructions, and separate NFP's are associated with both words 0{3 and words 4{7 ofeach I-cache line. I call each of these halves of an I-cache line an I-cache group . The NFP valueis the index used to predict the next I-cache line to be fetched. The NFP values are stored in theseparate Next Field Prediction table shown in Figure 3-4, where each NFP value has an NFP slotin which it is stored.The NFP value is determined by the instructions in its associated I-cache group, according tothe following two cases:Code without predicted-taken CTI's: The NFP indexes the I-cache line of the next instruction2The UltraSPARC-I User's Manual tells us only that the bu�er is managed by two pointers.22

i
j

no
p

no
p

no
p

no
p

no
p

no
p

no
p

N
FP

 s
lo

t A
N

FP
 s

lo
t B

i j
0

1
2

3
4

5
6

I-
ca

ch
e

gr
ou

p
A

I-
ca

ch
e

gr
ou

p
B

Figure 3-5: The NFP's for code without any predicted-taken CTI's point to the succeeding I-cachegroup.in the code sequence. In Figure 3-5, the instruction to be scheduled for execution after theinstructions in I-cache group A is the �rst instruction of I-cache group B. The NFP doesnot index the instruction to be scheduled for execution next, but to the I-cache line of theinstruction to be scheduled for execution next. Thus, the NFP slot associated with group Aholds the index of the I-cache line containing group B, which is i. Accordingly, the NFP slotassociated with group B holds the index of I-cache line j.Code with predicted-taken CTI's: The NFP addresses the I-cache line of the target of the CTI,as shown in Figure 3-6. The SPARC-V9 ISA used by the UltraSPARC includes a delay slotafter all CTI's. The design of the UltraSPARC requires the instruction in the delay slot of aCTI always to be loaded, even if it will not be executed. Therefore, the NFP of an I-cachegroup indexes the target of the CTI if the I-cache group contains the delay slot of a CTI. Ifan I-cache group contains more than one CTI delay slot, the NFP slot associated with thatgroup holds the target index of the last CTI taken.The NFP is loaded as instructions are loaded into the I-bu�er. I assume that the UltraSPARCarchitecture includes a NFP register into which the current NFP value is loaded, as shown inFigure 3-4. I call the group of instructions loaded into the I-bu�er an I-bu�er group . This groupcan be any of up to 4 contiguous instructions of a single I-cache line, and may contain instructionsfrom more than one I-cache group. Instructions from multiple I-cache lines cannot be loaded ina single cycle. The I-bu�er group determines the NFP slot from which the current NFP value isloaded, according to the following two cases: 23

j
i

N
FP

 s
lo

t A
N

FP
 s

lo
t B

no
p

no
p

br
 ta

rg
1

de
la

y
sl

ot
no

p
no

p
no

p
i

0
1

2
3

4
5

6

j
0

1
2

3
4

5
6

ta
rg

 1
:

I-
ca

ch
e

gr
ou

p
A

I-
ca

ch
e

gr
ou

p
B

Figure 3-6: The NFP's for I-cache groups containing the delay slot of a predicted-taken CTI, pointto the target of the CTI.I-bu�er group without the delay slot of any predicted-taken CTI's: The NFP value asso-ciated with the I-cache group that contains the �rst instruction in the I-bu�er group is loadedinto the NFP register.I-bu�er group containing the delay slot of a predicted-taken CTI: The NFP value associ-ated with the I-cache group that contains the delay slot of the CTI is loaded into the NFPregister.When the I-cache is accessed next, only instructions of the I-cache line indexed by the currentlyloaded NFP value can be loaded. If the NFP value is mispredicted, a 2-cycle stall is caused while thecorrect I-cache line is fetched, and the correct instructions are loaded. As the correct instructionsare loaded, the index of the correct I-cache line is loaded into the NFP slot of the associated I-cachegroup.3.2 Next Field PredictorThe next �eld predictor is the �rst of the four features that I identi�ed as the cause of a performanceanomaly in the UltraSPARC. The next �eld contains the index of the I-cache line and the associa-tivity number (or way) of the I-cache line that should be fetched next [14, p. 258]. The 2-cycle stallcaused when the NFP is mispredicted produces the most pronounced performance anomaly.The e�ect of next �eld prediction on performance is studied by means of the code fragment shownin Figure 3-7, which contains a loop with a call to the empty function foo(). The corresponding24

nop ! 32-byte alignednopL0: nopcall fooadd %l0,-1,%l0nopbg L0cmp %l0,0:nop ! 32-byte alignedfoo: retlnopFigure 3-7: Assembly code fragment demonstrating the NFP misprediction problem.instruction layout in the I-cache is shown in Figure 3-8, assuming that the code fragment in Figure 3-7is aligned to a 32-byte (I-cache line) boundary.The call instruction to foo occupies word 3 of the I-cache line, and its delay slot|occupied bythe add instruction|word 4. The NFP value associated with the call target is stored in NFP slotB, because NFP slot B is associated with the I-cache group (words 4{7) that contains the delayslot of the call. The misprediction of the NFP value in slot B causes a performance anomaly, asexplained in the following.Assume that initially, all NFP values in Figure 3-8 are unde�ned.3 When entering loop L0, theinstructions in I-cache group 0{3 of line i are loaded into the I-bu�er, and the call instruction isscheduled for execution. After the associated next �eld prediction, the index of I-cache line i isassigned to NFP slot A, because the delay slot of the call (word 4) must be loaded next. Whenscheduling the delay slot for execution, the value for NFP slot B is computed. This value is theindex of I-cache line j, which contains the code of function foo. Analogously, when executing theretl instruction of foo, the value for NFP slot C is computed, which is the index of I-cache line i.The state of the NFP's when returning from foo is shown in Figure 3-8.The cause of the performance anomaly is a misprediction of the NFP values both on the returnfrom, and the call to foo:1. After returning from foo, the NFP values are the values shown in Figure 3-8 and instructionbg L0 is scheduled for execution. This instruction branches to word 2 of the same I-cache line,i. Consequently, the next I-bu�er group to be fetched originates from line i. The predictedI-cache line index in the associated NFP slot B is line j, however. This misprediction causesa 2-cycle stall, during which the index of the correct I-cache line, which is i, is computed andstored in NFP slot B.3It is not clear to me how the NFP values are initialized in the NFP table.25

