
Provably Good Race Detection That Runs in Parallel

by

Jeremy T. Fineman

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2005

c©Massachusetts Institute of Technology 2005. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

August 3, 2005

Certified by
Charles E. Leiserson

Professor
Thesis Supervisor

Accepted by.
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Provably Good Race Detection That Runs in Parallel

by

Jeremy T. Fineman

Submitted to the Department of Electrical Engineering and Computer Science
on August 3, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

A multithreaded parallel program that is intended to be deterministic may exhibit nonde-
terminism due to bugs calleddeterminacy races. A key capability of race detectors is to
determine whether one thread executes logically in parallel with another thread or whether
the threads must operate in series. This thesis presents twoalgorithms, one serial and one
parallel, to maintain the series-parallel (SP) relationships “on the fly” for fork-join mul-
tithreaded programs. For a fork-join program withT1 work and a critical-path length of
T∞, the serialSP-Maintenancealgorithm runs inO(T1) time. The parallel algorithm exe-
cutes in the nearly optimalO(T1/P + PT∞) time, when run onP processors and using an
efficient scheduler.

These SP-maintenance algorithms can be incorporated into race detectors to get a prov-
ably good race detector that runs in parallel. This thesis describes an efficient parallel race
detector I call Nondeterminator-3. For a fork-join programT1 work, critical-path length
T∞, andv shared memory locations, the Nondeterminator-3 runs inO(T1/P +PT∞ lg P +
min {(T1 lg P)/P, vT∞ lg P}) expected time, when run onP processors and using an effi-
cient scheduler.

Some parts of this thesis represent joint work with Michael A. Bender, Seth Gilbert,
and Charles E. Leiserson.

Thesis Supervisor: Charles E. Leiserson
Title: Professor

3

4

Acknowledgments

I would like to thank my advisor, Charles E. Leiserson, for hisguidance on this project

as well as introducing me to the problem in the first place. In addition to helping to de-

velop some of the techniques presented in this thesis, he hasbeen an invaluable asset for

improving my writing and presentational skills.

I would also like to thank Michael A. Bender who, unasked, acted as a second advisor

to me during my first year here at MIT. In addition to developing many of the ideas in this

thesis with me, he introduced me to several other interesting problems and people.

I would like to thank Seth Gilbert in addition to Charles and Michael for their collabo-

ration on much of the work in this thesis.

All the other members of the SuperTech group deserve some thanks as well. Those

people include Bradley C. Kuszmaul, Gideon Stupp, Kunal Agrawal, Angelina Lee, Jim

Sukha, John Danaher, Yuxiong He, Tushara Karunaratna, Zardosht Kasheff, Vicky Liu,

Tim Olsen, and Siddhartha Sen. Everyone here has been forcedto listen to my ideas at

some point, and I thank them for putting up with me. I would particularly like to thank

Kunal, Angelina, Jim, John, and Tushara for letting me bounce ideas off them. Tushara

also uncovered a couple of bugs in my pseudocode.

I would like to thank Ali Mohammad, Sid, Kunal, and, on rare occasions, Charles, for

joining me at the gym and providing me with a way to step away from academia and clear

my head for a few hours.

Last and certainly least, I’d like to thank Steve Cantin for his incessant queries as to

the status of my thesis. His daily, “have you finished your thesis yet?” provided additional

motivation to complete my thesis in the sense that I wanted toshut him up.

This work was support in part by NSF Grant ACI-0324974 and by the Singapore MIT

Alliance. Any opinions, findings and conclusions or recommendations expressed in this

thesis are those of that author and do not necessarily reflectthe views of the National

Science Foundation (NSF).

5

6

Contents

1 Introduction 11

2 The SP-order algorithm 17

3 The SP-hybrid algorithm 25

3.1 SP-bags . 27

3.2 SP-hybrid . 39

3.3 Correctness of SP-hybrid .52

3.4 Performance analysis .56

4 Race Detection 63

4.1 Access histories . 63

4.2 Performance analysis .76

4.3 Space requirements . 81

5 Related work 85

6 Conclusion 89

A Hash function for microsets 91

7

8

List of Figures

1-1 An example of a data race. 11

1-2 A dag representing a multithreaded computation. 13

1-3 The parse tree for the computation dag shown in Figure 1-2. 13

1-4 Comparison of serial, SP-maintenance algorithms. 15

2-1 An English ordering and a Hebrew ordering. 18

2-2 The SP-order algorithm written in serial pseudocode. 22

2-3 An illustration of how SP-order operates at an S-node. 23

2-4 An illustration of how SP-order operates at a P-node. 23

3-1 The canonical parse tree for a generic Cilk procedure. 28

3-2 The SP-bags algorithm described in terms of Cilk keywords. 29

3-3 The SP-bags algorithm written in serial pseudocode. 30

3-4 The representation of a set in our disjoint-sets data structure. 34

3-5 The FIND operation written in serial pseudocode. 34

3-6 The UNION operation written in serial pseudocode. 35

3-7 The MICROUNION operation written in serial pseudocode. 36

3-8 The MICROFIND operation written in serial pseudocode. 37

3-9 The SP-hybrid algorithm written in parallel pseudocode. 42

3-10 The SP-Precedes precedure for the SP-Hybrid algorithmgiven in Figure 3-9. 43

3-11 The split of a trace around a P-node in terms of a canonical Cilk parse tree. 48

3-12 An ordering of the new traces resulting from a steal as shown in Figure 3-11. 49

3-13 The local-tier SP-bags algorithm written in parallel pseudocode. 50

9

4-1 The serial access-history updates written in serial pseudocode. 65

4-2 A parse tree for which the serial access-history algorithm fails on a parallel

execution. 66

4-3 The parallel (writer) access-history updates written in serial pseudocode. . . 67

4-4 LEFTOF-OR-DEEPERand RIGHTOF-OR-DEEPER for SP-hybrid, written

in serial pseudocode. 67

4-5 The parallel access-history updates with explicit locking, written in serial

pseudocode. 69

4-6 An access-history update optimized for SP-hybrid, given in serial pseu-

docode. 73

10

Chapter 1

Introduction

When two parallel threads access the same shared memory location, and at least one of the

accesses is a write, adata raceoccurs. Depending on how the threads are scheduled, the

accesses may occur in either order, and the program may exhibit nondeterministic behav-

ior. This nondeterminism is often a bug in the program. Theserace bugs are notoriously

difficult to detect through normal debugging techniques. Even if the unintended behavior

can be reliably reproduced, the use of normal debugging techniques like breakpoints and

print statements may alter the scheduling enough to hide thebug. Figure 1-1 shows an

example of a data race.

THREAD1

x← 1

THREAD2

x← 0
print x

Case 1 Case 2
THREAD1 THREAD2 THREAD1 THREAD2

x← 1 x← 0
x← 0 x← 1

print x = 0 print x = 1

Figure 1-1: An example of a data race. On the left are the two threads that are executingin parallel.
On the right are two possible schedulings that result in different outputs.

Fork-join programming models, such as MIT’s Cilk system [14,32,52], allow dynamic

creation of threads according to a particular structure. An“on-the-fly” race detector aug-

ments the original program to discover races as the program executes. Since determining

whether the program is race free for all inputs is intractable, an on-the-fly race detector

typically verifies that a program is race free for a given input. In particular, if the race de-

11

tector does not discover a race in an ostensibly deterministic program, then no race exists

(regardless of the scheduling).

A typical on-the-fly data-race detector [17, 26, 30, 43, 50] simulates the execution of

the program while maintaining various data structures for determining the existence of

races. An “access history” maintains a subset of threads that access each particular memory

location. Another data structure maintains the series-parallel (SP) relationships between the

currently executing thread and previously executed threads. Specifically, the race detector

must determine whether the current thread is operating logically in series or in parallel with

certain previously executed threads. We call a dynamic datastructure that maintains the

series-parallel relationship between threads anSP-maintenancedata structure. The data

structure supports insertion, deletion, andSP queries: queries as to whether two nodes are

logically in series or in parallel.

This thesis shows how to maintain the series-parallel (SP) relationships between logical

threads in a multithreaded program “on the fly.” We show that for fork-join programming

models, this data-structuring problem can be solved asymptotically optimally. We also give

an efficient parallel solution to the problem. This thesis also combines the SP-maintenance

algorithms with efficient access-history algorithms to obtain provably good race detectors.

Series-parallel parse tree

The execution of a multithreaded program can be viewed as a directed acyclic graph, or

computation dag, where nodes are eitherforks or joins and edges arethreads. Such a dag

is illustrated in Figure 1-2. A fork node has a single incoming edge and multiple outgoing

edges. A join node has multiple incoming edges and a single outgoing edge. Threads

(edges) represent blocks of serial execution.

For fork-join programming models, where every fork has a corresponding join that

unites the forked threads, the computation dag has a structure that can be represented ef-

ficiently by aseries-parallel (SP) parse tree[30]. In the parse tree each internal node is

either anS-nodeor aP-nodeand each leaf is a thread of the dag.1 Figure 1-3 shows the

1We assume without loss of generality that all SP parse trees are full binary trees, that is, each internal
node has exactly two children.

12

Figure 1-2: A dag representing a multithreaded computation. The edges represent threads, labeled
u0, u1, . . . u8. The diamonds represent forks, and the squares indicate joins.

Figure 1-3: The parse tree for the computation dag shown in Figure 1-2. The leaves are the threads
in the dag. The S-nodes indicate series relationships, and the P-nodes indicate parallel relationships.

parse tree corresponding to the computation dag from Figure1-2. If two subtrees are chil-

dren of the same S-node, then the parse tree indicates that (the subcomputation represented

by) the left subtree executes before (that of) the right subtree. If two subtrees are children

of the same P-node, then the parse tree indicates that the twosubtrees execute logically in

parallel.

An SP parse tree can be viewed as ana posterioriexecution of the corresponding com-

putation dag, but “on-the-fly” data-race detectors must operate while the dag, and hence

the parse tree, is unfolding dynamically. The way that the parse tree unfolds depends on

a scheduler, which determines which threads execute where and when on a finite number

of processors. A partial execution corresponds to a subtreeof the parse tree that obeys the

series-parallel relationships, namely, that a right subtree of an S-node cannot be present

unless the corresponding left subtree has been fullyelaborated, or unfolded with all leaf

threads executed. Both subtrees of a P-node, however, can be partially elaborated. In a

language like Cilk, a serial execution unfolds the parse treein the manner of a left-to-right

walk. For example, in Figure 1-3, a serial execution executes the threads in the order of

their indices.

13

A typical serial, on-the-fly data-race detector simulates the execution of the program

as a left-to-right walk of the parse tree while keeping an SP-maintenance data structure.

The Nondeterminator [17, 30] race detectors use a variant ofTarjan’s [54] least-common-

ancestor algorithm, as the basis of their SP-maintenance data structure. To determine

whether a threadui logically precedesa threaduj, denotedui ≺ uj, their SP-bags algo-

rithm can be viewed intuitively as inspecting their least common ancestorlca(ui, uj) in the

parse tree to see whether it is an S-node withui in its left subtree. Similarly, to determine

whether a threadui operateslogically in parallel with a threaduj, denotedui ‖ uj, the

SP-bags algorithm checks whetherlca(ui, uj) is a P-node. Observe that an SP relationship

exists between any two nodes in the parse tree, not just between threads (leaves).

For example, in Figure 1-3, we haveu1 ≺ u4, becauseS1 = lca(u1, u4) is an S-node

andu1 appears inS1’s left subtree. We also haveu1 ‖ u6, becauseP1 = lca(u1, u6) is a

P-node. The (serially executing) Nondeterminator race detectors perform SP-maintenance

operations whenever the program being tested forks, joins,or accesses a shared-memory

location. The amortized cost for each of these operations isO(α(v, v)), whereα is Tar-

jan’s functional inverse of Ackermann’s function andv is the number of shared-memory

locations used by the program. As a consequence, the asymptotic running time of the Non-

determinator isO(T1α(v, v)), whereT1 is the running time of the original program on1

processor.

The SP-bags data structure has two shortcomings. The first isthat it slows the asymp-

totic running time by a factor ofα(v, v). This factor is nonconstant in theory but is never-

theless close enough to constant in practice that this deficiency is minor. The second, more

important shortcoming is that the SP-bags algorithm reliesheavily on the serial nature of

its execution, and hence it appears difficult to parallelize.

Some early SP-maintenance algorithms use labeling schemeswithout centralized data

structures. These labeling schemes are easy to parallelizebut unfortunately are much

less efficient than the SP-bags algorithm. Examples of such labeling schemes include the

English-Hebrewscheme [50] and theoffset-spanscheme [43]. These algorithms generate

labels for each thread on the fly, but once generated, the labels remain static. By comparing

labels, these SP-maintenance algorithms can determine whether two threads operate logi-

14

Algorithm Space Time per
per node Thread Query

creation

English-Hebrew [50] Θ(f) Θ(1) Θ(f)
Offset-Span [43] Θ(d) Θ(1) Θ(d)

SP-Bags [30] Θ(1) Θ(α(v, v))* Θ(α(v, v))*
Improved SP-Bags Θ(1) Θ(1)* Θ(1)

SP-Order Θ(1) Θ(1) Θ(1)

f = number of forks in the program
d = maximum depth of nested parallelism
v = number of shared locations being monitored

Figure 1-4: Comparison of serial, SP-maintenance algorithms. An asterisk (*) indicates an amor-
tized bound. The functionα is Tarjan’s functional inverse of Ackermann’s function.

cally in series or in parallel. One of the reasons for the inefficiency of these algorithms is

that label lengths increase linearly with the number of forks (English-Hebrew) or with the

depth of fork nesting (offset-span).

Results

In this thesis, I introduce a new SP-maintenance algorithm,called theSP-orderalgorithm,

which is more efficient than Feng and Leiserson’s [30] SP-bags algorithm. This algorithm

is inspired by the English-Hebrew scheme, but rather than using static labels, the labels are

maintained by an order-maintenance data structure [12, 21,23, 58]. Figure 1-4 compares

the serial space and running times of SP-order with the otheralgorithms. As can be seen

from the table, SP-order attains asymptotic optimality.

I give an improvement to the SP-bags algorithms that shaves off the inverse Acker-

mann’sα(v, v) factor from the running time. With this improvement, both SP-order and

SP-bags are optimal SP-maintenance data structures.

I also present a parallel SP-maintenence algorithm which isdesigned to run with a

Cilk-like work-stealing scheduler [15, 32]. TheSP-hybridalgorithm consists of two tiers:

a global tier based on our SP-order algorithm, and alocal tier based on the improved SP-

bags algorithm. Suppose that a fork-join program hasT1 work and a critical-path length

of T∞. Whereas the Cilk scheduler executes a computation with workT1 and critical-

15

path lengthT∞ in asymptotically optimalTP = O(T1/P + T∞) expected time onP

processors, SP-hybrid executes the computation inO(T1/P + PT∞) worst-case time on

P processors while maintaining SP relationships. Thus, whereas the underlying compu-

tation achieves linear speedup whenP = O(T1/T∞), SP-hybrid achieves linear speed-

up whenP = O(
√

T1/T∞). The parallel race detector Nondeterminator-3, which com-

bines SP-hybrid with an efficient access-history algorithm, runs inO(T1/P + PT∞ lg P +

min {(T1 lg P)/P, vT∞ lg P}) worst-case time, wherev is the number of shared-memory

locations being monitored.

Some results appeared earlier in a conference paper [13] jointly coauthored with Michael

A. Bender, Seth Gilbert, and Charles E. Leiserson. This earlier version describes the same

SP-maintenance algorithms, but this thesis describes improvements to the SP-hybrid algo-

rithm. In particular, for a program withT1 work, critical-path length ofT∞, andn threads,

Bender et al. describe a version of SP-hybrid that runs inO((T1/P + PT∞) lg n) time in

expectation. This thesis improves on the result by trimmingthelg n factor from the running

time and by making the bound worst case.

The remainder of this paper is organized as follows. Chapter 2presents the SP-order

algorithm. Chapter 3 presents the parallel SP-hybrid algorithm. Section 3.1 gives an im-

provement to the SP-bags algorithm as used by SP-hybrid. Chapter 4 describes how to

make SP-hybrid into a race detector, including details on the access history, resulting per-

formance, and space usage. Finally, Chapter 5 reviews related work, and Chapter 6 offers

some concluding remarks.

16

Chapter 2

The SP-order algorithm

This chapter presents the serial SP-order algorithm. I begin by discussing how an SP parse

tree, provided as input to SP-order, is created. I then review the concept of an English-

Hebrew ordering [50], showing that two linear orders are sufficient to capture SP relation-

ships. I show how to maintain these linear orders on the fly using order-maintenance data

structures [12, 21, 23, 58]. Finally, I give the SP-order algorithm itself. I show that if a

fork-join multithreaded program has a parse tree withn leaves, then the total time for on-

the-fly construction of the SP-order data structure isO(n) and each SP query takesO(1)

time. I conclude that any fork-join program running inT1 time on a single processor can

be checked on the fly for data races inO(T1) time.

The input to SP-order

SP-order takes as input a fork-join multithreaded program expressed as an SP parse tree.

In a real implementation, such as a race detector, the parse tree unfolds dynamically and

implicitly as the multithreaded program executes, and the particular unfolding depends on

how the program is scheduled on the multiprocessor computer. For ease of presentation,

however, we assume that the program’s SP parse tree unfolds according to a left-to-right

tree walk. During this tree walk, SP-order maintains the SP relationships “on the fly” in

the sense that it can immediately respond to SP queries between any two executed threads.

At the end of the section, we relax the assumption of left-to-right unfolding, at which point

17

Figure 2-1: An English orderingE and a Hebrew orderingH for the threads in the parse tree from
Figure 1-3. Under each threadu is an ordered pair(E[u], H[u]) giving its index in each of the two
orders.

it becomes apparent that no matter how the parse tree unfolds, SP-order can maintain SP

relationships on the fly.

English and Hebrew orderings

SP-order uses two total orders to determine whether threadsare logically parallel, anEn-

glish order and aHebrew order. In the English order, the nodes in theleft subtree of a

P-node precede those in theright subtree of the P-node. In the Hebrew order, the order is

reversed: the nodes in theright subtree of a P-node precede those in theleft. In both orders,

the nodes in the left subtree of an S-node precede those in theright subtree of the S-node.

Figure 2-1 shows English and Hebrew orderings for the threads in the parse tree from

Figure 1-3. Notice that ifui belongs to the left subtree of an S-node anduj belongs to

the right subtree of the same S-node, then we haveE[ui] < E[uj] andH[ui] < H[uj]. In

contrast, ifui belongs to the left subtree of a P-node anduj belongs to the right subtree of

the same P-node, thenE[ui] < E[uj] andH[ui] > H[uj].

The English and Hebrew orderings capture the SP relationships in the parse tree. Specif-

ically, if one threadui precedes another threaduj in both orders, then threadui ≺ uj

in the parse tree (or multithreaded dag). Ifui precedesuj in one order butui follows

uj in the other, thenui ‖ uj. For example, in Figure 2-1, we haveu1 ≺ u4, because

1 = E[u1] < E[u4] = 4 and5 = H[u1] < H[u4] = 8. Similarly, we can deduce that

u1 ‖ u6, because1 = E[u1] < E[u6] = 6 and5 = H[u1] > H[u6] = 3. The following

18

lemma, also proved by Nudler and Rudolph [50], shows that thisproperty always holds.

Lemma 1 LetE be an English ordering of the threads of an SP-parse tree, andlet H be a

Hebrew ordering. Then, for any two threadsui anduj in the parse tree, we haveui ≺ uj

in the parse tree if and only ifE[ui] < E[uj] andH[ui] < H[uj].

Proof. (⇒) Suppose thatui ≺ uj, and letX = lca(ui, uj). Then,X is an S-node in

the parse tree, the threadui resides inX ’s left subtree, anduj resides inX ’s right subtree.

In both orders, the threads in theX ’s left subtree precede those inX ’s right subtree, and

hence, we haveE[ui] < E[uj] andH[ui] < H[uj].

(⇐) Suppose thatE[ui] < E[uj] andH[ui] < H[uj], and letX = lca(ui, uj). Since

we haveE[ui] < E[uj], threadui must appear inX ’s left subtree, anduj must appear in

X ’s right subtree. By definition of a Hebrew ordering,X must be an S-node, and hence

ui ≺ uj.

We can restate Lemma 1 as follows.

Corollary 2 Let E be an English ordering of the threads of an SP-parse tree, andlet

H be a Hebrew ordering. Then, for any two threadsui and uj in the parse tree with

E[ui] < E[uj], we haveui ‖ uj if and only ifH[ui] > H[uj].

Labeling a static SP parse tree with an English-Hebrew ordering is easy enough. To

compute the English ordering, perform a depth-first traversal visiting left children of both

P-nodes and S-nodes before visiting right children (anEnglish walk). Assign labeli to the

ith thread visited. To compute the Hebrew ordering, perform adepth-first traversal visiting

right children of P-nodes before visiting left children butleft children of S-nodes before

visiting right children (aHebrew walk). Assign labels to threads as before.

In race-detection applications, one must generate “on-the-fly” orderings as the parse

tree unfolds. If the parse tree unfolds according to an English walk, then computing an

English ordering is easy. Unfortunately, computing a Hebrew ordering on the fly during an

English walk is problematic. In the Hebrew ordering the label of a thread in the left subtree

of a P-node depends on the number of threads in the right subtree. In an English walk,

however, this number is unknown until the right subtree has unfolded.

