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Abstract

A multithreaded parallel program that is intended to be mieit@stic may exhibit nonde-
terminism due to bugs calledkterminacy racesA key capability of race detectors is to
determine whether one thread executes logically in paraite another thread or whether
the threads must operate in series. This thesis presen@ganthms, one serial and one
parallel, to maintain the series-parall&R) relationships “on the fly” for fork-join mul-
tithreaded programs. For a fork-join program withwork and a critical-path length of
T., the serialSP-Maintenancealgorithm runs inO(T;) time. The parallel algorithm exe-
cutes in the nearly optim& (7, /P + PT,.) time, when run orP processors and using an
efficient scheduler.

These SP-maintenance algorithms can be incorporatediogodetectors to get a prov-
ably good race detector that runs in parallel. This thesssmlges an efficient parallel race
detector | call Nondeterminator-3. For a fork-join progrdinwork, critical-path length
T, andv shared memory locations, the Nondeterminator-3 rud(ifi / P + PT.. 1g P+
min {(7} g P)/P,vT 1g P}) expected time, when run af processors and using an effi-
cient scheduler.

Some parts of this thesis represent joint work with MichaeB&nder, Seth Gilbert,
and Charles E. Leiserson.
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Chapter 1

| ntroduction

When two parallel threads access the same shared memorpigeatd at least one of the
accesses is a write,data raceoccurs. Depending on how the threads are scheduled, the
accesses may occur in either order, and the program mayierbieterministic behav-
ior. This nondeterminism is often a bug in the program. Thrase bugs are notoriously
difficult to detect through normal debugging techniqueserkw the unintended behavior
can be reliably reproduced, the use of normal debuggingitqubs like breakpoints and
print statements may alter the scheduling enough to hidédige Figure 1-1 shows an

example of a data race.

Casel Case?2
THREAD1 THREADZ || THREAD1 THREADZ2
THREAD1 THREAD?2 T —1 T —0
<+ 1 z+—0 x— 0 T — 1
print x printz =0 printz =1

Figure1-1: An example of a data race. On the left are the two threads that are exdoytegllel.
On the right are two possible schedulings that result in different outputs.

Fork-join programming models, such as MIT’s Cilk system B2, 52], allow dynamic
creation of threads according to a particular structure.“dmthe-fly” race detector aug-
ments the original program to discover races as the progr@ecuées. Since determining
whether the program is race free for all inputs is intracabih on-the-fly race detector

typically verifies that a program is race free for a given inpno particular, if the race de-
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tector does not discover a race in an ostensibly deternumsbgram, then no race exists
(regardless of the scheduling).

A typical on-the-fly data-race detector [17, 26, 30, 43, 56judates the execution of
the program while maintaining various data structures ftednining the existence of
races. An “access history” maintains a subset of threadisidtass each particular memory
location. Another data structure maintains the serieal@h(SP) relationships between the
currently executing thread and previously executed tlee8gecifically, the race detector
must determine whether the current thread is operatingadigiin series or in parallel with
certain previously executed threads. We call a dynamic stateture that maintains the
series-parallel relationship between threadsS&maintenancedata structure. The data
structure supports insertion, deletion, &M queries queries as to whether two nodes are
logically in series or in parallel.

This thesis shows how to maintain the series-pardliB) (elationships between logical
threads in a multithreaded program “on the fly.” We show tbatdrk-join programming
models, this data-structuring problem can be solved asytioptly optimally. We also give
an efficient parallel solution to the problem. This thessalombines the SP-maintenance

algorithms with efficient access-history algorithms toas{provably good race detectors.

Series-parallel parsetree

The execution of a multithreaded program can be viewed aseatdd acyclic graph, or
computation dagwhere nodes are eith@arks or joins and edges arthreads Such a dag
is illustrated in Figure 1-2. A fork node has a single incognedge and multiple outgoing
edges. A join node has multiple incoming edges and a singigomg edge. Threads
(edges) represent blocks of serial execution.

For fork-join programming models, where every fork has aresponding join that
unites the forked threads, the computation dag has a steutttat can be represented ef-
ficiently by aseries-parallel (SP) parse tre@0]. In the parse tree each internal node is

either anS-nodeor aP-nodeand each leaf is a thread of the dadrigure 1-3 shows the

We assume without loss of generality that all SP parse treefull binary trees, that is, each internal
node has exactly two children.
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Figure 1-2: A dag representing a multithreaded computation. The edges represeaitstHebeled
ug, u1,...ug. The diamonds represent forks, and the squares indicate joins.
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Figure 1-3: The parse tree for the computation dag shown in Figure 1-2. The leavtseathreads
in the dag. The S-nodes indicate series relationships, and the P-noidesdpdirallel relationships.

parse tree corresponding to the computation dag from Fitn®-elf two subtrees are chil-
dren of the same S-node, then the parse tree indicateshbatL(bcomputation represented
by) the left subtree executes before (that of) the rightreabtlf two subtrees are children
of the same P-node, then the parse tree indicates that theutwiees execute logically in
parallel.

An SP parse tree can be viewed asagosterioriexecution of the corresponding com-
putation dag, but “on-the-fly” data-race detectors mustaigewhile the dag, and hence
the parse tree, is unfolding dynamically. The way that thes@#&ee unfolds depends on
a scheduler, which determines which threads execute winerevhen on a finite number
of processors. A partial execution corresponds to a subfrdes parse tree that obeys the
series-parallel relationships, namely, that a right ®éwof an S-node cannot be present
unless the corresponding left subtree has been &léiporated or unfolded with all leaf
threads executed. Both subtrees of a P-node, however, caarti@lp elaborated. In a
language like Cilk, a serial execution unfolds the parseitrélee manner of a left-to-right
walk. For example, in Figure 1-3, a serial execution exextite threads in the order of

their indices.
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A typical serial, on-the-fly data-race detector simulates éxecution of the program
as a left-to-right walk of the parse tree while keeping ann&ftatenance data structure.
The Nondeterminator [17, 30] race detectors use a variahagén’'s [54] least-common-
ancestor algorithm, as the basis of their SP-maintenante slaicture. To determine
whether a thread; logically precedes threadu;, denotedy; < u;, their SP-bags algo-
rithm can be viewed intuitively as inspecting their least commueestordca(u;, u;) in the
parse tree to see whether it is an S-node wijthn its left subtree. Similarly, to determine
whether a thread, operatedogically in parallel with a threadu;, denotedy; || u;, the
SP-bags algorithm checks whethet(u;, u,) is a P-node. Observe that an SP relationship

exists between any two nodes in the parse tree, not just battheeads (leaves).

For example, in Figure 1-3, we hawg < u4, becauses; = lca(u,uy) IS an S-node
andu, appears inS;’s left subtree. We also havg || ug, because’, = lca(uq,ug) iS a
P-node. The (serially executing) Nondeterminator racealets perform SP-maintenance
operations whenever the program being tested forks, joinaccesses a shared-memory
location. The amortized cost for each of these operationdigv, v)), wherea is Tar-
jan’s functional inverse of Ackermann’s function ands the number of shared-memory
locations used by the program. As a consequence, the asyenpianing time of the Non-
determinator iDO(T1a(v,v)), whereT; is the running time of the original program an

processor.

The SP-bags data structure has two shortcomings. The fitstig slows the asymp-
totic running time by a factor aof(v, v). This factor is nonconstant in theory but is never-
theless close enough to constant in practice that this detigiis minor. The second, more
important shortcoming is that the SP-bags algorithm rédemvily on the serial nature of

its execution, and hence it appears difficult to parallelize

Some early SP-maintenance algorithms use labeling scheitiesut centralized data
structures. These labeling schemes are easy to parallalizenfortunately are much
less efficient than the SP-bags algorithm. Examples of saa#lihg schemes include the
English-Hebrewscheme [50] and theffset-spanscheme [43]. These algorithms generate
labels for each thread on the fly, but once generated, thésledeain static. By comparing

labels, these SP-maintenance algorithms can determinthevritevo threads operate logi-
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Algorithm Space Time per

per node| Thread Query
creation
English-Hebrew [50] ©O(f) O(1) o(f)
Offset-Span [43] O(d) O(1) O(d)
SP-Bags [30] o) | O(a(v,v))* | O(a(v,v))*
Improved SP-Bags| ©O(1) O(1)* O(1)
SP-Order O(1) O(1) O(1)

f = number of forks in the program
d = maximum depth of nested parallelism
v = number of shared locations being monitored

Figure 1-4: Comparison of serial, SP-maintenance algorithms. An asterisk (*) indicatasar-
tized bound. The function is Tarjan’s functional inverse of Ackermann’s function.

cally in series or in parallel. One of the reasons for theficiehcy of these algorithms is
that label lengths increase linearly with the number of $qiiknglish-Hebrew) or with the

depth of fork nesting (offset-span).

Results

In this thesis, | introduce a new SP-maintenance algoritathed theSP-orderalgorithm,
which is more efficient than Feng and Leiserson’s [30] SPskadgorithm. This algorithm
is inspired by the English-Hebrew scheme, but rather thargistatic labels, the labels are
maintained by an order-maintenance data structure [12358]. Figure 1-4 compares
the serial space and running times of SP-order with the atlgarithms. As can be seen
from the table, SP-order attains asymptotic optimality.

| give an improvement to the SP-bags algorithms that shaifebhe inverse Acker-
mann’sa(v, v) factor from the running time. With this improvement, both-&fer and
SP-bags are optimal SP-maintenance data structures.

| also present a parallel SP-maintenence algorithm whidtesgned to run with a
Cilk-like work-stealing scheduler [15, 32]. Tt&P-hybridalgorithm consists of two tiers:
aglobal tier based on our SP-order algorithm, anlbeal tier based on the improved SP-
bags algorithm. Suppose that a fork-join program hasvork and a critical-path length

of T.. Whereas the Cilk scheduler executes a computation with Wprand critical-
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path length7,, in asymptotically optimall, = O(T,/P + T.,) expected time ornP
processors, SP-hybrid executes the computation(ify /P + PT,,) worst-case time on

P processors while maintaining SP relationships. Thus, adsethe underlying compu-
tation achieves linear speedup when= O(T;/T,), SP-hybrid achieves linear speed-
up whenP = O(M). The parallel race detector Nondeterminator-3, which com-
bines SP-hybrid with an efficient access-history algorithms inO(T, /P + PT,, 1g P +

min {(7} g P)/P,vT, 1g P}) worst-case time, whereis the number of shared-memory
locations being monitored.

Some results appeared earlier in a conference paper [b#}jobauthored with Michael
A. Bender, Seth Gilbert, and Charles E. Leiserson. This eaission describes the same
SP-maintenance algorithms, but this thesis describeweprents to the SP-hybrid algo-
rithm. In particular, for a program witlh; work, critical-path length of ., andn threads,
Bender et al. describe a version of SP-hybrid that rur@(ifl; /P + PT.)lgn) time in
expectation. This thesis improves on the result by trimntiiredg » factor from the running
time and by making the bound worst case.

The remainder of this paper is organized as follows. Chapf@egents the SP-order
algorithm. Chapter 3 presents the parallel SP-hybrid algori Section 3.1 gives an im-
provement to the SP-bags algorithm as used by SP-hybrid. t&€hdmescribes how to
make SP-hybrid into a race detector, including details enaitcess history, resulting per-
formance, and space usage. Finally, Chapter 5 reviews delaigk, and Chapter 6 offers

some concluding remarks.
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Chapter 2

The SP-order algorithm

This chapter presents the serial SP-order algorithm. Indegdiscussing how an SP parse
tree, provided as input to SP-order, is created. | thenwethe concept of an English-
Hebrew ordering [50], showing that two linear orders ardisieht to capture SP relation-
ships. | show how to maintain these linear orders on the flggusrder-maintenance data
structures [12, 21, 23, 58]. Finally, | give the SP-orderoalipm itself. | show that if a
fork-join multithreaded program has a parse tree witleaves, then the total time for on-
the-fly construction of the SP-order data structur@({s) and each SP query takéx1)
time. | conclude that any fork-join program runningii time on a single processor can

be checked on the fly for data racesi(7 ) time.

Theinput to SP-order

SP-order takes as input a fork-join multithreaded prograpressed as an SP parse tree.
In a real implementation, such as a race detector, the paseibfolds dynamically and
implicitly as the multithreaded program executes, and @réiqular unfolding depends on
how the program is scheduled on the multiprocessor compEtarease of presentation,
however, we assume that the program’s SP parse tree unfadsding to a left-to-right
tree walk. During this tree walk, SP-order maintains the &Rtionships “on the fly” in
the sense that it can immediately respond to SP queries éetarey two executed threads.

At the end of the section, we relax the assumption of leftigbt unfolding, at which point

17
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Figure 2-1: An English orderingtz and a Hebrew orderingf for the threads in the parse tree from
Figure 1-3. Under each threads an ordered paifE[u|, H[u]) giving its index in each of the two
orders.

it becomes apparent that no matter how the parse tree unf®iRisrder can maintain SP

relationships on the fly.

English and Hebrew orderings

SP-order uses two total orders to determine whether thi@degically parallel, afn-
glish orderand aHebrew order In the English order, the nodes in thedt subtree of a
P-node precede those in thght subtree of the P-node. In the Hebrew order, the order is
reversed: the nodes in thight subtree of a P-node precede those indfie In both orders,
the nodes in the left subtree of an S-node precede those rigtitesubtree of the S-node.

Figure 2-1 shows English and Hebrew orderings for the tle@athe parse tree from
Figure 1-3. Notice that if;; belongs to the left subtree of an S-node andelongs to
the right subtree of the same S-node, then we Ha\ve| < Eu;] andH[u;] < Hlu;]. In
contrast, ifu; belongs to the left subtree of a P-node andelongs to the right subtree of
the same P-node, thétiu;| < Eu;] andHu;| > H[u,].

The English and Hebrew orderings capture the SP relatipaghihe parse tree. Specif-
ically, if one threadu; precedes another thread in both orders, then thread, < u;
in the parse tree (or multithreaded dag). ulfprecedes;; in one order but:; follows
u; in the other, thenu; || w;. For example, in Figure 2-1, we havge < u4, because
1 = FEluy] < Eluy] = 4 and5 = Hluy] < Hluy] = 8. Similarly, we can deduce that
uy || ug, becausd = Elu] < Efug) = 6 andb = Hluy] > H[ug] = 3. The following

18



lemma, also proved by Nudler and Rudolph [50], shows thatoperty always holds.

Lemmal Let E be an English ordering of the threads of an SP-parse tree leindl be a
Hebrew ordering. Then, for any two threadsandw; in the parse tree, we hawg < u;

in the parse tree if and only £[u;] < Efu;] and H[w;] < Hu,].

Proof. (=) Suppose that; < u;, and letX = lca(u;,u;). Then, X is an S-node in
the parse tree, the threagdresides inX's left subtree, and; resides inX’s right subtree.
In both orders, the threads in ti€'s left subtree precede those M's right subtree, and
hence, we hav&|u;| < Eu;| andH[u;| < H[u,].

(<) Suppose thab[u;] < Eu;] andH[u;] < H][u;], and letX = lca(u;,u;). Since
we haveE[u;] < E|u,], threadu; must appear inX’s left subtree, and;; must appear in
X's right subtree. By definition of a Hebrew orderiny, must be an S-node, and hence
u; < Uj. L]

We can restate Lemma 1 as follows.

Corollary 2 Let £ be an English ordering of the threads of an SP-parse tree, lahd
H be a Hebrew ordering. Then, for any two threagdsand v; in the parse tree with

Elu;] < Eluj], we havey; || u; if and only if H[w;] > H[u;]. O

Labeling a static SP parse tree with an English-Hebrew ordes easy enough. To
compute the English ordering, perform a depth-first traalerssiting left children of both
P-nodes and S-nodes before visiting right childrenEaglish walk). Assign label to the
ith thread visited. To compute the Hebrew ordering, perfode@h-first traversal visiting
right children of P-nodes before visiting left children beft children of S-nodes before
visiting right children (aHebrew wall. Assign labels to threads as before.

In race-detection applications, one must generate “offiffie@rderings as the parse
tree unfolds. If the parse tree unfolds according to an Ehghalk, then computing an
English ordering is easy. Unfortunately, computing a Helwedering on the fly during an
English walk is problematic. In the Hebrew ordering the lai§@ thread in the left subtree
of a P-node depends on the number of threads in the rightemibtn an English walk,

however, this number is unknown until the right subtree hdslded.
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Nudler and Rudolph [50], who introduced English-Hebrew laiggefor race detection,
addressed this problem by using large thread labels. licpkat, the number of bits in
a label in their scheme can grow linearly in the number of Besain the SP parse tree.
Although they gave a heuristic for reducing the size of lapelanipulating large labels is

the performance bottleneck in their algorithm.

The SP-order data structure

Our solution is to employ order-maintenance data strust{t2, 21, 23, 58] to maintain
the English and Hebrew orders rather than using staticdabbelorder-maintenance data
structures, the labels inducing the order change duringxkeution of the program. An
order-maintenance data structure is an abstract datatigpsupports the following opera-

tions:

e OM-PRECEDESL, X,Y): ReturnTRUEif X preceded” in the orderingl. Both X
andY must already exist in the orderirig
e OM-INSERT(L, X, Y1,Y5, ..., Y;): In the orderingL, insert thek new elements

Y1,Ys, ..., Y, inthat order, immediately after the existing eleméant

The OM-PRECEDESOperation can be supported (1) worst-case time. The OM-
INSERTOperation can be inserted (k) worst-case time, whereis the number of nodes
being inserted (i.e()(1) time per node inserted).

The SP-order data structure consists of two order-maint=ndata structures to main-
tain English and Hebrew orderingswith the SP-order data structure, the implementation

of SP-order is remarkably simple.

Pseudocode for SP-order

Figure 2-2 gives serial pseudocode for SP-order. The caslerses the input SP parse tree
as a left-to-right tree walk, executing threads on the flyhagarse tree unfolds. In lines 1—

3, the code handles a leaf in the SP parse tree. In a raceidetapplication, queries of the

1n fact, the English ordering can be maintained implicitlyidg a left-to-right tree walk. For conceptual
simplicity, however, this paper uses order-maintenante stauctures for both orderings.
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two order-maintenance data structures are performed iEXEcUTETHREAD function,
which represents the computation of the program underTgptcally, a data-race detector
performsO(1) queries for each memory access of the program under test.

