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Abstract

JCilk extends the serial subset of the Java language by importing thgfonrimitives
spawn andsync from the Cilk multithreaded language, thereby providing call-return
semantics for multithreaded subcomputations. In addition, JCilk transparetgtyrates
Java’s exception handling with multithreading by extending the semantics atJdaw
andcat ch constructs, but without adding new keywords. This extension is “faithful”
that it obeys Java’s ordinary serial semantics when executed on a pioglessor. When
executed in parallel, however, an exception thrown by a JCilk computatimeséts sibling
computations to abort, which yields a clean semantics in which the enclosinig t r y
block need only handle a single exception.

The exception semantics of JCilk allow programs with speculative computatidyes to
programmed easily. Speculation is essential in order to parallelize proguamasbranch-
and-bound or heuristic search. We show how JCilk’s linguistic mechaniambe used to
program the “queens” puzzle and a parallel alpha-beta search.

We have implemented JCilk’s semantic model in a prototype compiler and runtime sys-
tem, called JCilk-1. The compiler implements continuations in a novel fashion oy intr
ducinggot o statements into Java. The JCilk-1 runtime system shadows the dynamic hi-
erarchy ofci | k t ry blocks using a “try tree,” allowing the system to chase down side
computations that must be aborted. Performance studies indicate that #ikption
mechanism incurs minimal overhead, contributing at most a few percenpaf the cost
for aspawn/r et ur n.

1 Introduction

JCilk is a Java-based multithreaded language for paratbgirpmming that extends
the semantics of Java (Gosliegal.,, 2000) by introducing “Cilk-like” (SuperTech,

I This research was supported in part by the Singapore-MIT AllianceogdiSF Grant
ACI-0324974. 1-Ting Angelina Lee was supported in part by a Sun ddigstems Fellow-
ship. John S. Danaher is now employed at Google, Inc.

Preprint submitted to Elsevier Science 29 May 2006



1 cilk int f1() {

2 int w= spawn A();

3 int x = B();

4 int y = spawn C();

5 int z =D);

6 sync;

7 return w+ x +y + z;
8 }

Fig. 1. A simple JCilk program.

2001; Frigoet al., 1998) linguistic constructs for parallel control. JCilkpglies
Java with the ability for procedures to be executed in palralhd return results,
much as Cilk provides call-return semantics for multithiegdn a C language
(Kernighan and Ritchie, 1988) context. These facilitiesrakavailable in Java’s
threading model (Goslingt al., 2000, Ch. 11) or in the Posix thread specification
(Institute of Electrical and Electronic Engineers, 199&) € threading libraries.
When embedding new linguistic primitives into an existingdaage, however, one
must ensure that the new constructs interact nicely witktiexj constructs. Java’s
exception mechanism turns out to be the language featuredimestly impacted
by the new Cilk-like primitives, but surprisingly, the ing&tion is synergistic, not
antagonistic.

The philosophy behind our JCilk extension to Java follows didahe Cilk exten-
sion to C: the multithreaded language should be a true seecnaantallel extension
of the base language. JCilk extends serial Java by adding agwokds that al-
low the program to execute in parallel. (JCilk currently axantirely Java’s mul-
tithreaded support as provided by thar ead class, but we hope eventually to
integrate the JCilk extensions with Java threads.) If thekX&lwords for paral-
lel control are elided from a JCilk program, however, a syitatly correct Java
program results, which we call tteerial elision (Frigo et al,, 1998) of the JCilk
program. JCilk is daithful extension of Java, because the serial elision of a JCilk
program is a correct (but not necessarily the sole) intéapomn of the JCilk pro-
gram’s parallel semantics.

