
The Cilk System for Parallel Multithreaded ComputingbyChristopher F. JoergSubmitted to the Department of Electrical Engineering and Computer Sciencein partial ful�llment of the requirements for the degree ofDoctor of Philosophyat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYJanuary 1996c Massachusetts Institute of Technology 1996. All rights reserved.
Author :Department of Electrical Engineering and Computer ScienceJanuary, 1996
Certi�ed by :Charles E. LeisersonProfessorThesis Supervisor
Accepted by :Frederic R. MorgenthalerChairman, Departmental Committee on Graduate Students

The Cilk System for Parallel Multithreaded ComputingbyChristopher F. JoergSubmitted to the Department of Electrical Engineering and Computer Scienceon January, 1996, in partial ful�llment of therequirements for the degree ofDoctor of PhilosophyAbstractAlthough cost-e�ective parallel machines are now commercially available, the widespreaduse of parallel processing is still being held back, due mainly to the troublesome nature ofparallel programming. In particular, it is still di�cult to build e�cient implementations ofparallel applications whose communication patterns are either highly irregular or dependentupon dynamic information. Multithreading has become an increasingly popular way toimplement these dynamic, asynchronous, concurrent programs. Cilk (pronounced \silk")is our C-based multithreaded computing system that provides provably good performanceguarantees. This thesis describes the evolution of the Cilk language and runtime system,and describes applications which a�ected the evolution of the system.Using Cilk, programmers are able to express their applications either by writing mul-tithreaded code written in a continuation-passing style, or by writing code using normalcall/return semantics and specifying which calls can be performed in parallel. The Cilk run-time system takes complete control of the scheduling, load-balancing, and communicationneeded to execute the program, thereby insulating the programmer from these details. Theprogrammer can rest assured that his program will be executed e�ciently since the Cilkscheduler provably achieves time, space, and communication bounds all within a constantfactor of optimal. For distributed memory environments, we have implemented a softwareshared-memory system for Cilk. We have de�ned a \dag-consistent" memory model which isa lock-free consistency model well suited to the needs of a multithreaded program. Becausedag consistency is a weak consistency model, we have been able to implement coherencee�ciently in software.The most complex application written in Cilk is the ?Socrates computer chess program.?Socrates is a large, nondeterministic, challenging application whose complex control de-pendencies make it inexpressible in many other parallel programming systems. Runningon an 1824-node Paragon, ?Socrates �nished second in the 1995 World Computer ChessChampionship.Currently, versions of Cilk run on the Thinking Machines CM-5, the Intel Paragon,various SMPs, and on networks of workstations. The same Cilk program will run on all ofthese platforms with little, if any, modi�cation. Applications written in Cilk include proteinfolding, graphic rendering, backtrack search, and computer chess.Thesis Supervisor: Charles E. LeisersonTitle: Professor

AcknowledgmentsI am especially grateful to my thesis supervisor, Professor Charles Leiserson, who has led theCilk project. I still remember the day he came to my o�ce and recruited me. He explainedhow he realized I had other work to do but he wanted to know if I would like to help out\part time" on using the PCM system I had worked on to implement a chess program.It sounded like a interesting project, so I agreed, but only after making it clear that Icould only work part time because I had my thesis project to work on. Well, \part time"became \full time", and at times \full time" became much more than that. Eventually,the chess program was completed, and the chess tournament came and went, yet I stillkept working on the PCM system (which was now turning into Cilk). Ultimately, I realizedthat I should give up on my other project and make Cilk my thesis instead. Charles is awonderful supervisor and under his leadership, the Cilk project has achieved more than Iever expected. Charles' inuence can also be seen in this write-up itself. He has helped meturn this thesis into a relatively coherent document, and he has also pointed out some ofmy more malodorous grammatical constructions.The Cilk project has been a team e�ort and I am indebted to all the people who havecontributed in some way to the Cilk system: Bobby Blumofe, Feng Ming Dong, MatteoFrigo, Shail Aditya Gupta, Michael Halbherr, Charles Leiserson, Bradley Kuszmaul, RobMiller, Keith Randall, Rolf Riesen, Andy Shaw, Richard Tauriello, and Yuli Zhou. Theircontributions are noted throughout this document.I thank, along with the members of the Cilk team, the past and present members ofthe Computation Structures Group. These friends have made MIT both a challenging anda fun place to be. In particular I should thank Michael Halbherr. He not only began thework that lead to the PCM system, but he tried many times to convince me to switch mythesis to this system. It took a while, but I �nally realized he was right.I am also indebted to Don Dailey and Larry Kaufman, both formerly of Heuristic Soft-The research described in this document was supported in part by the Advanced Research ProjectsAgency of the Department of Defense under grants N0014-94-1-0985 and N0014-92-J-1310. This workwas also supported by the National Center for Supercomputing Applications at the University of Illinoisat Urbana-Champagne (NCSA) who, under NCSA Grant TRA930289N, provided us access to their 512-processor CM-5 for the 1994 chess tournament and by Sandia National Laboratories who provided us accessto their 1824-node Intel Paragon for the 1995 tournament.

ware. They wrote the serial Socrates program on which ?Socrates is based. In addition,Don and I spent many long nights debugging, testing, and improving (or at least trying toimprove) ?Socrates. Most of this time we even had fun.Professor Arvind, Dr. Andy Boughton, and Dr. Greg Papadopoulus also deserve manythanks. They provided me the freedom, encouragement, and support to work on a widerange of exciting projects throughout my years at MIT.I am also grateful to my parents and my family. Their love and support has always beenimportant to me.Last, but not least, I thank Constance Je�ery. Whether we were together, apart, or o�on one of our many trips ranging from Anchorage to Zurich, her continuing friendship overthe past decade has made these years enjoyable and memorable.

Contents
1 Introduction 131.1 Life Before Cilk . 161.2 The Evolution of Cilk . 222 The PCM System 312.1 Introduction . 312.2 The Parallel Continuation Machine . 342.2.1 Elements of the PCM . 352.2.2 The Thread Speci�cation Language 362.2.3 Executing a PCM Program . 372.2.4 Tail Calls . 402.2.5 Passing Vectors in Closures . 412.3 Scheduling PCM Threads on a Multiprocessor 412.4 Two Case Studies . 442.4.1 Ray Tracing . 442.4.2 Protein Folding . 492.5 Conclusions . 553 Cilk1: A Provably Good Runtime System 573.1 Cilk-1 Overview . 583.2 Cilk Programming Environment and Implementation 603.3 Cilk's Work-Stealing Scheduler . 643.4 Performance of Cilk-1 Applications . 673.5 Modeling Performance . 723.6 Theoretical Analysis of the Cilk-1 Scheduler 755

3.7 Conclusion . 804 The ?Socrates Parallel Chess Program 814.1 Introduction . 824.2 Parallel Game Tree Search . 844.2.1 Negamax Search Without Pruning 844.2.2 Alpha-Beta Pruning . 854.2.3 Scout Search . 874.2.4 Jamboree Search . 894.3 Using Cilk for Chess Search . 904.3.1 Migration Threads . 934.3.2 Aborting Computations . 954.3.3 Priority Threads . 974.3.4 Steal Ordering . 984.3.5 Level Waiting . 994.4 Other Chess Mechanisms . 1014.4.1 Transposition Table . 1014.4.2 Repeated Moves . 1044.4.3 Debugging . 1054.5 Performance of Jamboree Search . 1064.6 History of ?Socrates . 1085 Cilk-2: Programming at a Higher Level 1135.1 A Cilk-1 Example: Knary . 1155.2 The Cilk 2 System . 1195.3 Knary Revisited . 1225.4 Conclusion . 1246 Cilk-3: Shared Memory for Cilk 1276.1 Introduction . 1286.2 Dag Consistency . 1356.3 Maintaining Dag Consistency . 1376.4 Implementation . 1516

6.5 An Analysis of Page Faults . 1576.6 Conclusion . 1607 Cilk-4: Supporting Speculative Computations 1637.1 The Cilk-4 Language . 1647.2 A Cilk-4 Example: Chess . 1687.3 Conclusions . 1758 Conclusions 1778.1 Summary . 1778.2 Future Work . 1798.3 Concluding Remarks . 182A Protein Folding Optimizations 183

7

8

List of Figures
2-1 Maximizing Communication Locality . 342-2 Elements of the PCM Model . 352-3 PCM Program to Compute Fibonacci . 382-4 Execution of a PCM Program . 392-5 Anatomy of a PCM Thread . 422-6 Kernel of Sequential Ray Tracer . 452-7 Kernel of Parallel Ray Tracer . 462-8 Traced Picture and Work Histogram . 472-9 A Folded Polymer . 502-10 Kernel of Sequential Protein Folding . 512-11 Kernel of Parallel Protein Folding . 523-1 The Cilk Model of Multithreaded Computation. 593-2 The Closure Data Structure . 613-3 Fibonacci in Cilk-1 . 633-4 Estimating Critical Path Length Using Time-Stamping 653-5 Normalized knary Speedup . 743-6 Normalized ?Socrates Speedup . 754-1 Algorithm negamax. 854-2 Pruning in a Chess Tree . 864-3 Algorithm absearch. 864-4 Algorithm scout. 884-5 Algorithm jamboree. 894-6 The Dataow Graph for Jamboree Search. 919

4-7 Cilk Dag for ?Socrates' Search Algorithm. 924-8 Use of Migration Threads . 944-9 Modi�ed Ready Queue . 994-10 Selected Chess Positions . 1065-1 Cilk-1 Code for Knary. 1175-2 Fibonacci in Cilk2 . 1215-3 Cilk-2 Code for Knary. 1236-1 Recursive Matrix Multiply . 1296-2 Matrix Multiply in Cilk . 1306-3 Matrix Multiply Dag . 1316-4 Matrix Multiply Performance . 1346-5 A Kernel Tree . 1396-6 A Cactus Stack . 1546-7 Histogram of Cache Warm-up Costs . 1596-8 Page Faults Statistics . 1607-1 Cilk Dag for ?Socrates Search Algorithm. 1697-2 Cilk-4 Code for Test Search. 1707-3 Cilk-4 Code for Value Search. 173A-1 Partial Paths on a 2-D Lattice . 185

10

List of Tables
1.1 Evolution of the Cilk System . 232.1 Ray Tracing Result Overview . 482.2 Protein Folding Run Times . 543.1 Performance of Cilk Applications . 68

11

12

Chapter 1
Introduction
Researchers have long worked to bring parallel hardware and software into widespreaduse. Recently there has been progress on the hardware front. Serial microprocessors havebeen used as cost-e�ective building blocks for medium and large scale parallel machines.Now many high-volume serial processors contain hooks, such as snoopy buses [KEW+85],for implementing multiprocessor systems. These hooks make it quite simple and cheapfor commercial computer manufacturers to build inexpensive, entry-level, multiprocessormachines. This trend towards including multiprocessor support in standard micropro-cessors occurred �rst with processors used in workstations (e.g. MIPS R4000[MWV92],Sparc[Sun89], PowerPC 601 [Mot93]) and more recently with processors for PCs (e.g. In-tel's Pentium P54C [Gwe94]). As with any other commodity, as parallel machines drop inprice, they become cost-e�ective in new areas, leading to parallel machines being installed atmore and more sites. If this trend wasn't enough, high-speed networks and lower-overheadsoftware are threatening to turn every LAN into a potential parallel machine [ACP95]. Wemay �nally be witnessing the move of parallel machines into the mainstream.Although building parallel computers has become easier, programming parallel comput-ers can still be quite di�cult. To see that parallel programming has not moved into themainstream, just take note of the way in which existing small-scale SMPs are being used.This usage pattern is hard to document quantitatively, but as an example, \Open Comput-ing" estimates that of all the high end, 2-8 processor PCs sold, 70% of them are used as �leand print servers [EL94]. It seems that most small scale SMPs are destined to spend theirlives as \throughput machines," never to run a single parallel job. We should not be too13

negative, however, since clearly some progress has been made on the software front. Unfor-tunately much of this progress has been in programming languages that are suited to staticprograms. A static program is one whose control behavior is relatively data-independent,so the computation can be fairly well mapped out before the computation begins. Typicalof static programs are the large scienti�c and numeric codes that were the raison d'être ofsupercomputers and of early, expensive parallel machines. Naturally, much of the early re-search in parallel programming was directed towards programming these applications. Eventoday, the suites commonly used to benchmark parallel machines (e.g. Perfect [BCK+89],NAS [BBB+94], and Linpack [DMBS79]) are representative of such programs. Less progresshas been made for easing the task of writing parallel programs for dynamic applications.These programs are ones where the execution of the program is heavily inuenced by thedata input to the program and by the data computed by the program. These applicationsinclude compilers, simulators, graphic packages, and optimization packages. There has beenless work on building systems suited for dynamic applications such as these, yet these areexactly the applications that new users of cheap parallel machines will want to run. Thegoal of the work presented in this thesis is to partially address this inadequacy by build-ing a system that allows a programmer to easily and e�ciently implement certain types ofdynamic parallel algorithms.To reach this goal, the Cilk team at MIT's Laboratory for Computer Science has de-signed Cilk (pronounced \silk"), a C-based runtime system for multithreaded parallel pro-gramming. Using Cilk, programmers are able to express their applications either by writingmultithreaded code written in a continuation-passing style, or by writing code using normalcall/return semantics and specifying which calls can be performed in parallel. In the lattercase a type-checking preprocessor automatically breaks up the code into a multithreadedprogram. The Cilk runtime system takes complete control of the scheduling, load balanc-ing, and communication needed to execute the multithreaded program, thereby completelyinsulating the programmer from these details. The programmer can rest assured that hisprogram will be executed e�ciently, since the Cilk scheduler provably achieves time, space,and communication bounds all within a constant factor of optimal. The Cilk system reportsthe \work" and \critical path" of a Cilk computation. Armed with these parameters, theuser can understand and accurately predict the performance of a program. For distributedmemory environments, we have implemented a software shared memory system for Cilk.14

We have de�ned a \dag-consistent" memory model which is a lock-free consistency modelwell suited to the needs of a multithreaded program. Because dag consistency is a relaxedconsistency model, we were able to implement coherence e�ciently in software. Currently,versions of Cilk run on the Thinking Machines CM-5 [Thi92], the Intel Paragon [Int94],various SMPs, and on networks of workstations [Blu95]. The same Cilk program will runon all of these platforms with few, if any, modi�cations. Applications written in Cilk in-clude protein folding, graphic rendering, backtrack search, and the ?Socrates chess program,which won second prize in the 1995 World Computer Chess Championship.I could now describe how having decided upon all the nice features Cilk should have, wewent o� and designed and built a system that contained those features. It would make anice story. It just wouldn't be a true story. When we �rst started this project, we had littleidea what the �nal system would look like. In fact, had we sat down and set as our goalto build a system that looks like Cilk does today, we probably would have decided againstpursuing the project, and instead worked on a di�erent project, one which had a betterchance of being done in a reasonable time frame.Instead, the story of Cilk is one of incremental improvement. We had some goals andsome ideas on how to reach those goals. Throughout our work on Cilk, we used applicationsto help drive the development process. Applications were useful both in pointing out bugsand weaknesses in the system, as well as in helping us decide where to focus our energiesnext. We also tried to keep a �rm theoretical footing, so that we could truly understandthe performance of the system.We began by building a simple multithreaded runtime system, and then we stepped backand asked ourselves what were the biggest de�ciencies with this system, and what couldbe done to improve them. We then chose one of the problems that we thought we couldremedy and went o� and focused on it, being careful not to reintroduce the problems we hadpreviously solved. Once this de�ciency was addressed we repeated the process and againstepped back, examined the system, and looked for the next target area. This picture ofthe development of Cilk is somewhat simplistic, since in actuality we were always thinkingabout the bigger picture and at times we were working in several directions at once, but ingeneral the paradigm of incremental improvement is a good model for the evolution of Cilk.In the rest of this chapter we give an overview of the development of the Cilk system.In Section 1.1 we briey look at some other parallel programming systems and summariz-15

ing what desirable characteristics we think a programming system should have. Then inSection 1.2 we describe the evolution of Cilk. We begin with PCM, a simple multithreadedruntime system based on continuation-passing threads. The PCM system evolved into theCilk-1 system with the addition of a provably good scheduler which allowed us to provideperformance guarantees. Next, the Cilk-2 system extended Cilk-1 by allowing the user toprogram using call-return semantics instead of continuation passing. Then, in Cilk-3, weadded shared memory support in order to extend the range of applications we could im-plement. Lastly, we added high-level support for speculative computations via inlets andaborts.1.1 Life Before CilkIn April 1993, a 128 node Thinking Machines CM-5 was installed at MIT. We were, ofcourse, eager to begin using this machine in our research. We wanted to use this machineto experiment with parallel algorithms and wanted a programming language/environmentin which to do this. Preferably we wanted an environment where we could focus on ourapplication, not on the low-level protocols necessary to implement the application. At thesame time we wanted our application to run e�ciently. In short, we wanted the best ofboth worlds. Before describing the system we designed, we will �rst take a look at whatother parallel programming paradigms were available.Data ParallelOne of the most successful parallel programming models is the data-parallel programmingparadigm[HS86]. This model is useful for taking advantage of the large amounts of dataparallelism that is available in many scienti�c/numeric applications. This data parallelismis exploited by performing the same operation on a large amount of data, distributed acrossthe processors of the machine. Data-parallel languages, such as CM Fortran [Thi91a],C* [Thi93], and *Lisp [Thi91b], all of which were available on the CM-5, are similar tosequential languages. The main di�erence is that certain data types are de�ned to beparallel. Parallel data values consist of a collection of standard, scalar data values. Theselanguages contain prede�ned operations on parallel variables that either operate on theparallel variable element-wise (e.g. negating every element), or operate on the parallel16

value as a whole (e.g. summing all elements of the parallel variable).The data-parallel programming model has two main virtues that have led to its suc-cess. The �rst virtue of this model is that data-parallel codes are fairly easy to write anddebug [HS86]. Just as in a serial program, the programmer sees a sequential ow of con-trol. The values making up a parallel value are automatically spread across the machine,although typically the programmer does have the option of inuencing how data is placed.Any synchronization or communication that is needed to perform an operation on a parallelvalue is automatically added by the compiler/runtime system. The second virtue of thismodel is that it is easy for a programmer to understand the performance of a program.Given the size of a parallel value to be operated on, the execution time for an operation isfairly predictable. Since the execution of each operation is independent of the others, theexecution time for the program as a whole is predictable as well. A careful programmercan therefore write a program and be con�dent that the program's performance will scaleas the machine size grows. Blelloch has taken this a step further in NESL [Ble93], whereevery built in function has two complexity measures, which a programmer can use to derivethe asymptotic running time of his program.Although the data-parallel paradigm is quite popular, it has two signi�cant drawbacks.The �rst is the limited range of applications for which data parallel is well suited. Appli-cations with data parallelism tend to be static in nature, the control ow of a data-parallelprogram is mostly data independent, and the program's data layout and load balancingcan be done at compile time. Many applications are more dynamic in nature and do nothave these characteristics. To run in parallel, these dynamic applications need to exploitcontrol parallelism by performing independent operations at the same time. These applica-tions, which may be as simple as recursively computing Fibonacci numbers or as complexas computer chess, are nearly impossible to express in data-parallel languages. The seconddrawback of this model is that data-parallel programs tend to be ine�cient. Even whena data-parallel program gets a good speedup, if one scales the program down to one pro-cessor, and compares it to a sequential program, the performance may be disappointing.This phenomenon occurs because the data-parallel paradigm is not always a good modelfor taking full advantage of the sequential processors that make up most of today's parallelmachines. This de�ciency is particularly acute for languages such as CM Fortran, where thecode generated uses \virtual processors". A virtual processor mechanism allows the same17

code to run on a machine of any size, but it adds signi�cant ine�ciencies [HKT93].Message PassingAnother common paradigm for writing parallel programs is message passing. Message-passing models present the programmer with one thread of control in each processor, andthese processors communicate by sending messages. This model is a good representationof the actual implementation of current parallel machines. Since this model is so close tothe hardware, a good programmer is able to write e�cient codes, just as a good assemblylanguage programmer is able to write assembly language code that is more e�cient than codewritten in a high-level language. The drawback of this model is the same as the drawbackof programming in assembly language: writing a large program at such a low level can beoverwhelming. The user must answer all the low-level questions himself, namely questionssuch as how to partition the program's data, when to perform communication, and how toload balance the computation. Not only must the user make all these decisions, but he mustthen write all the protocols necessary to carry them out. For most nontrivial programs theuser spends more time writing protocols that writing the actual application. I believe weshould aspire to a higher level of parallel programming.There are three strategies for message-passing programming.The simplest message-passing models are blocking. The sending processor issues a sendrequest, and the receiving processor issues a receive request. Whichever processor issues itsrequest �rst blocks and sits idle until the other processor issues its command. At that point,communication begins. Only after communication completes can the processors continueexecuting. It can be di�cult to program well in this model, because ine�ciencies occurunless both of the processors involved in a communication issue their requests at the sametime. Moreover, this style of programming is prone to deadlock.To make programming simpler, many systems implement a second type of messagepassing: \asynchronous" message passing. In this model, when a processor performs asend, the send executes immediately, regardless of whether or not a corresponding receivehas been issued, and the sending processor can continue executing. The system uses bu�ers(often on both the sending and receiving side) to hold the message until it is requested by thereceiver. Asynchronous message passing eases the programmer's job, but adds signi�cantoverhead to each communication due to the copying and bu�ering that the system invisibly18

performs.Active Messages [vECGS92], the third strategy for message passing, reduces this over-head by providing asynchronous message passing without the automatic bu�ering. Anactive message contains a header which points to a handler, which is a piece of user codethat speci�es what to do with the data in the message. The user can specify many han-dlers, typically one for each message type. When a message arrives, rather than having ageneric system-de�ned routine handle the message, which will typically copy the messageinto a bu�er, the system instead executes this user-de�ned handler to process the arrivedmessage. Active Messages eases the task of writing message-passing codes because it allowsa programmer to write programs using low-overhead, asynchronous message passing andbecause the paradigm of having the message itself know how it should be handled turns outto be quite useful in practice.Although Active Messages simpli�es the task of writing an e�cient message-passingprogram, it is still just a message-passing paradigm, and is therefore too low-level to be ageneral parallel programming language. We should point out that the authors of the ActiveMessages paper themselves state that Active Messages was not designed as a new parallelprogramming paradigm, but rather as a primitive communication mechanism with whichother paradigms could be implemented. In fact, we use Active Messages in just this way.The Cilk system is implemented on top of Active Messages.The Split-C [CDG+93] parallel programming language is an attempt to merge someof the features of the data-parallel and message-passing paradigms. As in the message-passing paradigm, Split-C exposes to the user one thread of control for each processor.Unlike the message-passing model, however, Split-C provides a range of somewhat higher-level primitives. Split-C has a global address space and provides the programmer with avariety of operations which operate on global data. How global data is distributed amongthe processors is totally up to the user. Naturally, Split-C can use the global-memoryprimitives to implement most message-passing algorithms.Split-C can also express many of the applications that can be expressed in data-parallellanguages. As in data-parallel languages, Split-C contains operations which act on an entireglobal data structure as a whole. (e.g. summation). These system-supplied functions arenot really necessary, however, since these operations could easily be built by the user outof the memory-access primitives. In Split-C the user can write data-parallel programs by19

directly specifying what computation each processor should perform on its portion of thedata. Using this method the user can write more e�cient programs than can be written ina standard data-parallel language. For example, given a sequence of operations on paralleldata, a data-parallel language typically performs each operation on all the data beforemoving on to the next operation. But, it is often more e�cient to do a series of operationson one slice of the data before moving on to the next slice and repeating the same operations.Whereas Split-C gives the programmer this control, data-parallel languages in general donot. A Split-C programmer can use such techniques to exploit locality and to write codesthat are optimized for the sequential processors that make up the parallel machine.Split-C provides a programmer with more power and exibility than typical data-parallelor message-passing languages, but it still has the drawback that it best suited mainly forstatic programs. As with message-passing languages, Split-C allows dynamic programs tobe written, but this requires the programmer to write at a lower level, and thus the useris back to programming protocols, not the application. In all the models we have seen sofar, the user decides, either at compile time or early in the execution of the program, whereall his data is going to reside, and how the computation is going to be spread amongst theprocessors. None of these systems deal well with dynamic programs where it is not knownin advance how the computation will unfold and what the data will look like. None of thesesystems are able to take advantage of control parallelism, which a system must be able todo in order to execute dynamic programs. In order to execute such programs we need avery di�erent system.MultithreadingIn order to execute unstructured programs, we need a system that can take advantage ofcontrol parallelism. Data-parallel models present the user with a single thread of control.Models based on message passing increase this to one thread of control per processor.To take full advantage of control parallelism, we must virtualize the number of threads ofcontrol so that whenever the program discovers several independent tasks, those tasks can beexecuted in parallel, each with its own thread of control. When using such a multithreadedprogramming model, the runtime system must schedule these tasks and dynamically spreadthem across the machine in order to load balance the computation.The most ambitious of the multithreaded languages are the implicitly parallel languages,20

such as Id[Nik91]. In these languages the programmer expresses his algorithm at a highlevel without any mention of parallelism. Then, a sophisticated compiler automaticallybreaks the program up into a �ne-grained multithreaded program. In this model everymemory reference and every interprocedural communication is a potential nonlocal, long-latency operation, which leads to small thread lengths and frequent communication. Ex-ecuting e�ciently under these conditions requires a platform with cheap thread creationand scheduling, as well as a high-bandwidth, low-overhead communication infrastructure.There are several machines which have been designed with these characteristics in mind,such as HEP [Smi78], Tera [AAC+92], and dataow machines such as Monsoon [PC90] andthe EM-4 [SKY91]. Most existing machines do not have these characteristics, however. Asanalysis techniques improve, compilers are becoming better able to exploit locality in theseprograms and to increase the thread lengths. These improvements may eventually allowthese programs to run on traditional machines e�ciently, but at present implicitly parallelprograms running on traditional machines incur signi�cant overheads.More common are the explicit multithreaded languages. In these systems the user mustexplicitly specify what can be done in parallel. There are a wide range of such multithreadedsystems [CRRH93, CGH94, CAL+89, CD88, CSS+91, EAL93, FLA94, Hal85, HWW93,Kal90, KC93, KHM89, Nik94, TBK93]. These systems provide the programmer with ameans to create, synchronize, and schedule threads. In order to reduce the overhead of theprogram, thread creation, synchronization, and scheduling is typically done by user-levelruntime system code, without the involvement of the native operating system. Since theuser can cheaply and dynamically spawn o� tasks as they arise, and then let the runtimesystem take care of all the details of executing these tasks, these systems make it easy forthe user to take full advantage of the control parallelism inherent in many programs.These systems di�er in how the user speci�es threads, in what support is provided forshared objects, and in how the scheduling and load balancing of the computation takesplace. One thing these multithreaded systems all have in common is that none of themprovide performance guarantees for execution time, space or communication, as some of thedata-parallel languages do.As mentioned earlier, the main goal of this work is to make it easier for a programmerto e�ciently implement dynamic parallel algorithms. In this section we have describeddesirable features of other systems. Let us now summarize what characteristics we would21

like our system to have:� Minimize the gap between applications and languages: A programmer shouldfocus on his application, not on protocols. Details that do not have to do with theapplication should be hidden from the programmer.� Provide predictable performance: There should be no surprises. A programmershould have a good idea of how his application will perform, and how it will scale,before he even executes it.� Execute e�ciently: The system should not add too much overhead to the executionof a user's program. The performance of the parallel code, when run on one processor,should be comparable to the best serial code when run on the same processor.� Scale well: When possible, increasing the number of processors used by a programshould improve the performance proportionally.� Portable: Our system should be portable to a variety of machines, from serialmachines, to small-scale SMPs, to networks of workstations, to large-scale message-passing machines.� Leverage existing codes: We would like to convert a serial program to a parallelprogram with the least e�ort possible. We should therefore be able to include standardserial code in our parallel program, so that only the parts to be parallelized need tobe rewritten.� Be expressive: We should be able to implement a wide variety of applications inour system.1.2 The Evolution of CilkThis thesis describes the evolution of the Cilk system, which is outlined in Table 1.1. Thistable shows the various versions of Cilk, and the key features of each version. In this thesiswe focus on the key ideas of each version of Cilk and we do not attempt to describe all thedetails needed to write an application in Cilk. Those interested in using the system arereferred to the Cilk Reference Manual [BFJ+95].22

System Novel FeaturesPCM Basic multithreaded systemCilk-1 Provably good schedulerCilk-2 Call/return semanticsCilk-3 Shared memoryCilk-4 Inlets + abortsTable 1.1: Evolution of the Cilk System.This work began with a basic multithreaded programming system called the ParallelContinuation Machine, or PCM for short. The intent of this system was to provide a sim-ple system with which a user could write e�cient multithreaded programs. This systemprovides the user with the basic primitives for creating threads and specifying how thethreads communicate and synchronize. The PCM system hides from the user the details ofscheduling and executing these threads, thus simplifying the task of writing explicit mul-tithreaded applications. The user writes his multithreaded application as a set of threads,wired together in continuation-passing style. Each thread is a nonblocking piece of codethat that may contain calls to standard C functions. After performing some computation,a thread sends its result to another thread, potentially enabling that thread to begin workon the rest of the computation.A simple preprocessor takes the user's code, which consists of de�nitions of threads andC functions, and converts it into standard C code with calls to PCM runtime primitives.The system represents a thread using a data structure called a closure which contains adescription of a thread and all its arguments. A closure is a self-contained unit containingall the information needed to execute an instance of a user's thread, and therefore thecomputation described by a closure is free to be executed on any processor. The runtimesystem uses a randomized work-stealing scheduler [BS81, Hal84, BL94] to schedule and loadbalance the computation. A processor typically works locally, mimicking the serial executionorder. When a processor runs out of work, it chooses a processor at random and steals aready closure from the chosen processor. This work-stealing scheduling strategy tends toprovide good load balancing without requiring excessive communication [KZ93, RSAU91,ZO94]. We wrote several applications in PCM, including a ray tracer based on the serialPOVRAY program [POV93], and a protein-folding code [PJGT94], which is still being used23

to investigate various models of protein formation. The PCM system performed well onthese applications, achieving nearly linear speedup without adding signi�cant overhead.This initial system showed us that we could easily build a powerful multithreaded system.The PCM system is described in Chapter 2. Although little actual code from the PCMsystem remains in the current Cilk system, many of the concepts used in PCM have persistedthroughout the various Cilk systems.Having shown that an e�cient multithreaded system was buildable, we then focused onproviding a more rigorous foundation for the system. Although the applications we codedin the original PCM system achieved nearly linear speedups, it was apparent that not allprograms could be executed with such good results. Our desire was to have a system whichachieved good performance over as wide a range of programs as possible. We also wanted tohave a system which made it clear what properties a program must have in order to achievegood performance. The Cilk-1 system meets these goals.The Cilk-1 system is an enhanced version of PCM which gives the user predictable andprovably good performance. The theoretical work of Blumofe and Leiserson [BL94] pre-sented a work-stealing scheduling algorithm which, for a class of well-structured programs,is provably e�cient. By adding some structure to our programs and making a change toour scheduler, we were able to extend the proofs in [Blu95] to cover our scheduler as well.With these changes Cilk's work-stealing scheduler achieves space, time, and communicationbounds all within a constant factor of optimal. The two parameters which predict how wella program will perform are the \work" and \critical path" of the program. The work of aprogram is the time it would take one processor to execute the program, and the criticalpath is the time it would take an in�nite number of processors to execute the program. Weextended our system to measure the work and critical path when a user runs a program.With these two measures a user is able to understand why the program performed as it did,and the user is also able to predict the performance of the program on machines of di�erentsizes. We describe the Cilk-1 system in Chapter 3.It was while designing the Cilk-1 system that we wrote our largest application, the?Socrates chess program. Up to this point we had no application that made full use of thecomplicated control structure allowed by our system. In order to showcase the power ofour system and to point out any improvements that the system needed, we wanted to builda challenging, dynamic application that could not easily be implemented in other parallel24

programming paradigms. Computer chess is such an application. Our chess program useslarge global data structures, is nondeterministic, and performs speculative computations,some of which are aborted. This work was in part a natural follow on of StarTech [Kus94],a parallel chess program designed by Bradley Kuszmaul which had the scheduler and searchalgorithm intertwined. We wanted to show that the scheduler and search algorithm couldbe separated, thereby greatly simplifying the programmer's job, without sacri�cing perfor-mance. Our work on ?Socrates led to several enhancements to the runtime system whichwere included in the Cilk-1 system. Despite the use of low-level Cilk-1 features that voidCilk's performance guarantees, ?Socrates still achieves e�cient, predictable performanceover a range of machines. ?Socrates remains our agship program and continues to drivethe development of Cilk. Chapter 4 describes the ?Socrates program and how it inuencedthe Cilk-1 system.Although the continuation-passing style required by Cilk-1 allowed a wide range ofprograms to be expressed, writing programs in this style was quite error prone and tedious.In Cilk-2, our next major release of the system, we focused on making the system easierto program. As a stepping stone towards this goal we �rst introduced a type-checkingpreprocessor [Mil95]. Previously, Cilk programs were converted to C via a standard, butsimple, macro preprocessor. This preprocessor limited the constructs we could use in thelanguage, occasionally forcing us to expose to the programmer details we would ratherhave kept hidden. Introducing the type-checking preprocessor allowed us to hide someof these details, thus cleaning up the language. More importantly, the new preprocessorcan deduce semantic information about the source Cilk program, thereby allowing us toperform transformations we could not consider previously. One alternative to the type-checking preprocessor would have been to build a full-edged compiler. A compiler wouldhave allowed us to do everything the preprocessor could do and more. Building a compileris a signi�cant undertaking, however. This option would have required resources and timethat we could not a�ord, and it would have made the system less portable as well.The power of our type-checking preprocessor allowed the programmer to write somecodes using traditional call/return semantics, thus making Cilk programs substantially eas-ier to write. With this change users can write a parallel Cilk program without dealing withthreads or continuation passing. A program previously written as many Cilk-1 threadstediously wired together by the programmer could now be expressed as a single Cilk-2 pro-25

cedure. A single Cilk-2 procedure can spawn o� child procedures, suspend until all thechildren complete, and then continue executing, perhaps spawning o� children again. Thenew preprocessor automatically breaks these Cilk-2 procedures into several threads whichcan then be executed using the basic Cilk-1 runtime system. This Cilk-2 style of program-ming is somewhat more restrictive than that allowed by other multithreaded languages, butwe �nd it simple for the programmer, and su�cient for almost all algorithms we have triedto write. This release, which was a major step towards making Cilk suitable for widespreaduse, is described in Chapter 5.The improvements made for the Cilk-2 system made Cilk programs easier to write, butthey did not increase the range of programs which could be written. One of the biggestdrawbacks of the Cilk systems described so far is that it is di�cult to write applicationswhere signi�cant amounts of data need to be shared throughout the computation. With theCilk-2 release, for those applications for which Cilk was \well suited" it was now fairly easyto write a Cilk program and get good, predictable performance. The applications for whichCilk-2 was well suited, however, were somewhat limited, mainly consisting of applicationswhich could be expressed using a tree-like algorithm where the nodes of the tree werefairly independent. The di�erent parts of the computation must be fairly independent ofeach other because in Cilk-2 the only way to share data throughout the computation is toexplicitly pass the data from procedure to procedure. For any reasonably large data set aprogrammer would be forced to go outside of Cilk and implement a shared data structure,probably by taking advantage of the low-level features supported by the particular platformon which the code was being developed. To solve this problem and increase the range ofprograms which could be expressed in Cilk, the aspect we focused on for the next releaseof Cilk was adding shared memory support.The Cilk-3 release includes a shared-memory system implemented totally in software.Rather than attempting to build a shared-memory system that can solve all problems,we focused on building one that would be su�cient for the types of problems that arenaturally expressed in a multithreaded programming environment such as Cilk. Insteadof using one of the consistency models derived from sequential consistency, we used ourown, relaxed, consistency model. Our model, which we call \dag consistency," is a lock-freeconsistency model which, rather than forcing a total order on global-memory operations,instead ensures only that the constraints of the dag are enforced. Because dag consistency26

is a relaxed consistency model, we were able to implement coherence in software e�cientlyfor Cilk. With this shared-memory system we are able to express applications, such asmatrix multiply and Barnes-Hut, which make use of global data structures The de�nitionof dag consistency, and our implementation of it for Cilk are described in Chapter 6.Cilk-4, the last release of the Cilk system that I will describe in this thesis, is intended toremedy a de�ciency in the Cilk-2 language. When we designed Cilk-2 and added support forprocedures with call/return semantics, we were able to rewrite almost all existing programsusing the new, simpler, Cilk-2 syntax. The only application which could not be expressedusing the Cilk-2 syntax was ?Socrates, due in large part to the complex control structure ofthe parallel search algorithm. Speci�cally, ?Socrates generates speculative work which maysometimes be killed o�. Therefore, unlike all other programs we have written, the amountof work performed by a run of the chess program depends on the order in which the user'sthreads are executed. The Cilk-2 syntax does not give the user enough control over theexecution of his code to write an e�cient speculative algorithm, so the chess code is stillwritten with Cilk-1 style syntax.For the Cilk-4 release, which is currently under development, we have proposed anextension to Cilk that should allow the chess program to be written without resorting toany of the lower level Cilk-1 constructs. The extension allows the programmer to specify apiece of code called an inlet when spawning a child. This inlet code is run immediately afterthe child �nishes. The search routine in ?Socrates will use inlets to receive the result of onesearch, and depending on the result the search routine may spawn o� a more precise search,may update the parameters for other searches, or perhaps may abort a group of searches.The proposed extensions also support an abort primitive which will allow a procedureto abort all of the its spawned children. Currently, ?Socrates must implement the abortmechanism as user-level code, which is quite tedious, this new feature will allow this codeto be removed from the user program. An overview of the proposed changes are given inChapter 7.The design of the Cilk system is an ongoing project. The �nal chapter of this thesisdescribes some of the improvements we would still like to make to the system, and givessome concluding remarks. 27

History of CilkWe conclude this section with a description of how work on Cilk has progressed over the lasttwo and a half years. The preceding paragraphs gave an overview of the technical evolutionof Cilk. The following give a more historical view of how the Cilk project came about.The original PCM system grew out of work begun by Michael Halbherr. Michael wasdoing research on parallel I/O, and in order to perform some experiments, he implementeda simple system for executing parallel programs. This parallel runtime system becameinteresting in its own right, and in the middle of 1993 Yuli Zhou and I began working onthis system as well. All e�orts on parallel I/O were soon forgotten, as we focused solelyon the parallel runtime system. This multithreaded runtime system eventually became thePCM system.While we were improving the PCM system and writing applications that used it, webegan interacting with Professor Charles Leiserson and his students, who were working onseveral related projects. The �rst of these related projects was theoretical work by RobertBlumofe and Charles Leiserson on scheduling multithreaded applications. The second wasStarTech, a parallel chess program built by Bradley C. Kuszmaul, another of Leiserson'sstudents.In April of 1994, Charles suggested that we join forces, beginning by implementing aparallel chess program in PCM. Unlike StarTech, which intertwined the search code andthe scheduler, this new program would build the chess search completely on top of thegeneral-purpose PCM runtime system. In May, we obtained a serial chess program fromHeuristic Software and began porting it to our system. During June, Don Dailey, then ofHeuristic Software, joined us at MIT to work on the program's chess knowledge, and at theend of June we entered the program in the 1994 ACM International Chess Championship,where, running on a 512-node CM-5, we �nished third.After the chess tournament, Keith Randall joined the Cilk team and we made thechanges necessary to incorporate some of the theoretical results into the system. The re-sulting \provably good" system was renamed Cilk. Then, in the fall of 1994, we recruitedseveral undergraduates (Greg Hudson, Rob Miller, Richard P. Tauriello, Daricha Techopi-tayakul, and John Yu) to program in Cilk. This experience helped us learn more aboutprogramming in Cilk, and two of these students, Rob and Richard, eventually wound up28

contributing to the Cilk system itself. During late 1994, we focused on making Cilk easierto use and began designing the Cilk-2 system. Also during 1994, Robert Blumofe, withthe help of two undergraduates, Phil Lisiecki and Howard Lu, began working on the faulttolerant version of Cilk for networks of workstations.In 1995, Cilk progressed on many fronts. In January, Matteo Frigo, who had recentlyjoined the Cilk team, completed reworking much of the Cilk code to make it more portable.Rolf Riesen of Sandia National Laboratories later ported this reworked version of Cilk tothe Intel Paragon, and we ported the chess program to the Paragon as well. Don Daileyagain joined us to work on the chess aspects of *Socrates, and in May 1995, we ran on a1824 node Paragon in the 1995 World Computer Chess Championship, �nishing second.In June 1995, the Cilk-2 implementation, which had been fairly stable for several months,was o�cially released. Early in 1995 we had begun working on shared memory supportfor Cilk. The implementation of shared memory was fairly stable by September, and thisimplementation is the one that we describe in this thesis. Lastly, during the second half ofthe year we worked out the design of inlets and aborts for the Cilk-4 system. This systemis currently being implemented.