As the tree walk encounters each internal node of the SP paeseit performs OM-
INSERTOperations into the English and Hebrew orderings. In lingelupdate the English
ordering for the children of the nod€ and insertX's (left and right) children afteX with
X''s left child appearing first. Similarly, we update the Hebrmrdering in lines 5-7. For
the Hebrew ordering, we insei’s children in different orders depending on whetiiér
is an S-node or a P-node. X is an S-node, handled in line 6, we ins&fts left child
and thenX’s right child after X in the Hebrew order. Figure 2-3 illustrates the insertions
at an S-node. IfX is a P-node, on the other hanil;s left child follows X’s right child.
Figure 2-4 illustrates these insertions. In lines 8-9, thdeccontinues to perform the left-
to-right tree walk. We determine wheth&rpreceded’, shown in lines 10-11, by querying
the two order-maintenance structures using the ordertersance query OM-RECEDES

The following lemma demonstrates that SREER produces English and Hebrew or-

derings correctly.

Lemma 3 At any point during the execution &P-COrRDERON an SP parse tree, the order-
maintenance data structurelsng and Heb maintain English and Hebrew, respectively,

orderings of the nodes of the parse tree that have beendisites far.

Proof. Consider an internal node€ in the SP parse tree, and consider first the data
structure. We must prove that all the noded’is left subtree precede all the nodesyirs
right subtree in the¥ng ordering. We do so by showing that this property is mainthiae
an invariant during the execution of the code. The only ptheetheEng data structure is
modified is in line 4. Suppose that the invariant is maintdibefore SP-@DERIs invoked

on a nodeX. There are four cases:
1. X =Y Trivial.
2. X resides in the left subtree &f: We already assume that precedes all the nodes

in Y's right subtree. In line 4X’s children are inserted immediately aft&rin Fng.

Hence,left| X | andright[ X] also precede all the nodes)fis right subtree.
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SP-QRDER(X)
1 if ISLEAF(X)

2 then EXECUTETHREAD(X)
3 return

> X is an internal node
4 OM-INSERT(Eng, X, left| X], right[X])

(62}

if ISSNODE(X)
then OM-INSERT(Heb, X, left| X], right[ X])
7 else OM-INSERT(Heb, X, right[X], left[ X])

(o2}

8 SP-RDER(left[X])
9 SP-RDER(right[X])

SP-RECEDESX,Y)

10 if OM-PRECEDES Eng, X,Y') and
OM-PRECEDES Heb, X, Y)

11 then return TRUE

12 return FALSE

Figure2-2: The SP-order algorithm written in serial pseudocode. The SP£R procedure main-
tains the relationships between thread nodes in an SP parse tree which gaarted using the
SP-RRECEDESprocedure. An internal nod& in the parse tree has a left chilékft[X], and a
right child, right[X]. Whether a node is an S-node or a P-node can be queried $8tNADE.
Whether the node is a leaf can be queried wighdAF. The English and Hebrew orderings being
constructed are represented by the order-maintenance data structyresid Heb, respectively.
The EXECUTETHREAD procedure executes the thread.

3. X resides in the right subtree df. The same argument applies as in Case 2.
4. X lies outside of the subtree rootedat InsertingX'’s children anywhere in the data

structure cannot affect the invariant.

The argument for théieb data structure is analogous, except that one must consider

the arguments for” being a P-node or S-node separately. L]

The next theorem shows that SRECEDESworks correctly.

Theorem 4 Consider any point during the execution of t8®-ORDER procedure on an
SP parse tree, and let; andu; be two threads that have already been visited. Then, the

procedureSP-RRECEDESu;, u;) correctly returnsTRUE if u; < u; and FALSE otherwise.
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9 s Y pngiish €3O~ 3
L/ \R Hebrew Q—’@—’Q

? engin € 3~O—~@—®—~-C 3
Hebrew €S~ O—=@—~®—~C 3

Figure 2-3: An illustration of how SP-order operates at an S-node. (a) A simple pasavith an
S-nodeS and two childrenl andR. (b) The order structures before visitisg The clouds represent
the rest of the order structure, which does not change when visitirfg) The result of the inserts
after visitingS. The left childZL and then the right child are inserted aftef in both lists.

a) P b) English @"@*@
L/ \R Hebrew Q"@@

° English @"@_’@_’@_’Q
Hebrew € S~O—~®—~@—~C 3

Figure 2-4: An illustration of how SP-order operates at a P-node. (a) A simple pasanith a
P-nodeP and two childrenl. and R. (b) The order structures before visitidyy The clouds are the
rest of the order structure, which does not change when visiinNg) The result of the inserts after
visiting P. The left child L then the right childR are inserted afteP in the English order, an®&
thenL are inserted afteP in the Hebrew order.

Proof. The SP-QRDER procedure inserts a node€ into the Eng and Heb linear orders
when it visitsX'’s parent and before executing SRREER(X). Thus, any thread is already
in the order-maintenance data structures by the time isised. Combining Lemma 1 and

Lemma 3 completes the proof. (]

We now analyze the running time of the SP-order algorithm.

Theorem 5 Consider a fork-join multithreaded program having a parsetwithn leaves.

Then, the total time for on-the-fly construction of the S&eodata structure i€)(n).

Proof. A parse tree withn leaves has at mog(n) nodes, causing(n) calls to OM-

INSERT. Since each of these operations can be supported(in amortized time, the
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theorem follows. []

The following corollary explains that SP-order can be usanake an efficient, on-the-

fly race detector.

Corollary 6 Consider a fork-join multithreaded program with running tiffieon a single

processor. Then, a data-race detector using SP-order mua¥7; ) time. 0

To conclude this section, we observe that SP-order can be neadork on the fly
no matter how the input SP parse tree unfolds. Not only casIB+9 of Figure 2-2 be
executed in either order, the basic recursive call coulddeewged on nodes in any order
that respects the parent-child and SP relationships. Fonpbe, one could unfold the parse
tree in essentially breadth-first fashion at P-nodes as dsnipe left subtree of an S-node
is fully expanded before its right subtree is processed. Xamegnation of the proof of
Lemma 3 shows why we have this flexibility. The invariant ie fbroof considers only a
node and its children. If we expand any single node, its oliicire inserted into the order-
maintenance data structures in the proper place indeptofiehat other nodes have been

expanded.
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Chapter 3

The SP-hybrid algorithm

This chapter describes the SP-hybrid algorithm, which iSRfmaintenance algorithm that
runs in parallel. To support concurrent operations on aeghdata structure, the algorithm
uses locks. | first describe our performance model for progrénat use locks. | then give
lower bounds on the performance of a naive SP-order paraiteln. SP-hybrid is a two-
tier data structure that uses elements of SP-order from €hapmnd SP-bags from [30].
Section 3.1 reviews the SP-bags algorithm. | also give amawgment to the underly-
ing data structure that allows SP-bags to run in amorti2¢t) time per operation. In
Section 3.2 | describe the two-tier structure of the SP4aybin Section 3.3, | prove the

correctness of SP-hybrid. Finally, in Section 3.4, | anal§P-hybrid’s performance.

Model for parallel programs

Let us assume that SP-hybrid runs on a machine that suppersetjuential consistency
[40] memory model. That is to say, for any execution of thegpam, there is some se-
guential order of memory accesses that is consistent watpithgram order and the values
observed by the program execution.

In our model, concurrent writes queue and complete in drorger. In the case of a tie,
the adversary chooses which write proceeds. Reads, hovaéwags complete in constant
time, even if there are many reads to the same location. (Mmislo not model memory

congestion in the underlying machine.) If a read is concumath many writes, then the
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read succeeds in constant time and gets a valid value (the &fore or after the write

that completes on the same step).

A common way to handle mutual exclusion is through the useakd. This technique
may introduce some performance penalties. In particulaengver a processor holds a
lock, other processors may be waiting for that same lock. ¥kthkis idle time spent
waiting for the lockwaiting time. During any step in which the lock is held by a processor,
we assume the worst case—that @l 1 other processors are waiting for the lock. For
example, if a processor acquires the lock, perfobrsteps of real work, then releases the
lock, we assume tha® — 1 other processors were waiting for the lock during thesesstep
and hence thesg steps induce a waiting time &f P — 1). Once the other processors
acquire the lock, they also cause waiting time proportibm#the number of steps they hold
the lock. Thus, if the lock is held fak steps in total (summing across all processors), there
may be©(PL) waiting time. To see how such a large waiting time can ocoomsitler
a program in whichP parallel threads all simultaneously try to acquire a loakif@rm
k steps of real work while holding the lock, and then releageltitk. When the first
processor acquires the lock, there &e- 1 other processors waiting, inducing a waiting
time of k(P — 1). When the second processor acquires the lock, therE are processors
waiting for a waiting time ofc(P — 2). Summing across the waiting time introduced by
all processors, we get a total waiting time ®f£P?). In this example, each of the

processors holds the lock férsteps, so the lock is held for a total bf= kP steps.

Locks also serialize operations. If a single lock is heldfi@teps in total over the entire
program (again, summing across all the processors), tleerutining time of the program
must be at leasL.. This bound is straightforward because none of the workoperéd

while holding the lock can occur in parallel.

Consider a multithreaded program with wdrkand critical-path lengtff’,, in which a
single lock is held for. steps across the course of the computation. By introduiriL)
waiting time, we induce aapparent work the real work plus waiting time, af; + ©(PL).

Similarly, the serialization length induces arapparent critical-path lengthof © (7, + L).
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A naive parallelization of SP-order

A straightforward way to parallelize the SP-order alganitls to share the SP-order data
structure among the processors that are executing thefomejoin program. In Chapter 2,
we showed that the algorithm'’s correctness does not depetitearder of the parse tree’s
execution. The problem that arises, however, is that psacesnay interfere with each
other as they modify the data structure, and thus some metr®ghchronization must be
employed to provide mutual exclusion.

Suppose we handle mutual exclusion through the use of Idékisexample, suppose
that each processor obtains a global lock prior to every QiERT or OM-PRECEDES
operation on the shared SP-order data structure, reletsnigck when the operation is
complete. Although this parallel version of SP-order isrect, the locking can introduce
significant performance penalties.

Since there can be as many@gr;) SP-order operations, and each one holds the lock
for an amortized constant number of steps, we hold the loci.fe- ©(7}) steps. Thus,
the apparent work becomex P7}), and the apparent critical-path length becorBés) ).
Thus, the program executes {I{7}) time on P processors, which shows no asymptotic
improvement over the serial SP-order algorithm.

Of course, this scenario provides a worst-case examplecameinon programs may
not realize such a pessimistic bound. Nevertheless, Igokam significantly inhibit the

scalability of a parallel algorithm, and we would like prbol@guarantees on scalability.

3.1 SP-bags

This section describes a variant of Feng and Leisersona $#-bags algorithm [30] used
by SP-hybrid. Since the SP-bags algorithm is written in seaiCilk, | first review some
Cilk terminology. Then, | describe Feng and Leiserson’s iligon. Next, | present an
improvement to the underlying data structure that explbigsstructure of the algorithm.
This improvement results in a serial SP-maintenance dlgorthat supports RECEDES
gueries in worst-case constant time and&RTs in amortized constant time.

The Cilk language [14,32,52] is a fork-join programming laage. A Cilk program is
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Figure 3-1: The canonical parse tree for a generic Cilk procedure. The notati@presents the
parse tree of a spawned procedure, angpresents a thread. All the nodes in the shaded area
belong to the generic procedure, while all the nodes in the ovals belongdrtgla sync block.

syntactically similar to a C program with the addition of tkeywords spawn andsync, to
support parallelism. These keywords are the Cilk equivalefitork and join, respectively.

A Cilk procedure is composed of a series of sync blocks, whrehiraplement through

a series ofspawn (fork) statements followed by a singsgnc (join). All the descendent
threads of a sync block logically precede the threads of aesyent sync block. All
the descendent threads ofmawned procedure are logically parallel with the subsequent
threads in the sync block.

Figure 3-1 shows the canonical Cilk parse tree as given by Badd_eiserson [30].
The form of a Cilk parse tree is slightly more restrictive thihat of a generic fork-join
program in Figure 1-3: at any given time, all the outstandiniddren of a procedure share
the same join point. Any SP parse tree can be represented kspafSie tree with the same
work and critical path by adding additional S- and P-nodeseanpty threads.

Feng and Leiserson’s SP-bags algorithm [30] uses the ciglisjoint-set data struc-
ture with “union by rank” and “path compression” heuris{iz8,53,55]. The data structure

maintains a collection of disjoint sets and provides threerations:
1. MAKE-SET(z) creates a new set whose only member.is

2. UNION(z,y) unites the set containingandy.
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spawn procedurer’:
Sp «— MAKE-SET(F')
PF — @

return from procedure-” to £
Pr < UNION(Pg, Sgr)

syncin a procedurd:
Sr «— UNION(SE, Pr)
PF — @

Figure 3-2: The SP-bags algorithm described in terms of Cilk keywords as taken 80m\Vhen-
ever one of three actions occurs during the serial, depth-first exaaftenCilk program, the oper-
ations in the figure are performed.

3. FIND(x) returns a representative for the set containing

On a single processor, this data structure allows suppoaigerations om in O (ma(m,n))
time, wherex is Tarjan’s functional inverse of Ackermann’s function.
In SP-bags, each Cilk procedure maintains bags(sets) of procedures with the fol-

lowing contents at any given time:

e The S-bagSy of a procedure:” contains the descendant procedureg’dhat log-
ically precede the currently executing thread. (The dedaenprocedures aof’ in-
cludeF itself.)

e TheP-bagP; of a procedurd’ contains the descendant procedureg’sfcompleted

children that operate logically in parallel with the curtigrexecuting thread.

As SP-bags walks the parse tree of the computation, it mpestcedures into the bags,
unions the bags, and queries as to what type of bag a procbdlmegs to. Figures 3-2
and 3-3 give the SP-bags algorithm in terms of the Cilk keyw¢8®] and the parse tree,
respectively. Whenever spawning a new procedufentering the left subtree of a P-node),
new bags are created. The bé&gis initially set to containt’, and Pr is set to be empty.
Whenever a subprocedufé returns to its parent (going from the left subtree to thetrigh
subtree of a P-node), the contentsSef are unioned intd®, since the descendents Bf
can execute in parallel with the remainder of the sync black'i When async occurs

(returning from an internal node), the b&g is emptied intaSx, since all ofF’s executed
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SP-BAGS(X, F)
> X is an SP-parse-tree node, afds a function.
1 if ISLEAF(X)
2 then> X is a thread
3 F— FU{X}
4 EXECUTETHREAD(X, F')
5 return

6 if ISSNODE(X)

7 then SP-BAGS(left[X], F)
8 SP-B\GS(right[ X], F')
9 else > X is a P-node

10 F’" +— NEWPROCEDURK)
11 SP-B\GS(left[X], F')

12 Pr < UNION(Pg, Sgr)
13 SP-B\GS(right[ X], F)

14 Sp < UNION(SF, Pr)

Figure 3-3: The SP-bags algorithm written in serial pseudocode to operate on theicalnGilk
parsetree from Figure 3-1. SPaBs accepts as arguments an SP-parse-tree xoded the pro-
cedureF’ to which X belongs. An internal nod&’ in the parse tree has a left chilift[X], and
a right child, right[ X]. Whether a node is an S-node or a P-node can be queried S8tKHdDE.
Whether the node is a leaf can be queried wighBAF. NEWPROCEDUREF"] creates a new pro-
cedure objecF” associated with S- and P-bafis: and P, initialized to Sg «+ MAKE-SET[F’]
and Pg < (), respectively.
descendents precede any future threads.in

SP-bags supports SPRPCEDESON two threads provided that one of the threads is the
currently executing thread. Correctness of SP-bags is &ptay the following lemma.
Feng and Leiserson in [30] give a prove a similar lemma, aedptioof is not repeated
here. Note that although the algorithm given in Figure 3-@ven in terms of a parse tree,

it is correct only on parse trees that match the canonicalgzitke tree.

Lemma 7 Consider any point during the execution of SP-bags on a Gik-8P parse
tree. Letu,, belonging to a proceduré’, be a thread that has been visited, anddebe a
currently executing thread. Then, we hawe| ; if and only ifu; belongs to some P-bag.

Converselyy; < u; if and only ifu; belongs to some S-bag. (]
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When run on a parse-tree wifh work andn P-nodes (or procedures), Feng and Leis-
erson’s SP-bags perfornt3(7;) SP queries in the worst case. Since each query takes

amortizedO(«(7T7, n)) amortized time, SP-bags runs@i«(77,n)T}) time.

Improving SP-bags

The SP-bags algorithm can be improved by improving the uyider disjoint-sets data
structure. Gabow and Tarjan [33] describe a disjoint-satis structure that runs in amortized-
constant time per operation when thelements being unioned are ordeeegriori from
0,1,...,n — 1, and unions are of the formNJoN(i — 1,4).1 | first show that SP-bags
does adhere to this structure. | then describe a slightmaoiaGabow and Tarjan’s data
structure that has worst-case-constant time fornDFand amortized-constant time for a
UNION. Although Gabow and Tarjan [33] give most of the interestisgects of the data
structure, | present a full description for completenegsaibise SP-hybrid in Section 3.2
must make one additional change to the data structure, araibe this data structure im-
pacts the space usage in Section 4.3.

First, | show that SP-bags has the union structure requiyggdibow and Tarjan’s data
structure. Consider the English ordering of proceduresemptirse tree (corresponding to
the left-to-right tree walk performed by SP-bags). We intthese procedurds,, Fs, ..., F,
according to the English orderifgThe following lemma argues that at any point, all S-
and P-bags contain contiguous procedures. Thus, all umeratons effectively have the

form UNION(F;_4, F};), and we can apply Gabow and Tarjan’s data structure.

Lemma8 All UNIONs performed by SP-bags effectively have the foammoN(F;_4, F;).

Proof. We claim that the S- and P-bags corresponding to a proceducentain the
proceduresSy, = {F;, Fiiq,...,F;} and Ps, = {Fj1, Fjio,..., Fi}, for somej andk
with i < j < k. As long as this property holds across the execution of therdéhm, then

we have the lemma. We prove this claim by induction am&N operations.

1n fact, their algorithm is more general, but SP-bags fo#ldhis special case.
2Since the procedures are indexed by execution order, nimgtt&e procedures on the fly is trivial.
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As a base case, consider thie and Py, on creation. We havéy, = {F;} andPr, = (),
which satisfies the claim. Next, consider aldN. There are two cases.

Case 1. Suppose that a NNON occurs because ofgync in a procedurd’;. Then, by
assumption we havéy, = {F;, Fii1,..., F;} and Py, = {Fj11, Fjio,..., Fi}. Thus, the
result of the WION is Sp, = {F}, Fiy1, ..., .} and P, = ().

Case 2. Suppose that a NNlON occurs because of return from a procedurer; to
a proceduref;. Then, we must havé; = Fj,, becauseF; follows Fj in the English
ordering of procedures. Moreover, since we assumedhat= {Fy, Firi1,..., Fj }, we
end WithPr, = {Fj11, Fjia, -, Fiy Frgrs - Fi ) O

Given Lemma 8, we could apply Gabow and Tarjan’s [33] datzcttire as a black box
to achieve a serial SP-bags algorithm that runs in amortpedtant-time per operation.
For SP-hybrid analysis in Section 3.4, however, where theripation occurs is important.