19

Nudler and Rudolph [50], who introduced English-Hebrew labeling for race detection,

addressed this problem by using large thread labels. In particular, the number of bits in

a label in their scheme can grow linearly in the number of P-nodes in the SP parse tree.

Although they gave a heuristic for reducing the size of labels, manipulating large labels is

the performance bottleneck in their algorithm.

The SP-order data structure

Our solution is to employ order-maintenance data structures [12, 21, 23, 58] to maintain

the English and Hebrew orders rather than using static labels. In order-maintenance data

structures, the labels inducing the order change during theexecution of the program. An

order-maintenance data structure is an abstract data type that supports the following opera-

tions:

• OM-PRECEDES(L,X, Y): ReturnTRUE if X precedesY in the orderingL. BothX

andY must already exist in the orderingL.

• OM-INSERT(L,X, Y1, Y2, . . . , Yk): In the orderingL, insert thek new elements

Y1, Y2, . . . , Yk, in that order, immediately after the existing elementX.

The OM-PRECEDES operation can be supported inO(1) worst-case time. The OM-

INSERToperation can be inserted inO(k) worst-case time, wherek is the number of nodes

being inserted (i.e.,O(1) time per node inserted).

The SP-order data structure consists of two order-maintenance data structures to main-

tain English and Hebrew orderings.1 With the SP-order data structure, the implementation

of SP-order is remarkably simple.

Pseudocode for SP-order

Figure 2-2 gives serial pseudocode for SP-order. The code traverses the input SP parse tree

as a left-to-right tree walk, executing threads on the fly as the parse tree unfolds. In lines 1–

3, the code handles a leaf in the SP parse tree. In a race-detection application, queries of the

1In fact, the English ordering can be maintained implicitly during a left-to-right tree walk. For conceptual
simplicity, however, this paper uses order-maintenance data structures for both orderings.

20

two order-maintenance data structures are performed in theEXECUTETHREAD function,

which represents the computation of the program under test.Typically, a data-race detector

performsO(1) queries for each memory access of the program under test.

As the tree walk encounters each internal node of the SP parsetree, it performs OM-

INSERToperations into the English and Hebrew orderings. In line 4,we update the English

ordering for the children of the nodeX and insertX ’s (left and right) children afterX with

X ’s left child appearing first. Similarly, we update the Hebrew ordering in lines 5–7. For

the Hebrew ordering, we insertX ’s children in different orders depending on whetherX

is an S-node or a P-node. IfX is an S-node, handled in line 6, we insertX ’s left child

and thenX ’s right child afterX in the Hebrew order. Figure 2-3 illustrates the insertions

at an S-node. IfX is a P-node, on the other hand,X ’s left child follows X ’s right child.

Figure 2-4 illustrates these insertions. In lines 8–9, the code continues to perform the left-

to-right tree walk. We determine whetherX precedesY , shown in lines 10–11, by querying

the two order-maintenance structures using the order-maintenance query OM-PRECEDES.

The following lemma demonstrates that SP-ORDER produces English and Hebrew or-

derings correctly.

Lemma 3 At any point during the execution ofSP-ORDERon an SP parse tree, the order-

maintenance data structuresEng and Heb maintain English and Hebrew, respectively,

orderings of the nodes of the parse tree that have been visited thus far.

Proof. Consider an internal nodeY in the SP parse tree, and consider first theEng data

structure. We must prove that all the nodes inY ’s left subtree precede all the nodes inY ’s

right subtree in theEng ordering. We do so by showing that this property is maintained as

an invariant during the execution of the code. The only placethat theEng data structure is

modified is in line 4. Suppose that the invariant is maintained before SP-ORDER is invoked

on a nodeX. There are four cases:

1. X = Y : Trivial.

2. X resides in the left subtree ofY : We already assume thatX precedes all the nodes

in Y ’s right subtree. In line 4,X ’s children are inserted immediately afterX in Eng .

Hence,left [X] andright [X] also precede all the nodes inY ’s right subtree.

21

SP-ORDER(X)

1 if ISLEAF(X)
2 then EXECUTETHREAD(X)
3 return

� X is an internal node
4 OM-INSERT(Eng , X, left [X], right [X])

5 if ISSNODE(X)
6 then OM-INSERT(Heb, X, left [X], right [X])
7 else OM-INSERT(Heb, X, right [X], left [X])

8 SP-ORDER(left [X])
9 SP-ORDER(right [X])

SP-PRECEDES(X,Y)

10 if OM-PRECEDES(Eng , X, Y) and
OM-PRECEDES(Heb, X, Y)

11 then return TRUE

12 return FALSE

Figure 2-2: The SP-order algorithm written in serial pseudocode. The SP-ORDERprocedure main-
tains the relationships between thread nodes in an SP parse tree which can be queried using the
SP-PRECEDESprocedure. An internal nodeX in the parse tree has a left child,left [X], and a
right child, right [X]. Whether a node is an S-node or a P-node can be queried with ISSNODE.
Whether the node is a leaf can be queried with ISLEAF. The English and Hebrew orderings being
constructed are represented by the order-maintenance data structuresEng andHeb, respectively.
The EXECUTETHREAD procedure executes the thread.

3. X resides in the right subtree ofY : The same argument applies as in Case 2.

4. X lies outside of the subtree rooted atY : InsertingX ’s children anywhere in the data

structure cannot affect the invariant.

The argument for theHeb data structure is analogous, except that one must consider

the arguments forY being a P-node or S-node separately.

The next theorem shows that SP-PRECEDESworks correctly.

Theorem 4 Consider any point during the execution of theSP-ORDER procedure on an

SP parse tree, and letui anduj be two threads that have already been visited. Then, the

procedureSP-PRECEDES(ui, uj) correctly returnsTRUE if ui ≺ uj andFALSE otherwise.

22

Figure 2-3: An illustration of how SP-order operates at an S-node. (a) A simple parsetree with an
S-nodeS and two childrenL andR. (b) The order structures before visitingS. The clouds represent
the rest of the order structure, which does not change when visitingS. (c) The result of the inserts
after visitingS. The left childL and then the right childR are inserted afterS in both lists.

Figure 2-4: An illustration of how SP-order operates at a P-node. (a) A simple parse tree with a
P-nodeP and two childrenL andR. (b) The order structures before visitingP . The clouds are the
rest of the order structure, which does not change when visitingP . (c) The result of the inserts after
visiting P . The left childL then the right childR are inserted afterP in the English order, andR
thenL are inserted afterP in the Hebrew order.

Proof. The SP-ORDER procedure inserts a nodeX into theEng andHeb linear orders

when it visitsX ’s parent and before executing SP-ORDER(X). Thus, any thread is already

in the order-maintenance data structures by the time it is visited. Combining Lemma 1 and

Lemma 3 completes the proof.

We now analyze the running time of the SP-order algorithm.

Theorem 5 Consider a fork-join multithreaded program having a parse tree withn leaves.

Then, the total time for on-the-fly construction of the SP-order data structure isO(n).

Proof. A parse tree withn leaves has at mostO(n) nodes, causingO(n) calls to OM-

INSERT. Since each of these operations can be supported inO(1) amortized time, the

23

theorem follows.

The following corollary explains that SP-order can be used to make an efficient, on-the-

fly race detector.

Corollary 6 Consider a fork-join multithreaded program with running timeT1 on a single

processor. Then, a data-race detector using SP-order runs in O(T1) time.

To conclude this section, we observe that SP-order can be made to work on the fly

no matter how the input SP parse tree unfolds. Not only can lines 8–9 of Figure 2-2 be

executed in either order, the basic recursive call could be executed on nodes in any order

that respects the parent-child and SP relationships. For example, one could unfold the parse

tree in essentially breadth-first fashion at P-nodes as longas the left subtree of an S-node

is fully expanded before its right subtree is processed. An examination of the proof of

Lemma 3 shows why we have this flexibility. The invariant in the proof considers only a

node and its children. If we expand any single node, its children are inserted into the order-

maintenance data structures in the proper place independent of what other nodes have been

expanded.

24

Chapter 3

The SP-hybrid algorithm

This chapter describes the SP-hybrid algorithm, which is anSP-maintenance algorithm that

runs in parallel. To support concurrent operations on a shared data structure, the algorithm

uses locks. I first describe our performance model for programs that use locks. I then give

lower bounds on the performance of a naive SP-order parallelization. SP-hybrid is a two-

tier data structure that uses elements of SP-order from Chapter 2 and SP-bags from [30].

Section 3.1 reviews the SP-bags algorithm. I also give an improvement to the underly-

ing data structure that allows SP-bags to run in amortizedO(1) time per operation. In

Section 3.2 I describe the two-tier structure of the SP-hybrid. In Section 3.3, I prove the

correctness of SP-hybrid. Finally, in Section 3.4, I analyze SP-hybrid’s performance.

Model for parallel programs

Let us assume that SP-hybrid runs on a machine that supports the sequential consistency

[40] memory model. That is to say, for any execution of the program, there is some se-

quential order of memory accesses that is consistent with the program order and the values

observed by the program execution.

In our model, concurrent writes queue and complete in arrival order. In the case of a tie,

the adversary chooses which write proceeds. Reads, however,always complete in constant

time, even if there are many reads to the same location. (Thus, we do not model memory

congestion in the underlying machine.) If a read is concurrent with many writes, then the

25

read succeeds in constant time and gets a valid value (the value before or after the write

that completes on the same step).

A common way to handle mutual exclusion is through the use of locks. This technique

may introduce some performance penalties. In particular, whenever a processor holds a

lock, other processors may be waiting for that same lock. We call this idle time spent

waiting for the lockwaiting time. During any step in which the lock is held by a processor,

we assume the worst case—that allP − 1 other processors are waiting for the lock. For

example, if a processor acquires the lock, performs5 steps of real work, then releases the

lock, we assume thatP − 1 other processors were waiting for the lock during these steps,

and hence these5 steps induce a waiting time of5(P − 1). Once the other processors

acquire the lock, they also cause waiting time proportionalto the number of steps they hold

the lock. Thus, if the lock is held forL steps in total (summing across all processors), there

may beΘ(PL) waiting time. To see how such a large waiting time can occur, consider

a program in whichP parallel threads all simultaneously try to acquire a lock, perform

k steps of real work while holding the lock, and then release the lock. When the first

processor acquires the lock, there areP − 1 other processors waiting, inducing a waiting

time ofk(P − 1). When the second processor acquires the lock, there areP − 2 processors

waiting for a waiting time ofk(P − 2). Summing across the waiting time introduced by

all processors, we get a total waiting time ofΘ(kP 2). In this example, each of theP

processors holds the lock fork steps, so the lock is held for a total ofL = kP steps.

Locks also serialize operations. If a single lock is held forL steps in total over the entire

program (again, summing across all the processors), then the running time of the program

must be at leastL. This bound is straightforward because none of the work performed

while holding the lock can occur in parallel.

Consider a multithreaded program with workT1 and critical-path lengthT∞ in which a

single lock is held forL steps across the course of the computation. By introducingΘ(PL)

waiting time, we induce anapparent work, the real work plus waiting time, ofT1+Θ(PL).

Similarly, the serialization lengthL induces anapparent critical-path lengthof Θ(T∞+L).

26

A naive parallelization of SP-order

A straightforward way to parallelize the SP-order algorithm is to share the SP-order data

structure among the processors that are executing the inputfork-join program. In Chapter 2,

we showed that the algorithm’s correctness does not depend on the order of the parse tree’s

execution. The problem that arises, however, is that processors may interfere with each

other as they modify the data structure, and thus some methodof synchronization must be

employed to provide mutual exclusion.

Suppose we handle mutual exclusion through the use of locks.For example, suppose

that each processor obtains a global lock prior to every OM-INSERT or OM-PRECEDES

operation on the shared SP-order data structure, releasingthe lock when the operation is

complete. Although this parallel version of SP-order is correct, the locking can introduce

significant performance penalties.

Since there can be as many asΘ(T1) SP-order operations, and each one holds the lock

for an amortized constant number of steps, we hold the lock for L = Θ(T1) steps. Thus,

the apparent work becomesΘ(PT1), and the apparent critical-path length becomesΘ(T1).

Thus, the program executes inΩ(T1) time onP processors, which shows no asymptotic

improvement over the serial SP-order algorithm.

Of course, this scenario provides a worst-case example, andcommon programs may

not realize such a pessimistic bound. Nevertheless, locking can significantly inhibit the

scalability of a parallel algorithm, and we would like provable guarantees on scalability.

3.1 SP-bags

This section describes a variant of Feng and Leiserson’s serial SP-bags algorithm [30] used

by SP-hybrid. Since the SP-bags algorithm is written in terms of Cilk, I first review some

Cilk terminology. Then, I describe Feng and Leiserson’s algorithm. Next, I present an

improvement to the underlying data structure that exploitsthe structure of the algorithm.

This improvement results in a serial SP-maintenance algorithm that supports PRECEDES

queries in worst-case constant time and INSERTs in amortized constant time.

The Cilk language [14,32,52] is a fork-join programming language. A Cilk program is

27

Figure 3-1: The canonical parse tree for a generic Cilk procedure. The notationF represents the
parse tree of a spawned procedure, andu represents a thread. All the nodes in the shaded area
belong to the generic procedure, while all the nodes in the ovals belong to a single sync block.

syntactically similar to a C program with the addition of twokeywords,spawn andsync, to

support parallelism. These keywords are the Cilk equivalents of fork and join, respectively.

A Cilk procedure is composed of a series of sync blocks, which are implement through

a series ofspawn (fork) statements followed by a singlesync (join). All the descendent

threads of a sync block logically precede the threads of a subsequent sync block. All

the descendent threads of aspawned procedure are logically parallel with the subsequent

threads in the sync block.

Figure 3-1 shows the canonical Cilk parse tree as given by Fengand Leiserson [30].

The form of a Cilk parse tree is slightly more restrictive thanthat of a generic fork-join

program in Figure 1-3: at any given time, all the outstandingchildren of a procedure share

the same join point. Any SP parse tree can be represented as a Cilk parse tree with the same

work and critical path by adding additional S- and P-nodes and empty threads.

Feng and Leiserson’s SP-bags algorithm [30] uses the classical disjoint-set data struc-

ture with “union by rank” and “path compression” heuristics[20,53,55]. The data structure

maintains a collection of disjoint sets and provides three operations:

1. MAKE-SET(x) creates a new set whose only member isx.

2. UNION(x, y) unites the set containingx andy.

28

spawn procedureF :
SF ← MAKE-SET(F)
PF ← ∅

return from procedureF ′ to F :
PF ← UNION(PF , SF ′)

sync in a procedureF :
SF ← UNION(SF , PF)
PF ← ∅

Figure 3-2: The SP-bags algorithm described in terms of Cilk keywords as taken from [30]. When-
ever one of three actions occurs during the serial, depth-first execution of a Cilk program, the oper-
ations in the figure are performed.

3. FIND(x) returns a representative for the set containingx.

On a single processor, this data structure allows supportsm operations onn in O(mα(m,n))

time, whereα is Tarjan’s functional inverse of Ackermann’s function.

In SP-bags, each Cilk procedure maintains twobags(sets) of procedures with the fol-

lowing contents at any given time:

• The S-bagSF of a procedureF contains the descendant procedures ofF that log-

ically precede the currently executing thread. (The descendant procedures ofF in-

cludeF itself.)

• TheP-bagPF of a procedureF contains the descendant procedures ofF ’s completed

children that operate logically in parallel with the currently executing thread.

As SP-bags walks the parse tree of the computation, it inserts procedures into the bags,

unions the bags, and queries as to what type of bag a procedurebelongs to. Figures 3-2

and 3-3 give the SP-bags algorithm in terms of the Cilk keywords [30] and the parse tree,

respectively. Whenever spawning a new procedureF (entering the left subtree of a P-node),

new bags are created. The bagSF is initially set to containF , andPF is set to be empty.

Whenever a subprocedureF ′ returns to its parent (going from the left subtree to the right

subtree of a P-node), the contents ofSF ′ are unioned intoPF , since the descendents ofF ′

can execute in parallel with the remainder of the sync block in F . When async occurs

(returning from an internal node), the bagPF is emptied intoSF , since all ofF ’s executed

29

SP-BAGS(X,F)

� X is an SP-parse-tree node, andF is a function.
1 if ISLEAF(X)
2 then � X is a thread
3 F ← F ∪ {X}
4 EXECUTETHREAD(X,F)
5 return

6 if ISSNODE(X)
7 then SP-BAGS(left [X], F)
8 SP-BAGS(right [X], F)
9 else � X is a P-node

10 F ′ ← NEWPROCEDURE()
11 SP-BAGS(left [X], F ′)
12 PF ← UNION(PF , SF ′)
13 SP-BAGS(right [X], F)

14 SF ← UNION(SF , PF)
15 PF ← ∅

Figure 3-3: The SP-bags algorithm written in serial pseudocode to operate on the canonical Cilk
parsetree from Figure 3-1. SP-BAGS accepts as arguments an SP-parse-tree nodeX and the pro-
cedureF to whichX belongs. An internal nodeX in the parse tree has a left child,left [X], and
a right child,right [X]. Whether a node is an S-node or a P-node can be queried with ISSNODE.
Whether the node is a leaf can be queried with ISLEAF. NEWPROCEDURE[F ′] creates a new pro-
cedure objectF ′ associated with S- and P-bagsSF ′ andPF ′ , initialized toSF ′ ← MAKE-SET[F ′]
andPF ′ ← ∅, respectively.

descendents precede any future threads inF .

SP-bags supports SP-PRECEDESon two threads provided that one of the threads is the

currently executing thread. Correctness of SP-bags is captured by the following lemma.

Feng and Leiserson in [30] give a prove a similar lemma, and the proof is not repeated

here. Note that although the algorithm given in Figure 3-3 isgiven in terms of a parse tree,

it is correct only on parse trees that match the canonical Cilkparse tree.

Lemma 7 Consider any point during the execution of SP-bags on a Cilk-like SP parse

tree. Letui, belonging to a procedureF , be a thread that has been visited, and letuj be a

currently executing thread. Then, we haveui ‖ uj if and only ifui belongs to some P-bag.

Conversely,ui ≺ uj if and only ifui belongs to some S-bag.

30

When run on a parse-tree withT1 work andn P-nodes (or procedures), Feng and Leis-

erson’s SP-bags performsΘ(T1) SP queries in the worst case. Since each query takes

amortizedO(α(T1, n)) amortized time, SP-bags runs inO(α(T1, n)T1) time.

Improving SP-bags

The SP-bags algorithm can be improved by improving the underlying disjoint-sets data

structure. Gabow and Tarjan [33] describe a disjoint-sets data structure that runs in amortized-

constant time per operation when then elements being unioned are ordereda priori from

0, 1, . . . , n − 1, and unions are of the form UNION(i − 1, i).1 I first show that SP-bags

does adhere to this structure. I then describe a slight variant of Gabow and Tarjan’s data

structure that has worst-case-constant time for a FIND and amortized-constant time for a

UNION. Although Gabow and Tarjan [33] give most of the interestingaspects of the data

structure, I present a full description for completeness, because SP-hybrid in Section 3.2

must make one additional change to the data structure, and because this data structure im-

pacts the space usage in Section 4.3.

First, I show that SP-bags has the union structure required by Gabow and Tarjan’s data

structure. Consider the English ordering of procedures in the parse tree (corresponding to

the left-to-right tree walk performed by SP-bags). We indexthese proceduresF1, F2, . . . , Fn

according to the English ordering.2 The following lemma argues that at any point, all S-

and P-bags contain contiguous procedures. Thus, all union operations effectively have the

form UNION(Fi−1, Fi), and we can apply Gabow and Tarjan’s data structure.

Lemma 8 All UNIONs performed by SP-bags effectively have the formUNION(Fi−1, Fi).

Proof. We claim that the S- and P-bags corresponding to a procedureFi contain the

proceduresSFi
= {Fi, Fi+1, . . . , Fj} andPFi

= {Fj+1, Fj+2, . . . , Fk}, for somej andk

with i ≤ j ≤ k. As long as this property holds across the execution of the algorithm, then

we have the lemma. We prove this claim by induction on UNION operations.

1In fact, their algorithm is more general, but SP-bags follows this special case.
2Since the procedures are indexed by execution order, numbering the procedures on the fly is trivial.

31

As a base case, consider theSFi
andPFi

on creation. We haveSFi
= {Fi} andPFi

= ∅,

which satisfies the claim. Next, consider a UNION. There are two cases.

Case 1. Suppose that a UNION occurs because of async in a procedureFi. Then, by

assumption we haveSFi
= {Fi, Fi+1, . . . , Fj} andPFi

= {Fj+1, Fj+2, . . . , Fk}. Thus, the

result of the UNION is SFi
= {Fi, Fi+1, . . . , Fk} andPFi

= ∅.

Case 2. Suppose that a UNION occurs because of areturn from a procedureFi′ to

a procedureFi. Then, we must haveFi′ = Fk+1 becauseFi′ follows Fk in the English

ordering of procedures. Moreover, since we assume thatSF
i′

= {Fi′ , Fi′+1, . . . , Fk′}, we

end withPFi
= {Fj+1, Fj+2, . . . , Fk, Fk+1, . . . , Fk′}.

Given Lemma 8, we could apply Gabow and Tarjan’s [33] data structure as a black box

to achieve a serial SP-bags algorithm that runs in amortizedconstant-time per operation.

For SP-hybrid analysis in Section 3.4, however, where the amortization occurs is important.