29

30

Chapter 2
The PCM System
This chapter describes the PCM system. PCM, the precursor to Cilk, is a simple mul-tithreaded runtime system based on continuation-passing threads. This system was ourinitial attempt to produce a system with which a user could write e�cient multithreadedprograms. The PCM system grew out of a system initially designed by Michael Halbherrfor research on I/O. Michael Halbherr, Yuli Zhou and I implemented the PCM runtimesystem. Yuli Zhou implemented the preprocessor used by the PCM system. The proteinfolding code described in Section 2.4 was written by myself based on discussions with VijayPande of the Center for Material Sciences and Engineering at MIT.2.1 IntroductionThis chapter presents the parallel continuation machine (PCM), a parallel runtime systemdesigned to e�ciently execute dynamic, multithreaded programs on today's message-passingarchitectures. We will �rst concentrate on explaining the key ideas underlying the imple-mentation, and then demonstrate how they give rise to extremely e�cient parallel programsvia two real-world examples.Parallel programs can be classi�ed along several dimensions, such as grain-size, com-munication regularity, and whether the execution depends on runtime data. We believethat existing programming models, such as data parallel programming and explicit mes-sage passing, have been successful in addressing the needs of programs with simple staticMuch of the work described in this section was reported on by Michael Halbherr, Yuli Zhou and myselfin an earlier paper [HZJ94]. 31

communication patterns. For these programs it is usually possible to carefully orchestratecommunication and computation to statically optimize the overall performance.On the other hand, it proves far more di�cult to �nd static solutions leading to high ma-chine utilizations for parallel applications whose communication patterns are either highlyirregular or dependent on dynamic information. In this work, we are mostly interested ininvestigating the needs and characteristics of these classes of programs, which must rely onruntime mechanisms to enable e�cient solutions.Multithreaded computation models have typically been proposed as a general solution toexploit dynamic, unstructured parallelism. In such a model, dynamically created instancesof sequential threads of execution cooperate in solving the problem at hand. To e�cientlyexecute such an application, it is necessary to have e�cient runtime thread placement andscheduling techniques. Although �nding the optimal thread placement is known to be anNP-hard problem [GJ79], it is possible to implement schedulers based on simple heuristicsthat achieve good machine utilizations at reasonable cost. These heuristics usually workwell for a broad class of applications, making it possible to implement the scheduling andplacement task as a fairly generic service that resides at the core of the runtime system.Several research machines, such as HEP [Smi78], the Monsoon dataow system [PC90],and the forthcoming Tera machine [AAC+92], have been designed expressly to support mul-tithreaded computations. These machines provide highly integrated, low overhead, messageinterfaces as well as hardware support for scheduling and synchronization. Disregarding thedebate of whether such machines are commercially or technically viable, the problem of pro-gramming most of the current parallel machines, which have no special hardware supportfor multithreading, still remains. The programming challenge, in view of the above di�-culties, is to minimize network communication and to provide longer sequential threads too�set the runtime scheduling and synchronization overhead.The static set of sequential threads making up the multithreaded program can eitherbe generated implicitly by a sophisticated compiler, or explicitly by the programmer. Pro-gramming languages advocating the implicit style, such as Id [Nik91] and Sisal [MSA+85],usually take a high-level, functional, description of the actual problem, extract the avail-able parallelism from the declaration and partition it into sequential threads. While implicitprogramming languages simplify the programming task for some problems, other problemsare di�cult to e�ciently express in a functional style. In addition, some of these systems32

fail to produce threads long enough to adequately amortize the overhead introduced by adynamic execution model.To help reduce network communication, the execution of threads must exhibit commu-nication locality. This requirement precludes scheduling policies such as round-robin orrandom placement, but favors solutions such as work stealing where all threads are createdlocally per default, but may later migrate to other nodes upon demand.The PCM model presented in this chapter is aimed at solving the aforementionedproblems. The intended target architectures are simple message-passing machines whichsupport the implementation of low-overhead communication layers such as Active Mes-sages [vECGS92]. We do not assume any additional hardware support.We have provided C language extensions where threads can be speci�ed along with con-ventional sequential C code. A program consists simply of a collection of threads, which arepieces of sequential code which are guaranteed to terminate once they have been scheduled.Threads represent the basic scheduling units that can be executed on any processor. Byexposing threads in this way, we can experiment with various static and dynamic schedul-ing policies to optimize the overall machine utilization. In particular, we have found twostrategies which can have a great e�ect on the performance of a program.� The scheduler uses work stealing as its default policy. This strategy creates patternsof locality in which threads can pass arguments through local memory most of thetime, rather than across the network, thereby greatly reducing the communicationfrequency.� A thread can be made to directly transfer control to another thread, this mechanismis similar to the control transfer mechanism used to implement tail-recursion in serialcodes. This mechanism bypasses dynamic scheduling entirely, thus avoiding all of itsassociated costs.We show the e�ect of these optimizations in Figure 2-1. As this diagram suggests, thereare three communication levels, namely register communication, memory communication,and network communication. Preferably, we would like to transfer data through registersas much as possible, but the very nature of a dynamic execution model will force us toresort to memory communication or, even worse, to network communication. Note that anapplication increases the working set whenever it exposes additional parallelism, making33

network communication memory communication

register communication

Processor 1 Processor 2 Processor 3 Processor 4Figure 2-1: Maximizing Communication Localityit impossible to keep the entire working set in registers. The implementation goal will beto provide an optimal compromise between increasing the sequentiality of the applicationto increase its locality and exposing enough parallelism to enable dynamic load balancing.The work stealing scheduler will then attempt to minimize the work migration frequency,thereby minimizing network communication.The rest of this chapter is structured as follows: Section 2.2 introduces the PCM threadspeci�cation language and presents its components. Section 2.3 introduces a cost model,intended to clarify the costs involved in dynamic execution. Section 2.4 contains in depthexplanations of two applications implemented with the PCM package. Section 2.5 concludesthe chapter.
2.2 The Parallel Continuation MachineThe parallel continuation machine implements an SPMD programming model, where allprocessors keep their own local copies of the entire code. The execution itself is completelyasynchronous, meaning that each node may execute entirely di�erent pieces of the program.34

thread: T2

join : 0

argument 0

continuation

thread: T2

join count: 0

456,789

cont: <k1, 2>

Closure MemoryRuntime Structures

T1:

T2:

Thread Code

Program Memory

thread: T1

join count: 1

569,908

cont: <t,3>

k1:

k2:

send_argument(v, cont:<k1,2>)

Ready Queue:

ready queue contains pointers
 to all full closures

 empty
argument slot

Figure 2-2: Elements of the PCM Model2.2.1 Elements of the PCMA PCM program consists of a collection of threads that cooperatively solve a single problem.Statically, a thread identi�es nothing more than a sequence of instructions, written in themachine language of the processor. At runtime, an application can create arbitrary numbersof dynamic instances of a static thread, each with its own set of arguments.The PCM thread speci�cation language, which is explained in section 2.2.2, allows theprogrammer to de�ne threads and to specify how threads communicate with each other.All machine-speci�c execution details, such as dynamic load balancing or the mechanismrequired to enable transparent inter-thread communication, are part of the PCM runtimesystem and do not have to be speci�ed by the user. By taking care of these details, thesystem simpli�es the job of writing explicit multithreaded applications without sacri�cingthe programmer's power for experimentation.The key elements of PCM's execution environment are illustrated in Figure 2-2. Newdynamic instances of threads can be created by making closures. Closures form the contractbetween the application code and the runtime system. Closures contain a pointer to thethread code and all the arguments needed to execute the code. The thread code mayinclude calls to arbitrary C procedures. A thread is ready to execute when its closure35

is full; in other words, when the closure has all its arguments. Full closures are passedto the scheduler, which keeps them in a ready queue and will later schedule them for theencapsulated threads to run. All threads in PCM are nonblocking, which means that oncea thread begins execution, it can run to completion without suspending.In order to enable points of synchronization between threads, a closure can be createdwith some of the arguments missing. These arguments will be �lled in later with a value sentby another thread. A thread supplying an argument to a non-ready closure must obtain areference to where the argument is to be sent. Such references will be called continuations;a continuation is just a pointer to a closure plus an integer o�set into the closure. Note thatwe are slightly abusing the term continuation, which in sequential computations is used torefer to the rest of the computation as seen from a particular program control point. Inparallel programs there is usually no such thing as \the rest of the computation" from asingle control point, but the idea is the same.In order to detect when a closure becomes full, every closure has an additional slotcontaining a join counter that indicates the number of missing arguments the closure has.The join counter is initialized with an integer equal to the number of missing argumentsat closure creation time, and decremented each time the closure receives an argument. Aclosure is given to the scheduler when the join counter reaches zero.2.2.2 The Thread Speci�cation LanguageThe thread speci�cation language, called Threaded-C, was implemented for the PCM systemas an extension to C. In this language a program consists of C functions, written just asin standard C, and threads, which are marked by the speci�er thread. A preprocessorexpands the threads into C functions, while copying the rest of the C code literally. Theresulting C program can then be compiled and linked with the PCM runtime library.Runtime primitives are called by threads to create closures, send arguments, and transferclosures to the scheduler:� make_closure (Thread, arg1, : : :, argn) allocates a closure of size n+2, and returnsa pointer to the closure. The two additional slots are reserved for the code pointer,which is initialized to Thread, and the join counter. Closures can be created withoutspecifying all the arguments, in which case missing arguments are indicated by _".The join counter is implicitly initialized to the number of missing arguments.36

� post (k) hands the closure k over to the scheduler. Only a full closure can be postedinside the thread that created it. Closures created with empty slots will be postedlater by a send_argument when the join counter reaches zero.� send_argument (c, v) sends the 32-bit value v to continuation c and decrements thejoin counter of the target closure. The closure is posted if the join counter becomeszero. Continuations have the type Cont and contain two �elds: a pointer to a closure,and an integer o�set within the closure. A new continuation can be constructed, forexample, using the expression cont{k1, sum:x}, where k1 is a closure pointer andsum:x a symbolic reference to o�set for argument x of a sum thread.An example PCM program to compute the Fibonacci function is shown in Figure 2-3. Asequential �b function makes two recursive calls to �b and then sums the results together.Our parallel version �rst creates a sum closure which will receive two results and add themtogether. It then creates and posts two full fib main closures for the two recursive calls of�b. It gives each of these closures a continuation pointing to a slot in the sum closure wherethe result should be sent.When the PCM preprocessor is run on the �b code, the preprocessor expands each ofthese threads into a C function that takes a single argument, namely a closure structure.The preprocessor inserts code into the function to fetch all of the user's arguments from theclosure before starting execution of the code speci�ed by the user.2.2.3 Executing a PCM ProgramFigure 2.2.3 illustrates the sequence of events when the Fibonacci program runs on a singleprocessor. When there are multiple processors the only di�erence is that full closures maybe migrated to ensure a balanced load across all available processors. These schedulingissues will be discussed in more detail in section 2.3.The execution of a PCM program can be divided into three phases: initialization, com-putation, and termination. The �rst and third phases are usually very short, with thecomputation phase constituting the bulk of the overall execution.During the initialization phase, shown in frame (A) of Figure 2.2.3, the program createstwo closures. One closure speci�es the start of the computation, in this example a readyinstance of fib_main, and the other closure speci�es the actions to be taken when the37

thread sum (Cont parent, int x, int y) fsend argument (parent, x+y);gthread �b main (Cont parent, int n)fif (n<2) send argument (parent, n);elsef closure k1, s1, s2;k1 = make closure (sum, parent, ,);s1 = make closure (�b main, contfk1,sum:xg, n�1);s2 = make closure (�b main, contfk1,sum:yg, n�2);post (s1);post (s2);gg Figure 2-3: A PCM program to compute Fibonaccicomputation ends, in this example a non-ready instance of a special thread called top. Thistop thread is supplied by the runtime system and its responsibilities are to terminate thecomputation and to print the result(s). The top closure can be instructed to expect anynumber of results and must be the last closure to execute.During the computation phase, the scheduler enters a perpetual loop. It pops a fullclosure from the ready queue and then calls the thread function, such as fib_main or sum,speci�ed in the closure with the closure pointer as its only argument. Frames (B) through(H) of Figure 2.2.3 show snapshots of the machine state, one after each closure has executed.For example, in frame (B) the thread fib_main with argument 3 has just terminated. Itcreated three closures: two full ones for fib_main with arguments 2 and 1 respectively, anda closure for sum waiting for two arguments. The full closures were immediately posted.These full closures contain continuations which point to the slot in the sum closure wherethey will send their results. Similarly, the sum closure contains a continuation pointing tothe top closure, which is where its result should be sent.During the termination phase, shown in frame (I), the top thread is run. It will print theresult of the computation and then cause the scheduler to exit the loop, thereby terminatingthe computation. For multiprocessor computations, after the top thread executes on aprocessor, that processor signals the schedulers on other processors to exit their work loops.38

top

Ready Queue

fib
1

fib
3

(A)

top

sum

Ready Queue

fib
1

fib
2

fib
1

fib
1

1
fib
3

(B)

top

sum

Ready Queue

fib
1

fib
2

fib
1

fib
11

(C)

top

sum

Ready Queue

1

sum
fib
1

fib
0

fib

fib
1

fib
2 1

(D)

top

sum

Ready Queue

1

sum
fib
1

fib
0

fib
0

(E)

1

top

sum

Ready Queue

1

sum
fib

0
1

1

(F)

top

sum

Ready Queue

sum

0
1

1
1

(G)

top

sum

Ready Queue

1
1

2

(H)

top
2

(I)

continuation
empty slot

recently
completed thread

fib
1

fork
3

Legend:

Figure 2-4: Snapshots of the state of the PCM system after each thread completion.
39

2.2.4 Tail CallsAs a performance optimization a thread may directly call other threads via the followingruntime primitive:� tail_call (Thread, arg1, : : :, argn) executes the thread Thread without the overheadof creating a closure and calling the scheduler. This function must be called as thelast action of a thread and must be called with no missing arguments.A tail-call represents a more e�cient invocation of a thread, avoiding any of the dynamicexecution overheads incurred otherwise. In the example shown in Figure 2-3, the threadfib_main creates two full closures s1 and s2, packs the arguments into the closures andthen posts both closures before releasing control and returning to the scheduler. Afterreceiving control, the immediate action of the scheduler will be to pop the s2 closure andto call its thread function fib_main, which will unpack the s2 closure prior to doing actualwork. We can avoid this costly detour through the scheduler by rewriting the else clause offib main to use a tail-call as follows:f closure k1, s1;k1 = make closure (sum, parent, ,);s1 = make closure (�b main, contfk1, sum:xg, n�1);post (s1);tail call (�b main, contfk1, sum:yg, n�2);gTo implement this mechanism, the thread preprocessor actually expands a thread intotwo C functions: a general entry version, which is what we described above, and a fastentry version which receives all arguments directly. A tail_call is thus converted into astandard C function call to the fast entry version. The actual performance improvementsobtained with the tail-call mechanism can be quite impressive, especially for �ne-grainedapplications, such as the Fibonacci example, where the performance improved by almosttwenty-�ve percent. The e�ects of using the tail-call mechanism show up in Figure 2-1 asthe register communication between threads.11The name of the tail call primitive was later changed to just call. The primitive tail call was thenrestricted to the case of recursive calls, in which case the preprocessor is able to implement the recursivecall simply by inserting a jump to the beginning of the function.40

2.2.5 Passing Vectors in ClosuresAn additional mechanism provided by the thread language allows vectors to be passed inclosures. One of these vectors may even be of arbitrary length. These vectors are passedby value and can be referenced within a thread like any other local variable. The onevector argument which is allowed to be of arbitrary length needs to be speci�ed as the lastargument, to make sure it is packed into the tail of the closure.thread foo (. . . , type vect1[10], . . . , type vect2[])declares a vector argument vect of type type. It is the responsibility of the creator of theclosure to initialize the vector. For example, the expressionmake_closure (foo, . . . , vect1, . . . , vect2 = [size])creates a closure for foo, dynamically de�ning vect2 to consist of size entries. In addition,vect1 and vect2 will be declared to be pointers initialized to the zeroth word of the cor-responding vector arguments. These pointers must be used subsequently to initialize thevectors, which would otherwise be left empty. If we use _" instead of a vector name whenallocating a closure, then the vector is intentionally left empty, and its size will be addedto the initial join count.2.3 Scheduling PCM Threads on a MultiprocessorThis section introduces a cost model for PCM in order to motivate the work stealing schedul-ing system that we implemented for PCM on the CM-5. The CM-5 is a massively parallelcomputer consisting of 32MHz SPARC processors wired together by a fat-tree intercon-nection network [LAD+92]. All communication mechanisms required to implement thework stealer and the inter-thread communication have been built using a version of ActiveMessages [BB94].As Figure 2-5 illustrates, we equate useful computation with what a sequential programwould have to do and classify everything else, such as communication, synchronization, anddynamic scheduling as additional overhead. The goal of this classi�cation is to study thefactors that determine the e�ciency of a parallel computation with respect to its sequentialcounterpart. 41

 Make
Closure

 reception of
global arguments Post

Closure Schedule
 Closure

Run Thread

actual work
overhead

time

 reception of
local arguments

Figure 2-5: Anatomy of a PCM ThreadTo simplify the analysis, we will ignore any idle time and assume that each processingelement is executing either a thread or one of the overhead tasks depicted in Figure 2-5. Under this assumption we can reduce the analysis to that of an average thread. Thecorresponding e�ciency, �, de�ned as the fraction of the overall execution time actuallyspent executing the useful computation, can then be computedThere are three important ratios needed for the computation, reecting the e�ects oftail-recursions (�1), global send arguments (�2) and closure migration (�3) on the overalle�ciency. �1 equals the fraction of threads not called by the tail-call mechanism, �2 equalsthe fraction of arguments that have to be sent across the interconnection network and �3equals the fraction of closures that migrate from one processing element to another. Rtde�nes the average run length of a PCM thread and k de�nes the threads arity.The overhead in executing a thread can be broken into the following pieces:Make Closure (Mc): At thread creation time, a closure must be allocated and the threadpointer and join-counter must be initialized (Mc � 10 cycles).Local Send Argument (Sl): A Local send argument is fairly cheap and reduces to asimple memory-to-memory transfer plus an additional check to see whether the closurehas become ready for execution (Sl � 10 cycles).Global Send Argument (Sl + Ta): For arguments that must be sent across the network,we have to add an additional overhead factor Ta (� 100 cycles) to the constant costsof Sl to account for the transfer costs on the sending and receiving sides.Post closure (Pc + �3 � Tc): After receiving all of its arguments a closure is posted andbecomes subject to dynamic scheduling (Pc � 10). If migrated to a remote processor,42

additional transfer costs of Tc (� 500 cycles for a closure consisting of eight words)need to be charged in addition to the constant cost Pc.Schedule closure (Sc): The cost for transferring control to the thread at the beginningof its execution and back to the scheduler after its termination is Sc (� 15 cycles).With these de�nitions, we can de�ne the e�ciency of a thread as:� = Rt�1 � (Mc + k � (Sl + �2 � Ta) + (Pc + �3 � Tc) + Sc) +Rt (2.1)With the communication costs Ta and Tc ranging in the hundreds of cycles, it becomesimperative to reduce both �2 and �3 in order to avoid disappointing e�ciencies. �1, onthe other hand, cannot be reduced to arbitrarily small values, thus the only remainingalternative to amortize the non-transfer related overhead is to increase the thread runlength Rt.We can simplify equation (2.1) by assuming a typical value of k = 2 arguments perthread, and by assuming that the tail call optimization is not used (ie. �1 = 1). Wealso make the reasonable assumption that �2 = �3, which just says that the percentage ofsend_arguments which are nonlocal is the same as the percentage of closures which aremigrated. We can then transform equation (2.1) into� = Rt55 + 600�3 +Rt (2.2)This shows that the e�ciency will depend on Rt, the average run length, and on �3, thepercentage of closures migrated. The scheduler can e�ect only �3, so an important job ofthe scheduler is to minimize �3.ImplementationTo achieve minimal values for �3 we have adopted a lazy scheduling policy known as workstealing. In such a system, each processor maintains a local queue of full closures, called theready queue. When a closure becomes full, it is posted to its local ready queue. A processorworks out of its local ready queue for as long as there are closures in it. When a processorruns out of local work, it will send a steal request to a randomly chosen processor. If theprocessor receiving this steal request has any closures in its ready queue, it will migrate one43

of the closures to the requesting processor.In our current implementation, a computation executes locally using a depth-�rst schedul-ing policy. This heuristic, which mimics serial execution order, can be expected to result inlower resource requirements for most computations than a breadth-�rst policy would. Stealrequests, on the other hand, will always be served using a breadth-�rst policy (see Figure 2-1). Such a steal policy can be expected to result in signi�cantly reduced steal frequenciesfor computations. For example, both examples considered in the remainder of this chaptertypically migrated less than one percent of all dynamically created closures. The Cilk-1system, described in Chapter 3 addresses these performance issues more concretely.2.4 Two Case StudiesIn the following section we present two applications implemented with the PCM threadpackage. We use these applications to document the e�ciency of the PCM system. The�rst application is ray tracing. In this application the input is a description of objects andlighting in a scene, and the program must produce a high quality image of that scene asseen from a speci�ed point in three space. The second application is protein folding. In thisapplication a sequence of monomers (i.e. an unfolded protein) is input, and the programcomputes some or all possible foldings of that protein, give certain assumptions aboutwhich foldings are legal. All performance experiments described below were performed onthe CM-5.2.4.1 Ray TracingThe parallel ray tracer presented here is an optimal example to illustrate the virtues of thePCM thread package. First, the task of tracing a complicated picture of reasonable sizerequires enough computation to justify the use of a powerful parallel processor. Second, thevariance in the number of processor cycles required to trace individual rays necessitates theuse of a dynamic load balancing scheme to guarantee acceptable utilizations and to ensurescalability. Third, we can break the ray-tracing computation into threads and obtain threadswith grain-sizes coarse enough to o�set the overhead introduced by a dynamic executionmodel.There are several algorithms that can be used to implement a ray tracer. The simplest44

void Trace()fint x, y;for (y = First Line; y < Last Line; y++)for (x = First Column ; x < Last Column ; x++) fpixel = calculate intersections(x, y);write pixel(x, y, pixel);gg Figure 2-6: Kernel of Sequential Ray Tracerof all ray tracing algorithms intersects a ray with every object surface and displays theobject whose intersection is closest to the position of the observer. This algorithm is knownas exhaustive ray tracing, since it calculates all possible ray-surface intersections. Theray-tracer we used improves upon this basic algorithm. It uses a bounding volume whichrequires relatively simple intersection calculations, such as a sphere, to enclose more complexobjects. If a ray does not pierce the bounding volume then all the objects contained withincan be eliminated from consideration. This reduction substantially reduces the averagecosts of ray surface calculations. This technique is further improved by arranging boundingvolumes into a tree hierarchy. In such a scheme a number of bounding volumes couldthemselves be enclosed within an even larger bounding volume. If a ray does not intersectwith a given bounding volume then all the objects in that volume and in all child volumescan be eliminated.This algorithmic improvement reduces the linear time complexity of exhaustive raytracing to one which is logarithmic in the number of objects. However, this optimizationalso creates a large variation in the time needed to trace a ray, making it di�cult to �nd astatic work distribution that su�ciently balances the available work.Ray Tracer ParallelizationTo show the power of our thread package as a tool to retarget existing sequential pro-grams for parallel processors, we took the serial POV-Ray package[POV93] that implementsthe optimized ray-tracing method described above and rewrote its kernel with our threadlanguage. The serial POV-Ray program is quite large, the C source �les consist of over20,000 lines. Fortunately we did not have to modify, or even understand, much of the code.45

thread Join(Cont parent join, int s1, int s2, int s3, int s4) fsend argument(parent join, SIGNAL);gthread Trace(Cont parent join, int sx, int ex, int sy, int ey) fif((sx == ex) && (sy == ey)) fpixel = calculate intersections(sx, sy);write pixel(sx,sy,pixel);send argument(parent join, SIGNAL);gelse fclosure k1, p1, p2, p3, p4;int xo� = (ex - sx)/2;int yo� = (ey - sy)/2;k1 = make closure(Join, parent join, , , ,);p1 = make closure(Trace, contfk1,Join:s1g, sx, (sx + xo�), sy, (sy + yo�);p2 = make closure(Trace, contfk1,Join:s2g, sx, (sx + xo�), (sy + yo� +1), ey);p3 = make closure(Trace, contfk1,Join:s3g, (sx + xo� + 1), ex, sy, (sy + yo�);p4 = make closure(Trace, contfk1,Join:s4g, (sx + xo� + 1), ex, (sy + yo� +1), ey);post(p1); post(p2); post(p3); post(p4);ggFigure 2-7: This shows the kernel of the PCM ray tracing code. For simplicity this codeassumes that the picture is of size 2n by 2n. The actual code does not assume this and isonly slightly more complex.
A simpli�ed version of the original sequential kernel can be seen in Figure 2-6. This functionjust walks through all the pixels and calls calculate intersection on each of them todetermine the value of that pixel. This function is the portion of the code that we rewroteusing PCM.The threaded version of this procedure, which is shown in Figure 2-7, computes the valueof a pixel using the exact same function, calculate intersection, that the sequentialversion used. The Trace thread traces a sub-window of the original picture, as speci�edby the four coordinates in the argument list. The Trace thread accomplishes this task byrecursively splitting its sub-window into smaller sub-windows until the size of the newlycreated windows reaches the size of a single pixel, at which point it calls the sequentialcalculate intersection function to calculate the value of that pixel.46

Figure 2-8: The picture on the left shows the ray traced image used in our experiments.The histogram on the right shows how much computation was needed for each section ofthe picture. Brighter points represent higher workloads, darker points represent lighterworkloads.Ray Tracer ResultsTo test our multithreaded implementation, we traced pictures of di�erent complexities onvarious machine sizes. We adjusted the picture size so that enough parallelism would begenerated to justify the use of the largest machine con�guration used during our test runs.We �rst compared the uniprocessor timings of the multithreaded code with those ofthe original sequential code, both running on the same CM-5 processing node. The resultsshowed no measurable di�erence between the sequential and the multithreaded timings. Tosee why there was little di�erence, we need to look at the thread granularity. To trace thepicture shown in Figure 2-8 with a resolution of 512�512 pixels, around 300,000 threadsare created over the running time of about 1590 seconds, resulting in an average runningtime per thread of about 3 milliseconds (� 100,000 Sparc cycles). Compared to this longthread run length, the average per-thread overhead is negligible.As pointed out at the beginning of this section, the time required to trace an individualray can vary signi�cantly. To show this uneven work requirement, we calculated a workhistogram for our example. The left part of Figure 2-8 shows the traced picture and theright part of the �gure shows the work histogram. The work histogram shows how certain47

static load distribution dynamic load distributionnodes min time max time traced time max traced min traced impr.1 1590 sec. 262144 rays 1590 sec. 262144 rays2 602 sec. 988 sec. 131072 rays 795 sec. 135312 rays 126832 rays 20 %4 236 sec. 523 sec. 65536 rays 396 sec. 79073 rays 48867 rays 24 %8 101 sec. 257 sec. 32768 rays 189 sec. 45175 rays 21464 rays 26 %16 46 sec. 128 sec. 16384 rays 90 sec. 22616 rays 10711 rays 30 %32 23 sec. 70 sec. 8192 rays 46 sec. 12543 rays 5859 rays 34 %64 10 sec. 36 sec. 4096 rays 23 sec. 7210 rays 2595 rays 36 %Table 2.1: This shows execution times for the static and PCM versions of the ray tracer.For the static version the rays are evenly distributed so we show the distribution of work,while for the PCM version the work is evenly distributed so we show the distribution ofrays.areas of the picture, such as the eye, contain much more work that other areas, such as thesky. To show how this uneven work distribution can a�ect execution time, we comparedthe speedup behavior of our multithreaded ray tracer with that of an implementation usinga static load balancing scheme. This comparison is shown in the �rst four columns ofTable 2.1. The static algorithm employs a simple work distribution that assigns exactly thesame number of rays to each node. For the static case we listed two timings: the executiontime of the fastest processor and the execution time of the slowest processor. We can seethat even with just two nodes, the slower processor requires 64% more compute cycles thanthe faster processor. Even worse, this gap widens as we increase the number of processors.When run on 64 nodes, the slowest processor takes 3.6 times as long as the fastest processor.The multithreaded ray tracer, on the other hand, distributes the points such that eachprocessor performs almost the same amount of computation. Not only does the PCMcode perform better for all machine con�gurations than the static solution, it even achievesperfect linear speedup. The improvement over the static program is shown in the lastcolumn of the table. The improvement is measured as 1-(PCM time/static time). On 64processors the PCM program executes in only 64% of the time that the statically distributedprogram takes. We measured the range of the number of pixels traced per processor whenrun under PCM, and we have included this data in Table 2.1. These numbers reect thee�ect of the dynamic load balancer. As expected, the di�erence between the maximum andminimum number of pixels traced per node was signi�cant, and the percentage di�erenceincreases as we move to larger machine con�gurations.48

2.4.2 Protein FoldingA second application that we implemented was protein folding. The reasons for choosingthis application were similar to the reasons for choosing ray-tracing. The �rst is that theproblems are large enough to warrant the use of parallelism. A common problem size takesover six hours when run sequentially, and we wanted to run a series of problems. The secondreason is that initial attempts to parallelize the program did not make e�cient use of themachine. These attempts statically broke the computation into subcomputations; but thesubcomputations were too coarse, and their run times too variable, to keep all processorsbusy. An implementation using PCM avoids this problem.The work on this problem was done in conjunction with Pande, Yu, Grosberg, andTanaka of the Center for Material Sciences and Engineering at MIT. In their work[PYGT94]Pande, Yu, Grosberg, and Tanaka use the lattice model [SG90] to model protein folding.In this model a protein is described as a chain of monomers, and it is assumed that in afolded protein each monomer will sit on a point on a 3-dimensional lattice. Each possiblefolding of the polymer can then be described as some path along the set of lattice points.Figure 2-9 shows a polymer of length 26, with each shade representing a di�erent type ofmonomer. The model assumes the polymer will take on the most compact possible paths,so it is only concerned with paths that completely �ll some cube. In a folded polymer, apair of monomers will exert some attractive or repulsive force on one another. This forcedepends on the types of the two monomers, and their distance. The energy of a foldedpolymer can be modeled as the sum of the forces between all pairs of monomers, or betweenall neighboring monomers. Of course, this energy value depends greatly on the way in whichthe polymer is folded. A typical computation consists of considering all possible foldingsof a given polymer and computing a histogram of the energy values. We implemented thisalgorithm in PCM based on the problem description given to us by Pande.For the rest of this section we will be concerned mainly with the implementationof this problem using PCM, focusing on the routine that enumerates all possible paths.More details on the algorithms used and the results obtained with this program are givenin [PJGT94]. At its heart, this program is a search program that �nds all possible uniquepaths that visit each node of the cube exactly once. This algorithm works by incremen-tally building up paths through the cube until complete paths are reached. The function49

Figure 2-9: A Folded PolymerCount Entries performs the core of the search. An outline of the sequential code for thisfunction is given in Figure 2-10.The �rst argument to this function is a STATE structure. This structure de�nes thepartial path that has been constructed so far. The contents of this structure depend onthe particular calculation being performed, but it typically contains information describingwhich points are occupied, the type of monomer at each occupied point, and other dataused to increase the e�ciency of the search. The size of the STATE structure is typicallyon the order of 100 bytes. The second argument to the function is point, the lattice point tobe added to the partial path. This function returns an integer, namely the number of pathsfound. The function �rst adds point to the partial path. If this completes the path, thefunction performs some calculation, typically updating a result histogram with the energyvalue of this new path, and then returns. Otherwise it calls itself recursively for each emptyneighbor of point. At the end it sums up the number of complete paths found, and returnsthis total. We start the search by calling Count Entries repeatedly on a set of startingpaths. These starting paths are precomputed and are chosen to prevent the considerationof paths related by symmetry. Typically we run the program on several polymers at a time.Each time we �nd a complete path we calculate several energy values, one for each inputpolymer. This amortizes the time spent searching over several polymers. We improved50

int Count Entries(struct STATE *orig st, int point) fstruct STATE st struct; /**local copy of state **/struct STATE *state = &st struct;memcpy(state,orig st,STATE SIZE);add point to path(point,state); /** add point to path **//** If we found a complete path update the result histogram **//** and return 1 (the number of paths found.) **/if (complete path(state))fupdate result(state);return 1 ;g/** Otherwise call Count Entries recursively on each neighbor **/sum = 0;for(i=0;i<num neighbors;i++)fnext neighbor=neighbor[i];if (not occupied(next neighbor,state))fsum += count entries(state, next neighbor);ggreturn sum;g Figure 2-10: Kernel of Sequential Protein FoldingPande's original algorithm by adding checks which prevent the search from consideringcertain paths which cannot lead to a complete path. These changes, which are describedin Appendix A, provided a performance improvement of 1 to 2 orders of magnitude on theproblem sizes we have run.The number of walks on a lattice increases exponentially with the size of the lattice,so signi�cant speedups were needed in order to gain the necessary computational speed tocalculate the number of walks on sublattices larger than 3 � 3 � 3. An earlier attempt toparallelize this algorithm was made without using PCM. In this code each starting path wasstatically assigned to a node. Each node then executed the sequential code for its subset ofthe starting paths. The number of complete paths reachable from di�erent starting pathscan di�er by many orders of magnitude. Therefore the work was not evenly divided betweenthe nodes, and the speedups obtained by this program were disappointing.51

thread Count Entries(cont parent; int point, char st vec[STATE SIZE,) fstruct STATE *state = (struct STATE *) st vec;add point to path(point,state);if (complete path(state))fupdate result histogram(state);send argument(parent, 1);return;g/** Determine number of neighbor nodes to be visited **/num ntv = f(state,point); /** num ntv = num of neighbors to visit **//** nbrs to visit[i] = 'i'th neighbor to visit **//** Case 0: If no paths to search, then return 0 (no paths found) **/if (num ntv==0) send argument(parent, 0);/** Case 1: If exactly 1 neighbor to visit { only try that one **/else if (num ntv==1)tail call(Count Entries,parent,nbrs to visit[0],*state);elsef /** General case { n neighbors to try [n>1] **//** create a closure to sum results of all sub-computations **//** post num ntv-1 threads and perform a tail call for the last **/sum closure = make closure(sum,parent,num ntv, =[num ntv]);for(i=0;i<(num ntv-1);i++)fnext neighbor=nbrs to visit[i];k1 = make closure(Count Entries,contfsum closure,sum:val[i]g,next neighbor, new st=[STATE SIZE]);memcpy(new st,st,STATE SIZE);post(k1);g/**Perform a tail call for �nal neighbor **/new parent = contfsum closure,sum:val[num ntv-1]g;tail call(Count Entries,new parent,next neighbor+1,*state);gg Figure 2-11: Kernel of Parallel Protein Folding
52

Protein Folding ParallelizationTo get a more e�cient parallelization, the computation needed to be broken into �ner grains.PCM was ideal for this task. The procedure that makes use of the PCM primitives is theCount Entries procedure. A skeleton of the code for this procedure is given in Figure 2-11.The major di�erence between the PCM code and the serial code is that rather than makingrecursive calls to Count Entries the code instead creates and posts closure to execute thecalls of Count Entries. In addition, a sum closure is created which will receive the resultsof all the child threads and sum the results together. The unusual syntax in the call tomake closure (i.e., \ = [num ntv]") signi�es that a speci�ed number of empty slots (herenum ntv) should be left in the closure. These slots will be �lled in later with the results ofthe subcomputations. Most of the recursive calls are made by making and posting closures.There are also other di�erences between the serial and parallel codes. Most of thesedi�erences were introduced for performance reasons, however, rather than correctness rea-sons. The �rst di�erence is that this version determines in advance the number of neighborsthat will be visited. If there is just one neighbor that needs to be visited, then exactly onerecursive call needs to be made. We do this by making use of a tail-call. In this instancethe tail-call eliminates two overheads: �rst, the posting and scheduling of the closure, andsecond, the copying of the state argument into the new closure. Also, when more than onerecursive call is needed, the �nal call makes use of a tail-call for the same reasons as givenabove.When this code was �rst written the tail call primitive did not exist. Originally wewrote the code where all the recursive calls to Count Entries were implemented by creatingand posting closures. Then we modi�ed the code by hand to use the C goto statement toimplement the �nal recursive call to Count Entries. This improved the e�ciency of thecode by reducing the number of closures that had to be initialized, scheduled, and executed.Adding the goto's by hand was fairly straightforward, but it made the code ugly and harderto read. In order to get these performance improvements without the user programmingwith goto's directly, we introduced the tail call primitive into the PCM language. Alsonotice that the state structure is passed around by treating it as an array. Passing structuresin this way is somewhat cumbersome, so the language was later modi�ed to allow structuresto be passed to threads. 53

Number of 3� 3� 3 4� 3� 3processors for (20 polymers) (1 polymer)serial 43.54 sec. 21334 sec.1 46.14 sec. 22704 sec.2 23.07 sec. 11302 sec.4 11.55 sec. 5639 sec.8 5.79 sec. 2818 sec.16 3.00 sec. 1411 sec.32 1.47 sec. 705 sec.64 0.76 sec. 386 sec.128 177 sec.Table 2.2: This table gives execution times for the protein folding codeProtein Folding ResultsMany variations of this program have been run on a range of problem and machine sizes.Results for two problem sizes are shown in Table 2.2. The second column shows the runtimes for runs on a 3� 3� 3 cube which has 103,346 paths. This experiment was run witha typical input size of 20 polymers, which means that for each complete path found, energycalculations are performed for 20 polymers. The next column shows runs on a 4 � 3 � 3cube, which has over 84 million paths. For this run just one input polymer was speci�ed.In each column the run time for the sequential code is given, followed by the run times forvarious parallel machine sizes.The �rst observation is that the overhead added by the PCM model is fairly small. Wemeasured the e�ciency of the program by dividing the runtime of the serial program bythe runtime of the parallel program when run on one processor. The e�ciencies for boththese runs were 94%. The overheads for this program, although still fairly small at only 6%,are larger than for the ray-tracer example because the length of the threads in the proteinfolding code are much shorter than in the ray-tracer.The second observation is that the speedups for both these problems are quite good.We de�ne speedup as the runtime of the parallel program on one processor divided bythe speedup of the parallel program run on n processors. The smaller problem achievesspeedups of 61 on 64 processors, while the larger problem achieves linear speedups up to128 processors (the largest machine on which we ran the code).54

With this program we were able to enumerate all of the 134,131,827,475 paths on a4� 4� 3 lattice. This computation was performed in several pieces on di�erent partitionsof various sizes, taking, in total, the equivalent of 128 hours on a 64-node CM-5.2.5 ConclusionsThe performance of any parallel program must scale over the performance of the bestsequential program to be truly practical. Because of the high costs of dynamic schedulingand network communication in current message-passing architectures, this goal becomes aserious challenge when programming applications with unstructured parallelism.As the outcome of experimenting with PCM, we identi�ed two scheduling policies ofgeneral use which increase the e�ciency of parallel applications run under a dynamic exe-cution model. First, a work stealing scheduling policy enables almost-all-local computation,resulting in linear and near-linear speedups of the ray-tracing and protein-folding examples.Second, the tail-call mechanism gives the programmer the exibility to glue short threadsinto longer ones. Tail-calls are especially important for very �ne grained computation, suchas the Fibonacci example. The parallel continuation-passing model presented in this chapterincorporates these two mechanisms.The PCM model can either serve as a compilation target for a higher level language, orit can be used directly in conjunction with a sequential language, such as C. In the lattercase it comes as a simple extension, providing the essential structures needed to synchronizecomputational threads and to optimize scheduling decisions. Although it could be arguedthat PCM is di�cult to program because of its explicit continuation-passing style, we foundit often the case that a program just has a small kernel that needs to be parallelized, leavingthe rest of the program in its original sequential form.Although PCM was successfully used for parallelizing several applications, we discoveredthat there were still many ways to improve this system. In particular, more work was neededon making the system easier to program. In addition to having to program in continuation-passing style, a programmer had to construct runtime system primitives, such as closuresand continuations. These details should really have been hidden from the programmer. Asecond area that needed to be explored further was global data structures. PCM providesno support for global structures, yet many parallel applications need to make use of them.55

Support for such structures was needed in order to increase the range of programs whichcould be written. Lastly, we needed to gain a better understanding of the work-stealingscheduler. Both of the examples presented in this chapter achieved nearly linear speedups.We wanted to know if all similar applications would also achieve these results, or if we justgot lucky. Clearly not all programs could be executed with linear speedup. We also wantedto understand what properties a program must have in order to achieve linear speedups.All of these areas are addressed in future chapters.