The following data structure is similar to the simplified si@in of Gabow and Tarjan’s
data structure, except that thenBs and MAKE SETS are worst-case constant-time. Recall
that we are given element$), 1, ..., n—1, and we perform unions of the formNJoN (i —
1,4). First, assume that theelements are known a priori. We relax this assumption later.

To achieve a linear-time union-find data structure, divitetelements intanicrosets
The microset boundaries are fixed and have nothing to do isglcairrent state of the sets
in the data structure. Each of these microsets contains upctintiguous elements in the
range0, 1,...,n — 1, wherew is the number of bits in a machine word. Specifically, the
ith microset contains the elements, iw+1, ..., (i+1)w — 1. Only the last microset can
contain fewer thamw elements. Thus, we have /w]| microsets. Note that = Q(lgn),
since we must be able to address each element, giviay uglg n) microsets.

Each element: belongs to a microset = micro(x). Each element is assigned a
microset indexindez (z) according to its position in the microset. That is, the “desl
element gets an index 6f next smallest ig, etc., up to an index ab — 1. We call the first
item (index of 0) in the microset the root of the microset. Similarly, each microset has
a list of its children as an arrayode;[0..w — 1]. In particular,node;|indez(x)] = x if =

belongs to microset. We maintain all the microsets as a linked list, with poiatefev(s)

3We begin numbering microsets at 0.
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andnexzt(s) to the adjacent smaller and larger, respectively, micsoset

Microsets support the following operations:

e MICROFIND(z) returns a pointer to the “smallest” element that belongsoth the

same microset and the same logical set.as

e MICROUNION(x) unions the logical sets containingandz — 1, wherex andx — 1
belong to the same microskfhat is to say, all subsequentiVROFINDS return the
same result if performed on any element that belongs to Ietsame microset as

(andz — 1) and the same logical set aor z — 1.

We describe these operations later in the section. Both sktbperations are worst-case
constant time.

We group these microsets inteacrosets Unlike the microset structure, the macroset
structure does correspond to sets represented by the dattust. Each microsethas a
single macroset nodeacro(s). In some sensepacro(s) really corresponds to the root of

the microset. Macrosets support the following operations:

e MACROFIND(s) returns the “smallest” microset in the same macroset as

e MACROUNION(s, s') unions the macroset containingvith the macroset containing

s'. These sets must be contiguous.

The implementation of macrosets is the simple linked-tigplementation from [20] with
the “weighted-union heuristic.” On a McROUNION, each element in the smaller set is
pointed at the representative of the larger set. The se¢septative maintains a pointer
to the smallest element in the set. This technique resuligarst-case constant time
MACROFINDs and a total of)(m lgm) time for all the MACROUNIONS, wherem is the
number of elements. In our case, there@fe/lgn) macroset nodes, so the total running
time of unions i ((n/lgn)lg(n/lgn)) = O(n).

The following invariant describes the representation afgadal set.

Invariant 9 Suppose that a logical s&t contains exactly the elementsz + 1,...,y,

belonging to microsets;, s;1, ..., s;, wheres, denotes thé&th smallest microset. Then

4Sincex andz — 1 must belong to the same microset, calling &2MOUNION on the root of a microset
is not supported.
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Figure 3-4: The representation of a set containing elem@nts. .., 19 in our disjoint-sets data
structure withn = 24 andw = 6. The dark-gray rectangles on the bottom represent elements
grouped into microsets. The diamonds above are the macroset nodespomiding to each of the
microsetssy, s1, s2, s3. The light-gray rounded rectangle shows the logical set being repiezse
containing element3, 4, ..., 19. The light-gray oval above shows the corresponding macroset.

FIND (z)

1 z < MICROFIND(z)

2 ifindex(x) =0

3 then s < MACROFIND (micro(z))

4 s «— prev(s)

5 x < MICROFIND (nodes(w — 1))
6 returnz

Figure 3-5: The FND operation written in serial pseudocode AMROFIND (s) returns the smallest
microset contained in the same macroset.aslICROFIND () returns the smallest element in the
same logical set and microset as the element

there exists a macroset corresponding to thesebntaining exactly; 1, s;+2,...,s;. In
other words,s;, belongs to the macroset if and only if some elemea;, ipelongs toS and

the largest element in microset ; also belongss.

Figure 3-4 illustrates this representation of the et ...,19. The elements are con-
tained in microsets,, s, s2, s3, and so the corresponding macroset contains only microsets
S1, S92, S3.

Figure 3-5 gives pseudocode for thenB(x) operation. This operation returns the
smallest element belonging to the same logical set.asIND simply searches for the
smallest element in the microset containinip line 1. If this element is the root of the mi-
croset, then it looks for the smallest microset whose rocorgained in the same macroset.
This value is exactly what is returned byAdrROFIND in line 3 due to Invariant 9. Then,

line 5 checks how far the set spans into the previous micrésetexample, consider per-
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UNION(z, y)
ifxr>y
then swapzr < y
2’ — FIND(z)
y' «— FIND(y)
if ' =4
then > = andy are already in the same set
return

~NOo o OWNPE

8 ifindex(y’) #0
9 then MICROUNION(%/)
10 else MACROUNION(nezt(micro(x')), micro(y'))
11 if micro(z’) # micro(y’)
12 then s < next(micro(y'))
13 if FIND(nodes(0)) = FIND(y')
14 then MACROUNION(micro(y'), s)

Figure 3-6: The UNION operation written in serial pseudocodaNB(x), as shown in Figure 3-5,
returns the smallest element in the same set &1CROUNION(x) unionsz andz — 1 in the same
microset. MACROUNION(s, ') unions the neighboring macrosets containiremds’, respectively.

forming AND(19) on the set shown in Figure 3-4. With the first®&RoFIND in line 1,
we find the element8. This element is the root of the microsgt The MACROFIND in
line 3 returnss,. Invariant 9 implies that some @f, is contained in the set. We, therefore,

perform MICROFIND(5) in line 5, which returns the answer—the natle

Figure 3-6 gives the implementation of aNlbN(z, y) operation. Without loss of gen-
erality, y is the larger item. We first check that both items belong ttedkht sets. Then,
we look for the smallest iteny in the set containing and perform a MNCROUNION. Since
x < y, and we union only contiguous elements, the intention meisb liniony’ with ¢/ —1,
and so a MCROUNION is correct. Lines 10-14 maintain Invariant 9—that macreosen-
tain all but the first microset spanned by the logical setsTipdate may involve up to two

MACROUNIONS.

The AND takesO(1) time in the worst-case since each line has worst-case tithe. T
UNION is dominated by the cost of a ALROUNION, which is amortized t@(lgn). |

do not prove correctness here, since this data structungtes gjmilar to Gabow and Tar-
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MICROUNION(x)

1 s« micro(x)
2 marks|index(z)] < 0.

Figure 3-7: The MICROUNION operation written in serial pseudocode.

jan’s [33].

Microsets

It remains to describe the implementation of thecMoFIND and MICROUNION opera-
tions. These operations run in constant time on a randomsaaoachine [20], where ALU
operations (we use a bit-shift and modulo operation) on enimaavord take constant time.

For each microset, we keep a tablerk [0..w — 1]. We usemark,|x] to indicate
whetherz belongs to the same set as any of its predecessonsur#;[z] = 0, thenz and
x — 1 belong to the same set. Converselyyifirk;[x] = 1, thenz andxz — 1 do notbelong
to the same set. We treatark, as an integer so that we can support arithmetic operations.
In particular, ifindez(z) = k, thenmark[z| corresponds to thek + 1)st most significant
bit in the wordmark,.

The operation NCROUNION(z) trivially just sets the appropriate bit in the mark table.
This operation is given in Figure 3-7.

To facilitate the arithmetic operations used byd®oFINDS, it is useful to have a way
to go betweert and a bit string containing &in only thekth bit (i.e., the integezw—*-1).
We provide two functions that work on values with< k£ < w — 1 andk < n — 1. Note

that we do handle the case in whichs smaller than the size of a word.

e NUMTOSTRING(k) returns the bit string» "1,

e STRINGTONUM(2¢~*~1) returnsk.

The function NJMTOSTRING can be trivially implemented as a bit-shift operatfomihus,

NUMTOSTRING is a constant-time operation.

SAlternatively, we could precompute an array of sigin {w,n} and fill in all the values. This construc-
tion does not require a variable-length bit shift.
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MICROFIND (z)

1 s« micro(x)

2 i+« NoT(marks —NUMTOSTRING(indez(x)))
3 i« AND(i, marks)

4 return nodes[STRINGTONUM(7)]

Figure 3-8: The MICROFIND operation written in serial pseudocode. ThemNbperator performs
a bitwise complement of the argument, andpAperforms a bitwise conjunction of the two argu-
ments.

The STRINGTONUM function is a bit more challenging to perform in constantiridve
construct an arrayl of size®(min {w,n}) and provide a hash functignthat indexes into
the table. We precompute then {w, n} values in this table such thath(2v=*-1)] = k.

To precompute the tablé, we computed[h(NUMTOSTRING(k))] < k, for all appropri-
ate values of. The main difficulty is picking a good hash functianthat hashes onto a
range of sized(min {w, n}) without any collisions for appropriate keys. One such hash

function is given in Appendix A.

The operation NCROFIND(z), as shown in Figure 3-8, returns the “smallest” element
(most significant bit) in the microset= micro(x) that belongs to the same setasThis
operation is equivalent to searching for the neatgsteceding the index(x) 4+ 1)st most
significant bit in the wordnark,. To perform this operation, we simply subtract &om
the mark[indez(x)], bitwise complement the resulting word, and perform a lsienand
with marks. When subtracting, alls between th¢indexz(x) + 1)st bit and the preceding
1 becomels. The preceding becomes &, and all other bits remain the same. Thus,
when complementing and anding, the only bit that falls oubhéspreceding. Given this
bit string, a call to SRINGTONUM gives the index of the bit. For example, consider a
MICROFIND (z), wherex belongs to the microset, and index(x) = 4, andmarks is
the bit string11000011. Subtracting NNMTOSTRING(index(z)) = 00001000 from mark
yields10111011. The bitwise complement of this string(i$000100. The subsequent®d
operation of this string anghark s yields01000000, which is a string isolating the nearest

1 preceding thé&th most significant bit.
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I ncremental set union

| now relax the assumption that theitems are known a priori. In other words, | describe
how to support the MKE-SET operation in worst-cas@(1) time. | do, however, impose
the restriction that MKE-SETs are performed in order. Since SP-bags performs k4
SET operations in the same order as procedures are discovereuma 8 implies that this

data structure does apply.

Once the number of items exceeds supporting worst-cas@(1) MAKE-SET oper-
ations is easy. We just store a pointer to the last elemeatente The next MKE-SET
either puts the item in the next slot in the same microsehgifd is space, or creates a new

microset and uses the item as the root.

Dealing with the possibility that < w, however, introduces some complications. We
have an array.ode, associated with the microset and an arfaysed by SRINGTONUM.
If m < w is the number of MKE-SETs performed so far, we require the size of the
tables to beO(m). To achieve this restriction, we use a standard doublingnigecie (as
in dynamic tables [20, Section 17.4]). In the beginning, Wecate arrays of constant
size (and choose an appropriate hash function fmISGToNuUM). On each subsequent
MAKE-SET operation, we fill in the next table entry. Each time the numbeof items
doubles, we allocate new arrays of size (and create a new hash function) and fill in the
arrays again. Thus, each time the size doubles, we@ (@) work. We amortize this work
against thed(m) MAKE-SETs that occurred since the last doubling to get amorti2€d)

time MAKE-SETS.

We deamortize this process to get worst-c@se) time MAKE-SETS. The deamortiza-
tion technique is straightforward. We keep two versionsaafearray. Whenever the value
of m doubles, we now allocate a new array of size. Thus, at this doubling point, one
array has siz€m, and one has sizé&n. On every subsequent AKE-SET, we fill in the
appropriate table entry in the smaller table, and we fift entries in the larger table. Any
gueries during this time query against the smaller tabheesihe larger table is incomplete.
At the time the next doubling occurs, since both tables ¢omtatries for all known values,

the smaller table can be discarded and replaced by a newakdiee4m.
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3.2 SP-hybrid

This section gives describes the SP-hybrid algorithm. lrbéyg describing how an SP
parse tree is provided as input to SP-hybrid and explainimgesof the properties of Cilk
that SP-hybrid exploits. | then overview the two-tier sture of the algorithm which com-
bines elements of SP-order from Chapter 2 and SP-bags frotio®s&cl and [30]. | then
give SP-hybrid itself and present pseudocode for its implaation.

SP-hybrid’sinput and Cilk

Like the SP-order algorithm, the SP-hybrid algorithm atsegs input a fork-join multi-
threaded program expressed as an SP parse tree. The S@digbrithm provides weaker
guery semantics than the serial SP-order algorithm; thes®ustics are exactly what is
required for on-the-fly data-race detection. Whereas SEraliows queries of any two
threads that have been unfolded in the parse tree, SP-hlguuites that one of the threads
be a currently executing thread. For a fork-join progranhwit work and a critical path of
lengthT,., the parallel SP-hybrid algorithm can be made to run (in Gik)(7 / P+ PTy,)
time.

Although SP-hybrid provides these performance boundsrigrfark-join program, it
can only operate “on the fly” for programs whose parse treésldim a Cilk-like man-
ner. Specifically, SP-hybrid is described and analyzed adkap@ibgram, and as such,
it takes advantage of two properties of the Cilk schedulermsuee efficient execution.
First, any single processor unfolds the parse tree lefigiat: Second, it exploits the prop-
erties of Cilk’'s “work-stealing” scheduler, both for corteess and efficiency. Although
SP-hybrid operates correctly and efficiently on éhposterioriSP parse tree for any fork-
join program, it only operates “on-the-fly” when the parseetunfolds similar to a Cilk
computation.

Cilk employs a “work-stealing” scheduler [15, 32] which exgzs any multithreaded
computation having worl{; and critical-path lengtfi,, in O(71/P + T.,) expected time
on P processors, which is asymptotically optimal. The idea heétwork stealing is that

when a processor runs out of its own work to do, it “steals”knMoom another processor.
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Thus, the steals that occur during a Cilk computation breakcttmputation, and hence
the computation’s SP parse tree, into a set of “traces,” @bkach trace consists of a set of
threads all executed by the same processor. These traceadditional structure imposed
by Cilk’s scheduler. Specifically, we require the followirgheduling property to guarantee

correctness of SP-hybrid.

Property 10

1. Whenever a thief processor steals work from a victim psmeshe work stolen
corresponds to the right subtree of the P-node that is higimethe SP-parse tree
walked by the victim.

2. A processor expands the subtree it is working on in a deggh-#ft-to-right man-

ner, and steals only when its subtree has been fully expanded.

Cilk's scheduler provides an upper bound&fPT,,) steals with high probability [10, 15],

which bounds the number of traces created by the algorithm.

The SP-hybrid algorithm

The SP-hybrid algorithm uses a two-tiered hierarchy withiagbal tier and a local tier
in order to overcome the scalability problems with lock dymmization. As SP-hybrid
performs a parallel walk of the input SP parse tree, it par# the threads into traces on
the fly, where each trace consists of threads that executieeosaime processor. Much as
in the naive parallelization of SP-order, the global tieB&-hybrid uses a shared SP-order
algorithm to maintain the relationships between threadisngeng to different traces. The
local tier uses the serial SP-bags algorithm to maintairreékaionships between threads
belonging to the same trace.

The goal of this two-tier structure is to reduce the synclaation delays for shared data
structures, that is, processors wasting their time by ngitin locks. SP-hybrid’s shared
global tier minimizes synchronization delays in two waysrst: a lock-free scheme is
employed so that OM-RECEDEScan execute on the shared data structure without locking.

Second, the number of insertions is reduced{@7,.), thereby reducing the maximum
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waiting time toO(P*T.,), since at mosP — 1 processors need to wait during the work of

any insertion.

For the purposes of explaining how SP-hybrid works, we naa&intraces explicitly.
Formally, we define drace U to be a (dynamic) set of threads that have been executed
on a single processor. Th®mputationC is a dynamic collection of disjoint traces,

C = {Uy,U,,...,U}. Initially, the computation consists of a single empty &adAs

the computation unfolds, each thread is inserted into @trac

Whenever Cilk’s scheduler causes a steal from a victim procdbat is executing a
traceU, SP-hybrid splitd/ into five subtracesU™"), U® U@ U® {U®)), modifying the

computatiorC as follows:
C—C—-UU{UM U yd W ycy

Consequently, if the Cilk scheduler performsteals,

C| = 4s + 1. Since the Cilk sched-
uler provides a bound aD(PT,,) steals with high probability, the expected sizeCois
O(PT,). The principal use of the SP-bags algorithm from [30] andtiBe@.1 is that it

enables efficient splitting.

Details of the two tiers of SP-hybrid are presented latehegection. For now, it is
sufficient to understand the operations each tier suppohs.global tier supports the op-
erations OM-NserRTand OM-RRECEDESon English and Hebrew orderings. In addition,
the global tier supports a OM-WLTI-INSERT operation, which inserts several items into
an order-maintenance data structure. The local tier stpparcAL-INSERTand LOCAL-
PRECEDESoON a local (SP-bags) data structure. It supports an opar&IT, which
partitions the threads in a trace when a steal occurs. Itsalpports an operationiid-
TRACE, which returns the current trace to which a thread belongs. implementation of
all the local-tier operations must be such that manyo-TRACE operations can execute

concurrently.

Figure 3-9 presents the parallel pseudocode for the SRehglgorithm, with details of
the local tier operations omitted. (See Section 3.1 andff52d more complete presentation

of the Cilk language.) As in the SP-order and SP-bags algosittSP-hybrid performs a
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SP-HyBRID(X,U)

a b~ wbN Pk

O W0 ~NO®

11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27

Figure 3-9: The SP-hybrid algorithm written in parallel pseudocode, with the local-tierains
omitted. SP-HBRID accepts as arguments an SP-parse-tree Aoded a tracé/, and it returns a
trace. The algorithm is essentially a tree walk that carries with it a Wacgo which new threads
are inserted. The8VCHED procedure determines whether the current procedure is synchdonize
(whether async would cause the procedure to block), which indicates whether a steatbased.

The OM-MULTI-INSERT(L, A, B, U, C, D) inserts the objectd, B, C, andD before and aftet/

in the order-maintenance data structiiceThe Eng and Heb data structures maintain the English
and Hebrew orderings of traces. TheLSr procedure uses node€ to partition the existing threads

in traceU into three sets, leaving one of the setg/irand placing the other two int ") andU ().