The following data structure is similar to the simplified version of Gabow and Tarjan’s

data structure, except that the FINDs and MAKESETs are worst-case constant-time. Recall

that we are givenn elements0, 1, . . . , n−1, and we perform unions of the form UNION(i−

1, i). First, assume that then elements are known a priori. We relax this assumption later.

To achieve a linear-time union-find data structure, divide then elements intomicrosets.

The microset boundaries are fixed and have nothing to do with the current state of the sets

in the data structure. Each of these microsets contains up tow contiguous elements in the

range0, 1, . . . , n − 1, wherew is the number of bits in a machine word. Specifically, the

ith microset3 contains the elementsiw, iw+1, . . . , (i+1)w−1. Only the last microset can

contain fewer thanw elements. Thus, we have⌈n/w⌉ microsets. Note thatw = Ω(lg n),

since we must be able to address each element, giving usO(n/ lg n) microsets.

Each elementx belongs to a microsets = micro(x). Each element is assigned a

microset indexindex (x) according to its position in the microset. That is, the “smallest”

element gets an index of0, next smallest is1, etc., up to an index ofw− 1. We call the first

item (index of 0) in the microsets the root of the microset. Similarly, each microset has

a list of its children as an arraynodes[0 . . w − 1]. In particular,nodes[index (x)] = x if x

belongs to microsets. We maintain all the microsets as a linked list, with pointersprev(s)

3We begin numbering microsets at 0.

32

andnext(s) to the adjacent smaller and larger, respectively, microsets.

Microsets support the following operations:

• M ICROFIND(x) returns a pointer to the “smallest” element that belongs to both the

same microset and the same logical set asx.

• M ICROUNION(x) unions the logical sets containingx andx− 1, wherex andx− 1

belong to the same microset.4 That is to say, all subsequent MICROFINDs return the

same result if performed on any element that belongs to both the same microset asx

(andx− 1) and the same logical set asx or x− 1.

We describe these operations later in the section. Both of these operations are worst-case

constant time.

We group these microsets intomacrosets. Unlike the microset structure, the macroset

structure does correspond to sets represented by the data structure. Each microsets has a

single macroset nodemacro(s). In some sense,macro(s) really corresponds to the root of

the microsets. Macrosets support the following operations:

• MACROFIND(s) returns the “smallest” microset in the same macroset ass.

• MACROUNION(s, s′) unions the macroset containings with the macroset containing

s′. These sets must be contiguous.

The implementation of macrosets is the simple linked-list implementation from [20] with

the “weighted-union heuristic.” On a MACROUNION, each element in the smaller set is

pointed at the representative of the larger set. The set representative maintains a pointer

to the smallest element in the set. This technique results inworst-case constant time

MACROFINDs and a total ofO(m lg m) time for all the MACROUNIONs, wherem is the

number of elements. In our case, there areO(n/ lg n) macroset nodes, so the total running

time of unions isO((n/ lg n) lg(n/ lg n)) = O(n).

The following invariant describes the representation of a logical set.

Invariant 9 Suppose that a logical setS contains exactly the elementsx, x + 1, . . . , y,

belonging to microsetssi, si+1, . . . , sj, wheresk denotes thekth smallest microset. Then

4Sincex andx − 1 must belong to the same microset, calling a MICROUNION on the root of a microset
is not supported.

33

Figure 3-4: The representation of a set containing elements3, 4, . . . , 19 in our disjoint-sets data
structure withn = 24 andw = 6. The dark-gray rectangles on the bottom represent elements
grouped into microsets. The diamonds above are the macroset nodes corresponding to each of the
microsetss0, s1, s2, s3. The light-gray rounded rectangle shows the logical set being represented,
containing elements3, 4, . . . , 19. The light-gray oval above shows the corresponding macroset.

FIND(x)

1 x← M ICROFIND(x)
2 if index (x) = 0
3 then s← MACROFIND(micro(x))
4 s← prev(s)
5 x← M ICROFIND(nodes(w − 1))
6 return x

Figure 3-5: The FIND operation written in serial pseudocode. MACROFIND(s) returns the smallest
microset contained in the same macroset ass. M ICROFIND(x) returns the smallest element in the
same logical set and microset as the elementx.

there exists a macroset corresponding to the setS containing exactlysi+1, si+2, . . . , sj. In

other words,sk belongs to the macroset if and only if some element insk belongs toS and

the largest element in microsetsk−1 also belongsS.

Figure 3-4 illustrates this representation of the set3, 4, . . . , 19. The elements are con-

tained in microsetss0, s1, s2, s3, and so the corresponding macroset contains only microsets

s1, s2, s3.

Figure 3-5 gives pseudocode for the FIND(x) operation. This operation returns the

smallest element belonging to the same logical set asx. FIND simply searches for the

smallest element in the microset containingx in line 1. If this element is the root of the mi-

croset, then it looks for the smallest microset whose root iscontained in the same macroset.

This value is exactly what is returned by MACROFIND in line 3 due to Invariant 9. Then,

line 5 checks how far the set spans into the previous microset. For example, consider per-

34

UNION(x, y)

1 if x > y
2 then swapx↔ y
3 x′ ← FIND(x)
4 y′ ← FIND(y)
5 if x′ = y′

6 then � x andy are already in the same set
7 return

8 if index (y′) 6= 0
9 then M ICROUNION(y′)

10 else MACROUNION(next(micro(x′)),micro(y′))
11 if micro(x′) 6= micro(y′)
12 then s← next(micro(y′))
13 if FIND(nodes(0)) = FIND(y′)
14 then MACROUNION(micro(y′), s)

Figure 3-6: The UNION operation written in serial pseudocode. FIND(x), as shown in Figure 3-5,
returns the smallest element in the same set asx. M ICROUNION(x) unionsx andx− 1 in the same
microset. MACROUNION(s, s′) unions the neighboring macrosets containings ands′, respectively.

forming FIND(19) on the set shown in Figure 3-4. With the first MICROFIND in line 1,

we find the element18. This element is the root of the microsets3. The MACROFIND in

line 3 returnss1. Invariant 9 implies that some ofs0 is contained in the set. We, therefore,

perform MICROFIND(5) in line 5, which returns the answer—the node3.

Figure 3-6 gives the implementation of a UNION(x, y) operation. Without loss of gen-

erality, y is the larger item. We first check that both items belong to different sets. Then,

we look for the smallest itemy′ in the set containingy and perform a MICROUNION. Since

x < y, and we union only contiguous elements, the intention must be to uniony′ with y′−1,

and so a MICROUNION is correct. Lines 10–14 maintain Invariant 9—that macrosets con-

tain all but the first microset spanned by the logical set. This update may involve up to two

MACROUNIONs.

The FIND takesO(1) time in the worst-case since each line has worst-case time. The

UNION is dominated by the cost of a MACROUNION, which is amortized toO(lg n). I

do not prove correctness here, since this data structure is quite similar to Gabow and Tar-

35

M ICROUNION(x)

1 s← micro(x)
2 mark s[index (x)]← 0.

Figure 3-7: The MICROUNION operation written in serial pseudocode.

jan’s [33].

Microsets

It remains to describe the implementation of the MICROFIND and MICROUNION opera-

tions. These operations run in constant time on a random-access machine [20], where ALU

operations (we use a bit-shift and modulo operation) on a machine word take constant time.

For each microset, we keep a tablemark s[0 . . w − 1]. We usemark s[x] to indicate

whetherx belongs to the same set as any of its predecessors. Ifmark s[x] = 0, thenx and

x− 1 belong to the same set. Conversely, ifmark s[x] = 1, thenx andx− 1 do notbelong

to the same set. We treatmark s as an integer so that we can support arithmetic operations.

In particular, ifindex (x) = k, thenmark s[x] corresponds to the(k + 1)st most significant

bit in the wordmark s.

The operation MICROUNION(x) trivially just sets the appropriate bit in the mark table.

This operation is given in Figure 3-7.

To facilitate the arithmetic operations used by MICROFINDs, it is useful to have a way

to go betweenk and a bit string containing a1 in only thekth bit (i.e., the integer2w−k−1).

We provide two functions that work on values with0 ≤ k ≤ w − 1 andk ≤ n − 1. Note

that we do handle the case in whichn is smaller than the size of a word.

• NUMTOSTRING(k) returns the bit string2w−k−1.

• STRINGTONUM(2w−k−1) returnsk.

The function NUMTOSTRING can be trivially implemented as a bit-shift operation.5 Thus,

NUMTOSTRING is a constant-time operation.

5Alternatively, we could precompute an array of sizemin {w, n} and fill in all the values. This construc-
tion does not require a variable-length bit shift.

36

M ICROFIND(x)

1 s← micro(x)
2 i← NOT(mark s−NUMTOSTRING(index (x)))
3 i← AND(i,mark s)
4 return nodes[STRINGTONUM(i)]

Figure 3-8: The MICROFIND operation written in serial pseudocode. The NOT operator performs
a bitwise complement of the argument, and AND performs a bitwise conjunction of the two argu-
ments.

The STRINGTONUM function is a bit more challenging to perform in constant time. We

construct an arrayA of sizeΘ(min {w, n}) and provide a hash functionh that indexes into

the table. We precompute themin {w, n} values in this table such thatA[h(2w−k−1)] = k.

To precompute the tableA, we computeA[h(NUMTOSTRING(k))] ← k, for all appropri-

ate values ofk. The main difficulty is picking a good hash functionh that hashes onto a

range of sizeΘ(min {w, n}) without any collisions for appropriate keys. One such hash

function is given in Appendix A.

The operation MICROFIND(x), as shown in Figure 3-8, returns the “smallest” element

(most significant bit) in the microsets = micro(x) that belongs to the same set asx. This

operation is equivalent to searching for the nearest1 preceding the(index (x) + 1)st most

significant bit in the wordmark s. To perform this operation, we simply subtract a1 from

themark s[index (x)], bitwise complement the resulting word, and perform a bitwise and

with mark s. When subtracting, all0s between the(index (x) + 1)st bit and the preceding

1 become1s. The preceding1 becomes a0, and all other bits remain the same. Thus,

when complementing and anding, the only bit that falls out isthe preceding1. Given this

bit string, a call to STRINGTONUM gives the index of the bit. For example, consider a

M ICROFIND(x), wherex belongs to the microsets, and index (x) = 4, andmarks is

the bit string11000011. Subtracting NUMTOSTRING(index (x)) = 00001000 from mark s

yields10111011. The bitwise complement of this string is01000100. The subsequent AND

operation of this string andmark s yields01000000, which is a string isolating the nearest

1 preceding the5th most significant bit.

37

Incremental set union

I now relax the assumption that then items are known a priori. In other words, I describe

how to support the MAKE-SET operation in worst-caseO(1) time. I do, however, impose

the restriction that MAKE-SETs are performed in order. Since SP-bags performs MAKE-

SET operations in the same order as procedures are discovered, Lemma 8 implies that this

data structure does apply.

Once the number of items exceedsw, supporting worst-caseO(1) MAKE-SET oper-

ations is easy. We just store a pointer to the last element created. The next MAKE-SET

either puts the item in the next slot in the same microset, if there is space, or creates a new

microset and uses the item as the root.

Dealing with the possibility thatn < w, however, introduces some complications. We

have an arraynodes associated with the microset and an arrayA used by STRINGTONUM.

If m < w is the number of MAKE-SETs performed so far, we require the size of the

tables to beΘ(m). To achieve this restriction, we use a standard doubling technique (as

in dynamic tables [20, Section 17.4]). In the beginning, we allocate arrays of constant

size (and choose an appropriate hash function for STRINGTONUM). On each subsequent

MAKE-SET operation, we fill in the next table entry. Each time the number m of items

doubles, we allocate new arrays of size2m (and create a new hash function) and fill in the

arrays again. Thus, each time the size doubles, we doO(m) work. We amortize this work

against theΘ(m) MAKE-SETs that occurred since the last doubling to get amortizedO(1)

time MAKE-SETs.

We deamortize this process to get worst-caseO(1) time MAKE-SETs. The deamortiza-

tion technique is straightforward. We keep two versions of each array. Whenever the value

of m doubles, we now allocate a new array of size4m. Thus, at this doubling point, one

array has size2m, and one has size4m. On every subsequent MAKE-SET, we fill in the

appropriate table entry in the smaller table, and we fill in2 entries in the larger table. Any

queries during this time query against the smaller table, since the larger table is incomplete.

At the time the next doubling occurs, since both tables contain entries for all known values,

the smaller table can be discarded and replaced by a new tableof size4m.

38

3.2 SP-hybrid

This section gives describes the SP-hybrid algorithm. I begin by describing how an SP

parse tree is provided as input to SP-hybrid and explaining some of the properties of Cilk

that SP-hybrid exploits. I then overview the two-tier structure of the algorithm which com-

bines elements of SP-order from Chapter 2 and SP-bags from Section 3.1 and [30]. I then

give SP-hybrid itself and present pseudocode for its implementation.

SP-hybrid’s input and Cilk

Like the SP-order algorithm, the SP-hybrid algorithm accepts as input a fork-join multi-

threaded program expressed as an SP parse tree. The SP-hybrid algorithm provides weaker

query semantics than the serial SP-order algorithm; these semantics are exactly what is

required for on-the-fly data-race detection. Whereas SP-order allows queries of any two

threads that have been unfolded in the parse tree, SP-hybridrequires that one of the threads

be a currently executing thread. For a fork-join program with T1 work and a critical path of

lengthT∞, the parallel SP-hybrid algorithm can be made to run (in Cilk)in O(T1/P+PT∞)

time.

Although SP-hybrid provides these performance bounds for any fork-join program, it

can only operate “on the fly” for programs whose parse trees unfold in a Cilk-like man-

ner. Specifically, SP-hybrid is described and analyzed as a Cilk program, and as such,

it takes advantage of two properties of the Cilk scheduler to ensure efficient execution.

First, any single processor unfolds the parse tree left-to-right. Second, it exploits the prop-

erties of Cilk’s “work-stealing” scheduler, both for correctness and efficiency. Although

SP-hybrid operates correctly and efficiently on thea posterioriSP parse tree for any fork-

join program, it only operates “on-the-fly” when the parse tree unfolds similar to a Cilk

computation.

Cilk employs a “work-stealing” scheduler [15, 32] which executes any multithreaded

computation having workT1 and critical-path lengthT∞ in O(T1/P + T∞) expected time

on P processors, which is asymptotically optimal. The idea behind work stealing is that

when a processor runs out of its own work to do, it “steals” work from another processor.

39

Thus, the steals that occur during a Cilk computation break the computation, and hence

the computation’s SP parse tree, into a set of “traces,” where each trace consists of a set of

threads all executed by the same processor. These traces have additional structure imposed

by Cilk’s scheduler. Specifically, we require the following scheduling property to guarantee

correctness of SP-hybrid.

Property 10

1. Whenever a thief processor steals work from a victim processor, the work stolen

corresponds to the right subtree of the P-node that is highest in the SP-parse tree

walked by the victim.

2. A processor expands the subtree it is working on in a depth-first, left-to-right man-

ner, and steals only when its subtree has been fully expanded.

Cilk’s scheduler provides an upper bound ofO(PT∞) steals with high probability [10,15],

which bounds the number of traces created by the algorithm.

The SP-hybrid algorithm

The SP-hybrid algorithm uses a two-tiered hierarchy with a global tier and a local tier

in order to overcome the scalability problems with lock synchronization. As SP-hybrid

performs a parallel walk of the input SP parse tree, it partitions the threads into traces on

the fly, where each trace consists of threads that execute on the same processor. Much as

in the naive parallelization of SP-order, the global tier ofSP-hybrid uses a shared SP-order

algorithm to maintain the relationships between threads belonging to different traces. The

local tier uses the serial SP-bags algorithm to maintain therelationships between threads

belonging to the same trace.

The goal of this two-tier structure is to reduce the synchronization delays for shared data

structures, that is, processors wasting their time by waiting on locks. SP-hybrid’s shared

global tier minimizes synchronization delays in two ways. First, a lock-free scheme is

employed so that OM-PRECEDEScan execute on the shared data structure without locking.

Second, the number of insertions is reduced toO(PT∞), thereby reducing the maximum

40

waiting time toO(P 2T∞), since at mostP − 1 processors need to wait during the work of

any insertion.

For the purposes of explaining how SP-hybrid works, we maintain traces explicitly.

Formally, we define atrace U to be a (dynamic) set of threads that have been executed

on a single processor. ThecomputationC is a dynamic collection of disjoint traces,

C = {U1, U2, . . . , Uk}. Initially, the computation consists of a single empty trace. As

the computation unfolds, each thread is inserted into a trace.

Whenever Cilk’s scheduler causes a steal from a victim processor that is executing a

traceU , SP-hybrid splitsU into five subtraces〈U (1), U (2), U (3), U (4), U (5)〉, modifying the

computationC as follows:

C ← C − U ∪ {U (1), U (2), U (3), U (4), U (5)} .

Consequently, if the Cilk scheduler performss steals,|C| = 4s + 1. Since the Cilk sched-

uler provides a bound ofO(PT∞) steals with high probability, the expected size ofC is

O(PT∞). The principal use of the SP-bags algorithm from [30] and Section 3.1 is that it

enables efficient splitting.

Details of the two tiers of SP-hybrid are presented later in the section. For now, it is

sufficient to understand the operations each tier supports.The global tier supports the op-

erations OM-INSERTand OM-PRECEDESon English and Hebrew orderings. In addition,

the global tier supports a OM-MULTI -INSERT operation, which inserts several items into

an order-maintenance data structure. The local tier supports LOCAL-INSERTand LOCAL-

PRECEDESon a local (SP-bags) data structure. It supports an operation SPLIT, which

partitions the threads in a trace when a steal occurs. It alsosupports an operation FIND-

TRACE, which returns the current trace to which a thread belongs. The implementation of

all the local-tier operations must be such that many FIND-TRACE operations can execute

concurrently.

Figure 3-9 presents the parallel pseudocode for the SP-hybrid algorithm, with details of

the local tier operations omitted. (See Section 3.1 and [52]for a more complete presentation

of the Cilk language.) As in the SP-order and SP-bags algorithms, SP-hybrid performs a

41

SP-HYBRID(X,U)

� X is a SP-parse-tree node, andU is a trace
1 if ISLEAF(X)
2 then � X is a thread
3 U ← U ∪ {X}
4 EXECUTETHREAD(X)
5 return U

6 if ISSNODE(X)
7 then � X is an S-node
8 U ′ ← SP-HYBRID(left [X], U)
9 U ′′ ← SP-HYBRID(right [X], U ′)

10 return U ′′

� X is a P-node
11 U ′ ← spawn SP-HYBRID(left [X], U)
12 if SYNCHED()
13 then � the recursive call on line 11 has completed
14 U ′′ ← spawn SP-HYBRID(right [X], U ′)
15 sync
16 return U ′′

� A steal has occurred
17 wait until parentstolen[X] = TRUE

18 ACQUIRE(lock)
19 create new tracesU (1), U (2), U (4), andU (5)

20 OM-MULTI -INSERT(Eng , U (1), U (2), U, U (4), U (5))
21 OM-MULTI -INSERT(Heb, U (1), U (4), U, U (2), U (5))
22 SPLIT(U,X,U (1), U (2))
23 parentstolen[left [X]]← TRUE

24 RELEASE(lock)
25 spawn SP-HYBRID(right [X], U (4))
26 sync
27 return U (5)

Figure 3-9: The SP-hybrid algorithm written in parallel pseudocode, with the local-tier operations
omitted. SP-HYBRID accepts as arguments an SP-parse-tree nodeX and a traceU , and it returns a
trace. The algorithm is essentially a tree walk that carries with it a traceU into which new threads
are inserted. The SYNCHED procedure determines whether the current procedure is synchronized
(whether async would cause the procedure to block), which indicates whether a steal hasoccurred.
The OM-MULTI -INSERT(L, A, B, U, C, D) inserts the objectsA, B, C, andD before and afterU
in the order-maintenance data structureL. TheEng andHeb data structures maintain the English
and Hebrew orderings of traces. The SPLIT procedure uses nodeX to partition the existing threads
in traceU into three sets, leaving one of the sets inU and placing the other two intoU (1) andU (2).

42

SP-PRECEDES(ui, uj)

28 Ui ← FINDTRACE(ui)
29 Uj ← FINDTRACE(uj)
30 if Ui = Uj

31 then return LOCAL-PRECEDES(ui, uj)
32 if OM-PRECEDES(Eng , Ui, Uj) and

OM-PRECEDES(Heb, Ui, Uj)
33 then return TRUE

34 return FALSE

Figure 3-10: The SP-Precedes precedure for the SP-Hybrid algorithm given in Figure 3-9. SP-
PRECEDESaccepts two threadsui anduj , whereui must be a currently executing thread, and returns
TRUE if ui ≺ uj . FINDTRACE and LOCAL-PRECEDESare local-tier operations to determine what
trace a thread belongs to and the relationship between threads in the same trace, respectively.

left-to-right walk of the SP parse tree, executing threads as the parse tree unfolds. Each

thread is inserted into a trace, which is local to the processor executing the thread. The

structure of the trace forms the local tier of the SP-hybrid algorithm and is described further

later in the section. The full SP-hybrid algorithm can be obtained by merging Figure 3-9

with the SP-parse-tree walk performed by the local-tier algorithm.