56

Chapter 3
Cilk1: A Provably Good RuntimeSystem
In the previous chapter we described the PCM system for multithreaded programming.With the PCM system a programmer writes his multithreaded program in a continuation-passing style by de�ning a group of threads and specifying how they communicate. Thesystem then takes care of all the details of executing the program on the underlying parallelhardware. The system encapsulates the user's threads into closures so that they can befreely migrated between nodes. A work stealing scheduler is used to schedule the executionof the threads and to balance the work load amongst the processors. For the applications weimplemented this system executes our code with little overhead and achieves good speedups.Although the scheduler in PCM seems to perform well in practice, as with other runtimesystems [ABLL91, CRRH93, CGH94, CAL+89, CD88, CSS+91, FLA94, Hal85, HWW93,JP92, Kal90, KC93, KHM89, Nik93, Nik94, RSL93, TBK93, VR88], the PCM system doesnot provide users with any guarantees of application performance. When a user writes aprogram, there is no way for him to know for sure what the performance of the code willbe. If his code performs poorly, the user has no way of knowing why it performed that way,or even if the poor performance is due to the program itself or due to the runtime system.To address this problem we incorporated a provably good scheduler into the PCM systemand renamed the system Cilk-1. We also added additional structure to the language, andThe work described in this chapter was previously reported on in a paper [BJK+95] by Robert Blumofe,Bradley Kuszmaul, Charles Leiserson, Keith Randall, Yuli Zhou, and myself.57

cleaned up the language a bit. With these changes Cilk-1's work-stealing scheduler achievesspace, time, and communication bounds all within a constant factor of optimal. Moreover,the system gives the user an algorithmic model of application performance based on themeasures of \work" and \critical path." This chapter describes the Cilk-1 system anddemonstrates the e�ciency of the Cilk-1 scheduler both empirically and analytically.This chapter represents joint work by several people. The system described in thischapter was designed and implemented by the Cilk-1 team which was led by Prof. CharlesLeiserson, and consisted of Robert Blumofe, Bradley Kuszmaul, Keith Randall, Yuli Zhou,and myself. Much of the theoretical work reported in Section 3.6 is based on work byCharles Leiserson and Robert Blumofe.3.1 Cilk-1 OverviewA Cilk multithreaded computation can be viewed as a directed acyclic graph (dag) thatunfolds dynamically, as is shown schematically in Figure 3-1. Unlike PCM, in which therewere no constraints on the dag, Cilk views the dag as having some structure. A Cilk programconsists of a collection of Cilk procedures, each of which is broken into a sequence of threads,which form the vertices of the dag. Each thread is a nonblocking C function, which meansthat once it has been invoked it can run to completion without waiting or suspending. As oneof the threads from a Cilk procedure runs, it can spawn a child thread which begins a newchild procedure. In the �gure, downward edges connect threads and their procedures withthe children they have spawned. A spawn is like a subroutine call, except that the callingthread may execute concurrently with its child, possibly spawning additional children. Sincethreads cannot block in the Cilk model, a thread cannot spawn children and then wait forvalues to be returned. Rather, the thread must additionally spawn a successor thread toreceive the children's return values when they are produced. A thread and its successorsare considered to be parts of the same Cilk procedure. In the �gure, sequences of successorthreads that form Cilk procedures are connected by horizontal edges. Return values, andother values sent from one thread to another, induce data dependencies among the threads,where a thread receiving a value cannot begin until another thread sends the value. Datadependencies are shown as upward, curved edges in the �gure. Thus, a Cilk computationunfolds as a spawn tree composed of procedures and the spawn edges that connect them to58

level 0

level 1

level 2

level 3Figure 3-1: The Cilk model of multithreaded computation. Threads are shown as circles,which are grouped into procedures. Each downward edge corresponds to a spawn of achild, each horizontal edge corresponds to a spawn of a successor, and each upward, curvededge corresponds to a data dependency. The numbers in the �gure indicate the levels ofprocedures in the spawn tree.their children, but the execution is constrained to follow the precedence relation determinedby the dag of threads.The execution time of any Cilk-1 program on a parallel computer with P processors isconstrained by two parameters of the computation: the work and the critical path. Thework, denoted T1, is the time used by a one-processor execution of the program, whichcorresponds to the sum of the execution times of all the threads. The critical path length,denoted T1, is the total amount of time required by an in�nite-processor execution, whichcorresponds to the largest sum of thread execution times along any path. With P processors,the execution time cannot be less than T1=P or less than T1. The Cilk-1 scheduler uses\work stealing" [BL94, BS81, FMM94, FM87, FLA94, Hal85, KZ93, KHM89, Kus94, Nik94,VR88] to achieve execution time very near to the sum of these two measures. O�-linetechniques for computing such e�cient schedules have been known for a long time [Bre74,Gra66, Gra69], but this e�ciency has been di�cult to achieve on-line in a distributedenvironment while simultaneously using small amounts of space and communication.In this chapter we demonstrate the e�ciency of the Cilk-1 scheduler both empiricallyand analytically. Empirically, we have been able to document that Cilk-1 works well fordynamic, asynchronous, tree-like, MIMD-style computations. To date, the applicationswe have programmed include protein folding, graphic rendering, backtrack search, andthe ?Socrates chess program, which won second prize in the 1995 World Computer Chess59

Championship. Many of these applications pose problems for more traditional parallelenvironments, such as message passing [Sun90] and data parallel [Ble92, HS86], becauseof the unpredictability of the dynamic workloads on processors. Analytically, we provethat for \fully strict" (well-structured) programs, Cilk-1's work-stealing scheduler achievesexecution space, time, and communication bounds all within a constant factor of optimal.The Cilk-1 language is an extension to C that provides an abstraction of threads inexplicit continuation-passing style. A Cilk-1 program is preprocessed to C and then linkedwith a runtime library to run on the Connection Machine CM-5 MPP, the Intel ParagonMPP, or the Silicon Graphics Power Challenge SMP. In addition, Blumofe has designed afault tolerant version of Cilk, called Cilk-NOW[Blu95, BP94], which runs on a network ofworkstations. In this chapter, we focus on the Connection Machine CM-5 implementationof Cilk-1. The Cilk-1 scheduler on the CM-5 is written in about 40 pages of C, and itperforms communication among processors using the Strata [BB94] active-message library.The remainder of this chapter is organized as follows. Section 3.2 describes Cilk-1'sruntime data structures and the C language extensions that are used for programming.Section 3.3 describes the work-stealing scheduler. Section 3.4 documents the performanceof several Cilk-1 applications. Section 3.5 shows how the work and critical path of a Cilk-1computation can be used to model performance. Section 3.6 shows analytically that thescheduler works well. Finally, Section 3.7 o�ers some concluding remarks and describes ourplans for the future.3.2 Cilk Programming Environment and ImplementationIn this section we describe the C-language extensions that we have developed to ease thetask of coding Cilk-1 programs. We also explain the basic runtime data structures that Cilk-1 uses. The Cilk-1 language extensions are basically a cleaned-up version of the extensionsin PCM. They hide more of the implementation details than the original PCM did, andthey also allow the programmer to place more structure on the dag so that the threadsof the computation can be treated as a being grouped into procedures, as was shown inFigure 3-1.In the Cilk-1 language, a thread T is de�ned in a manner similar to a C functionde�nition: 60

x:1

42

0

T2

x:

y:

1

T1

17

6

join
counters

waiting closure

ready closure

arguments

code

Figure 3-2: The closure data structure.thread T (arg-decls ...) f stmts ...gThe Cilk-1 preprocessor translates T into a C function of one argument and void returntype. The one argument is a pointer to a closure data structure, illustrated in Figure 3-2,which holds the arguments for T. A closure includes a pointer to the C function for T, a slotfor each of the speci�ed arguments, and a join counter indicating the number of missingarguments that need to be supplied before T is ready to run. A closure is ready if it hasobtained all of its arguments, and it is waiting if some arguments are missing. To run aready closure, the Cilk-1 scheduler invokes the thread as a procedure using the closure itselfas its sole argument. Within the code for the thread, the arguments are copied out of theclosure data structure into local variables. The closure is allocated from a simple runtimeheap when it is created, and it is returned to the heap when the thread terminates.The Cilk-1 language supports a data type called a continuation, which is speci�ed by thetype modi�er keyword cont. A continuation is essentially a global reference to an emptyargument slot of a closure, implemented as a compound data structure containing a pointerto a closure and an o�set that designates one of the closure's argument slots. Continuationscan be created and passed among threads, which enables threads to communicate andsynchronize with each other. Continuations are typed with the C data type of the slot inthe closure.At runtime, a thread can spawn a child thread by creating a closure for the child.61

Spawning is speci�ed in the Cilk-1 language as follows:spawn T (args ...)This statement creates a child closure, �lls in all available arguments, and initializes the joincounter to the number of missing arguments. Available arguments are speci�ed as in C.To specify a missing argument, the user speci�es a continuation variable (of type cont)preceded by a question mark. For example, if the second argument of a spawned threadis ?k, then Cilk-1 sets the variable k to a continuation that refers to the second argumentslot of the created closure. If the closure is ready, that is, it has no missing arguments,then spawn causes the closure to be immediately posted to the scheduler for execution. Intypical applications, child closures are spawned with no missing arguments.To create a successor thread, a thread executes the following statement:spawn next T (args ...)This statement is semantically identical to spawn, but it informs the scheduler that thenew closure should be treated as a successor, as opposed to a child. Successor closures areusually created with some missing arguments, which are �lled in by values produced by thechildren.A Cilk-1 procedure does not ever return values in the normal way to a parent procedure.Instead, the programmer must code the parent procedure as two threads. The �rst threadspawns the child procedure, passing it a continuation pointing to the successor thread'sclosure. The child sends its \return" value explicitly as an argument to the waiting successor.This strategy of communicating between threads is called explicit continuation passing.Cilk-1 provides primitives of the following form to send values from one closure to another:send argument (k, value)This statement sends the value value to the argument slot of a waiting closure speci�ed bythe continuation k. The types of the continuation and the value must be compatible. Thejoin counter of the waiting closure is decremented, and if it becomes zero, then the closureis ready and is posted to the scheduler.Figure 3-3 shows the familiar recursive Fibonacci procedure written in Cilk-1. It consistsof two threads, fib and its successor sum. Reecting the explicit continuation-passing style62

thread fib (cont int k, int n)f if (n<2)send argument (k, n)elsef cont int x, y;spawn next sum (k, ?x, ?y);spawn fib (x, n-1);spawn fib (y, n-2);ggthread sum (cont int k, int x, int y)f send argument (k, x+y);gFigure 3-3: A Cilk-1 procedure, consisting of two threads, to compute the nth Fibonaccinumber.that Cilk-1 supports, the �rst argument to each thread is the continuation specifying wherethe \return" value should be placed.When the fib function is invoked, it �rst checks to see if the boundary case has beenreached, in which case it uses send argument to \return" the value of n to the slot speci�edby continuation k. Otherwise, it spawns the successor thread sum, as well as two childrento compute the two subcases. Each of these two children is given a continuation specifyingto which argument in the sum thread it should send its result. The sum thread simplyadds the two arguments when they arrive and sends this result to the slot designated bycontinuation k.This code is similar to the PCM code for Fibonacci. The main di�erence is that theCilk-1 version is written at a slightly higher level since the Cilk-1 system has abstractedaway all the details about how threads are implemented. In the PCM version the user hadto deal directly with the closures that the runtime system uses to represent threads.Although writing in explicit continuation-passing style is somewhat onerous for theprogrammer, the decision to break procedures into separate nonblocking threads simpli�esthe Cilk-1 runtime system. Each Cilk-1 thread leaves the C runtime stack empty when itcompletes. Thus, Cilk-1 can run on top of a vanilla C runtime system. A common alternative[Hal85, KC93, MKH91, Nik94] is to support a programming style in which a thread suspendswhenever it discovers that required values have not yet been computed, resuming when thevalues become available. When a thread suspends, however, it may leave temporary values63

on the runtime stack which must be saved, or each thread must have its own runtime stack.Consequently, this alternative strategy requires changes to the runtime system that dependon the C calling stack layout and register usage conventions. Another advantage of Cilk-1'sstrategy is that it allows multiple children to be spawned from a single nonblocking thread,which saves on context switching. In Cilk-1, r children can be spawned and executedwith only r + 1 context switches, whereas the alternative of suspending whenever a threadis spawned causes 2r context switches. Since our primary interest is in understandinghow to build e�cient multithreaded runtime systems, but without redesigning the basic Cruntime system, we chose the alternative of burdening the programmer with a requirementwhich is perhaps less elegant linguistically, but which yields a simple and portable runtimeimplementation.Cilk-1 supports a variety of features that give the programmer greater control overruntime performance. For example, when the last action of a thread is to spawn a readythread, the programmer can use the keyword call instead of spawn. Using call producesa \tail call" which runs the new thread immediately without invoking the scheduler. Cilk-1also allows arrays and subarrays to be passed (by value) as arguments to closures. Otherfeatures include various abilities to override the scheduler's decisions, including on whichprocessor a thread should be placed and how to pack and unpack data when a closure ismigrated from one processor to another.Cilk-1 can also automatically compute the critical path length and total work of acomputation. As we will see later, these values are useful to a programmer trying tounderstand the performance of his program. The computation of the critical path is doneby a system of time-stamping, as shown in Figure 3-4.3.3 Cilk's Work-Stealing SchedulerCilk's scheduler uses the technique of work-stealing [BL94, BS81, FMM94, FM87, FLA94,Hal85, KZ93, KHM89, Kus94, Nik94, VR88] in which a processor (the thief) who runs outof work selects another processor (the victim) from whom to steal work, and then steals theshallowest ready thread in the victim's spawn tree. Cilk's strategy for selecting the victimprocessor is to have the thief choose the victim at random [BL94, KZ93, RSAU91].At runtime, each processor maintains a local ready queue to hold ready closures. Each64

(d2; t2)(d1; t1)
(d1 � d2;max(t1; t2) + ��)��

Figure 3-4: The time at which an instruction in a dataow graph is executed in a perfectin�nite-processor schedule can be computed by time-stamping the tokens. In addition tothe normal data-value of a token (d1, d2, and d1 � d2 respectively in the �gure), the tokenincludes a time-stamp (t1, t2, and max(t1; t2) + �� respectively.) The time-stamp on theoutgoing token is computed as a function of the time-stamps of the incoming tokens andthe time to execute the instruction.closure has an associated level, which corresponds to the number of spawn's (but notspawn next's) on the path from the root of the spawn tree. The ready queue is an ar-ray in which the Lth element contains a linked list of all ready closures having level L.Cilk begins executing the user program by initializing all ready queues to be empty,placing the root thread into the level-0 list of Processor 0's queue, and then starting ascheduling loop on each processor. Within a scheduling loop, a processor �rst checks to seewhether its ready queue is empty. If it is, the processor commences \work stealing," whichwill be described shortly. Otherwise, the processor performs the following steps:1. Remove the thread at the head of the list of the deepest nonempty level in the readyqueue.2. Extract the thread from the closure, and invoke it.As a thread executes, it may spawn or send arguments to other threads. When the threadterminates, control returns to the scheduling loop.When a thread at level L spawns a child thread T , the scheduler executes the followingoperations:1. Allocate and initialize a closure for T.2. Copy the available arguments into the closure, initialize any continuations to point tomissing arguments, and initialize the join counter to the number of missing arguments.65

3. Label the closure with level L+ 1.4. If there are no missing arguments, post the closure to the ready queue by inserting itat the head of the level-(L+ 1) list.Execution of spawn next is similar, except that the closure is labeled with level L and, if itis ready, posted to the level-L list.A processor that executes send argument(k, value) performs the following steps:1. Find the closure and argument slot referenced by the continuation k.2. Place value in the argument slot, and decrement the join counter of the closure.3. If the join counter goes to zero, post the closure to the ready queue at the appropriatelevel.When the continuation k refers to a closure on a remote processor, network communicationensues. The processor that initiated the send argument function sends a message to theremote processor to perform the operations. The only subtlety occurs in step 3. If theclosure must be posted, it is posted to the ready queue of the initiating processor, ratherthan to that of the remote processor. This policy is necessary for the scheduler to beprovably good; so migrating a closure for this reason is called a provably good steal. As apractical matter, we have also had success with posting the closure to the remote processor'squeue, which can sometimes save a few percent in overhead.If the scheduler attempts to remove a thread from an empty ready queue, the processorbecomes a thief and commences work stealing as follows:1. Select a victim processor uniformly at random.2. If the victim's ready queue is empty, go to step 1.3. If the victim's ready queue is nonempty, extract a thread from the head of the list inthe shallowest nonempty level of the ready queue, and invoke it.Work stealing is implemented with a simple request-reply communication protocol betweenthe thief and victim.Why steal work from the shallowest level of the ready queue? The reason is two-fold. First, we would like to steal large amounts of work, and shallow closures are likelyto execute for longer than deep ones. Stealing large amounts of work tends to lower thecommunication cost of the program, because fewer steals are necessary. Second, the closuresat the shallowest level of the ready queue are also the ones that are shallowest in the dag, a66

key fact used in Section 3.6. Consequently, if processors are idle, the work they steal tendsto make progress along the critical path.3.4 Performance of Cilk-1 ApplicationsThis section presents several applications that we have used to benchmark the Cilk-1 sched-uler. We also present empirical evidence from experiments run on a CM-5 to document thee�ciency of our work-stealing scheduler. The CM-5 is a massively parallel computer basedon 32MHz SPARC processors with a fat-tree interconnection network [LAD+92].The applications are described below:� fib(n) is the same as was presented in Section 3.2, except that the second recursivespawn is replaced by a \tail call" that avoids the scheduler. This program is a goodmeasure of Cilk-1 overhead, because the thread length is so small.� queens(N) is a backtrack search program that solves the problem of placing N queenson a N �N chessboard so that no two queens attack each other. The Cilk-1 programis based on serial code by R. Sargent of the MIT Media Laboratory. Thread lengthwas enhanced by serializing the bottom 7 levels of the search tree.� pfold(x,y,z) is a protein-folding program [PJGT94] written in conjunction with V.Pande of MIT's Center for Material Sciences and Engineering. This program wasdescribed in more detail in Section 2.4. This program �nds hamiltonian paths in athree-dimensional grid of size x � y � z. It was the �rst program to enumerate allhamiltonian paths in a 3� 4� 4 grid. For this benchmark we timed the enumerationof all paths starting with a certain sequence.� ray(x,y) is a parallel program for graphics rendering based on the serial POV-Rayprogram, which uses a ray-tracing algorithm. This program was described in Sec-tion 2.4. The core of POV-Ray is a simple doubly nested loop that iterates over eachpixel in a two-dimensional image of size (x; y). For ray we converted the nested loopsinto a 4-ary divide-and-conquer control structure using spawns.1 Our measurementsdo not include the approximately 2.4 seconds of startup time required to read and1Initially, the serial POV-Ray program was about 5 percent slower than the Cilk-1 version running onone processor. The reason was that the divide-and-conquer decomposition performed by the Cilk-1 codeprovides better locality than the doubly nested loop of the serial code. Modifying the serial code to imitatethe Cilk-1 decomposition improved its performance. Timings for the improved version are given in the table.67

fib queens pfold ray knary knary ?Socrates ?Socrates(33) (15) (3,3,4) (500,500) (10,5,2) (10,4,1) (10) (10)32 proc. 256 proc.(application parameters)Tserial 8.487 252.1 615.15 729.2 288.6 40.993 1665 1665T1 73.16 254.6 647.8 732.5 314.6 45.43 3644 7023Tserial=T1 0.116 0.9902 0.9496 0.9955 0.9174 0.9023 0.4569 0.2371T1 0.000326 0.0345 0.04354 0.0415 4.458 0.255 3.134 3.24T1=T1 224417 7380 14879 17650 70.56 178.2 1163 2168threads 17,108,660 210,740 9,515,098 424,475 5,859,374 873,812 26,151,774 51,685,823thread length 4.276�s 1208�s 68.08�s 1726�s 53.69�s 51.99�s 139.3�s 135.9�s(32-processor experiments)TP 2.298 8.012 20.26 21.68 15.13 1.633 126.1 -T1=P + T1 2.287 7.991 20.29 22.93 14.28 1.675 117.0 -T1=TP 31.84 31.78 31.97 33.79 20.78 27.81 28.90 -T1=(P � TP) 0.9951 0.9930 0.9992 1.0558 0.6495 0.8692 0.9030 -space/proc. 70 95 47 39 41 42 386 -requests/proc. 185.8 48.0 88.6 218.1 92639 3127 23484 -steals/proc. 56.63 18.47 26.06 79.25 18031 1034 2395 -(256-processor experiments)TP 0.2892 1.045 2.590 2.765 8.590 0.4636 - 34.32T1=P + T1 0.2861 1.029 2.574 2.903 5.687 0.4325 - 30.67T1=TP 253.0 243.7 250.1 265.0 36.62 98.00 - 204.6T1=(P � TP) 0.9882 0.9519 0.9771 1.035 0.1431 0.3828 - 0.7993space/proc. 66 76 47 32 48 40 - 405requests/proc. 73.66 80.40 97.79 82.75 151803 7527 - 30646steals/proc. 24.10 21.20 23.05 18.34 6378 550 - 1540Table 3.1: Performance of Cilk on various applications. All times are in seconds, exceptwhere noted.process the scene description �le.� knary(n,k,r) is a synthetic benchmark whose parameters can be set to produce avariety of values for work and critical path. It generates a tree of branching factor kand depth n in which the �rst r children at every level are executed serially and theremainder are executed in parallel. At each node of the tree, the program runs anempty \for" loop for 400 iterations.� ?Socrates is a parallel chess program that uses the Jamboree search algorithm [JK94,Kus94] to parallelize a minmax tree search. We give performance numbers for thesearch of a position to depth 10. The work of the algorithm varies with the numberof processors, because it does speculative work that may be aborted during runtime.For this reason we give complete data sets for the two machine con�gurations. Thisapplication is described in more detail in Chapter 4.Table 3.1 shows typical performance measures for these Cilk-1 applications. Each col-umn presents data from a single run of a benchmark application. We adopt the followingnotations, which are used in the table. For each application, we have an e�cient serial68

C implementation, compiled using gcc -O2, whose measured runtime is denoted Tserial.The work T1 is the measured execution time for the Cilk-1 program running on a singlenode of the CM-5. The critical path length T1 of the Cilk-1 computation is measured bytimestamping each thread and does not include scheduling or communication costs. Themeasured P -processor execution time of the Cilk-1 program running on the CM-5 is givenby TP , which includes all scheduling and communication costs. The row labeled \threads"indicates the number of threads executed, and \thread length" is the average thread length(work divided by the number of threads).Certain derived parameters are also displayed in the table. The ratio Tserial=T1 is thee�ciency of the Cilk-1 program relative to the C program. The ratio T1=T1 is the averageparallelism. The value T1=P +T1 is a simple model of the runtime, which will be discussedin the next section. The speedup is T1=TP , and the parallel e�ciency is T1=(P � TP). Therow labeled \space/proc." indicates the maximum number of closures allocated at any timeon any processor. The row labeled \requests/proc." indicates the average number of stealrequests made by a processor during the execution, and \steals/proc." gives the averagenumber of closures actually stolen.The data listed for ?Socrates di�ers slightly from the data listed for the rest of the pro-grams. Since ?Socrates performs speculative computations, the amount of work performedby this program on a given input will vary as the machine size changes. For this reason thedata for ?Socrates is listed in two columns; one column gives the data for a 32 processorrun, the other for a 256 processor run. Since the work varies with the machine size, for T1instead of giving the execution time on one processor, we give the total work performedwhen run on the appropriate machine size. This approximates what T1 would be if theprogram on one processor executed the same threads that the n processor version did.The data in Table 3.1 shows two important relationships: one between e�ciency andthread length, and another between speedup and average parallelism.Considering the relationship between e�ciency Tserial=T1 and thread length, we seethat for programs with moderately long threads, the Cilk-1 scheduler induces very littleoverhead. The queens, pfold, ray, and knary programs have threads with average lengthgreater than 50 microseconds and have e�ciency greater than 90 percent. On the otherhand, the fib program has low e�ciency, because the threads are so short: fib does almostnothing besides spawn and send argument. 69

Despite it's long threads, the ?Socrates program shows low e�ciency, because its parallelJamboree search algorithm [Kus94] is based on speculatively searching subtrees that are notsearched by a serial algorithm. Consequently, as we increase the number of processors, theprogram executes more threads and, hence, does more work. For example, the 256-processorexecution did 7023 seconds of work whereas the 32-processor execution did only 3644 secondsof work. Both of these executions did considerably more work than the serial program's1665 seconds of work. Thus, although we observe low e�ciency, it is due to the parallelalgorithm and not to Cilk-1 overhead.Looking at the speedup T1=TP measured on 32 and 256 processors, we see that whenthe average parallelism T1=T1 is large compared with the number P of processors, Cilk-1programs achieve nearly perfect linear speedup, but when the average parallelism is small,the speedup is much less. The fib, queens, pfold, and ray programs, for example, have inexcess of 7000-fold parallelism and achieve more than 99 percent of perfect linear speedup on32 processors and more than 95 percent of perfect linear speedup on 256 processors.2 The?Socrates program exhibits somewhat less parallelism and also somewhat less speedup. On32 processors the ?Socrates program has 1163-fold parallelism, yielding 90 percent of perfectlinear speedup, while on 256 processors it has 2168-fold parallelism yielding 80 percent ofperfect linear speedup. With even less parallelism, as exhibited in the knary benchmarks,less speedup is obtained. For example, the knary(10,5,2) benchmark exhibits only 70-foldparallelism, and it realizes barely more than 20-fold speedup on 32 processors (less than65 percent of perfect linear speedup). With 178-fold parallelism, knary(10,4,1) achieves27-fold speedup on 32 processors (87 percent of perfect linear speedup), but only 98-foldspeedup on 256 processors (38 percent of perfect linear speedup).Although these speedup measures reect the Cilk-1 scheduler's ability to exploit paral-lelism, to obtain application speedup, we must factor in the e�ciency of the Cilk-1 programcompared with the serial C program. Speci�cally, the application speedup Tserial=TP is theproduct of e�ciency Tserial=T1 and speedup T1=TP . For example, applications such as fiband ?Socrates with low e�ciency generate correspondingly low application speedup. The?Socrates program, with e�ciency 0:2371 and speedup 204:6 on 256 processors, exhibitsapplication speedup of 0:2371 � 204:6 = 48:51. For the purpose of performance prediction,2In fact, the ray program achieves superlinear speedup even when comparing to the e�cient serial im-plementation. We suspect that cache e�ects cause this phenomenon.70

we prefer to decouple the e�ciency of the application from the e�ciency of the scheduler.We should point out that for this test we chose a chess position and searched it to a depththat could be run in a reasonable about of time on a serial machine. Under tournament timecontrols we would do a deeper search which would would increase the available parallelism,and thereby improve parallel performance.Looking more carefully at the cost of a spawn in Cilk-1, we �nd that it takes a �xedoverhead of about 50 cycles to allocate and initialize a closure, plus about 8 cycles for eachword argument. In comparison, a C function call on a CM-5 processor takes 2 cycles of�xed overhead (assuming no register window overow) plus 1 cycle for each word argument(assuming all arguments are transferred in registers). Thus, a spawn in Cilk-1 is roughly anorder of magnitude more expensive than a C function call. This Cilk-1 overhead is quiteapparent in the fib program, which does almost nothing besides spawn and send argument.Based on fib's measured e�ciency of 0:116, we can conclude that the aggregate averagecost of a spawn/send argument in Cilk-1 is between 8 and 9 times the cost of a functioncall/return in C.E�cient execution of programs with short threads requires a low-overhead spawn op-eration. As can be observed from Table 3.1, the vast majority of threads execute on thesame processor on which they are spawned. For example, the fib program executed over17 million threads but migrated only 6170 (24.10 per processor) when run with 256 proces-sors. Taking advantage of this property, other researchers [KC93, MKH91] have developedtechniques for implementing spawns such that when the child thread executes on the sameprocessor as its parent, the cost of the spawn operation is roughly equal the cost of a Cfunction call. We hope to incorporate such techniques into future implementations of Cilk.Finally, we make two observations about the space and communication measures in Ta-ble 3.1.Looking at the \space/proc." rows, we observe that the space per processor is generallyquite small and does not grow with the number of processors. For example, ?Socrates on32 processors executes over 26 million threads, yet no processor ever has more than 386allocated closures. On 256 processors, the number of executed threads nearly doubles toover 51 million, but the space per processors barely changes. In Section 3.6 we show formallythat for Cilk-1 programs, the space per processor does not grow as we add processors.Looking at the \requests/proc." and \steals/proc." rows in Table 3.1, we observe that71

the amount of communication grows with the critical path but does not grow with thework. For example, fib, queens, pfold, and ray all have critical paths under a tenth ofa second long and perform fewer than 220 requests and 80 steals per processor, whereasknary(10,5,2) and ?Socrates have critical paths more than 3 seconds long and performmore than 20,000 requests and 1500 steals per processor. The table does not show anyclear correlation between work and either requests or steals. For example, ray does morethan twice as much work as knary(10,5,2), yet it performs two orders of magnitude fewerrequests. In Section 3.6, we show that for \fully strict" Cilk-1 programs, the communicationper processor grows linearly with the critical path length and does not grow as function ofthe work.3.5 Modeling PerformanceIn this section, we further document the e�ectiveness of the Cilk-1 scheduler by showingempirically that it schedules applications in a near-optimal fashion. Speci�cally, we use theknary synthetic benchmark to show that the runtime of an application on P processors canbe accurately modeled as TP � T1=P + c1T1, where c1 � 1:5. This result shows thatwe obtain nearly perfect linear speedup when the critical path is short compared with theaverage amount of work per processor. We also show that a model of this kind is accurateeven for ?Socrates, which is our most complex application programmed to date and whichdoes not obey all the assumptions assumed by the theoretical analyses in Section 3.6.A good scheduler should run an application with T1 work in T1=P time on P processors.Such perfect linear speedup cannot be obtained whenever T1 > T1=P , since we always haveTP � T1, or more generally, TP � max fT1=P; T1g. The critical path T1 is the strongerlower bound on TP whenever P exceeds the average parallelism T1=T1, and T1=P is thestronger bound otherwise. A good scheduler should meet each of these bounds as closelyas possible.In order to investigate how well the Cilk-1 scheduler meets these two lower bounds, weused our knary benchmark (described in Section 3.4), which can exhibit a range of valuesfor work and critical path.Figure 3-5 shows the outcome of many experiments of running knary with various valuesfor k, n, r, and P . The �gure plots the speedup T1=TP for each run against the machine size72

P for that run. In order to compare the outcomes for runs with di�erent parameters, wehave normalized the data by dividing the plotted values by the average parallelism T1=T1.Thus, the horizontal position of each datum is P=(T1=T1), and the vertical position of eachdatum is (T1=TP)=(T1=T1) = T1=TP . Consequently, on the horizontal axis, the normalizedmachine-size is 1:0 when the average available parallelism is equal to the machine size. Onthe vertical axis, the normalized speedup is 1:0 when the runtime equals the critical path,and it is 0:1 when the runtime is 10 times the critical path. We can draw the two lowerbounds on time as upper bounds on speedup. The horizontal line at 1:0 is the upper boundon speedup obtained from the critical path, and the 45-degree line is the upper bound onspeedup obtained from the work per processor. As can be seen from the �gure, on theknary runs for which the average parallelism exceeds the number of processors (normalizedmachine size < 1), the Cilk-1 scheduler obtains nearly perfect linear speedup. In the regionwhere the number of processors is large compared to the average parallelism (normalizedmachine size > 1), the data is more scattered, but the speedup is always within a factor of4 of the critical-path upper bound.The theoretical results from Section 3.6 show that the expected running time of anapplication on P processors is TP = O(T1=P + T1). Thus, it makes sense to try to �tthe data to a curve of the form TP = c1(T1=P) + c1(T1). A least-squares �t to the datato minimize the relative error yields c1 = 0:9543 � 0:1775 and c1 = 1:54 � 0:3888 with95 percent con�dence. The R2 correlation coe�cient of the �t is 0:989101, and the meanrelative error is 13:07 percent. The curve �t is shown in Figure 3-5, which also plots thesimpler curves TP = T1=P+T1 and TP = T1=P+2�T1 for comparison. As can be seen fromthe �gure, little is lost in the linear speedup range of the curve by assuming that c1 = 1.Indeed, a �t to TP = T1=P + c1(T1) yields c1 = 1:509� 0:3727 with R2 = 0:983592 and amean relative error of 4:04 percent, which is in some ways better than the �t that includesa c1 term. (The R2 measure is a little worse, but the mean relative error is much better.)It makes sense that the data points become more scattered when P is close to or exceedsthe average parallelism. In this range, the amount of time spent in work stealing becomesa signi�cant fraction of the overall execution time. The real measure of the quality of ascheduler is how much larger T1=T1 must be than P before TP shows substantial inuencefrom the critical path. One can see from Figure 3-5 that if the average parallelism exceedsP by a factor of 10, the critical path has almost no impact on the running time.73

.

.

Curve Fit: 0:954 � T1=P + 1:540 � T1Model 2: 1:000 � T1=P + 2:000 � T1Model 1: 1:000 � T1=P + 1:000 � T1Measured Value:Linear Speedup Boun
d

Critical Path Bound

NormalizedSpe
edup

Normalized Machine Size

10.10.010.0010.0001 1010.10.010.0010.0001Figure 3-5: Normalized speedups for the knary synthetic benchmark using from 1 to 256processors. The horizontal axis is P and the vertical axis is the speedup T1=TP , but eachdata point has been normalized by dividing the these parameters by T1=T1.To con�rm our simple model of the Cilk-1 scheduler's performance on a real application,we ran ?Socrates on a variety of chess positions. Figure 3-6 shows the results of our study,which con�rm the results from the knary synthetic benchmarks. The curve shown is thebest �t to TP = c1(T1=P) + c1(T1), where c1 = 1:067 � 0:0141 and c1 = 1:042 � 0:0467with 95 percent con�dence. The R2 correlation coe�cient of the �t is 0:9994, and the meanrelative error is 4:05 percent.Indeed, as some of us were developing and tuning heuristics to increase the performanceof ?Socrates, we used work and critical path as our measures of progress. This methodologylet us avoid being trapped by the following interesting anomaly. We made an \improvement"that sped up the program on 32 processors. From our measurements, however, we discoveredthat it was faster only because it saved on work at the expense of a much longer criticalpath. Using the simple model TP = T1=P + T1, we concluded that on a 512-processormachine, which was our platform for tournaments, the \improvement" would yield a loss ofperformance, a fact that we later veri�ed. Measuring work and critical path enabled us touse experiments on a 32-processor machine to improve our program for the 512-processor74

.

.

Curve Fit: 1:067 � T1=P + 1:042 � T1Model 2: 1:000 � T1=P + 2:000 � T1Model 1: 1:000 � T1=P + 1:000 � T1Measured Value:Linear Speedup Boun
dCritical Path Bound

NormalizedSpe
edup

Normalized Machine Size

1
0.1
0.01 10.10.01Figure 3-6: Normalized speedups for the ?Socrates chess program.machine, but without using the 512-processor machine, on which computer time was scarce.3.6 Theoretical Analysis of the Cilk-1 SchedulerIn this section we use algorithmic analysis techniques to prove that for the class of \fullystrict" Cilk-1 programs, Cilk-1's work-stealing scheduling algorithm is e�cient with respectto space, time, and communication. A fully strict program is one for which each threadsends arguments only to its parent's successor threads. In the analysis and bounds of thissection, we further assume that each thread spawns at most one successor thread. For thisclass of programs, we prove the following three bounds on space, time, and communication:Space The space used by a P -processor execution is bounded by SP � S1P , where S1denotes the space used by the serial execution of the Cilk-1 program. This bound isexistentially optimal to within a constant factor [BL94].Time With P processors, the expected execution time, including scheduling overhead, isbounded by TP = O(T1=P + T1). Since both T1=P and T1 are lower bounds for75

any P -processor execution, our expected time bound is within a constant factor ofoptimal.Communication The expected number of bytes communicated during a P -processor ex-ecution is O(T1PSmax), where Smax denotes the largest size of any closure. Thisbound is existentially optimal to within a constant factor [WK91].The expected-time bound and the expected-communication bound can be converted intohigh-probability bounds at the cost of only a small additive term in both cases. Full proofsof these bounds, using generalizations of the techniques developed in [BL94], can be foundin [Blu95]. We defer complete proofs and give outlines here.The space bound can be obtained from a \busy-leaves" property that characterizes theallocated closures at all times during the execution. In order to state this property simply,we �rst de�ne some terms. We say that two or more closures are siblings if they werespawned by the same parent, or if they are successors (by one or more spawn next's) ofclosures spawned by the same parent. Sibling closures can be ordered by age: the �rst childspawned is older than the second, and so on. At any given time during the execution, wesay that a closure is a leaf if it has no allocated children, and we say that a leaf closure is aprimary leaf if, in addition, it has no younger siblings allocated. The busy-leaves propertystates that every primary-leaf closure has a processor working on it.Lemma 1 Cilk's scheduler maintains the busy-leaves property.Proof: Consider the three possible ways that a primary-leaf closure can be created. First,when a thread spawns children, the youngest of these children is a primary leaf. Second,when a thread completes and its closure is freed, if that closure has an older sibling and thatsibling has no children, then the older-sibling closure becomes a primary leaf. Finally, whena thread completes and its closure is freed, if that closure has no allocated siblings, then theyoungest closure of its parent's successor threads is a primary leaf. The induction followsby observing that in all three of these cases, Cilk's scheduler guarantees that a processorworks on the new primary leaf. In the third case we use the important fact that a newlyactivated closure is posted on the processor that activated it (and not on the processor onwhich it was residing). 76

Theorem 2 For any fully strict Cilk program, if S1 is the space used to execute the programon 1 processor, then with any number P of processors, Cilk's work-stealing scheduler usesat most S1P space.Proof: We shall obtain the space bound SP � S1P by assigning every allocated closureto a primary leaf such that the total space of all closures assigned to a given primary leafis at most S1. Since Lemma 1 guarantees that all primary leaves are busy, at most Pprimary-leaf closures can be allocated, and hence the total amount of space is at most S1P .The assignment of allocated closures to primary leaves is made as follows. If the closureis a primary leaf, it is assigned to itself. Otherwise, if the closure has any allocated children,then it is assigned to the same primary leaf as its youngest child. If the closure is a leafbut has some younger siblings, then the closure is assigned to the same primary leaf as itsyoungest sibling. In this recursive fashion, we assign every allocated closure to a primaryleaf. Now, we consider the set of closures assigned to a given primary leaf. The total spaceof these closures is at most S1, because this set of closures is a subset of the closures thatare allocated during a 1-processor execution when the processor is executing this primaryleaf, which completes the proof.We are now ready to analyze execution time. Our strategy is to mimic the theoremsof [BL94] for a more restricted model of multithreaded computation. As in [BL94], thebounds assume a communication model in which messages are delayed only by contentionat destination processors, but no assumptions are made about the order in which contendingmessages are delivered [LAB93]. For technical reasons in our analysis of execution time,the critical path is calculated assuming that all threads spawned by a parent thread arespawned at the end of the parent thread.In our analysis of execution time, we use an accounting argument. At each time step,each of the P processors places a dollar in one of three buckets according to its actions atthat step. If the processor executes an instruction of a thread at the step, it places its dollarinto the Work bucket. If the processor initiates a steal attempt, it places its dollar intothe Steal bucket. Finally, if the processor merely waits for a steal request that is delayedby contention, then it places its dollar into the Wait bucket. We shall derive the runningtime bound by upper bounding the dollars in each bucket at the end of the computation,summing these values, and then dividing by P , the total number of dollars put into buckets77

on each step.Lemma 3 When the execution of a fully strict Cilk computation with work T1 ends, theWork bucket contains T1 dollars.Proof: The computation contains a total of T1 instructions.Lemma 4 When the execution of a fully strict Cilk computation ends, the expected numberof dollars in the Wait bucket is less than the number of dollars in the Steal bucket.Proof: Lemma 5 of [BL94] shows that if P processors make M random steal requestsduring the course of a computation, where requests with the same destination are seriallyqueued at the destination, then the expected total delay is less than M .Lemma 5 When the P -processor execution of a fully strict Cilk computation with critical-path length T1 and for which each thread has at most one successor ends, the expectednumber of dollars in the Steal bucket is O(PT1).Proof sketch: The proof follows the delay-sequence argument of [BL94], but with somedi�erences that we shall point out. Full details can be found in [Blu95].At any given time during the execution, we say that a thread is critical if it has not yetbeen executed but all of its predecessors in the dag have been executed. For this argument,the dag must be augmented with \ghost" threads and additional edges to represent implicitdependencies imposed by the Cilk scheduler. We de�ne a delay sequence to be a pair (P; s)such that P is a path of threads in the augmented dag and s is a positive integer. We saythat a delay sequence (P; s) occurs in an execution if at least s steal attempts are initiatedwhile some thread of P is critical.The next step of the proof is to show that if at least s steal attempts occur during anexecution, where s is su�ciently large, then some delay sequence (P; s) must occur. Thatis, there must be some path P in the dag such that each of the s steal attempts occurswhile some thread of P is critical. We do not give the construction here, but rather referthe reader to [Blu95, BL94] for directly analogous arguments.The last step of the proof is to show that a delay sequence with s =
(PT1) is unlikelyto occur. The key to this step is a lemma, which describes the structure of threads theprocessors' ready pools. This structural lemma implies that if a thread is critical, it is the78

next thread to be stolen from the pool in which it resides. Intuitively, after P steal attempts,we expect one of these attempts to have targeted the processor in which the critical threadof interest resides. In this case, the critical thread will be stolen and executed, unless, ofcourse, it has already been executed by the local processor. Thus, after PT1 steal attempts,we expect all threads on P to have been executed. The delay-sequence argument formalizesthis intuition. Thus, the expected number s of dollars in the Steal bucket is at mostO(PT1).Theorem 6 Consider any fully strict Cilk computation with work T1 and critical-pathlength T1 such that every thread spawns at most one successor. With any number P of pro-cessors, Cilk's work-stealing scheduler runs the computation in expected time O(T1=P+T1).Proof: We sum the dollars in the three buckets and divide by P . By Lemma 3, the Workbucket contains T1 dollars. By Lemma 4, theWait bucket contains at most a constant timesthe number of dollars in the Steal bucket, and Lemma 5 implies that the total number ofdollars in both buckets is O(PT1). Thus, the sum of the dollars is T1 +O(PT1), and thebound on execution time is obtained by dividing by P .In fact, it can be shown using the techniques of [BL94] that for any � > 0, with proba-bility at least 1� �, the execution time on P processors is O(T1=P + T1 + lgP + lg(1=�)).Theorem 7 Consider any fully strict Cilk computation with work T1 and critical-pathlength T1 such that every thread spawns at most one successor. For any number P ofprocessors, the total number of bytes communicated by Cilk's work-stealing scheduler hasexpectation O(PT1Smax), where Smax is the size in bytes of the largest closure in the com-putation.Proof: The proof follows directly from Lemma 5. All communication costs can be associ-ated with steals or steal requests, and at most O(Smax) bytes are communicated for eachsuccessful steal.In fact, for any � > 0, the probability is at least 1 � � that the total communicationincurred is O(P (T1 + lg(1=�))Smax).The analysis and bounds we have derived apply to fully strict programs in the case wheneach thread spawns at most one successor. In [Blu95], the theorems above are generalizedto handle situations where a thread can spawn more than one successor.79

3.7 ConclusionTo produce high-performance parallel applications, programmers often focus on communi-cation costs and execution time, quantities that are dependent on speci�c machine con�g-urations. We argue that a programmer should think instead about work and critical path,abstractions that can be used to characterize the performance of an algorithm independentof the machine con�guration. Cilk-1 provides a programming model in which work andcritical path are observable quantities, and it delivers guaranteed performance as a functionof these quantities. Work and critical path have been used in the theory community foryears to analyze parallel algorithms [KR90]. Blelloch [Ble92] has developed a performancemodel for data-parallel computations based on these same two abstract measures. He citesmany advantages of such a model over machine-based models. Cilk-1 provides a similarperformance model for the domain of asynchronous, multithreaded computation.Although Cilk-1 o�ers performance guarantees, its capabilities are somewhat limited.Programmers �nd its explicit continuation-passing style to be onerous. The higher levelprimitives described in Chapter 5 address this concern. Cilk-1 is good at expressing andexecuting dynamic, asynchronous, tree-like, MIMD computations, but it is not ideal formore traditional parallel applications that can be programmed e�ectively in, for example,a message-passing, data-parallel, or single-threaded, shared-memory style. To partiallyaddress this inadequacy, we have added \dag-consistent" shared memory to the Cilk system,which allows programs to operate on shared memory without costly communication orhardware support. This addition is described in Chapter 6.