> X is a SP-parse-tree node, afids a trace
if ISLEAF(X)
then> X is a thread
U—UU{X}
EXECUTETHREAD(X)
return U

if ISSNODE(X)
then> X is an S-node
U’ «— SP-HyBRID (left| X], U)
U" «— SP-HyBRID(right| X],U")
return U”
> X is a P-node
U’ «— spawn SP-HyBRID (left[X], U)
if SYNCHED()
then > the recursive call on line 11 has completed
U" «— spawn SP-HyBRID(right[X],U")
sync
return U”
>> A steal has occurred
wait until parentstolen|X| = TRUE
ACQUIRE(lock)
create new tracds"), U®, U®, andU®)
OM-MULTI-INSERT Eng, UV . U® U UMW U®)
OM-MULTI-INSERT Heb, UV, UW U, U UO))
SPLT(U, X, UM, U®?)
parentstolen|left[ X]] < TRUE
RELEASE(lock)
spawn SP-HyBRID (right[X],U®)
sync
return U®)
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SP-RRECEDESu;, u;)

28 U; < FINDTRACE(u;)

29 U; «— FINDTRACE(u;)

30 ifU; =U;

31 then return LOCAL-PRECEDESu;, u;)

32 if OM-PRECEDES Eng, U;, U;) and
OM-PRECEDES Heb, U;, Uj)

33 then return TRUE

34 return FALSE

Figure 3-10: The SP-Precedes precedure for the SP-Hybrid algorithm given ind=@19. SP-
PRECEDESsaccepts two threads andu;, whereu; must be a currently executing thread, and returns
TRUEif u; < uj. FINDTRACE and LOCAL-PRECEDESare local-tier operations to determine what
trace a thread belongs to and the relationship between threads in the sameespectively.

left-to-right walk of the SP parse tree, executing threagltha parse tree unfolds. Each
thread is inserted into a trace, which is local to the pramesgecuting the thread. The
structure of the trace forms the local tier of the SP-hyblgdathm and is described further

later in the section. The full SP-hybrid algorithm can beanied by merging Figure 3-9

with the SP-parse-tree walk performed by the local-tieoatgm.

SP-hybrid associates each node in the SP parse tree witlyle sizce by accepting a
traceU as a parameter in addition to a node indicating that the descendant threads of
X should be inserted into the trate When SP-HBRID(X, U) completes, it returns the
trace with which to associate the next node in the walk of gmsetree. In particular, for
an S-nodeX, the tracd/’ returned from the walk of the left subtree is passed to th& ofal
X’s right subtree; see Lines 6—10. The same is true for P-namdsss a the right subtree
has been stolen; see lines lines 11-16.

Lines 1-5 deal with the case whePeé is a leaf and therefore a thread. As in SP-
ORDER, the queries to the SP-maintenance data structure occle IBXECUTETHREAD
procedure. In our analysis in Section 3.4, we shall assumtethle number of queries is
at most the number of instructions in the thread. The threadseerted into the provided
traceU in line 3 before executing the thread in line 4. Lines 6-10 lamek 11-27 handle
the cases wherg is an S- or P-Node, respectively. For both P-nodes and Ssndde

procedure walks toX’s left then right subtree. For an S-node, however, the lgftree
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must be fully expanded before walking to the right subtree.

During the time that a P-node is being expanded, a steal nay.o8pecifically, while
the current processor walks the left subtree of the P-nodethar processor may steal
(the walking of) the right subtree. When a steal is detectee (l12—S/NCHED returns
FALSE), the current trace is split into five trace$td), U, U®), UW, andU®)—with a
call to the $LIT procedure. This BLIT procedure, and the partitioning into subtraces, is
described further later in the section. The SP-hybrid atlgar proceeds to order the traces,
inserting the five new traces into the global SP-maintendata structures. ThBng order

maintains the English ordering of the traces, as follows:
(U(l), U ud W, U(5)> _

Similarly, the Heb order maintains the Hebrew ordering of the traces:
(U(l), USRUCR IO U(5)> _

We use a global lock to serialize these trace constructiodsirgsertions into the shared
order-maintenance data structure. For correctness, waedtiat the parent procedure be
stolen (and have its traces split) before the child is stolemenforce this condition, we
introduce the fielgharentstolen for each node in the parse tree. This value is initially set to
FALSE. When a P-node is stolen, we updateentstolen for the left child of the P-node.
In this way, we guarantee that the trace splitting in linesZ®occurs only when all the
ancestor procedures have been dealt with.

If a steal does not occur, we execute lines 14-16. Noticeifthasteal does not occur
anywhere in the subtree rooted at some nadehen we execute only lines 1-16 for the
walk of this subtree. Thus, all descendant thread&” dfelong to the same trace, thereby
satisfying the requirement that a trace be a set of threatlexiecute on the same processor.

The pseudocode for SPRBCEDESIs shown in Figure 3-10. A SPHECEDESquery
for threadsu; andw; first examines the order of their respective traces. If the ttweads
belong to the same trace, the local-tier (SP-bags) datatstaudetermines whether;

precedes:;. If the two threads belong to different traces, the globel-5P-order data
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structure determines the order of the two traces.

The global tier

The global tier is essentially a shared SP-order data streicind locking is used to mediate
concurrent operations. We now describe the global tier inenaetail. We show how to
support concurrent queries without locking, leaving onlyartions as requiring locking.
We focus on making OM-RECEDESoperations on the global tier run efficiently with-
out locking, because the number of concurrent queries mérge. If we were to lock the
data structure for each ¢} queries, each query might be forced to wait for insertiorss an
other queries, thereby increasing the apparent work by afmsO(Q P) and nullifying
the advantages df-way parallelism. Thus, we lock the entire global tier whanresertion
occurs, but use a lock-free implementation for the presiymabre-numerous queries.
The global tier is implemented using &i(1)-amortized-time order-maintenance data
structure such as those described in [12,23,58]. The datetsie keeps a doubly linked
list® of items and assigns an integer label to each inserted itene. Idbels are used to
implement OM-RECEDES to compare two items in the linear order, we compare their
labels. When OM-ISERT adds a new item to the dynamic set, it assigns the item a label
that places the item into its proper place in the linear order
Sometimes, however, an item must be placed between two igaked; andi + 1, in
which case this simple scheme does not work. At this poietd#ta structure relabels some
items so that room can be made for the new item. We refer toythandic relabeling that
occurs during an insertion ag@balance Depending on how “bunched up” the labels of
existing items are, the algorithm may need to relabel difienumbers of items during one
rebalance than another. In the worst case, nearly all ot¢inesimay need to be relabeled.
When implementing a rebalance, therefore, the data steiabay stay locked for an
extended period of time. The goal of the lock-free impleragah of OM-PRECEDESIs
to allow these operations to execute quickly and correetiynen the midst of rebalancing.

We modify the order-maintenance data structure to conwainsets of labels—an item

SActually, a two-level hierarchy of lists is maintained, lhts detail is unnecessary to understand the
basic workings of lock-free queries, and the one-level seheve describe can be easily extended.
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has labeldabel;[z] andlabely[x]. Implementation of a rebalance maintains the following

properties:

e When no rebalance is in progre$shel;[z] = labels[x] for all itemsz in the list, and

the labels respect the total order (ifehel;[x] < label;[y] if and only if z < y).

e Atany instantin time (during a rebalance), at least onefdabels is consistent with

the total order.

e A concurrent query can detect whether a rebalance in pregascorrupted its view

of the linear order.

We use a counter (which startsigtto support the third property. When the counter is
odd, the set ofabel; respects the total order. When the counter is even, the $eladf is
valid. The algorithm actually proceeds in five phases, twaloth implement the normal

rebalance:
1. Determine the range of items to rebalance.
2. Assign the desired label to each iterfisels.
3. Increment the counter indicating that a concurrent qabould read théabel,’s.
4. Assign the desired label to each iterfuigel;.

5. Increment the global counter indicating that the reb@dams completed and that a

concurrent query should read theel;.

This rebalancing strategy modifies each item twice whilergui@eing that a concurrent
read can get a consistent view of the linear order.

OM-PRECEDESquery checks the counter to determine whether a rebalancprisgress.
To compare itemg& andY, it first determines the parity of the counter, then examthes
appropriate labels ok andY’, and finally checks the counter again. If the counter has not
changed between readings, then the query attemgteedsand the order of labels deter-
mines the order o. Otherwise, the query attemfatils and is repeatedly retried until it
succeeds.

Given that queries attempts can fail, they may increasepparant work and the ap-

parent critical-path length of the computation. Sectighi®unds these increases.
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Thelocal tier

We now describe the local tier of the SP-hybrid algorithm. 8hew how a trace running
locally on a processor can be split when a steal occurs. ByukaSP-bags algorithm to
implement the trace data structure, a split can be impleadeintO(1) time. Finally, we
show that these data structures allow the series-paraliionship between a currently
running thread and any other previously executed or cuyrerécuting thread to be deter-
mined.

Besides maintaining the SP relationships within a singleetréhe local tier of the SP-
hybrid algorithm supports the splitting of a trace into sabes. A split of a trac& occurs
when the processor executiiigpecomes the victim of a steal. The work stolen corresponds
to the right subtree of the P-nodéthat is highest in the SP-parse tree walked by the victim.

When a tracé’ is split around a P-nod&, the local tier creates five subtraces:

1. UM = {u € U : u < X}, the threads that precede.

2. U ={ueU:ul X andu ¢ descendants(X)}, the threads parallel t§ that do
not belong to a subtree of.

3. U® = {u e U :u € descendants(left[X])}, the threads inX’’s left subtree.

4. U ={u € U :u € descendants(right| X))}, the threads in\’s (stolen) right sub-
tree. This set is initially empty.

5 U® ={ucU:X <u}, the threads that followX. This set is also initially empty.

We call the properties of these sets subtrace propertiesf U.

The SLIT procedure from Figure 3-9 implements the split. SibEé andU®) are
initially empty, they are not provided as parameters to theiSprocedure in line 22 of the
SP-HyBRID pseudocode from Figure 3-9. The 8P is simply those threads that remain
in U after those front/(") andU® have been spilit off.

Let us look at these subtraces in terms of the parse treereF3glil shows the subtraces
formed when a processor steals the tree walk rootedyat[ X]. Since all the threads con-
tained inU(!) have been executed, no more changes to this subtrace wiit. ®nilarly,

the threads contained #i® have already been executed. The subti@ce is partially

“In fact, the subtrace§ ®) andU®) can be combined, but we keep them separate to simplify thaf pfo
correctness.
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Figure 3-11: The split of a tracé/ around a P-nod« in terms of a canonical Cilk parse tree (see
Figure 3-1). The notatio” represents the parse tree of a spawned procedure; eeygtesents a
thread. The tree walk df is executing ineft[X] when the subtree rooted ayht[X] is stolen by a
thief processor. The shaded regions contain the nodes belongingtofehe subtraces produced
by the split. The two circles not enclosing any text indicate portions of theegaee that have not
yet been visited by the tree walk bf.

populated, and the processor executing the walk wfill continue to put threads intt/ ®)
The subtracé/), which is initially empty, corresponds to the threads emteted during
the thief processor’s tree walk. The subtra&@, which is also initially empty, represents
the start of the next sync block in the procedure.

When the subtraces are created, they are placed into thd gehesing the concurrent
SP-order algorithm. The ordering of the traces resultimgnfithe steal in Figure 3-11
is shown in Figure 3-12. All the threads A precede those i/®), U®, andU®)
Similarly, all the threads (to be visited) IA®) serially follow those iy, U U®), and
U@, Thus, we placé/ first andU® last in both the English and Hebrew orders. Since
any pair of threads drawn from distinct subtra¢g?, U®), andU® operate logically in
parallel, we placé/?, U®) andU® in that order into the English ordering abid®, U
andU® in that order into the Hebrew ordering. Although there is teacrelationship
among all the threads ™™ and U, since neither of these traces contains unexecuted

threads, SP-hybrid never compares them.

SP-bags can be adapted to implement the local-tier opesati@CAL-INSERT, LOCAL-
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Figure 3-12: An ordering of the new traces resulting from a steal as shown in Figlte Each
circle represents a trace.

PRECEDES FIND-TRACE, and $LIT required by SP-hybrid. All these operations, except
FIND-TRACE, are executed only by the single processor working on a.trdibe FND-
TRACE operation, however, may be executed by any processor, asdltie implementa-
tion must operate correctly in the face of multiple&NB-TRACE operations.

The SP-bags implementation used by SP-hybrid follows th&eotion 3.1, except that
we must additionally support the8IT operation. At the time of a split, the subtradéd),
U®, andU® may all contain many threads. Thus, splitting them off frdwa tracel/ may
take substantial work. Fortunately, SP-bags overcomedltfiiculty by allowing a split to
be performed irO(1) time.

Consider the S- and P-bags at the time a thread (i.e., thesugptitee of the P-nod&
in Figure 3-11) in the top-level procedukeis stolen and the five subtracgs!, U, U®),
U™, andU® are created. The S-bag Bfcontains exactly the threads in the subtr&¢e.
Similarly, the P-bag of" contains exactly the threads in the subtréé®. The SP-bags
data structure is such that moving these two bags to the ppat® subtraces requires only
O(1) pointer updates. The subtraté® owns all the other S- and P-bags that belonged to
the original tracd’/, and thus nothing more need be done, siti€€ directly inheritsU’s
threads. The subtracé&® andU®) are created with empty S- and P-bags. (Althotgh
andU® belong to the same procedure@s’, we modify SP-bags to treat them as new
procedures.) Thus, the split can be performe@in) time, since onlyO(1) bookkeeping
needs to be done including updating pointers.

We must make one additional change to SP-bags from Secfida et an efficient SP-
hybrid algorithm. The analysis in Section 3.4 bounds the bemof steals by arguing that
each time a steal occurs, we make headway in the criticalgddtte computation. Since a

UNION is amortized, we may increase the critical path of the coatpart. In particular, the
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SP-BAGS(X, F)
>> X is an SP-parse-tree node, akids a function.

1 if ISLEAF(X)

2 then> X is a thread

3 F— FU{X}

4 EXECUTETHREAD(X, F)

5 return F

6 if ISSNODE(X)

7 then F' «— SP-BAGS(left[X], F)

8 return SP-BAGS(right[ X], F)

> X is a P-node
9 F’ «+— NEWPROCEDURK)
10 spawn SP-BAGS(left|X], F')
11 if SYNCHED()
12 then Pr < UNION(F, Pg, Sgr)
13 else > A steal occurred.

14 parentstolen|[F'] < TRUE

15 Fyeturn <+ NEWPROCEDURK)
16 F «— NEWPROCEDURK)

17 spawn SP-BAGS(right[ X], F')

18 sync

19 SF<—UN|ON(F7SF,PF)
21 return Foepurn

Figure 3-13: The local-tier SP-bags algorithm written in parallel pseudocode to openatkeo
canonical Cilk parsetree from Figure 3-1. This implementation is similar to Figndexcept with

the implicit addition of a BST-MACROUNION where necessaryarentstolen|F] indicates whether
the parent procedure df has been stolen (meaning thatis available to be stolen). Similarly to
SP-hybrid, this version of SP-bags returns a function into which futueatts should be inserted.
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MACROUNION component may take up t(n) time, wheren is the number of microsets.
To compensate for this amortization, we also provideam™MACROUNION(z, y), which
simply points the representative of the macroset contginiat the representative of the

macroset containing. This operation takes constant time.

We call AST-MACROUNION(z, y) instead of MACROUNION(z, y) whenever the pro-
cedure making the call is ready to be stolen. Specificallywealify the UNION from
Figure 3-6 as follows. We makeNJON(F' z, y) take three arguments instead of the orig-
inal two (x,y). Whenever performing a NCROUNION, the UNION operation performs
a constant number of steps of theABROUNION, then checks whethdr is ready to be
stolen. If so, we finish with a A&ST-M ACROUNION. If not, then we perform a constant
number of steps and check again. In this way, we guarantéevthaever perform more
than a constant amount of extra work (due to SP-maintenavioe) a thread is waiting to
be stolen. Obviously, correctness of the data structurea$fected by this change, but it
is no longer obvious thatIRDs are fast. In Section 3.4, we argue that time to perform a

FIND is still O(1) in the worst-case.

Figure 3-13 gives parallel pseudocode for the local-tie&§s algorithm. This ver-
sion of SP-bags returns a procedure ID into which futuresaitiseshould be inserted, which
is conceptually similar to SP-hybrid from Figure 3-9. Whesrea steal occurs, as shown
in lines 13-16, we create new “procedures” to handle theg&¢" andU®). The new
procedure, corresponding to traGe’, is returned to be handled by the appropriate ances-
tor S-node. This version of SP-bags also uses fki&@&rfMACROUNION operations where
appropriate. Whenever the parent of a procedureas been stolery; is available to be
stolen, and a AST-MACROUNION is preferred. We use the fielehrentstolen[F] to in-
dicate this fact. If we call a NION(F, z,y), then the WION periodically checks against

parentstolen|F'| to see whether it should switch to the$T-MACROUNION.

Even though Figure 3-13 gives a parallel implementation Bfb&gs, the code still
reflects a serial algorithm. Thatis, SP-bags is still onlyett if run on a single processor—
this version of SP-bags allows parallelization only whemiruthe context of the local tier
of SP-hybrid. Also, as with the SP-bags from Figure 3-3, wendbrequire any locking.

Any particular bag or set is touched by only a single processcthere is no contention to
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worry about.
To attain the full SP-hybrid algorithm, the two parsetredkwdrom Figures 3-9 and 3-

13 must be merged together.

3.3 Correctnessof SP-hybrid

This section proves the correctness of the SP-hybrid dlgoriWe begin by showing that
the traces maintained by SP-hybrid are consistent with ub&race properties defined in
Section 3.2. We then prove that the traces are ordered tgrtecetermine SP relation-
ships. Finally, we conclude that SP-hybrid works.

Due to the way the splits work, we can no longer prove a theoasngeneral as
Lemma 1. That is to say, we can only accurately derive theioelship between two
threads if one of them is a currently executing thréadthough this result is weaker than
for the serial algorithm, we do not need anything strongeaface detector. Furthermore,
these are exactly the semantics provided by the lower-Beb&)s algorithm.

Correctness for SP-bags is given in [30]. The only significhfierence between our
version of SP-bags from Section 3.2 and the version in [3@has we may spawn new
instances of the SP-bags algorithm when a steal occurs. &kénstances result from the
creation of new bags given in lines 13—-16 of Figure 3-13. €hestances correspond to the
subtrace$/ andU® from Figure 3-11, which are subtrees of the parse tree. SRce
bags operates correctly on a Cilk-like parsetree, it opsrederectly on a subtree as well,
and we do not give a new correctness proof here. Instead, mentrate on correctness of
the global tier and the SP-hybrid algorithm as a whole.

The following lemma shows that when a split occurs, the sudes are consistent with

the subtraces properties given in Section 3.2.