SP-hybrid associates each node in the SP parse tree with a single trace by accepting a

traceU as a parameter in addition to a nodeX, indicating that the descendant threads of

X should be inserted into the traceU . When SP-HYBRID(X,U) completes, it returns the

trace with which to associate the next node in the walk of the parse tree. In particular, for

an S-nodeX, the traceU ′ returned from the walk of the left subtree is passed to the walk of

X ’s right subtree; see Lines 6–10. The same is true for P-nodes, unless a the right subtree

has been stolen; see lines lines 11–16.

Lines 1–5 deal with the case whereX is a leaf and therefore a thread. As in SP-

ORDER, the queries to the SP-maintenance data structure occur in the EXECUTETHREAD

procedure. In our analysis in Section 3.4, we shall assume that the number of queries is

at most the number of instructions in the thread. The thread is inserted into the provided

traceU in line 3 before executing the thread in line 4. Lines 6–10 andlines 11–27 handle

the cases whereX is an S- or P-Node, respectively. For both P-nodes and S-nodes, The

procedure walks toX ’s left then right subtree. For an S-node, however, the left subtree

43

must be fully expanded before walking to the right subtree.

During the time that a P-node is being expanded, a steal may occur. Specifically, while

the current processor walks the left subtree of the P-node, another processor may steal

(the walking of) the right subtree. When a steal is detected (line 12—SYNCHED returns

FALSE), the current trace is split into five traces—U (1), U (2), U (3), U (4), andU (5)—with a

call to the SPLIT procedure. This SPLIT procedure, and the partitioning into subtraces, is

described further later in the section. The SP-hybrid algorithm proceeds to order the traces,

inserting the five new traces into the global SP-maintenancedata structures. TheEng order

maintains the English ordering of the traces, as follows:

〈U (1), U (2), U (3), U (4), U (5)〉 .

Similarly, theHeb order maintains the Hebrew ordering of the traces:

〈U (1), U (4), U (3), U (2), U (5)〉 .

We use a global lock to serialize these trace constructions and insertions into the shared

order-maintenance data structure. For correctness, we require that the parent procedure be

stolen (and have its traces split) before the child is stolen. To enforce this condition, we

introduce the fieldparentstolen for each node in the parse tree. This value is initially set to

FALSE. When a P-node is stolen, we updateparentstolen for the left child of the P-node.

In this way, we guarantee that the trace splitting in lines 19–23 occurs only when all the

ancestor procedures have been dealt with.

If a steal does not occur, we execute lines 14–16. Notice thatif a steal does not occur

anywhere in the subtree rooted at some nodeX, then we execute only lines 1–16 for the

walk of this subtree. Thus, all descendant threads ofX belong to the same trace, thereby

satisfying the requirement that a trace be a set of threads that execute on the same processor.

The pseudocode for SP-PRECEDESis shown in Figure 3-10. A SP-PRECEDESquery

for threadsui anduj first examines the order of their respective traces. If the two threads

belong to the same trace, the local-tier (SP-bags) data structure determines whetherui

precedesuj. If the two threads belong to different traces, the global-tier SP-order data

44

structure determines the order of the two traces.

The global tier

The global tier is essentially a shared SP-order data structure, and locking is used to mediate

concurrent operations. We now describe the global tier in more detail. We show how to

support concurrent queries without locking, leaving only insertions as requiring locking.

We focus on making OM-PRECEDESoperations on the global tier run efficiently with-

out locking, because the number of concurrent queries may belarge. If we were to lock the

data structure for each ofQ queries, each query might be forced to wait for insertions and

other queries, thereby increasing the apparent work by as much asΘ(QP) and nullifying

the advantages ofP -way parallelism. Thus, we lock the entire global tier when an insertion

occurs, but use a lock-free implementation for the presumably more-numerous queries.

The global tier is implemented using anO(1)-amortized-time order-maintenance data

structure such as those described in [12, 23, 58]. The data structure keeps a doubly linked

list6 of items and assigns an integer label to each inserted item. The labels are used to

implement OM-PRECEDES: to compare two items in the linear order, we compare their

labels. When OM-INSERT adds a new item to the dynamic set, it assigns the item a label

that places the item into its proper place in the linear order.

Sometimes, however, an item must be placed between two itemslabeledi andi + 1, in

which case this simple scheme does not work. At this point, the data structure relabels some

items so that room can be made for the new item. We refer to the dynamic relabeling that

occurs during an insertion as arebalance. Depending on how “bunched up” the labels of

existing items are, the algorithm may need to relabel different numbers of items during one

rebalance than another. In the worst case, nearly all of the items may need to be relabeled.

When implementing a rebalance, therefore, the data structure may stay locked for an

extended period of time. The goal of the lock-free implementation of OM-PRECEDESis

to allow these operations to execute quickly and correctly even in the midst of rebalancing.

We modify the order-maintenance data structure to contain two sets of labels—an itemx

6Actually, a two-level hierarchy of lists is maintained, butthis detail is unnecessary to understand the
basic workings of lock-free queries, and the one-level scheme we describe can be easily extended.

45

has labelslabel1[x] and label2[x]. Implementation of a rebalance maintains the following

properties:

• When no rebalance is in progress,label1[x] = label2[x] for all itemsx in the list, and

the labels respect the total order (i.e.,label i[x] < label i[y] if and only if x ≺ y).

• At any instant in time (during a rebalance), at least one set of labels is consistent with

the total order.

• A concurrent query can detect whether a rebalance in progress has corrupted its view

of the linear order.

We use a counter (which starts at1) to support the third property. When the counter is

odd, the set oflabel1 respects the total order. When the counter is even, the set oflabel2 is

valid. The algorithm actually proceeds in five phases, two ofwhich implement the normal

rebalance:

1. Determine the range of items to rebalance.

2. Assign the desired label to each item’slabel2.

3. Increment the counter indicating that a concurrent queryshould read thelabel2’s.

4. Assign the desired label to each item’slabel1.

5. Increment the global counter indicating that the rebalance has completed and that a

concurrent query should read thelabel1.

This rebalancing strategy modifies each item twice while guaranteeing that a concurrent

read can get a consistent view of the linear order.

OM-PRECEDESquery checks the counter to determine whether a rebalance isin progress.

To compare itemsX andY , it first determines the parity of the counter, then examinesthe

appropriate labels ofX andY , and finally checks the counter again. If the counter has not

changed between readings, then the query attemptsucceeds, and the order of labels deter-

mines the order ofX. Otherwise, the query attemptfails and is repeatedly retried until it

succeeds.

Given that queries attempts can fail, they may increase the apparent work and the ap-

parent critical-path length of the computation. Section 3.4 bounds these increases.

46

The local tier

We now describe the local tier of the SP-hybrid algorithm. Weshow how a trace running

locally on a processor can be split when a steal occurs. By using the SP-bags algorithm to

implement the trace data structure, a split can be implemented inO(1) time. Finally, we

show that these data structures allow the series-parallel relationship between a currently

running thread and any other previously executed or currently executing thread to be deter-

mined.

Besides maintaining the SP relationships within a single trace, the local tier of the SP-

hybrid algorithm supports the splitting of a trace into subtraces. A split of a traceU occurs

when the processor executingU becomes the victim of a steal. The work stolen corresponds

to the right subtree of the P-nodeX that is highest in the SP-parse tree walked by the victim.

When a traceU is split around a P-nodeX, the local tier creates five subtraces:7

1. U (1) = {u ∈ U : u ≺ X}, the threads that precedeX.

2. U (2) = {u ∈ U : u ‖ X andu 6∈ descendants(X)}, the threads parallel toX that do

not belong to a subtree ofX.

3. U (3) = {u ∈ U : u ∈ descendants(left [X])}, the threads inX ’s left subtree.

4. U (4) = {u ∈ U : u ∈ descendants(right [X])}, the threads inX ’s (stolen) right sub-

tree. This set is initially empty.

5. U (5) = {u ∈ U : X ≺ u}, the threads that followX. This set is also initially empty.

We call the properties of these sets thesubtrace propertiesof U .

The SPLIT procedure from Figure 3-9 implements the split. SinceU (4) andU (5) are

initially empty, they are not provided as parameters to the SPLIT procedure in line 22 of the

SP-HYBRID pseudocode from Figure 3-9. The setU (3) is simply those threads that remain

in U after those fromU (1) andU (2) have been split off.

Let us look at these subtraces in terms of the parse tree. Figure 3-11 shows the subtraces

formed when a processor steals the tree walk rooted atright [X]. Since all the threads con-

tained inU (1) have been executed, no more changes to this subtrace will occur. Similarly,

the threads contained inU (2) have already been executed. The subtraceU (3) is partially

7In fact, the subtracesU (2) andU (3) can be combined, but we keep them separate to simplify the proof of
correctness.

47

Figure 3-11: The split of a traceU around a P-nodeX in terms of a canonical Cilk parse tree (see
Figure 3-1). The notationF ′ represents the parse tree of a spawned procedure, andu represents a
thread. The tree walk ofU is executing inleft [X] when the subtree rooted atright [X] is stolen by a
thief processor. The shaded regions contain the nodes belonging to each of the subtraces produced
by the split. The two circles not enclosing any text indicate portions of the parse tree that have not
yet been visited by the tree walk ofU .

populated, and the processor executing the walk ofU will continue to put threads intoU (3).

The subtraceU (4), which is initially empty, corresponds to the threads encountered during

the thief processor’s tree walk. The subtraceU (5), which is also initially empty, represents

the start of the next sync block in the procedure.

When the subtraces are created, they are placed into the global tier using the concurrent

SP-order algorithm. The ordering of the traces resulting from the steal in Figure 3-11

is shown in Figure 3-12. All the threads inU (1) precede those inU (3), U (4), andU (5).

Similarly, all the threads (to be visited) inU (5) serially follow those inU (1), U (2), U (3), and

U (4). Thus, we placeU (1) first andU (5) last in both the English and Hebrew orders. Since

any pair of threads drawn from distinct subtracesU (2), U (3), andU (4) operate logically in

parallel, we placeU (2), U (3), andU (4) in that order into the English ordering andU (4), U (3),

andU (2) in that order into the Hebrew ordering. Although there is no clear relationship

among all the threads inU (1) andU (2), since neither of these traces contains unexecuted

threads, SP-hybrid never compares them.

SP-bags can be adapted to implement the local-tier operations LOCAL-INSERT, LOCAL-

48

Figure 3-12: An ordering of the new traces resulting from a steal as shown in Figure 3-11. Each
circle represents a trace.

PRECEDES, FIND-TRACE, and SPLIT required by SP-hybrid. All these operations, except

FIND-TRACE, are executed only by the single processor working on a trace. The FIND-

TRACE operation, however, may be executed by any processor, and thus the implementa-

tion must operate correctly in the face of multiple FIND-TRACE operations.

The SP-bags implementation used by SP-hybrid follows that of Section 3.1, except that

we must additionally support the SPLIT operation. At the time of a split, the subtracesU (1),

U (2), andU (3) may all contain many threads. Thus, splitting them off from the traceU may

take substantial work. Fortunately, SP-bags overcomes this difficulty by allowing a split to

be performed inO(1) time.

Consider the S- and P-bags at the time a thread (i.e., the rightsubtree of the P-nodeX

in Figure 3-11) in the top-level procedureF is stolen and the five subtracesU (1), U (2), U (3),

U (4), andU (5) are created. The S-bag ofF contains exactly the threads in the subtraceU (1).

Similarly, the P-bag ofF contains exactly the threads in the subtraceU (2). The SP-bags

data structure is such that moving these two bags to the appropriate subtraces requires only

O(1) pointer updates. The subtraceU (3) owns all the other S- and P-bags that belonged to

the original traceU , and thus nothing more need be done, sinceU (3) directly inheritsU ’s

threads. The subtracesU (4) andU (5) are created with empty S- and P-bags. (AlthoughU (4)

andU (5) belong to the same procedure asU (1), we modify SP-bags to treat them as new

procedures.) Thus, the split can be performed inO(1) time, since onlyO(1) bookkeeping

needs to be done including updating pointers.

We must make one additional change to SP-bags from Section 3.1 to get an efficient SP-

hybrid algorithm. The analysis in Section 3.4 bounds the number of steals by arguing that

each time a steal occurs, we make headway in the critical pathof the computation. Since a

UNION is amortized, we may increase the critical path of the computation. In particular, the

49

SP-BAGS(X,F)

� X is an SP-parse-tree node, andF is a function.
1 if ISLEAF(X)
2 then � X is a thread
3 F ← F ∪ {X}
4 EXECUTETHREAD(X,F)
5 return F

6 if ISSNODE(X)
7 then F ← SP-BAGS(left [X], F)
8 return SP-BAGS(right [X], F)

� X is a P-node
9 F ′ ← NEWPROCEDURE()

10 spawn SP-BAGS(left [X], F ′)
11 if SYNCHED()
12 then PF ← UNION(F, PF , SF ′)
13 else � A steal occurred.
14 parentstolen[F ′]← TRUE

15 Freturn ← NEWPROCEDURE()
16 F ← NEWPROCEDURE()
17 spawn SP-BAGS(right [X], F)
18 sync

19 SF ← UNION(F, SF , PF)
20 PF ← ∅
21 return Freturn

Figure 3-13: The local-tier SP-bags algorithm written in parallel pseudocode to operate on the
canonical Cilk parsetree from Figure 3-1. This implementation is similar to Figure3-3 except with
the implicit addition of a FAST-MACROUNION where necessary.parentstolen[F] indicates whether
the parent procedure ofF has been stolen (meaning thatF is available to be stolen). Similarly to
SP-hybrid, this version of SP-bags returns a function into which future threads should be inserted.

50

MACROUNION component may take up toΘ(n) time, wheren is the number of microsets.

To compensate for this amortization, we also provide a FAST-MACROUNION(x, y), which

simply points the representative of the macroset containing y at the representative of the

macroset containingx. This operation takes constant time.

We call FAST-MACROUNION(x, y) instead of MACROUNION(x, y) whenever the pro-

cedure making the call is ready to be stolen. Specifically, wemodify the UNION from

Figure 3-6 as follows. We make UNION(F, x, y) take three arguments instead of the orig-

inal two (x, y). Whenever performing a MACROUNION, the UNION operation performs

a constant number of steps of the MACROUNION, then checks whetherF is ready to be

stolen. If so, we finish with a FAST-MACROUNION. If not, then we perform a constant

number of steps and check again. In this way, we guarantee that we never perform more

than a constant amount of extra work (due to SP-maintenance)when a thread is waiting to

be stolen. Obviously, correctness of the data structure is unaffected by this change, but it

is no longer obvious that FINDs are fast. In Section 3.4, we argue that time to perform a

FIND is still O(1) in the worst-case.

Figure 3-13 gives parallel pseudocode for the local-tier SP-bags algorithm. This ver-

sion of SP-bags returns a procedure ID into which future threads should be inserted, which

is conceptually similar to SP-hybrid from Figure 3-9. Whenever a steal occurs, as shown

in lines 13–16, we create new “procedures” to handle the tracesU (4) andU (5). The new

procedure, corresponding to traceU (5), is returned to be handled by the appropriate ances-

tor S-node. This version of SP-bags also uses the FAST-MACROUNION operations where

appropriate. Whenever the parent of a procedureF has been stolen,F is available to be

stolen, and a FAST-MACROUNION is preferred. We use the fieldparentstolen[F] to in-

dicate this fact. If we call a UNION(F, x, y), then the UNION periodically checks against

parentstolen[F] to see whether it should switch to the FAST-MACROUNION.

Even though Figure 3-13 gives a parallel implementation of SP-bags, the code still

reflects a serial algorithm. That is, SP-bags is still only correct if run on a single processor—

this version of SP-bags allows parallelization only when run in the context of the local tier

of SP-hybrid. Also, as with the SP-bags from Figure 3-3, we donot require any locking.

Any particular bag or set is touched by only a single processor, so there is no contention to

51

worry about.

To attain the full SP-hybrid algorithm, the two parsetree walks from Figures 3-9 and 3-

13 must be merged together.

3.3 Correctness of SP-hybrid

This section proves the correctness of the SP-hybrid algorithm. We begin by showing that

the traces maintained by SP-hybrid are consistent with the subtrace properties defined in

Section 3.2. We then prove that the traces are ordered correctly to determine SP relation-

ships. Finally, we conclude that SP-hybrid works.

Due to the way the splits work, we can no longer prove a theoremas general as

Lemma 1. That is to say, we can only accurately derive the relationship between two

threads if one of them is a currently executing thread.8 Although this result is weaker than

for the serial algorithm, we do not need anything stronger for a race detector. Furthermore,

these are exactly the semantics provided by the lower-tier SP-bags algorithm.

Correctness for SP-bags is given in [30]. The only significantdifference between our

version of SP-bags from Section 3.2 and the version in [30] isthat we may spawn new

instances of the SP-bags algorithm when a steal occurs. The new instances result from the

creation of new bags given in lines 13–16 of Figure 3-13. These instances correspond to the

subtracesU (4) andU (5) from Figure 3-11, which are subtrees of the parse tree. SinceSP-

bags operates correctly on a Cilk-like parsetree, it operates correctly on a subtree as well,

and we do not give a new correctness proof here. Instead, we concentrate on correctness of

the global tier and the SP-hybrid algorithm as a whole.

The following lemma shows that when a split occurs, the subtraces are consistent with

the subtraces properties given in Section 3.2.

Lemma 11 LetUi be a trace that is split around a P-nodeX. Then, the subtrace properties

of Ui are maintained as invariants bySP-HYBRID.

Proof. The subtrace properties ofUi hold at the time of the split around the P-nodeX,

8Specifically, we cannot determine the relationship betweenthreads inU (1) andU (2), but we can deter-
mine the relationship between any other two traces.

52

when the subtraces were created, by definition. If a subtraceis destroyed by splitting, the

property holds for that subtrace vacuously.

Consider any threadu at the time it is inserted into some traceU . EitherU is a subtrace

of Ui or not. If not, then the properties hold for the subtraceUi vacuously. Otherwise, we

have five cases.

Case 1: U = Ui
(1). This case cannot occur. SinceUi

(1) is mentioned only in lines

17–27 of Figure 3-9, it follows thatUi
(1) is never passed to any call of SP-HYBRID. Thus,

no threads are ever inserted intoUi
(1).

Case 2: U = Ui
(2). Like Case 1, this case cannot occur.

Case 3: U = Ui
(3). We must show thatUi

(3) = {u : u ∈ descendants(left [X])}.

The difficulty in this case is that when the traceUi is split, we haveUi = Ui
(3), that is,Ui

andUi
(3) are aliases for the same set. Thus, we must show that the invariant holds for all

the already spawned instances of SP-HYBRID that tookUi as a parameter, as well as those

new instances that takeUi
(3) as a parameter. As it turns out, however, no new instances take

Ui
(3) as a parameter, because (like Cases 1 and 2)Ui

(3) is neither passed to SP-HYBRID

nor returned.

Thus, we are left to consider the already spawned instances of SP-HYBRID that tookUi

as a parameter. One such instance is the outstanding SP-HYBRID(left [X], Ui) in line 11. If

u ∈ descendants(left [X]), then we are done, and thus, we only need consider the spawns

SP-HYBRID(Y, Ui), whereY is an ancestor of the P-nodeX. We use induction on the an-

cestors ofX, starting atY = parent(X) to show that SP-HYBRID(Y, Ui) does not passUi

to any other calls, nor does it returnUi. For the base case, we see that SP-HYBRID(X,Ui)

returnsUi
(5) 6= Ui

(3).

For the inductive case, consider SP-HYBRID(Y, Ui). We examine the locations in

the pseudocode where this procedure can resume execution. If Y is an S-node, then

this procedure can be waiting for the return from SP-HYBRID(left [Y], Ui) in line 8 or

SP-HYBRID(right [Y], Ui) in line 9. In the first situation, our inductive hypothesis states

that SP-HYBRID(left [Y], Ui) does not returnUi, and hence, we neither passUi to the right

child nor do we return it. The second situation is similar.

Instead, suppose thatY is a P-node. Since steals occur from the top of the tree, we

53

cannot resume execution at line 14, or else SP-HYBRID(right [Y], Ui) would have already

been stolen. We can be only at either line 15 or line 26. If we’re at line 15, our inductive

assumption states that SP-HYBRID(right [Y], Ui) does not returnUi, and thus we do not

returnUi either. Otherwise, we are at line 26, and we return theU (5) resulting from some

split.

Case 4: U = Ui
(4). We must show thatUi

(4) = {u : u ∈ descendants(right [X])}. The

only place whereUi
(4) is passed to another SP-HYBRID call, and hence used to insert a

thread, is line 25. No matter what SP-HYBRID(right [X], Ui
(4)) returns, SP-HYBRID(X,Ui)

does not returnUi
(4); it returnsUi

(5). Thus, the only threads that can be inserted intoUi
(4)

are descendants ofright [X], which matches the semantics ofU (4).

Case 5: U = Ui
(5). We must show thatUi

(5) = {u ∈ Ui : X ≺ u)}. The subtraceUi
(5)

is used only in the return from SP-HYBRID(X,Ui) on line 27. As seen in lines 6–10 and

lines 14–16, SP-HYBRID passes the trace returned from a left subtree to a right subtree.

Thus, the only SP-HYBRID calls that have any possibility of inserting intoUi
(5) are the

right descendants ofX ’s ancestors. When a split occurs (and hence when a steal occurs),

by the properties of the Cilk scheduler, it occurs at the topmost P-node of a trace. Thus, the

only ancestors ofX with unelaborated right subtrees are S-nodes. It follows that lca(u,X)

is an S-node, and henceX ≺ u.