80

Chapter 4
The ?Socrates Parallel ChessProgram
The Cilk-1 system described in the previous chapter is a powerful system which allows a pro-grammer to write complicated multithreaded programs and have them executed e�ciently.The system was intended to have the exibility to express programs with fairly complexcontrol structures. Up to this point, however, we had only written applications with rel-atively simple control structures. For most of our programs the Cilk-1 portion consistedmainly of one Cilk thread which was recursively called many times. We therefore wantedto write a large, challenging application with complicated control dependencies, preferablyone which would be di�cult to express in other parallel programming paradigms. Sucha program would not only showcase the power of Cilk, but would also stress the runtimesystem and the language, thereby identifying any of weaknesses Cilk may have.We chose computer chess because it met all these criteria, and because it was an in-teresting application in its own right. Also, since we would test the program in actualcompetitions against both humans and computers, we would be forced to implement thebest algorithms, not just whatever happened to be easiest to implement in our system.Our chess program, ?Socrates, uses the Jamboree [Kus94] algorithm to perform a parallelgame-tree search. This search algorithm has a complex control structure which is nondeter-ministic and performs speculative computations, some of which need to be killed o� beforecompleting. In order to obtain good performance during this search, we use several mecha-Part of this work was reported on by Kuszmaul and myself in an earlier article [JK94].81

nisms not directly provided by Cilk, such as aborting computations and directly accessingthe active message layer to implement a global transposition table distributed across theprocessors. The initial version of ?Socrates was implemented during the time PCM wasevolving into the Cilk system and our work on this program led to several modi�cations tothe Cilk system which gave the user more control over the execution of his program.Many people contributed to the ?Socrates chess program. Robert Blumofe, Don Dailey,Michael Halbherr, Larry Kaufman, Bradley Kuszmaul, Charles Leiserson, and I contributedto the ?Socrates code itself. Don Dailey and Larry Kaufman, then of Heuristic SoftwareInc., wrote the serial Socrates program on which ?Socrates is based, and Don Dailey twicejoined us at MIT to improve the chess knowledge in the program. I initially implementedthe search algorithm in Cilk, and then took a lead role in tuning and testing all aspectsof the system (including the search code, the chess code and the runtime system). Atvarious times Bradley Kuszmaul and I took the lead in bringing the whole system together.Bradley Kuszmaul also invented the Jamboree search algorithm, which was �rst used in hisStarTech program. Robert Blumofe implemented the transposition table. Michael Halbherroriginally implemented the abort code. In addition, Robert Blumofe, Matteo Frigo, MichaelHalbherr, Bradley Kuszmaul, Charles Leiserson, Keith Randall, Rolf Riesen, Yuli Zhou, andI contributed to the various PCM and Cilk runtime systems on which ?Socrates runs.4.1 IntroductionComputer chess provides a good testbed for understanding dynamic MIMD-style computa-tions. The parallelism in computer chess is derived from a dynamic expansion of a highlyirregular game-tree, which makes computer chess di�cult to express, for example, as adata-parallel program. To investigate how to program this sort of dynamic MIMD-styleapplication, we engineered a parallel chess program called ?Socrates (pronounced \Star-Socrates".) The program, based on Heuristic Software's serial Socrates program, has aninformally estimated rating of over 2400 USCF. ?Socrates, running on the 512-node CM-5 atthe National Center for Supercomputing Applications (NCSA) at the University of Illinois,tied for third place in the 1994 ACM International Computer Chess Championship held atthe end of June 1994 in Cape May, New Jersey. Cilk and ?Socrates were later ported tothe Intel Paragon in March 1995, and running on Sandia National Laboratories' 1824-node82

Paragon, ?Socrates �nished second in the 1995 World Computer Chess Championship.?Socrates is, in part, a continuation of earlier work performed here on the StarTech [Kus94]chess program. StarTech was based on Hans Berliner's serial Hitech[BE89] program. Al-though ?Socrates and StarTech are based on di�erent serial programs and do not share anycode, ?Socrates borrowed techniques originally developed for StarTech, such as the basicsearch algorithm. A major di�erence between the two is that in StarTech, the chess andscheduling algorithms were all wrapped together in a single piece of code. The work on?Socrates was intended in part to show that the chess program could be separated from theproblems of scheduling and load balancing and still execute e�ciently. ?Socrates uses Cilkto address the scheduling problem, allowing the chess code to focus on only those issueswhich are unique to a chess program.It was not clear from the outset how to predict the performance of a parallel chess pro-gram. Chess programs search a dynamically generated tree, and obtain their parallelismfrom that tree. Di�erent branches of the tree have vastly di�erent amounts of total workand available parallelism. ?Socrates uses large global data structures, performs speculativecomputations, and is nondeterministic. But we wanted predictable performance. For exam-ple, if one develops a program on a small machine, one would like to be able to instrumentthe program and predict how fast it will run on a big machine. How can predictable perfor-mance be salvaged from a program with these characteristics? We showed in the previouschapter that under certain assumptions the run time of a Cilk program can be predictedfrom the total workW and the critical path length C. But chess violates these assumptions,so it was not clear how well the scheduler would perform.For most algorithms, the values of W and C depend on the parallel algorithm, andnot on the scheduler. But for speculative computations, such as our game-tree searchalgorithm, the values of W and C are partially dependent on scheduling decisions made bythe scheduler. Our work on ?Socrates led to several modi�cations to the Cilk system whichgave the user additional control over these scheduling decisions.This chapter explains how we implemented ?Socrates in Cilk such that we achievedpredictable, e�cient performance. Section 4.2 describes the Jamboree game-tree searchalgorithm and presents some analytical results describing the performance of Jamboreesearch. The modi�cations made to Cilk in order to run the chess program are describedin Section 4.3. In Section 4.4 we outline several other mechanisms that were needed to83

implement a parallel chess program. Section 4.5 describes the performance of the ?Socratesprogram and shows that a chess program can execute e�ciently when the scheduler isindependent of the chess code. We make some concluding remarks in Section 4.6.4.2 Parallel Game Tree SearchThe ?Socrates chess program uses an e�cient parallel game-tree search algorithm called\Jamboree" search [Kus94]. In this section we explain Jamboree search, starting with thebasics of negamax search and serial �-� search, and present some analytical performanceresults for the algorithm.The basic idea behind Jamboree search is to do the following operations on a positionin the game tree that has k children:� The value of the �rst child of the position is determined (by a recursive call to thesearch algorithm.)� Then, in parallel, all of the remaining k� 1 children are tested to verify that they arenot better alternatives than the �rst child.� Each child that turns out to be better than the �rst child is searched in turn todetermine which is the best.If the move ordering is best-�rst, i.e., the �rst move considered is always better than theother moves, then all of the tests succeed, and the position is evaluated quickly and e�-ciently. We expect that the tests will usually succeed, because the move ordering is oftenbest-�rst due the the application of several chess-speci�c move-ordering heuristics.4.2.1 Negamax Search Without PruningBefore delving into the details of the Jamboree algorithm, let us review the basic searchalgorithms that are applicable to computer chess. (Readers who are familiar with the serialgame tree search algorithms may wish to skip directly ahead to the description of theJamboree algorithm in Section 4.2.4.) Most chess programs use some variant of negamaxtree search to evaluate a chess position. The goal of the negamax tree search is to computethe value of position p in a tree Tp rooted at position p. The value of p is de�ned according84

(N1) De�ne negamax(p) as(N2) If n is a leaf then return static eval(n).(N3) Let ~c the children of n, and(N4) b �1:(N5) For i from 0 below j~cj do:(N6) Let s �negamax(~ci): ;; Recursive Search(N7) if s > b then set b s: ;; New best score(N8) enddo(N9) return b. Figure 4-1: Algorithm negamax.to the negamax formula:vp = 8><>: static eval(p) if p is a leaf in Tp, andmaxf�vc : c a child of p in Tpg if p is not a leaf.The negamax formula states that the best move for player A is the move that gives playerB, who plays the best move from B's point of view, the worst option. If there are no moves,then we use a static evaluation function. Of course, no chess program searches the entiregame tree. Instead some limited game tree is searched using an imperfect static evaluationfunction. Thus, we have formalized the chess knowledge as Tp, which tells us what tree tosearch, and static eval, which tells us how to evaluate a leaf position.The naive Algorithm negamax shown in Figure 4-1 computes the negamax value vp ofposition p by searching the entire tree rooted at p. It is easy to make Algorithm negamaxinto a parallel algorithm, because there are no dependencies between iterations of the forloop of Line (N5). One simply changes the for loop into a parallel loop. But negamax isnot a e�cient serial search algorithm, and thus, it makes little sense to parallelize it.4.2.2 Alpha-Beta PruningThe most e�cient serial algorithms for game-tree search all avoid searching the entire treeby proving that certain subtrees need not be examined. In this section we review the �-�serial search algorithm in preparation for the explanation of how the Jamboree parallelsearch algorithm works.An example of how pruning can reduce the size of a game tree that is searched can beseen in the chess position of Figure 4-2. Suppose White has determined that it can win85

0Z0Z0Z0jZ0Z0Z0Z00Z0Z0Z0ZZ0Z0Z0Z00Z0Z0Z0ZZ0Z0Z0Z00Z0Z0OPlZ0Z0Z0J0Figure 4-2: White to move and win. In this position, White need not consider all of Black'salternatives to 40. Kf1, since almost any move Black makes will keep the queen, a worseoutcome than just taking the queen with 40. K�h2.(A1) De�ne absearch(n; �; �) as(A2) If n is a leaf then return static eval(n).(A3) Let ~c the children of n, and(A4) b �1:(A5) For i from 0 below j~cj do:(A6) Let s �absearch(~ci;��;��):(A7) If s � � then return s. ;; Fail High(A8) If s > � then set � s. ;; Raise �(A9) If s > b then set b s.(A10) enddo(A11) return b.Figure 4-3: Algorithm absearch.Black's queen with 40. K�h2. White's other legal move 40. Kf1 fails to capture the queen.White does not need to consider every possible way for Black's queen to escape. Any one ofa number of possibilities su�ces. Thus, White can stop thinking about the move withouthaving exhaustively searched all of Black's options.The idea of pruning subtrees that do not need to be searched is embodied in the serial �-� search algorithm [KM75], which computes the negamax score for a node without actuallylooking at the entire search tree. The algorithm is expressed as a recursive subroutine withtwo new parameters � and �. If the value of any child, when negated, is as great as �,then the value of the parent is no less than �, and we say that the parent fails high. If thevalues of all of the children, when negated, are less than or equal to �, then the value ofthe parent is no greater than �, and we say that the parent fails low.Procedure absearch is shown in Figure 4-3. When Procedure absearch is called, theparameters � and � are chosen so that if the value of a node is not greater than � and less86

than �, then we know that the value of the node cannot a�ect the negamax value of theroot of the entire search tree. After the score is returned from the subsearch on Line (A6),the algorithm, on Line (A7), checks to see if the negated score is as great as �. If so, weknow that the value of the node is at least as great as � and we can skip searching theremaining children; the node has failed high. Just because one of the children has a negatedscore less than �, however, does not mean that some other child might not be within the�-� window. The algorithm can only fail low after considering all of the children.The �-� algorithm can substantially reduce the size of the tree searched. The �-�algorithm works best if the best moves are considered �rst, because if any move can makethe position fail high, then certainly the best move can make the position fail high. Knuthand Moore [KM75] show that for searches of a uniform best-ordered tree of height H anddegree D, the �-� algorithm searches only O(pDH) leaves instead of DH leaves.For any k � 0, before searching the (k + 1)st child, the �-� algorithm obtains thevalue of the kth child and possibly uses that value to adjust � or return immediately. Thisdependency between �nishing the kth child and starting the (k + 1)st child completelyserializes the �-� search algorithm.14.2.3 Scout SearchFor a parallel chess program, we need an algorithm that both e�ectively prunes the treeand can be parallelized. We started with a variant on serial �-� search, called Scout search,and modi�ed it to be a parallel algorithm. This section explains the Scout search algorithm.Figure 4-4 shows the serial Scout search algorithm, which is due to J. Pearl [Pea80].Procedure scout is similar to Procedure absearch, except that when considering any childthat is not the �rst child, a test is �rst performed to determine if the child is no better amove than the best move seen so far. If the child is no better, the test is said to succeed. Ifthe child is determined to be better than the best move so far, the test is said to fail, andthe child is searched again (valued) to determine its true value.The Scout algorithm performs tests on positions to see if they are greater than or lessthan a given value. A test is performed by using an empty-window search on a position.For integer scores one uses the values (��� 1) and (��) as the parameters of the recursive1R. Finkel and J. Fishburn showed that if the serialization implied by �-� pruning is ignored by a parallelprogram, then it will achieve only pP speedup on P processors [FF82].87

(S1) De�ne scout(n; �; �) as(S2) If n is a leaf then return static eval(n).(S3) Let ~c the children of n, and(S4) b �scout(c0;��;��):(S5) ;; The �rst child's valuation may cause this node to fail high.(S6) If b � � then return b.(S7) If b > � then set � b.(S8) For i from 1 below j~cj do: ;; the rest of the children(S9) Let s �scout(~ci;��� 1;��): ;; Test(S10) If s > b then set b s.(S11) If s � � then return s. ;; Fail High(S12) If s > � then ;; Test failed(S13) Set s �scout(~ci;��;��). ;; Research for value(S14) If s � � then return s. ;; Fail High(S15) If s > � then set � s.(S16) If s > b then set b s.(S17) enddo(S18) return b. Figure 4-4: Algorithm scout.search, as shown on Line (S9). A child is tested to see if it is worse than the best move sofar, and if the test fails on Line (S12) (i.e., the move looks like it might be better than thebest move seen so far), then the child is valued, on Line (S13), using a nonempty windowto determine its true value.If it happens to be the case that � + 1 = �, then Line (S13) never executes becauses > � implies s � �, which causes the return on Line (S11) to execute. Consequently, thesame code for Algorithm scout can be used for the testing and for the valuing of a position.Line S10, which raises the best score seen so far according to the value returned by atest, is necessary to insure that if the test fails low (i.e., if the test succeeds), then the valuereturned is an upper bound to the score. If a test were to return a score that is not a properbound to its parent, then the parent might return immediately with the wrong answer whenthe parent performs the check of the returned score against � on Line S11.A test is typically cheaper to execute than a valuation because the �-� window issmaller, which means that more of the tree is likely to be pruned. If the test succeeds, thenalgorithm scout has saved some work, because testing a node is cheaper than �nding itsexact value. If the test fails, then scout searches the node twice and has squandered somework. Algorithm scout bets that the tests will succeed often enough to outweigh the extra88

(J1) De�ne jamboree(n; �; �) as(J2) If n is a leaf then return static eval(n).(J3) Let ~c the children of n, and(J4) b �jamboree(c0;��;��):(J5) If b � � then return b.(J6) If b > � then set � b.(J7) In Parallel: For i from 1 below j~cj do:(J8) Let s �jamboree(~ci;��� 1;��):(J9) If s > b then set b s.(J10) If s � � then abort-and-return s.(J11) If s > � then(J12) Wait for the completion of all previous iterations(J13) of the parallel loop.(J14) Set s �jamboree(~ci;��;��). ;; Research for value(J15) If s � � then abort-and-return s.(J16) If s > � then set � s.(J17) If s > b then set b s.(J18) Note the completion of the ith iteration of the parallel loop.(J19) enddo(J20) return b.Figure 4-5: Algorithm jamboree.cost of any nodes that must be searched twice, and empirical evidence [Pea80] justify itsdominance as the search algorithm of choice in modern serial chess-playing programs.4.2.4 Jamboree SearchThe Jamboree algorithm, shown in Figure 4-5, is a parallelized version of the Scout searchalgorithm. The idea is that all of the testing of the children is done in parallel, and any teststhat fail are sequentially valued. A parallel loop construct, in which all of the iterationsof a loop run concurrently, appears on Line (J7). Some synchronization between variousiterations of the loop appears on Lines J12 and J18. We sequentialize the full-windowsearches for values, because, while we are willing to take a chance that an empty windowsearch will be squandered work, we are not willing to take the chance that a full-windowsearch (which does not prune very much) will be squandered work. Such a squanderedfull-window search could lead us to search the entire tree, which is much larger than thepruned tree we want to search.The abort-and-return statements that appear on Lines J10 and J15 return a value from89

Procedure jamboree and abort any of the children that are still running. Such an abort isneeded when the procedure has found a value that can be returned, in which case there is noadvantage to allowing the procedure and its children to continue to run, using up processorand memory resources. The abort causes any children that are running in parallel to aborttheir children recursively, which has the e�ect of deallocating the entire subtree.The actual search algorithm used in ?Socrates also includes some forward pruning heuris-tics that prune a deep search based on a shallow preliminary search. The idea is that if theshallow search looks really bad, then most of the time a deep search will not change theoutcome. Forward pruning techniques have lately been shown to be extremely powerful,allowing programs running on single processors to beat some of the best humans at chess.The serial Socrates program uses such a scheme, and so does ?Socrates. In the ?Socratesversion of Jamboree search, we �rst perform the preliminary search, then we search the �rstchild, then we test the remaining children in parallel, and research the failed tests serially.Parallel search of game-trees is di�cult because the most e�cient algorithms for game-tree search are inherently serial. We obtain parallelism by performing the tests in parallel,but those tests may not all be necessary in a serial execution order. In order to get anyparallelism, we must take the risk of performing extra work that a good serial programwould avoid.Figure 4-6 shows the Jamboree search code transformed into a dataow graph. Thisgraph clearly shows that all the tests can be executed in parallel, but that only one ofthe value searches can be executed at a time. This graph was also a useful reference inexpressing the Jamboree search code as a Cilk program, since it gives an idea of how theprocedure can be broken up into separate threads.4.3 Using Cilk for Chess SearchIn the following two sections we describe the implementation of ?Socrates using Cilk-1.These sections are an interesting case study in implementing a large, multithreaded, spec-ulative application. As mentioned in the introduction, ?Socrates is a parallelization of aserial chess program. Much of the code, including the static evaluator, is identical in theparallel and the serial versions and is not discussed here. Instead, we focus on the portionsof the code which were written speci�cally for the parallel version.90

ViValue child iV0
� � �T1 T2 T3 Tk�1

V1 V2 V3 Vk�1
Test child i TiMergeForkJoinTest

Figure 4-6: The dataow graph for Jamboree search. First Child 0 is searched to determineits value, then the rest of the children are tested in parallel to try to prove that they areworse choices than Child 0, and then each of the children that fail their respective tests aresequentially researched. Compare this description of the Jamboree algorithm to the textualdescription in Figure 4-5.The actual Cilk search code is too large to include here, so instead we show the dagof threads (potentially) created during a search. This dag is shown in Figure 4-7. Notethat the ovals labeled TESTi and VALi are recursive calls of the search algorithm whichperform either a limited search (a test) or a full search (a value search); so these ovalscorrespond to entire sub-dags, not just individual threads. Most of this dag is analogous tothe dataow graph for Jamboree search which was shown in Figure 4-6. The threads labeledwith the diamond symbol are the threads called diamond, so named because they performthe function that diamond nodes did in the dataow graph of Figure 4-6. The only di�erencebetween the algorithm shown here and that implemented by the earlier dataow graph isthat the ?Socrates search algorithm �rst makes a recursive call to the search algorithm toperform a \null move search". This search is a reduced depth search that is part of theforward pruning algorithm which decides if the side to move has an advantage large enoughthat the search can probably be safely ended here. This recursive call is shown by the ovallabeled VALnul in Figure 4-7. Most of the other di�erences between the dataow graph andthe Cilk dag are due to one dataow node being expanded into several Cilk threads. For91

 Test
Check

Value
Check

Finish
Value

 recursive computation data dependency thread creation may start abort

Value
Check

Value
Check

argument merge

 Test
Check

 Test
Check

TEST

Setup
Test Setup

Test

Setup
Test

V_T3

V_T2

VAL

VALNUL

VAL 0

VAL 1 VAL 2 VAL n

TEST TEST
1 2 n

Figure4-7:Thisdagshowsthedagcreatedby?Socrateswhenperformingavaluesearch.
TheovalslabeledTESTi andVALi arerecursivecallsofthesearchalgorithm.Otherovals
correspondtoCilkthreads.

92

example, the dataow graph just has a single node, TESTi, for the test of the ith child. InCilk this node is broken into several threads so that immediately after the test completesthe test check thread can run to check if we are able to abort the rest of the search. Thesedetails were ignored in the earlier dataow graph.The rest of this section focuses on those aspects of ?Socrates related to e�ciently im-plementing the parallel search algorithm. The following section focuses on parallelizingother aspects of ?Socrates. Our work on implementing ?Socrates's search algorithm lead tomany modi�cations to the scheduler. The changes we made include implementing migra-tion handlers, implementing priority threads, aborting computations that are in progress,changing the order in which threads are stolen, and adding level waiting. The �rst versionof ?Socrates was written when we were still using the original PCM system. Many of theimprovements to the runtime system that are described in this section were originally addedfor ?Socrates and were later included in the Cilk-1 system.4.3.1 Migration ThreadsWe use a large, variable sized data structure (over 200 bytes) to describe the state of a chessboard. In the serial code we pass around pointers to this state structure and copy it onlywhen necessary. In the parallel code we cannot just blindly pass pointers between threads,because if the thread is migrated the pointer will no longer be valid. A naive solution isto copy the state structure into every thread, but this adds a signi�cant overhead to theparallel code. This overhead is especially distasteful when you realize that well under 1%of threads are actually migrated, so most of the copying would be wasted e�ort.To solve this problem we use migration threads. Any thread can have a migration threadassociated with it. When the scheduler tries to migrate a thread that has an associatedmigration thread, the scheduler �rst calls the migration thread. This migration thread willreturn a new closure which is migrated instead.Using this mechanism we are able to pass pointers to state structures between threads.Any thread that is passed a state pointer is also given a migration thread which can copythe state into the closure if the thread is stolen. When this closure is stolen the migrationthread is run and the migration thread creates a copy of the closure with the state copiedinto it. This closure is them migrated to the stealing processor. Once the closure arrives,the stolen thread can then be called with a pointer to the copied state structure. This93

T

(A) (B)

to T’s
successor

from T’s
predecessor

from T’s
predecessor

to T’s
successor

m
4

thief processor

victim processor

m
3

T

m
2

m
1

Figure 4-8: This shows how migration threads can be used to insert user code before andafter any communication event. Part (A) shows the case where migration does not occur.Part (B) shows the case where migration does occur.allows the overhead of copying the state to be paid only when it is actually necessary.Using a migration thread to pass a state structure only works when the stolen threadreads the state structure, but does not write it. Many threads, however, such as the diamondand value check threads may update the state structure as well as read it. For thesethreads, just migrating a copy of the structure when stolen would not be su�cient. Instead,these threads are speci�ed to be local threads, which means these threads are not allowed tobe stolen. By making these threads local we can guarantee they update the original statestructure. For simplicity, many of the threads in ?Socrates were made local and only thosethat start up a test of a child position are stealable.Migration threads give the user more exibility than just running a thread on the victimprocessor before a thread is migrated. Migration threads can be used to run user code beforeand after every communication, as is shown in Figure 4-8. Part (A) shows the common case:thread T is not stolen and only thread T is run. Part (B) shows the case where thread T is94

stolen. In this case the system executes the migration thread m1 on the victim processor.This thread can change the continuation passed to T so that instead of pointing to T 'ssuccessor, the continuation points to a new closure which will run thread m4. The closurefor thread m4 is given the original continuation so that thread m4 can pass the result fromT onto T 's successor. The migration thread must return a closure to be migrated; thisclosure can specify that thread m2, rather than T , be run on the thief processor. Whenthread m2 executes it can then run some user code before spawning thread T . As was doneon the sending side, m2 can also splice another thread, m3, into the path from T to itssuccessor. Although we have described this process as if T were a thread, the same thingcan be done where T is an entire subcomputation. This exibility to run user code at anyof these four points was used in ?Socrates to implement the abort mechanism described inthe next section.4.3.2 Aborting ComputationsIn order to implement the Jamboree search algorithm we must be able to abort a computa-tion. When searching a node, if one of its children exceeds �, then the node fails high andthe search of the node can be ended without searching the rest of the children. If searchesof any other children are already in progress, then those searches should be aborted. TheCilk system has no built-in mechanism for aborting a computation, so this had to be addedas user code. Our goal in designing the abort mechanism was to keep it as self contained aspossible and to minimize changes to the rest of the code. We wrote the abort mechanismentirely in Cilk code so that it would be able to port easily. Eventually we would like toadd support for such a mechanism to Cilk itself.In order to abort a computation we must �rst be able to �nd all of the threads that areworking on this computation. To implement this we use abort tables to link together all thethreads working on a computation. When a computation, say A, needs to create severalchildren it �rst creates an abort table containing an entry for each child of the computation.Each entry in the table keeps track of the status of the children. If a child of A, say B, itselfspawns o� children, then the entry for B is updated to contain a pointer to the abort tablethat B creates. Once B and all its children have completed, B's table is deallocated andthe entry for B is updated. If a child of A, say C, is stolen, A's entry for C is updated topoint to C on its new processor. With this mechanism in place the abort code is able to �nd95

all the descendants of any computation. When performing an abort, the abort code doesnot actually destroy any threads, instead it merely makes a mark in each a�ected thread'sabort table. When a user's thread runs its �rst action should be to check to see if it hasbeen aborted, and if so skip the rest of its computation. This check allows the user's codeto do any cleaning up that may be necessary. (For example, the code may need to free somedata structures.)The abort mechanism provides functions to create, update, and deallocate the abortstructures; to check if a thread is aborted; and to start an abort. These mechanisms areimplemented independently of the search code. By using these functions and passing arounda few pointers to abort tables, the search code was modi�ed to include aborting withouttoo many changes.One di�culty encountered in implementing the abort tables was in keeping the tablescorrect when a computation migrates. Our implementation uses migration threads as shownin the previous section to keep track of the state of the computation. When a computationis stolen an abort table is allocated on the stealer's side and the existing abort table ismodi�ed to point to it. The di�culty arises because at the time a computation is stolenthere is not yet an abort table on the stealer's side to point to. This abort table is notallocated until after the thread begins to run. So instead we create a unique identi�er (UID)for each stolen computation, and store that into the abort table. Then on the stealer's sidewe have a hash table to map the UID into a pointer to the abort table. The protocol foraccessing the hash table is quite tricky since there are many cases which require specialhandling. For example, the network of the CM-5 can reorder messages, therefore we haveto handle the case where a message to abort a computation arrives before the thread thatwill allocate the hash table entry and abort table for that computation. Unfortunately, wedid not consider all such possibilities before beginning the design, so getting this mechanismworking correctly took longer than anticipated.Our decision to make the abort mechanism as self contained as possible turned outto be a very good one. The abort code was written back in the early days, when theruntime system was still called PCM. Since becoming Cilk-1, much of the runtime systemwas completely rewritten, and many low-level data structures were changed. Yet the abortcode continued to work. The only changes we had to make were some minor syntax changeswhen we changed the language. When we ported Cilk-1 and ?Socrates to the Paragon, the96

abort code did not require a single change. Given the di�culty we had getting the originalcode to work on the CM-5, and given that we did not have access to a debugger on theParagon, we were quite fortunate to have implemented this code such that it truly wasindependent of the rest of the system.4.3.3 Priority ThreadsAnother change to the Cilk system that was inspired by ?Socrates was the addition ofpriority threads. In the search algorithm there are certain threads that we would like torun as soon as possible, namely the test check and value check threads. These are shortthreads that receive the result of a search of a child and incorporate that result into thecurrent computation. These threads may update � so we would like this update to occurright away so that future searches can use this updated information. Also, these threadsmay cause a search to be aborted, and we certainly want this to happen right away. In theoriginal system such a thread T would simply be posted to the bottom of the ready queue,just like every other thread. This thread would then be next in line to execute, but if someother thread was posted before thread T was scheduled, then the execution of T would beinde�nitely delayed.To solve this problem we added priority threads, which are threads that are posted toa single-level priority queue rather than the standard ready queue. Whenever there is aclosure in the priority queue the closure at the front of the priority queue will be executednext, before any closure in the standard ready queue. This allows the user to specify threadsthat should be run as soon as possible.It is interesting to note that with the provably good scheduler threads like test checkand value check must be made priority threads only because ?Socrates uses nonstealablethreads and nonstealable threads break the guarantees provided by the scheduler. The onlytime a thread such as test check or value check can be enabled but not executed nextis if a send argument from another node is involved. For example, when a test completesthe only thread it spawns or enables is its test check thread. When the test is donelocally, the test check is placed at the bottom of the ready queue and will normally beexecuted next. Only if in the meantime a send argument arrives from another node andenables some unrelated thread could the test check not be the next to execute. Thissituation can only happen when the thread enabled by the send argument is not stealable,97

because otherwise the thread the send argument enabled would have been stolen away bya provably good steal. Similarly if the test is stolen away, it enables the test check threadvia a nonlocal send argument. If the test check thread were not marked nonstealable, itwould immediately be stolen back and executed on the remote node.Priority threads are also used in the implementation of the abort mechanism. As wouldbe expected, they are used to ensure that threads aborting the search are not delayed bythreads performing a search.4.3.4 Steal OrderingIn the original PCM runtime system, the thread queue consists of a single double endedqueue. Newly enabled threads are placed at the bottom of the queue, and the local processortakes work out of the bottom as well (i.e. LIFO). When stealing occurs, threads are stolenfrom the top of the queue (i.e. FIFO). For a tree-shaped computation, the LIFO schedulingallows the computation to proceed locally in a depth-�rst ordering, thus giving us the sameexecution order a sequential program would have. When stealing occurs, however, the FIFOsteal ordering causes a thread near the top of the tree to be stolen, so a large piece of workis migrated, thus minimizing stealing. Since Jamboree search is a tree-shaped computation,this mechanism works reasonably well.With this scheduling mechanism, the order in which children are executed depends onwhether or not a child is stolen. For most computations this execution order does notmatter, but for Jamboree search it does. Execution order has an e�ect, because if one childcauses a search to fail high, the rest of the children do not need to be examined. Ourprogram orders the children such that in the common case where no children are stolen, thechildren believed to be the best moves are searched �rst. This order is likely to minimizethe total work W , since the best moves are the most likely to beat �, and the once we beat� we fail high and do not need to search any more children. The problem is that whenstealing occurs, we steal the child least likely to cause us to fail high.We would like to steal from the top of the tree, but still steal the child that is most likelyto fail high. Such would be the case if the scheduler had the following natural property: If athread spawns o� n children, those children should be executed in the same order regardlessof where the children are executed. To add this property we had to modify the schedulerby adding the concept of levels. Each thread in the queue is assigned a level and threads98

A3
A2
A1
C1
D4
D3

A2 A3

D2 D3 D4
D2
D1
E1

A1

C1

D1

E1

Steals

Local
Execution

Steals

Local
Execution

(A) Original Ready Queue (B) Levelized Ready QueueFigure 4-9: This �gure shows how the ready queue is implemented. Part (A) shows theoriginal ready queue which was just a double ended queue. Part (B) shows the modi�edready queue which is a queue of �fos.at the same level are executed in a �xed order, regardless of whether they are stolen orexecuted locally. Between levels, however, scheduling is done as before: We execute locallyat the deepest (newest) level and steal from the shallowest (oldest) level. The search codethen marks all the children of a computation as being one level deeper than the level atwhich the computation is currently executing. This strategy gives us exactly the ordering ofthreads that we want. Figure 4-9 shows a levelized ready queue. Each level is implementedas a �rst-in-�rst-out queue, guaranteeing that closures at the same level are executed in thesame order regardless of whether the closures are executed locally or are stolen. Adding thisto ?Socrates reduced the amount of work performed for searching a position and seemed togive a speedup of roughly 20-25%. This idea seemed important enough that we incorporatedthis mechanism into the Cilk-1 scheduler.4.3.5 Level WaitingThe �nal change we made to the scheduler was a further attempt to reduce the extra workbeing performed by the parallel version. When a processor is searching a board position,P , it spawns o� a bunch of children to test. If a processor runs out of children to work onwhile other children are still being worked on elsewhere, then that processor steals anotherclosure and begins working on the stolen closure.99

Consider the case where one (or more) of the children is stolen and the processor �nishesthe rest of the tests before the test of the stolen child completes. The processor may thenbe out of work to do2. This processor then steals some closure from another processorand begin searching its board position, call it Q. Eventually, the test of the stolen childcompletes. When this result comes back, it restarts the computation on position P andpreempts Q. (Or, depending on the level of each search, Q may preempt P .) We are now ina position where Q, no matter how little work it has, cannot complete until the arbitrarilylong computation of P completes. Meanwhile, the computation which spawned Q continues.It may eventually block waiting for Q (and thereby arti�cially lengthen the critical path)or it may be able to continue, but will search using looser bounds than if Q had completed(and will thereby increase the total work).To avoid this stalled work we further modi�ed the scheduler. We added \level wait-ing", a feature which makes uses of the same levels that were described in Section 4.3.4 foroptimizing the steal ordering. When a computation spawns children, all the subcomputa-tions are placed at the same level. The level-waiting mechanism simply requires all of thesesubcomputations to have completed before we may begin any work at a shallower level,or before we can steal. This strategy prevents us from starting, and then preempting, anunrelated search. Implementing this change seemed to give us roughly a 10-15% speedup.We made this change when we wrote the �rst version of the chess code running onthe CM-5 under PCM. This version did not have the provably good scheduler that is apart of Cilk-1. This modi�cation is actually closely related to the busy-leaves propertydescribed in Section 3.6. At the beginning of this section, we described the situation wewere concerned with, namely a case where a search of position Q was preempted in orderto continue working on the search of an unrelated position P . In this example the searchof Q was e�ectively a nonbusy leaf. Using the provably good scheduler, such a nonbusyleaf cannot occur: When the search of P is re-enabled, the processor that enables thesearch of P would steal that search and continued working on it, so P would not interferewith the search of Q. Since the situation that level waiting prevents can not occur witha provably good scheduler, the level-waiting change was removed from the scheduler whenwe made the scheduler provably good. The level-waiting modi�cation was used during the2The processor is likely to be out of work because none of the children at this level would have beenstolen if there were any work earlier in the queue. 100

1994 tournament, but not afterwards.Removing this change probably slightly hurt the performance of future versions of?Socrates. In order to obtain the guarantees provided by the provably good scheduler,a program must obey certain constraints. One of these is that the scheduler must be able tomigrate any thread to any processor. But as mentioned earlier, many threads are markednonstealable, which forces them to stay on the same processor on which they were cre-ated. Since not all threads can be migrated, the busy-leaves property no longer holds, andtherefore the situation described above can still occur. Eventually, we expect to rewritethe ?Socrates search code such that the performance guarantees of the scheduler do apply.Such a rewrite will put this concern to rest.4.4 Other Chess MechanismsThe previous section described issues that arose in getting the search routines to run inCilk, many of which led to changes in the Cilk system itself. This section describes otheraspects of the serial code that had to be modi�ed to run in a parallel system. These aspectsinclude the transposition table, detecting repeated moves, and debugging support.4.4.1 Transposition TableMost serial chess programs include a transposition table, which is basically a hash table ofpreviously evaluated positions. After a position is searched, we create (or update) a hashentry for this position. The information stored in this entry includes a depth, a score, amove, and a check key. The depth tells us how deep a search was done, the score tells usthe value of the position when searched to that depth, the move tells us what move achievesthis score, and the check-key is used for di�erentiating between two positions which hashto the same entry. Each position has a 64-bit hash key. Part of this key is used to decidewhat hash entry should be used for the key and part of the key is stored in the hash entryas the check key to distinguish between the many positions which may hash into the sameentry.Before searching a position we �rst check to see if it is already present in the transpositiontable with a depth greater than or equal to the depth to which we need to search. If so,then we have a score for this position, and we need not search further. Much of the time101

when we �nd a position in the transposition table, the depth is not su�cient for the currentsearch. But even in this case the table is still useful because it tells us the best move foundby a shallower search, and often the best move at a shallower depth is still the best movewhen searched to a deeper depth. By using the move stored in the hash table entry as ourpredicted best move, we increase our chances of accurately predicting the best move, which,as we saw in Section 4.2, greatly reduces the work and critical path of the computation.For ?Socrates we implemented a distributed transposition table in which entries werehashed across all the processor memories. When a thread begins a search of a position,the �rst thing it typically does is to lookup that position in the transposition table. Wehad a choice between implementing a blocking or a nonblocking interface to the table. In ablocking implementation, the thread performing the lookup sends o� a lookup request to theappropriate processor and busy-waits until the response arrives, at which point the threadcan continue. The obvious disadvantage of blocking is that we waste time busy-waiting. Ina nonblocking implementation, we break this thread into several threads. When the timecomes to do a lookup, a thread is posted on the processor that holds the entry. This threadperforms the lookup and sends the result back to the original processor, which enables athread that continues the search. This implementation has the advantage that no time isspent busy-waiting during a table lookup. But it has one big disadvantage, namely that itmay lead to many searches taking place on the same processor concurrently. Intermixingtwo or more searches on the same processor can cause both the work and the critical pathto increase. To avoid these increases we would have had to modify the scheduler to keepthe two computations separate. To avoid the complexity involved in such a modi�cation,we chose to implement a blocking transposition table.Since there is no way to implement this blocking mechanism using Cilk primitives, wedropped to a lower level and used the Strata active-message library [BB94]. We designedthe transposition table such that all accesses are atomic. For example, when a value is tobe put into the table, the information about the position is sent to the processor where theentry resides, and that processor updates the entry as required. Alternatively, we couldhave implemented a nonatomic update by performing a remote read of the entry, modifyingthe entry, and then doing a remote write. Nonatomic updates would have required moremessages and would have required us to lock the entry while the update was in progress, orrisk losing some information if two update operations overlapped.102