Lemma 11 LetU, be atrace thatis splitaround a P-nodé. Then, the subtrace properties

of U; are maintained as invariants lyP-HvBRID.

Proof. The subtrace properties 6f hold at the time of the split around the P-nalie

8Specifically, we cannot determine the relationship betwbesads i/ () andU), but we can deter-
mine the relationship between any other two traces.
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when the subtraces were created, by definition. If a subtsagestroyed by splitting, the
property holds for that subtrace vacuously.

Consider any thread at the time it is inserted into some tralGe EitherU is a subtrace
of U; or not. If not, then the properties hold for the subtrdgeracuously. Otherwise, we
have five cases.

Casel: U = U;,\Y. This case cannot occur. Sin€g™ is mentioned only in lines
17-27 of Figure 3-9, it follows thdt;") is never passed to any call of SP¢BRID. Thus,
no threads are ever inserted iifg").

Case2: U = U;®. Like Case 1, this case cannot occur.

Case3: U = U;®®. We must show that/;®) = {u : u € descendants(left|X])}.
The difficulty in this case is that when the tralgis split, we havd/; = U;®, that is,U;
andU;® are aliases for the same set. Thus, we must show that theaintaolds for all
the already spawned instances of SPBRID that tookU; as a parameter, as well as those
new instances that také(®) as a parameter. As it turns out, however, no new instances tak
U, as a parameter, because (like Cases 1 arid®)is neither passed to SPYHRID
nor returned.

Thus, we are left to consider the already spawned instaric&B-dHYBRID that tookU;
as a parameter. One such instance is the outstanding\&RiBl(left[ X], U;) in line 11. If
u € descendants(left[X]), then we are done, and thus, we only need consider the spawns
SP-HvBRID(Y, U;), whereY is an ancestor of the P-nodé. We use induction on the an-
cestors ofX, starting att” = parent(X) to show that SP-MBRID (Y, U;) does not pask);
to any other calls, nor does it retuti. For the base case, we see that SPsRID (X, U;)
returnsU;®) #£ U,®),

For the inductive case, consider SFBRID(Y,U;). We examine the locations in
the pseudocode where this procedure can resume execution. id an S-node, then
this procedure can be waiting for the return from SPBRID(left[Y], U;) in line 8 or
SP-HYBRID(right[Y], U;) in line 9. In the first situation, our inductive hypothesiates
that SP-HBRID (left[Y], U;) does not retur/;, and hence, we neither passto the right
child nor do we return it. The second situation is similar.

Instead, suppose that is a P-node. Since steals occur from the top of the tree, we
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cannot resume execution at line 14, or else SBBRID (right[Y], U;) would have already
been stolen. We can be only at either line 15 or line 26. If gvakline 15, our inductive
assumption states that SP¢BRID(right[Y'], U;) does not returi/;, and thus we do not
returnU; either. Otherwise, we are at line 26, and we returnifhie resulting from some
split.

Case4: U = U;"). We must show thal;(¥) = {u : u € descendants(right[X])}. The
only place wherd/;* is passed to another SP¥HRID call, and hence used to insert a
thread, is line 25. No matter what SP¥BRID (right[X], U;*) returns, SP-MBRID (X, U,)
does not returd/;(¥; it returnsU;®). Thus, the only threads that can be inserted Uitd
are descendants ofght| X ], which matches the semanticsiof!.

Case5: U = U;®. We must show thatt;” = {u € U; : X < u)}. The subtracé/;®
is used only in the return from SPM8RID(X, U;) on line 27. As seen in lines 6-10 and
lines 14-16, SP-MBRID passes the trace returned from a left subtree to a rightesibtr
Thus, the only SP-MBRID calls that have any possibility of inserting int® are the
right descendants of’'s ancestors. When a split occurs (and hence when a stealspccur
by the properties of the Cilk scheduler, it occurs at the tagtrRenode of a trace. Thus, the
only ancestors oK with unelaborated right subtrees are S-nodes. It followslta(u, X)

is an S-node, and hencé < «. ]

The following lemma shows that thiéng and Heb orderings maintained by SP-hybrid

are sufficient to determine the relationship between traces

Lemma 12 Let Eng and Heb be the English and Hebrew orderings, respectively, main-
tained by the global tier of SP-hybrid. Let be a currently executing thread in the
trace U;, and letu, be any thread in a different trac€; # U,;. Thenu; < wu; if and

Proof.  The proof is by induction on the number of splits during theaxion of SP-
hybrid. Consider the time that a trateis split into its five subtraces. If neithéf;, nor U;
is one of the resulting subtracg$?, U ... U®), then the split does not affett or U,
and the lemma holds holds trivially.

Suppose that; € (UM, U® ... U}, butU; ¢ {UW, UP ... .U}, Then,U;
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andU; have the same relationship they did before the split, becaasnsert the subtraces
UL, U@ U@ andU®) contiguously with/ = U®) in the English and Hebrew orderings.
Similarly, if we haveU; ¢ {UW,... . U®}, butU; € {UW UP ... U®}, then the
lemma holds symmetrically.

Thus, we are left with the situation whete¢ € {UM U@ ... U®}, andU; €
{U® U®W U®}. We can ignore the case whéh = U;, because the lemma assumes
thatU; # U, as well as the cases whéh € {UM), UP}, because; is a currently
executing thread. We consider the remaining twelve casesnn

Case (1,3): U; = UM andU; = U®). We apply Lemma 11 to conclude that < X
for some P-nodeX andu; € descendents(left[X]), which implies that:;, < u;. We also
have thatEng[UM] < Eng[U®)] and Heb[UM] < Heb[U'®)], which matches the claim.

Case(2,3): U; = U® andU; = U®. Lemma 11 allows us to conclude that €
{ueU:u| X andu ¢ descendants(X)} for some P-nodeX and that the thread; <
descendants(left| X]), which means that; || u;. We also have thaing[U®?] < Eng[U®)]
and Heb[U®] > Heb[U®)], which matches the claim.

The other ten cases are similar to these two. []

We are now ready to prove that SP-hybrid returns the corescitrfor an SP-RECEDES

operation run on a currently executing thread and any olireatl.

Theorem 13 Consider any point during the execution®P-HyBRID on an SP parse tree.
Letu, be a thread that has been visited, anddetoe a thread that is currently executing.
Then, the procedur8 P-RRECEDESw;, u;) correctly returnsTRUE if u; < u; and FALSE

otherwise.

Proof. The SP-HBRID procedure inserts a threadinto a traceU before executing
u, and therefore when a thread executes, it belongs to soe tFurthermore, the En-
glish and Hebrew orderingsng and Heb, respectively, contain all traces that contain any
threads.

First, consider the case in which npandu; do not change traces during the execution
of SP-RRECEDES If u; andu; belong to the same trace, then SREREDESreturns the

correct result as the result of a query on the local tiex; Hndw; belong to different traces,
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then Lemma 12 shows that the correct result is returned.

We must also show that SPRBCEDESreturns the correct result if the traces for either
u; or u; are split during the execution of the SR#ECEDESquery. Only a single SLIT
may be in progress at a time because of the global lock used®kyY8RID. We consider
the state of the traces at the instant in time at which theSastT completedbefore the
start of SP-RECEDES That is, if there is no BLIT in progress, then we consider the
state of traces at the time SRRIECEDESbegins. If there is a &.IT in progress when
SP-RECEDESbegins, then we consider the state of traces just béfiateSPLIT began.

Suppose that we hawg andu; belong to different traces at this time. Consider the
code given in Figure 3-10. There is no way to get= U; in the test in line 30. Moreover,
we have that Lemma 12 applies to give us the correct result.

Suppose instead that at the start of tiri$, we haveu; andwu; belong to the same
traceU. A SPLIT may be in progress. Sinag is still executing, and it belongs to some
trace already, it follows from the subtrace properties thaan only be a part of & = U
resulting from a 8LIT. Thus, the trace for; cannot change across the execution of SP-
PRECEDES Similarly, u; can belong one of UV, U U3}, but it cannot belong té&/ ()
or U®), since it already exists at the time of thei$r. Given these facts, it does not matter
whether we get/; = U; in line 30. If U; = U; andu;, u; € U®), then LOCAL-PRECEDES
returns the correct result. if; = U; andu; € UWY, then LocAL-PRECEDESstill returns
the correct result, since; is in an S-Bag. Similarly, if; = U; andw; € U@, then
LocAL-PRECEDESreturns the correct result, sinegis in a P-Bag. From Lemma 12, the

OM-PRECEDESreturns the correct result in either of these two cases. ]

3.4 Performanceanalysis

This section analyzes the SP-hybrid algorithm run on a joikprogram. Suppose that
the program ha%; work and a critical-path length &f,.. When executed oR processors
using a round-robin work-stealing scheduler (that saiffiperty 10), SP-hybrid runs in
O(Ty/P + PT,,) time in the worst case.

First, we show that the local-tier operation®¢tAL-PRECEDES (implemented as a
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FIND in the disjoint-sets data structure) takegl) time in the worst case. Recall that we
modify SP-bags and the disjoint-sets data structure fohygid in Section 3.2 by intro-
ducing this notion of a k<sST-MACROUNION. Whereas a macroset from Section 3.1 has all
elements pointing at the representative, a macroset irgg@iiom a AST-M ACROUNION
does not. As a result, it is not immediately obvious thatiaoFtakesO(1) time in the
worst case. To prove this fact, we exploit the structure efuthions performed by the local
tier of SP-hybrid. If a macroset has all elements pointindpatrepresentative, then we say
that the depth of the macrosetliswhen the BST-MACROUNION is performed, the depth

may increase, but we bound this increase.

Lemma 14 For a procedureF that is ready to be stolen in an execution of SP-hybrid, the

depth of the macrosets féir and Pr are at mose and3, respectively.

Proof. Proof by induction on the unions involving these bags.

Any child procedurd” is not ready to be stolen, because of Property 10-1 requates p
ents to be stolen before their children. Thus, sinceA®THVIACROUNIONS are performed
on F’, the depth ofSy is 1 when F’ returns toF'.

The UNION(F, P, Sk) is only performed in line 12 of Figure 3-13. Since the modified
UNION points the representative 6f- at the representative fdpg, this union does not
increase the depth d?» past2.

The only point at which we union witl- is line 19. Since the representative B¢
is pointed to the representative 6f., and the depth of’» is at most2 by the inductive

assumption, we have that the depthSefdoes not increase past (]

Given Lemma 14, we have thatNbs takeO(1) worst-case time, which gives us the

following corollary.

Corollary 15 A LocAL-PRECEDESperformed SP-hybrid takeg(1) worst-case time.[]

To prove the desired bound on the entire SP-hybrid executi@nmust first bound
the number of steals performed. The following theorem, lsimido Theorem 9 from [10],
applies to our environment when using the Cilk scheduler. ¥gaime that processors are

moving at roughly the same speed.
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Theorem 16 Consider any fork-join program witi; work and critical-path lengti,. .
When executed oR processors using the Cilk scheduler, SP-hybrid 0487, ) steal at-
tempts in expectation. Moreover, for any- 0, the number of steal attemptsi¥ P(7, +

lg(1/€))) with probability at leastl — «.

Proof. The proof is virtually identical to one given by Arora, Bluneofand Plaxton [10].
A sketch of the proof is given here. For the full version, refethe paper. Arora et al.
assign potentials to eagkadythread—those threads that are ready to be executed. In
particular, letd(u) be the depth of a thread, or the distance ofi from the start of the

computation. Then

| 3*T=md)tif u is assigned to some processor;
o = 32(Te—d(w))  otherwise.
The potential only decreases over time. Whenever a threamblens it is assigned to
a processor. Whenever a processor completes an assignad, tirenables up to two
children which are deeper in the computation. Either ofdéhmstions decreases the total
potential.

To bound the number of steals, they group potentials by gsmrs owning the threads.
The crux of the argument is that whenever a thief processes to steal from a victim
processoy, the victim loses a constant factor of its potential. It giout that the next
thread stolen from a particular procesgaontributes a constant fraction of that processor’s
potential. Thus, if a successful steal occurs, the potegi@eases by a constant fraction of
¢’s potential. Similarly, if¢ does not have any threads ready to be stolen, then completing
the current thread also decreagissotential by a constant fraction. Therefore, even if the
steal attempt is not successful, we know that the potentiaiehses.

They apply a balls-in-bins argument to argue that each goatisround of P steals
reduces the total potential by a constant factor with canigtenbability. A Chernoff bound
across the rounds gives a high-probability result.

In our case, the work completed during any step may not beve towards the orig-

inal fork-join program. To compensate, we blow up each utdion by a factor of-, where
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r is the worst-case cost of thi¢(1) SP-RRECEDES(without retrying the OM-RECEDEY
gueries performed at each instruction and the cost of thed-teer SP-maintenance opera-
tion when the thread is ready to be stolen. Note that the abaN®& in-bins argument relies
on the fact that we make progress towards the critical pagnvehthread is being worked
on or stolen. Thus, we care only about the blowup from SP-teaance that occurs at this
time.

The two SP-maintenance operations that pose the greatd&rge are the NION,
which may need to make a lot of updates, and the OREEEDESoperations, which may
retry several times. For the former, we note that sineeTHM ACROUNION is performed
when the thread is ready to be stolen, the blowup (at stéaiqat time) from this operation
is at mostO(1). As for OM-PRECEDES recall that we assume processors are moving at
the same speed. We assume that the updates performed on talstea long enough
(constant) amount of time so that an OMMBECEDESoONly needs to abort once (if not, we
can make SP-hybrid wait for a constant amount of time whilkelihg the global lock,
without impacting the asymptotic performance). We, thenef effectively have a new
computation with critical-path length’, < 7, with » = O(1), and the potential and

balls-in-bins arguments from Arora et al. still apply. (]

Next, we show that the entire SP-hybrid algorithm perforned.w

Theorem 17 Suppose that a fork-join program hds work and a critical-path length of
T, When executed aR processors using the Cilk scheduler, SP-hybrid rung(; / P+
PT,,) expected time. Moreover, for amy> 0, SP-hybrid runs inO(7,/P + P(T +
lg(1/¢))) time with probability at least — ¢.

Proof. We use an accounting argument similar to [15], except wiklsduckets, instead
of three. Each bucket corresponds to a type of task that @gsoc can be doing during a
step of the algorithm. For each time step, each processceplane dollar in exactly one
bucket. If the execution takes tin1&, then at the end the total number of dollars in all of
the buckets i?Tr. Thus, if we sum up all the dollars in all the buckets and diviy P,

we obtain the running time.

The analysis depends on the numbeaf successful steals during the execution of the
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SP-hybrid algorithm. We have that the expected valueisfO(PT,,) from Theorem 16.
The seven buckets are as follows:

B;: The work of the original computation excluding costs addgdSP-hybrid. We
have that B,| = T}, because a processor places one dollar in the work bucketevaeit
performs work on the input program.

B,: The work for global-tier insertions, including the cost &plits. SP-hybrid per-
forms an OM-NSERT operation, serially, for each steal. The amortized timeairegl to
performs operations in the order-maintenance data structutg ig. Thus,|B,| = O(s).

Bg: The work for the local-tier SP-maintenance operationsac&there ar€(1) SP-
bags operations for each instruction in the computatiod,esath SP-bags operation costs
O(1) amortized time, we havig3;| = O(T7).

By: The waiting time for the global lock on global-tier OMy$ERTOperations. When
one processor holds the lock, at megtP) processors can be waiting. SinG€1) inser-
tions occurs for each steal, we hg¥g | = O(Ps).

Bs: The work wasted on failed and retried global-tier queri€sce a single inser-
tion into the order-maintenance structure can cause at @dstqueries to fail on each
processor and the number of insertion®ig), we conclude thatBs| = O(Ps).

Bg: Steal attempts while the global lock is not held by any pssoes. We use Theo-
rem 16 to conclude thaBs| = O(PT.,) in expectation, ofBs| = O(P (T + 1g(1/¢)))
with probability at least — .

Br: Steal attempts while the global lock is held by some prameSshe global lock is
held forO(s) time in total, and in the worst case, all processors try talstering this time.
Thus, we havéB;| = O(Ps).

To conclude the proof, observe thak |Bg|, because the number of successful steals

is less than the number of steal attempts. Summing up allublests yields) (71 + P | Bg|)
at the end of the computation, and hence, dividingihywe obtain an expected running

time of O(Ty /P + PT,,) and the corresponding high probability bound. L]

It turns out that we can modify the Cilk scheduler to improve worst-case perfor-
mance of SP-hybrid. In particular, we modify the schedugperform steal attempts in a

round-robin order instead of randomly. To perform rounbhncsteal attempts, we lock a
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global list of processors on each steal attempt. Since wedacsuccessful steals for SP-
hybrid anyway, this additional locking does not hurt us. Taedomized stealing makes
sense in the context of an arbitrary Cilk program, becauseanity steals are not serial-
ized.

Given the round-robin stealing policy, we can state a waasedound on the number

of steals, similar to Theorem 16.

Theorem 18 Consider any fork-join program witli; work and critical-path length,..
When executed oR processors using the round-robin, work-stealing schedihlat obeys

Property 10, SP-hybrid ha®(PT,,) steal attempts in the worst case.

Proof. We use the same potential function from Theorem 16. We gidwontiguous

steal attempts into rounds. In a round, a steal attempt sanureach processor. When
attempting to steal from a particular processor, its peaedecreases by a constant factor.
Thus, in a round, the potential of the entire system decselagea constant factor. There

can beO(T) such round, for a total aD(PT,,) steal attempts in the worst case. [

Applying Theorem 18 to bound the numbeof successful steals in Theorem 17, we

achieve the following worst-case bound.

Theorem 19 Consider any fork-join program witi; work and critical-path lengti,. .
When executed oR processors using the round-robin, work-stealing schedihlat obeys
Property 10, SP-hybrid runs i®(7, /P + PT,,) time in the worst case. 0

Corollary 20 SP-hybrid achieves linear speed-up wher- O(,/11/T).

Proof. WhenP = O(,/T1/T), Theorems 17 and 19 state that SP-hybrid runs in

O (Ty/P+\/T1/Ts - To) = O (T3/P + Ty /\/Ti /T ) = O(T1/P). ]
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Chapter 4

Race Detection

This chapter describes aspects of race detection beyond®fermance. Throughout most
of this chapter, | assume that the program being tested émsraontains no locks. The
techniques described in this thesis can be extended togamsghat use locks. Section 4.1
describes the access histories necessary for serial aatlehaon-the-fly race detectors.
Section 4.2 describes performance of a parallel race-etd@at uses the access history
from Section 4.1 and SP-hybrid from Section 3.2. Sectiondéscribes how to perform
garbage collection to get efficient space usage without pgyimally harming the running
time. In particular, | show that the parallel race detecs®sd)(Pv) space, wheré is the

number of processors amds the number of memory locations being monitored.