The following lemma shows that theEng andHeb orderings maintained by SP-hybrid

are sufficient to determine the relationship between traces.

Lemma 12 Let Eng and Heb be the English and Hebrew orderings, respectively, main-

tained by the global tier of SP-hybrid. Letuj be a currently executing thread in the

trace Uj, and letui be any thread in a different traceUi 6= Uj. Thenui ≺ uj if and

only if Eng [Ui] < Eng [Uj] andHeb[Ui] < Heb[Uj].

Proof. The proof is by induction on the number of splits during the execution of SP-

hybrid. Consider the time that a traceU is split into its five subtraces. If neitherUi norUj

is one of the resulting subtracesU (1), U (2), . . . , U (5), then the split does not affectUi or Uj,

and the lemma holds holds trivially.

Suppose thatUi ∈ {U
(1), U (2), . . . , U (5)}, but Uj 6∈ {U

(1), U (2), . . . , U (5)}. Then,Ui

54

andUj have the same relationship they did before the split, because we insert the subtraces

U (1), U (2), U (4), andU (5) contiguously withU = U (3) in the English and Hebrew orderings.

Similarly, if we haveUi 6∈ {U
(1), . . . , U (5)}, but Uj ∈ {U

(1), U (2), . . . , U (5)}, then the

lemma holds symmetrically.

Thus, we are left with the situation whereUi ∈ {U
(1), U (2), . . . , U (5)}, and Uj ∈

{U (3), U (4), U (5)}. We can ignore the case whenUi = Uj, because the lemma assumes

that Ui 6= Uj, as well as the cases whenUj ∈ {U
(1), U (2)}, becauseuj is a currently

executing thread. We consider the remaining twelve cases inturn.

Case (1,3): Ui = U (1) andUj = U (3). We apply Lemma 11 to conclude thatui ≺ X

for some P-nodeX anduj ∈ descendents(left [X]), which implies thatui ≺ uj. We also

have thatEng [U (1)] < Eng [U (3)] andHeb[U (1)] < Heb[U (3)], which matches the claim.

Case (2,3): Ui = U (2) andUj = U (3). Lemma 11 allows us to conclude thatui ∈

{u ∈ U : u ‖ X andu 6∈ descendants(X)} for some P-nodeX and that the threaduj ∈

descendants(left [X]), which means thatui ‖ uj. We also have thatEng [U (2)] < Eng [U (3)]

andHeb[U (2)] > Heb[U (3)], which matches the claim.

The other ten cases are similar to these two.

We are now ready to prove that SP-hybrid returns the correct result for an SP-PRECEDES

operation run on a currently executing thread and any other thread.

Theorem 13 Consider any point during the execution ofSP-HYBRID on an SP parse tree.

Let ui be a thread that has been visited, and letuj be a thread that is currently executing.

Then, the procedureSP-PRECEDES(ui, uj) correctly returnsTRUE if ui ≺ uj and FALSE

otherwise.

Proof. The SP-HYBRID procedure inserts a threadu into a traceU before executing

u, and therefore when a thread executes, it belongs to some trace. Furthermore, the En-

glish and Hebrew orderingsEng andHeb, respectively, contain all traces that contain any

threads.

First, consider the case in which noui anduj do not change traces during the execution

of SP-PRECEDES. If ui anduj belong to the same trace, then SP-PRECEDESreturns the

correct result as the result of a query on the local tier. Ifui anduj belong to different traces,

55

then Lemma 12 shows that the correct result is returned.

We must also show that SP-PRECEDESreturns the correct result if the traces for either

ui or uj are split during the execution of the SP-PRECEDESquery. Only a single SPLIT

may be in progress at a time because of the global lock used by SP-HYBRID. We consider

the state of the traces at the instant in time at which the lastSPLIT completedbefore the

start of SP-PRECEDES. That is, if there is no SPLIT in progress, then we consider the

state of traces at the time SP-PRECEDESbegins. If there is a SPLIT in progress when

SP-PRECEDESbegins, then we consider the state of traces just beforethat SPLIT began.

Suppose that we haveui anduj belong to different traces at this time. Consider the

code given in Figure 3-10. There is no way to getUi = Uj in the test in line 30. Moreover,

we have that Lemma 12 applies to give us the correct result.

Suppose instead that at the start of the SPLIT, we haveui anduj belong to the same

traceU . A SPLIT may be in progress. Sinceuj is still executing, and it belongs to some

trace already, it follows from the subtrace properties thatuj can only be a part of aU (3) = U

resulting from a SPLIT. Thus, the trace foruj cannot change across the execution of SP-

PRECEDES. Similarly,ui can belong one of{U (1), U (2), U (3)}, but it cannot belong toU (4)

or U (5), since it already exists at the time of the SPLIT. Given these facts, it does not matter

whether we getUi = Uj in line 30. If Ui = Uj andui, uj ∈ U (3), then LOCAL-PRECEDES

returns the correct result. IfUi = Uj andui ∈ U (1), then LOCAL-PRECEDESstill returns

the correct result, sinceui is in an S-Bag. Similarly, ifUi = Uj andui ∈ U (2), then

LOCAL-PRECEDESreturns the correct result, sinceui is in a P-Bag. From Lemma 12, the

OM-PRECEDESreturns the correct result in either of these two cases.

3.4 Performance analysis

This section analyzes the SP-hybrid algorithm run on a fork-join program. Suppose that

the program hasT1 work and a critical-path length ofT∞. When executed onP processors

using a round-robin work-stealing scheduler (that satisfies Property 10), SP-hybrid runs in

O(T1/P + PT∞) time in the worst case.

First, we show that the local-tier operations LOCAL-PRECEDES (implemented as a

56

FIND in the disjoint-sets data structure) takesO(1) time in the worst case. Recall that we

modify SP-bags and the disjoint-sets data structure for SP-hybrid in Section 3.2 by intro-

ducing this notion of a FAST-MACROUNION. Whereas a macroset from Section 3.1 has all

elements pointing at the representative, a macroset resulting from a FAST-MACROUNION

does not. As a result, it is not immediately obvious that a FIND takesO(1) time in the

worst case. To prove this fact, we exploit the structure of the unions performed by the local

tier of SP-hybrid. If a macroset has all elements pointing atthe representative, then we say

that the depth of the macroset is1. When the FAST-MACROUNION is performed, the depth

may increase, but we bound this increase.

Lemma 14 For a procedureF that is ready to be stolen in an execution of SP-hybrid, the

depth of the macrosets forSF andPF are at most2 and3, respectively.

Proof. Proof by induction on the unions involving these bags.

Any child procedureF ′ is not ready to be stolen, because of Property 10-1 requires par-

ents to be stolen before their children. Thus, since no FAST-MACROUNIONs are performed

onF ′, the depth ofSF ′ is 1 whenF ′ returns toF .

The UNION(F, PF , SF ′) is only performed in line 12 of Figure 3-13. Since the modified

UNION points the representative ofSF ′ at the representative forPF , this union does not

increase the depth ofPF past2.

The only point at which we union withSF is line 19. Since the representative forPF

is pointed to the representative ofSF , and the depth ofPF is at most2 by the inductive

assumption, we have that the depth ofSF does not increase past3.

Given Lemma 14, we have that FINDs takeO(1) worst-case time, which gives us the

following corollary.

Corollary 15 A LOCAL-PRECEDESperformed SP-hybrid takesO(1) worst-case time.

To prove the desired bound on the entire SP-hybrid execution, we must first bound

the number of steals performed. The following theorem, similar to Theorem 9 from [10],

applies to our environment when using the Cilk scheduler. We assume that processors are

moving at roughly the same speed.

57

Theorem 16 Consider any fork-join program withT1 work and critical-path lengthT∞.

When executed onP processors using the Cilk scheduler, SP-hybrid hasO(PT∞) steal at-

tempts in expectation. Moreover, for anyε > 0, the number of steal attempts isO(P (T∞ +

lg(1/ε))) with probability at least1− ε.

Proof. The proof is virtually identical to one given by Arora, Blumofe, and Plaxton [10].

A sketch of the proof is given here. For the full version, refer to the paper. Arora et al.

assign potentials to eachready thread—those threads that are ready to be executed. In

particular, letd(u) be the depth of a threadu, or the distance ofu from the start of the

computation. Then

φ(u) =

32(T∞−d(u))−1 if u is assigned to some processor;

32(T∞−d(u)) otherwise.

The potential only decreases over time. Whenever a thread is stolen, it is assigned to

a processor. Whenever a processor completes an assigned thread, it enables up to two

children which are deeper in the computation. Either of these actions decreases the total

potential.

To bound the number of steals, they group potentials by processors owning the threads.

The crux of the argument is that whenever a thief processor tries to steal from a victim

processorq, the victim loses a constant factor of its potential. It turns out that the next

thread stolen from a particular processorq contributes a constant fraction of that processor’s

potential. Thus, if a successful steal occurs, the potential decreases by a constant fraction of

q’s potential. Similarly, ifq does not have any threads ready to be stolen, then completing

the current thread also decreasesq’s potential by a constant fraction. Therefore, even if the

steal attempt is not successful, we know that the potential decreases.

They apply a balls-in-bins argument to argue that each contiguousround of P steals

reduces the total potential by a constant factor with constant probability. A Chernoff bound

across the rounds gives a high-probability result.

In our case, the work completed during any step may not be realwork towards the orig-

inal fork-join program. To compensate, we blow up each instruction by a factor ofr, where

58

r is the worst-case cost of theO(1) SP-PRECEDES(without retrying the OM-PRECEDES)

queries performed at each instruction and the cost of the local-tier SP-maintenance opera-

tion when the thread is ready to be stolen. Note that the aboveballs-in-bins argument relies

on the fact that we make progress towards the critical path when a thread is being worked

on or stolen. Thus, we care only about the blowup from SP-maintenance that occurs at this

time.

The two SP-maintenance operations that pose the greatest challenge are the UNION,

which may need to make a lot of updates, and the OM-PRECEDESoperations, which may

retry several times. For the former, we note that since FAST-MACROUNION is performed

when the thread is ready to be stolen, the blowup (at steal-attempt time) from this operation

is at mostO(1). As for OM-PRECEDES, recall that we assume processors are moving at

the same speed. We assume that the updates performed on a steal take a long enough

(constant) amount of time so that an OM-PRECEDESonly needs to abort once (if not, we

can make SP-hybrid wait for a constant amount of time while holding the global lock,

without impacting the asymptotic performance). We, therefore, effectively have a new

computation with critical-path lengthT ′

∞
≤ rT∞, with r = O(1), and the potential and

balls-in-bins arguments from Arora et al. still apply.

Next, we show that the entire SP-hybrid algorithm performs well.

Theorem 17 Suppose that a fork-join program hasT1 work and a critical-path length of

T∞. When executed onP processors using the Cilk scheduler, SP-hybrid runs inO(T1/P +

PT∞) expected time. Moreover, for anyε > 0, SP-hybrid runs inO(T1/P + P (T∞ +

lg(1/ε))) time with probability at least1− ε.

Proof. We use an accounting argument similar to [15], except with seven buckets, instead

of three. Each bucket corresponds to a type of task that a processor can be doing during a

step of the algorithm. For each time step, each processor places one dollar in exactly one

bucket. If the execution takes timeTP , then at the end the total number of dollars in all of

the buckets isPTP . Thus, if we sum up all the dollars in all the buckets and divide byP ,

we obtain the running time.

The analysis depends on the numbers of successful steals during the execution of the

59

SP-hybrid algorithm. We have that the expected value ofs is O(PT∞) from Theorem 16.

The seven buckets are as follows:

B1: The work of the original computation excluding costs addedby SP-hybrid. We

have that|B1| = T1, because a processor places one dollar in the work bucket whenever it

performs work on the input program.

B2: The work for global-tier insertions, including the cost for splits. SP-hybrid per-

forms an OM-INSERT operation, serially, for each steal. The amortized time required to

performs operations in the order-maintenance data structure isO(s). Thus,|B2| = O(s).

B3: The work for the local-tier SP-maintenance operations. Since there areO(1) SP-

bags operations for each instruction in the computation, and each SP-bags operation costs

O(1) amortized time, we have|B3| = O(T1).

B4: The waiting time for the global lock on global-tier OM-INSERToperations. When

one processor holds the lock, at mostO(P) processors can be waiting. SinceO(1) inser-

tions occurs for each steal, we have|B4| = O(Ps).

B5: The work wasted on failed and retried global-tier queries.Since a single inser-

tion into the order-maintenance structure can cause at mostO(1) queries to fail on each

processor and the number of insertions isO(s), we conclude that|B5| = O(Ps).

B6: Steal attempts while the global lock is not held by any processors. We use Theo-

rem 16 to conclude that|B6| = O(PT∞) in expectation, or|B6| = O(P (T∞ + lg(1/ε)))

with probability at least1− ε.

B7: Steal attempts while the global lock is held by some processor. The global lock is

held forO(s) time in total, and in the worst case, all processors try to steal during this time.

Thus, we have|B7| = O(Ps).

To conclude the proof, observe thats ≤ |B6|, because the number of successful steals

is less than the number of steal attempts. Summing up all the buckets yieldsO(T1+P |B6|)

at the end of the computation, and hence, dividing byP , we obtain an expected running

time ofO(T1/P + PT∞) and the corresponding high probability bound.

It turns out that we can modify the Cilk scheduler to improve the worst-case perfor-

mance of SP-hybrid. In particular, we modify the scheduler to perform steal attempts in a

round-robin order instead of randomly. To perform round-robin steal attempts, we lock a

60

global list of processors on each steal attempt. Since we lock on successful steals for SP-

hybrid anyway, this additional locking does not hurt us. Therandomized stealing makes

sense in the context of an arbitrary Cilk program, because ordinarily steals are not serial-

ized.

Given the round-robin stealing policy, we can state a worst case bound on the number

of steals, similar to Theorem 16.

Theorem 18 Consider any fork-join program withT1 work and critical-path lengthT∞.

When executed onP processors using the round-robin, work-stealing schedulerthat obeys

Property 10, SP-hybrid hasO(PT∞) steal attempts in the worst case.

Proof. We use the same potential function from Theorem 16. We groupP contiguous

steal attempts into rounds. In a round, a steal attempt occurs on each processor. When

attempting to steal from a particular processor, its potential decreases by a constant factor.

Thus, in a round, the potential of the entire system decreases by a constant factor. There

can beO(T∞) such round, for a total ofO(PT∞) steal attempts in the worst case.

Applying Theorem 18 to bound the numbers of successful steals in Theorem 17, we

achieve the following worst-case bound.

Theorem 19 Consider any fork-join program withT1 work and critical-path lengthT∞.

When executed onP processors using the round-robin, work-stealing schedulerthat obeys

Property 10, SP-hybrid runs inO(T1/P + PT∞) time in the worst case.

Corollary 20 SP-hybrid achieves linear speed-up whenP = O(
√

T1/T∞).

Proof. When P = O(
√

T1/T∞), Theorems 17 and 19 state that SP-hybrid runs in

O
(

T1/P +
√

T1/T∞ · T∞

)

= O
(

T1/P + T1/
√

T1/T∞

)

= O(T1/P).

61

62

Chapter 4

Race Detection

This chapter describes aspects of race detection beyond SP maintenance. Throughout most

of this chapter, I assume that the program being tested for races contains no locks. The

techniques described in this thesis can be extended to programs that use locks. Section 4.1

describes the access histories necessary for serial and parallel, on-the-fly race detectors.

Section 4.2 describes performance of a parallel race-detector that uses the access history

from Section 4.1 and SP-hybrid from Section 3.2. Section 4.3describes how to perform

garbage collection to get efficient space usage without asymptotically harming the running

time. In particular, I show that the parallel race detector usesO(Pv) space, whereP is the

number of processors andv is the number of memory locations being monitored.

4.1 Access histories

As introduced in Chapter 1, on-the-fly race detectors maintain two data structures—an SP-

maintenance data structure, described in Chapters 2 and 3, and an “access history.” This

section describes the access history. The approaches described in this section are similar

to [17, 30] and [43], for the serial and parallel race detectors, respectively. I begin with a

description of an access history used by our serially executing race detector. I then incre-

mentally describe how to extend the access history for a parallel race detector. I describe

a parallel access history that locks on every access. Finally, I optimize the parallel access

history for SP-hybrid, taking advantage of the structure oftraces.

63

An access historystores a set of threads that have accessed a given shared-memory

location. In a race detector, whenever a particular location is accessed during the program

execution, we check the threads in the access history to see if any of those threads operates

logically in parallel with the current thread. Since we needto check the currently executing

thread against all threads in the access history (for the location), we need to keep the access

history small. In particular, to get an efficient race detector, we keep an access history that

hasO(1) threads for each memory location.

For our serial race detectors, we execute the parse tree in a depth-first (left-to-right)

fashion with an access history similar to the one used by Fengand Leiserson’s Nondeter-

minator [30] and Cheng, Feng, Leiserson, Randall, and Stark’s[17] Nondeterminator-2.

For each memory locationl, reader [l] has a thread that previously readl, andwriter [l] has

a thread that previously wrotel. In particular, we store the “deepest,” “leftmost” thread

in the dag that has accessed the location. We define a threadu1 to beleftof a threadu2 if

lca(u1, u2) is an P-node andu1 is in the left subtree. This “leftof” relation is consistentwith

Mellor-Crummey’s [43] terminology and the parallel access history introduced later in this

section. We say that a threadu1 is deeperthan a threadu2 if u2 ≺ u1. A threadu1 replaces

a threadu2 in the access history ifu1 is deeper thanu2 (i.e.,u2 ≺ u1) or if u1 is leftof u2

(i.e., u1 ‖ u2, andu1 is in the left subtree of the P-nodelca(u1, u2)). This access-history

policy, using a leftof-or-deeper relation, is the same as the one used by Cheng et al.

The leftof-or-deeper relation imposes a partial order on the threads in the parse tree.

This partial order is identical to the Hebrew ordering givenin Chapter 2. That is to say, a

threadu1 is leftof or deeper than (preceded by) a threadu2 if and only if u1 appears later

in the Hebrew ordering. Transitivity of the leftof-or-deeper relation naturally follows. The

deepest, leftmostthread is the one that has no other thread deeper than or leftof it. The

definition of deepest, leftmost corresponds to taking the thread that appears latest in the

Hebrew ordering.

Figure 4-1 gives pseudocode for memory accesses in our serial race detector using SP-

order. Suppose thatreader [l] = u′. Then whenever a threadu reads the locationl, we check

whetheru is leftof or deeper thanu′, or, equivalently, whetheru′ precedesu in the Hebrew

ordering. Since we execute serially according to an Englishorder, this test in lines 3 and 7

64

read locationl in threadu

1 if writer [l] ‖ u
2 then a race occurs
3 if OM-PRECEDES(Heb, reader [l], u)
4 then reader [l]← u

write locationl in threadu

5 if writer [l] ‖ u or reader [l] ‖ u
6 then a race occurs
7 if OM-PRECEDES(Heb,writer [l], u)
8 then writer [l]← u

Figure 4-1: The serial access-history updates written in serial pseudocode. Eachmemory location
l has areader [l] andwriter [l] that store the latest threads in the Hebrew ordering of the parse tree
(the deepest, leftmost threads) that have read and written, respectively, the locationl. TheHeb data
structure gives the Hebrew ordering maintained by SP-order. The‖ relationships is determined by
a call to SP-PRECEDES.

is equivalent to testingu′ ≺ u.1 If so, then we update thereader . We use a similar update

policy for writer . To check for races, when a write occurs, we check both thereader and

writer . If either of these threads is logically parallel with the current thread, then a race

occurs. On a read, we check just thewriter to determine whether a race occurs.

Cheng et al. [17] give correctness of a serial race detector using a similar access-history

algorithm.

Parallel access history

The serial, access history from Figure 4-1 does not work correctly for a race detector that

runs in parallel. Consider the parse-tree given by Figure 4-2(a). If the instructions are

interleaved as shown in the figure, then at the time of thewrite, we havereader [l] =

u1, and no race is detected. Moreover, there is no access-history algorithm that is both

correct and stores a single thread inreader [l]. Consider both parse trees (a) and (b). If the

instructions are interleaved as indicated, then at the timeof thewrite, eitherreader [l] = u1

or reader [l] = u2. In the former case, (a) does not detect the race. In the latter, (b) does not

1This same access-history update can be used for race detectors that do not maintain English and Hebrew
orderings, as in SP-bags of [30], because≺ is defined by the SP-maintenance algorithm.

65

a) b)

u1 u2

(a) read l
read l

write l

(b) read l
read l
write l

Figure 4-2: Parse trees illustrating the need for a more complex access history for a parallel execu-
tion. Under each threadui, given by leaves in the parse tree, is the memory access performed by the
thread. (a) A parse tree for which the serial access-history algorithm fails on a parallel execution.
On the right we have an instruction interleaving that exhibits the problem. (b) Another parse tree.
The interleavings shown on the right show that no correct parallel access history has a singlereader .

detect the race.

For a parallel execution (or a serial execution that does notfollow an English ordering),

we need an access history that stores two threads that read and wrote the location. In the

serial case it is sufficient to store the deepest, leftmost thread (the one occurring latest in

the Hebrew ordering). In the parallel case, we also need to store the deepest,rightmost

thread, which is the thread accessing the location that occurs latest in the English ordering.