0
4

1
2

3
5

6

no
p

 r
et

l

 n

op

i
un

de
fi

ne
d

j

N
FP

 s
lo

t D
N

FP
 s

lo
t C

fo
o:

0
4

1
2

3
5

6

no
p

 n
op

 n

op

 c

al
l f

oo

 a
dd

 n
op

 b
g

L
0

i
j

i

N
FP

 s
lo

t A
N

FP
 s

lo
t B

L
0:

de
la

y
sl

otFigure 3-8: State of NFP's when foo returns.2. The second misprediction occurs during execution of the next call to foo. The just-correctedvalue in NFP slot B, associated with the delay slot of the call, is now incorrect, because thecode of foo is cached in line j. Consequently, another 2-cycle stall occurs, during which theindex of I-cache line i is assigned to NFP slot B.Each execution of the call to foo in I-cache line i causes 2 mispredictions and 4 lost cycles dueto stalls.Performance Nonmonotonicity BugNext �eld mispredictions can be exposed as performance nonmonotonicities. In Figure 3-9, I addedwork in the form of 3 add instructions in front of loop L0 from Figure 3-7. Although work is added,the execution of the code in Figure 3-9 can be up to 2.25 times faster than the execution of theoriginal code in Figure 3-7, cf. Table 3.1.Bug FixThe performance nonmonotonicity caused by next �eld misprediction can be concealed by realigningthe instructions such that the delay slot of the call to foo occupies the last word of an I-cache group,which is either word 3 or word 7 of an I-cache line.Next Field Prediction Fix: Align all call instructions to word 2 or word 6 of an I-cache line.26

nop ! 32-byte alignednopadd %l0,+2,%l0add %l0,-1,%l0add %l0,-1,%l0L0: nopcall fooadd %l0,-1,%l0nopbg L0cmp %l0,0...foo: retlnopFigure 3-9: Assembly code fragment similar to Figure 3-7, that does not exhibit next �eld mispre-diction. Performance Figure 3-7 Figure 3-9(original) (rescheduled)Time (secs) 5.6 { 6.3 2.8Cycles/Iteration 8 { 9 4Table 3.1: Performance of the NFP misprediction microbenchmarks in Figure 3-7 and Figure 3-9.In the example in Figure 3-7, the mispredictions are independent of the loop around the functioncall to foo. The next I-cache line is predicted correctly only if the function call is allocated to word 2or 6 of an I-cache line.Table 3.1 compares the performance of the loop shown in Figure 3-7 with its aligned version shownin Figure 3-9. The data in the table was obtained by executing one-hundred million iterations of eachloop on a Ultra-SPARC-I (143 MHz) machine. Realigning the code conceals the nondeterminismobserved in the original code, however, the source for the nondeterminism could not be found.3.3 Fetching LogicThe fetching logic of the UltraSPARC determines the rate at which instructions are fetched from theI-cache. Performance degrades if the rate at which instructions are fetched is smaller than the rateat which they can be executed. The fetching logic allows instructions from only a single I-cache lineto be fetched in each cycle. I call this restraint the fetching limitation . This limitation impliesthat \When the fetch address mod 32 is equal to 20, 24, or 28, then three, two or one instruction(s)27

A (L1: nop00br L2: ! 32-byte alignednop01nop02nop03nop04nop05nop06B (L2: nop07br L3: ! 32-byte alignednop08nop09nop10nop11nop12nop13C (L3: cmp %l0,0bg L1: !32-byte alignedadd %l0,-1,%l0Figure 3-10: Assembly code demonstrating the Fetching Limitation Problem.respectively will be added to the instruction bu�er" [14], rather than four.I de�ne an execution group to be a group of up to 4 consecutive instructions that can bescheduled for execution during a single cycle. Execution groups that cross I-cache (32-byte) bound-aries expose the fetching limitation. Loading such execution groups into the I-bu�er takes 2 cycles,because instructions from 2 di�erent I-cache lines are loaded, and each load takes 1 cycle.The code fragment in Figure 3-10 contains three execution groups, A, B, and C. Figure 3-11shows one possible alignment of the code in the I-cache. Due to the branch instructions, only thebracketed code in Figure 3-10 (highlighted code in Figure 3-11), is actually executed. Executing100,000,000 iterations of the loop shown in Figure 3-10 takes 2.1 seconds on an UltraSPARC-I(143MHz) machine when it is aligned in the I-cache as shown in Figure 3-11. Each iteration of theloop executes in 3 cycles4. Consequently, during each cycle the instructions of one of the executiongroups, A, B, or C, must be loaded from the I-cache. The branch target prediction mechanism ofthe UltraSPARC allows it to predict the target of branches before they are passed to the groupinglogic [14, pg. 13]. I assume the branches of the code fragment are always predicted correctly, sinceeach iteration of the loop executes in 3 cycles.Realigning the code in the I-cache, we produce the instruction sequence shown in Figure 3-12.Since each execution group in this alignment spans 2 I-cache lines, each requires 2 cycles to be loadedfrom the I-cache. Consequently, at least 6 cycles are required each iteration to load the instructions.Since the branch target prediction logic predicts all branches correctly, exactly 6 cycles are required.4(143,000,000 cycles per sec/100,000,000 iterations) � 2.1 sec = 3 cycles/iteration28

no
p0

5
no

p0
4

no
p0

2
no

p0
3

no
p0

1
br

 L
2

no
p0

0

no
p1

3
no

p1
2

no
p1

0
no

p1
1

no
p0

9
br

 L
3

no
p0

7

ad
d

br
 L

1
cm

p

L
1:

L
2: L
3:

Figure 3-11: I-cache alignment of the code in Figure 3-10 that executes in 3 cycles per iteration.no
p0

6
no

p0
5

no
p0

3
no

p0
4

no
p0

2
no

p0
1

br
 L

2

ad
d

br
 L

1

no
p1

3
no

p1
2

no
p1

0
no

p1
1

no
p0

9
no

p0
8

br
 L

3

w zyx

Figure 3-12: I-cache alignment of the code in Figure 3-10 that executes in 6 cycles per iteration.Performance Nonmonotonicity BugThe assembly code in Figure 3-10 reveals a performance nonmonotonicity caused by the fetchinglimitation. If the code is aligned as shown in Figure 3-12, inserting a single add instruction beforeL1 will realign the loop to the alignment shown in Figure 3-11. This example reveals a performancenonmonotonicity, since as stated earlier, the code aligned as in Figure 3-11 executes in half the timeof the code as aligned in Figure 3-12.Bug FixSome instruction sequences that exhibit this bug can be avoided by realigning instructions using thefollowing algorithm.Fetching Limitation Fix: Insert nops to align to 32-byte boundaries all basic blocks immediately29

Number Crossing an Time(secs) Cycles/IterationI-cache Line Boundary0 2.1 31 2.8 42 3.5 53 4.2 6Table 3.2: Performance of the Fetching Limitation microbenchmark shown in Figure 3-10, withfour di�erent alignments of the code in the I-cache.following unconditional CTI's.
Execution groups in the instruction sequence that cross I-cache line boundaries must be avoided toconceal the fetching limitation performance anomaly. To avoid such execution groups, we would liketo realign execution groups to I-cache line boundaries. Realigning instructions in the cache, however,requires instructions to be inserted into the code. If these instructions are executed, then we maylose the single cycle gained by avoiding an execution group that spans I-cache lines. Additionally,if the fetching of instructions is not the execution bottleneck, then inserting instructions in thecode may decrease performance by requiring more instructions to be executed. Instructions insertedimmediately after the delay slot of an unconditional CTI (such as a branch always or a jump),execute only if they are the target of a branch. Therefore, any instructions inserted after thedelay slot of an unconditional CTI, and before the following label, can never be executed. Onlyat this place can we insert instructions and know they can never be executed. Consequently, thealgorithm realigns only execution groups immediately following the delay slot of an unconditionalCTI. Without information on the control ow of the program, it seems this is the best that can bedone. By using the compiler to conceal the fetching limitation performance nonmonotonicity bug,however, information on control ow would be available and a better �x could be implemented.The e�ect of aligning execution groups A, B, and C in the I-cache is shown in Table 3.2. Insertinga nop before L3, group C is aligned to a 32-byte boundary. Similarly, inserting a nop before L2,realigns groups B and C, and inserting a nop before L1 realigns all three groups simultaneously.One-hundred million iterations of the loop are executed on an Ultra-SPARC-I running at 143 MHz.The results show clearly that whenever an execution group spans I-cache lines, an additional cycleof execution time is added to each iteration of the loop.30

3.4 Grouping LogicThe design of the Ultra-SPARC-I includes two oating-point execution units, and two integer exe-cution units. Each integer unit can only execute a subset of the integer instructions, however, andeach oating-point unit can only execute a subset of the oating-point instructions [14]. This designrestricts which instructions of an instruction stream can be scheduled for execution during the samecycle. The grouping logic ensures that none of the restrictions are violated when instructions arepassed to the execution units. Other limitations, such as data dependencies, also restrict whichinstructions can be scheduled for execution during the same cycle. When a limitation exists betweentwo instructions presented to the grouping logic in the same cycle, it a forces a group break betweenthe two instructions. All instructions following the group break are scheduled for execution in latercycles.The grouping logic itself imposes a constraint on the instruction stream, as stated in the UltraSPARC-I User's Manual [14]:\UltraSPARC-I can execute up to 4 instructions per cycle. The �rst 3 instructions in agroup occupy slots that are interchangeable with respect to resources. [...] The fourthslot can only be used for PC-based branches or for oating-point instructions."I call this the grouping constraint . If this constraint is violated by the instruction stream, a groupbreak forms before the instruction in the \fourth slot", since it cannot be scheduled for execution inthe same cycle as the other instructions.L1: fmuls %f4,%f4,%f4nopnopfmovs %f7,%f7 375���������������fmovs %f5,%f5nopadd %l0,-1,%l0fmuls %f6,%f6,%f6 375���������������*nopcmp %l0,0bg L1*fmovs %f9,%f9 375Figure 3-13: Assembly code loop which is executed at the maximum execution rate of 4 instructionsper cycle.Figure 3-13 shows an instruction sequence for which instructions are executed at the maximumexecution rate of 4 instructions per cycle. The brackets show the execution grouping of the instruc-tions for which the execution rate of 4 instructions per cycle can be achieved. All of the group breaksin this instruction sequence are \normal" groups breaks, and not \forced" group breaks.31