4.1 Accesshistories

As introduced in Chapter 1, on-the-fly race detectors mairtteo® data structures—an SP-
maintenance data structure, described in Chapters 2 andl 3rmafaccess history.” This
section describes the access history. The approacheshadekir this section are similar
to [17,30] and [43], for the serial and parallel race detessteespectively. | begin with a
description of an access history used by our serially exaguace detector. | then incre-
mentally describe how to extend the access history for dlpbrace detector. | describe
a parallel access history that locks on every access. Finaptimize the parallel access

history for SP-hybrid, taking advantage of the structurgades.
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An access historystores a set of threads that have accessed a given sharesiynmem
location. In a race detector, whenever a particular loocasaccessed during the program
execution, we check the threads in the access history td aeg of those threads operates
logically in parallel with the current thread. Since we n&edheck the currently executing
thread against all threads in the access history (for thailmt), we need to keep the access
history small. In particular, to get an efficient race deteove keep an access history that

hasO(1) threads for each memory location.

For our serial race detectors, we execute the parse tree epta-first (left-to-right)
fashion with an access history similar to the one used by Bewg_eiserson’s Nondeter-
minator [30] and Cheng, Feng, Leiserson, Randall, and StftkKlsNondeterminator-2.
For each memory locatiah reader|l] has a thread that previously reg@ndwriter[l] has
a thread that previously wrote In particular, we store the “deepest,” “leftmost” thread
in the dag that has accessed the location. We define a thigadbeleftof a threadu, if
lca(uy, us) is an P-node and, is in the left subtree. This “leftof” relation is consistemith
Mellor-Crummey’s [43] terminology and the parallel acceistdry introduced later in this
section. We say that a threaglis deepeithan a thread if u, < u;. A threadu, replaces
a threadu, in the access history if; is deeper tham, (i.e.,us < uq) or if uy is leftof u,
(i.e.,uy || uz, andu, is in the left subtree of the P-nodex(u;,us)). This access-history

policy, using a leftof-or-deeper relation, is the same asiie used by Cheng et al.

The leftof-or-deeper relation imposes a partial order anttireads in the parse tree.
This partial order is identical to the Hebrew ordering giverChapter 2. That is to say, a
threadu, is leftof or deeper than (preceded by) a threadf and only if u; appears later
in the Hebrew ordering. Transitivity of the leftof-or-des¥pelation naturally follows. The
deepest, leftmoghread is the one that has no other thread deeper than of iteffbhe
definition of deepest, leftmost corresponds to taking tmeatth that appears latest in the
Hebrew ordering.

Figure 4-1 gives pseudocode for memory accesses in oul seréadetector using SP-
order. Suppose thatader|[l] = u'. Then whenever a threadreads the locatioh we check
whetheru is leftof or deeper than’, or, equivalently, whether' precedes in the Hebrew

ordering. Since we execute serially according to an Engligler, this test in lines 3 and 7

64



read location! in threadu

1 if writer[l] || u

2 then a race occurs

3 if OM-PRECEDES Heb, reader|l], u)
4 then reader|l] «— u

writelocation! in threadu

5 if writer[l] || uor reader[l] || u

6 then a race occurs

7 if OM-PRECEDES Heb, writer(l], u)
8 then writer[l] «— u

Figure 4-1. The serial access-history updates written in serial pseudocode.nk&amnbry location

[ has areader|l] andwriter[l] that store the latest threads in the Hebrew ordering of the parse tree
(the deepest, leftmost threads) that have read and written, respedtiediycation. The Heb data
structure gives the Hebrew ordering maintained by SP-order.|| Telationships is determined by
acall to SP-RECEDES

is equivalent to testing’ < u.! If so, then we update theader. We use a similar update
policy for writer. To check for races, when a write occurs, we check bothrd¢laéer and
writer. If either of these threads is logically parallel with theremt thread, then a race
occurs. On a read, we check just theiter to determine whether a race occurs.

Cheng et al. [17] give correctness of a serial race detectog assimilar access-history

algorithm.

Parallel access history

The serial, access history from Figure 4-1 does not workectisr for a race detector that
runs in parallel. Consider the parse-tree given by Figure(d)2 If the instructions are
interleaved as shown in the figure, then at the time ofvhie, we havereader(l] =

uy, and no race is detected. Moreover, there is no accessyhagorithm that is both
correct and stores a single thread-inder|l]. Consider both parse trees (a) and (b). If the
instructions are interleaved as indicated, then at the ditieewr ite, eitherreader(l] = u;

or reader[l] = us. In the former case, (a) does not detect the race. In the, |@t)edoes not

1This same access-history update can be used for race dstéwbdo not maintain English and Hebrew
orderings, as in SP-bags of [30], becausis defined by the SP-maintenance algorithm.
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| w__ w |

P P (@) | read !
/ \ / \ read !

a) u; U, b) u, U, writel

read / read / read / read / (b) read [
write / write / read !
write!

Figure 4-2: Parse trees illustrating the need for a more complex access history falkelpaxecu-

tion. Under each thread, given by leaves in the parse tree, is the memory access performed by the
thread. (a) A parse tree for which the serial access-history algoraiisndn a parallel execution.

On the right we have an instruction interleaving that exhibits the problem. rfbjh&r parse tree.

The interleavings shown on the right show that no correct parallesadtstory has a singleader.

detect the race.

For a parallel execution (or a serial execution that doesatioiv an English ordering),
we need an access history that stores two threads that readrate the location. In the
serial case it is sufficient to store the deepest, leftmasiath (the one occurring latest in
the Hebrew ordering). In the parallel case, we also needote she deepestjghtmost
thread, which is the thread accessing the location thatredatest in the English ordering.
Whereas our serial access history maintainsler|l] that stores the leftmost reader of a
location/, the parallel access history maintaiag-reader(l] andright-reader|l] that store
the deepest leftmost and rightmost, respectively, thre@ading the locatioh. Mellor-
Crummey [43] introduced this deepest leftmost and rightna@siess history. He also
proves that maintaining both of these threads is sufficierdetect at least one race on
each location involved in a race.

Because there are concurrent threads updating the same astesy, we need some
sort of mutual exclusion. For now, assume that each accgsetscted by a lock. This
approach is obviously inefficient as we could end up semaizhe entire program. |
discuss how to better deal with concurrent accesses to tesaistory at the end of this
section.

Figure 4-3 gives pseudocode for memory accesses in outglaeade detector. | show
writes only, but reads are similar. Suppose th#twriter|l] = u;, andright-writer|l] =
ugr. Then whenever a thread writes the location/, we check whether; precedes:

in the Hebrew ordering (i.e.,#FTOF-OR-DEEPERu, u; ) returnsSTRUE) and whether
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writelocation! in threadu

1 if left-writer([l] || w or right-writer[l] || u
or left-reader(l] || wor right-reader[l] || u
2 then a race occurs
3 if LEFTOF-OR-DEEPERu, left-writer]l])
4 then left-writer[l] < u
5 if RIGHTOF-OR-DEEPERu, right-writer|l])
6 then right-writer|[l] «— u

Figure4-3: The parallel (writer) access-history updates written in serial psedgod&ach memory
location has aleft-reader|l], right-reader[l], left-writer|l], and right-writer[l] that store the
latest threads in the Hebrew and English orderings of the parse treeatleatdad and written the
location!. The LEFTOF-OR-DEEPERu, ') and RGHTOF-OR-DEEPERu, u) procedures, given
for SP-hybrid in Figure 4-4, determine whethers leftof or rightof, respectively, or deeper than
the thread.'. The|| relationships is determined by a call to SREREDES

LEFTOF-OR-DEEPERu, u/)

1 U < FINDTRACE(u)

2 U’ — FINDTRACE(u')

3 ifU#U

4 then return OM-PRECEDES Heb, U, U)
5 else return LOCAL-PRECEDES/, u)

RIGHTOF-OR-DEEPERu, u')

6 U < FINDTRACE(u)

7 U’ — FINDTRACE(u')

8 IfUAU

9 then return OM-PRECEDES Eng, U’, U)
10 else return TRUE

Figure 4-4: LEFTOF-OR-DEEPERand RGHTOF-OR-DEEPER for SP-hybrid, written in serial
pseudocode. These operations accept two threaasdus, whereu is a currently executing thread.
LEFTOF-OR-DEEPERaANd RGHTOF-OR-DEEPERreturnTRUE if ' precedes in the Hebrew and
English, respectively, ordering of threads in the parse tresD FRACE and LOCAL-PRECEDES
are local-tier operations to determine what trace a thread belongs to arelatienship between
threads in the same trace, respectivélyg and Heb maintain the English and Hebrew orderings of
traces.
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precedes: in the English ordering (i.e., RHTOF-OR-DEEPERu, uy) returnsTRUE).? If
so, then we update the appropriate writer value. We use dasiopdate policy for the
readers. To check for races, when a write occurs, we chetheateaders and writers. On
a read, we check just the writers.

Figure 4-4 gives pseudocode foEETOF-OR-DEEPERand RGHTOF-OR-DEEPEROp-
erations for the SP-hybrid. Since SP-hybrid maintains thgliEh and Hebrew ordering
only between traces, where one of the traces is currentiyutixe), these operations have
similar limitations. The [EFTOF-OR-DEEPERwu, u’) procedure returnsRUE if « is leftof
or deeper tham’, whereu must be a currently executing thread. If two threads belong t
different traces:, € U andu’ € U’, with U # U’, then LEFTOF-OR-DEEPERCOMpares
the traces in the Hebrew ordering. Uf appears aftet/’ in the ordering, ther/ is leftof
or deeper thad/’. If the traces are the same, then we need to use the SP-bagarison.
Recall that within traces, since threads execute serialtii@nEnglish order, it suffices to
compareu’ < u. The RGHTOF-OR-DEEPEROperation is similar, except for the compar-
isons done within traces. Since the trace executes acgptdithe English ordering, the
current thread in the trace is always the deepest, righfragstuted thread in the trace.

The following lemma states thatEETOF-OR-DEEPER and RGHTOF-OR-DEEPER
are correct, even across concurrent operations. Givere thesTOF-OR-DEEPER and
RIGHTOF-OR-DEEPEROperations, Mellor-Crummey [43] gives correctness of theeas

history and resulting race detector.

Lemma 21 Consider any point during the execution of SP-Hybrid on arp8/e tree. Let
u' be a thread that has been discovered, and:lée a thread that is currently executing.
ThenLEFTOF-OR-DEEPERu, u’) returns TRUE if and only if «’' precedesu in the He-
brew ordering ofall the threads in the parse tree. SimilarRIGHTOF-OR-DEEPERu, u')

returnsTRUE if and only ifu’ precedes: in the English ordering threads.

Proof. This proof is similar to the proof for Theorem 13. (]

We now return to the issue of concurrent updates to the atistssy. The obvious

°The LEFTOF-OR-DEEPERaNd RGHTOF-OR-DEEPEROperations are not inverses of each other. For
example, when a threadis deeper than a thread (i.e., v’ < u), both LEFTOF-OR-DEEPERwu, u’) and
RIGHTOF-OR-DEEPERu, u') returnTRUE.
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writelocation! in threadu

1 UPDATELEFTWRITER(l, u)
2 UPDATERIGHTWRITER(L, u)
3 if left-writer[l] || wor right-writer|l] || u
or left-reader(l] || wor right-reader]l] || u
4 then a race occurs

UPDATELEFTWRITER(L, 1)

5 if LEFTOF-OR-DEEPERu, left-writer][l])

6 then ACQUIRE(left-writer-lock|l])

7 if LEFTOF-OR-DEEPERu, left-writer(l])
8 then left-writer|l] < u

9 ReELEASE(left-writer-lock|[l])

Figure 4-5; The parallel, writer access-history updates with explicit locking, writteniiakgseu-
docode. This operations are similar to Figure 4-3, except that we dosaotree the entire access
is protected by a lock. Only the code fomaiite is given. Aread operation is handled in a simi-
lar fashion except that the condition for a race is simpler. TROATELEFTWRITER(/, u) checks
updates théeft-writer|l] < w if u is leftof the current value stored. This update is protected by
a unique locKleft-writer-lock[l] for each memory locatioh The UPDATERIGHTWRITER(I, u)
procedure (not shown) performs the same operation onighé-writer.

approach is to lock the access history foeach time a read or write of the locatidn
occurs. This approach, however, can be very inefficient.aqmogram with worKr; that
accesses a single locatit7} ) times, locking results in a running time thati$7; ).

In many cases, an access to a memory location does not requingdate to the access
history. In particular, if the current threadreads the location, andw is not leftof or
deeper than the currently known leftmost, deepest re&gerecader]|l], then there is no
reason to update thieft-reader(l]. Since the leftof-or-deeper relationship is transitive, n
matter how many concurrent accesses happen, the thregtinever be leftof or deeper
than the value in the access history, and similarly for theiofields. Locking the access
history on these sorts of accesses is unnecessary.

Figure 4-5 gives a slightly more complex version of our asdgstory update fowrites
with explicit locking. First, we update the access histasynacessary with a call torJ
DATELEFTWRITER and UPDATERIGHTWRITER. In UPDATELEFTWRITER (also given in

Figure 4-5), we first check whether the current threasl leftof or deeper than the current
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value of left-writer[l]. If not, then we do not update the access history. Otherwise,
acquire a lock on the access history fand perform the updatleft-writer|[l] < u. Be-
cause it is possible for another operation to intervene éetvihe first leftof-or-deeper-than
comparison in line 5 and the lock acquire in line 6, we cheelt4hs still leftof or deeper
thanleft-writer|l] in line 7 before performing the final update in line 8. We thenfgrm
a similar update for theight-writer. Finally, we check if a race occurs. The updates for
reads (not shown) are similar except that a race occurs only ifitemis a logically parallel
thread.

We next prove that this parallel access-history algoritewoirrect, even under concur-

rent updates to the access history.

Theorem 22 Consider a fork-join program run in conjunction with the pdedlaccess-
history algorithm as given in Figure 4-5. Suppose also thanfintenance algorithm cor-
rectly supportd EFTOF-OR-DEEPER RIGHTOF-OR-DEEPER and||. Then, the access-

history algorithm reports a race on the locationf and only if a race exists.

Proof. (=) Suppose that a race is reported. Then, we have [tfatvriter([l] and
right-writer[l] are threads that wrote the locationSimilarly, we haveeft-reader|l] and
right-reader|l] are threads that read the locatibnThus, if a race is reported, there must
be two parallel threads accessing the location, one of wieécforms a write.

(<) Suppose that a race exists on the locatidret u;, be the deepest, leftmost thread
involved in a race on locatioh Sinceuy, is involved in a race, there is some threag: v,
with « || w; such thatu andu; are involved in a race. Since || v, they must have
different relationships in the English and Hebrew ordehghreads (from Corollary 2).
Thus,u is rightof u;,. Letur # u; be the deepest, rightmost thread involved in a race
with u;, on locationi. For clarity, consider the case that writes tol, anduy reads from
[. All the other cases are similar. Consider the point in linelH&mu;, checks for a race.
If right-reader|l] = ug at the time, then a race is detected, and we are done. Otleerwis
if right-reader[l] # ug, thenug has not yet tested for a race. Thus, whgntests for the

race, we havéeft-writer[l] = ur, and the race is discovered. ]
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Access history for SP-hybrid

| now give an improvement for the access history to explouctire given by SP-hybrid.
The access history introduces some performance overheatbdie waiting time for the
lock acquire in line 6 of Figure 4-5. As a result, we'd like tmund the amount of time spent
performing an update (see Corollary 24). Recall that SP-bythikiides the computation
into traces. We modify our access history to take advantatpese traces, enabling access-

history updaters to abort more quickly.

One behavior we are trying to avoid is illustrated by thedwaihg example. Consider
an execution of SP-hybrid that includ&sparallel threads;, us, . . ., up that all try to up-
dateleft-writer[l] at the same time. Without loss of generality, we hayis leftof ;. for
alli=1,2,..., P — 1. Suppose also that no previous thread has writténThe schedul-
ing might be such that all of these threads attempt th@WRE on left-writer-lock|l] at
roughly the same time, but they succeed in the otdenp_1, ..., u;. Thus, some of the

ACQUIRES introduced(P) waiting time in this case.

This example both illustrates the problem and motivatessolution. If all P threads
arrive at the same time, the only one that really needs totapgé writer|l] is the leftmost
threadu,. If the rest of the threads can simply discover that someathte their left is
trying to perform an update, they can drop out. Moreover, \@atwnultiple locks so that

contention at any single lock ig P) in the worst case.

To improve the access history, we exploit more of the stmectd SP-hybrid. During
an execution of the SP-hybrid with the fork-join progranerthare (at mosty processors
working, and hencé’ traces are active at any time. Moreover, since all of theseety
are logically parallel, the leftof and rightof relationphkigive a total order. We modify SP-
hybrid to keep a balanced, binary search tree (e.g., a saklidlee) maintaining the order
of these active traces, with all the traces at the leavesll thea tree theaccess-history
tree Whenever a processor successfully steals, SP-hybrid esits/old trace from the
tree, performs the normal SP-hybrid work, and inserts it8 traces into the tree. Since
the “leftof” and “rightof” comparisons are performed by stent-time OM-RECEDES

operations, insertions and deletions to this tree talke P) worst-case time.
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| now describe the final access history, for examptgi-writer, given this access-
history tree. First, let us assume that the tree is fixed.r|_atell describe how to deal with
the tree changing because of steals. Each leaf bo@erresponding to a trace) or internal
node X in the fixed tree contains a hif. wrote[l] that indicates whether any node in the
subtree rooted df has written td. Each node also has a unique lo€kieft-writer-lock]|l]
for each memory locatioh Our update still acquires locks, but the advantage to gprga

locks across the tree is that there are never many procesaitisg on a lock.