Whereas our serial access history maintainsreader [l] that stores the leftmost reader of a

locationl, the parallel access history maintainsleft-reader [l] andright-reader [l] that store

the deepest leftmost and rightmost, respectively, threadsreading the locationl. Mellor-

Crummey [43] introduced this deepest leftmost and rightmostaccess history. He also

proves that maintaining both of these threads is sufficient to detect at least one race on

each location involved in a race.

Because there are concurrent threads updating the same access history, we need some

sort of mutual exclusion. For now, assume that each access isprotected by a lock. This

approach is obviously inefficient as we could end up serializing the entire program. I

discuss how to better deal with concurrent accesses to the access history at the end of this

section.

Figure 4-3 gives pseudocode for memory accesses in our parallel race detector. I show

writes only, but reads are similar. Suppose thatleft-writer [l] = uL andright-writer [l] =

uR. Then whenever a threadu writes the locationl, we check whetheruL precedesu

in the Hebrew ordering (i.e., LEFTOF-OR-DEEPER(u, uL) returnsTRUE) and whetheruR

66

write locationl in threadu

1 if left-writer [l] ‖ u or right-writer [l] ‖ u
or left-reader [l] ‖ u or right-reader [l] ‖ u

2 then a race occurs
3 if LEFTOF-OR-DEEPER(u, left-writer [l])
4 then left-writer [l]← u
5 if RIGHTOF-OR-DEEPER(u, right-writer [l])
6 then right-writer [l]← u

Figure 4-3: The parallel (writer) access-history updates written in serial pseudocode. Each memory
location l has aleft-reader [l], right-reader [l], left-writer [l], and right-writer [l] that store the
latest threads in the Hebrew and English orderings of the parse tree that have read and written the
locationl. The LEFTOF-OR-DEEPER(u, u′) and RIGHTOF-OR-DEEPER(u, u′) procedures, given
for SP-hybrid in Figure 4-4, determine whetheru is leftof or rightof, respectively, or deeper than
the threadu′. The‖ relationships is determined by a call to SP-PRECEDES.

LEFTOF-OR-DEEPER(u, u′)

1 U ← FINDTRACE(u)
2 U ′ ← FINDTRACE(u′)
3 if U 6= U ′

4 then return OM-PRECEDES(Heb, U ′, U)
5 else return LOCAL-PRECEDES(u′, u)

RIGHTOF-OR-DEEPER(u, u′)

6 U ← FINDTRACE(u)
7 U ′ ← FINDTRACE(u′)
8 if U 6= U ′

9 then return OM-PRECEDES(Eng , U ′, U)
10 else return TRUE

Figure 4-4: LEFTOF-OR-DEEPER and RIGHTOF-OR-DEEPER for SP-hybrid, written in serial
pseudocode. These operations accept two threadsu1 andu2, whereu is a currently executing thread.
LEFTOF-OR-DEEPERand RIGHTOF-OR-DEEPERreturnTRUE if u′ precedesu in the Hebrew and
English, respectively, ordering of threads in the parse tree. FINDTRACE and LOCAL-PRECEDES

are local-tier operations to determine what trace a thread belongs to and the relationship between
threads in the same trace, respectively.Eng andHeb maintain the English and Hebrew orderings of
traces.

67

precedesu in the English ordering (i.e., RIGHTOF-OR-DEEPER(u, uR) returnsTRUE).2 If

so, then we update the appropriate writer value. We use a similar update policy for the

readers. To check for races, when a write occurs, we check allthe readers and writers. On

a read, we check just the writers.

Figure 4-4 gives pseudocode for LEFTOF-OR-DEEPERand RIGHTOF-OR-DEEPERop-

erations for the SP-hybrid. Since SP-hybrid maintains the English and Hebrew ordering

only between traces, where one of the traces is currently executing, these operations have

similar limitations. The LEFTOF-OR-DEEPER(u, u′) procedure returnsTRUE if u is leftof

or deeper thanu′, whereu must be a currently executing thread. If two threads belong to

different tracesu ∈ U andu′ ∈ U ′, with U 6= U ′, then LEFTOF-OR-DEEPERcompares

the traces in the Hebrew ordering. IfU appears afterU ′ in the ordering, thenU is leftof

or deeper thanU ′. If the traces are the same, then we need to use the SP-bags comparison.

Recall that within traces, since threads execute serially inthe English order, it suffices to

compareu′ ≺ u. The RIGHTOF-OR-DEEPERoperation is similar, except for the compar-

isons done within traces. Since the trace executes according to the English ordering, the

current thread in the trace is always the deepest, rightmost, executed thread in the trace.

The following lemma states that LEFTOF-OR-DEEPER and RIGHTOF-OR-DEEPER

are correct, even across concurrent operations. Given these LEFTOF-OR-DEEPER and

RIGHTOF-OR-DEEPERoperations, Mellor-Crummey [43] gives correctness of the access

history and resulting race detector.

Lemma 21 Consider any point during the execution of SP-Hybrid on an SP-parse tree. Let

u′ be a thread that has been discovered, and letu be a thread that is currently executing.

ThenLEFTOF-OR-DEEPER(u, u′) returns TRUE if and only if u′ precedesu in the He-

brew ordering ofall the threads in the parse tree. Similarly,RIGHTOF-OR-DEEPER(u, u′)

returnsTRUE if and only ifu′ precedesu in the English ordering threads.

Proof. This proof is similar to the proof for Theorem 13.

We now return to the issue of concurrent updates to the accesshistory. The obvious

2The LEFTOF-OR-DEEPERand RIGHTOF-OR-DEEPERoperations are not inverses of each other. For
example, when a threadu is deeper than a threadu′ (i.e., u′ ≺ u), both LEFTOF-OR-DEEPER(u, u′) and
RIGHTOF-OR-DEEPER(u, u′) returnTRUE.

68

write locationl in threadu

1 UPDATELEFTWRITER(l, u)
2 UPDATERIGHTWRITER(l, u)
3 if left-writer [l] ‖ u or right-writer [l] ‖ u

or left-reader [l] ‖ u or right-reader [l] ‖ u
4 then a race occurs

UPDATELEFTWRITER(l, u)

5 if LEFTOF-OR-DEEPER(u, left-writer [l])
6 then ACQUIRE(left-writer -lock [l])
7 if LEFTOF-OR-DEEPER(u, left-writer [l])
8 then left-writer [l]← u
9 RELEASE(left-writer -lock [l])

Figure 4-5: The parallel, writer access-history updates with explicit locking, written in serial pseu-
docode. This operations are similar to Figure 4-3, except that we do not assume the entire access
is protected by a lock. Only the code for awrite is given. Aread operation is handled in a simi-
lar fashion except that the condition for a race is simpler. The UPDATELEFTWRITER(l, u) checks
updates theleft-writer [l] ← u if u is leftof the current value stored. This update is protected by
a unique lockleft-writer -lock [l] for each memory locationl. The UPDATERIGHTWRITER(l, u)
procedure (not shown) performs the same operation on theright-writer .

approach is to lock the access history forl each time a read or write of the locationl

occurs. This approach, however, can be very inefficient. Fora program with workT1 that

accesses a single locationΩ(T1) times, locking results in a running time that isΩ(T1).

In many cases, an access to a memory location does not requirean update to the access

history. In particular, if the current threadu reads the locationl, andu is not leftof or

deeper than the currently known leftmost, deepest readerleft-reader [l], then there is no

reason to update theleft-reader [l]. Since the leftof-or-deeper relationship is transitive, no

matter how many concurrent accesses happen, the threadu will never be leftof or deeper

than the value in the access history, and similarly for the other fields. Locking the access

history on these sorts of accesses is unnecessary.

Figure 4-5 gives a slightly more complex version of our access-history update forwrites

with explicit locking. First, we update the access history as necessary with a call to UP-

DATELEFTWRITER and UPDATERIGHTWRITER. In UPDATELEFTWRITER (also given in

Figure 4-5), we first check whether the current threadu is leftof or deeper than the current

69

value of left-writer [l]. If not, then we do not update the access history. Otherwise,we

acquire a lock on the access history forl and perform the updateleft-writer [l] ← u. Be-

cause it is possible for another operation to intervene between the first leftof-or-deeper-than

comparison in line 5 and the lock acquire in line 6, we check thatu is still leftof or deeper

thanleft-writer [l] in line 7 before performing the final update in line 8. We then perform

a similar update for theright-writer . Finally, we check if a race occurs. The updates for

reads (not shown) are similar except that a race occurs only if a writer is a logically parallel

thread.

We next prove that this parallel access-history algorithm is correct, even under concur-

rent updates to the access history.

Theorem 22 Consider a fork-join program run in conjunction with the parallel access-

history algorithm as given in Figure 4-5. Suppose also that SP-maintenance algorithm cor-

rectly supportsLEFTOF-OR-DEEPER, RIGHTOF-OR-DEEPER, and‖. Then, the access-

history algorithm reports a race on the locationl if and only if a race exists.

Proof. (⇒) Suppose that a race is reported. Then, we have thatleft-writer [l] and

right-writer [l] are threads that wrote the locationl. Similarly, we haveleft-reader [l] and

right-reader [l] are threads that read the locationl. Thus, if a race is reported, there must

be two parallel threads accessing the location, one of whichperforms a write.

(⇐) Suppose that a race exists on the locationl. Let uL be the deepest, leftmost thread

involved in a race on locationl. SinceuL is involved in a race, there is some threadu 6= uL

with u ‖ uL such thatu anduL are involved in a race. Sinceu ‖ uL, they must have

different relationships in the English and Hebrew orderingof threads (from Corollary 2).

Thus,u is rightof uL. Let uR 6= uL be the deepest, rightmost thread involved in a race

with uL on locationl. For clarity, consider the case thatuL writes tol, anduR reads from

l. All the other cases are similar. Consider the point in line 3 whenuL checks for a race.

If right-reader [l] = uR at the time, then a race is detected, and we are done. Otherwise,

if right-reader [l] 6= uR, thenuR has not yet tested for a race. Thus, whenuR tests for the

race, we haveleft-writer [l] = uL, and the race is discovered.

70

Access history for SP-hybrid

I now give an improvement for the access history to exploit structure given by SP-hybrid.

The access history introduces some performance overhead due to the waiting time for the

lock acquire in line 6 of Figure 4-5. As a result, we’d like to bound the amount of time spent

performing an update (see Corollary 24). Recall that SP-hybrid divides the computation

into traces. We modify our access history to take advantage of these traces, enabling access-

history updaters to abort more quickly.

One behavior we are trying to avoid is illustrated by the following example. Consider

an execution of SP-hybrid that includesP parallel threadsu1, u2, . . . , uP that all try to up-

dateleft-writer [l] at the same time. Without loss of generality, we haveui is leftof ui+1 for

all i = 1, 2, . . . , P − 1. Suppose also that no previous thread has written tol. The schedul-

ing might be such that all of these threads attempt the ACQUIRE on left-writer -lock [l] at

roughly the same time, but they succeed in the orderuP , uP−1, . . . , u1. Thus, some of the

ACQUIREs introduceΘ(P) waiting time in this case.

This example both illustrates the problem and motivates oursolution. If allP threads

arrive at the same time, the only one that really needs to update left-writer [l] is the leftmost

threadu1. If the rest of the threads can simply discover that some thread to their left is

trying to perform an update, they can drop out. Moreover, we want multiple locks so that

contention at any single lock iso(P) in the worst case.

To improve the access history, we exploit more of the structure of SP-hybrid. During

an execution of the SP-hybrid with the fork-join program, there are (at most)P processors

working, and henceP traces are active at any time. Moreover, since all of these traces

are logically parallel, the leftof and rightof relationships give a total order. We modify SP-

hybrid to keep a balanced, binary search tree (e.g., a red-black tree) maintaining the order

of these active traces, with all the traces at the leaves. I call this tree theaccess-history

tree. Whenever a processor successfully steals, SP-hybrid removes its old trace from the

tree, performs the normal SP-hybrid work, and inserts its new traces into the tree. Since

the “leftof” and “rightof” comparisons are performed by constant-time OM-PRECEDES

operations, insertions and deletions to this tree takeO(lg P) worst-case time.

71

I now describe the final access history, for example,left-writer , given this access-

history tree. First, let us assume that the tree is fixed. Later, I will describe how to deal with

the tree changing because of steals. Each leaf nodeU (corresponding to a trace) or internal

nodeX in the fixed tree contains a bitX.wrote[l] that indicates whether any node in the

subtree rooted atU has written tol. Each node also has a unique lockX. left-writer -lock [l]

for each memory locationl. Our update still acquires locks, but the advantage to spreading

locks across the tree is that there are never many processorswaiting on a lock.

Figure 4-6 gives the UPDATELEFTWRITER that would be performed instead of lines

5–9 of Figure 4-5. In Section 4.2, we show that any update completes inO(lg P) time

in the worst case. When a threadu in traceU writes to l, we do the following. First,

we try to update theleft-writer [l] if u and theleft-writer are currently in the same trace.

This technique, given in lines 2–7 provides a shortcut for a “common” case. If the threadu

performing the write belongs to a different trace fromleft-writer [l], we walk up the access-

history tree by performing a call to UPDATELEFTWRITERTREE. In particular, we walk up

from the nodeU , acquiring locksX. left-writer -lock [l] and updating the appropriate values

of X.wrote[l], for any nodesX encountered along the path to the root. To guarantee that a

call completes quickly, we perform a TEST-ACQUIRE in line 12 to acquire these locks. This

procedure not only acquires the lock as normal, but it also observes whether it blocks due

to a concurrent lock acquisition. In particular, TEST-ACQUIRE returnsTRUE if and only if

the lock is available at the time of the call, and no concurrent operation acquires the lock

first.3 If at any point a TEST-ACQUIRE fails, then we give up on the tree walk, releasing

locks down the tree. If the TEST-ACQUIRE succeeds, we update the node’swrote[l] field

in line 14. Before continuing up the tree from a nodeX, line 20 checks whetherX is in

the right subtree of its parent and a trace in the left subtreehas written tol. If so, then some

thread leftof the current threadu is trying to update the access history, andu gives up on

the update to avoid interfering. When reaching the root of thetree, given by lines 15–19,

3The TEST-ACQUIREcan be implemented using a regular ACQUIREprimitive as follows. Keep a counter
associated with each lock. Whenever performing a TEST-RELEASE, first increment the counter then perform
the regular RELEASEoperation. Whenever performing the TRY-ACQUIRE, first read the value of the counter
and check whether the lock is held. If the lock is held, then the return value isFALSE. In any case, next
perform a regular ACQUIRE. Once the lock is acquired, check the value of the counter. Ifthe counter has
changed (some other acquire and release intervened), then returnFALSE. Otherwise, returnTRUE.

72

UPDATELEFTWRITER(l, u)

1 U ← FINDTRACE(u)
2 if LEFTOF-OR-DEEPER(u, left-writer [l]) and U = FINDTRACE(left-writer [l])
3 then ACQUIRE(left-writer -lock [l])
4 if LEFTOF-OR-DEEPER(u, left-writer [l]) and U = FINDTRACE(left-writer [l])
5 then left-writer [l]← u
6 RELEASE(left-writer -lock [l])
7 return
8 done ← FALSE

9 while LEFTOF-OR-DEEPER(u, left-writer [l]) and not done

10 do done ← UPDATELEFTWRITERTREE(treenode[U], l, u)
11 wait untilnot LEFTOF-OR-DEEPER(u, left-writer [l])

UPDATELEFTWRITERTREE(X, l, u)

12 if TEST-ACQUIRE(X. left-writer -lock [l])
13 then done ← TRUE

14 X.wrote[l]← TRUE

15 if X = root

16 then ACQUIRE(left-writer -lock [l])
17 if LEFTOF-OR-DEEPER(u, left-writer [l])
18 then left-writer [l]← u
19 RELEASE(left-writer -lock [l])
20 else if X = left [parent [X]] or parent [X].wrote[l] = FALSE

or left [parent [X]].wrote[l] = FALSE

21 then done ← UPDATELEFTWRITERTREE(parent [X], l, u)
22 else done ← FALSE � a TEST-ACQUIRE failed.
23 TEST-RELEASE(X. left-writer -lock [l])
24 return done

Figure 4-6: An access-history update optimized for SP-hybrid, given in serial pseudocode. The
UPDATELEFTWRITER procedure is called in line 1 of Figure 4-5. The goal of this procedure is to
makes any writer finish an update “quickly” and to give priority to the leftmost writer. The UP-
DATELEFTWRITERTREE is an auxiliary procedure that acquires locks going up the access-history
tree until discovering a writer to the left of the current trace. For a traceU , treenode[U] is the node
in the binary search tree. Each nodeX in the tree has a fieldX.wrote[l] that indicates whether
any trace in the subtree rooted atX wrote tol, and a lockX. left-writer -lock [l] to lock the node
for the locationl. There is also a unique lockleft-writer -lock [l] for each memory locationl that
is acquired before updatingleft-writer [l] or left-writer -trace[l]. The procedures TEST-ACQUIRE

and TEST-RELEASE acquire and release a lock, respectively. TEST-ACQUIRE returnsTRUE if and
only if it does not wait on any other processors while acquiring the lock. In either case, it does
acquire the lock. The UPDATELEFTWRITERTREE procedure returnsFALSE if any FASTACQUIRE

fails.

73

we acquire theleft-writer -lock [l] lock and perform the regular update (as in lines 2–7) of

left-writer [l].

When UPDATELEFTWRITERTRACE returns to UPDATELEFTWRITER(l, u), eitheru

tried to update theleft-writer [l] in lines 15–19, the tree walk discovered a thread leftofu

that is trying to update the access history, or a TEST-ACQUIRE failed. In the first two cases,

UPDATELEFTWRITERTRACE returnsTRUE. Otherwise, UPDATELEFTWRITERTRACE

returnsFALSE. When UPDATELEFTWRITERTRACE fails due to a TEST-ACQUIRE, we

retry in lines 9–10. Otherwise, line 11 waits until theleft-writer [l] is u or leftof u.4

Correctness still follows from Theorem 22. The algorithm given in Figure 4-6 only

makes threads give up on attempting to updateleft-writer [l] sooner (so that they don’t com-

pete on lock acquisition). The waiting in line 11 linearizesthe completion of accesses such

that if u doesn’t updateleft-writer [l], then a threadu′ that is leftofu updatesleft-writer [l]

beforeu returns from UPDATELEFTWRITER.

Now, I describe how to deal with the fact that a concurrent steal may change the struc-

ture of the access-history tree. We could maintain the fieldwrote[l] across a rotation in

a red-black tree, but there areO(1) such fields for each of the memory locations. Since

the number of memory locations can be huge, this sort of update would take a long time.

In particular, if there arev memory locations, then a single insertion into the tree, while

maintainingwrote[l] for all l, may takeΩ(v lg P) time. Moreover, just initializing a new

tree node to haveFALSE for everywrote[l] value takesΘ(v) time.

Instead of maintainingwrote[l] across rotations, we keep a global counter that is in-

cremented whenever the stealing processor starts and stopsupdating the tree. Rather than

settingwrote[l] to TRUE or FALSE in a tree node, we set them to the current value of the

counter. If the valuewrote[l] is the same as the counter, then we consider the value to be

equivalent toTRUE in Figure 4-6. If the counter changes at any point during UPDATELEFT-

WRITER, then we restart. Thus, as with SP-PRECEDES, we can see whether a concurrent

steal invalidates the action. We can also avoid initializing new nodes. Whenever a pro-

cess inserts a new node into the tree (except the first time), it also removes its old trace.

4The threadleft-writer [l] cannot be deeper thanu becauseu hasn’t completely executed yet. Thus, we
care only about the leftof relation here.

74

We just reuse the same block of memory, withwrote[l] carrying over from the previous

trace—since the counter increments, these values are all invalid and read asFALSE any-

way. Using this technique, the maximum value of the counter is bounded by the number of

traces created. In Section 4.2, I prove that the number of traces is bounded byO(PT∞).

Dealing with locks

The parallel access-history algorithm can be augmented to deal with programs that contain

locks. In particular, we are currently working on an implementation of Nondeterminator-3

that incorporates Cheng, Feng, Leiserson, Randall, and Stark’s ALL -SETS algorithm [17].

Incorporating this algorithm is straightforward and is therefore not included in this thesis.

The ALL -SETS algorithm maintains an access-history for each locationl and set of

locksS held while accessingl, e.g.,left-writer [l, S]. Whenever a thread writes the location

l holding the locks in the setS, it performs an update, as in Figure 4-6, onleft-writer [l, S].

To check for the existence of a race, the threadu performing the access must check whether

the threadleft-writer [l, S ′] stored for each lock setS ′ not sharing any locks withS (i.e.,

S ∩ S ′ = ∅) operates logically in parallel withu, and similarly for the other access-history

location (e.g.,right-writer [l, S ′]). Cheng et al. show that in a serial race detector, an access

takesO(nk) time, wheren is the number of locks andk ≪ n is the maximum number of

locks held simultaneously. Parallelizing the ALL -SETS algorithm is straightforward.

If the program follows the “umbrella” locking discipline, whereby all parallel accesses

to a variable hold a single lock,5 Cheng et al. give a more efficient algorithm called BRELLY.

Unlike the ALL -SETS algorithm BRELLY keeps only a single lock set for each memory lo-

cation. In a serial race detector using BRELLY, they show that an access takesO(k) time,

wherek is the maximum number of locks held at any time. Parallelizing the BRELLY al-

gorithm is more complex and outside the scope of this thesis.Also, since BRELLY reports

violations of the umbrella locking discipline, which may not necessarily be data races,

BRELLY is not as robust an algorithm as ALL -SETS.