To be specific, JCilk introduces three new keywords++ k, spawn, andsync

— which are the same keywords used to extend C into Cilk, andhhee essen-
tially the same meaning in JCilk as they do in Cilk. The keyword k is used as

a method modifier to declare the method to e &k method which is analogous

to a regular Java method except that it can be spawned totexaqarallel. When

a parent method spawns a child method, which is accomplisiigteceding the
method call with thes pawn keyword, the parent can continue to execute in parallel
with its spawned child. Theync keyword acts as a local barrier. JCilk ensures that
program control cannot go beyonggnc statement until all previously spawned
children have terminated. In general, unttial k method executessync state-
ment, it cannot safely use results returned by previousiysed children.



To illustrate how we have introduced these Cilk primitivemidava, consider the
simple JCilk program shown in Figure 1. The methHddspawns the method to
run in parallel in line 2, calls the methdglnormally (serially) in line 3, spawng

in parallel in line 4, calls metho® normally in line 5, and then itself waits at the
sync in line 6 until all the subcomputatio’s andC have completed. When they
both completef 1 computes the sum of their returned values as its returnesg val
inline 7.

The original Cilk language provides these simple semanpicsgawn andsync,
but it requires no semantics for exceptions, because sphiunetions in Cilk can
only return normally, just as C functions can only returnmally. Java, however,
allows a method to signal an exception rather than returmalty, and JCilk’s
semantics must cope with this eventuality. How should tltkedo Figure 1 behave
when one or more of the spawned or called methods signalscapean?

In ordinary Java, an exception causes a nonlocal transfesrdfol to nearest dy-
namically enclosingat ch clause that handles the exception. Thga Language
Specificatior(Goslinget al., 2000, pp. 219-220) states,

“During the process of throwing an exception, the Java alrtoachine abruptly
completes, one by one, any expressions, statements, matikdozbnstructor in-
vocations, initializers, and field initialization expresss that have begun but not
completed execution in the current thread. This processmaes until a handler
is found that indicates that it handles that particular pkoa by naming the
class of the exception or a superclass of the class of thepgané

In JCilk, we have striven to preserve these semantics whitneing them to cope
gracefully with the parallelism provided by the Cilk primviéis. Specifically, JCilk
extends the notion of “abruptly completes” to encompassrtigicit aborting of
any spawned side computations along the path from the pdiaterthe exception
is thrown to the point where it is caught. Thus, for exampidsigure 1, ifA and/or
Cis still executing wher throws an exception, then they are aborted.

A little thought reveals that the decision to implicitly abside computations po-
tentially opens a Pandora’s box of subsidiary linguistioclppems to be resolved.
Aborting might cause a computation to be interrupted asyorabusly (Gosling

et al, 2000, Sec. 11.3.2), causing havoc in programmer undelisgof code be-

havior. What exactly gets aborted when an exception is thPdan the abort itself
be caught so that a spawned method can clean up?

We believe that JCilk provides good solutions to these sudrgighroblems. JCilk
provides for “semisynchronous” aborts to simplify the @@nag about program
behavior when an abort occurs. The semantics of JCilk malesit ® understand
the behavior of parallel code when exceptions occur, whlthfully extending
Java semantics. JCilk provides for aborts themselves toughtay defining a new
subclass offhr owabl e, calledC | kAbor t , thereby allowing programmers to



clean up an aborted subcomputation.

As a testament to how well JCilk integrates Java’s exceptiechanism with Cilk’s
spawn andsync constructs, programming speculative applications in JGilk
even more straightforward than in Cilk. Speculation is esakfor parallelizing
programs such as branch-and-bound or heuristic searctinffahet al., 1993;
Kuszmaul, 1995; Dailey and Leiserson, 2002). The Cilk laggyarovides the key-
wordsi nl et andabort, which allow speculative computations to be managed.
JCilk’s integration ofspawn andsync with Java’s exception-handling semantics
obviates Cilk’si nl et andabort keywords for programming speculative appli-
cations such as the so-called “queens” puzzle and parilehdeta search. As we
shall see, however, the inlet and abort mechanisms st8t exinceptually within
the JCilk language.