L1: fmuls %f4,%f4,%f4nop �1 ��������������nopfmovs %f7,%f7 i2 ��������������fmovs %f5,%f5nopadd %l0,-1,%l0fmuls %f6,%f6,%f6 3753 ���������������fmovs %f9,%f9cmp %l0,0bg L1 #4 ���������������nop eFigure 3-14: Assembly code loop produced by exchanging two instruction in the code in Figure 3-13, which cannot execute at the rate of 4 instructions per cycle because of the grouping limitation.The code sequence shown in Figure 3-14 can be produced by exchanging the instructions markedwith a star in Figure 3-13. In Figure 3-14, each of the group breaks is numbered and marked with adashed line. Groups breaks 1, 2, and 4 are \forced" group breaks, while group break 3 is a \normal"group break. In the following, I explain the cause of each group break:1. Both the last instruction in the whole sequence, a nop, and the �rst 2 instructions, an fmulsand a nop, are in the execution group preceding this break. This preceding group contains2 integer instructions|the nops|and only 2 integer instructions can be executed each cycle.Since the �rst instruction in the group following the break is also an integer instruction, itcannot be scheduled for execution in the same cycle, and a group break forms.2. Only one of the oating-point units can execute fmovs instructions, so only one fmovs instruc-tion can be executed each cycle. Consequently, a group break forms between the two fmovsinstructions.3. Only 4 instructions can be scheduled for execution each cycle, forming the group betweengroup breaks 2 and 3. Group break 3 does not represent a forced group break, but rather anormal grouping with maximum utilization of the functional units.4. The grouping limitation dictates that if 4 instructions are to be scheduled for execution duringthe same cycle, the 4th instruction must be either a oating-point instruction or a PC-basedbranch instruction. The instruction in the 4th slot is neither a oating-point operation nora branch, but a nop. Consequently only 3 instructions can be scheduled for execution in theexecution group preceding this break.Given the grouping shown in Figure 3-14, each iteration of the loop takes 4 cycles rather than 3.32

Performance Nonmonotonicity BugThe grouping limitation causes performance nonmonotonicities. Exchanging the position of twoinstructions in the code sequence in Figure 3-13 to produce the code in Figure 3-14 increases theexecution time by 1/3. The amount of work has not increased, although the execution time has,thereby revealing a performance nonmonotonicity.Bug FixThe grouping limitation performance nonmonotonicity is concealed by ensuring that, if possible, the4th slot of every execution group contains either a oating-point operation or a CTI. Starting withthe code fragment in Figure 3-14, we can conceal the bug by rescheduling the instructions to producethe code fragment in Figure 3-13. A general restructuring algorithm to conceal this performancenonmonotonicity was not developed, due to the complexity of the other limitations imposed by thearchitecture. It would be more appropriate to implement such an algorithm as part of a compiler,where more control ow information is accessible.Performance Code in Figure 3-13 Code in Figure 3-14Time (secs) 2.1 2.8Cycles/Iteration 3 4Table 3.3: Performance of the grouping limitation microbenchmark in Figure 3-13 compared to themicrobenchmark in Figure 3-14.Table 3.3 compares the performance of the code in Figure 3-13 to the code in Figure 3-14 whenit is run on a SUN UltraSPARC-I (143 MHz) machine. This table shows that each iteration of theloop in Figure 3-13 can be executed in 3 cycles, whereas each iteration of the code in Figure 3-14takes 4 cycles.3.5 Branch Prediction LogicA 2-bit branch prediction mechanism is used on the UltraSPARC [14]. A single 2-bit predictor isassociated with every two instructions. The branch prediction logic exhibits a performance anomalycalled odd-fetch which is explained in the Ultra-SPARC User's Manual [14]:\When the target of a branch is word one or word three of an I-cache line, and the 4thinstruction to be fetched is a branch, the branch prediction bits from the wrong pair ofinstructions are used." 33

nop ! 32-byte alignedL1: cmp %g1, 0add %g2,1,%g2add %g5,1,%g5bg,a,pt %icc, L1sub %g1,1,%g1 add %l0,0,%l0 ! 32-byte alignednopL1: cmp %g1, 0add %g2,1,%g2add %g5,1,%g5bg,a,pt %icc, L1sub %g1,1,%g1Program A Program BFigure 3-15: Assembly code fragments demonstrating the odd-fetch performance anomaly.The microbenchmark shown in Figure 3-15 program A exhibits the branch misprediction causedby the odd-fetch problem. In this example, the bg instruction is the 3rd instruction after thebranch target L1. Thus, when the bg instruction is fetched, it is the 4th instruction to be fetched.Additionally, the branch target L1 is word 1 of an I-cache line, assuming that the nop before L1 isaligned to a 32-byte boundary.Performance NonmonotonicityThe assembly code in Figure 3-15 exposes the odd-fetch performance nonmonotonicity. Inserting anextra add instruction before the loop in Figure 3-15 program A produces the code in Figure 3-15program B. In program B, the loop is aligned such that the target of the branch is no longer the1st or 3rd word in an I-cache line, but instead the 2nd word. This addition of work decreases theexecution time by a factor of 3 or more, exhibiting nonmonotonic performance.Bug FixTo conceal the odd-fetch performance nonmonotonicity problem, we avoid all instances of the in-struction sequence described in the citation from the UltraSPARC User's Manual.Odd-Fetch Fix: Insert a single nop before all branch targets that are word 1 or word 3 of anI-cache line, and for which the 4th instruction, word 5 or word 7 respectively, is a branch.By avoiding the problematic instruction sequence described in the User's Manual, we prevent theuse of the wrong branch prediction bits, and conceal the odd-fetch performance nonmonotonicity.Performance Program A in Figure 3-15 Program B in Figure 3-15C-code 4.2 - 4.9 seconds 1.4 secondsAssembly Code 6 - 7 cycles/iteration 2 cycles/iterationTable 3.4: Performance of the odd-Fetch microbenchmarks in Figure 3-15.34

Table 3.4 compares the performance of the two versions of the code in Figure 3-15 when they areexecuted on an UltraSPARC-I (143 MHz). Realigning the code also conceals the nondeterminismexhibited by Program A. Again, the source for the nondeterminism in the unaligned code could notbe found, however.