5The single lock does not have to be the same across the entire program execution. The umbrella discipline
just requires that for every set of threads having a P-node asthe least-common ancestor, all threads in the set
hold the same lock while accessing the locationl.

75

I do not give the analysis of these augmentations in Section 4.2—that section considers

performance only for programs that do not contain locks. These lock set algorithms result

in two overheads. First, the cost of a memory access is multiplied by a factor ofO(nk) or

O(k) for ALL -SETS and BRELLY, respectively, in the worst case. Second, we may need to

require additional mutual exclusion on access-history updates. For example, in the ALL -

SETSalgorithm, whenever a new lock set is discovered, we need to add it to the list of lock

sets for the location. If the possiblen locks (and hencenk lock sets) are known a priori,

then updating this list is not an issue, and the performance for ALL -SETS can be obtained

straightforwardly by multiply the running time in Theorem 28 by O(nk) to account for

access-history lookup cost.

4.2 Performance analysis

This section analyzes our parallel race detector, called Nondeterminator-3, that uses SP-

hybrid from Section 3.2 as the SP-maintenance algorithm andthe parallel access history

from Section 4.1. We give two bounds different bounds for thesame algorithm. The bound

that applies depends on the structure of the computation andthe number of processors on

which the race detector is run. If the numberv of memory locations is small, then our race

detector runs inO(T1/P + (v + P)T∞ lg P) worst-case time. If the number of memory

locations is large, then our race detector runs inO((T1/P + PT∞) lg P) time.

The serial race detectors, using SP-bags from Section 3.1 orSP-order from Chapter 2,

are trivial to analyze. There are no locking overheads, and all the other additional race-

detection work isO(1) per instruction in the program. Thus, we have that a serial race

detector runs inO(T1) time, whereT1 is the serial running time of the original program.

For a parallel race detector, the access history introducesadditional overheads beyond

SP-hybrid, because of waiting time introduced by lock acquisition and retries when updat-

ing the binary tree. We first bound the amount of time a single access-history update takes,

even when there are multiple concurrent access-history updates. The following lemma and

corollary state that any update completes inO(lg P) worst-case time. To attain this bound,

we again assume that processors are moving at the same speed.

76

Lemma 23 Consider anUPDATELEFTWRITER operation from Figure 4-6. Assuming no

interrupting steal, and that processors are moving at the same speed, this operation per-

formsO(1) calls toUPDATELEFTWRITERTREE.

Proof. I show that UPDATELEFTWRITERTREE is called at most twice in lines 9–10 of a

single call to UPDATELEFTWRITER.

Consider a call to UPDATELEFTWRITERTREE from the threadu that writes a location

l. I claim that by the time the UPDATELEFTWRITERTREE(treenode[U], l, u) returns, we

haveX.wrote[l] = TRUE for every nodeX betweentreenode[U] and the root. I prove this

claim by induction on the ancestors oftreenode[U] and the TEST-ACQUIRES performed

at a node. The UPDATELEFTWRITERTREE procedure stops ascending the tree only if

some TEST-ACQUIRE at a nodeX fails. A TEST-ACQUIRE(X. left-writer -lock [l]) can

only fail if some other concurrent TEST-ACQUIRE(X. left-writer -lock [l]) obtained the lock

first, and the failed TEST-ACQUIRE blocks until the concurrent operation completes. By

induction, by the time the concurrent call completes, the path from parent [X] to the root

has been updated. As a base case, the first TEST-ACQUIRE(X. left-writer -lock [l]) to obtain

the lock succeeds, thereby markingX.wrote[l] and continuing up the tree.

Consider the second call to UPDATELEFTWRITERTREE(treenode[U], l, u). Since the

first call updates a path from the leaf to the root, any calls concurrent with the second

observe in line 20 thatU is trying to update the writer, and hence they abort.6 Thus, the

only threads competing withu for a lock are leftofu, and hence by the time this second

call completes, eitherleft-writer [l] = u, left-writer [l] is leftof u, oru has discovered some

concurrent writer leftof it in line 20. In any of these cases,the while loop in lines 9–10

terminates.

Corollary 24 Consider anUPDATELEFTWRITER operation from Figure 4-6. Assuming

no interrupting steal, this operation completes inO(lg P) time regardless of the number of

6The exception is concurrent calls that have already completed the appropriate line 20 onu’s first tree
ascent, but not yet performed the TEST-ACQUIRE on an ancestor oftreenode[U]. Recall that we assume
processors are moving at the same speed. Thus, these calls all block on the TEST-ACQUIREs on ancestors
of treenode[U]. These TEST-ACQUIREs then acquire and release the lock (in constant time, due to the fact
that they blocked) while a tree descent releases locks on theway down the tree. Thus, by the time the second
UPDATELEFTWRITERTREE(treenode[U], l, u) begins, these troublesome instances have already passed the
point of being a problem.

77

concurrent operations.

Proof. The two factors contributing to running time are the actual work performed by the

threadu performing the update, and the time spent waiting on a lock ina TEST-ACQUIRE

or ACQUIRE. By Lemma 23, the actual work is bounded byO(lg P). We therefore consider

time spent waiting on locks.

Since the access history tree is a binary tree, and UPDATELEFTWRITERTREE only ac-

quires locks on a node after acquiring a lock on of its children, there can be at most two

processors waiting on any particular lock. Thus, since locks acquisitions queue, the wait-

ing time on a lock at nodeX is just the time it takes for an UPDATELEFTWRITERTREE

to return (and release the lock) from the nodeX. I claim that a lock at depthd is re-

leased inO(d) time, by induction. For a base case, consider a call from the root of the

tree in lines 15–19 after TEST-ACQUIRE succeeds. We wait to acquire the global lock

left-writer -lock [l]. The only other thread acquiring this lock concurrently is the one in the

same trace asleft-writer [l] in lines 2–7. Thus, this operation completes in constant time.

If the TEST-ACQUIRE fails, then we are waiting on an operation that completes in constant

time. For any call at depthd, we may ascend the tree (doingO(1) work at each level) until

a TEST-ACQUIRE fails at heightd′ < d. By inductive assumption, the TEST-ACQUIRE

completes inO(d′) time, and hence the full UPDATELEFTWRITERTREE returns inO(d)

time.

Since the access-history tree has heightO(lg P), the (at most)O(1) calls to the pro-

cedure UPDATELEFTWRITERTREE (from Lemma 23) takeO(lg P) time, including the

waiting time. The only other contributor to time is the waiting in line 11. I have already

argued that if some threadu gives up on the UPDATELEFTWRITERTREE, then only threads

leftof u will complete on the next try. Since some thread makes it to the root inO(lg P)

time, it follows that we wait for at mostO(lg P) time in line 11.

In UPDATELEFTWRITER of Figure 4-6, we include the shortcut for the common case

(lines 2–7) to update theleft-writer [l] if the trace hasn’t changed. Since UPDATELEFT-

WRITERTREE is not called if the shortcut successfully updatesleft-writer [l], this update

takesO(1) time. The following corollary bounds the total amount of time spent perform-

ing all the UPDATELEFTWRITERs and takes advantage of the shortcut cost. This corollary

78

ignores the cost of restarting an update due to a steal.

Corollary 25 For an execution of SP-hybrid with the access history from Figure 4-6 that

results inn traces, at mostO(n) access-history updates for each locationl takeΩ(lg P)

time. All other access-history updates takeO(1) time.

Proof. The leftof-or-deeper and rightof-or-deeper relationshipbetween two traces never

changes. This fact follows from the fact that traces do not move in the order-maintenance

data structures. We charge one slow (Ω(lg P)) time) update against each trace.

The first time a traceU tries to update the access history, it performs the tree update

in UPDATELEFTWRITERTREE. Once it finishes, eitherU = FINDTRACE(left-writer [l]),

or left-writer [l] is leftof U . In the latter case, since no thread inU will ever be leftof

left-writer [l], all future calls to UPDATELEFTWRITER on the memory locationl from

the traceU complete in constant time. In the former case, subsequent updates takeO(1)

time via lines 2–7, untilleft-writer [l] is no longer in the traceU . If left-writer [l] changes

because a concurrent thread updatesleft-writer [l], thenU will never be leftofleft-writer [l]

again. If U ′ = FINDTRACE(left-writer [l]) changes because of a steal, we chargeU ’s

(existing) slow UPDATELEFTWRITER against the subtraceU ′. Recall from the subtrace

properties of SP-hybrid thatU (1) andU (2) are fully expanded (and thus inactive),U (3) = U ,

andU (4) andU (5) are empty, and hence no future UPDATELEFTWRITERs will be charged

against this subtrace. Thus, we charge at most 1 slow UPDATELEFTWRITER against each

trace for each memory locationl.

I now bound the number of steal attempts when our race detector Nondeterminator-3

is run on a (Cilk-like) scheduler that obeys Property 10, withrandomized or round-robin

work stealing.

Lemma 26 Suppose that a fork-join program hasT1 work and a critical-path length of

T∞. When executed onP processors using the Cilk scheduler, the Nondeterminator-3 has

O(PT∞ lg P) steal attempts in expectation. Moreover, for anyε > 0, the number of steal

attempts isO(P (T∞ lg P + lg(1/ε))).

Proof. Apply Theorem 16 with one modification. Rather than blowing upeach thread

by r = O(1) work, we blow up each thread byr = O(lg P), which is the worst-case

79

blowup of a memory access. As in Theorem 16, we assume that processors are moving at

the same speed, and a steal holds the lock for long enough (an appropriate constant in front

of Ω(lg P)) that an access-history update only aborts one time. Thus, each time a steal

attempt happens, we make progress towards the critical pathT ′

∞
= O(T∞ lg P).

For simplicity, let’s modify the round-robin work stealingto wait for Θ(lg P) time

between each round ofP steal attempts. This modification is not strictly necessaryto

attain the performance bounds given below, but it does simplify the analysis.7

Lemma 27 Suppose that a fork-join program hasT1 work and a critical-path length of

T∞. When executed onP processors using the round-robin, work-stealing schedulerthat

obeys Property 10, the Nondeterminator-3 hasO(PT∞) steal attempts in the worst case.

Proof. We use the same proof as from Theorem 18. Since we waitΘ(lg P) time before

starting each round of steals, any thread on a processor fromwhich we attempted to steal

from in the previous round, even with theO(log P) blowup from a memory access, has had

time to complete. Thus, when a steal attempt occurs, by the end of the round, the potential

on that processor has decreased by a constant fraction. Therefore, there can be at most

O(PT∞) steal attempts, as before.

I now bound the time taken by the Nondeterminator-3 when run on a Cilk-like sched-

uler. I have two incomparable bounds that both apply—the oneto choose depends on the

number of memory locations being monitored. If the numberv of memory locations is

small, then the Nondeterminator-3 runs inO(T1/P + (v + P)T∞ lg P) time. If the number

of memory locations is large, then the Nondeterminator-3 runs inO((T1/P + PT∞) lg P)

expected time.

Theorem 28 Suppose that a fork-join program hasT1 work, a critical-path length ofT∞,

andv shared-memory locations.

When executed on P processors using the Cilk scheduler, the Nondeterminator-3 runs in

O(T1/P + PT∞ lg2 P + min
{

(T1 lg P)/P, vT∞ lg2 P
}

) expected time. Moreover, for any

7Without this modification, we would use something like Lemma26 to bound the number of steal attempts
(that takeO(1) time) and a variation of the Lemma 27 to bound the number of successful steals.

80

ε > 0, the Nondeterminator-3 race detector runs inO(T1/P +P (T∞ lg P +lg(1/ε)) lg P +

min {T1 lg P/P, v(T∞ lg P + lg(1/ε)) lg P}) time with probability at least1− ε.

When executed onP processors using the round-robin, work-stealing scheduler, the

Nondeterminator-3 runs inO(T1/P + PT∞ lg P + min {(T1 lg P)/P, vT∞ lg P}) worst-

case time.

Proof. We use the same approach as in Theorem 17, except that we add three new

buckets. The new buckets are as follows:

B8: The work spent performing access-history updates. A processor places a dollar

in the bucketB8 while performing an access-history update. We do not include money

for accesses that restart due to concurrent steals. Note that we include time spent per-

forming the included OM-PRECEDESbut not time spent retrying these OM-PRECEDES

operations—those retries are still included in bucketB5. If there ares steals, then Corol-

lary 25 implies that at mostO(vs) updates takeO(lg P) time. Otherwise, Corollary 24

states that each of at mostT1 accesses costsO(lg P) in the worst case. Thus, we have

|B8| = min {vs lg P, T1 lg P}.

B9: The work spent retrying access-history updates due to concurrent steals. Since a

steal can cause at mostO(1) updates to fail on each processor, and the number of steals is

s, we conclude that|B9| = O(sP lg P).

B10: The work spent updating the access history’s search tree while the global lock is

held. Since we doO(lg P) work per steal, we have|B10| = O(s lg P).

Note thatB4, the waiting time for the global lock, also changes. Whereas we had

|B4| = O(Ps) in Theorem 17, we now have|B4| = O(sP lg P) due to bucketB10.

Summing over all buckets and dividing byP , we have that the total money isO(T1/P +

s lg P + min {(vs lg P)/P, T1 lg P/P}. Themin arises from bucketB8. Substituting ins

from Lemmas 26 and 27 proves the theorem.

4.3 Space requirements

This section describes the space usage of our parallel race detector Nondeterminator-3. I

first discuss some garbage-collection techniques to removestale threads and traces from

81

SP-hybrid. Then, I argue that the race detector, with garbage collection, has efficient

space usage. In particular, consider a fork-join program that containsv memory loca-

tions and has a maximum procedure-nesting depth (or P-node-nesting depth) ofd. Then

the Nondeterminator-3 usesO(P (v + d)) space when run onP processors. Note that thed

arises from the maximum number of outstanding partially completed procedures. Since a

program execution requires some space on the stack for theseprocedure instances anyway,

we can think of the asymptotic increase by our race detector asO(Pv).

SP-hybrid, as described in Section 3.2, keeps an object for each thread or procedure.

For a race detector, we do not need to keep threads that have completed and are no longer

in the access history. The main difficulty is in garbage collecting these objects safely.

We have each processor keep ownership of all the bags (as in SP-bags) that it creates

and all the threads that it executes. In particular, we keep alist of completed threads

owned by a procedure. Since ownership of threads is clear, wecan also have this processor

handle reference counting for procedures and bags without any locking. Only the owning

processor can free the memory for these completed objects. We use a deamortized mark-

and-sweep garbage collector [37,42]. The mark-and-sweep garbage collector for SP-bags,

as described in [30], proceeds as follows for a particular processor:

1. Iterate through all the (completed) threads owned by the processor, and unmark them.

2. Iterate through thev memory locations in the shadow space, marking threads that are

in the shadow space.

3. Iterate through all threads freeing those that are still unmarked. Also free any bags

or procedures that have no deallocated threads.

There are onlyO(v) locations in the shadow space. Thus, if we run this garbage collector

everyv steps, the number of unfreed, completed threads (and procedures and bags) never

exceedsO(v). We can deamortize this technique by executing a constant number of steps

on each race-detector instruction.

It is not immediately obvious how deallocating procedures impacts the microsets from

SP-bags of Section 3.1. One simple technique is keep a count of the number of procedures

in a microset. We do not actually deallocate the procedure until the size of the microset

82

drops by half. At this point, we compress the microset (remove all the holes) to the left of

the bitstring and free any procedures that can be freed. We can deamortize this technique

in the same way we deamortize the MAKE-SET for incremental set union in Section 3.1.

That is, we keep two copies of a microset. Whenever the size of the microset reduces by

half, we allocate a new word for the microset. On every subsequent deletion of a procedure

from the microset, we examine a constant number of slots in the old microset, deleting or

copying procedures to the new microset as necessary. The constant is chosen such that

copy completes before the size of the new microset reduces byhalf again. In this way,

we guarantee that if there arek procedures either outstanding or represented by the access

history, then the number of unfreed procedures isO(k + v).

Given these deamortized techniques, we perform a constant number of garbage-collection

steps for each race-detection step, and performance is not asymptotically affected. More-

over, we guarantee a small number of threads, procedures, and bags being stored for each

processor.

It remains to describe how to garbage collect traces, since the traces belong to a shared

data structure. The processor that owns the threads in the trace is responsible for refer-

ence counting the trace without locking. Before this processor can free the trace, it must

acquire the global lock on the shared order-maintenance data structures. These lock acqui-

sitions have no asymptotic affect on performance—we can charge the overheads incurred

by locking when deallocating a trace against the creation ofthe trace.

Since the number of outstanding procedures and threads owned by a particular proces-

sor never exceeds the maximum nesting depthd, we have that a processor never owns more

thanO(v + d) objects. There areP processors, so we haveO(P (v + d)) objects in total.

Finally, we must deal with the effect of deallocating objects on concurrent queries. A

common technique isreference counting(from [19, 37], for example), whereby a reader

increments a reference counter on the object (i.e., a threadin the shadow space), performs

the operation (i.e., the SP-PRECEDESquery), then it decrements the counter. Since an

object gets deallocated only when its reference counter drops to0, the object is guaranteed

to be around for the duration of the query. While this approachdoes guarantee that no

object gets deleted while being read, it requires some sort of mutual exclusion to increment

83

a reference count in parallel.

Instead of reference counting, we repeat each step of a queryseveral times to guarantee

that the objects are still valid. In particular, consider the result of a memory access. We

may end up comparing a threadu′ stored in the access history against the current threadu

with an SP-PRECEDESquery. As long as the threadu′ is still in the access history, its bag

still exists, and its trace is still in the order-maintenance data structures, etc. Thus, when

following each pointer, we check thatu′ is still in the access history. In this way, we double

the constant amount of time needed for a SP-PRECEDES. Since it takesΩ(v) time before a

current thread will be collected, and we assume the processors move at the same speed, an

SP-PRECEDESonly fails once due to a concurrent deallocation of a thread.

84

Chapter 5

Related work

This chapter summarizes related work on race detection, SP-maintenance algorithms and

order-maintenance data structures.

Static race detectors [8, 11, 16, 29, 44, 56] analyze the textof the program to determine

whether a race occurs. Static analysis tools may be able to determine whether a mem-

ory location can be involved in a race for any input. These tools, however, are inherently

conservative (and report races that do not exist), since thestatic debuggers cannot fully

understand the control-flow and synchronization semanticsof a program. For example, dy-

namic control-flow constructs (e.g., a fork statement) inside loops are particularly difficult

to deal with. Mellor-Crummey [44] proposes using static tools as a way of pruning the

number of memory locations being monitored by a dynamic racedetector.

Dynamic race detectors execute the program given a particular input. Some dynamic

race detectors perform a post-mortem analysis based on program-execution logs [18, 28,

35, 45–48], analyzing a log of program-execution events after the program has finished

running. On-the-fly race race detectors, like the one given in this thesis, report races during

the execution of the program. Both dynamic approaches are similar and use some form of

SP-maintenance algorithm in conjunction with an access history. On-the-fly race detectors

benefit from garbage collection, thereby reducing the totalspaced used by the tool. Post-

mortem tools, on the other hand, must keep exhaustive logs.

Netzer and Miller [49] provide a common terminology to unifyprevious work on dy-

namic race detection. Afeasibledata race is a race that can actually occur in an execution of

85

the program. Netzer and Miller show that locating feasible data races in a general program

is NP-hard. Instead, most race detectors, including the onegiven in this thesis, deal with

the problem of discoveringapparentdata races, which is an approximation of the races

that may actually occur. These race detectors, like the one in this thesis, typically ignore

data dependencies that may make some apparent races infeasible, instead considering only

explicit coordination or control-flow constructs (like forks and joins). As a result, these

race detectors are conservative and report races that may not actually occur.

Dinning and Schonberg’s “lock-covers” algorithm [27] detects apparent races in pro-

grams that use locks. Cheng, Feng, Leiserson, Randall, and Stark generalize this algorithm

with their ALL -SETS algorithm [17]. Cheng et al. also give a more efficient algorithm,

called BRELLY, that can be used if the program obeys an “umbrella” locking discipline.

These algorithms can be incorporated into access-history algorithms like the one given in

this thesis.

Savage, Burrows, Nelson, Sobalvarro, and Anderson give an on-the-fly race detector

called Eraser [51] that does not use an SP-maintenance algorithm, and hence reports races

between threads that operate in series. Their Eraser tool works on programs that have

static threads (i.e., no nested parallelism) and enforces asimple locking discipline. A

shared variable must be protected by a particular lock on every access, or they report a

race. The BRELLY algorithm [17] is a generalization of Eraser’s locking discipline that

can be incorporated into race detectors, like the Nondeterminator-3 given in this thesis,

that support nested parallelism and maintain SP relationships. By keeping track of SP

relationships, we can report fewer spurious races.

Nudler and Rudolph [50] introduced the English-Hebrew labeling scheme for their SP-

maintenance algorithm. Each thread is assigned two static labels, similar to the labeling in

this paper. They do not, however, use a centralized data structure to reassign labels. In-

stead, label sizes grow proportionally to the maximum concurrency of the program. Mellor-

Crummey [43] proposed an “offset-span labeling” scheme, which has label lengths propor-

tional to the maximum nesting depth of forks. Although it uses shorter label lengths than

the English-Hebrew scheme, the size of offset-span labels is not bounded by a constant as

it is in our scheme. Both of these approaches perform local decisions on thread creation

86

to assign static labels. Although these approaches result in no locking or synchronization

overhead for SP-maintenance, the large labels can outweighthe waiting time experienced

by our algorithm.