In this paper, we describe JCilk's semantics and how Cilk-trkdtithreading is
integrated with Java’s existing exception semantics.i&e@ describes the ba-
sic concepts underlying JCilk, and Section 3 explains JCékiseption semantics
more precisely. Section 4 shows how JCilk’s linguistic cansts can be used to
program a search for a solution to the queens puzzle. Segfwasents a parallel
alpha-beta search application coded in JCilk, which dematest the use of JCilk’s
linguistics constructs in more depth. Section 6 overvieles prototype JCilk-1
compiler and runtime system which implements the JCilk laggusemantics. Sec-
tion 7 describes the implementation of exceptions in JCjlikdiich keeps track of
the dynamic hierarchy ofi | k t ry statements using a “try tree” data structure.
Section 8 evaluates the performance of JCilk-1's exceptienlanism and offers
insight into how a highly tuned implementation would penfoiSection 9 presents
related work, and Section 10 provides some concluding resnar

2 Basic JCilk concepts

This section describes the basic concepts underlying th& Biguage beyond
the simpleci | k, spawn, andsync keywords described in Section 1. We first
present the language’s syntax. We go on to describe themaftie program cursor,
which is analogous to a program counter. We then discuss @dwsIsupport for
“implicit atomicity” simplifies reasoning about concur@n Finally, we describe
how users can safely clean up aborting methods using theibwkception class
G | kAbort .

Syntax

JCilk inherits its basic mechanisms for parallelism from CAk mentioned in Sec-
tion 1, the JCilk language extends Java by including three keyswords:ci | k,



spawn, andsync. The keywordci | k is a method modifier. In order to make
parallelism manifest to programmers, JCilk enforces thestamt thats pawn and
sync can only be used inside a method declared toiblek. A ci | k method can
call a Java method, but a Java method cannot spawn (or call) e method. Simi-
larly, aci | k method can only be spawned but cannot be called. In adddibeing

a method modifier, thei | k keyword can be used as a modifier of my state-
ment, and JCilk enforces the constraint ttpawn andsync keywords can only
be used within @i | k t r y block, but not within anygat ch orf i nal | y clauses
of theci | k t ry statement. Placingpawn or sync keywords within an ordi-
naryt ry block is illegal in JCilk. The reasonr y blocks containingspawn and
sync must be declaredi | k is that when an exception occurs, thésey state-
ments may contain multiple threads of control during exicepttandling. Although

a JCilk compiler could detect and automatically insedid k keyword before a

t r y statement containingpawn or sync, we feel the programmer should be ex-
plicitly aware of the inherent parallelism. We disall@pawn andsync within
catchorfinal | y clauses for implementation simplicity, and because we know
of no applications that would benefit from this flexibility.

Program cursors

When aci | k method is spawned, @ogram cursoris created for the method in-
stance, which is more-or-less equivalent to its programmtayubut at the language
level rather than machine level. When the method returngragram cursor is
destroyed. For example, in the simple JCilk program from Fady the spawning
of AandCin lines 2 and 4 creates new program cursors that can exécane C
independently from their parehtl.

A ci | k method contains only ongrimary program cursor. When it calls an or-
dinary Java (norei | k) method, we view the Java method as executing using the
ci | k method’s primary cursor. In Figure 1, for example, the mddi®andD in
lines 3 and 5 execute usirid.’s primary cursor.

JCilk allowssecondaryprogram cursors to be created as well. In particular, when
aci | k method is spawned, its return value is incorporated intg#rent method
by a secondary cursor. Incorporating a return value may lre mwolved than the
case of a simple assignment, such as the ones shown in linres2ia Figure 1.
Figure 2 illustrates a program in which the returned valuesifspawned methods
B andCand called metho® augment the variabhg, rather than just assigning to it,
as the return value frod does to the variabbe. Although a child’s cursor normally
stays within the child, for circumstances such as thosenagsl4 and 5, the child’s
cursor operates for a time in its parér to perform the update. JCilk encapsulates
these secondary cursors using a mechanism from the ori@itkdbhnguage, called
aninlet, which is a small piece of code that operates within the gavarbehalf

of the child. Although Cilk'si nl et keyword does not find its way into the JCilk



cilk int f2() {
int x, y =0;
X = spawn A();
y += spawn B();
y += spawn C();
y += IX);
sync;
return x + v,

OCO~NOUITAWNE

}

Fig. 2. Implicit atomicity simplifies reasoning about multiple JCilk threads operatitigrw
the same method.

language, as we shall see in Section 3, the concept of anisnlsed extensively
when handling exceptions in JCilk.