To determine how much the busy-waiting hurts us, we instrumented our code to measurethe time spent busy-waiting. Our experiments showed us that the mean time to do acomplete lookup was under 1700 cycles, which worked out to about 7% of the executiontime. Not all this time is wasted however, while busy-waiting we poll the network so wemay spent part of this time responding to arriving messages. But our analysis gives us anupper bound on the cost of busy-waiting.When we ported the code to the Paragon this lookup time increased, since the Paragonhas a larger overhead for using the network. To reduce the impact of doing a global lookup,we do other work while waiting for a lookup to return. In particular, after starting a lookupwe perform a static evaluation of the position. This work may be wasted. For example, thelookup may �nd a valid score. In this case the search is complete and the static evaluationof the position is not needed. But lookups �nd valid scores less than 10% of the time, andso usually this work is not wasted.The last aspect of the transposition table we examine is subsumptions. The issue iswhat, if anything, do we do if two independent searches are concurrently searching thesame position (i.e., one search \subsumes" the other). For example, Processor P1 beginsa search of Position B, and before it completes and writes its result into the hash table,Processor P2 begins another search of Position B. In this situation, part of the search isbeing duplicated. In serial code these searches are performed sequentially, so this problemdoes not occur.We considered trying to avoid this overhead in the following manner. When a searchbegins, if the transposition table lookup fails, an entry is created for that position, andit is marked as \search in progress." Then, if another lookup occurs on this position, weknow that a search is already being done. We would then have the option of waiting forthe earlier search to complete.We chose not to implement this mechanism, in part because implementing it would havebeen somewhat complicated. Moreover, it raised several issues of which we had no clearunderstanding. For example, when we are about to abort a search, is it necessary to �rstcheck to see if anyone else is waiting for the results of this search? And if someone is waitingdo we still abort the search? Another unanswered question involves how to decide when towait: If a position is already being searched to depth d, and we want to search it to depthd � 1, do we wait for the deeper search? If we don't wait, we are doing extra work, and103

if we do wait, we may wait much longer than if we had just done it ourselves. In order toestimate how much duplicate work was being performed, we instrumented our program inthe following way. Each time we completed a search and were about to write the hash tableentry, we �rst did a hash table lookup to see if we would get a hit if we began the searchnow. If so, then someone else must have completed a search of this node during the timesince we began the search. We found that this occurred less than 1% of the time. This ledus to believe that subsumptions were not causing us to waste a signi�cant amount of work.Furthermore, we had implemented a similar mechanism for the earlier StarTech program,and it sometimes sped the program up, and sometimes slowed it down. Consequently, wedecided not to implement this mechanism for ?Socrates.4.4.2 Repeated MovesTo fully describe a position in a chess game, we need more than just a description of whereeach piece is on the board. Some history is needed as well. For example, we need to knowwhether or not the king has moved. If it has, then we cannot castle, even if the king movesback to its original position. This sort of information can easily be stored in a few bits inthe state so maintaining it causes no di�culty.Other required history can not be stored so easily. In chess if the same position isrepeated 3 times, then the game is a draw. Similarly if 50 moves are made by each playerwithout an irreversible move being made, the game is a draw3. To handle these cases weneed to keep track of all moves since the last irreversible move. (Once an irreversible moveis made no earlier position can be repeated.) We keep track of these moves by adding anarray of positions to our state structure. This array contains all the positions, representedby their 64-bit hash key, since the last irreversible move.This array greatly increases the size of the state structure (from about 160 bytes tonearly 1000 bytes). For a serial program the size of the state may not be signi�cant,since the code can just modify and unmodify the same state structure. For parallel code,however, it is often necessary to make copies of the state, and so a large state can slowdown the program. To reduce the overhead of copying the state structure, we copy only themeaningful part of the repeated-position array. Since the average length of this portion of3An irreversible move is one which cannot be undone, that is, one which captures a piece or moves apawn. 104

the list is quite small (under 2), this copying adds very little overhead.4.4.3 DebuggingOne di�culty in writing a parallel application of this complexity is debugging. Debuggingis especially di�cult for nondeterministic applications such as ?Socrates. In order to makeit easier to debug our code, we make liberal use of `assert' statements. When debugging isturned on, assert statements ensure that conditions the programmer expected to be true,are in fact true. Not only does this methodology cause bugs to be detected sooner, it alsohelps pinpoint the cause of the bug.Initially, one of our biggest problems was making sure that the parallel version wasworking correctly. Most of the code is shared between the parallel and serial versions ofthe program. Part of the code, in particular the search algorithm, is not. The searchalgorithm includes not only the basic Jamboree search as described earlier, but also manychess speci�c heuristics with which we are often experimenting. We were often modifyingboth the parallel and the serial search algorithms and keeping them consistent was quiteerror prone. To test if the versions are equivalent, simply running the parallel and serialversions of the code and comparing the results is inadequate, since if the parallel version wasonly slightly di�erent from the serial version, the two versions would still usually producethe exact same answers. One method we occasionally used in order to test whether bothversions were identical was to run the parallel code on one processor and run the serial codeand make sure they both searched exactly the same number of positions. Unfortunately, wedid not always do this check often enough and at one point so many minor variations hadcrept in that we wound up spending almost a week trying to make both versions consistentagain.One of the most useful assertions we added was to check at every node of the tree thatthe results of the parallel code were equivalent to the results of the serial code. In thedebugging version of the code, after the search of a position was complete we call the serialcode on the same position and compare the results. (We turned the hash table o�, sinceotherwise the serial code simply �nds the result in the hash table.) Since the program isnondeterministic, we do not require that the results are identical. Instead, we ensure thatboth of the returned scores are either both below alpha, both above beta, or identical ifbetween alpha and beta. Due to the large amount of duplicated searching, the resulting code105

rl0ZrZkZZ0Z0Zpo0pZ0Z0Z0ZZ0Z0aNO00o0ZPZ0OZ0Z0ZQZ0PO0Z0ZKZZ0Z0ZRZR PP
0Z0Z0s0jo0l0Zpo00obZ0Z0om0Z0S0MQ0Z0Z0Z0OZ0ZBZPZ00ZPZ0ZPZZ0Z0Z0ZK

0ZrZ0ZkZZqs0a0o0pZ0oPm0ZmpoPo0Z00Z0Z0Z0ZZ0A0ZPZ0PZBL0O0ZZ0Z0ZKSR
rZ0Z0skZZ0Z0ZpZ00m0Z0ZpLZ0o0Z0Z0pZ0Z0ZPZO0Z0ZNZ00lbZBO0OS0Z0S0J0(a) N�g7 (b) Re6 (c) R�g7 20 (d) Ra2rmbZkZ0sopZ0lpop0Z0o0m0ZZ0opZ0A00aPZ0Z0ZZ0M0O0Z0PO0ZNOPOS0ZQJBZR

0Z0Z0Z0ZZ0Z0Z0Z00Z0j0o0Zo0ZBmPZ00Z0ZPM0ZZPZ0J0o00Z0Z0Z0ZZ0Z0ZbZ0
bZ0s0skZZ0l0ZpoppZnapm0ZZpZ0Z0Z00O0Z0Z0ZO0M0ONZ00A0ZQOPOZBS0ZRJ0

0ZkZ0Z0ZZ0o0Z0SppZpa0Z0ZZpZ0o0Z00Z0ZPZ0ZONZPZPZ00O0ZKO0sZ0Z0Z0Z0(e) a3 (f) .Nd3 (g) Ne4 (h) f4Figure 4-10: The 8 chess positions used in this chapter. Below each position is shownKaufman's \correct" move for that position. All positions are \White to move", except forPosition (f).was extremely slow. But this version was used only for debugging and was an easy way todetect any di�erences between the serial and parallel searches and to pinpoint exactly wherethe di�erences lay. After we started using this check, keeping both versions identical becamemuch easier. We think this debugging strategy is applicable to many parallel programs, andnot just chess.4.5 Performance of Jamboree SearchJamboree search is di�cult to analyze for arbitrary game trees, because it is di�cultto characterize the tree itself, and the tree that is actually searched can depend on howthe work is scheduled. Unlike many other applications, the shape of the tree traversedby Jamboree search can be a�ected by the order of the execution of the work, sometimesincreasing the work and sometimes decreasing work. Thus, measurements of \critical pathlength" and \work" on a particular run may be di�erent than the measurements taken onanother run, because the trees themselves are di�erent. Although it is not clear preciselywhat \critical path" and \work" mean for the speculative Jamboree search, we have foundthat we can still use the measured critical path length and total work to tune the program.106

Our strategy is to measure the critical path and the work on a particular run, and totry to predict the performance from those measurements. We measured the program onthe eight problems shown in Figure 4-10. These problems were provided by ?Socrates teammember L. Kaufman, who is an International Master, For each problem the program wasrun to various depths up to those that allowed the program to solve the problem by gettingthe \correct" answer, as identi�ed by Kaufman. We also measured the program runningon a variety of di�erent machine sizes. Then we performed a curve �t of the data to aperformance model of the formTpredicted = c1 � WP + c1 � T1:As described in the previous chapter, we found that the performance can be accuratelymodeled as T � (1:067 � 0:0141)WP + (1:042 � 0:0467)T1 + 0 (4.1)with 95 percent con�dence. The R2 correlation coe�cient of the �t is 0.9994, and themean relative error is 4.05%. To us, these tight error bounds were quite amazing, becausechess is a very demanding application. Clearly, there are times during the Jamboree searchalgorithm when not much parallelism exists. The low coe�cients on Equation 4.1 indicatethat the program quickly �nishes the available work during the times of low parallelism,and when there is much parallelism the program e�ciently balances the workload.We found that the work increases by about a factor of 2 to 3 as the number of processorsincreases from 1 to 128 processors, and that the critical path length is fairly stable as thenumber of processors increases. Most of the di�culty of predicting the performance of thechess program comes from the fact that the amount of work is variable. When the programis run on large machines, the processors end up expanding subtrees that are pruned in theserial code. We found that the better the move ordering, the lower the critical path andthe less total work is performed. Thus, the move ordering heuristics of a chess program,which are important for serial programs because it reduces the work, are doubly importantfor our parallel algorithm, because it also decreases the critical path length.We also found that the critical path does not limit the speedup for our test problems, orfor the program running under tournament conditions. By using critical path to understandthe parallelism of our algorithm, we are able to make good tradeo�s in our algorithm107

design. Without such a methodology it can be very di�cult to do algorithm design. Forexample, Feldmann, Monien, and Mysliwietz �nd themselves changing their Zugzwang chessprogram to increase the parallelism without really having a good way to measure theirchanges [FMM93]. They express concern that by serially searching the �rst child beforestarting the other children, they may have reduced the available parallelism. Our techniqueallows us to state that there is su�cient parallelism to keep thousands of processors busywithout changing the algorithm. We can conclude that we should try to reduce the totalamount of work done by the program, even if it reduces the available parallelism slightly.Being able to measure the work and critical path of a run was instrumental to our abilityto tune the program. We experimented with some techniques to improve the work e�ciency,and found several techniques to improve the work e�ciency at the expense of increasing thecritical path length. For example, on StarTech we considered a algorithm change that wouldvalue the �rst two children before starting the parallel tests of all the remaining children.The idea is that by valuing more children before spawning the parallel tests, it becomesmore likely that the we will be able to prune some of the remaining children. When wemeasured the runtime on a small machine, the program ran faster, but on a big machinethe runtime actually got worse. To understand why, we looked at the work and critical pathlength. We found that this variant of Jamboree search actually does decrease the total work,but it increases the critical path length, so that there is not enough available parallelism tokeep a big machine busy. By looking at both the critical path length and the total work,we were able to extrapolate the performance on the big machine from the performance onthe little machine. Consequently, we avoided introducing modi�cations that would hurt usin tournament conditions.4.6 History of ?SocratesWe conclude this chapter by giving a brief history of the ?Socrates program.We began work on this program in May of 1994. Don Dailey and Larry Kaufmanof Heuristic Software provided us with a version of Socrates, their serial chess program.During May and June we parallelized the program using Cilk, focusing mainly on the searchalgorithm and the transposition table. During June, Dailey visited MIT to help tune theprogram, but we spent most of June simply getting the parallel version of the program to108

work correctly. In late June, we entered ?Socrates in the 1994 ACM International ComputerChess Championship in Cape May, New Jersey. We ran the program on the 512-node CM-5 at the National Center for Supercomputing Applications (NCSA) at the University ofIllinois. Despite the fact that we had begun working on the program less than two monthsearlier, the program ran reliably and �nished in third place.The chess program then sat pretty much untouched for the next 9 months. In March1995, Don Dailey again joined us to work on the chess portion of the code and we startedpreparing for the May 1995 tournament. The 1995 tournament was the World ComputerChess Championship held in Hong Kong. The World Computer Chess Championship isheld every three years and, unlike the 1994 tournament, which �elded mostly teams fromthe US, this tournament attracts the best computer chess systems from around the world.We had our work cut out for us.For this tournament we were able to get access to the 1824 node Intel Paragon [Int94]at Sandia National Labs. We began by porting Cilk to the Paragon, with the help of RolfRiesen of Sandia. The port of Cilk was fairly easy, although in the process we exposedseveral bugs in the Paragon's SUNMOS operating system. Parts of the original ?Socratescode, in particular the transposition table, made direct use of the CM-5 communicationhardware. These portions of the code had to be rewritten. However, most of the code,including the abort mechanism, worked without modi�cation, and in short order we had aworking chess program.Our �rst test of the program came in late March when, at the Maryland Theory Day,we played International Grandmaster Gennady Sagalchik. Grandmaster Sagalchik has aUCSF rating of 2568 and is the 35-th highest ranked player in the US; but we have 1824Intel i860s. The game was played under standard tournament time controls, 2 hours for the�rst 40 moves, then 20 moves per hour. Sagalchik drew White and took the early lead inthe game. ?Socrates played well and came back and eventually gained an advantage. On its55th move ?Socrates promoted its pawn to a queen, and Sagalchik lost shortly thereafter.After this game an informal speed game was played and ?Socrates won again.Although ?Socrates won the game, we did have a serious problem during the game. Themachine crashed 4 or 5 times during the early part of the match. Fortunately, Sagalchikgraciously allowed us to restart each time without losing any time on our clock, so it did notsigni�cantly hurt our performance in the game. (Although the stops probably did hurt his109

concentration.) At least one of the crashes was caused by bad hardware. The rest appearedto be software problems due to incorrect settings of some OS parameters, and changingsome of these parameters seemed to solve the problem.Two months later we competed in the World Computer Chess Championship. In a sur-prising pairing, we played IBM's Deep Blue Prototype, the heavy favorite, in the �rst roundof this �ve round tournament. Deep Blue was White and took the early lead. ?Socratesheld on for a while, but eventually succumbed to Deep Blue. At this point we �gured weneeded to win all four of our remaining games in order to have a chance for second place.We won the next three games fairly easily defeating the programs Dark Thought, Lchess,and Rebel.Going into the �nal round there were four programs left with a chance to win. DeepBlue was the leader, with ?Socrates and Fritz a half point behind, and Hitech a further halfpoint behind. Fritz was running on a standard Pentium while the other three had muchmore powerful hardware. (Hitech uses special-purpose chess hardware, while Deep Blue hasparallel special-purpose chess hardware.) In a very surprising upset Fritz quickly defeatedDeep Blue. Deep Blue's opening book ended one move to soon, and their �rst move out ofthe book was a terrible blunder. Given Deep Blue's loss, a win in our game against Hitechwould leave us tied for �rst. As seemed to happen in many of our games, we got o� to abad start, and Hitech had the early advantage. For a while it looked pretty grim. But wewere outsearching Hitech by several ply and eventually this advantage began to show as?Socrates's evaluation of our position started to improve slightly on each move. Eventuallywe gained a big advantage and Hitech resigned.This left us in a tie for �rst place. At 9pm, shortly after our Hitech game ended, we begana tiebreak game against Fritz which lasted til 3am. We drew White for this playo� gamebut again got o� to a poor start and after the opening \Fritz had a distinct advantage."4For a large number of moves Fritz' advantage stayed fairly constant, with an unusually largenumber of each sides moves being predicted by the opponent. However, as the endgameapproached, Fritz began to take advantage of its edge and was able to start pushing itspawn towards promotion. After it was apparent to both programs that the pawn could notbe stopped, we resigned.Although we lost the playo�, we did �nish a respectable second. Our program ran4According to D. Beal in a description of the tournament in [Bea95].110

reliably throughout the tournament, with the only crashes being due to memory ECCerrors. One area for improvement to ?Socrates that this tournament pointed out is ouropening, as we fell behind early in several of our games.The ?Socrates program has been an exciting program to work on, and it has met thegoals we had in mind when we �rst decided to work on a computer chess program. ?Socrateshas allowed us to showcase the performance, stability, expressibility, and portability of theCilk system. In addition ?Socrates has helped us improve the Cilk system by pointing outseveral useful modi�cations to the system. The ?Socrates program also pointed out to usthat programming in continuation passing style was not as easy as we had �rst thought. Thepseudocode for the Jamboree search algorithm takes one procedure and only twenty lines.The Cilk code, however, utilizes over a dozen di�erent threads to implement the search code,increasing to almost two dozen if the code for aborting computations is included as well.Our experience with ?Socrates helped bring the issue of programmability to the forefront.The next chapter, as well as Chapter 7, deals with this issue directly.

111

112

Chapter 5
Cilk-2: Programming at a HigherLevel
In this brief chapter we look at some modi�cations to the Cilk language and runtime systemintended to make Cilk programs easier to write.The PCM and Cilk-1 systems were successful, in part, because they took the basemessage-passing system and allowed the user to program at a higher level. The user canwrite his program in terms of threads, and the system takes care of all the details and pro-tocols needed to execute a multithreaded program on the underlying machine architecture.The Cilk-1 style of coding, where the user explicitly creates and wires together threads,o�ers the programmer much exibility. But this exibility comes at a price, namely thedi�culty of writing such codes. Users must write their codes in an explicit continuationpassing style, and a single sequential C procedure may need to be broken into many separatethreads to express it in Cilk-1. Although some �nd this a natural way to program, many�nd it confusing. Even when the code is straightforward, it is still often tedious to writeand read such codes.This chapter describes Cilk-2 which extends Cilk-1 by adding simple language extensionsthat allow users to write codes at a higher level. To make writing Cilk programs easier, wewanted to relieve the programmer of the task of writing a program in continuation-passingstyle. Just as PCM raises the level of programming and hides the details of the lower-levelmessage-passing system, we wanted to raise the level further and hide the details of thethread-based runtime system. Of course, we also wanted to do this without destroying the113

performance guarantees that Cilk provides. We attempted to choose a set of higher-levelprimitives that would allow a wide range of programs to be expressed. We appear to havebeen successful, as these language extensions have been su�cient for us to rewrite most ofour Cilk-1 applications in the Cilk-2 style. The only exception is the chess program which,due to its speculative nature, cannot be expressed in Cilk-2 style without resorting to thelower-level Cilk-1 mechanisms. The Cilk-2 language includes all the Cilk-1 mechanisms, sochess, as well as any other Cilk-1 code, can still be expressed in the Cilk-2 system. However,when we talk about a \Cilk-2 style" code, we mean those codes written using only the new,higher-level, primitives. So we say that chess cannot be written in Cilk-2 style, even thoughit can be written in the Cilk-2 system. In Chapter 7 we examine further enhancements thatallow speculative applications, such as chess, to be written at a higher level.Although we wanted to raise the level of programming so that users need not have to dealwith threads, we still wanted to have an \explicitly parallel" language where the user mustexplicitly specify what can be done in parallel. We did not want to design an \implicitlyparallel" language where the system or compiler would try to deduce what can be run inparallel. The Cilk system may be a good target language for a parallelizing compiler, butdoing a good job at building such a compiler is a much more di�cult task than we wereplanning to undertake. Another part of the reason we did not want an implicitly parallellanguage was because we believe that to write an e�cient parallel program the user mustthink about parallel algorithms. Having to explicitly specifying what can be done in parallelis one way to force a user think this way. Even when using an implicitly parallel system,a programmer must still have a good understanding of which portions of his code will runin parallel. If we had tried to build an implicitly parallel system, and did only a halfwaydecent job, then it might often be unclear to the programmer what would be executed inparallel. This would result in a system much harder to program than an explicitly parallelsystem.In this chapter we �rst look at a simple algorithm expressed in Cilk-1 in order to highlightsome of the di�culties of programming in the Cilk-1 language. Then, we describe the Cilk-2language and its implementation. We then revisit the example algorithm and see how Cilk-2makes the example algorithm much easier to express.The Cilk-2 system described in this chapter represents joint work with other membersof the Cilk team: Robert Blumofe, Matteo Frigo, Bradley Kuszmaul, Charles Leiserson,114

Rob Miller, Keith Randall, and Yuli Zhou. I was involved in making the design decisionsdescribed in this chapter, but much of the implementation was done by others: Rob Millerimplemented the Cilk-to-C preprocessor, and most of the runtime system modi�cations weremade by Matteo Frigo and Keith Randall.5.1 A Cilk-1 Example: KnaryTo highlight some of the di�culties in programming in Cilk-1, consider the knary pro-gram that was introduced in Chapter 3. Knary was introduced as a synthetic benchmarkwhose parameters could be set to produce a variety of values for work and critical path.knary(n,k,r) generates a tree of branching factor k and depth n in which the �rst r chil-dren at every level are executed sequentially and the remainder are executed in parallel.At each node of the tree, the program runs an empty \for" loop for 400 iterations, simu-lating the work that would be done in an actual program. The knary program counts thenumber of leaves of this tree, so the program is in e�ect a complicated way to compute thevalue of kn�1. There are faster ways to compute kn�1, of course, but we are interested inthis program because of its control structure. At a high level, the control structure of thisprogram is reminiscent of the chess program, where, when searching a position, we �rst dosome recursive searches one at a time, and then spawn o� a bunch of searches in parallel.The description of this program is quite simple, and we would hope that its implemen-tation would be also. This program could be written in many ways, but we have chosen topresent the code as it was originally written for the performance tests shown in Table 3.1 ofChapter 3, and �rst presented in [BJK+95]. As such, this code does not necessarily repre-sent the \best" way of implementing knary, but shows how an experienced Cilk programmerquickly coded up this application.Figure 5-1, which is split across two pages, shows the knary code. Four di�erent threadswere used in this version of knary. The �rst is the knary thread which performs someimitation work and then spawns o� knary serial, which performs NumSerial serial sub-calls, and knary parallel which performs NumParallel parallel sub-calls. Notice that, asis common in continuation-passing style code, knary performs its two spawns in the reverseof the order in which the threads will execute. The routine knary parallel, which is thesecond to be executed, must be spawned �rst, so that when knary serial is spawned, it115

can be told where to pass its results. The thread knary serial calls itself repeatedly inorder to spawn o� the next serialized call and to sum the results from the previous call. Thethread knary parallel enters a loop to spawn o� the parallel calls of knary, and chainsthe results of these calls through sum in order to sum the results.
It is not important for the reader to understand all the details of this implementation.What is important to notice is that although the description of knary is quite simple, theimplementation is clearly not. We should further point out that this implementation cheatsslightly in that it takes advantage of the fact that knary is called as a stand alone programand not as part of a larger program. This implementation sets the value of NumSerialand NumParallel in the main routine (not shown), which executes on all processors whenthe application begins. The program should really be written so that these values arepassed as arguments to the knary thread. Although passing NumSerial and NumParallelcould easily be done, these values would also need to be passed through the knary serialand knary parallel threads, further increasing the argument count of these threads andmaking the code even harder to read.
Part of the reason that Cilk-1 code can appear so convoluted is that threads are not easilycomposable. Consider what happens to the knary code if we want to perform real work atthe beginning of each knary thread, instead of just having imitation work. Assume there issome function work() that performs some work and returns a value indicating whether thiscall of knary should return immediately or should continue as usual. Again, this control issimilar to part of the chess search algorithm. If work is a standard C procedure, this changeis easy to make. We just replace the empty loop in knary with a call to work followed by atest to see if we should perform a send argument and return. If work is not a C procedure,but is a Cilk thread, then this change is more complex. The knary thread must now bebroken into two threads, call them knary-1 and knary-2. The knary-1 thread �rst does aspawn next of knary-2 and then spawns the work thread. The knary-2 thread receives theresult of the work thread, and depending on this result, either returns a value or continuesas the original knary thread does. 116

/* knary(n, k, r)* This code is a recursive program similar to fib that spawns a tree* of depth 'n and branching factor 'k' and counts all the leaves.* Thus computing (k)^(depth-1) .** The first 'r' of the sub-trees are spawned serially.* The rest of the sub-trees are spawned in parallel.*//* These two values are set on all processors by the main() routine (not* shown) according to the program inputs.*/int NumSerial; /* set to r */int NumParallel; /* set to n-r *//*** Computes knary of depth 'depth' ***/thread knary(cont k, int depth){cont serial_result;/* Do some work in each thread. */int i;dummy = (int)&i;for(i=0;i<400;i++){}if (depth<2) {SendWordArgument (k, 1);}else{spawn_next knary_parallel(k,depth,?serial_result, NumParallel);spawn_next knary_serial(serial_result,depth,0,0,NumSerial);}}thread sum (cont k, int x, int y){ SendWordArgument (k, x+y);} /* ... continued on next page ... */Figure 5-1: Cilk-1 code for knary.
117

/* Calls knary 'num_serial_left' times.* Each subcall is spawned serially.* Returns the sum of all the calls.*/thread knary_serial (cont k, int depth, int result1, int result2, int num_serial_left){ int result = result1 + result2;if (num_serial_left==0){SendWordArgument(k,result);}else{cont child_result;spawn_next knary_serial(k, depth, ?child_result, result, num_serial_left-1);spawn knary(child_result,depth-1);}}/* Calls knary 'num_left' times.* All calls are spawned in parallel.* Returns the sum of all the calls.** Rather than spawning off num_left sums, we could use a single thread* to sum all the results. Instead this method was chosen because* it performs the same number of spawns as knary_serial.*/thread knary_parallel (cont k,int depth, int result_from_ser, int num_left){ int i;cont c_left,c_right;if(num_left==0){SendWordArgument(k,result_from_ser);}else{for (i=0;i<num_left-1;i++){spawn_next sum(k, ?c_left, ?c_right);spawn knary(c_left,depth-1);k = c_right;}spawn_next sum(k, ?c_left, result_from_ser);spawn knary(c_left,depth-1);}} Figure 5-1 continued: Cilk-1 code for knary
118

5.2 The Cilk 2 SystemThe goal when designing Cilk-2 was to allow the user to program in the traditional call-return style while still using the same e�cient runtime system of threads wired together ina continuation-passing style. The natural way to implement such a system is to specify aset of higher-level parallel constructs which a preprocessor can translate into Cilk-1 stylethreaded code. These higher-level constructs need to be powerful enough to express mostexisting programs without resorting to writing threaded code. At the same time theseconstructs need to have a relatively straightforward transformation into threaded code.In order to perform such a translation, we needed a more sophisticated preprocessorthan the simple macro preprocessor originally used with Cilk-1. What we implementedwas a new type-checking preprocessor for Cilk. This preprocessor was implemented by RobMiller and is described in more detail in [Mil95]. This preprocessor is based on C-to-C, atool which parses a C program and turns it into an abstract syntax tree (AST). C-to-Cthen performs type checking and dataow analysis on this AST, and then uses the ASTto regenerate a C program. C-to-C was extended to create Cilk-to-C. Cilk-to-C parses aprogram written in Cilk and creates an extended \Cilk AST" which describes the program.A Cilk AST can include constructs not allowed in a C AST. Cilk-to-C then performs typechecking and other analysis on this Cilk AST, annotating the nodes of this tree with extrainformation. Cilk-to-C then transforms the Cilk AST into a pure C AST, removing anyCilk-speci�c constructs by replacing them with calls to Cilk runtime system primitives.After this phase the AST can be used to generate a C program.An alternative to building a preprocessor was to implement a full blown Cilk compiler.We chose the former option because building our own compiler would have been a muchlarger task, and would have resulted in a system that was less portable. The Cilk-to-Cpreprocessor allows us to do much of what we would want a compiler to do, without thedrawbacks of building a compiler.The �rst version of Cilk-to-C was written for the Cilk-1 language, and it replaced theoriginal macro preprocessor. This new type-checking preprocessor bene�ts the Cilk-1 pro-grammer in two ways. First, Cilk-to-C detects errors, particularly type errors, that theoriginal preprocessor cannot detect. With the original preprocessor, some of these errorsare detected by the C compiler, so the error messages refer to the processed code, instead of119

the user's source code. Since the user may be unfamiliar with the processed code, the errormay be di�cult for the user to understand. Other type errors were not detected at all by theoriginal Cilk-1 system, and would lead to an incorrect program. Since Cilk-to-C performstype checking, not only is it able to detect these errors, but it can point to the location inthe original source code where the errors occurred, thus making the errors much easier to�x. The other bene�t of a type-checking preprocessor for Cilk-1 is that it makes the lan-guage somewhat simpler. The runtime system has several primitives (SendWordArgument(),SendCharArgument(), etc.) for sending arguments to closures. Previously the user had tochoose one of several such functions depending on the type of argument that was being sent.The Cilk-1 language now has only one such function, namely send argument(), which isused for sending arguments of any type to other closures. The type-checking preprocessorknows the type of the argument being sent and automatically generates a call to the correctruntime primitive.Once we had a preprocessor powerful enough to deal with higher-level constructs, wehad to decide just what higher-level constructs we wanted. While writing applications, wenoticed common paradigms that appeared in many Cilk codes. The most common paradigmwas spawning o� several child threads and creating a successor thread to receive the valuescomputed by these children. It was this paradigm that we chose to support in Cilk-2. Anexample of the Cilk-2 language can be seen in Figure 5-2, which shows the code for �b, whichrecursively computes the nth Fibonacci number. The Cilk-2 code for �b is very similar tothe C code for �b, containing only a few additional constructs. The �rst addition is thekeyword cilk before the procedure de�nition. This keyword indicates that the followingprocedure is a Cilk procedure, not a standard C procedure. The next addition is that thetwo subcalls to the �b procedure are preceded by the keyword spawn which indicates thatthese procedures can be executed in parallel. The �nal addition is the sync statement. Thesync statement indicates that the procedure is to be suspended at the sync point until allspawned children have completed. Consequently, the code following the sync can safely usethe variables x and y, which receive their values from the spawned children.We considered several choices for how to express synchronization in Cilk-2 before decid-ing on this one. The other options we considered incorporated mechanisms which gave theuser more control over the synchronization process. In particular we considered a mecha-nism essentially the same as join variables in Cid[Nik94]. In this proposal each spawn would120

cilk int fib(int n){ if (n<2) return(n);else{ int x,y;x = spawn fib(n-1);y = spawn fib(n-2);sync;return(x+y);}} Figure 5-2: A Cilk-2 procedure to compute the nth Fibonacci number.have a join counter associated with it. At a sync point the user would need to specify ajoin counter to wait on. Waiting on a join counter would indicate that the procedure shouldsuspend until all children spawned with that join counter have completed. Another pro-posal required the user to explicitly specify at each sync point precisely which variables hewanted to wait for.All these other proposals had the advantage that they gave the user more control oversynchronization, but in the end we decided we did not want to give the user that control.In most cases this extra control is unneeded and just makes the code messier. With theexception of chess, all the Cilk programs we have written can be expressed in Cilk-2 style.If we had chosen one of these other proposals, all of our programs would have had to dealwith the extra details exposed by that proposal, but only the chess program would havebene�ted from it. (And even these proposals were not su�cient to completely remove theneed for the chess program to resort to the lower-level Cilk-1 mechanisms.)Also, with the mechanism we chose, all programs written in Cilk-2 meet the criteriafor Cilk's performance guarantees as described in Chapter 3. Some of the other proposedmechanisms did not. The last advantage of the chosen mechanisms is that since they givethe programmer less control, they are simpler to implement. Simplicity of implementationis not why we chose this path, but it is a nice feature anyway.Before concluding this section, we give a brief overview of the implementation of Cilk-2.We focus on what constructs Cilk-2 code is translated into. See [Mil95] for details on howthis transformation is performed. 121

The idea for transforming Cilk-2 style code into threaded code is fairly straightforward.Since the runtime system deals with threads, not procedures, a Cilk-2 procedure must bebroken up into a set of threads. The sync points form the boundaries for these implicitlyde�ned threads. In e�ect we treat a sync like a spawn next, where the thread being spawnedis the rest of the procedure after the sync.One could try to translate Cilk-2 code directly into Cilk-1 style code. Using this trans-lation, the �b code in Figure 5-2 would then be transformed into code almost identical tothe �b code shown in the Cilk-1 chapter. Although this translation would work �ne for�b, in general it would be more di�cult. In Cilk-1 code, when spawning a child, that childmust be passed a continuation which points to the \rest of the procedure", therefore thespawn next of the rest of the procedure must occur before any children are spawned. Whentranslating Cilk-2 code, having to perform the spawn next �rst is troublesome because async may be nested within a conditional or a loop. Therefore when executing a proce-dure, until we actually reach a sync, we may not know which sync we will reach. When achild is spawned, not knowing which sync will be reached makes it di�cult to create thecontinuation that must be passed to that child.To solve the problem of not being able to create a continuation to pass to a child, Cilk-2is translated such that all the threads that form a procedure share the same closure. Thisclosure is sometimes called a frame. When a thread is spawned, the current frame is usedas the frame to which the thread should send its result. When a sync is reached, all thevariables that are needed after the sync are stored into the frame. When the next thread ofthe procedure is executed, the �rst part of that thread has code to read the needed variablesback out of the frame. Using only one frame has e�ciency advantages as well. Only oneframe needs to be allocated and initialized per procedure, rather than one frame for everythread of a procedure. Also, there may be variables which are written into the frame once,and then used by several threads of that procedure. If separate closures were used for everythread, then these variables would have to be copied from closure to closure.5.3 Knary RevisitedLet us now go back to the knary example and see how it can be expressed in Cilk-2.Figure 5-3 shows the knary code as written in Cilk-2. Instead of the four threads used by122

/* knary(n, k, r) */cilk int knary(int depth, int num_serial, int num_parallel){/* Do some work in each thread. */int i;int dummy = (int)&i;for(i=0;i<ExtraWork;i++){}if (depth<2) {return 1;}else{int results[MAX_PARALLEL];int answer = 0;/* Perform the serial recursive calls, summing in the result */for (i=0;i<num_serial;i++){child_result= spawn knary(depth-1);sync;answer += child_result;}/* Spawn off the parallel calls */for (i=0;i<num_parallel;i++){results[i] = spawn knary(depth-1);}sync;/* sum the results */for (i=0;i<num_parallel;i++){answer += results[i];}return answer;}} Figure 5-3: Cilk-2 code for knary.
the Cilk-1 code, the Cilk-2 code requires just one procedure. This procedure contains aloop to spawn o� the �rst num serial sequential children, followed by a loop to spawn ofthe num parallel parallel children. The main di�erence between these two loops is thatthe loop for the sequential children has a sync statement inside the loop while the loop forthe parallel children has a sync statement only after the loop.123

Composing Cilk procedures in Cilk-2 is much easier than composing threads in Cilk-1. Earlier, we gave the example of making the following modi�cation to knary. Insteadof performing make-work, knary was supposed to call a function, work(), that performssome work and may return a value, stop, indicating that this call of knary should returnimmediately instead of continuing as usual. In Cilk-1 this change is easy to implement ifwork() is a C function, but it requires more e�ort if work() is written as a Cilk thread.In Cilk-2, this code is easy to write even if work() is a Cilk procedure. We just add thefollowing code to the beginning of knary:i = spawn work();sync;if (i==STOP) return(0);This code is almost the same as what would be required if work() were a C procedure. Theonly di�erence is the addition of spawn and sync.5.4 ConclusionThe Cilk-2 language allows the programmer to write his application at a higher level us-ing the familiar call/return semantics. Our type-checking preprocessor then automaticallybreaks up the user's code into a multithreaded program which can be executed with ourwork-stealing scheduler, thereby providing the user with the time, space, and communica-tion performance guarantees described in Chapter 3. Although the Cilk-2 language is morerestrictive than Cilk-1, we were able to rewrite almost all existing Cilk-1 programs usingthe new, simpler, Cilk-2 syntax.The only application that cannot be expressed using the Cilk-2 syntax was ?Socrates.We cannot express ?Socrates because it performs speculative computations, and becausesome of these speculative computations are aborted. For most algorithms, the order inwhich the user's threads are executed does not e�ect the amount of work performed by theprogram. But for speculative algorithms, the amount of work the program performs candepend greatly on the order in which threads are executed. Cilk-1 contains features suchas priority threads, which are instrumental in implementing speculative searches e�ciently.These features are not reected in the higher-level Cilk-2 constructs, so the algorithmsthat used theses features cannot be e�ciently written using only the higher-level Cilk-2 constructs. Another reason ?Socrates cannot be written entirely with the higher-level124

Cilk-2 constructs is the ?Socrates sometimes kills o� previously spawned threads. The?Socrates code is able to abort existing threads only because Cilk-1 contains su�cient low-level primitives, such as migration and nonstealable threads, to allow the user's code tokeep track of all the spawned threads. Again, these low-level features are not available viathe higher-level Cilk-2 constructs. In Chapter 7 we will describe some further high-levelextensions to Cilk which will allow the chess program to be written without resorting tothe lower level Cilk-1 primitives.