Dinning and Schonberg’s “task recycling” algorithm [26] uses a centralized data struc-

ture to maintain series-parallel relationships. Each thread (block) is given a unique task

identifier, which consists of a task and a version number. A task can be reassigned (recy-

cled) to another thread during the program execution, whichreduces the total amount of

space used by the algorithm. Each thread is assigned a parentvector that contains the largest

version number, for each task, of its ancestor threads. Similar to SP-bags and SP-hybrid,

but unlike English-Hebrew or offset-span labelings, the task-recycling algorithm can only

determine the SP relationship between two threads if one of the threads is active. To query

the relationship between an active threadu1 and a threadu2 recorded in the access history,

task recycling simply compares the version number ofu2’s task against the version num-

bered stored in the appropriate slot inu1’s parent vector, which is a constant-time operation.

The cost of creating a new thread, however, can be proportional to the maximum logical

concurrency. Dinning and Schonberg’s algorithm also handles other coordination between

threads, like barriers, where two parallel threads must reach a particular point before con-

tinuing. Whereas the SP-hybrid algorithm given in this thesis is more efficient for strictly

fork-join programs, task-recycling is still very promising for more general programs.

The first order-maintenance data structure was published byDietz two decades ago [21].

It supports insertions and deletions inO(lg n) amortized time and queries inO(1) time.

Tarjan observed [23] that updates could be supported inO(1) amortized time, and the same

result was obtained independently by Tsakalidis [58]. Dietz and Sleator [23] proposed

two data structures, one that supports insertions and deletions inO(1) amortized time and

queries inO(1) worst-case time and a another that supports all operations in O(1) worst-

case time. Bender, Cole, Demaine, Farach-Colton, and Zito [12]gave two simplified data

structures whose asymptotic performance matches the data structures from [23]. Their

paper also presents an implementation study of the amortized data structure.

A special case of the order-maintenance problem is theonline list-labeling problem

[7, 22, 24, 36], also called thefile maintenance problem[59–62]. In online list labeling,

87

we maintain a mapping from a dynamic set ofn elements to the integers in the range from

1 to u (tags), such that the order of the elements matches the order of thecorresponding

tags. Any solution to the online list-labeling problem yields an order-maintenance data

structure. The reverse is not true, however, because there exists anΩ(lg n) lower bound

on the list-labeling problem [22, 24]. In file maintenance, we require thatu = O(n),

since this restriction corresponds to the problem of maintaining a file densely packed and

defragmented on disk.

Labeling schemes have been used for other combinatorial problems such as answering

least-common-ancestor queries [1,3,5,38] and distance queries used for routing [2,4,9,34,

39,57]. Although these problems are reminiscent of the order-maintenance problem, most

solutions focus on reducing the number of bits necessary to represent the labels in a static

(offline) setting.

Anderson and Woll [6] discuss concurrent union-find operations using path compres-

sion (with path halving) and union by rank. Whereas they consider multiple finds and

multiple unions occurring concurrently, however, our problem is confined to single unions

and multiple finds occurring concurrently.

88

Chapter 6

Conclusion

In this thesis, I have presented a new serial SP-maintenancealgorithm called SP-order, an

improvement to the serial SP-bags algorithm, and a new parallel SP-maintenance algorithm

called SP-hybrid. I have given performance analysis of these algorithms alone and when

incorporated into an efficient race detector.

As a practical matter, our algorithms are likely to perform faster than the worst-case

bounds indicate, because it is rare that every lock access sees contention proportional to the

number of processors. This observation can be used in practical implementations to sim-

plify the coding of the algorithms and yield somewhat betterperformance in the common

case. Nevertheless, I contend that the predictability of provably efficient software gives

users less-frustrating experiences. Giving up on provableperformance is an engineering

decision that should not be taken lightly. I also believe that provably efficient algorithms

are scientifically interesting in their own right.

As far as I know, this is the only work that has analyzed the total, asymptotic, worst-

case running time of an efficient, on-the-fly race detector. Most other works either perform

empirical studies or analyze the worst-case cost of a singleoperation once a lock has been

acquired. I am interested in seeing whether the analysis technique used in this thesis can

be extended to other parallel applications. In some sense, we amortize the cost of the

(protected) accesses to a shared data structure against thecritical path of the underlying

computation.

This thesis has not concentrated on race detection for programs that contain locks. I

89

briefly mentioned how these race detectors can be attained, but I have not done a full

performance analysis. It is unclear whether our analysis technique can be applied to the

ALL -SETSand BRELLY algorithms to show speedup, in the worst case, over the serial race

detector.

Some race detectors, like Dinning and Schonberg’s task-recyling algorithm [26], work

on programs that contain coordinating constructs between threads other than fork and

join. Since these programs cannot be represented as series-parallel parse trees, the SP-

maintenance algorithms given in this thesis do not apply. Dinning and Schonberg also

give a “coordination list” technique to extend Nudler and Rudolph’s English-Hebrew label-

ing [50] to support these same constructs, but the techniqueseems inefficient. Naturally,

this same technique should be applicable to the SP-maintenance algorithms given in this

thesis, but it is unclear that one cannot do better. Can SP-hybrid be extended to efficiently

support other forms of coordination between threads?

Throughout this thesis, I assume that parallel reads complete in constant time, even if

all the processors access the same memory location at the same time. I do not model the

underlying congestion in the memory system. It is unclear how to implement a congestion-

free parallel read in a real machine in a scalable way. Instead, we may want to augment our

model to include the read congestion. If processors are connected in a tree (or any other

O(lg P)-diameter constant-degree network), then parallel reads should be implementable

in O(lg P) time. Thus, we can simply take our performance bounds and blow up by an

O(lg P) factor. This bound is somewhat pessimistic, however, because it seems unlikely

that a parallel program would always have all the processorsreading the same location at

the same time. Is there a better way to model read contention?

Finally, I was surprised to see that using a round-robin work-stealing scheduler resulted

in a better worst-case running time for our race detector than the randomized work-stealing

scheduler. When running a program that does not serialize steals as SP-hybrid does, the

randomized work stealer performs better. Is there some balance that can be achieved here?

A Cilk program (that does not contain locks) withT1 work and critical-path lengthT∞ runs

on the randomized work-stealing scheduler inO(T1/P + T∞) time in expectation. Is there

a scheduler that results in a running time likeO(T1/P + P εT∞) in the worst case?

90

Appendix A

Hash function for microsets

This section describes one viable hash function for STRINGTONUM given in Section 3.1.

The hash function I give in this section is a perfect hash, whereby the worst-case search

cost isO(1) [20, Section 11.5].1

Since the set of keys is deterministic (i.e.,ww−k−1 for valid k), we deterministically

construct the hash function. We letp = 3i be the smallest power of3 such thatp ≥

3/2 min {w, n}. Then the function is quite simplyh(j) = j mod p. The range of the hash

function is obviouslyΘ(min {w, n}). The following lemma implies that the given hash

functionh maps allmin {w, n} keys to different values.

Lemma 29 Leta, b, andc be positive integers. For a given value ofc, there is no solution

to 2a − b3c = 1 with a < 2 · 3c−1.

Proof. Note that Euler’s phi function [20, p.865] implies that there is a solution with

a ≤ 2 · 3c−1.

We prove the lemma by induction. For a base case ofc = 1, we have2a − b3 = 1.

Obviously, the smallest value ofa that yields a solution (witha andb integers) isa = 2.

1There are many other ways to obtain a constant-time STRINGTONUM in the random-access machine
[20]. For example one could hardcode particular hash functions that work for particular word sizes. One
could also use a two-level perfect-hashing technique [31] (made dynamic by Dietzfelbinger et al. [25]).
This approach, however, makes the construction of the hash table expected amortized constant, whereas the
function given in this section gives a worst-case cost. Alternatively, Leiserson, Prokop, and Randall [41] give
a technique that uses de Bruijn sequences along with multiplication and a bit shift. This technique may be
preferred because it does not require a modulo/division operation.

91

Assume for the sake of contradiction that there is a solutionfor the equation withc = k

and witha < 2 · 3k−1. Then we can rewritea to be of the forma = d(2 · 3k−2) + x, where

0 ≤ d ≤ 2, andx < 2 · 3m−2. Thus, we have that

(

22·3k−2
)d

2x − b3k = 1

has a solution. Sincea = 2 · 3k−2 yields a solution to2a− b(1)3
k−1 = 1, we can rewrite this

equation as
(

1 + b(1)3
k−1

)d
2x − b3k = 1 .

This equation, however, implies that there is a value ofb that solves2x − b3k−1 = 1, with

x < 2 · 3k−2, which contradicts the inductive hypothesis.

Corollary 30 The functionh(2a) = 2a mod 3c yields different values for any2 · 3c−1

consecutive values ofa.

92

Bibliography

[1] Serge Abiteboul, Haim Kaplan, and Tova Milo. Compact labeling schemes for ances-
tor queries. InProceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 547–556. Society for Industrial and Applied Mathematics, 2001.

[2] Stephen Alstrup, Philip Bille, and Theis Rauhe. Labeling schemes for small distances
in trees. InProceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages
689–698, 2003.

[3] Stephen Alstrup, Cyril Gavoille, Haim Kaplan, and Theis Rauhe. Nearest common
ancestors: a survey and a new distributed algorithm. InProceedings of the Fourteenth
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 258–264.
ACM Press, 2002.

[4] Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Direct
routing on trees. InProceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 342–349. Society for Industrial and Applied Mathematics,
1998.

[5] Stephen Alstrup and Theis Rauhe. Improved labeling scheme for ancestor queries.
In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pages 947–953. Society for Industrial and Applied Mathematics, 2002.

[6] Richard J. Anderson and Heather Woll. Wait-free parallelalgorithms for the union-
find problem. InProceedings of the ACM Symposium on the Theory of Computing,
pages 370–380, 1991.

[7] Arne Andersson and Ola Petersson. Approximate indexed lists. Journal of Algo-
rithms, 29:256–276, 1998.

[8] W. F. Appelbe and C. E. McDowell. Anomaly reporting: A toolfor debugging and
developing parallel numerical algorithms. InProceedings of the 1st International
Conference on Supercomputing Systems, pages 386–391. IEEE, 1985.

[9] Marta Arias, Lenore J. Cowen, and Kofi A. Laing. Compact roundtrip routing with
topology-independent node names. InProceedings of the Twenty-Second Annual
Symposium on Principles of Distributed Computing, pages 43–52. ACM Press, 2003.

93

[10] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for
multiprogrammed multiprocessors. InProceedings of the Tenth Annual ACM Sym-
posium on Parallel Algorithms and Architectures (SPAA), pages 119–129, New York,
NY, USA, June 1998. ACM Press.

[11] Vasanth Balasundaram and Ken Kennedy. Compile-time detection of race conditions
in a parallel program. InICS ’86: Proceedings of the 3rd International Conference
on Supercomputing, pages 175–185, New York, NY, USA, 1986. ACM Press.

[12] M. A. Bender, R. Cole, E. Demaine, M. Farach-Colton, and J. Zito. Two simpli-
fied algorithms for maintaining order in a list. InProceedings of the 10th European
Symposium on Algorithms (ESA), pages 152–164, 2002.

[13] Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E. Leiserson. On-
the-fly maintenance of series-parallel relationships in fork-join multithreaded pro-
grams. InProceedings of the Sixteenth Annual ACM Symposium on Parallel Algo-
rithms and Architectures (SPAA), pages 133–144, Barcelona, Spain, June27–30 2004.

[14] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system.
In Proceedings of the Fifth ACM SIGPLAN Symposium on Principlesand Practice
of Parallel Programming (PPoPP), pages 207–216, Santa Barbara, California, July
1995.

[15] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations
by work stealing.Journal of the ACM, 46(5):720–748, September 1999.

[16] David Callahan and Jaspal Sublok. Static analysis of low-level synchronization. In
PADD ’88: Proceedings of the 1988 ACM SIGPLAN and SIGOPS Workshop on Par-
allel and Distributed Debugging, pages 100–111, New York, NY, USA, 1988. ACM
Press.

[17] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and An-
drew F. Stark. Detecting data races in Cilk programs that use locks. InProceedings of
the Tenth Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA
’98), pages 298–309, Puerto Vallarta, Mexico, June 28–July 2 1998.

[18] Jong-Deok Choi, Barton P. Miller, and Robert H. B. Netzer. Techniques for debug-
ging parallel programs with flowback analysis.ACM Transactions on Programming
Languages and Systems, 13(4):491–530, 1991.

[19] George E. Collins. A method for overlapping and erasure of lists. Communications
of the ACM, 3(12):655–657, 1960.

[20] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. In-
troduction to Algorithms. The MIT Press and McGraw-Hill, second edition, 2001.

[21] Paul F. Dietz. Maintaining order in a linked list. InProceedings of the ACM Sympo-
sium on the Theory of Computing, pages 122–127, May 1982.

94

[22] Paul F. Dietz, Joel I. Seiferas, and J. Zhang. A tight lower bound for on-line mono-
tonic list labeling. InAlgorithm Theory—SWAT ’94: 4th Scandinavian Workshop on
Algorithm Theory, volume 824 ofLecture Notes in Computer Science, pages 131–
142. Springer-Verlag, 6–8 July 1994.

[23] Paul F. Dietz and Daniel D. Sleator. Two algorithms for maintaining order in a list.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages
365–372, New York City, May 1987.

[24] Paul F. Dietz and J. Zhang. Lower bounds for monotonic list labeling. InSWAT 90,
2nd Scandinavian Workshop on Algorithm Theory, volume 447 ofLecture Notes in
Computer Science. Springer, 11–14 July 1990.

[25] Margin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide,
Hans Rohnert, and Robert E. Tarjan. Dynamic perfect hashing: Upper and lower
bounds.SIAM Journal on Computing, 23(4):738–761, 1994.

[26] Anne Dinning and Edith Schonberg. An empirical comparison of monitoring algo-
rithms for access anomaly detection. InProceedings of the Second ACM SIGPLAN
Symposium on Principles & Practice of Parallel Programming(PPoPP), pages 1–10.
ACM Press, 1990.

[27] Anne Dinning and Edith Schonberg. Detecting access anomalies in programs with
critical sections. InProceedings of the ACM/ONR Workshop on Parallel and Dis-
tributed Debugging, pages 85–96. ACM Press, May 1991.

[28] Perry A. Emrath, Sanjoy Ghosh, and David A. Padua. Eventsynchronization analysis
for debugging parallel programs. InSupercomputing ’91, pages 580–588, November
1991.

[29] Perry A. Emrath and Davis A. Padua. Automatic detectionof nondeterminacy in
parallel programs. InProceedings of the Workshop on Parallel and Distributed De-
bugging, pages 89–99, Madison, Wisconsin, May 1988.

[30] Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy races
in Cilk programs. InProceedings of the Ninth Annual ACM Symposium on Parallel
Algorithms and Architectures (SPAA), pages 1–11, Newport, Rhode Island, June22–
25 1997.

[31] Michael L. Fredman, J́anos Komĺos, and Endre Szermerédi. Storing a sparse table
with O(1) worst case access time.Journal of the ACM, 31(3):538–544, 1984.

[32] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall.The implementation of the
Cilk-5 multithreaded language. InProceedings of the ACM SIGPLAN ’98 Conference
on Programming Language Design and Implementation, pages 212–223, Montreal,
Quebec, Canada, June 1998. Proceedings published ACM SIGPLANNotices, Vol.
33, No. 5, May, 1998.

95

[33] Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special
case of disjoint set union.Journal of Computer and System Sciences, 30(2):209–221,
1985.

[34] Cyril Gavoille, David Peleg, Stéphane Ṕerennes, and Ran Raz. Distance labeling in
graphs. InProceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages
210–219, 2001.

[35] David P. Helmbold, Charles E. McDowell, and Jian-Zhong Wang. Analyzing traces
with anonymous synchronization. InProceedings of the 1990 International Confer-
ence on Parallel Processing, pages II70–II77, August 1990.

[36] Alon Itai, Alan G. Konheim, and Michael Rodeh. A sparse table implementation
of priority queues. In S. Even and O. Kariv, editors,Proceedings of the 8th Collo-
quium on Automata, Languages, and Programming, volume 115 ofLecture Notes in
Computer Science, pages 417–431, Acre (Akko), Israel, July13–17 1981.

[37] Richard Jones and Rafael Lins.Garbage Collection: Algorithms for Automatic Dy-
namic Memory Management. John Wily & Sons, 1996.

[38] Haim Kaplan, Tova Milo, and Ronen Shabo. A comparison of labeling schemes for
ancestor queries. InProceedings of the Thirteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 954–963. Society for Industrial and Applied Mathematics,
2002.

[39] Michal Katz, Nir A. Katz, Amos Korman, and David Peleg. Labeling schemes for
flow and connectivity. InProceedings of the Thirteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 927–936. Society for Industrial and Applied
Mathematics, 2002.

[40] Leslie Lamport. How to make a multiprocessor computer that correctly executes mul-
tiprocess programs.IEEE Transactions on Computers, C-28(9):690–691, September
1979.

[41] Charles E. Leiserson, Harald Prokop, and Keith H. Randall. Using de Bruijn se-
quences to index a 1 in a computer word. Available on the Internet fromhttp:
//supertech.csail.mit.edu/papers.html, 1998.

[42] John McCarthy. Recursive functions of symbolic expressions and their computation
by machine, Part I.Communications of the ACM, 3(4):184–195, 1960.

[43] John Mellor-Crummey. On-the-fly detection of data racesfor programs with nested
fork-join parallelism. InProceedings of Supercomputing’91, pages 24–33. IEEE
Computer Society Press, 1991.

[44] John Mellor-Crummey. Compile-time support for efficientdata race detection in
shared-memory parallel programs. InProceedings of the ACM/ONR Workshop on
Parallel and Distributed Debugging, pages 129–139, San Diego, California, May
1993. ACM Press.

96

[45] Barton P. Miller and Jong-Deok Choi. A mechanism for efficient debugging of par-
allel programs. InProceedings of the 1988 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pages 135–144, Atlanta, Geor-
gia, June 1988.

[46] Robert H. B. Netzer and Sanjoy Ghosh. Efficient race condition detection for shared-
memory programs with post/wait synchronization. InProceedings of the 1992 Inter-
national Conference on Parallel Processing, St. Charles, Illinois, August 1992.

[47] Robert H. B. Netzer and Barton P. Miller. On the complexity of event ordering for
shared-memory parallel program executions. InProceedings of the 1990 International
Conference on Parallel Processing, pages II: 93–97, August 1990.

[48] Robert H. B. Netzer and Barton P. Miller. Improving the accuracy of data race de-
tection. InPPOPP ’91: Proceedings of the Third ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 133–144, New York, NY,
USA, 1991. ACM Press.

[49] Robert H. B. Netzer and Barton P. Miller. What are race conditions?ACM Letters on
Programming Languages and Systems, 1(1):74–88, March 1992.

[50] Itzhak Nudler and Larry Rudolph. Tools for the efficient development of efficient par-
allel programs. InProceedings of the First Israeli Conference on Computer Systems
Engineering, May 1986.

[51] Stefan Savage, Michael Burrows, Greg Nelson, Patric Sobalvarro, and Thomas An-
derson. Eraser: A dynamic race detector for multi-threadedprograms. InProceedings
of the Sixteenth ACM Symposium on Operating Systems Principles (SOSP), pages 27–
37, New York, NY, USA, October 1997. ACM Press.

[52] Supercomputing Technologies Group, Massachusetts Institute of Technology Lab-
oratory for Computer Science.Cilk 5.3.2 Reference Manual, November 2001.
Available on the Internet fromhttp://supertech.csail.mit.edu/cilk/
manual-5.3.2.pdf.

[53] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm.Journal
of the ACM, 22(2):215–225, April 1975.

[54] Robert Endre Tarjan. Applications of path compression on balanced trees.Journal of
the Association for Computing Machinery, 26(4):690–715, October 1979.

[55] Robert Endre Tarjan.Data Structures and Network Algorithms. Society for Industrial
and Applied Mathematics, 1983.

[56] Richard N. Taylor. A general-purpose algorithm for analyzing concurrent programs.
Communications of the ACM, 26(5):361–376, 1983.

97

[57] Mikkel Thorup and Uri Zwick. Compact routing schemes. InProceedings of the
Thirteenth Annual ACM Symposium on Parallel Algorithms and Architectures, pages
1–10. ACM Press, 2001.

[58] Athanasios K. Tsakalidis. Maintaining order in a generalized linked list.Acta Infor-
matica, 21(1):101–112, May 1984.

[59] Dan E. Willard. Inserting and deleting records in blocked sequential files. Technical
Report TM81-45193-5, Bell Laboratories, 1981.

[60] Dan E. Willard. Good worst-case algorithms for inserting and deleting records in
dense sequential files. In Carlo Zaniolo, editor,Proceedings of the 1986 ACM SIG-
MOD International Conference on Management of Data, pages 251–260, Washing-
ton, D.C., 28–30 May 1986.

[61] Dan E. Willard. A density control algorithm for doing insertions and deletions in
a sequentially ordered file in good worst-case time.Information and Computation,
97(2):150–204, April 1992.

[62] D.E. Willard. Maintaining dense sequential files in a dynamic environment (extended
abstract). InProceedings of the Fourteenth Annual ACM Symposium on Theoryof
Computing, pages 114–121, San Francisco, California, 5–7 May 1982.

98