Implicit atomicity

Since reasoning about race conditions between an inletrenparent, or between
inlets, could be problematic, JCilk supports the ideangdlicit atomicity. To un-
derstand this concept, we first defind@ilk thread? to be a maximal sequence
of statements executed by a single program cursor thatdaslmo parallel con-
trol. From a linguistic point of view, a JCilk thread executesspawn or sync
statements, nor exits froma | k methodorci I kKtry.

For example, when the methdéd. in Figure 1 runs, four threads are executed by
f 1's primary program cursor:

(1) from the beginning of 1 to the point in line 2 where thA computation is
actually spawned;

(2) from the point in line 2 where th& computation is actually spawned to the
point in line 4 where the&C computation is actually spawned, including the
entire call toB;

(3) from the point in line 4 where th€ computation is actually spawned to the
sync in line 6, including the entire call tb;

(4) from thesync in line 6 to the point wheré 1 returns.

In addition, two threads corresponding to the assignmeintg andy in lines 2
and 4 are executed by secondary program cursors.

In Figure 2, similar threads can be determined, but in aolditwhen a spawned
method such aB in line 4 returns, an inlet runs the updatingyofas a separate
thread from the others. JCilk’s support for implicit atortycguarantees that all

2 Although JCilk is implemented using Java threads, JCilk threads and Javdstaea
different concepts. Generally, when we say “thread,” we mean a JCékdh If we mean a
Java thread, we shall say so explicitly.



JCilk threads executing in the same method instance exetatacally with re-
spect to each other, that is, the instructions of the threadsot interleave. Said
more operationally, JCilk's scheduler performs all its @asi at thread boundaries,
and it executes only one of a method instance’s threads raea Iin the case df2,

the updates of in lines 4, 5, and 6 all execute atomically. The updates chbge
the returns oB andC are executed by JCilk’s built-in inlets, and the update cduse
by D's return is executed bfy2’s primary program cursor.

Implicit atomicity places no constraints on the interactidetween JCilk threads
in different method instances, however. It is the respaolityilof the programmer

to handle those interactions using synchronized methodks) nonblocking syn-
chronization, which can be subtle to implement in Java duestmemory model

— see, for example, Lea (1999); Pugh (2000); Gontmakher ahds$er (2000);
Mansonet al. (2005) — and other such techniques. This paper does notssldre
these synchronization issues, which are orthogonal to @zusf on the linguistic
constructs for exceptions.

Because of the havoc that can be caused by aborting commgtasgnchronously,
JCilk leverages the notion of implicit atomicity by ensuritigt all aborts occur
semisynchronouslythat is, when a method is aborted, all its program cursers re
side at thread boundaries. Semisynchronous aborts eapeotii@mmer’s task of
understanding what happens when the computation is abdineidhg the reason-
ing to those points where parallel control must be undedstémyway. For example,
in Figure 1 ifCthrows an exception whebis executing, then the thread runnibg
returns fromD and continues on to theync in line 6 off 2 before possibly being
aborted. Since aborts are by their nature nondeterminiiitk cannot guarantee
that when an exception is thrown, a computation always imately aborts when
its primary program cursor reaches the next thread bounwdngt it promises is
only that when an abort occurs, the primary cursor residesratthread boundary,
and likewise for secondary cursors.

TheCi | kAbort exception

JCilk provides a built-in exceptioh classCi | kAbor t, which inherits directly
from Thr owabl e, as do the built-in Java exception clasgescepti on and

Er r or . When JCilk determines that a method must be aborted, it ca@@dsAbor t
to be thrown in the method. The programmer can choose to edichkAbor t if
clean-up is desired. The catching and handling Gf &k Abor t exception is not
required, however, and ti@ | kAbor t exception isimplemented as an unchecked
exception.