Figure 4-6 gives the BDATELEFTWRITER that would be performed instead of lines
5-9 of Figure 4-5. In Section 4.2, we show that any update éetepinO(lg P) time
in the worst case. When a threadn traceU writes tol, we do the following. First,
we try to update théeft-writer(l] if u and theleft-writer are currently in the same trace.
This technique, given in lines 2—7 provides a shortcut fac@rimon” case. If the thread
performing the write belongs to a different trace fréafi-writer|[l], we walk up the access-
history tree by performing a call toRbATELEFTWRITERTREE. In particular, we walk up
from the nodd/, acquiring locksX. left-writer-lock|l] and updating the appropriate values
of X. wrotell], for any nodesX encountered along the path to the root. To guarantee that a
call completes quickly, we perform &BTACQUIREIN line 12 to acquire these locks. This
procedure not only acquires the lock as normal, but it alsenkes whether it blocks due
to a concurrent lock acquisition. In particulaz3T-ACQUIRE returnsTRUE if and only if
the lock is available at the time of the call, and no concurogeration acquires the lock
first3 If at any point a ESTACQUIRE fails, then we give up on the tree walk, releasing
locks down the tree. If the BST-ACQUIRE succeeds, we update the nodel®te|l] field
in line 14. Before continuing up the tree from a na&leline 20 checks whethex is in
the right subtree of its parent and a trace in the left sulttasewritten td. If so, then some
thread leftof the current threadis trying to update the access history, andives up on

the update to avoid interfering. When reaching the root ofttbe, given by lines 15-19,

3The TEST-ACQUIRE can be implemented using a regulac@UIRE primitive as follows. Keep a counter
associated with each lock. Whenever performingea FRELEASE, first increment the counter then perform
the regular RLEASE operation. Whenever performing th&¥-ACQUIRE, first read the value of the counter
and check whether the lock is held. If the lock is held, themréturn value iFALSE. In any case, next
perform a regular AQUIRE. Once the lock is acquired, check the value of the countehelfcounter has
changed (some other acquire and release intervened),@ahenfALSE. Otherwise, returmRUE.
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UPDATELEFTWRITER(/, u)

1 U < FINDTRACE(u)
2 if LEFTOF-OR-DEEPERu, left-writer[l]) and U = FIND TRACE(left-writer|l])
3 then ACQUIRE(left-writer-lock|l])
4 if LEFTOF-OR-DEEPERu, left-writer(l]) and U = FIND TRACE(left-writer(l])
5 then left-writer[l] «— u
6 RELEASE(left-writer-lock|l])
7 return
8 done «— FALSE
9 while LEFTOF-OR-DEEPER, left-writer[l]) and not done
10 do done « UPDATELEFTWRITERTREE(treenode|U], 1, u)
11 wait untilnot LEFTOF-OR-DEEPERu, left-writer(l])

UPDATELEFTWRITERTREE(X, [, u)

12 if TESTFACQUIRE(X. left-writer-lock]l])
13 then done «+ TRUE

14 X. wrote[l] + TRUE
15 if X = root
16 then ACQUIRE(left-writer-lock|l])
17 if LEFTOF-OR-DEEPERu, left-writer(l])
18 then left-writer|l] < u
19 RELEASE(left-writer-lock|l])
20 else if X = left[parent[X]] or parent[X]. wrote[l] = FALSE
or left[parent|X]]. wrote[l] = FALSE
21 then done « UPDATELEFTWRITERTREE(parent[X], 1, u)

22 else done — FALSE > a TESTACQUIREfailed.
23 TeESTRELEASE(X. left-writer-lock[l])
24 return done

Figure 4-6: An access-history update optimized for SP-hybrid, given in serialdmmgde. The
UPDATELEFTWRITER procedure is called in line 1 of Figure 4-5. The goal of this procedure is to
makes any writer finish an update “quickly” and to give priority to the leftmostew The Up-
DATELEFTWRITERTREE is an auxiliary procedure that acquires locks going up the accessyhistor
tree until discovering a writer to the left of the current trace. For a ttackeenode[U] is the node

in the binary search tree. Each noflein the tree has a fiel. wrote[l] that indicates whether
any trace in the subtree rootedgtwrote tol, and a lockX. left-writer-lock|l] to lock the node

for the locationl. There is also a unique lodkft-writer-lock[l] for each memory locatiohthat

is acquired before updatingft-writer[l] or left-writer-trace(l]. The procedures BST-ACQUIRE

and TESTRELEASE acquire and release a lock, respectivelgsTACQUIRE returnsTrRUE if and

only if it does not wait on any other processors while acquiring the lookeither case, it does
acquire the lock. The PDATEL EFTWRITERTREE procedure returnsALSE if any FASTACQUIRE
fails.
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we acquire théeft-writer-lock[l] lock and perform the regular update (as in lines 2—7) of
left-writer]l].

When UPDATELEFTWRITERTRACE returns to WDATELEFTWRITER(L, u), eitheru
tried to update théeft-writer|l] in lines 15-19, the tree walk discovered a thread leftof
that is trying to update the access history, olesTFACQUIREfailed. In the first two cases,
UPDATELEFTWRITERTRACE returnsTRUE. Otherwise, WDATELEFTWRITERTRACE
returnsSFALSE. When WPDATELEFTWRITERTRACE fails due to a ESTACQUIRE, we

retry in lines 9-10. Otherwise, line 11 waits until thet-writer|l] is u or leftof u.*

Correctness still follows from Theorem 22. The algorithmegivin Figure 4-6 only
makes threads give up on attempting to updagtewriter|l] sooner (so that they don’t com-
pete on lock acquisition). The waiting in line 11 linearizlee completion of accesses such
that if « doesn’t updatéeft-writer[l], then a thread’ that is leftofu updatedeft-writer|(|

beforeu returns from WDATELEFTWRITER.

Now, | describe how to deal with the fact that a concurrerdlsteay change the struc-
ture of the access-history tree. We could maintain the fielete[l] across a rotation in
a red-black tree, but there af¥®1) such fields for each of the memory locations. Since
the number of memory locations can be huge, this sort of @paatld take a long time.
In particular, if there ar&e memory locations, then a single insertion into the tree |evhi
maintaininguwrote|l] for all [, may takeQ2(vlg P) time. Moreover, just initializing a new

tree node to haveaLSE for everywrotell] value take®(v) time.

Instead of maintainingurote[l] across rotations, we keep a global counter that is in-
cremented whenever the stealing processor starts andwgidping the tree. Rather than
settingwrote[l] to TRUE or FALSE in a tree node, we set them to the current value of the
counter. If the valuevrote[l] is the same as the counter, then we consider the value to be
equivalent torRUE in Figure 4-6. If the counter changes at any point durirRpRITEL EFT-
WRITER, then we restart. Thus, as with SRRECEDES we can see whether a concurrent
steal invalidates the action. We can also avoid initiazirew nodes. Whenever a pro-

cess inserts a new node into the tree (except the first timalso removes its old trace.

4The threadeft-writer[l] cannot be deeper thanbecause: hasn’'t completely executed yet. Thus, we
care only about the leftof relation here.
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We just reuse the same block of memory, withvte[l] carrying over from the previous
trace—since the counter increments, these values arevalldrand read asALSE any-
way. Using this technique, the maximum value of the cousteounded by the number of

traces created. In Section 4.2, | prove that the number cé¢rés bounded b (PT,).

Dealing with locks

The parallel access-history algorithm can be augmentedabwdth programs that contain
locks. In particular, we are currently working on an impleration of Nondeterminator-3
that incorporates Cheng, Feng, Leiserson, Randall, and'Stark - SETs algorithm [17].
Incorporating this algorithm is straightforward and isrfere not included in this thesis.

The ALL-SETS algorithm maintains an access-history for each locatiand set of
locksS held while accessing e.qg.,left-writer|l, S]. Whenever a thread writes the location
[ holding the locks in the s&t, it performs an update, as in Figure 4-6,left-writer|l, S].

To check for the existence of a race, the thregerforming the access must check whether
the threadeft-writer|l, S’] stored for each lock set’ not sharing any locks witly' (i.e.,

S NS’ = ) operates logically in parallel with, and similarly for the other access-history
location (e.qg.right-writer[l, S']). Cheng et al. show that in a serial race detector, an access
takesO(n*) time, wheren is the number of locks ankd < n is the maximum number of
locks held simultaneously. Parallelizing thelA SETs algorithm is straightforward.

If the program follows the “umbrella” locking discipline hereby all parallel accesses
to a variable hold a single lockCheng et al. give a more efficient algorithm calleRER LY.
Unlike the ALL-SETsalgorithm BRELLY keeps only a single lock set for each memory lo-
cation. In a serial race detector usingB LY, they show that an access take§:) time,
wherek is the maximum number of locks held at any time. Paralledjzime BRELLY al-
gorithm is more complex and outside the scope of this thédsn, since BRELLY reports
violations of the umbrella locking discipline, which maytneecessarily be data races,

BRELLY is not as robust an algorithm ag A-SETS.

5The single lock does not have to be the same across the emtijam execution. The umbrella discipline
just requires that for every set of threads having a P-nodieedgast-common ancestor, all threads in the set
hold the same lock while accessing the location
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| do not give the analysis of these augmentations in Sect®r-that section considers
performance only for programs that do not contain locks.s€Heck set algorithms result
in two overheads. First, the cost of a memory access is rfigtipy a factor ofO(n*) or
O(k) for ALL-SETsand BRELLY, respectively, in the worst case. Second, we may need to
require additional mutual exclusion on access-historyatgsl For example, in thelA-
SETsalgorithm, whenever a new lock set is discovered, we needdatao the list of lock
sets for the location. If the possiblelocks (and hence” lock sets) are known a priori,
then updating this list is not an issue, and the performaoicALL -SETS can be obtained
straightforwardly by multiply the running time in Theorer8 By O(n*) to account for

access-history lookup cost.

4.2 Performanceanalysis

This section analyzes our parallel race detector, calleddsterminator-3, that uses SP-
hybrid from Section 3.2 as the SP-maintenance algorithmtla@gbarallel access history

from Section 4.1. We give two bounds different bounds forsdume algorithm. The bound

that applies depends on the structure of the computatiortrendumber of processors on
which the race detector is run. If the numbesf memory locations is small, then our race
detector runs irO(7,/P + (v + P)T, 1g P) worst-case time. If the number of memory
locations is large, then our race detector run®{i(7, /P + PT,,)lg P) time.

The serial race detectors, using SP-bags from Section ZP-a@rder from Chapter 2,
are trivial to analyze. There are no locking overheads, dindhe other additional race-
detection work isO(1) per instruction in the program. Thus, we have that a seri ra
detector runs irD(77) time, wherel is the serial running time of the original program.

For a parallel race detector, the access history introdaddsgional overheads beyond
SP-hybrid, because of waiting time introduced by lock asitjon and retries when updat-
ing the binary tree. We first bound the amount of time a singéess-history update takes,
even when there are multiple concurrent access-historgtepdThe following lemma and
corollary state that any update complete®ifig P) worst-case time. To attain this bound,

we again assume that processors are moving at the same speed.
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Lemma 23 Consider anUPDATEL EFTWRITER operation from Figure 4-6. Assuming no
interrupting steal, and that processors are moving at thesapeed, this operation per-

formsO(1) calls to UPDATELEFTWRITERT REE.

Proof. 1show that WDATELEFTWRITERTREEIs called at most twice in lines 9-10 of a
single call to W(PDATELEFTWRITER.

Consider a call to BDATELEFTWRITERTREE from the thread: that writes a location
[. | claim that by the time the BDATEL EFTWRITERTREE(treenode[U], [, u) returns, we
haveX. wrote[l] = TRUE for every nodeX betweentreenode|[U| and the root. | prove this
claim by induction on the ancestors btenode[U] and the EST-ACQUIRES performed
at a node. The BDATELEFTWRITERTREE procedure stops ascending the tree only if
some TESTACQUIRE at a nodeX fails. A TESTACQUIRE(X. left-writer-lock[l]) can
only fail if some other concurrentdST-ACQUIRE(X. left-writer-lock[l]) obtained the lock
first, and the failed EsACQUIRE blocks until the concurrent operation completes. By
induction, by the time the concurrent call completes, thi# frmm parent[X] to the root
has been updated. As a base case, the flBStFRCQUIRE(X. left-writer-lock|l]) to obtain
the lock succeeds, thereby markifgwrote[l] and continuing up the tree.

Consider the second call toADATEL EFTWRITERTREE(treenode([U], [, u). Since the
first call updates a path from the leaf to the root, any callscaarent with the second
observe in line 20 that/ is trying to update the writer, and hence they alofthus, the
only threads competing with for a lock are leftofu, and hence by the time this second
call completes, eithdeft-writer[l] = u, left-writer|l] is leftof u, oru has discovered some
concurrent writer leftof it in line 20. In any of these casttg®e while loop in lines 9-10

terminates. 0

Corollary 24 Consider anUPDATEL EFTWRITER operation from Figure 4-6. Assuming

no interrupting steal, this operation completegirlg P) time regardless of the number of

5The exception is concurrent calls that have already comgbltte appropriate line 20 axis first tree
ascent, but not yet performed theeI+ACQUIRE on an ancestor ofreenode[U]. Recall that we assume
processors are moving at the same speed. Thus, these thliscalon the TESTACQUIRES on ancestors
of treenode[U]. These ESTACQUIRES then acquire and release the lock (in constant time, dueetéatt
that they blocked) while a tree descent releases locks ondliglown the tree. Thus, by the time the second
UPDATELEFTWRITERTREE(treenode[U], 1, u) begins, these troublesome instances have already passed th
point of being a problem.
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concurrent operations.

Proof. The two factors contributing to running time are the actuatknperformed by the
threadu performing the update, and the time spent waiting on a loegk TEST-ACQUIRE
or ACQUIRE. By Lemma 23, the actual work is bounded®lg P). We therefore consider
time spent waiting on locks.

Since the access history tree is a binary tree, andAJEL EFTWRITERTREE Only ac-
quires locks on a node after acquiring a lock on of its chiidtbere can be at most two
processors waiting on any particular lock. Thus, sincedamquisitions queue, the wait-
ing time on a lock at nod« is just the time it takes for an RDATELEFTWRITERTREE
to return (and release the lock) from the nalle | claim that a lock at deptl is re-
leased inO(d) time, by induction. For a base case, consider a call from dbé of the
tree in lines 15-19 after AST-ACQUIRE succeeds. We wait to acquire the global lock
left-writer-lock[l]. The only other thread acquiring this lock concurrentlyhis bne in the
same trace akft-writer[l] in lines 2—7. Thus, this operation completes in constang tim
If the TEST-ACQUIRETails, then we are waiting on an operation that completesnstant
time. For any call at deptfi, we may ascend the tree (doitgj1) work at each level) until
a TESTACQUIRE fails at heightd’ < d. By inductive assumption, theEBT-ACQUIRE
completes inD(d') time, and hence the full RDATELEFTWRITERTREE returns inO(d)
time.

Since the access-history tree has heighlg P), the (at most)D(1) calls to the pro-
cedure WDATELEFTWRITERTREE (from Lemma 23) take)(lg P) time, including the
waiting time. The only other contributor to time is the wagiin line 11. | have already
argued that if some threadgives up on the BDATEL EFTWRITERTREE, then only threads
leftof « will complete on the next try. Since some thread makes it ¢ortiot inO(lg P)
time, it follows that we wait for at mogp(lg P) time in line 11. 0

In UPDATEL EFTWRITER of Figure 4-6, we include the shortcut for the common case
(lines 2-7) to update th&ft-writer[l] if the trace hasn't changed. SinceeDATELEFT-
WRITERTREE is not called if the shortcut successfully updalefg-writer|l], this update
takesO(1) time. The following corollary bounds the total amount of éispent perform-

ing all the UPDATELEFTWRITERS and takes advantage of the shortcut cost. This corollary
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ignores the cost of restarting an update due to a steal.

Corollary 25 For an execution of SP-hybrid with the access history fronufggi-6 that
results inn traces, at mosO(n) access-history updates for each locatiotake 2(Ig P)

time. All other access-history updates takel) time.

Proof. The leftof-or-deeper and rightof-or-deeper relationgkepveen two traces never
changes. This fact follows from the fact that traces do noterin the order-maintenance
data structures. We charge one slé¥lg P)) time) update against each trace.

The first time a tracé/ tries to update the access history, it performs the treetapda
in UPDATELEFTWRITERTREE. Once it finishes, eithad = FIND TRACE(left-writer|l]),
or left-writer[l] is leftof U. In the latter case, since no threadlinwill ever be leftof
left-writer[l], all future calls to WDATELEFTWRITER on the memory locatiot from
the tracel/ complete in constant time. In the former case, subsequet#tep take) (1)
time via lines 2—7, untileft-writer(l] is no longer in the trac®. If left-writer(l] changes
because a concurrent thread updéi@swriter[l], thenU will never be leftofleft-writer|l]
again. IfU" = FINDTRACE(left-writer|l]) changes because of a steal, we chdrge
(existing) slow WDATELEFTWRITER against the subtradé’. Recall from the subtrace
properties of SP-hybrid that") andU® are fully expanded (and thus inactivé)®) = U,
andU™ andU® are empty, and hence no futurebATELEFTWRITERS will be charged
against this subtrace. Thus, we charge at most 1 slewATEL EFTWRITER against each

trace for each memory locatidn L]

I now bound the number of steal attempts when our race detBictiodeterminator-3
is run on a (Cilk-like) scheduler that obeys Property 10, w&hdomized or round-robin

work stealing.

Lemma 26 Suppose that a fork-join program hd3 work and a critical-path length of
T... When executed oR processors using the Cilk scheduler, the Nondeterminatas3 h
O(PT, 1g P) steal attempts in expectation. Moreover, for any 0, the number of steal

attempts iO(P (T lg P +1g(1/¢))).

Proof.  Apply Theorem 16 with one modification. Rather than blowingeagh thread
by » = O(1) work, we blow up each thread by = O(lg P), which is the worst-case
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blowup of a memory access. As in Theorem 16, we assume theggsors are moving at
the same speed, and a steal holds the lock for long enouglpfaomiate constant in front
of Q(lg P)) that an access-history update only aborts one time. Thach Bme a steal

attempt happens, we make progress towards the criticallfjath O(T 1g P). (]

For simplicity, let's modify the round-robin work stealirtg wait for O(Ig P) time
between each round d? steal attempts. This modification is not strictly necessary

attain the performance bounds given below, but it does siyrtple analysis’

Lemma 27 Suppose that a fork-join program hd3 work and a critical-path length of
T... When executed oR processors using the round-robin, work-stealing scheditilat

obeys Property 10, the Nondeterminator-3 43”7, ) steal attempts in the worst case.

Proof. We use the same proof as from Theorem 18. Since we®\@it P) time before
starting each round of steals, any thread on a processonituoh we attempted to steal
from in the previous round, even with th&log P) blowup from a memory access, has had
time to complete. Thus, when a steal attempt occurs, by th@gthe round, the potential
on that processor has decreased by a constant fractionefoherthere can be at most

O(PT,,) steal attempts, as before. L]

| now bound the time taken by the Nondeterminator-3 when rua €ilk-like sched-
uler. 1 have two incomparable bounds that both apply—thetorahoose depends on the
number of memory locations being monitored. If the numbaf memory locations is
small, then the Nondeterminator-3 runsi7; /P + (v + P)T. lg P) time. If the number
of memory locations is large, then the Nondeterminatoresia O((7, /P + PT.,)1g P)

expected time.

Theorem 28 Suppose that a fork-join program hd$ work, a critical-path length of .,
andv shared-memory locations.
When executed on P processors using the Cilk scheduler, theeldsminator-3 runs in

O(Ty/P + PTy1g” P+ min { (T} g P)/ P, vTs lg” P}) expected time. Moreover, for any

"Without this modification, we would use something like Lem28ao bound the number of steal attempts
(that takeO(1) time) and a variation of the Lemma 27 to bound the number afessful steals.
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e > 0, the Nondeterminator-3 race detector runsi7; /P+ P(T, 1g P+1g(1/¢))lg P+
min {7} lg P/P,v(Tx 1g P + 1g(1/¢)) lg P}) time with probability at least — «.