35

36

Chapter 4
Experimental ResultsTo show that performance anomalies appear not only in contrived examples, but also in real pro-grams, I implemented an assembly-code restructuring tool. This tool implements the algorithmsdescribed in Chapter 3 for concealing performance anomalies. I show that using this tool duringthe compilation of the SPECint benchmarks [23] provides speedups of up 2.2% on average acrosscompilers1. I �rst describe the experimental setup, and then present and discuss the performancegains of restructuring.The ExperimentThe instruction sequences of the SPECint benchmarks were restructured at the assembly-code level.I implemented a restructurer that uses the algorithms described in Chapter 3 for aligning instructionsby means of inserting nops. To simplify the process of aligning instructions in the assembly �le, allfunctions are aligned to I-cache line (32-byte) boundaries with the assembly code macro .align.The two compilers used in this study are the GNU C-compiler version 2.7.2 (gcc), and theSUN Workshop Compiler version 4.2 (cc). With each compiler I created a set of fully optimizedexecutables and a set of executables that excluded function inlining. For gcc, I used -O3 to build thefully optimized executables and -O2 to build the executables without inlining. For the GNU compilerthe -O3 option also includes the loop unrolling optimization, in addition to procedure inlining. Tobuild the fully optimized executable with cc, I used the same options used by SUN to obtain thepublished SPECint results for the UltraSPARC: -Xc -xarch=v8 -xchip=ultra -fast -xO4 -xdepend.The executables without function inlining were built using the option -xO3 in place of -xO4. In thefollowing, I use the notation ccO4 , ccO3 , gccO3 , and gcc O2 to denote the four sets of compiledexecutables. The instrumented executables were obtained by compiling the benchmarks with -S1The 2.2% given is obtained by averaging the 2.1% achieved on executables compiled with SUN's C-compiler usingfull optimization and the 2.3% achieved using GNU's C-compiler with full optimization.37

to produce an assembly �le. Subsequently, my restructurer was used to produce an instrumentedassembly �le. Finally, the instrumented assembly �les were assembled using the compiler they wereoriginally created with. Fortunately, SUN's and GNU's assemblers don't treat the assembly codeas another intermediate representation. Rather than performing optimizations during the assemblyphase, as SGI's C-compiler does, these assemblers perform a one-to-one translation of assemblymnemonic into bit strings. This allows my restructurer to correctly align code at the assembly-codelevel.All experiments were performed on SUN UltraSPARC-I machines running at 142 MHz. Themachines have 64 MB memory and run Solaris 2.5.1. In order to reduce the variance of the executiontimes, produced by the operating system, the machine was booted in single user mode. All resultswere obtained by rebooting the machine, running each executable three times, rebooting the machineagain, running each executable 3 additional times and selecting the smallest of the six executiontimes. I observed that 3 executions was enough to allow the performance to stabilize, and pickingthe lowest of 6 executions reduced the variance to between 1 and 2 percent.
The ResultsThis section contains the results obtained for each of the four optimization levels|ccO4, ccO3,gccO3, gccO4|and a brief discussion of each set of results. Table 4.1 contains the results for ccO4,Table 4.2 the results for ccO3, Table 4.3 the results for gccO3, and Table 4.4 the results for gcc O2.Each table presents execution times in the upper section, and performance increases in the lowersection. Performance is represented by SPECMARKS. Therefore, higher SPECMARK numbersrepresent lower execution times. Performance increases are represented by percentages.Five sets of SPECMARKS were obtained for each optimization level and are presented in the5 columns of the upper part of each table. In each table, the original (unaligned) column showsthe SPECMARKS achieved by the original instrumented executables2. The columns next �eld mis-prediction, fetching limitation, and odd fetch present SPECMARKS of the executables restructuredto conceal the respective performance anomaly. The all column presents SPECMARK data forexecutables restructured to conceal all three performance anomalies. The lower part of each tablepresents the performance increases calculated from the SPECMARKS. Each column shows the dif-ference in performance between the original executable and the executables restructured to concealthe performance anomalies.2These results di�er from SUN's published results because a di�erent machine setup was used.38

Sun C-compiler using -xO4The executables built with ccO4 produce the results shown in Table 4.1. The maximum performanceincrease obtained by concealing performance anomalies is the 5.5% increase obtained for li. TheSPECint rating of 4.75 is the highest rating achieved with the optimization levels I tested. Addi-tionally, restructuring these executables produced consistent speedups, with performance increaseson all benchmarks except vortex. Surprisingly, the m88ksim benchmark produced negative resultsfor concealing individual performance anomalies, but obtains a performance gain of 3.4% when allperformance anomalies are concealed.Sun C-compiler using -xO3The results obtained using ccO3 are shown in Table 4.2. The maximum performance increaseis the 6.7% increase for go. The performance increases are generally higher than those obtainedusing ccO4. I assume that inlining function calls partially conceals the next �eld mispredictionperformance anomaly by reducing the number of function calls. Therefore, executables withoutinlined functions calls present a greater opportunity for performance increase due to the concealmentof the next �eld misprediction performance anomaly. We can see this by comparing the resultsof individual benchmarks in Table 4.2 to those in Table 4.1. For example, concealing next �eldmisprediction achieves only a 0.6% performance increase for the benchmark gcc compiled usingccO4. A performance increase of 4.1% is obtained when gcc is compiled using ccO3, however. It isnot clear, though, why all of the benchmarks do not produce similar speedups.GNU C-compiler using -O3The results obtained using gccO3 are shown in Table 4.3. The largest performance gain is the8.9% for perl. This performance increase is the largest I obtained for the entire SPECint suite.Additionally, a increase of 2.3% was obtained for the entire suite which was the highest SPECintrating increase that I obtained. The lowest performance increase obtained for executables compiledwith the GNU C-compiler using -O3 is -1.6% for compress, which is surprising since a performanceincrease of 5.4% was obtained when this benchmark was compiled with SUN's C-compiler using-xO4. Results such as these indicate that performance anomalies depend heavily on the compilerused.GNU C-compiler using -O2The results obtained using the GNU C-compiler with the -O2 option are shown in Table 4.4. Thehighest performance increase obtained is the 2.5% increase for m88ksim. Surprisingly, the perfor-mance gains are the lowest of all compilations tested. Concealing individual performance anomalies39