3 In keeping with the usage in Goslireg al. (2000), when we refer to an exception, we
mean any instance of the claBsr owabl e or its subclasses.



1 cilk int f3() {

2 int x, vy;

3 cilk try {

4 X = spawn A();

5 } catch(Exception e) {
6 X = 0;

7 }

8 cilk try {

9 y = spawn B();

10 } catch(Exception e) {
11 y = 0;

12 }

13 sync;

14 return x +vy;

15 }

Fig. 3. Handling exceptions withi | k t r y when aborting is unnecessatry.

3 TheJCilk language features

This section discusses the semantics of JCilk exceptiondhalm with a simple
example of the use ai | k t r y that illustrates two important notions. The first is
the concept that a primary program cursor can leavel& t r y statement before
the statement completes. The second is the idea of a “cgtetitéch is an inlet that
executes the body of theat ch clause of eci | k t ry. We then give a complete
semantics foci | k t ry. We conclude with a description of how tlel kAbor t
exception can be handled by user code.

Theci | k try statement

Figure 3 illustrates the use afi | k try and demonstrates how this linguistic
construct interacts with the spawning of subcomputatidhg. parent methotl 3
spawns the chil@gi | k methodA in line 4, but its primary program cursor contin-
ues within the parent, proceeding to spawn another @itdline 9. As before, the
primary cursor continues ih3 until it hits thesync in line 13, at which point 3

is suspended until the two children complete.

Observe that 3's primary cursor can continue on beyond the scope otihiek

t ry statements even thoughand B may yet throw exceptions. If the primary
cursor were held up at the end of tbel k t ry block, writing acat ch clause
would preclude parallelism.

In the code from the figure, if one of the children throws anegtion, it is caught
by the correspondingat ch clause. Theat ch clause may be executed long after
the primary cursor has left the | k t r y block, however. As with the example of
an inlet updating a local variable in Figure 2, if methadignals an exception,
A’s cursor must operate dn3 to execute theat ch clause in lines 5-7. This



functionality is provided by aatchlet which is an inlet that runs on the parent
(in this casd 3) of the method (in this cas®) that threw the exception. As with
ordinary inlets, JCilk guarantees that the catchlet runsiei@ly with respect to
other program cursors running 613.

Similar to a catchlet, inallet runs atomically with respect to other program cursors
iftheci | k t ry statement containsfa nal | y clause.

Aborting side computations

We are almost ready to tackle the full semanticsiof k t r y, which includes the
aborting of side computations when an exception is throwhwe require one key
concept in the Java language specification (Gosirg., 2000, Sec. 11.3):

“A statement or expression @ynamically enclosedy acat ch clause if it

appears within thér y block of thet r y statement of which theat ch clause

is a part, or if the caller of the statement or expression igdyically enclosed
by thecat ch clause.”

In Java code, when an exception is thrown, control is traredierom the code that
caused the exception to the nearest dynamically enclasang h clause handles
the exception.

JCilk faithfully extends these semantics, using the notibfdgnamically enclos-
ing” to determine, in a manner consistent with Java’s notbfabrupt comple-
tion,” which method instances should be aborted. (See th&tjan in Section 1.)
Specifically, when an exception is thrown, JCilk deliveG & k Abor t exception
semisynchronously to theide computationf the exception. The side compu-
tations include all methods that are dynamically enclosgdhle cat ch clause
that handles the exception, which can include the primaogmam cursor of the
method containing thati | k t r y statement if that cursor still resides in thiel k

t ry statement. JCilk thus throwsG | kAbor t exception at the point of the pri-
mary cursor in that case. Moreover, that ch clause handling th€i | kAbor t
thrown to a to-be-abortedi | k block is not executed until all its children have
completed, allowing the side computation to be “unwoundaistructured way
from the leaves up.