125

126

Chapter 6
Cilk-3: Shared Memory for Cilk
One of the biggest shortcomings of the Cilk systems described so far is that it is di�cultto write applications where there are signi�cant amounts of data shared throughout thecomputation. The improvements to the Cilk system described in Chapter 5 make it mucheasier to express algorithms in Cilk, but they do nothing to increase the range of applicationsthat can be expressed. In Cilk all data that is shared by several threads must be explicitlypassed among those threads. Consequently, writing e�cient programs that deal with largestructures is di�cult. The Cilk applications we have described so far mostly consist oftree-like algorithms where very little data needs to be shared between di�erent subtrees.Those applications that do need to share data throughout the computation do so only bygoing outside of Cilk. For example, the global transposition table in the ?Socrates programwas implemented directly with active messages.The shared-memory system described in this chapter is an attempt to alleviate thisproblem. With this system we can implement data-intensive applications such as matrixmultiply, LU-decomposition, and Barnes-Hut. Rather than attempting to build a sharedmemory system that can solve all problems, we focused on building one that would besu�cient for the types of problems that are naturally expressed in a multithreaded pro-gramming environment such as Cilk. Instead of using one of the consistency models derivedfrom sequential consistency, we use our own, relaxed, consistency model. Our model, whichwe call \dag consistency," is a lock-free consistency model which, rather than forcing a totalorder on global memory operations, instead ensures only that the constraints speci�ed bySome of the work described in this chapter will be reported on in a paper by Robert Blumofe, MatteoFrigo, Charles Leiserson, Keith Randall and myself [BFJ+96].127

the computation dag are enforced. Because dag consistency is a relaxed consistency model,we have been able to implement coherence e�ciently in software for Cilk. We dubbed theCilk-2 system with dag-consistent shared memory \Cilk-3."This Cilk shared memory system was designed by members of the Cilk team: RobertBlumofe, Matteo Frigo, Charles Leiserson, Keith Randall and myself. Matteo Frigo, KeithRandall and I implemented the CM-5 version of the system. Robert Blumofe is implement-ing a version of this system for networks of workstations. Charles Leiserson and I devisedthe correctness proof given in Section 6.3.6.1 IntroductionArchitects of shared memory for parallel computers have traditionally attempted to supportLamport's model of sequential consistency [Lam79] which states:A system is sequentially consistent if the result of any execution is the sameas if the operations of all the processors were executed in some sequential order,and the operations of each individual processor appear in this sequence in theorder speci�ed by its program.Unfortunately, designers have found Lamport's model di�cult to implement e�ciently, andhence relaxed models of shared-memory consistency have been developed [DSB86, GS93,GLL+90] that compromise on semantics for a faster implementation. By and large, all ofthese consistency models have had one thing in common: they are \processor centric" in thesense that they de�ne consistency in terms of actions performed by physical processors. Inthis chapter, we introduce \dag consistency", a lock-free, processor-independent consistencymodel which can be implemented e�ciently for multithreaded programming environmentssuch as Cilk.To illustrate the concepts behind dag consistency, consider the problem of parallel matrixmultiplication. One way to program matrix multiplication is to use the recursive divide-and-conquer algorithm shown in Figure 6-1. To multiply one n� n matrix by another, wedivide each matrix into four n=2 � n=2 submatrices, recursively compute some productsof these submatrices, and then add the results together. This algorithm lends itself to aparallel implementation, because each of the eight recursive multiplications is independentand can be executed in parallel. 128

C
x =

D

E F

G H

I J

A B

+

Rx =

CG CH

EG EH

DI DJ

FI FJFigure 6-1: Recursive decomposition of matrix multiplication. The multiplication of n� nmatrices requires eight multiplications of n=2 � n=2 matrices, followed by one addition ofn� n matrices.Figure 6-2 shows Cilk code for a blocked implementation of recursive matrix multipli-cation in which the (square) input matrices A and B and the output matrix R are stored asa collection of 16 � 16 submatrices, called blocks. All three matrices are stored in sharedmemory. The Cilk procedure matrixmul takes pointers to the �rst block in each matrix asinput, as well as a variable nb denoting the number of blocks in any row or column of thematrices. From the pointer to the �rst block of a matrix and the value of nb, the locationof any other block in the matrix can be quickly computed. As matrixmul executes, valuesare stored into R, as well as into a temporary matrix tmp.The procedure matrixmul operates as follows. Lines 3{4 check to see if the matricesto be multiplied consist of a single block, in which case a call is made to a serial routinemultiply block (not shown) to perform the multiplication. Otherwise, line 8 allocatessome page-aligned temporary storage in shared memory for the results, lines 9{10 com-pute pointers to the 8 submatrices of A and B, and lines 11{12 compute pointers to the8 submatrices of R and the temporary matrix tmp. At this point, the divide step of thedivide-and-conquer paradigm is complete, and we begin on the conquer step. Lines 13-20recursively compute the 8 required submatrix multiplications, storing the results in the 8disjoint submatrices of R and tmp. The recursion is made to execute in parallel by using thespawn directive, which is similar to a C function call except that the caller can continue toexecute even if the callee has not yet returned. The sync statement in line 21 causes theprocedure to suspend until all the spawned procedures have �nished. Then, line 22 spawnsa parallel addition in which the matrix tmp is added into R. (The procedure matrixadd isitself implemented in a recursive, parallel, divide-and-conquer fashion, and the code is notshown.) The sync in line 23 ensures that the addition completes before matrixmul returns.129

1 cilk void matrixmul(long nb, shared block *A, shared block *B,shared block *R)2 {3 if (nb == 1)4 multiply_block(A, B, R);5 else {6 shared block *C,*D,*E,*F,*G,*H,*I,*J;7 shared block *CG,*CH,*EG,*EH,*DI,*DJ,*FI,*FJ;8 shared page_aligned block tmp[nb*nb];/* get pointers to parts of original matricies */9 partition_matrix(nb, A, &C, &D, &E, &F);10 partition_matrix(nb, B, &G, &H, &I, &J);/* get pointers to places to put results */11 partition_matrix(nb, R, &CG, &CH, &EG, &EH);12 partition_matrix(nb, tmp, &DI, &DJ, &FI, &FJ);/* do multiplication subproblems */13 spawn matrixmul(nb/2, C, G, CG);14 spawn matrixmul(nb/2, C, H, CH);15 spawn matrixmul(nb/2, E, H, EH);16 spawn matrixmul(nb/2, E, G, EG);17 spawn matrixmul(nb/2, D, I, DI);18 spawn matrixmul(nb/2, D, J, DJ);19 spawn matrixmul(nb/2, F, J, FJ);20 spawn matrixmul(nb/2, F, I, FI);21 sync;/* add results together into R */22 spawn matrixadd(nb, tmp, R);23 sync;24 }25 return;26 }Figure 6-2: Cilk code for recursive blocked matrix multiplication. The callmultiply block(A,B,R) performs a serial multiplication of blocks A and B and places theresult in block R. The side length of each of these three matrices is nb blocks. The procedurematrixadd is implemented by a straightforward parallel divide-and-conquer algorithm.
130

M8M7M6M5M4M3M2M1

X Y Z

S

... ...

Figure 6-3: Dag of blocked matrix multiplication. Each circle represents a thread of thecomputation. Threads are linked by downward spawn edges, horizontal continue edges, andupward return edges. Some edges were omitted for clarity.Like any Cilk multithreaded computation, the parallel instruction stream of matrixmulcan be viewed as a directed acyclic graph (dag) of threads organized into a tree of procedures.Figure 6-3 illustrates the structure of the dag. Each vertex corresponds to a thread of thecomputation, which in Cilk is a nonblocking sequence of instructions. A procedure is asequence of threads that share the same frame or activation record . For example, the syncsin lines 21 and 23 break the procedure matrixmul into three threads X, Y , and Z, whichcorrespond respectively to the partitioning and spawning of subproblems M1;M2; : : : ;M8in lines 2{20, the spawning of the addition S in line 22, and the return in line 25. Thedag of a Cilk computation contains three kinds of edges. A spawn edge connects a threadwith its spawned child. A continue edge connects a thread with its successor in the sameprocedure. A return edge reects the synchronization that occurs when a child completesand noti�es the thread in its parent procedure that is waiting for its return. Thus, a Cilkcomputation unfolds as a spawn tree composed of procedures and the spawn edges thatconnect them to their children, but the execution is constrained to follow the precedencerelation determined by the dag of threads.What kind of memory consistency is necessary to support a shared-memory programsuch as matrixmul? Certainly, sequential consistency can guarantee the correctness ofthe program, but a closer look at the precedence relation given by the dag reveals that amuch weaker consistency model su�ces. Speci�cally, the 8 recursively spawned childrenM1;M2; : : : ;M8 need not have the same view of shared memory, because the portion of131

shared memory that each writes is neither read nor written by the others. On the otherhand, the parallel addition of tmp into R by the computation S requires S to have a viewin which all of the writes to shared memory by M1;M2; : : : ;M8 have completed.The basic idea behind dag consistency is that each thread sees values that are consistentwith some serial execution order of the dag, but two di�erent threads may see di�erentserial orders. Thus, the writes performed by a thread are seen by its successors, but threadsthat are incomparable in the dag may or may not see each other's writes. In matrixmul,the computation S sees the writes of M1;M2; : : : ;M8, because all the threads of S aresuccessors of M1;M2; : : : ;M8, but since the Mi are incomparable, they cannot depend onseeing each others writes. Dag consistency is similar to location consistency [GS93], but itis de�ned in terms of the dag of a user's multithreaded computation rather than in terms ofprocessors and synchronization points. We shall present a formal model of dag consistencyin Section 6.2.The current Cilk mechanisms to support dag-consistent distributed shared memory onthe Connection Machine CM-5 are implemented in software. Nevertheless, codes such asmatrixmul run with good e�ciency, as we shall shortly document. Like many softwaredistributed shared memory implementations, the Cilk implementation is page based toamortize the cost of remote reads and writes over many references. Whenever a threadaccesses a page that is not resident in the local page cache of a processor, a page faultoccurs, and a protocol ensues that brings the required page into the page cache. Althoughmemory locations are grouped into pages, Cilk maintains dag consistency at the granularityof individual 32-bit words.Cilk also supports stack allocation of distributed shared memory. The declaration of tmpin line 8 of matrixmul causes the shared-memory stack pointer to be incremented by nb*nbblocks. When running in parallel, however, a simple serial stack is insu�cient. Instead,Cilk provides a distributed \cactus stack" [HD68, Mos70, Ste88] that mimics a serial stackin such a way that during execution, every thread can access all the variables allocated byits parents and can address a variable directly by its depth in the stack. Despite the factthat the stack is distributed, allocation can be performed locally with no interprocessorcommunication. Cactus stack memory is deallocated automatically by the Cilk runtimesystem when a spawned procedure returns. 132

Before discussing how maintenance of dag consistency a�ects the performance of Cilkprograms, let us �rst review the performance of Cilk programs that do not use sharedmemory. Any multithreaded program can be measured in terms of the \work" and \criticalpath length" of its computation dag. The work, denoted T1, is the time used by a one-processor execution of the program, which corresponds to the sum of the execution times ofall the threads. The critical path length, denoted T1, is the total amount of time requiredby an in�nite-processor execution, which corresponds to the largest sum of thread executiontimes along any path. With P processors, the execution time cannot be less than T1=Por less than T1, and Cilk's \work-stealing" scheduler provably achieves O(T1=P + T1)time with high probability on fully strict multithreaded computations. For example, thework to multiply two n�n matrices using matrixmul is �(n3) and the critical path of thisalgorithm is �(lg2 n). If no shared-memory page faults were taken, therefore, the entirealgorithm would run in �(n3=P + lg2 n) time with high probability.In order to model performance accurately, however, we must account for the e�ectsof shared-memory page faults. We show that if F1 is the number of page faults for amultithreaded program running on 1 processor with a page cache of size C, then the totalnumber FP of page faults taken by P processors, each with a page cache of size C, isFP � F1 + 2Cs, where s is the number of steals during the execution.A graph of the performance of matrixmul on the Connection Machine CM-5 is shown inFigure 6-4. Three curves are shown, the lower curve is the performance of the matrixmulcode shown in Figure 6-2 on a 1024 � 1024 multiply, and the upper two curves are theperformance of a variant that uses no temporary storage and has a longer critical path.The dag-consistent shared-memory code performs at 5 megaops per processor as long asthe work per processor is large. This performance compares reasonably well with the othermatrix multiplication codes on the CM-5. For example, an implementation coded in Split-C [CDG+93] attains just over 6 megaops per processor on 64 processors using a staticdata layout, a static thread schedule, and an optimized assembly language inner loop. Incontrast, Cilk's dag-consistent shared memory is mapped across the processors dynamically,and the Cilk threads performing the computation are scheduled dynamically at runtime.We believe that the overhead in our current implementation can be reduced further, butthat in any case, it is a reasonable price to pay for ease of programming and dynamicscheduling. 133

0

1

2

3

4

5

6

4 8 16 32 64

M
flo

ps
/p

ro
ce

ss
or

processors

4096x4096 optimized
1024x1024 optimized

1024x1024

Figure 6-4: Megaops per processor versus the number of processors for several matrix mul-tiply runs on the Connection Machine CM-5. The shared-memory cache on each processoris set to 2MB. The lower curve is for the matrixmul code in Figure 6-2 and the upper twocurves are for an optimized version that uses no temporary storage.We have implemented irregular applications that employ Cilk's dag-consistent sharedmemory, including a port of a Barnes-Hut N -body simulation [BH86] and an implementa-tion of Strassen's algorithm [Str69] for matrix multiplication. These irregular applicationsprovide a good test of Cilk's ability to schedule computations dynamically. We achieve aspeedup of 9 on an 8192-particle N -body simulation using 32 processors, which is competi-tive with other software implementations of distributed shared memory [JKW95]. Strassen'salgorithm runs as fast as matrixmul for 2048� 2048 matrices, and we coded it in Cilk in afew hours.The remainder of this chapter is organized as follows. Section 6.2 gives a formal de�-nition of dag consistency, and Section 6.3 describes an abstract algorithm for maintainingdag consistency and then gives a proof of its correctness. Section 6.4 describes an imple-mentation of this algorithm for Cilk on the Connection Machine CM-5, and also describesour cactus-stack memory allocator. Next, Section 6.5 analyzes the number of faults takenby multithreaded programs, both theoretically and empirically. Section 6.6 compares dag-134

consistency with some related consistency models and o�ers some ideas for the future.6.2 Dag ConsistencyIn this section, we formally de�ne dag consistency in terms of the dag that represents amultithreaded computation. We give conditions under which dag-consistent multithreadedprograms are deterministic, and we discuss how nondeterminism can arise. Finally, weinvestigate anomalies in atomicity that can occur when the size of the concrete objectssupported by the shared-memory system is di�erent from the abstract objects that theprogrammer manipulates.We �rst introduce some terminology. Let G = (V;E) be the dag of a multithreadedcomputation. For i; j 2 V , if a path of nonzero length from thread i to thread j exists inG, we say that i (strictly) precedes j, which we write i � j. For any thread i 2 V , theset fj 2 V : j � ig is the set of predecessors of i, and the set fj 2 V : i � jg is the set ofsuccessors of i. We say that two threads i; j 2 V with i 6= j are incomparable if we havei 6� j and j 6� i.Shared memory consists of a set M of objects containing a value �eld that threads canread and write. To track which thread is responsible for an object's value, we imagine thateach value has a tag which the write operation sets to the name of the thread performingthe write. When a thread performs a read on an object, it receives some value, but theparticular value it receives depends upon the consistency model. We assume without lossof generality that each thread performs at most one read or write. We also make thesimplifying assumption that all objects contain some initial value tagged with a \�ctitious"thread that precedes all other threads. This assumption saves us the trouble of specifyingwhat happens if a thread reads an object not written by any \real" predecessor.Informally, we want to de�ne dag consistency such that a read can \see" a write onlyif there is some serial execution order in which the read sees that write. Unlike sequentialconsistency, however, dag consistency allows di�erent reads to return values that are basedon di�erent serial orders, as long as the values returned are consistent with the precedencerelations given by the dag.In addition to stating what values might be seen by a read, the following formal de�nitionof dag consistency focuses on what values a read cannot see.135

De�nition 8 The shared memory M of a multithreaded computation G = (V;E) is dagconsistent if the following conditions hold:1. If any thread i 2 V reads any object m 2 M , it receives a value v tagged with somethread j 2 V such that j writes v to m and we have i 6� j.2. For any three threads i; j; k 2 V , such that i � j � k holds, if j writes some objectm 2M and k reads m, then the value received by k is not tagged with i.The �rst part of this de�nition says that if a thread i reads an object, it receives the valuewritten to that object by some thread j, where j must not be a successor of i. Since mostcomputer systems are not prescient, this part of the de�nition is easy to implement. Thesecond part of the de�nition is more subtle, because it says what the value cannot be, ratherthan what the value can be. It ensures that a writer masks writes by any of its predecessorsfrom all of its successors. This property is implicit in ordinary serial execution: whenevera write to an object occurs, previous values of the object are thenceforth forever hidden.The de�nition of dag consistency allows nondeterminism, which we view as a generallyundesirable property of a parallel program, but it is relatively easy to write programs thatare guaranteed to be deterministic. Nondeterminism arises when a write to an object occursthat is incomparable with another read or write to the same object. For example, if a readand a write to the same object are incomparable, then the read may or may not receivethe value of the write. Similarly, if two writes are incomparable and a read exists thatsucceeds them both with no other intervening writes, the read may receive the value ofeither write. To avoid nondeterminism, we require that no write to an object occurs that isincomparable with another read or write to the same object. If no two writes to the sameobject are incomparable, then all writes to the object must lie on a single path in the dag.Moreover, all writes and any one given read must also lie on a single path. Consequently,by the de�nition of dag consistency, every read of an object sees exactly one write to thatobject. Since a write of one object has no bearing on a read of a di�erent object, theexecution is deterministic.Nondeterminism is not the only problem that can arise in dag-consistent programs.As with most consistency models, dag consistency can su�er from atomicity anomalieswhen the concrete objects supported by the shared-memory system are larger than theabstract objects that the programmer is reading and writing. For example, suppose that136

system objects are 4 bytes long, but the programmer is treating the system object as 41-byte abstract objects. Two incomparable threads may each perform an update on adi�erent abstract object, expecting both writes to be visible to a common successor. But,if these 1-byte values are packed into the same 4-byte concrete object, then these writesare really incomparable writes to the same 4-byte object. Consequently, one of the writesmay nondeterministically mask the other, and the update to one of the bytes may be lost.Fortunately, this problem can easily be avoided by not packing together abstract objectsthat might be updated by incomparable threads.Atomicity anomalies can also occur when the programmer's abstract object is larger thanthe system's concrete object. For example, suppose the system supports 4-byte concreteobjects, but the programmer needs an 8-byte object. If two incomparable threads each writethe entire 8-byte object, the programmer might expect an 8-byte read of the structure bya common successor to receive one of the two 8-byte values written. The 8-byte read maynondeterministically receive 4 bytes of one value and 4 bytes of the other value, however,since the 8-byte read is really two 4-byte reads, and the consistency of the two halves ismaintained separately. Fortunately, this problem can only occur if the abstract programis nondeterministic, that is, if the program is nondeterministic even when the abstractand concrete objects are the same size. When writing deterministic programs, which weadvocate as good parallel programming practice, the programmer need not worry aboutthis atomicity problem.6.3 Maintaining Dag ConsistencyIn this section we show how dag consistency can be maintained during the execution of amultithreaded computation. We focus on the class of \well-structured" computations thatwe showed in Section 3.6 can be scheduled e�ciently. We give an algorithm that maintainsdag-consistent shared memory for well-structured computations executing in a distributedenvironment, and we prove that it is correct. Section 6.4 describes our implementation ofthe algorithm.Our dag-consistency algorithm depends on properties of multithreaded dags. Recallthat a procedure consists of a sequence of threads connected by continue edges. Spawnedges go from a thread in one procedure to the �rst thread in a child procedure, thereby137

structuring the procedures into a spawn tree. Alternatively, we can view the spawn andcontinue edges as structuring the threads into a spawn-continue tree. If the computation isfully strict, every data-dependency edge entering a procedure comes from the �nal threadof a child procedure. Fully strict computations can be scheduled e�ciently, because theyare well structured. We shall exploit this property to design an e�cient dag-consistencyalgorithm.We shall present the dag-consistency algorithm using the nomenclature of Cilk's work-stealing scheduler in which an idle processor obtains work by \stealing" a thread from abusy processor. After stealing a thread, a processor executes the thread, which may causeother threads to be created. The processor executes the created threads in depth-�rst order,mimicking ordinary, serial, depth-�rst execution. If another processor requests work fromthe processor, the thread that is closest to the root and ready to execute is stolen away. Wecall the subtree of the spawn-continue tree that is rooted at a stolen thread a subcomputation.We shall be particularly interested in the kernel of a subcomputation, which we de�ne tobe the (stolen) root thread of the subcomputation together with all threads reachable byspawn and continue edges without passing through another stolen thread. Thus, as shownin Figure 6-5, the scheduling algorithm partitions the spawn-continue tree into a tree ofkernels, each of which consists of all threads that execute on the same processor from thetime that a subcomputation's root thread is stolen to the time that the processor goes idle.In order to make our dag-consistency algorithm simple, we rely on a property of Cilk'sruntime system. During the execution of a fully strict computation, a thread can be stolenonly if it belongs to a procedure whose previously spawned children have all completed.Since a procedure with outstanding children cannot be moved, Cilk's bookkeeping of therelationship between the procedure and its children is straightforward, because a child'sparent never moves. The dag-consistency algorithm also exploits this property, but for adi�erent reason. Speci�cally, it relies on the fact that a data-dependency edge leaving athread always goes to another thread in the same subcomputation kernel or to a threadin the parent kernel. If it were possible to steal a thread belonging to a procedure withspawned children outstanding, then the parent of a thread might belong to a kernel whichis far away in the kernel tree.The dag-consistency algorithm takes advantage of locality in the kernel tree by main-taining coherence information on a kernel basis, rather than on a thread basis. Whenever138

AA
AA
AA

AA
AA
AA
AA

AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAA
AAA
AAA
AA
AA
AA
AA
AA
AA
AA
AAA
AAA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AAA
AAA
AA
AA
AAA
AAA
AAA
AAA
AA
AA
AAA
AAA

AA
AA
AA

AA
AA
AA
AA

AA
AA
AA

AAA
AAA
AAA
AAA
AA
AA

AA
AA
AA

AA
AA
AAA
AAA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAA
AAA
AA
AA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA

AAA
AAA
AAA

AAA
AAA

AA
AA
AA

AA
AA
AAA
AAA
AA
AA

AA
AA
AA

AA
AA

AA
AA
AA

AA
AA

AAA
AAA
AAA

AAA
AAA
AA
AA
AA
AA

AAA
AAA
AAA

AA
AA
AAA
AAA
AA
AA

AAA
AAA
AAA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AA
AA
AAA
AAA
AAA
AAA
AAA
AA
AA
AA
AA
AA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AA
AA
AAA
AAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAA
AAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAA
AAA
AAA

AAA
AAA
AAA
AA
AA
AAA
AAA
AAA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA

AAA
AAA
AAA

AA
AA
AA

AA
AA
AA

AA
AA
AAA
AAA

AA
AA
AA

AA
AA

AA
AA
AA

AA
AA
AA

AA
AA
AA

AA
AA

AAA
AAA
AAA

AA
AA
AAA
AAA
AA
AA
AAA
AAA
AA
AA
AAA
AAA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAA
AAA
AAA
AAA
AA
AA
AA
AA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAA
AAA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAA
AAA
AA
AA
AA
AA
AA
AAA
AAA
AAA
AAA
AAA
AA
AA
AA
AA
AA

AAA
AAA
AAA

AAAA
AAAA
AAAA
AAAA
AAA
AAA

AAA
AAA
AAA

AA
AA
AA

AA
AA

AA
AA
AA

AA
AA
AAA
AAA

AA
AA
AA

AA
AA
AA

AA
AA

Figure 6-5: This shows a spawn-continue tree partitioned into a kernel tree. The data-dependency edges of the dag are also shown faintly. The spawn-continue tree is partitionedinto four kernels, and the spawn edges beginning each new kernel are highlighted.a processor steals a thread, it creates a cache on that processor to store shared-memoryobjects used by the threads that will be part of the newly created kernel. All reads andwrites of an object performed by a thread are performed on the version of the object inthe cache of that thread's kernel. In order to propagate changed values correctly, the cachemaintains a dirty bit for each object that tells whether the object has been modi�ed sinceit was brought into the cache. An object is clean if it has not been modi�ed and dirtyotherwise. An object may reside in any number of caches at a time, and the value of theobject may di�er from cache to cache. For simplicity, we assume that there is a �ctitiousinitial thread that precedes all other threads. This initial thread is the only thread in itskernel, and it maintains a cache that always contains every object.Two operations are used by the dag-consistency algorithm to move objects betweencaches: fetch and reconcile. If a cache A for a kernel contains an object, a read or writeto the object by a thread in the kernel operates directly on the cached object without any139

object movement. If cache A does not contain the object when the read or write occurs, thedag-consistency algorithm must perform a fetch to bring the object into A from anothercache B. The fetch operation simply copies the object from cache B into cache A and marksthe new version in cache A as clean. The reconcile operation is used to remove an objectfrom a cache, typically when a subcomputation completes or when room must be made inthe cache for a di�erent object. If cache A contains an object, it can reconcile the objectto another cache B only if B also contains the object. The reconcile operation �rst checksto see whether A's version of the object is clean or dirty. If A's version is clean, then thereconcile operation simply removes the object from cache A. If A's version is dirty, however,then the reconcile operation marks B's version as dirty, updates it to have the same valueas A, and then removes the object from cache A.The dag-consistency algorithm Dagger operates on the shared memory M of a multi-threaded computation as follows:� Whenever a thread is stolen, its newly created kernel is given an empty cache.� Whenever a thread i in kernel X accesses an object m 2M that is not resident in X'scache, then m is fetched into X's cache from kernel Y 's cache, where Y is the leastancestor of X in the kernel tree such that Y 's cache contains m.� Whenever a kernel X enables a data-dependency edge to a di�erent kernel (its parentin the kernel tree, since the computation is fully strict), every object m in X's cacheis �rst reconciled to kernel Y 's cache, where Y is the least ancestor of X in the kerneltree such that Y 's cache contains m.Proof of CorrectnessBefore we can prove that Dagger maintains dag consistency, we need to formalize thee�ects that Dagger has on the user computation. It su�ces to focus on an arbitraryobject m, since dag-consistency is de�ned for each object in M separately. Our strategyis to embed the actions of Dagger on m into the dag containing the user actions. As inSection 6.2, we assume for simplicity that each thread performs only one action. We specifythe important state variables of the system and show how each action a�ects them.The important actions performed by the user's code are read, write, and sync. Whena thread i performs a read, the value returned by the read is the value of m currently in140

the cache of thread i's kernel. A write thread updates the value of m in the cache. A syncthread is one which has more than one incoming edge, namely one continue edge and oneor more data dependency edges. A sync thread that is part of procedure P executes onlyafter all the outstanding children of procedure P have completed.In addition to the actions performed by the user's code, we shall also be concernedwith the actions fetch, reconcile, and steal performed by Dagger, which we can viewas special threads that are inserted by Dagger into the computation dag. These threadsare inserted to satisfy certain semantic properties. Before a user thread can read or writem when it is not in the cache, a fetch thread is inserted prior to the access. Whenever adata-dependency edge goes from a child kernel to an ancestor, a reconcile thread is addedimmediately preceding the data-dependency edge. Since the dag is fully strict, this reconcilethread is the �nal thread executed by the child kernel. Lastly, a steal thread is inserted asthe �rst thread of a kernel whenever a steal occurs. In most cases, when a thread is stolenthe steal thread is inserted just before the thread that was stolen. However, when a syncthread is stolen, the steal thread is inserted immediately after the sync thread.We can view each kernel X as keeping track of the following state variables:� val(X) � value of m in X's cache, or nil if m is not in X's cache.� tag(X) � the tag associated with val(X), or nil if m is not in X's cache.� dirty(X) � true if m is dirty and false otherwise.� H(X) � the set of \hidden" threads.The variables tag(X) and H(X) are for purposes of the proof only. In practice, only thevalue and dirty bit actually need to be maintained. The hidden set H(X) is maintained asa set of threads whose writes to m can no longer be \seen" by threads in X (whether m isin X's cache or not), but H(X) may also contain threads which do not write to m. Thevariable tag(X) is used to identify which thread performed the write that stored the valueval(X).We have now embedded the operation of Dagger on a user computation into a multi-threaded computation G = (V;E) in which each thread i 2 V performs at most one simpleaction. We shall next examine how the dag a�ects the caches of the various subcomputationkernels as it is executed. First, however, we de�ne some helpful notations. For any thread141

i 2 V , we de�ne K(i) to be the kernel to which i belongs. The state variables dynamicallychange, and so when we need to be precise about the value of a state variable at di�erenttimes, we superscript the state variable with a parenthesized thread name to indicate thestate variable's value immediately after the speci�ed thread executes. For example, H(i)(X)denotes H(X) immediately after thread i executes. We will also use H(i�)(X) to denoteH(X) immediately before thread i executes. At any point in time, we de�ne la(X) to bethe least ancestor of kernel X for which val(X) 6= nil. If X must fetch or reconcile, la(X)is the kernel that Dagger causes X to fetch from or reconcile to.We are now ready to describe how the actions performed by a thread a�ect the statevariables of a multithreaded computation G = (V;E). For each action performed by athread i 2 V , we shall show how the value, tag, dirty bit, and hidden set are updated ini's kernel as well as in any other kernels a�ected. All variables not explicitly mentioned inthe following pseudocode remain unchanged. Although in practice, many threads executeconcurrently, we shall assume that only one action occurs at a time.The following pseudocode describes the e�ects of some thread i 2 V , where X = K(i) isi's kernel. Depending on the action performed by i, we execute one of the following cases:read:No change to state variables.write(v):val(X) vtag(X) idirty(X) trueH(X) H(X) [fj 2 V : j � igsync:H(X) H(X) [H(K(j)), for all j 2 V such that (j; i) 2 Efetch:val(X) val(la(X))tag(X) tag(la(X))dirty(X) falseH(X) H(X) [H(la(X)) 142

reconcile:If dirty(X) =false, do nothing, else:val(la(X)) val(X)tag(la(X)) tag(X)dirty(la(X)) trueH(la(X)) H(la(X)) [H(X)val(X) niltag(X) nildirty(X) falsesteal:H(X) H(K(j)), where (j; i) 2 E is the unique incoming edge to ival(X) niltag(X) nildirty(X) falseIn order to prove that Dagger maintains dag consistency, we must �rst understand therami�cations of a dirty bit. The next lemma proves that during the time that a given tagi appears dirty in a kernel Y , all successors of thread i belong to the subtree rooted at Y .Lemma 9 Suppose Dagger maintains the shared-memory object m of a multithreadedcomputation G = (V;E). Then, at any time after the execution of a thread j 2 V , iftag(Y) = i, dirty(Y) = true, and i � j, then Y is a (not necessarily proper) ancestor ofK(j) in the kernel tree.Proof: To prove this lemma we �rst examine the constrained manner in which dirty objectsare manipulated. We shall say that a kernel Y has a dirty tag i if tag(Y) = i and dirty(Y) =true. A dirty tag is created by a write by the thread i. If a kernel Y with a dirty tagi reconciles to an ancestor kernel Z, then the dirty tag i moves from Y to Z. When areconcile to a kernel with dirty tag i is performed, the dirty tag i disappears. In short, adirty tag i can be created by a write thread i, it can move up the kernel tree, and it candisappear.To prove the lemma, it su�ces to prove the following claim: if dirty tag i exists imme-diately after executing a thread j, where i � j, then j belongs to the subtree rooted at the143

kernel Y containing dirty tag i. The claim implies the lemma, because dirty tags can onlymove up the kernel tree. Consequently, if immediately after j executes, it belongs to thesubtree rooted at a kernel Y with dirty tag i, then j must belong to the subtree rooted atwhatever kernel contains the dirty tag i for as long as the dirty tag i exists, which provesthe lemma.We prove the claim using induction on the length of the longest path from i to j. Thebase case is a path of zero length, in which case i = j. The base case is true, since after iexecutes the dirty tag i is in the kernel Y = K(i). For the induction step, we shall showthat if the claim holds for all threads n edges away from i, then it holds for all threads n+1edges away.To prove the induction step, suppose that thread j is n + 1 edges away from i. Then,an edge (k; j) 2 E must exist, where k is exactly n edges away from i. If K(k) = K(j),then the claim holds trivially, because k and j belong to the same kernel. Thus, we canassume that K(k) 6= K(j) and consider two cases based on the type of the edge from kto j. For the �rst case, suppose that (k; j) is a spawn or continue edge. Then j must bea steal thread, and thus, K(j) is a child of K(k). Consequently, since k belongs to thesubtree rooted at the kernel Y containing dirty tag i, it follows that j must also belong tothe subtree rooted at Y . For the second case, suppose (k; j) is a data-dependency edge.Then, since any data-dependency edge between threads in di�erent kernels always goes to athread in the parent kernel, K(j) must be a parent of K(k), which implies that k is the lastthread to execute in K(k) and k is a reconcile thread. Consequently, K(k) 6= Y , becauseY 's dirty bit is true, and the reconcile sets K(k)'s dirty bit to false. Since by inductionK(k) is in the subtree rooted at Y and K(k) 6= Y , the parent of K(k), namely K(j), mustbe in the subtree rooted at Y , which proves the claim and the lemma.The next lemma establishes two monotonicity properties of hidden sets. The �rst prop-erty says that the hidden set of any kernel monotonically increases with time as actions areperformed. The second property says that the hidden set of a thread increases monotoni-cally along any path in the dag, where by hidden set of a thread, we mean the hidden setof that thread's kernel immediately after the thread executes.Lemma 10 Suppose Dagger maintains the shared-memory object m of a multithreadedcomputation G = (V;E). Then, for all threads i; j 2 V such that i � j and kernel Y , we144

have H(i)(Y) � H(j)(Y) (6.1)H(i)(K(i)) � H(j)(K(j)) (6.2)Proof: Property 6.1 follows directly by induction on the actions in G, because no actionremoves elements from a kernel's hidden set. We prove Property 6.2 by showing that itholds for every edge (i; j) 2 E, which implies that it holds whenever i � j. If i and j arein the same kernel, Property 6.1 implies the property. Otherwise, i and j are in di�erentkernels, and we examine two cases depending on the type of edge (i; j). If (i; j) is a continueor spawn, then j performs a steal action, and thus H(j) = H(i), and the property holds. If(i; j) is a data-dependency edge, then j performs a join actions, and thus H(j) � H(i), andthe property holds.We now prove three invariants on hidden sets. The �rst says that for any kernel Y ,the hidden set of the kernel that Y would fetch from includes everything in Y 's hidden set.This invariant ensures that when Y fetches the object m, the value received can be seenby Y . The second invariant says that if m is dirty in a cache, only descendent kernels canhave the thread that wrote the value in their hidden sets. The third invariant says that thevalue in a kernel's cache was not written by a thread in its hidden set. In other words, thehidden set of a kernel does indeed represent those threads whose writes the kernel cannotsee.Lemma 11 Suppose Dagger maintains the shared-memory object m of a multithreadedcomputation G = (V;E). Then, for all kernels X and Y , the following statements areinvariant during the execution of G:1. tag(Y) = nil=)H(Y) � H(la(Y)).2. dirty(Y) = true and tag(Y) 2 H(Z) =) Z is a descendant of Y .3. tag(Y) 62 H(Y).Proof: We will proof these invariants by induction on the actions.To prove Invariant 1, observe that all hidden sets are initially empty. Therefore Invari-ant 1 holds initially, providing the base case. We now examine each action and show that145

if the invariant is true before the action, then it is true afterwards. Note that the invariantwe are proving mentions two kernels, Y and la(Y). For each kernel, X, that has its statevariables changed by an action, we will have to show that the invariant holds in two cases:(1) the invariant must holds for X and its least ancestor la(X), and (2) the invariant musthold for any descendants of X, Z, where, either before or after the operation, X = la(Z).For a read thread, the invariant holds trivially, since no state variables change.For a write performed by thread i in kernel X, the state variables of kernel X are mod-i�ed, so we must show the invariant are maintained on kernel X for both cases mentionedabove. For case (1) the invariant holds trivially since tag(X) 6= nil. For case (2), we notethat the write operation can not a�ect which kernel is the least ancestor of another. So Xis the least ancestor of a node, Z, after a sync if and only if X was the least ancestor of Zbefore the sync. We must show that if a kernel Z exists such that X is the least ancestor ofZ and tag(Z) = nil, then H(Z) � H(X). If such a kernel Z exists then by induction theinvariant held before the operation, namely H(Z) � H(i�)(X). Since the write operationcan only increase H(X), the invariant holds after the write operation as well.For a fetch performed by thread i in kernel X, we must show that the invariant holdsfor the modi�ed kernel X. For case (1) the invariant holds trivially since tag(X) 6= nil. Forcase (2) we must show that if there exists some kernel Z such that X is the least ancestorof Z and tag(Z) = nil, then H(Z) � H(X). If such a kernel Z exists then before the fetchoperation la(X) was the least ancestor of Z. By induction H(Z) � Hi�(la(Z) = la(X)),and by the de�nition of the fetch action Hi�(la(X)) � H(X); therefore, H(Z) � H(X)which maintains the invariant.For a reconcile performed by thread i in kernel X to kernel Y = la(X), we must showthat the invariant holds both for kernel X and for kernel Y = la(X). We will deal withkernel X �rst. For case (1), by the de�nition of the reconcile action H(Y) H(Y)[H(X),so H(X) � H(Y) and the invariant holds. For case (2) we must show that if there weresome kernel Z with tag(Z) = nil which had X as its least ancestor, then after the reconcileH(Z) � H(la(Z)). Before the reconcile X was the least ancestor of Z so by inductionH(Z) � H(X). After the reconcile Y = la(Z) and from the de�nition of reconcile it followsthat H(Y) � H(X). Therefore H(Z) � H(Y) and the invariant holds.Now we will show the invariant is maintained for kernel Y = la(X). For case (1) theinvariant holds trivially since tag(X) 6= nil. For case (2) we must show that if there exists146

some kernel Z such that Y is the least ancestor of Z and tag(Z) = nil, then H(Z) � H(X).We have already dealt with the case where before the reconcile the least ancestor of Z wasX, all that remains is the case where before the reconcile the least ancestor of Z was Y .By induction H(Z) � H(Y) before the reconcile, and since the reconcile can only increaseH(Y) this invariant is still true after the reconcile.For a steal performed as the �rst thread of kernel X, we must show that the invariantholds for kernel X. For case (1), since val(X) = nil we must show that H(X) � H(la(X)).The de�nition of the steal action states that H(X) H(K(j)), where (j; i) 2 E is theunique incoming edge to i. If val(K(j)) 6= nil then K(j) is the least ancestor of X, andthe invariant holds since H(X) = H(la(X)). If val(K(j)) = nil then la(X) = la(K(j)),and by induction H(K(j)) � H(la(K(j))). Therefore H(X) = H(K(j)) � H(la(X)) andthe invariant holds. For case (2) the proof is trivial since X has no descendants.For a sync performed by thread i in kernel X, we must show that the invariant holdsfor kernel X.The sync thread i has one incoming continue edge from some thread k and one or moreincoming data-dependency edges. We have X = K(i) = K(k), because only steal threadscan have an incoming continue edge from another kernel. Also, for the data-dependencyedges either they come from threads in the same kernel, or they come from threads in kernels,whose val is nil. For case (1), we must show that if val(X) = nil then H(X) � H(la(X)).We will assume val(X) = nil, otherwise the proof is trivial. The de�nition of sync statesthat H(X) H(X) [H(K(j)), for all j 2 V such that (j; i) 2 E. Lets look at eachset unioned to form H(X) and show that all of these sets are subsets of H(la(X)). ForH(X) we have by induction H(i�)(X) � H(la(X)), The rest of the sets unioned in eachcorrespond to an incoming edge. For the incoming continue edge (k; i), we have K(k) = X,so this just unions in H(X) again. For each incoming data-dependency edge (j; i) we haveeither K(j) = K(i) = X, in which case we just union in H(X) yet again, or we haveK(j) 6= X. In this second case we have val(K(j)) = nil and la(K(j)) = la(X) and,by induction, H(K(j)) � H(la(K(j)). Therefore H(K(j)) � H(la(X)) which shows thatH(X) � H(la(X)). Finally, for case (2) we note that the sync operation only changes thehidden set, so X is the least ancestor of a node, Z, after a sync i� X was the least ancestorof Z before the sync. By induction the invariant holds before the operation, Since the syncoperation can only increase H(X), the invariant holds after the sync operation as well.147