SPECMARKSBenchmark original next �eld fetching odd fetch all(unaligned) misprediction limitationgo 5.71 5.26 5.74 5.45 5.75m88ksim 4.14 4.13 3.67 3.98 4.28gcc 5.06 5.09 5.07 5.00 5.08compress 5.21 5.23 5.28 5.28 5.49li 3.97 4.15 4.14 4.08 4.19ijpeg 5.04 4.99 5.09 4.84 5.05perl 4.57 4.65 4.58 4.48 4.74vortex 4.55 4.58 4.60 4.54 4.49SPECint Rating 4.75 4.74 4.73 4.68 4.85PERCENTAGE INCREASE IN PERFORMANCEnext �eld fetching odd fetch allBenchmarks misprediction limitationgo -7.8 0.5 -4.6 0.7m88ksim -0.2 -11.3 -3.9 3.4gcc 0.6 0.2 -1.2 0.4compress 0.2 1.3 1.3 5.4li 4.5 4.3 2.8 5.5ijpeg -1.0 1.0 -4.0 0.2perl 1.8 0.2 -2.0 3.7vortex 0.7 1.1 -0.2 -1.3SPECint Rating -0.2 -0.4 -1.5 2.1Table 4.1: Concealing performance anomalies in executables compiled with SUN cc -xO4 providedperformance increases of up to 5.5% for the SPECint benchmarks, as shown in the all column ofthe performance increase section. All execution times are given in SPECMARKS, for which highernumber represent better performance. All performance increases are given as percentages.
40

SPECMARKSBenchmark original next �eld fetching odd fetch all(unaligned) misprediction limitationgo 5.36 5.41 5.55 5.17 5.72m88ksim 3.95 3.73 3.91 3.97 3.95gcc 4.81 5.01 5.05 4.75 5.11compress 4.94 4.74 4.80 4.75 4.83li 3.48 3.46 3.57 3.49 3.54ijpeg 4.62 4.68 4.65 4.68 4.67perl 4.27 4.31 4.48 4.28 4.49vortex 4.43 4.38 4.55 4.51 4.36SPECint Rating 4.45 4.42 4.53 4.42 4.54PERCENTAGE INCREASE IN PERFORMANCEnext �eld fetching odd fetch allBenchmarks misprediction limitationgo 0.9 3.5 -3.5 6.7m88ksim -5.6 -1.0 0.5 0.0gcc 4.1 5.0 -1.2 6.0compress -4.0 -2.8 3.8 -2.2li -0.6 2.6 0.3 1.7ijpeg 1.3 0.6 1.3 1.1perl 0.9 4.9 0.2 5.1vortex -1.1 2.7 1.8 -1.6SPECint Rating -0.7 1.8 -0.7 2.0Table 4.2: Concealing performance anomalies in executables compiled with SUN cc -xO3 providedperformance increases of up to 6.7% for the SPECint benchmarks, as shown in the all column ofthe performance increase section. All execution times are given in SPECMARKS, for which highernumber represent better performance. All performance increases are given as percentages.
41

SPECMARKSBenchmark original next �eld fetching odd fetch all(unaligned) misprediction limitationgo 5.49 5.31 5.42 5.20 5.60m88ksim 3.86 3.86 3.99 4.08 4.07gcc 5.01 5.03 5.02 4.99 5.02compress 5.10 4.99 4.84 4.75 5.02li 3.40 3.41 3.42 3.44 3.44ijpeg 3.30 3.31 3.40 3.41 3.33perl 4.36 4.37 4.60 4.65 4.75vortex 4.25 4.46 4.11 4.25 4.37SPECint Rating 4.28 4.28 4.99 4.30 4.38PERCENTAGE INCREASE IN PERFORMANCEnext �eld fetching odd fetch allBenchmarks misprediction limitationgo -3.27 -1.3 -5.3 2.0m88ksim 0.0 3.4 5.7 5.4gcc 0.4 0.2 -0.4 0.2compress -2.2 -5.1 -6.9 -1.6li 0.3 0.6 1.2 1.2ijpeg 0.3 3.0 3.3 0.9perl 0.2 5.5 6.7 8.9vortex 4.9 -3.3 0.0 2.8SPECint Rating 0.0 0.2 0.5 2.3Table 4.3: Concealing performance anomalies in executables compiled with GNU gcc -O3 providedperformance increases of up to 8.9% for the SPECint benchmarks, as shown in the all column ofthe performance increase section. All execution times are given in SPECMARKS, for which highernumber represent better performance. All performance increases are given as percentages.
42

SPECMARKSBenchmark original next �eld fetching odd fetch all(unaligned) misprediction limitationgo 5.28 5.17 5.43 5.30 5.35m88ksim 4.06 4.16 4.00 4.11 4.09gcc 4.95 4.98 4.96 4.97 4.96compress 5.09 4.99 4.83 4.77 4.99li 3.38 3.38 3.44 3.46 3.43ijpeg 3.27 3.29 3.40 3.39 3.33perl 4.47 4.55 4.03 4.42 4.44vortex 4.42 4.32 3.97 4.11 4.43SPECint Rating 4.30 4.30 4.20 4.27 4.32PERCENTAGE INCREASE IN PERFORMANCEnext �eld fetching odd fetch allBenchmarks misprediction limitationgo -2.1 2.8 0.4 1.3m88ksim 4.3 0.3 3.0 2.5gcc 0.6 0.2 0.4 0.2compress -2.0 -5.4 -6.7 -2.0li 0.0 1.8 2.4 1.5ijpeg 0.6 4.0 3.7 1.8perl 1.8 -9.8 -1.1 -0.6vortex -2.2 -10.2 -7.0 0.2SPECint Rating 0.0 -2.3 -0.7 0.4Table 4.4: Concealing performance anomalies in executables compiled with GNU gcc -O2 providedperformance increases of up to 2.5% for the SPECint benchmarks, as shown in the all column ofthe performance increase section. All execution times are given in SPECMARKS, for which highernumber represent better performance. All performance increases are given as percentages.
43