Figure 4 shows &i | k t ry statement. If method throws an exception that is
caught by thecat ch clause beginning in line 6, the side computation that is sig-
naled to be aborted includ@&and any of its descendants, if B has been spawned
but hasn't returned. The side computation also includepttingary program cursor
for f 4, unless it has already exited tbel k t r y statement. It does not includ#
which is not dynamically enclosed by teat ch clause.



1 cilkint f4() {

2 int x, vy, z;

3 cilk try {

4 X = spawn A();
5 y = spawn B();
6 } catch(Exception e) {
7 X =y =0

8 handl e(e)

9

10 z = spawn ()

11 sync;

12 return x +vy + z;
13 }

Fig. 4. Handling exceptions withi | k t r y when aborting might be necessary.

Although JCilk makes no guarantee that the abort executeglgfter an excep-
tion’s side computation is signaled to abort, it makes a-b#stt attempt to do
so. If the side computations are executed speculativedypterall correctness of a
programmer’s code should not depend on whether the “abfartethods complete
normally or abruptly, and if abruptly, quickly or slowly.

The semanticsoti l ktry

After an exception is thrown, when and how is it handled? Toeption-handling
mechanism decomposes exception handling into six actions:

(1) Selectan exception to be handled by the nearest dynbyrecalosingcat ch
clause that handles the exception.

(2) Signal the side computations to be aborted.

(3) Wait until all dynamically enclosed spawned methods plete, either nor-
mally or abruptly by dint of Action 2.

(4) Wait until the method’s primary program cursor exits thd k t ry block,
either normally or by dint of Action 2.

(5) Run the catchlet associated with the selected exception.

(6) Ifthecil ktry contains & i nal | y clause, run the associated finallet.

The exception-handling mechanism executes these act®ofslaws. If one or
more exceptions are thrown, Action 1 selects one of thenrdvirg Java’s cascad-
ing abrupt completion, all dynamically enclosed| k t ry statements between
the point where the exception is thrown and where it is caaffut select the same
exception, even though thaiat ch clauses do not handle it. Action 2 is then initi-
ated to signal the side computation to abort. The mechanswwaits in Actions 3
and 4 until the side computations terminate. At this pointidxc5 safely executes
thecat ch clause, which is followed by Action 6 to execute thienal | y clause,

if it exists.

10



1 cilk int f5() {

2 for(int i=0; i<10; i++) {

3 int a =0;

4 cilk try {

5 a = spawn A(i);

6 } finally {

7 Systemout.println("In iteration "
8 +i +" Areturns " + a);
9 }

10 }

11 sync;

12}

Fig. 5. A loop containing &i | k t ry illustrating a race condition between the update of
i inline 2 and the read df in line 8.

We made the decision in JCilk that if multiple concurrent gtmms are thrown
to the samei | k block, only one is selected to be handled. In particularng o
of these exceptions is@ | kAbort exception, theCi | kAbor t exception is se-
lected to be handled. The rationale is that the other exmepttome from side
computations, which will be aborted anyway. This decisgaansistent with ordi-
nary Java semantics, and it fits in well with the idea of imphaborting.

The decision to allow the primary program cursor possiblgxda aci lk try
block with afi nal | y clause before the finallet is run reflects the notion that
final | yis generally used to clean up (Gosliegal,, 2000, Ch. 11), not to estab-
lish a precondition for subsequent execution. MoreoveilkJities provide a way

to ensure that &1 nal | y clause is executed before the code following ¢ihé k

t ry statement: simply place gync statement immediately after tlie nal | y
clause.

Secondary program cursors within loops

When a primary program cursor exitsal k t r y blockin aloop before itsat ch
clause orf i nal | y clause is run and proceeds to another iteration of a loop, a
secondary program cursor eventually executestiech orf i nal | y clause. As

in the Cilk language, this situation requires the programtoereason carefully
about the code.