When executed off processors using the round-robin, work-stealing scheduler
Nondeterminator-3 runs i@ (7; /P + PT, 1g P + min {(T} 1g P)/P,vT 1g P}) worst-

case time.

Proof.  We use the same approach as in Theorem 17, except that we ragdntw
buckets. The new buckets are as follows:

Bg: The work spent performing access-history updates. A msmreplaces a dollar
in the bucketBg while performing an access-history update. We do not irelombney
for accesses that restart due to concurrent steals. Natevthanclude time spent per-
forming the included OM-RECEDESbut not time spent retrying these OMRPCEDES
operations—those retries are still included in bucket If there ares steals, then Corol-
lary 25 implies that at mosb(vs) updates take&)(Ilg P) time. Otherwise, Corollary 24
states that each of at mdst accesses cost3(lg P) in the worst case. Thus, we have
|Bs| = min {vslg P, T} 1g P}.

Bgy: The work spent retrying access-history updates due tourcgrt steals. Since a
steal can cause at mast1) updates to fail on each processor, and the number of steals is
s, we conclude thatBy| = O(sPlg P).

Bso: The work spent updating the access history’s search trde tie global lock is
held. Since we dd)(lg P) work per steal, we havie3,o| = O(slg P).

Note thatB,, the waiting time for the global lock, also changes. Whereashad
|B;| = O(Ps) in Theorem 17, we now havé,| = O(sP lg P) due to buckeB;.

Summing over all buckets and dividing B we have that the total moneyd¥7; / P+
slg P 4+ min {(vslg P)/P,T,1g P/P}. Themin arises from buckeBs. Substituting ins

from Lemmas 26 and 27 proves the theorem. (]

4.3 Spacerequirements

This section describes the space usage of our parallel eteetdr Nondeterminator-3. |

first discuss some garbage-collection techniques to rersiale threads and traces from
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SP-hybrid. Then, | argue that the race detector, with garlbaglection, has efficient
space usage. In particular, consider a fork-join prograat ontainsy memory loca-
tions and has a maximum procedure-nesting depth (or P-nesling depth) ofl. Then
the Nondeterminator-3 usé¥ P(v + d)) space when run o processors. Note that thie
arises from the maximum number of outstanding partially pleted procedures. Since a
program execution requires some space on the stack for pnesedure instances anyway,

we can think of the asymptotic increase by our race deteston &v).

SP-hybrid, as described in Section 3.2, keeps an objectafd thread or procedure.
For a race detector, we do not need to keep threads that heny@eted and are no longer

in the access history. The main difficulty is in garbage @ity these objects safely.

We have each processor keep ownership of all the bags (aslm@d that it creates
and all the threads that it executes. In particular, we kedipt af completed threads
owned by a procedure. Since ownership of threads is cleazawa@lso have this processor
handle reference counting for procedures and bags withgutogking. Only the owning
processor can free the memory for these completed objeasusé&/a deamortized mark-
and-sweep garbage collector [37,42]. The mark-and-swasdjage collector for SP-bags,

as described in [30], proceeds as follows for a particulacgssor:

1. Iterate through all the (completed) threads owned bytbegssor, and unmark them.

2. lterate through the memory locations in the shadow space, marking threadsthat a

in the shadow space.

3. lterate through all threads freeing those that are stitharked. Also free any bags

or procedures that have no deallocated threads.

There are onlyO(v) locations in the shadow space. Thus, if we run this garbatiector
everyv steps, the number of unfreed, completed threads (and proednd bags) never
exceeds)(v). We can deamortize this technique by executing a constanbauof steps

on each race-detector instruction.

It is not immediately obvious how deallocating procedurapacts the microsets from
SP-bags of Section 3.1. One simple technique is keep a cbtimd aumber of procedures

in a microset. We do not actually deallocate the procedut# ttne size of the microset
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drops by half. At this point, we compress the microset (reenal/the holes) to the left of

the bitstring and free any procedures that can be freed. Weleamortize this technique

in the same way we deamortize theakE-SET for incremental set union in Section 3.1.
That is, we keep two copies of a microset. Whenever the sizkeofrticroset reduces by
half, we allocate a new word for the microset. On every subsetdeletion of a procedure
from the microset, we examine a constant number of slotsarolth microset, deleting or
copying procedures to the new microset as necessary. Tlstacns chosen such that
copy completes before the size of the new microset reducdwlbyagain. In this way,

we guarantee that if there akgorocedures either outstanding or represented by the access

history, then the number of unfreed procedure3(is + v).

Given these deamortized techniques, we perform a consiartier of garbage-collection
steps for each race-detection step, and performance isyatpotically affected. More-
over, we guarantee a small number of threads, procedureédiaays being stored for each

processor.

It remains to describe how to garbage collect traces, shme&éces belong to a shared
data structure. The processor that owns the threads indhe ts responsible for refer-
ence counting the trace without locking. Before this progesan free the trace, it must
acquire the global lock on the shared order-maintenaneestiatctures. These lock acqui-
sitions have no asymptotic affect on performance—we cargehthe overheads incurred

by locking when deallocating a trace against the creatidghefrace.

Since the number of outstanding procedures and threadsddwyne particular proces-
sor never exceeds the maximum nesting déptie have that a processor never owns more
thanO(v + d) objects. There ar& processors, so we hatg P(v + d)) objects in total.

Finally, we must deal with the effect of deallocating obgeah concurrent queries. A
common technique igeference counting(from [19, 37], for example), whereby a reader
increments a reference counter on the object (i.e., a thnetheé shadow space), performs
the operation (i.e., the SPRRCEDESquery), then it decrements the counter. Since an
object gets deallocated only when its reference countgrsta), the object is guaranteed
to be around for the duration of the query. While this approdoés guarantee that no

object gets deleted while being read, it requires some $anutual exclusion to increment
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a reference count in parallel.

Instead of reference counting, we repeat each step of a gaeeyal times to guarantee
that the objects are still valid. In particular, consides tiesult of a memory access. We
may end up comparing a threatistored in the access history against the current thzead
with an SP-RECEDESquery. As long as the thread is still in the access history, its bag
still exists, and its trace is still in the order-maintenaniata structures, etc. Thus, when
following each pointer, we check thatis still in the access history. In this way, we double
the constant amount of time needed for a SREEEDES Since it takes$)(v) time before a
current thread will be collected, and we assume the processove at the same speed, an

SP-RRECEDESoOnNly fails once due to a concurrent deallocation of a thread.
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Chapter 5

Related wor k

This chapter summarizes related work on race detectiorm&Rtenance algorithms and
order-maintenance data structures.

Static race detectors [8,11, 16, 29, 44, 56] analyze theofetkie program to determine
whether a race occurs. Static analysis tools may be abletévndime whether a mem-
ory location can be involved in a race for any input. Theséstdmowever, are inherently
conservative (and report races that do not exist), sincestéditec debuggers cannot fully
understand the control-flow and synchronization semaafiagprogram. For example, dy-
namic control-flow constructs (e.g., a fork statement)dadoops are particularly difficult
to deal with. Mellor-Crummey [44] proposes using static $oa$ a way of pruning the
number of memory locations being monitored by a dynamic datector.

Dynamic race detectors execute the program given a patiaybut. Some dynamic
race detectors perform a post-mortem analysis based omgmnegxecution logs [18, 28,
35, 45-48], analyzing a log of program-execution eventsrafie program has finished
running. On-the-fly race race detectors, like the one ginehis thesis, report races during
the execution of the program. Both dynamic approaches aisiamd use some form of
SP-maintenance algorithm in conjunction with an accedstyisOn-the-fly race detectors
benefit from garbage collection, thereby reducing the tgpalced used by the tool. Post-
mortem tools, on the other hand, must keep exhaustive logs.

Netzer and Miller [49] provide a common terminology to ungsevious work on dy-

namic race detection. feasibledata race is a race that can actually occur in an execution of
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the program. Netzer and Miller show that locating feasilatadaces in a general program
is NP-hard. Instead, most race detectors, including thegore in this thesis, deal with
the problem of discoveringpparentdata races, which is an approximation of the races
that may actually occur. These race detectors, like the onieis thesis, typically ignore
data dependencies that may make some apparent raceshidgemsitead considering only
explicit coordination or control-flow constructs (like k& and joins). As a result, these

race detectors are conservative and report races that magtually occur.

Dinning and Schonberg’s “lock-covers” algorithm [27] detkeeapparent races in pro-
grams that use locks. Cheng, Feng, Leiserson, Randall, arldgetaeralize this algorithm
with their ALL-SETS algorithm [17]. Cheng et al. also give a more efficient aldponi
called BRELLY, that can be used if the program obeys an “umbrella” lockisgidline.
These algorithms can be incorporated into access-histgoyithms like the one given in

this thesis.

Savage, Burrows, Nelson, Sobalvarro, and Anderson give ghesfly race detector
called Eraser [51] that does not use an SP-maintenanceathfgpand hence reports races
between threads that operate in series. Their Eraser toddswan programs that have
static threads (i.e., no nested parallelism) and enforceisnple locking discipline. A
shared variable must be protected by a particular lock onyesecess, or they report a
race. The RELLY algorithm [17] is a generalization of Eraser’s locking dice that
can be incorporated into race detectors, like the Nondétator-3 given in this thesis,
that support nested parallelism and maintain SP relatipashBy keeping track of SP

relationships, we can report fewer spurious races.

Nudler and Rudolph [50] introduced the English-Hebrew ladgescheme for their SP-
maintenance algorithm. Each thread is assigned two sgdietd, similar to the labeling in
this paper. They do not, however, use a centralized datatgteuto reassign labels. In-
stead, label sizes grow proportionally to the maximum comewey of the program. Mellor-
Crummey [43] proposed an “offset-span labeling” schemeg¢lvhas label lengths propor-
tional to the maximum nesting depth of forks. Although itsisborter label lengths than
the English-Hebrew scheme, the size of offset-span labelstibounded by a constant as

it is in our scheme. Both of these approaches perform locasides on thread creation
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to assign static labels. Although these approaches resaoti locking or synchronization
overhead for SP-maintenance, the large labels can outwieggivaiting time experienced

by our algorithm.

Dinning and Schonberg’s “task recycling” algorithm [26ssa centralized data struc-
ture to maintain series-parallel relationships. Eachatir@block) is given a unique task
identifier, which consists of a task and a version number. sk tan be reassigned (recy-
cled) to another thread during the program execution, whecluces the total amount of
space used by the algorithm. Each thread is assigned a pactot that contains the largest
version number, for each task, of its ancestor threads. |&itoi SP-bags and SP-hybrid,
but unlike English-Hebrew or offset-span labelings, thekteecycling algorithm can only
determine the SP relationship between two threads if oneedthireads is active. To query
the relationship between an active threqadind a thread., recorded in the access history,
task recycling simply compares the version numbet. ¢ task against the version num-
bered stored in the appropriate slotifis parent vector, which is a constant-time operation.
The cost of creating a new thread, however, can be propaitiorthe maximum logical
concurrency. Dinning and Schonberg’s algorithm also hesdther coordination between
threads, like barriers, where two parallel threads musthregparticular point before con-
tinuing. Whereas the SP-hybrid algorithm given in this thésimore efficient for strictly

fork-join programs, task-recycling is still very promigifor more general programs.

The first order-maintenance data structure was publish&dediy two decades ago [21].
It supports insertions and deletionsdr{lg n) amortized time and queries (1) time.
Tarjan observed [23] that updates could be supportéd| i amortized time, and the same
result was obtained independently by Tsakalidis [58]. Detd Sleator [23] proposed
two data structures, one that supports insertions andiaiesein O(1) amortized time and
queries inO(1) worst-case time and a another that supports all operatio@$1) worst-
case time. Bender, Cole, Demaine, Farach-Colton, and Zitogd23 two simplified data
structures whose asymptotic performance matches the ttatduses from [23]. Their

paper also presents an implementation study of the amomiag structure.

A special case of the order-maintenance problem isottilme list-labeling problem

[7,22, 24, 36], also called thide maintenance problenj59—-62]. In online list labeling,
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we maintain a mapping from a dynamic setoglements to the integers in the range from
1 to u (tag9, such that the order of the elements matches the order afaimesponding
tags. Any solution to the online list-labeling problem gglan order-maintenance data
structure. The reverse is not true, however, because tlests an2(lgn) lower bound
on the list-labeling problem [22, 24]. In file maintenances vequire that: = O(n),
since this restriction corresponds to the problem of maiig a file densely packed and
defragmented on disk.

Labeling schemes have been used for other combinatoriblggms such as answering
least-common-ancestor queries [1, 3,5, 38] and distanegeguused for routing [2,4,9, 34,
39,57]. Although these problems are reminiscent of theremtintenance problem, most
solutions focus on reducing the number of bits necessamgpiesent the labels in a static
(offline) setting.

Anderson and Woll [6] discuss concurrent union-find operetiusing path compres-
sion (with path halving) and union by rank. Whereas they aersmultiple finds and
multiple unions occurring concurrently, however, our peob is confined to single unions

and multiple finds occurring concurrently.
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Chapter 6

Conclusion

In this thesis, | have presented a new serial SP-mainteragodathm called SP-order, an
improvement to the serial SP-bags algorithm, and a newlpb&f-maintenance algorithm
called SP-hybrid. | have given performance analysis ofdlagorithms alone and when
incorporated into an efficient race detector.

As a practical matter, our algorithms are likely to performstér than the worst-case
bounds indicate, because it is rare that every lock accessatention proportional to the
number of processors. This observation can be used in gaactiplementations to sim-
plify the coding of the algorithms and yield somewhat bepterformance in the common
case. Nevertheless, | contend that the predictability of/gioly efficient software gives
users less-frustrating experiences. Giving up on provpétéormance is an engineering
decision that should not be taken lightly. | also believe firavably efficient algorithms
are scientifically interesting in their own right.

As far as | know, this is the only work that has analyzed thali@symptotic, worst-
case running time of an efficient, on-the-fly race detectarstbther works either perform
empirical studies or analyze the worst-case cost of a soggeation once a lock has been
acquired. | am interested in seeing whether the analydmigge used in this thesis can
be extended to other parallel applications. In some seneeamortize the cost of the
(protected) accesses to a shared data structure againgitib@ path of the underlying
computation.

This thesis has not concentrated on race detection for @nogthat contain locks. |
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briefly mentioned how these race detectors can be attaingd, liave not done a full
performance analysis. It is unclear whether our analysisrtigue can be applied to the
ALL-SETsand BRELLY algorithms to show speedup, in the worst case, over thd sacia
detector.

Some race detectors, like Dinning and Schonberg’s tagkingcalgorithm [26], work
on programs that contain coordinating constructs betwbhezatls other than fork and
join. Since these programs cannot be represented as pari&el parse trees, the SP-
maintenance algorithms given in this thesis do not applynnibig and Schonberg also
give a “coordination list” technique to extend Nudler and Blipt’s English-Hebrew label-
ing [50] to support these same constructs, but the techrégams inefficient. Naturally,
this same technique should be applicable to the SP-maimteregorithms given in this
thesis, but it is unclear that one cannot do better. Can SRehlgb extended to efficiently
support other forms of coordination between threads?

Throughout this thesis, | assume that parallel reads campieconstant time, even if
all the processors access the same memory location at theetsaen | do not model the
underlying congestion in the memory system. It is unclear tooimplement a congestion-
free parallel read in a real machine in a scalable way. Idsig@a may want to augment our
model to include the read congestion. If processors areemed in a tree (or any other
O(lg P)-diameter constant-degree network), then parallel readsld be implementable
in O(lg P) time. Thus, we can simply take our performance bounds andl bfpby an
O(lg P) factor. This bound is somewhat pessimistic, however, bee#useems unlikely
that a parallel program would always have all the processading the same location at
the same time. Is there a better way to model read contention?

Finally, | was surprised to see that using a round-robin wgigaling scheduler resulted
in a better worst-case running time for our race detectar tharandomized work-stealing
scheduler. When running a program that does not serializéssas SP-hybrid does, the
randomized work stealer performs better. Is there somanbaléhat can be achieved here?
A Cilk program (that does not contain locks) with work and critical-path lengtfi,, runs
on the randomized work-stealing schedule®ii’ / P + T',) time in expectation. Is there

a scheduler that results in a running time IRET, /P + P<T,,) in the worst case?
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Appendix A
Hash function for microsets

This section describes one viable hash function foRIBSGTONUM given in Section 3.1.
The hash function | give in this section is a perfect hash,rele the worst-case search
cost isO(1) [20, Section 11.5}.

Since the set of keys is deterministic (i.e*—*~! for valid k), we deterministically
construct the hash function. We Igt= 3’ be the smallest power d¢f such thatp >
3/2min {w,n}. Then the function is quite simply(;j) = j mod p. The range of the hash
function is obviously®(min {w,n}). The following lemma implies that the given hash

functionh maps allmin {w, n} keys to different values.

Lemma?29 Leta, b, andc be positive integers. For a given valuemthere is no solution

t0 2% — b3¢ = 1 witha < 2 - 371,

Proof.  Note that Euler’s phi function [20, p.865] implies that thas a solution with
a<2-31
We prove the lemma by induction. For a base case ef 1, we have2® — b3 = 1.

Obviously, the smallest value afthat yields a solution (witla andb integers) is: = 2.

There are many other ways to obtain a constant-timeiScTONUM in the random-access machine
[20]. For example one could hardcode particular hash fanstthat work for particular word sizes. One
could also use a two-level perfect-hashing technique [&1dde dynamic by Dietzfelbinger et al. [25]).
This approach, however, makes the construction of the b éxpected amortized constant, whereas the
function given in this section gives a worst-case cost. rAlitively, Leiserson, Prokop, and Randall [41] give
a technique that uses de Bruijn sequences along with miaétpn and a bit shift. This technique may be
preferred because it does not require a modulo/divisionatios.
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Assume for the sake of contradiction that there is a soldbothe equation with: = &
and witha < 2 - 3*~1. Then we can rewrite to be of the formu = d(2 - 3~2) + z, where

0<d<2, andx < 2-3™2. Thus, we have that
(22'3’“‘2)d 27 _ b3k =1

has a solution. Since= 2 - 3*~? yields a solution t@* — b(;)3*~* = 1, we can rewrite this
equation as
d
(1403 ") 2 =03k = 1.

This equation, however, implies that there is a valué thfat solve® — b3*~1 = 1, with

x < 2-3%2 which contradicts the inductive hypothesis. (]

Corollary 30 The functionh(2¢) = 2* mod 3¢ yields different values for any - 3¢°!

consecutive values af []
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