even tends to produce negative results. I assume, the reason is that the code produced by this opti-mization level is less optimized than the code produced by the other optimization levels. As shownin Chapter 3, concealing performance anomalies avoids situations for which the execution bottle-neck is the ow of instructions from the I-cache to the execution units. If the code is compiled suchthat other parts of instruction execution are the bottleneck, however, then concealing performanceanomalies will not produce any increase in the performance.Discussion of the ResultsThe experimental results show that concealing performance anomalies through assembly code re-structuring leads to performance gains of up to 8.9% compared to the original executables. Theresults also indicate however, that e�ects outside of my study make the results somewhat unpre-dictable. I believe, though, that this unpredictability can be explained by the combined e�ects ofthe operating system and performance anomalies.Signi�cant e�ort was spent to produce deterministic execution times. All measurements wereconducted in single user mode, and the machine was rebooted between each run of 3 executions.Running executables without these precautions produced variances of the execution time that weregreater than the performance increases obtained. By rebooting before each execution, and executingin single user mode, however, I was able to reduce the variance to a tolerable 1 to 2 percent. I believethis observed variance was caused by the operating system, and speci�cally it's management of thememory pages. This 1 to 2 percent variance helps to explain some of the smaller inconsistenciesobserved in the results.It is not possible to completely isolate the e�ect of concealing a single performance anomaly usingmy restructurer. The restructuring policy of inserting nops a�ects the performance of the code intwo unpredictable ways. First, it is possible that inserting a nop to conceal only one of the observedperformance anomalies may inadvertently conceal or reveal another of the observed performanceanomalies. Additionally, it seems likely that the UltraSPARC contains many performance anomaliesthat I have not identi�ed. Inserting nops to conceal the observed performance anomalies may concealor reveal these unknown performance anomalies as well contributing to the unpredictability of theresults.A few observations can be explained by assuming that the results presented do not completelyisolate the e�ect of concealing individual performance anomalies. First, we observe that concealingthe odd-fetch performance anomaly does not seem to improve the overall performance of executa-bles compiled with the optimization levels tested. This may be partially caused by the fact thatthe odd-fetch performance anomaly occurs with a frequency of approximately 1/10 that of the otherperformance anomalies. Additionally, by inserting a single nop to conceal an odd-fetch, we realign all44

of the following instructions. This realignment may reveal or conceal many occurrences of next �eldmisprediction, and of the fetching limitation. I believe the variance in the performance produced bythis revealing and concealing hides the performance gains of concealing the odd-fetch performanceanomaly. Additionally, we observe that the performance increases obtained by individually conceal-ing the three observed performance anomalies do not accumulate to produce the performance gainedby concealing all three performance anomalies together. This is because, with my restructurer, it isdi�cult to isolate the e�ect of concealing individual performance anomalies.The SPECint benchmarks were chosen because of their acceptance as a benchmarking standard.I believe that similar, and possibly greater, performance can can be obtained for programs thatcontain tight loops, such as numerical codes.

45

46

Chapter 5
ConclusionThis thesis has presented the problem of processor performance anomalies. Current microprocessorsare so complex that there exist situations for which the insertion of a single instruction can a�ect theexecution time of a program by a factor of 3 or 4. I call situations like this performance anomalies.In this thesis I provide �ve contributions:1. I have identi�ed the problem of performance anomalies in commercial microprocessors.2. I have provided a detailed description of the cause of four performance anomalies observed onthe SUN UltraSPARC.3. I have provided algorithms used to conceal each of the anomalies.4. I have developed an assembly-code restructuring tool which implements the algorithms.5. I have shown that through the use of my restructuring tool, performance gains of up to 9%can be obtained on some of the SPECint benchmarks.In short, I have shown that current microprocessors contain performance anomalies and thatsigni�cant performance gains can be obtained by concealing them. This work identi�es what I believeto be the most important set of performance problems in the design of current microprocessors.We take it for granted that a correct program will produce correct results when run on currentmicroprocessors, yet we tend to accept the fact that it is near impossible to predict the executiontime. Programmers who desire high performance must rely on a high degree of performance pre-dictability, just as all programmers rely on the guarantee of correctness. The correctness of resultscan only be guaranteed with such a high degree of certainty, however, because processors are be-ing designed for testability. I propose that an analogous philosophy be applied to the problem ofperformance anomalies. I believe that the only way to fully avoid performance anomalies is formicroprocessor designers to design for performance monotonicity.47

Until microprocessors are designed with monotonic performance, however, we can use the ap-proach presented in this thesis of concealing performance anomalies. The use of an assembly-code restructuring tool has shown that appropriate instruction scheduling can conceal performanceanomalies. The restructuring method of realigning code through the insertion of nops has manyproblems, however. The addition of nops increases both the total size of the executable �le and thenumber of instructions that are executed. Additionally, the insertion of a single nop changes thescheduling of all following instructions. This makes it di�cult to isolate the e�ect of concealing indi-vidual performance anomalies. I believe these problems can be avoided by implementing algorithmsfor concealing performance anomalies as part of the instruction scheduling phase of a compiler. Theavailability of control ow information would allow for proper alignment of instructions possiblywithout the insertion of nops. The implementation of algorithms to conceal performance anomalieswithin the compiler would avoid both the increase in executable size and the increase in the numberof executed instructions, as well as isolate the e�ect of concealing individual performance anomalies.This implementation must be done by the compiler writers, however, and I hope that this thesisprovides su�cient evidence to motivate the inclusion of such algorithms within the compiler.Until we can rely on the compiler writers, however, performance anomalies can be concealedthrough code restructuring. Unfortunately, my method of restructuring is limited by its reliance onaccess to the assembly code output by the compiler. I chose to restructure assembly code ratherthan binaries because of the reduced implementation e�ort. Implementing instruction reschedulingalgorithms as part of a binary restructurer, however, would allow the rescheduling of code for whichthe assembly code is not available. This type of restructuring would allow anyone using an Ultra-SPARC machine to obtain performance increases such as the ones presented in this thesis. I believethe performance gains presented in this thesis justify the additional e�ort for implementing a binaryrestructurer.The algorithms presented in this thesis conceal performance anomalies of the SUN UltraSPARC,and are presumably not applicable to other processors. Krech [10] has shown that similar perfor-mance anomalies exist on the Pentium, however, and I believe that the design of all modern micro-processors includes performance nonmonotonicities. I hope that my explanation of the performanceanomalies on the UltraSPARC sparks the discovery of performance anomalies on other processors.If, as I suspect, all modern microprocessors do include such anomalies, this lends even more supportto my belief that future microprocessors must be designed for performance monotonicity.
48