To prove Invariant 2, we will again use induction on the actions. Informally, Invariant 2states that if kernel X has a dirty tag i then i can only appear in hidden sets which are inthe subtree rooted at X. All hidden sets are initially empty so the base case of the proofis trivial. We now need to examine each action and show that if Invariant 2 is true beforethe action, then it is true afterwards. As with the previous example, there are two kernelsin the invariant, so there are two cases we must consider. Case (1) occurs when we modifythe variables of a kernel X, and we set dirty(X) to true or modify tag(X). In this casewe must show that for all Z such that tag(X) 2 H(Z), Z is a descendant of X. Case (2)occurs when we modify the hidden set of a kernel X. In this case we must show that thethreads added to H(X) do not cause the invariant to be invalidated. In particular, we mustshow that the threads added to H(X) do not appear dirty in a kernel which is a properdescendant of X.For read, the invariant holds trivially since there are no changes.For a write performed by a thread i in kernel X, we modify both the hidden set andthe tag, so we must consider both cases. For case (1), since tag(X) = true we must showthat for all Z such that tag(X) 2 H(Z), Z is a descendant of X. First notice that only thewrite operation adds threads to a hidden set that are not already in some other hidden set,and the write operation only adds threads that are predecessors of the write thread. Thisimplies that a thread j can not appear in any hidden set before thread j executes. Thereforewhen write thread i executes i does not appear in any hidden set. Therefore there can beno Z such that i = tag(X) 2 H(Z).For case (2), since we add to H(X) we must show that the threads added toH(X) do notappear dirty in a kernel which is a proper descendant of X. We prove this by contradiction.Assume that added thread j does appear dirty in a kernel Y which is a proper descendantof X. Then we have dirty(Y) = true and tag(Y) = j and j � i. By Lemma 9, Y is anancestor of X, but by our assumption Y is a proper descendant of X. This contradictioncompletes the proof for case (2).For a fetch by a thread in kernel K, we need not consider case (1) since dirty(X) isset to false. For case (2) we will �rst make the observation that adding a thread j to thehidden set of any kernel Y can not invalidate the invariant if j is already in the hidden setof an ancestor of Y . This observation is true either because no dirty tag j exists, in whichcase j can be added to any hidden set without breaking the invariant, or because dirty tag148

j exists in some kernel Z and Y is a descendant of Z, in which case j can be added to anydescendant of Y because such a descendant is also a descendant of Z. Since every threadadded to H(X) by the fetch operation is already in the hidden set of an ancestor of X,adding these threads preserves the invariant.For a reconcile performed by thread i in kernel X to kernel Y = la(X), we needconsider cases (1) and (2) for kernel Y . For kernel X there are no cases to consider sinceH(X) is unmodi�ed and tag(X) is set to nil. For case (1) of Y we must show that tag(Y)only appears in hidden sets that are descendants of Y . By induction, before the reconciletag(Y) only appeared in hidden sets that were descendants of X. Since all descendants ofX are also descendants of Y , tag(Y) only appears in hidden sets that are descendants of Y .For case (2) of Y we must show that the threads added to H(Y) do not appear as a dirtytag in a kernel which is a proper descendant of Y . The only threads added to H(Y) arethose in H(X). Consider the state before the reconcile. We know by induction that if oneof these added threads, j, appeared as a dirty tag, then X was a descendant of Z = K(j).Since Y is the least ancestor of X, Y must also be a (not necessarily proper) descendant ofZ. Therefore, the threads added to H(Y) can only appear as a dirty tag in a kernel whichis a proper ancestor of Y ; thus the invariant is maintained.For a steal performed as the �rst thread of kernel X, we need not consider case (1) sincetag(X) is set to nil. For case (2) we notice that all threads added to the H(X) are takenfrom an ancestor, therefore, as shown for the fetch operation, the invariant is maintained.For a sync performed by thread i in kernel X, we must show that the invariant holdsfor case (2). All threads added to H(X) are from the hidden set of a child of X. To showthat these added threads do not break the invariant we will use a simpli�ed version of theargument made for reconcile. By induction, if Y , a child of X, has a thread j in its hiddenset that appears as a dirty tag in kernel Z, then Z must be a ancestor of Y . Since tag(Y) =nil, Z must be a proper ancestor of Y . Since X is the parent of Y , Z must also be anancestor of X. Therefore, the threads added to H(X) can only appear as a dirty tag in akernel which is an ancestor of X; thus the invariant is maintained.To prove Invariant 3, the �nal invariant, observe that all hidden sets are initially empty.Consequently, tag(Y) 62 H(Y) before the computation begins, which provides the base caseof the induction. We now examine each action and show that if the invariant is true beforethe action, then it is true afterwards. 149

For read, the invariant holds trivially, since no state variables change.For a write performed by thread i in kernel X, thread i is not added to the hiddenset H(X), and so we need only to show that i is not in H(X) before the write. Observethat the only time when a thread j that not in any hidden set is added to some hidden setis when a successor of j performs a write. Before i executes, none of its successors haveexecuted, and thus, i belongs to no hidden set. In particular, we have i 62 H(X).For a fetch performed by a thread in kernel X, to show that the invariant holds after thethread executes, we must show tag(X) 62 H(i�)(X) and tag(X) 62 H(i�)(la(X)). The secondis true by induction, which implies that the �rst is true, because Invariant 1 guaranteesH(X) � H(la(X)).For a reconcile performed by a thread in kernel X, we must show the invariant ismaintained for both the modi�ed kernels X and Y = la(X). The invariant holds triviallyfor kernel X, since tag (i)(X) = nil. To show it is true for kernel Y , we must show thattag(X) 62 H(X) and tag(X) 62 H(Y). The �rst holds by induction, and the second followsfrom Invariant 2.For a steal of a thread now in kernel X, the invariant holds trivially, since tag(X) isset to be nil.For a sync by thread i in kernel X, the sync thread i has one incoming continueedge from some thread k and one or more incoming data-dependency edges. We haveX = K(i) = K(k), because only steal threads can have an incoming continue edge fromanother kernel. If tag(X) =nil, then the invariant is trivially maintained. Otherwise, wemust show that none of the hidden sets that are unioned to form H(X) contain tag(X).Initially, by induction tag(X) 62 H(X), and so we must show that for each incoming data-dependency edge (j; i) 2 E, we have tag(X) 62 H(K(j)). If thread k also belongs to kernelX, then trivially tag(X) 62 H(K(j)) = H(X). If K(k) = Y 6= X, however, then becauseany data-dependency edge between threads in di�erent kernels always goes to a thread inthe parent kernel, Y is a child of X in the kernel tree. Moreover, Y has completed, andthe last thread of Y was a reconcile. Therefore, we have tag(Y) = nil, which implies thatX = la(Y). Consequently, by Invariant 1, we have H(Y) � H(X). By induction, we knowthat tag(X) 62 H(X) before i executes, and therefore tag(X) 62 H(Y).We are now ready to prove the correctness of Dagger.150

Theorem 12 If the shared memory M of a multithreaded computation G = (V;E) is main-tained using Dagger, then M is dag consistent.Proof: We must show that both parts of De�nition 8 hold. The �rst part holds trivially.To prove that the second part holds, consider three threads i; j; k 2 V , where i � j � k.Since j performs a write and i � j, by the pseudocode for the write action, it follows thati 2 H(j)(K(j)). Moreover, since j � k, Lemma 10 implies that H(j)(K(j)) � H(k)(K(k)).Thus, we have i 2 H(k)(K(k)), which with Invariant 3 implies that tag (k)(K(k)) 6= i.The algorithm Dagger depends heavily on the fact that computations are fully strict,but the basic ideas in Dagger can be extended to nonstrict computations. The idea is thatwhenever a data dependency edge goes from a sending kernel X to a receiving kernel Y , we�rst �nd the least common ancestor Z of X and Y in the kernel tree. Then, we walk upthe tree from X reconciling at each kernel along the way until Z is reached. In e�ect, thisaction unions X's hidden set into Z's. Lastly, we walk up the tree from Y to Z, reconcilingat each kernel along the way. At this point, la(X) is either Z or an ancestor of Z, andthus, when Y next fetches, it obtains a hidden set that includes X's, thus ensuring thatthe second part of De�nition 8 is met. In all other respects, this algorithm is the sameas the Dagger algorithm, and when the dag is fully strict, this procedure reduces to thebasic Dagger algorithm, since Y = Z. The Dagger algorithm is simpler to implement,however.In this section we have proven that the Dagger algorithm maintains dag consistency.See [BFJ+96] for another algorithm we have implemented which also maintains dag consis-tency.6.4 ImplementationThis section describes our implementation of dag-consistent shared memory for the Cilkmultithreaded runtime system running on the Connection Machine CM-5 parallel super-computer [LAD+92]. We �rst describe the Cilk language extensions for supporting shared-memory objects and the \di�" mechanism [KCDZ94] for managing dirty bits. We thendescribe the distributed \cactus-stack" [HD68, Mos70, Ste88] memory allocator which thesystem uses to allocate shared-memory objects. Finally, we describe the mechanisms used151

by the runtime system to maintain dag-consistency.The Cilk system on the CM-5 supports concrete shared-memory objects of 32-bit words.All consistency operations are logically performed on a per-word basis. If we were to allowevery word to be fetched and reconciled independently, however, the system would be ter-ribly ine�cient. Since extra fetches and reconciles do not adversely a�ect the consistencyalgorithm, we implemented the familiar strategy of grouping objects into pages [HP90, Sec-tion 8.2], each of which is fetched or reconciled as a unit. Assuming that spatial localityexists when objects are accessed, grouping objects helps amortize the fetch/reconcile over-head.Unfortunately, the CM-5 operating system does not support handling of page faultsby the user, and so we were forced to implement shared memory in a relatively expensivefashion. Speci�cally, in our CM-5 implementation, shared memory is kept separate fromthe other user memory, and special operations are required to operate on it. Most painfully,testing for page faults occurs explicitly in software, rather than implicitly in hardware.Our Cilk-to-C type-checking preprocessor [Mil95] alleviates some of the discomfort, but atransparent solution that uses hardware support for paging would be much preferable. Aminor advantage to the software approach we use, however, is that we can support full64-bit addressing of shared memory on the 32-bit Sparc processors of the CM-5 system.Cilk's language support makes it easy to express operations on shared memory. The usercan declare shared pointers and can operate on these pointers with normal C operations,such as pointer arithmetic and dereferencing. The type-checking preprocessor automati-cally generates code to perform these operations. The user can also declare shared arrayswhich are allocated and deallocated automatically by the system. As an optimization, wealso provide register shared pointers, which are a version of shared pointers that areoptimized for multiple accesses to the same page. In our CM-5 system, a register sharedpointer dereference is about 5 cycles slower than an ordinary C pointer dereference whenit performs multiple accesses to within a single page. Finally, Cilk provides a loop-holemechanism to convert shared pointers to C pointers, which allows direct, fast operationson pages, but requires the user to keep the pointer within a single page. We hope to portCilk in the near future to an architecture and operating system that allow user-level code tohandle page faults. In such a system, no di�erence need exist between shared objects andtheir C equivalents, and operations on shared memory can be implemented transparently152

with no per-access overhead.An important implementation issue that we faced with the software implementation ofdag-consistent shared memory on the CM-5 was how to keep track of which objects on apage have been written. Rather than using dirty bits explicitly, as the Dagger algorithmfrom Section 6.3 would suggest, Cilk uses a di� mechanism as is used in the Treadmarkssystem [KCDZ94]. The di� mechanism computes the dirty bit for an object by comparingthat object's value with its value in a copy made at fetch time. Our implementation makesthis copy only for pages loaded in read/write mode, thereby avoiding the overhead of copyingfor read-only pages. The di� mechanism imposes extra overhead on each reconcile, but itallows the user to manipulate a page using an ordinary C pointer that incurs no run-timesystem overhead [ZSB94].We needed to support the detection of writes in software, because the CM-5 providesno direct hardware support to maintain dirty bits explicitly at the granularity of words.We rejected out of hand the unpleasant alternative of requiring the user to maintain hisown dirty bits. Since we have limited compiler support and we wish to call existing C codefrom Cilk procedures, we determined that it would be too di�cult to modify our Cilk-to-Ctype-checking preprocessor to automate the maintenance of explicit dirty bits. Likewise, wefelt that the strategy of using binary rewriting to detect writes in software [BZS93] wouldentail too much e�ort. We �nally settled on the di� mechanism for its simplicity.Some means of allocating memory must be provided in any useful implementation ofshared memory. We considered implementing general heap storage in the style of C's mallocand free, but most of our immediate applications only required stack-like allocation fortemporary variables and the like. Since Cilk procedures operate in a parallel tree-likefashion, however, we needed some kind of parallel stack. We settled on implementing acactus-stack [HD68, Mos70, Ste88] allocator.From the point of view of a single Cilk procedure, a cactus-stack behaves much likean ordinary stack. The procedure can allocate and free memory by incrementing anddecrementing a stack pointer. The procedure views the stack as a linearly addressed spaceextending back from its own stack frame to the frame of its parent and continuing to moredistant ancestors.The stack becomes a cactus stack when multiple procedures execute in parallel, eachwith its own view of the stack that corresponds to its call history, as shown in Figure 6-6. In153

A

B

C

D E

P1

P2

1S 2S 3S

A A A

B

C C

D E

1S 2S 3SFigure 6-6: A cactus-stack. Procedure P1 is stolen from subcomputation S1 to start sub-computation S2, and then procedure P2 is stolen from S2 to start subcomputation S3. Eachsubcomputation sees its own stack allocations and the stack allocated by its ancestors. Thestack grows downwards. The left side of the picture shows how the stack grows like a tree,resembling a cactus. The right side shows the stack as seen by the three subcomputations.In this example, the stack segment A is shared by all subcomputations, stack segment C isshared by subcomputations S2 and S3, and the other segments are private.the �gure, subcomputation S1 allocates some memory A before procedure P1 is spawned.Subcomputation S1 then continues to allocate more memory B. When procedure P1 isstolen and becomes the root of subcomputation S2, a new branch of the stack is startedso that subsequent allocations performed by S2 do not interfere with the stack being usedby S1. The stacks as seen by S1 and S2 are independent below the steal point, but theyare identical above the steal point. Similarly, when procedure P2 is stolen from S2 to startsubcomputation S3, the cactus stack branches again.Cactus-stack allocation mirrors the advantages of an ordinary procedure stack. Anyobject on the stack that is viewable by a procedure has a simple address: its o�set from thebase of the stack. Procedure local variables and arrays can be allocated and deallocatedautomatically by the runtime system in a natural fashion, as was shown in the matrix mul-tiplication example in Figure 6-2. Allocation can be performed completely locally withoutcommunication by simply incrementing a local pointer, although communication may berequired when an out-of-cache stack page is actually referenced. Separate branches of thecactus stack are insulated from each other, allowing two subcomputations to allocate andfree objects independently, even though objects may be allocated with the same address.154

Procedures can reference common data through the shared portion of their stack addressspace.Cactus stacks have many of the same limitations as ordinary procedure stacks [Mos70].For instance, a child thread cannot return to its parent a pointer to an object that it hascreated. Similarly, sibling procedures cannot share storage that they create on the stack.Just as with a procedure stack, pointers to objects allocated on the cactus-stack can only besafely passed to procedures below the allocation point in the call tree. Heap storage o�ersa way of alleviating some of these limitations (and we intend to provide a heap allocatorin a future version of Cilk), but the cactus stack provides simple and e�cient support forallocation of procedure local variables and arrays.The CM-5 implementation of Cilk supports shared memory by combining the Daggeralgorithm for maintaining consistency with a cactus-stack allocator. Two regions are al-located within the primary memory of each processor. The �rst is the page cache, whichcontains local copies of pages for the threads running on the processor, and the second isthe backing store, which is a distributed repository for pages that for one reason or anotherwere forced out of the processor caches. In addition, various data structures for memorymanagement are kept in each processor.In Section 6.3, we assumed that an initial thread exists whose cache contains everyobject. In the CM-5 implementation of Cilk, the backing store serves as the cache of this�ctitious initial thread. Our implementation of Dagger accesses the backing store as ifit were an ordinary cache, but unlike an ordinary cache which can discard objects when itruns out of room, the backing store never discards an object. Consequently, the size of thebacking store determines how large a shared-memory application one can run. On the CM-5, the backing store is implemented in a distributed fashion by allocating a large fractionof each processor's memory to this function. When space for a new backing store page isneeded, it is requested from a processor uniformly at random. This policy ensures thatbacking store is spread evenly across the processors' memory. Consequently, we can runapplications that use up to about half the total available primary memory on all processors.In other systems, it might be reasonable to place the backing store on disk �a la traditionalvirtual memory.The page manager for the shared-memory system keeps information on each active andsuspended kernel. Speci�cally, it maintains the base and limit of the portion of cactus stack155

that has been allocated by the threads of the kernel. It also uses a hash table to keep trackof which pages are currently in the local page cache, which pages it has allocated but whichdo not yet exist, and the backing-store addresses for any pages that it has allocated andfor which a copy exists in the backing store. The page manager also keeps track of userreferences to each page in the local cache so that it can perform LRU page replacementwhen the cache becomes full.When a page is allocated on the stack, the stack limit is increased, but no storageis assigned for the page until it is actually used. Thus, allocation is an extremely cheapoperation, as it is in sequential stack-based languages such as C. When the page is accessedfor the �rst time, storage is allocated for it in the cache of the accessing processor. When asubcomputation completes, all of the pages in the cache whose addresses lie beyond the localstack limit are discarded, since those were allocated by completed procedures in the kernelof the terminating subcomputation. In addition, if any of these pages have been written tothe backing store, they are removed and the space for them in the backing store is freed.The pages in the cache whose addresses indicate that they were allocated by ancestorsare reconciled with their least ancestor in accordance with the Dagger algorithm. If noancestor has a copy of a given page, then the page is written to a random location in thebacking store, and the ancestor that allocated the page keeps track of the backing-storelocation.Most of the actions on shared-memory described in the Dagger algorithm from Sec-tion 6.3 can be implemented straightforwardly. The only action of signi�cant complexityoccurs when a subcomputation kernel needs to �nd its least ancestor holding a particularpage. On the CM-5, we call the process of �nding this ancestor tree climbing, becausewe climb up the tree of kernels until we �nd the page in question. We also considered adirectory-based algorithm, but it would have been more complex to implement, and so forour �rst implementation, we opted for the simpler strategy.Tree climbing for fetching and reconciling are similar, and so we shall describe here onlythe steps taken by our implementation when a thread fetches an object on a page on itsstack. When a page reference occurs, the page manager within the processor takes one offour actions:1. If the page is in the cache, the user's action is performed on the cached copy directly.156

2. If the page is not in the cache and its stack address is beyond the current stack limit,then the page manager signals an error, since the page is not allocated.3. If the page is not in the cache and its stack address indicates that this thread's kernelwas responsible for allocating the page, then the page manager goes directly to thebacking store to fetch it, since none of the kernel's ancestors hold a copy. This actionmay cause another page to be ejected from the cache, which may itself cause treeclimbing for reconciliation.4. If the page is not in the cache and its stack address indicates that one of the ancestorsof the thread's kernel allocated the page, then the page manager sends a message tothe kernel's parent to fetch the page for the faulting thread recursively.This last action keeps climbing the kernel tree until one of two events occur. If the pageis found in an ancestor's cache, then we fetch the page out of that cache. If we reach theancestor that allocated the page and its cache does not currently have the page, however,we fetch the page directly from backing store. Once the page has been obtained, we add itto the kernel's cache and return control to the user thread to make use of it.6.5 An Analysis of Page FaultsIn this section, we analyze the number FP of page faults that a (well-structured) computa-tion incurs when run on P processors using Cilk's randomized work-stealing scheduler andthe implementation of dag-consistent shared memory described in Section 6.4. We provethat FP can be related to the number F1 of page faults taken by a 1-processor execution bythe formula FP � F1 + 2Cs, where C is the size of each processor's cache in pages and s isthe total number of steals executed by Cilk's provably good work-stealing scheduler. The2Cs term represents faults due to \warming up" the processors' caches, and we present em-pirical evidence that this overhead is actually much smaller in practice than the theoreticalbound.We begin with a theorem that bounds the number of page faults of a Cilk application.The theorem assumes that the application is well-structured, in the sense described inSection 6.3. The proof takes advantage of properties of the least-recently used (LRU) pagereplacement scheme used by Cilk. 157

Theorem 13 Let FP be the number of page faults of a well-structured Cilk computationwhen run on P processors, and let C be the size of of each processor's cache in pages.Then, we have FP � F1+2Cs, where s is the total number of steals that occur during Cilk'sexecution of the computation.Proof: The proof is by induction on the number s of steals. For the base case, observe thatif no steals occur, then the application runs entirely on one processor, and thus it faultsF1 times by de�nition. For the inductive case, consider an execution E of the computationthat has s steals. Choose any subcomputation T from which no processor steals during theexecution E, and hence forms a leaf in the kernel tree. Construct a new execution E0 of thecomputation which is identical to E, except that T is never stolen. Since E0 has only s� 1steals, we know it has at most F1 + 2C(s� 1) page faults by the inductive hypothesis.To relate the number of page faults during execution E to the number during executionE0, we examine cache behavior under LRU replacement. Consider two processors thatexecute simultaneously and in lock step a block of code using two di�erent starting cachestates, where each processor's cache has C pages. The main property of LRU that weexploit is that the number of page faults in the two executions can di�er by at most C pagefaults. This property follows from the observation that no matter what the starting cachestates may be, after one of the two executions takes C page faults, the states of the twocaches must be identical. Indeed, at the point when one execution has just taken its Cthpage fault, each cache contains exactly the last C distinct pages referenced [JD73].We now use this property of LRU to count the number of page faults of the execution E.The fault behavior of E is the same as the fault behavior of E0 except for the subcomputationT and its parent, call it U , in the kernel tree. The only di�erence between the two executionsis that the starting cache state of T and the starting cache state of the section of U afterT are di�erent. Therefore, execution E makes at most 2C more page faults than executionE0, and thus execution E has at most F1 + 2C(s� 1) + 2C = F1 + 2Cs page faults.Theorem 13 says that the total number of faults on P processors is at most the totalnumber of faults on 1 processor plus an overhead term. The overhead arises whenever asteal occurs, because in the worst case, the caches of both the thieving processor and itsvictim contain no pages in common compared to the situation when the steal did not occur.Thus, they must be \warmed up" until the caches \synchronize" with the cache of a serial158

0

5

10

15

20

25

30

<0.5 0.5-1 1-1.5 1.5-2 2-2.5 2.5-3 >3

nu
m

be
r

of
 e

xp
er

im
en

ts

cache warm-up fraction (%)Figure 6-7: Histogram of the cache warm-up fraction (FP � F1)=2Cs for a variety of ap-plications, cache sizes, processor counts, and problem sizes. The vertical axis shows thenumber of experiments with a cache warm-up fraction in the shown range.execution.To measure the warm-up overhead, we counted the number of page faults taken byseveral applications|including matrixmul, a parallel version of Strassen's algorithm [Str69],and a parallel version of a Barnes-Hut N -body code [BH86]|for various choices of cache,processor, and problem size. For each run we measured the cache warm-up fraction (FP �F1)=2Cs, which represents the fraction of the cache that needs to be warmed up on eachsteal. We know from Theorem 13 that the cache warm-up fraction is at most 1. Ourexperiments indicate that the cache warm-up fraction is, in fact, typically less than 3%, ascan be seen from the histogram in Figure 6-7 showing the cache warm-up fraction for 72experimental runs of the above applications, with processor counts ranging from 2 to 64 andcache sizes from 256KB to 2MB. Figure 6-8 shows a particular example for the page faultsduring the multiplication of 512 � 512 matrices using a 1-megabyte cache and 4-kilobytepages, from which it can be seen that the constant overhead multiplying the number s ofsteals is closer to 9 than to 2C = 512.The reason why the cache warm-up costs are so low can be explained by examining thedistribution of stolen problem sizes. We performed an experiment that recorded the size ofeach subproblem stolen, and we noticed that most of the tasks stolen during an execution159

Processors 1 2 4 8 16 32 64Steals 0 16 31 144 424 1053 1982FP 9552 9557 9760 10216 14151 19508 24634Page Faults F1 + 2Cs 9552 13648 17488 46416 118096 279120 516944F1 + 9s 9552 9696 9831 10848 13368 19029 27391Figure 6-8: Page faults versus the number of processors for a 512 � 512 multiply with a 1Megabyte cache. We show the number of successful steals s, the number of page faults FP ,our upper bound F1 + 2Cs on the number of page faults, and our approximation F1 + 9s.were quite small. In fact, only 5{10% of the stolen problems were \large," where a largesubproblem is de�ned to be one which takes C or more pages to execute. The other 90{95%of the tasks are small. Therefore, most of the stolen subcomputations never perform C pagefaults before terminating. Thus, the bound FP � F1+2Cs derived in Theorem 13 is a veryconservative bound, and in practice we see less than 3% of the extra 2Cs steals.6.6 ConclusionMany other researchers have investigated distributed shared memory. To conclude, webriey discuss related work and o�er some ideas for the future.The notion that independent tasks may have incoherent views of each others' memory isnot new to Cilk. The BLAZE [MR87] language incorporated a memory semantics similar tothat of dag-consistency into a PASCAL-like language. The Myrias [BBZ88] computer wasdesigned to support a relaxed memory semantics similar to dag-consistency, with many ofthe mechanisms implemented in hardware. Loosely-Coherent Memory [LRV94] allows fora range of consistency protocols and uses compiler support to direct their use. Comparedwith these systems, Cilk provides a multithreaded programming model based on directedacyclic graphs, which leads to a more exible linguistic expression of operations on sharedmemory.Cilk's implementation of dag-consistency borrows heavily on the experiences from pre-vious implementations of distributed shared memory. Like Ivy [LH89] and others [CBZ91,FLA94, KCDZ94], Cilk's implementation uses �xed-sized pages to cut down on the over-head of managing shared objects. In contrast, systems that use cache lines [CA94, KOH+94,RLW94] require some degree of hardware support [SFL+94] to manage shared memory e�-160

ciently at the granularity of cache lines. As another alternative, systems that use arbitrary-sized objects or regions [CAL+89, JKW95, TBK93] require either an object-oriented pro-gramming model or explicit user management of objects.As we have gained experience programming with dag consistency, we have encounteredsome de�ciencies of dag consistency that tend to make certain programming idioms inef-�cient. For example, consider a serial program that calls two procedures, each of whichincrements a variable by a certain amount. To parallelize this program using dag con-sistency, one cannot merely spawn the two procedures in parallel, because the update ofone may be lost. Instead, a copy of the variable must be made for one of the proceduresand when they both return, the parent must add the value of the copy into the originalvariable. This extra copying can be very expensive when it occurs in the inner loop of aprogram. A big advantage of direct hardware support for Lamport's model of sequentialconsistency [Lam79] is that no copying of temporaries need occur. We are currently inves-tigating how this kind of problem can be solved e�ciently in Cilk without direct hardwaresupport.The idea of dag-consistent shared memory can be extended to the domain of �le I/Oto allow multiple threads to read and write the same �le in parallel. We anticipate that itshould be possible to memory-map �les and use our existing dag-consistency mechanismsto provide a parallel, asynchronous, I/O capability for Cilk. We are currently investigatinghow to incorporate �le I/O in our system.We are also currently working on porting dag-consistent shared memory to our Cilk-NOW [Blu95] adaptively parallel, fault-tolerant, network-of-workstations system. We areusing operating system hooks to make the use of shared memory be transparent to the user.We expect that the well-structured nature of Cilk computations will allow subcomputationsto maintain coherent views of shared memory e�ciently, even in the presence of processorfaults.

161

162

Chapter 7
Cilk-4: Supporting SpeculativeComputations
The Cilk-4 system, which is still in the process of being implemented, is intended to rem-edy a de�ciency in the Cilk-2 language. When we designed Cilk-2 and added support forprocedures with call/return semantics, we were able to rewrite almost all existing programsusing the new, simpler, Cilk-2 syntax. The only existing application which can not be ex-pressed in the Cilk-2 style is ?Socrates. We can not express ?Socrates using the higher-levelCilk-2 constructs in large part because the control structure of the parallel search algorithmused in ?Socrates is fairly complex, and includes speculative computations which may bekilled o�. For most algorithms, the order in which the user's threads are executed a�ectsneither the number of threads created nor the work performed by those threads. But forspeculative algorithms, like the Jamboree search algorithm at the heart of ?Socrates, thenumber of threads executed, and the amount of work those threads perform, can dependgreatly on the order in which threads are executed. The high-level Cilk-2 constructs do notgive the user enough control over the execution of his code to write an e�cient speculativealgorithm, so the chess code continues to use the lower-level Cilk-1 syntax.Although we focus on ?Socrates, chess is not the only speculative algorithm one mightwant to write in Cilk; there are many others. Any sort of search algorithm where only somesolutions are wanted can be naturally cast as a speculative algorithm. For example, considerthe protein folding code of Section 2.4. A useful modi�cation to the algorithm would berather than �nding all possible foldings of a polymer, instead �nding just one folding that163

has an energy value less than some threshold.In this chapter we �rst describe some proposed extensions that will allow speculativealgorithms to be written. We then show how these extensions could be used to implement?Socrates.This chapter represents ongoing joint work by the members of the Cilk team: RobertBlumofe, Feng Ming Dong, Matteo Frigo, Bradley Kuszmaul, Charles Leiserson, RichardTauriello, Keith Randall, and myself. Feng Ming Dong has modi�ed the Cilk-to-C prepro-cessor to accept the Cilk-4 language and Richard Tauriello has begun implementation ofthe runtime system changes needed for Cilk-4.7.1 The Cilk-4 LanguageWe have proposed two extensions to the Cilk-2 language that will enable us to express?Socrates as well as other speculative algorithms without resorting to the lower-level Cilk-1syntax. There are two extensions that are needed. The �rst extension is to allow the userto specify a restricted piece of code, called an inlet [CSS+91], that is to be executed assoon as a spawned child returns. In chess, an inlet can be used to check the result of atest of a position and perform some action based on that result. The second extension is toallow the user to abort all the children spawned by a procedure. In a speculative program,computations are spawned o� whose results may not be needed. When it is determined thatcertain results are not needed, the computation computing those results should be aborted.Currently, the chess program contains user level code for aborting children. This code wasfairly di�cult to implement correctly, required detailed knowledge of the runtime system,and it worked only with the Cilk-1 syntax. Adding an abort primitive to the runtime systemgreatly simpli�es the writing of speculative computations.The Cilk-4 language allows the user to specify inlets to receive results of child procedures.We want inlets to run shortly after the child completes and incorporate returned resultsinto the parent computation. Therefore inlets must be able to read and write variables localto the parent procedure. In order to be able to name the variables in the parent procedure,the user de�nes inlets within the parent procedure. Since the parent procedure, as wellas the inlets, may read and write the same variables, the system guarantees that inletsfrom the same parent procedure do not execute concurrently with each other or with the164

parent procedure. Inlets can contain arbitrary Cilk code with just one restriction, namelythat inlets are not allowed to execute a sync. Inlets can spawn o� additional procedures,however. These spawns are treated just like spawns by the parent procedure itself: Theparent procedure does not proceed beyond a sync while any of these spawns are outstanding.The syntax of spawning an inlet is:inlet spawn I (args ...);where I is the name of an inlet and each argument can be either a standard argument, ora spawn expression. When a spawn expression is used as the ith argument of an inlet, thespawned child is spawned o� in the usual manner. The type of the inlet's ith argumentmust match the type of the value returned by the spawned child. When the spawned childcompletes, its return value is passed to the inlet as its ith argument. Once an inlet has allits arguments the inlet code can be executed.Inlets can be implemented without any major changes to our runtime system. Eachtime a procedure P spawns an inlet I, which receives the result of zero or more childprocedures, a new closure is created for the inlet thread I. This inlet thread is spliced intothe computation dag between P and the children. The children send their results to I ratherthan the parent P . This inlet thread I is treated as a high-priority thread, so that once theresult from all the children arrive, the inlet I executes shortly thereafter. The result of theinlet thread is then sent to P , where it is treated the same as any arriving argument.Ensuring that two inlets from the same parent procedure cannot execute concurrentlyis not di�cult to do. Since inlets can access the variables in the frame of a procedure,the system is constrained to execute an inlet on the same processor that contains theframe of the parent procedure. Since frames are never moved when there are outstandingspawns, all inlets are therefore executed on the same processor that executed their parentprocedure. This property allows us to easily make the guarantee that no two inlets canexecute concurrently.When implementing inlets we must also be careful not to break the performance guar-antees provided by our scheduler. The subtlety occurs in regards to the provably goodsteals described in Section 3.3. Remember that when a stolen thread sends a value thatenables a second thread, the enabled thread is posted to the ready queue of the sendingprocessor, not to the processor on which it originally resided. This policy is necessary for165

the scheduler to be provably good. What happens when a stolen thread on processor Psends a value which enables an inlet on processor Q? According to the above policy, theinlet must be stolen and executed on processor Q. But as we have seen in the precedingparagraph, inlets cannot be stolen. To solve this problem we treat the inlet as if it wereexecuting on processor Q. Therefore any computation enabled by the execution of the inletmust be migrated to processor Q. Computations which may be enabled by the inlet includeany procedures that the inlet spawns, as well as the parent procedure itself if the valuebeing returned is the last value the parent is waiting for. By migrating these computationsto the sending processor, and by having the sending processor not begin work-stealing untilit �nds out if any computations will be migrated, we maintain the performance guarantee.The change to the Cilk-4 language for the second extension is to provide two newprimitives: abort and continue() and abort and return(). When one of these primitivesis called, either from within a procedure P or, more commonly, from within an inlet createdby procedure P , the system terminates any outstanding children that procedure P mayhave. This implies terminating not just the children of P , but also all descendants of thosechildren. Just how \graceful" this termination will be is still to be determined. Currentlywe expect that we will not halt any executing threads, but will simply prevent new threadsfrom beginning. We also considered allowing the user to specify a piece of code, similarto an inlet, that would be executed when a procedure is aborted. This would allow theuser to \clean up", perhaps, for example, releasing some piece of storage the procedure hadallocated. We decided not to implement this option, since we saw no immediate needed forit, but we may decide to add it if a need arises. The two new primitives di�er in whereexecution continues after the abort completes. When the abort and continue() primitiveis called, the procedure continues at the next sync statement once all children have beenaborted, while when the abort and return() primitive is called, the procedure returnsonce the abort completes.The abort mechanism will be implemented similarly to the abort mechanism in the chesscode (as described in Section 4.3.2). To implement aborts, we will augment the runtimesystem to keep track of the status of all spawned children. The status must contain enoughinformation to �nd all children, even those that have been stolen by another processor. Inessence, this information creates a tree of all existing procedures. When an abort occursinside procedure P we can walk the subtree rooted at P to �nd all descendants of P . As we166

walk this tree we set a ag in each procedure indicating that the procedure is to be aborted.At the beginning of each procedure, the preprocessor adds a check of the abort ag, and ifthis ag is set the procedure returns without executing the user's code. Similar checks willbe performed each time a procedure restarts after a sync. Since a spawned, but aborted,procedure still executes, the dag of the aborted computation is cleaned up automatically.This method of aborting also allows the runtime system to wait until the abort is completebefore returning from the abort primitive.
One unanswered question about the implementation of aborts is how much overhead willthe abort mechanism add to the execution of a program. Inlets have the nice property thatthey cause no overhead except where they are used, but this property is not true of aborts.Even if a procedure P does not itself perform any aborts, one of P 's ancestors could do anabort, in which case P and all its descendants need to be aborted. Therefore, the systemmust keep track of the information needed to do an abort for all procedures. Although wedo not expect the overhead for keeping this information to be large, this overhead seemswasteful, especially since most programs do not use aborts. To eliminate this overhead, thecurrent proposal is to to have a compile-time ag that informs the preprocessor whetherabort information should be kept for all procedures, or none of them. In this way programsthat do not use the abort mechanism will not pay any overhead.
As mentioned earlier, the modi�cations discussed here have not yet been implemented.The current status is that most of the design decisions have been made, we have decidedhow to implement the changes, and implementation has begun. Although we have settled ona syntax, the syntax always seems open to change, so the �nal syntax will likely di�er fromwhat is presented here. However, even if the details of the syntax change, I do not expect thepower and expressibility of the �nal version to di�er signi�cantly from the system presentedhere. Currently Feng Ming Dong is working on modifying the type-checking preprocessor tosupport the new syntax, and Richard Tauriello is making the modi�cations to the runtimesystem to support inlets and aborts. Richard Tauriello will report on the runtime systemmodi�cations in his masters thesis. 167

7.2 A Cilk-4 Example: ChessWe now have the primitives needed to write the chess code in Cilk-4, but before examin-ing this code, let us �rst briey review the requirements of the search algorithm used in?Socrates. The inputs to the search algorithm includes a chess position, a depth d, and arange of interest speci�ed by the bounds � and �. If the exact value v of the position whensearched to depth d is in the range (�; �), then the exact value of the position should bereturned. But if v < �, then the search need only return some v0 � � where v0 is an upperbound on v. Similarly, if v > �, then the search need only return some v0 � � where v0 isa lower bound on v. In the case where � + 1 = � the search reduces to a test of whetherv � � or v < �. We call a search a test search if � + 1 = �, and otherwise, it is called afull value search. Figure 7-1 replicates the Cilk-1 dag from Figure 4-7 which describes thecontrol ow of a full value search.The search code is broken in two parts. Figure 7-2 shows the Cilk-4 code for a testsearch, and Figure 7-3 shows the code for a full value search. In this code we focus on thecontrol ow needed to perform a search and ignore details that do not e�ect the controlow. In the code shown, each search routine is passed two items: (1) a state structurewhich completely describes the current position and the search to be done, and (2) a movespecifying which move is to be applied to the current position. The code performs thesearch and returns a score for the new position.The code for the test search is the simpler of the two. Initially, we de�ne the inletcheck test result, which is described later. Then, we begin by applying the move to thestate structure and if we have searched deep enough we immediately return a value for theposition. Otherwise, we determine if a null-move search should be performed, and if so, wespawn it o� and wait for the result. We then check the returned score, and if the scoreis greater than �, we return immediately. Returning with a score greater than � is calledfailing high. Otherwise, we search the �rst child, wait for it to complete, and again checkto see if we can fail high. Up to this point the search code can be written entirely in Cilk-2style.It is the next part of the code where the new constructs are used. Typically, if a searchis going to fail high, it will do so either in the null-move search or during the search ofthe �rst child. Therefore, after doing these two searches, it is reasonable to do all the168

 Test
Check

Value
Check

Finish
Value

 recursive computation data dependency thread creation may start abort

Value
Check

Value
Check

argument merge

 Test
Check

 Test
Check

TEST

Setup
Test Setup

Test

Setup
Test

V_T3

V_T2

VAL

VALNUL

VAL 0

VAL 1 VAL 2 VAL n

TEST TEST
1 2 n

Figure7-1:Thisdagshowsthedagcreatedby?Socrateswhenperformingavaluesearch.
ThecircleslabeledTESTi andVALi arerecursivecallsofthesearchalgorithm.Other
circlescorrespondtoCilkthreads.169

cilk int test(STATE s, MOVE move){int child_score; /* result from search of a child */int bestscore; /* best score found so far *//* define the inlet to be run when a test completes */inlet void check_test_result(int score){if (score>=s.beta){abort_and_return(score);}bestscore = MAX(bestscore, score);}apply_move(s,move); /* make the move */if(s.depth==0) { /* If we reached the bottom of the tree */return(evaluate(s)); /* compute and return the score */}/* Try a null move search. */if (try_null_move_search_p(s)){child_score = spawn test(s, NUL_MOVE);sync;/* If score from null move beats beta we are done. */if (child_score>=s.beta) return(child_score);}generate_moves(&move_list); /* Generate the moves to be tried *//* Search the first child. */child_score = spawn test(s,move_list[0]);sync;/* If score from first move beats beta we are done. */if (child_score>=s.beta) return(child_score);bestscore = MAX(bestscore, child_score);/* spawn a test for each remaining move */for(j=1;j<s.num_children;j++)inlet_call check_test_result(spawn test(s,move_list[j]));sync;return(bestscore);} Figure 7-2: Cilk-4 code for test search.
170

remaining searches in parallel. If any one of these does fail high, we can return withoutcompleting any remaining searches. In order to return immediately, inlets and aborts areneeded. We de�ne a simple inlet, called check test result, to receive the result of thesearch of a child. This inlet checks to see if the child's score beats �, and if so, it callsthe new primitive abort and return(), which kills o� any computations spawned by thissearch procedure and returns. This inlet also updates bestscore, which keeps track of thebest score found so far. The remainder of the code for a test search spawns o� searchesof the rest of the possible moves, while specifying that the result of each search should bepassed to a check test result inlet. After spawning all the children the code performs async. If the sync is reached, then no test failed high, so we simply return bestscore, thevalue of the best move that we found.Figure 7-3, which is split into two parts, shows the code for a full value search. The codebegins by de�ning the needed inlet, which will be described later. After de�ning the inlet,the rest of the code, which begins on the second page of Figure 7-3, is very similar to thecode for a test search. Initially it is identical: we return if the position has been searcheddeep enough, if a null move search fails high, or if the search of the �rst child fails high.At this point the Jamboree search algorithm requires us to perform test searches on all theremaining moves in parallel to see if they could possibly beat the best score. If the test ofany move fails high, then we need to do a full value search for that move. These full valuesearches should be done one at a time and in order. To perform the search in this way, thecode spawns o� all the tests in parallel, just as in the code for a test search. The di�erenceis in the inlet that is run when the tests return. This inlet needs to make sure the full valuesearches are spawned o� only if needed and only in serial order.In order to control the spawning of the value searches, we store information about thestatus of the child searches in the parent's frame. We create an array status[i], whoseith element gives the search status for the ith move. Initially, all the entries are set toDOING TEST indicating that a test search has been spawned o�. Other possible states areDO VAL, which indicates that a full value search is needed, DOING VAL, which indicates thata full value search has been spawned o�, and DONE, which indicates that no more searchesare needed for this move. As an optimization, we also keep track of a variable next child,which indicates the next move for which a full value search could be started. A move canbe the next to be fully searched only if for all of the earlier moves, the full value searches171

of those moves have either been completed, or were not necessary at all.To implement the Jamboree search algorithm, the code uses the inlet child done whichreceives the result of the search of a child. The same inlet is used to receive results fromtest searches and from value searches.This inlet �rst checks to see if the returned result beat �. If so, the search shouldfail high, and the abort and return() primitive is used to end the search immediately.Otherwise, the inlet continues. The inlet next updates the status information for this child.When a test search has just completed, performing this update requires checking to see ifthe returned result was greater than �. If so, a value search is needed and so the statusis set to DO VAL. Otherwise no value search is needed and so the status is set to DONE.When a value search has just completed, no further searching is need for this child so thestatus of the child is set to DONE. The last action of the inlet is to spawn o� a value searchif appropriate. This action is performed by walking through the moves, beginning withnext child, until either a value search is spawned o�, or until we discover no value searchshould be started. If the status of the move being considered is DOING TEST, then no valuesearch is spawned o�, because we must wait until the test of that move completes. If thestatus of the move being considered is DO VAL, then we spawn o� the value search for thatmove, specifying, of course, child done as the inlet to be run when the search completes.If the status of the move being considered is DOING VAL, then no value search is spawnedo�, because there is already a value search in progress. Otherwise the status of the movebeing considered is DONE, so no value search is needed for it. In this case we set next childto be the next move and loop.There is one detail that may a�ect performance that was handled more e�ciently inthe Cilk-1 version than in the Cilk-4 version shown above. When we perform a test search,this version tests against the value of � that the parent had when the search was spawned.Occasionally, between the time the test search was spawned, and the time execution of thattest begins, the parent's value of � may increase. The search algorithm is more e�cient ifwe test against the parent's current value of � rather than the earlier value. Since the Cilk-1version passes around pointers to state structures, test searches in Cilk-1 have access to theparent's current version of �, and the current version is in fact used by the test search. TheCilk-4 version shown above does not use the latest version of � because it has no access tothat value. If we modi�ed the above code to store the state structures in shared memory,172

cilk int value(STATE s, MOVE move){/* Remember that only one value search should be in progress at a time,* and that all value searches must be done in order.* The variables:* status[i] tracks the status of move 'i'. It is one of:* DOING_TEST -- initial test not complete* DO_VAL -- full value search needed, not yet started* DOING_VAL -- full value search in progress* DONE -- all testing of this child complete* next_child: the next child for which a value search could be begun.*/int status[MAX_NUM_MOVES], next_child;int bestscore;inlet void child_done(int child_score, int child_index, int srch_type){if (child_score>=s.beta) abort_and_return(child_score);bestscore = MAX(bestscore,child_score);s.alpha = MAX(child_score,s.alpha);if (srch_type==TEST_SRCH){/* A test search completed: Set status based on test result. */if (child_score>test_alpha)status[child_index]=DO_VAL;elsestatus[child_index]=DONE;} else{/* A value search completed: This child is finished. */status[child_index]=DONE;}/* See if we need to start a value search */while(;next_child<s.num_children;next_child++){if (status[next_child]==DOING_TEST) break;else if (status[next_child]==DOING_VAL) break;else if (status[next_child]==DO_VAL){inlet_call child_done(spawn value(s, move_list[next_child]),next_child, FALSE);break;}}}/*** ... continued on next page ... ***/Figure 7-3: Cilk-4 code for value search.
173

/*** Full Value Search Continued ***/apply_move(s,move); /* make the move */if(s.depth==0) { /* If we reached the bottom of the tree */bestscore=evaluate(s); /* compute and return the score */return(s);}/* Try a null move search. */if (try_null_move_search_p(s)){child_score = spawn value(s, NUL_MOVE);sync;/* If score from null move beats beta we are done. */if (child_score>=s.beta) return(child_score);}generate_moves(&move_list); /* Generate the moves to be tried *//* Search the first child. */child_score = spawn value(s,move_list[0]);sync;/* If score from first move beats beta we are done. */if (child_score>=s.beta) return(child_score);s.alpha = MAX(s.alpha,child_score);bestscore = MAX(bestscore,child_score);next_child=1;for(j=1;j<s.num_children;j++)status[j]=DOING_TEST;/* Spawn off the tests */test_alpha = s.alpha;for (i=1;i<s.num_children;i++)inlet_call child_done(spawn test(s,move_list[i]), i, TEST_SRCH);sync;/* We reach here only if no child beat beta */return(bestscore);} Figure 7-3 continued: Cilk-4 code for value search
174

and then passed around pointers to the state structure, then the Cilk-4 version could usethe latest value of � as well.7.3 ConclusionsUsing the Cilk-4 primitives we are now able to implement the Jamboree search algorithmin under three pages of code. This is much simpler than the two dozen threads which areneeded to implement the search code in the lower level Cilk-1 syntax. It will be interestingto see how the performance of the Cilk-4 implementation compares with the performanceof the Cilk-1 implementation. We expect that the performance of the two will be similar.However, even though the Cilk-4 version is written at a higher level, it is possible it willperform better. The Cilk-1 version used low-level features, such as nonstealable threads,that interfere with the operation of the provably-good scheduler by causing the busy-leavesproperty not to hold. By eliminating the use of these features, the Cilk-4 version mayactually improve the e�ciency of the search.The additions described in this chapter are useful for more than just chess. One naturalapplication of Cilk-4 is for use with backtrack searches where only one solution is needed.In Cilk-2 it is easy to write a backtrack search routine that �nds all possible solutions to aproblem. But often only one solution is needed, and Cilk-2 style codes have no way to stopthe search once the �rst good solution is found. With the Cilk-4 additions, it is easy tomodify a search program to stop after �nding one solution: just associate with each spawnan inlet that performs an abort and return if the spawned child has found a solution.