Bibliography[1] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware performance counterswith ow and context sensitive pro�ling. In Proceedings of the 1997 ACM SIGPLAN Conferenceon Programming Language Design and Implementation, June 1997.[2] Jennifer M. Anderson, Lance M. Berc, Je�ery Dean, Sanjay Ghemawat, Monika R. Hen-zinger, Shun-Tak A. Leung, Richard L. Sites, Mark T. Vandevoorde, Carl A. Waldspurger,and William E. Weihl. Continuous pro�ling: Where have all the cycles gone? In Proceedings ofthe 16th ACM Symposium on Operating Systems Principles, St. Malo. France, October 1997.[3] Mark Atkins and Ramesh Subramaniam. PC software performance tuning. IEEE Computer,pages 47{54, August 1996.[4] David H. Bailey. RISC microprocessors and scienti�c computing. In Proceedings of the Confer-ence on High Performance Computing and Communications, pages 645{654, November 1993.[5] L. A. Belady, R. A. Nelson, and G. S. Shedler. An anomaly in space-time characteristics ofcertain program running in a paging machine. Communications of the ACM, 12(6):349{353,June 1969.[6] Bryan Black and John Paul Shen. Calibration of microprocessor performance models. IEEEComputer, pages 59{65, May 1998.[7] Pradip Bose and Thomas M. Conte. Performance analysis and its impact on design. IEEEComputer, pages 41{49, May 1998.[8] Philip Heidelberger and Stephen Lavenberg. Computer performance evaluation methodology.IEEE Transactions on Computers, C-33(12):1195{1220, December 1984.[9] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach.Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1996.[10] Michael Krech, February 1998. http://www.intelligentfirm.com.49

[11] James R. Larus and Eric Schnarr. EEL: Machine-independent executable editing. In Proceed-ings of the SIGPLAN '95 Conference on Programming Language Design and Implementation(PLDI), pages 291{300, June 1995.[12] Peter S. Magnusson and Johan Montelius. Performance debugging and tuning using aninstruction-set simulator. Technical Report SICS-T{97/02-SE, Swedish Institute of ComputerScience, June 1997.[13] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.[14] Sun Microelectronics. STP1030BGA UltraSPARC-I User's Manual. Sun Microsystems, Moun-tainview, CA, 1996.[15] Matt Reilly and John Edmondson. Performance simulation of an Alpha microprocessor. IEEEComputer, pages 50{58, May 1998.[16] Ted Romer, Geo� Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank Levy, Brad Chen,and Brian Bershad. Instrumentation and optimization of Win32/Intel executables using Etch.In Proceedings of the USENIX Windows NT Workshop, pages 1{7, August 1997.[17] Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and Anoop Gupta. Complete com-puter simulation: The SimOS approach. IEEE Parallel and Distributed Technology, Fall 1995.[18] Rafael Saavedra-Barrera, Alan Smith, and Eugene Miya. Machine characterization based onan abstract high-level language machine. IEEE Transactions on Computers, 38(12):1659{1679,December 1989.[19] Eric Schnarr and James R. Larus. Instruction scheduling and executable editing. In Proceedingsof the Workshop on Compiler Support for System Software, February 1996.[20] Ashok Singhal and Aaron J. Goldberg. Architectural support for performance tuning: A casestudy on the SPARCcenter 2000. In Proceedings of the 21st Annual International Symposiumon Computer Architecture, April 1994.[21] Amitabh Srivastava and Alan Eustace. ATOM: A system for building customized programanalysis tools. In Proceedings of SIGPLAN '94, Orlando, Florida, June 1994.[22] Sun Microsystems. The UltraSPARC processor { technology white paper.http://www.sun.com/microelectronics/whitepapers/UltraSPARCtechnology/.[23] The Standard Performance Evaluation Corporation. http://www.specbench.org/osg/spec95.[24] The Standard Performance Evaluation Corporation, September 1997. Theme Feature: One-billion transistor microprocessors. 50

[25] Sivan Avraham Toledo. Quantitative Performance Modeling of Scienti�c Computations. PhDthesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute ofTechnology, May 1995.[26] G. Michael Uhler, Debra Bernstein, Larry L. Biro, John F. Brown III, John H. Edmondson,Je�rey D. Pickholtz, and Rebecca L. Stamm. The NVAX and NVAX+ high-performance VAXmicroprocessors. Digital Technical Journal, 4(3):1{19, summer 1992.[27] David L. Weaver and Tom Germond. The SPARC Architecture Manual. PTR Prentice Hall,Englewood Cli�s, New Jersey, 1994.[28] Marco Zagha, Brond Larson, Steve Turner, and Marty Itzkowitz. Performance analysis usingthe MIPS R10000 performance counters. In Proceedings of Supercomputing '96, November 1996.

51