175

176

Chapter 8
Conclusions
This chapter summarizes some of the features of the Cilk system, and then describes someareas for future work.8.1 SummaryWe think the Cilk system has achieved its goal of allowing a programmer to easily ande�ciently implement a wide range of asynchronous, dynamic, parallel algorithms. At thebeginning of this document, we listed a number of characteristics that a good parallelprogramming system should have. This section revisits this list and examines how Cilkstands up.� Minimize the gap between applications and languages: The Cilk system allowsa programmer to focus on his application, not on the low-level protocols needed toimplement a parallel algorithm. The Cilk system minimizes this gap by raising thelevel of programming. The Cilk system hides from the programmer most low-leveldetails such as thread encapsulation, thread scheduling, and load balancing. TheCilk-2 system goes further and hides the continuation-passing nature of the runtimesystem from the user, allowing the user to write code in a style similar to serial code.Cilk-4 further minimizes this gap by allowing the user to easily implement e�cientspeculative computations.� Provide predictable performance: In Chapter 3 we showed that with P proces-sors, the expected execution time of a Cilk computation, including scheduling over-177

head, is bounded by TP = O(T1=P +T1). With this knowledge a programmer is ableto predict the performance of his program before it is even executed by estimating T1and T1. Alternatively, a programmer can run his program once and use the reportedvalues of T1 and T1 to accurately predict how his program will perform on othermachine sizes.� Execute e�ciently: There is not a large overhead for executing a program withthe Cilk system. We have shown empirically (Section 3.4) that for most applicationsthe execution time of a Cilk program on one processor is comparable to the executiontime of a serial code when run on the same processor.� Scale well: We have shown empirically (Section 3.5) that we can accurately modelthe execution time of a program as TP � T1=P + c1T1, where c1 is a small value(c1 = 1:5 for the knary example). Since the constant in front of the T1=P term isone, we obtain nearly perfect linear speedup when the available parallelism is largecompared to the number of processors.� Portable: Cilk has been ported to a wide range of systems. It runs on variousserial machines (under Unix and Linux), Symmetric MultiProcessors (e.g. Sun, SGI),and Massively Parallel Processors (e.g. CM-5, Paragon). In addition, Blumofe hasimplemented a version of Cilk which runs on Networks of Workstations [Blu95].� Leverage existing codes: Since Cilk can call standard C functions, much of theexisting serial code can often be used when porting an application to Cilk. Thiswas especially important in porting the Socrates chess program and the POV-Ray raytracer to Cilk. Both of these are large applications, and when they were ported to Cilkmost of the code for these applications was able to be reused without modi�cation.� Be expressive: Although there are many applications that cannot be easily ex-pressed in Cilk, there are a wide range of applications which can. And many of theapplications that can be expressed in Cilk cannot be easily expressed in other paral-lel languages. The ?Socrates program is an example of one such complex program.Although this program was time consuming to write and debug in Cilk-1, the Cilk-4additions described in Chapter 7 help make this program easier to express in Cilk. Inaddition, the shared memory system described in Chapter 6 signi�cantly increases the178

expressibility of the language by allowing large amounts of data to be easily sharedthroughout the computation.8.2 Future WorkThe Cilk system described in this thesis is quite useful, as it allows a wide range of programsto be easily expressed, while still achieving good performance. But, as we said earlier, thestory of Cilk is one of incremental improvement. There are still areas we think we canimprove, and so the story of Cilk is not yet over. We conclude this thesis by describingsome of the improvements to the system that we have considered.One improvement we would like to make is to build a shared memory system whichdoes not destroy the performance guarantees of Chapter 3. With the current shared me-mory system we are able to bound the number of page faults a program makes, but wehave been unable to provide a tight theoretical bound on the execution time of a sharedmemory Cilk program. Experiments are currently under way with a new, and simpler,implementation of dag-consistent shared memory, about which we hope to be able to provetighter bounds. This dag-consistent shared memory implementation, does not perform thetree-walk operation described in Chapter 6. Instead a kernel always go to the backing storeto access a page. This change makes theoretical analysis easier since it eliminates the needto analyze the execution time of performing the tree walk. In practice, on machines suchas the CM-5, where sending a short message is inexpensive, we expect the performance forthis new system to be similar to the performance of the tree walk algorithm. For machineswhere the message overhead is larger, we expect this implementation to be more e�cientsince eliminating the tree walk reduces the number of protocol messages that are needed.Another improvement we would like to make is to allow certain shared memory applica-tions to run more e�ciently by reducing the amount of data movement necessary. Sharedmemory lets us move data to the computation, but, as is well known, moving the compu-tation to the data is often more e�cient. Currently the Cilk system has no way of movingthe computation to the data, so a shared memory Cilk program often needs to performmore data movement than other systems need to perform. As an example, consider per-forming many iterations of array relaxation. In a data parallel program the array wouldbe distributed across the machine, with each processor having its own section, and on each179

iteration only the elements at the edge of a processors section would need to be commu-nicated. In a naive Cilk program, on each iteration a new random tree is built to spreadthe the computation among the processors. Each processor would typically get a di�erentportion of the array each iteration. The entire array would be communicated twice percycle: �rst from the backing store to the processor performing the computation, and thenback again to the backing store.We have considered two methods by which we could more closely associate a computationto its data, thereby reducing the amount of communication a shared memory programrequires.The simpler of the two methods is based on augmenting the existing shared memorysystem to try to increase reuse of data. The idea is to try to keep track of how thecomputation was spread out on the previous iteration, and, where possible, try to repeatthat computation tree on the next iteration, so that a processor would tend to work onthe same data from iteration to iteration. To implement this we would have to �gure outhow to regrow the computation tree the same way from iteration to iteration. Presumablythe user would specify when the system should try to do this. Also, the current sharedmemory system cannot take advantage of potential data reuse between iterations: Whena new kernel begins (which happens every iteration) a processor will not use any of thedata currently in its cache because it does not know if that data is up-to-date. We wouldneed to modify the shared-memory system so that when an old copy of a needed page isin a processor's cache, the processor is able to check to see if the page is current before itrequests a new copy. To take full advantage of this method we would also need to modifythe system so that updated pages do not need to be sent to the backing store after everyiteration. Instead, we would want to tell the backing store where the updated page is, andleave the updated page in the cache, even after the kernel that updated the page �nishes.A second method to decrease communication in programs using lots of data is to usewhat we call persistent closures. The idea here is to try to mimic the way that the data-parallel model works. We would bind to a processor a thread which performs part of thecomputation, and allow that thread to be executed repeatedly. For the array relaxationexample, we would bind to each processor a thread to perform the relaxation on part of thearray, and that thread would be executed once each iteration. The portion of the array usedby that thread would be bound to the processor as well, and we provide the user with a way180

to specify what data needs to be communicated on each iteration. We have performed somesimple experiments using this idea and have seen some promising results. We implementedan array relaxation example using low-level Cilk-1 features, and this program out-performeda similar array relaxation program we wrote in a data parallel language. Although we canimplement this mechanism using low-level Cilk features, we do not now how to add such amechanism to Cilk at a reasonably high level. Also we have no idea how to integrate sucha feature into Cilk in a way that gives us any performance guarantees.We have no current plants to add either of these methods to Cilk since we have somequestions about the implementation of each of them. We do expect to eventually addressthe issue of reducing data movement in Cilk, but whether it will be via one of these twomethods, or via something completely di�erent, is not yet known.A �nal improvement that we are considering is to implement a stack-based executionmodel using lazy task creation [MKH91]. This modi�cation is one we think we understand,and we expect to implement it in the near future. Switching Cilk to a stack-based executionmodel would provide two bene�ts. First, it would lower the overhead of spawning new tasks.Second, under a stack-based model, the execution order of Cilk programs would more closelymimic the execution order of serial programs.A stack-based model di�ers from the current model in what happens when a spawn isencountered. In the current system when a spawn is reached the state needed to execute thespawned child is packaged up and put aside, and the parent procedure immediately continuesexecution after the spawn. This is the opposite of the execution order of function calls inmost languages. Typically, when a function call is made the parent function suspends untilthe called function completes. Under a stack based model when a spawn is reached, theexecution order mimics the execution order of a serial program by suspending the parentand beginning execution of the child. However, enough state about the parent is keptaround so that if a steal request arrives the parent can be packaged up and stolen.This stack-based technique makes the overhead of a spawn comparable to the overheadof a procedure call. The only di�erence is that when spawning, some extra information maybe kept around so that the parent is able to be stolen. When a parent is stolen, then thestack-based model has the additional cost of packaging up the parent. This cost should besimilar to, and probably slightly greater than, the cost of performing a spawn in the currentsystem. Since steals are rare compared to spawns, this technique signi�cantly reduces the181

overhead of a Cilk program.8.3 Concluding RemarksThis thesis began by pointing out that recently parallel hardware has been advancing fasterthan parallel software. Parallel machines are becoming commonplace, but they are typicallyused for executing many independent jobs, since writing a true parallel program is still adi�cult task. Cilk alone is not the solution to the \parallel software problem." Probably noone system is. But Cilk has the potential to become part of the solution, and to help spreadthe use of parallel programming. By allowing a programmer to easily implement e�cient,asynchronous, parallel algorithms, Cilk can be become one more entry in a programmer'sarsenal of tools for attacking parallel programming problems.

182

Appendix A
Protein Folding Optimizations
This appendix describes the algorithmic optimizations that we made to the original proteinfolding code. These changes provided a speedup of 1 to 2 orders of magnitude on vari-ous problem sizes. This appendix assumes the reader is familiar with the application asdescribed in Section 2.4.In Section 2.4 we described the changes made to the protein folding code to express it inCilk. In addition to these changes, we made other changes to the original serial code whichsigni�cantly improved the performance of the protein folding application. These changesmake use of simple checks to see if we can end the search down a branch early. Whensearching through the cube creating a partial path, it is easy to create a partial path fromwhich no Hamiltonian path can be created. As a simple example, let us consider paths on atwo dimensional grid. A short path which includes the three points nearest the corner, butnot the corner itself, can never be extended into a Hamiltonian path. But since much of thegrid remains unvisited, a naive algorithm would perform a signi�cant amount of searchingbefore giving up on this partial path. By adding some simple checks to the search algorithmwe can reduce much of this wasted search. We do this as follows: For each point in the cubewe keep track of how many unvisited neighbors it has. A point with no unvisited neighbors,such as the corner point in the above example, can never be reached. Since a Hamiltonianpath must reach every path once, if a point with no unvisited neighbors exists, then noHamiltonian path is possible. Path (a) of Figure A-1 shows a 2-D grid in which point 0 hasno unvisited neighbors. If at some point in the search a point with no unvisited neighbors iscreated, then there is no way to produce a Hamiltonian path from the current partial path,183

so the search of the current partial path can be ended. Also, notice that if a point withonly one unvisited neighbor exists, then no path can be created that continues through thatpoint. Therefore any possible Hamiltonian paths must end at that point. Therefore, if twosuch points ever exist then no Hamiltonian path is possible. Path (b) of Figure A-1 showsan example where two points, namely 0 and 2, both have one unvisited neighbor, and so nopath is possible. So at each step the algorithm checks to see if a two such points have beencreated, and if so the search of the current partial path is ended. These checks speed upthe program by approximately a factor of 10 on the 3� 3� 3 cube and 40 on the 4� 3� 3cube. We could not compute the exact speedup for the 4 � 4 � 3 cube because it wouldtake too long to run this size without the improvements. However, we estimate that theimprovements provide a speedup of over 100 on this problem size.A further improvement can be made by noting that the set of points at which a Hamil-tonian path can end is partially determined by the point at which the path begins. To takeadvantage of this we give each point a parity. A point at position (i; j; k) is given a parity(i + j + k) mod 2. Note that each time a point is added to the end of the partial path,the parity of the point at the end of the path changes. This change occurs because exactlyone of the indices of the new end point di�ers by exactly 1 from the previous end point.Therefore if we know the starting point of a path, and we know how long the path is, wecan compute what the parity of the endpoint is. So for any partial path, since we know theparity of its starting point, we can easily compute what the parity must be for an endpointof any Hamiltonian path beginning with that partial path. We have seen that when thesearch creates a point with only one unvisited neighbor, that point must be the end of anyHamiltonian path. As described earlier, our search code detects when a point with only oneunvisited neighbor is created. When we create such a point we also check to see if its parityis the predicted parity for the endpoint. If not we stop the search of the current partialpath. Path (c) of Figure A-1 shows an example of this check for a 5 � 5 2-D grid. In this�gure each point is labeled with its parity. A Hamiltonian path is of an odd length (25), soit must begin and end on the same parity, in this case odd. In this example, point 6 mustbe the �nal point, but since it has even parity no Hamiltonian path is possible.
184

(b)

0 1 2 3

4

8

12

Starting point

(a)

0 1 2 3

4

8

12

Starting point

(c)

E O E O

5

10

15

20

E

E O E O E

E O E O E

E O E OO

E O E OO

0

Figure A-1: Each �gure shows a partial path on a 2-D lattice. None of these partial pathscan result in a Hamiltonian path: Path (a) because it has a point (0) with no unvisitedneighbors, and Path (b) because it has two points (0,2) with only one unvisited neighbor,and Path (c) because a Hamiltonian path would have to end at a point (6) with the wrongparity.
185

186

Bibliography
[AAC+92] Gail Alverson, Robert Alverson, David Callahan, Brian Koblenz, Allan Porter-�eld, and Burton Smith. Exploiting heterogeneous parallelism on a multi-threaded multiprocessor. In Proceedings of the 1992 ACM International Con-ference on Supercomputing, pages 188{197, Washington, D.C., July 1992.[ABLL91] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M.Levy. Scheduler activations: E�ective kernel support for the user-level man-agement of parallelism. In Proceedings of the Thirteenth ACM Symposium onOperating Systems Principles, pages 95{109, Paci�c Grove, California, October1991.[ACP95] Thomas E. Anderson, David E. Culler, and David A. Patterson. A case forNOW (networks of workstations). IEEE Micro, 15(1):54{64, February 1995.[BB94] Eric A. Brewer and Robert Blumofe. Strata: A multi-layer communicationslibrary. In Proceedings of the 1994 MIT Student Workshop on Scalable Com-puting, July 1994.[BBB+94] D. Bailey, E. Barszcz, J. Barton, D. Browning, et al. The NAS parallel bench-marks. Technical Report RNR-94-007, NASA Ames Research Center, March1994.[BBZ88] Monica Beltrametti, Kenneth Bobey, and John R. Zorbas. The control mech-anism for the Myrias parallel computer system. Computer Architecture News,16(4):21{30, September 1988. 187

[BCK+89] M. Berry, D. Chen, P. Koss, D. Kuck, et al. The Perfect club benchmarks:E�ective performance evaluation of supercomputers. International Journal ofSupercomputer Applications, 3(3):5{40, 1989.[BE89] Hans Berliner and Carl Ebeling. Pattern knowledge and search: The SUPREMarchitecture. Arti�cial Intelligence, 38(2):161{198, March 1989.[Bea95] D. Beal. Round-by-round. ICCA Journal, 18(2), 1995.[BFJ+95] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Bradley C. Kusz-maul, Charles E. Leiserson, Rob Miller, Keith H. Randall, and Yuli Zhou.Cilk 2.0 Reference Manual. MIT Laboratory for Computer Science, 545 Tech-nology Square, Cambridge, Massachusetts 02139, June 1995. Available viaftp://theory.lcs.mit.edu/pub/cilk/manual2.0.ps.Z.[BFJ+96] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson,and Keith H. Randall. Dag-consistent distributed shared memory. In Pro-ceedings of the 10th International Parallel Processing Symposium, Honolulu,Hawaii, April 1996.[BH86] J. E. Barnes and P. Hut. A hierarchical O(N logN) force calculation algorithm.Nature, 324:446, 1986.[BJK+95] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An e�cient multithreadedruntime system. In Proceedings of the Fifth ACM SIGPLAN Symposium onPrinciples and Practice of Parallel Programming (PPoPP), pages 207{216,Santa Barbara, California, July 1995.[BL94] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded com-putations by work stealing. In Proceedings of the 35th Annual Symposiumon Foundations of Computer Science, pages 356{368, Santa Fe, New Mexico,November 1994.[Ble92] Guy E. Blelloch. Programming parallel algorithms. In Proceedings of the 1992Dartmouth Institute for Advanced Graduate Studies (DAGS) Symposium onParallel Computation, pages 11{18, Hanover, New Hampshire, June 1992.188

[Ble93] Guy E. Blelloch. NESL: A nested data-parallel language. Technical Re-port CMU-CS-93-129, School of Computer Science, Carnegie-Mellon University,April 1993.[Blu95] Robert D. Blumofe. Executing Multithreaded Programs E�ciently. PhD thesis,Department of Electrical Engineering and Computer Science, MassachusettsInstitute of Technology, September 1995.[BP94] Robert D. Blumofe and David S. Park. Scheduling large-scale parallel compu-tations on networks of workstations. In Proceedings of the Third InternationalSymposium on High Performance Distributed Computing, pages 96{105, SanFrancisco, California, August 1994.[Bre74] Richard P. Brent. The parallel evaluation of general arithmetic expressions.Journal of the ACM, 21(2):201{206, April 1974.[BS81] F. Warren Burton and M. Ronan Sleep. Executing functional programs on avirtual tree of processors. In Proceedings of the 1981 Conference on Func-tional Programming Languages and Computer Architecture, pages 187{194,Portsmouth, New Hampshire, October 1981.[BZS93] Brian N. Bershad, Matthew J. Zekauskas, and Wayne A. Sawdon. The Midwaydistributed shared memory system. In Digest of Papers from the Thirty-EighthIEEE Computer Society International Conference (Spring COMPCON), pages528{537, San Francisco, California, February 1993.[CA94] David Chaiken and Anant Agarwal. Software-extended coherent shared me-mory: Performance and cost. In Proceedings of the 21st Annual InternationalSymposium on Computer Architecture, pages 314{324, Chicago, Illinois, April1994.[CAL+89] Je�rey S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, andRichard J. Little�eld. The Amber system: Parallel programming on a networkof multiprocessors. In Proceedings of the Twelfth ACM Symposium on OperatingSystems Principles, pages 147{158, Litch�eld Park, Arizona, December 1989.189

[CBZ91] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation andperformance of Munin. In Proceedings of the Thirteenth ACM Symposium onOperating Systems Principles, pages 152{164, Paci�c Grove, California, Octo-ber 1991.[CD88] Eric C. Cooper and Richard P. Draves. C threads. Technical Report CMU-CS-88-154, School of Computer Science, Carnegie-Mellon University, June 1988.[CDG+93] Daved E. Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishna-murthy, Steven Lumetta, Thorsten von Eicken, and Katherine Yelick. Parallelprogramming in Split-C. In Supercomputing '93, pages 262{273, Portland, Ore-gon, November 1993.[CGH94] Rohit Chandra, Anoop Gupta, and John L. Hennessy. COOL: An object-basedlanguage for parallel programming. IEEE Computer, 27(8):13{26, August 1994.[CRRH93] Martin C. Carlisle, Anne Rogers, John H. Reppy, and Laurie J. Hendren. Earlyexperiences with Olden. In Proceedings of the Sixth Annual Workshop on Lan-guages and Compilers for Parallel Computing, Portland, Oregon, August 1993.[CSS+91] David E. Culler, Anurag Sah, Klaus Erik Schauser, Thorsten von Eicken, andJohn Wawrzynek. Fine-grain parallelism with minimal hardware support: Acompiler-controlled threaded abstract machine. In Proceedings of the FourthInternational Conference on Architectural Support for Programming Languagesand Operating Systems, pages 164{175, Santa Clara, California, April 1991.[DMBS79] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK Users'Guide. Siam, Philadelphia, 1979.[DSB86] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory access bu�eringin multiprocessors. In Proceedings of the 13th Annual International Symposiumon Computer Architecture, pages 434{442, June 1986.[EAL93] Dawson R. Engler, Gregory R. Andrews, and David K. Lowenthal. Filaments:E�cient support for �ne-grain parallelism. Technical Report TR 93-13a, TheUniversity of Arizona, 1993. 190

[EL94] Natalie Engler and David Linthicum. Not just a PC on steroids. Open Com-puting, pages 43{47, April 1994.[FF82] Raphael A. Finkel and John P. Fishburn. Parallelism in alpha-beta search.Arti�cial Intellgence, 19(1):89{106, September 1982.[FLA94] Vincent W. Freeh, David K. Lowenthal, and Gregory R. Andrews. DistributedFilaments: E�cient �ne-grain parallelism on a cluster of workstations. In Pro-ceedings of the First Symposium on Operating Systems Design and Implemen-tation, pages 201{213, Monterey, California, November 1994.[FM87] Raphael Finkel and Udi Manber. DIB|a distributed implementation ofbacktracking. ACM Transactions on Programming Languages and Systems,9(2):235{256, April 1987.[FMM93] R. Feldmann, P. Mysliwietz, and B. Monien. Game tree search on a massivelyparallel system. In Advances in Computer Chess 7, pages 203{219, 1993.[FMM94] Rainer Feldmann, Peter Mysliwietz, and Burkhard Monien. Studying overheadsin massively parallel min/max-tree evaluation. In Proceedings of the Sixth An-nual ACM Symposium on Parallel Algorithms and Architectures, pages 94{103,Cape May, New Jersey, June 1994.[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability. W.H.Freeman and Company, 1979.[GLL+90] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, AnoopGupta, and John Hennessy. Memory consistency and event ordering in scalableshared-memory multiprocessors. In Proceedings of the 17th Annual Interna-tional Symposium on Computer Architecture, pages 15{26, Seattle, Washington,June 1990.[Gra66] R. L. Graham. Bounds for certain multiprocessing anomalies. The Bell SystemTechnical Journal, 45:1563{1581, November 1966.[Gra69] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journalon Applied Mathematics, 17(2):416{429, March 1969.191

[GS93] Guang R. Gao and Vivek Sarkar. Location consistency: Stepping beyond thebarriers of memory coherence and serializability. Technical Report 78, McGillUniversity, School of Computer Science, Advanced Compilers, Architectures,and Parallel Systems (ACAPS) Laboratory, December 1993.[Gwe94] Linley Gwennap. Intel extends 486, Pentium families. Microprocessor Report,8(3):1{11, March 1994.[Hal84] Robert H. Halstead, Jr. Implementation of Multilisp: Lisp on a multiprocessor.In Conference Record of the 1984 ACM Symposium on Lisp and FunctionalProgramming, pages 9{17, Austin, Texas, August 1984.[Hal85] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic compu-tation. ACM Transactions on Programming Languages and Systems, 7(4):501{538, October 1985.[HD68] E. A. Hauck and B. A. Dent. Burroughs' B6500/B7500 stack mechanism.Proceedings of the AFIPS Spring Joint Computer Conference, pages 245{251,1968.[HKT93] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Preliminary expe-riences with the Fortran D compiler. In Supercomputing '93, pages 338{349,Portland, Oregon, November 1993.[HP90] John L. Hennessy and David A. Patterson. Computer Architecture: a Quanti-tative Approach. Morgan Kaufmann, San Mateo, CA, 1990.[HS86] W. Hillis and G. Steele. Data parallel algorithms. Communications of the ACM,29(12):1170{1183, December 1986.[HWW93] Wilson C. Hsieh, Paul Wang, and William E. Weihl. Computation migration:Enhancing locality for distributed-memory parallel systems. In Proceedings ofthe Fourth ACM SIGPLAN Symposium on Principles and Practice of ParallelProgramming (PPoPP), pages 239{248, San Diego, California, May 1993.[HZJ94] Michael Halbherr, Yuli Zhou, and Chris F. Joerg. MIMD-style parallel pro-gramming with continuation-passing threads. In Proceedings of the 2nd Inter-192

national Workshop on Massive Parallelism: Hardware, Software, and Appli-cations, Capri, Italy, September 1994. A longer version appeared as : MITLaboratory for Computer Science, Computation Structures Group Memo 355.[Int94] Intel Supercomputer Systems Division, Beaverton, Oregon. Paragon User'sGuide, June 1994.[JD73] Edward G. Co�man Jr. and Peter J. Denning. Operating Systems Theory.Prentice-Hall, Inc., Englewood Cli�s, NJ, 1973.[JK94] Chris Joerg and Bradley C. Kuszmaul. Massively parallel chess. In Proceed-ings of the Third DIMACS Parallel Implementation Challenge, Rutgers Uni-versity, New Jersey, October 1994. Available as ftp://theory.lcs.mit.edu/pub/cilk/dimacs94.ps.Z.[JKW95] Kirk L. Johnson, M. Frans Kaashoek, and Deborah A. Wallach. CRL: High-performance all-software distributed shared memory. In Proceedings of theFifteenth ACM Symposium on Operating Systems Principles, pages 213{228,Copper Mountain Resort, Colorado, December 1995.[JP92] Suresh Jagannathan and Jim Philbin. A customizable substrate for concur-rent languages. In Proceedings of the ACM SIGPLAN '92 Conference on Pro-gramming Language Design and Implementation, pages 55{67, San Francisco,California, June 1992.[Kal90] L. V. Kal�e. The Chare kernel parallel programming system. In Proceedings ofthe 1990 International Conference on Parallel Processing, Volume II: Software,pages 17{25, August 1990.[KC93] Vijay Karamcheti and Andrew Chien. Concert|e�cient runtime support forconcurrent object-oriented programming languages on stock hardware. In Su-percomputing '93, pages 598{607, Portland, Oregon, November 1993.[KCDZ94] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. Tread-Marks: Distributed shared memory on standard workstations and operatingsystems. In USENIX Winter 1994 Conference Proceedings, pages 115{132, SanFrancisco, California, January 1994.193

[KEW+85] R. H. Katz, S. J. Eggers, D. A. Wood, C. L. Perkins, and R. G. Sheldon.Implementing a cache consistency protocol. In Proceedings of the 12th AnnualInternational Symposium on Computer Architecture, pages 276{283, 1985.[KHM89] David A. Kranz, Robert H. Halstead, Jr., and Eric Mohr. Mul-T: A high-performance parallel Lisp. In Proceedings of the SIGPLAN '89 Conference onProgramming Language Design and Implementation, pages 81{90, Portland,Oregon, June 1989.[KM75] Donald E. Knuth and Ronald W. Moore. An analysis of alpha-beta pruning.Arti�cial Intelligence, 6(4):293{326, Winter 1975.[KOH+94] Je�rey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard Simoni,Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Baxter, MarkHorowitz, Anoop Gupta, Mendel Rosenblum, and John Hennessy. The Stan-ford Flash multiprocessor. In Proceedings of the 21st Annual InternationalSymposium on Computer Architecture, pages 302{313, Chicago, Illinois, April1994.[KR90] Richard M. Karp and Vijaya Ramachandran. Parallel algorithms for shared-memory machines. In J. van Leeuwen, editor, Handbook of Theoretical Com-puter Science|Volume A: Algorithms and Complexity, chapter 17, pages 869{941. MIT Press, Cambridge, Massachusetts, 1990.[Kus94] Bradley C. Kuszmaul. Synchronized MIMD Computing. PhD thesis, Depart-ment of Electrical Engineering and Computer Science, Massachusetts Insti-tute of Technology, May 1994. Available as MIT Laboratory for ComputerScience Technical Report MIT/LCS/TR-645 or ftp://theory.lcs.mit.edu/pub/bradley/phd.ps.Z.[KZ93] Richard M. Karp and Yanjun Zhang. Randomized parallel algorithms forbacktrack search and branch-and-bound computation. Journal of the ACM,40(3):765{789, July 1993. 194

[LAB93] Pangfeng Liu, William Aiello, and Sandeep Bhatt. An atomic model formessage-passing. In Proceedings of the Fifth Annual ACM Symposium on Par-allel Algorithms and Architectures, pages 154{163, Velen, Germany, June 1993.[LAD+92] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman,Mahesh N. Ganmukhi, Je�rey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul,Margaret A. St. Pierre, David S. Wells, Monica C. Wong, Shaw-Wen Yang, andRobert Zak. The network architecture of the Connection Machine CM-5. InProceedings of the Fourth Annual ACM Symposium on Parallel Algorithms andArchitectures, pages 272{285, San Diego, California, June 1992.[Lam79] Leslie Lamport. How to make a multiprocessor computer that correctly executesmultiprocess programs. IEEE Transactions on Computers, C-28(9):690{691,September 1979.[LH89] Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.ACM Transactions on Computer Systems, 7(4):321{359, November 1989.[LRV94] James R. Larus, Brad Richards, and Guhan Viswanathan. LCM: Memorysystem support for parallel language implementation. In Proceedings of the SixthInternational Conference on Architectural Support for Programming Languagesand Operating Systems, pages 208{218, San Jose, California, October 1994.[Mil95] Robert C. Miller. A type-checking preprocessor for Cilk 2, a multithreaded Clanguage. Master's thesis, Department of Electrical Engineering and ComputerScience, Massachusetts Institute of Technology, May 1995.[MKH91] Eric Mohr, David A. Kranz, and Robert H. Halstead, Jr. Lazy task creation:A technique for increasing the granularity of parallel programs. IEEE Trans-actions on Parallel and Distributed Systems, 2(3):264{280, July 1991.[Mos70] Joel Moses. The function of FUNCTION in LISP or why the FUNARG problemshould be called the envronment problem. Technical Report memo AI-199, MITArti�cial Intelligence Laboratory, June 1970.[Mot93] Motorola. PowerPc 601 User's Manual, 1993.195

[MR87] Piyush Mehrotra and Jon Van Rosendale. The BLAZE language: A parallellanguage for scienti�c programming. Parallel Computing, 5:339{361, 1987.[MSA+85] J.R. McGraw, S.K. Skedzielewski, S.J. Allan, R.R. Odledhoeft, , J. Glauert,C. Kirkham, W. Noyce, and R. Thomas. Sisal: Streams and iteration in asingle assignment language: Reference manual version 1.2. Technical report,Lawrence Livermore National Laboratories, Livermore CA, March 1985.[MWV92] Sunil Mirapuri, Michael Woodacre, and Mader Vasseghi. The Mips R4000processor. IEEE Micro, pages 10{22, April 1992.[Nik91] R.S. Nikhil. ID language reference manual. Computation Structure GroupMemo 284-2, Massachusetts Institute of Technology, 545 Technology Square,Cambridge, Massachusetts 02139, July 1991.[Nik93] Rishiyur S. Nikhil. A multithreaded implementation of Id using P-RISC graphs.In Proceedings of the Sixth Annual Workshop on Languages and Compilers forParallel Computing, number 768 in Lecture Notes in Computer Science, pages390{405, Portland, Oregon, August 1993. Springer-Verlag.[Nik94] Rishiyur S. Nikhil. Cid: A parallel, shared-memory C for distributed-memorymachines. In Proceedings of the Seventh Annual Workshop on Languages andCompilers for Parallel Computing, August 1994.[PC90] Gregory M. Papadopoulos and David E. Culler. Monsoon: An explicit token-store architecture. In Proceedings of the 17th Annual International Symposiumon Computer Architecture, pages 82{91, Seattle, Washington, May 1990. Also:MIT Laboratory for Computer Science, Computation Structures Group Memo306.[Pea80] Judea Pearl. Asymptotic properties of minimax trees and game-searching pro-cedures. Arti�cial Intelligence, 14(2):113{138, September 1980.[PJGT94] Vijay S. Pande, Christopher F. Joerg, Alexander Yu Grosberg, and ToyoichiTanaka. Enumerations of the hamiltonian walks on a cubic sublattice. Journalof Physics A, 27, 1994. 196

[POV93] POV-Ray Team. Persistence of Vision Ray Tracer (POV-Ray) User's Docu-mentation, 1993.[PYGT94] Vijay Pande, Alexander Yu, Grosberg, and Toyoichi Tanaka. Thermodynamicprocedure to construct heteropolymers that can be renatured to recognize agiven target molecule. Proceeding of the National Academy of Science, U.S.A,91(12976), 1994.[RLW94] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Ty-phoon: User-level shared memory. In Proceedings of the 21st Annual Interna-tional Symposium on Computer Architecture, pages 325{336, Chicago, Illinois,April 1994.[RSAU91] Larry Rudolph, Miriam Slivkin-Allalouf, and Eli Upfal. A simple load balancingscheme for task allocation in parallel machines. In Proceedings of the ThirdAnnual ACM Symposium on Parallel Algorithms and Architectures, pages 237{245, Hilton Head, South Carolina, July 1991.[RSL93] Martin C. Rinard, Daniel J. Scales, and Monica S. Lam. Jade: A high-level,machine-independent language for parallel programming. Computer, 26(6):28{38, June 1993.[SFL+94] Ioannis Schoinas, Babak Falsa�, Alvin R. Lebeck, Steven K. Reinhardt,James R. Larus, and David A. Wood. Fine-grain access control for distributedshared memory. In Proceedings of the Sixth International Conference on Ar-chitectural Support for Programming Languages and Operating Systems, pages297{306, San Jose, California, October 1994.[SG90] E. Shakhnovich and A. Gutin. J Chem. Phys., 93, 5967, 1990.[SKY91] S. Sakai, Y. Kodama, and Y. Yamaguchi. Prototype implementation of a highlyparallel dataow machine EM-4. In Proceedings of the 5th International ParallelProcessing Symposium, pages 278{286, May 1991.[Smi78] Burton J. Smith. A pipelined, shared resource MIMD computer. In Proceedingsof the 1978 International Conference on Parallel Processing, pages 6{8, 1978.197

[Ste88] Per Stenstr�om. VLSI support for a cactus stack oriented memory organization.Proceedings of the Twenty-First Annual Hawaii International Conference onSystem Sciences, volume 1, pages 211{220, January 1988.[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,14(3):354{356, 1969.[Sun89] Sun Microsystems, Inc. Sparc Architecture Manual, Version 8, January 1989.[Sun90] V. S. Sunderam. PVM: A framework for parallel distributed computing. Con-currency: Practice and Experience, 2(4):315{339, December 1990.[TBK93] Andrew S. Tanenbaum, Henri E. Bal, and M. Frans Kaashoek. Programminga distributed system using shared objects. In Proceedings of the Second Inter-national Symposium on High Performance Distributed Computing, pages 5{12,Spokane, Washington, July 1993.[Thi91a] Thinking Machines Corporation, Cambridge, Massachusetts. Getting Startedin CM Fortran, November 1991.[Thi91b] Thinking Machines Corporation, Cambridge, Massachusetts. Getting Startedin *Lisp, June 1991.[Thi92] Thinking Machines Corporation, Cambridge, Massachusetts. CM5 TechnicalSummary, January 1992.[Thi93] Thinking Machines Corporation, Cambridge, Massachusetts. Getting Startedin C*, May 1993.[vECGS92] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus ErikSchauser. Active messages: A mechanism for integrated communication andcomputation. In Proceedings of the 19th Annual International Symposium onComputer Architecture, pages 256{266, Gold Coast, Australia, May 1992.[VR88] Mark T. Vandevoorde and Eric S. Roberts. WorkCrews: An abstraction for con-trolling parallelism. International Journal of Parallel Programming, 17(4):347{366, August 1988. 198

[WK91] I-Chen Wu and H. T. Kung. Communication complexity for parallel divide-and-conquer. In Proceedings of the 32nd Annual Symposium on Foundations ofComputer Science, pages 151{162, San Juan, Puerto Rico, October 1991.[ZO94] Y. Zhang and A. Ortynski. The e�ciency of randomized parallel backtracksearch. In Proceedings of the 6th IEEE Symposium on Parallel and DistributedProcessing, Dallas, Texas, October 1994.[ZSB94] Matthew J. Zekauskas, Wayne A. Sawdon, and Brian N. Bershad. Softwarewrite detection for a distributed shared memory. In Proceedings of the FirstSymposium on Operating Systems Design and Implementation, pages 87{100,Monterey, California, November 1994.

199