In particular, it is possible to write code with a race coiadif such as the one il-
lustrated in Figure 5. The programmer is attempting to spap@®) , A(1), ...,
A(9) in parallel and print out the values returned for each iteravith the itera-
tion numbei . Unfortunately, the primary cursor may change the value lnéfore
a given child completes, thereby causing the secondarprcersated when the
child returns to use the wrong value when it executes thd ptatement in line 8
inthefi nal | y clause.

11



1 cilk int f6() {

2 for(int i=0; i<10; i++) {

3 int a =0;

4 int icopy =i;

5 cilk try {

6 a = spawn A(icopy);

7 } finally {

8 Systemout.printin("In iteration "
9 + icopy +" Areturns " + a);
10 }

11 }

12 sync;

13}

Fig. 6. JCilk’s lexical-scope rule can be exploited to fix the race conditiom frigure 5.

This situation is called aata race(or, ageneral race as defined by Netzer and
Miller (1992)), which occurs when two threads operating amglel both access a
variable and one modifies it. In this ca$®&’s primary cursor increments the value
of i inline 2 in parallel with the secondary cursor executingfth@al | y block
which reads in line 8. Whereas JCilk’s support for implicit atomicity gaatees
that thef i nal | y block executes atomically with respectftd’s primary cursor,

it does not guarantee that data races do not occur. In thes tteesdata race makes
the code incorrect.

The race condition in the code from Figure 5 can be fixed byadgx) a new loop
local variablei copy, as shown in Figure 6. The only differences between code
in Figure 5 and Figure 6 are the additional declaration ofdle variablei copy

in line 4 of Figure 6 and replacing the readingiofn line 8 of Figure 5 with the
reading ofi copy in line 9 of Figure 6. Every timé 6 iterates its loop, a new copy
of the variable copy is created and initialized with the current value ofWhen
thefi nal | y clause executes on behalf of an iterationthefi nal | y clause
reads and prints the corresponding valug obpy as determined by &exical-
scope rule(Aho et al,, 1986, Sec. 7.4). The JCilk compiler and runtime system
provide an efficient implementation of the lexical-scople mhich avoids creating
many extraneous versions of loop variables.

Handling aborts

In the original Cilk language, when a side computation is edahrit essentially
just halted and vanished without giving the programmer gryootunity to clean
up partially completed work. JCilk exploits Java’s exceptsmantics to provide
a natural way for programmers to handlel kAbor t exceptions.

When JCilk’'s exception mechanism signals a method in a sidepuatation to

abort, it causes @i | kAbor t to be thrown semisynchronously within the method.
The programmer can catch tige | kAbort exception and restore any modified

12



1 cilk void f7() {

2 cilk try {

3 spawn A()

4 } catch(C | kAbort e) {
5 cl eanupA() ;

6

7 cilk try {

8 spawn B()

9 } catch(C | kAbort e) {
10 cl eanupB() ;

11 }

12 cilk try {

13 spawn C()

14 } catch(Cil kAbort e) {
15 cl eanupC();

16

17 sync;

18 }

Fig. 7. CatchingCi | kAbort .

data structures to a consistent state. As when any exceigtithmown, pertinent
final I y blocks, if any, are also executed.

The code in Figure 7 shows hav | kAbor t exceptions can be caught. If any of
A, B, or Cthrows an exception that is not handled withia while the others are
still executing, then those others are aborted. Any spawrettiods that abort have
their corresponding cleanup method called.

4 Thequeenspuzzle

This section illustrates how a parallel solution to the atled “queens” puzzle can
be programmed using the JCilk extensions to Java. The goa¢giizzle is to find

a configuration of» queens on am-by-n chessboard such that no queen attacks
another, that is, no two queens occupy the same row, coluntiiagonal. Figure 8
shows the JCilk code. The program would be an ordinary Jagramoif the three
keywordsci | k, spawn, andsync were elided, but the JCilk semantics make
this program highly parallel.

The program uses a speculative parallel search. It spawng branches in the
hopes of finding a “safe” configuration of thegqueens. When one branch discovers
such a configuration, the others abort. JCilk's exceptionhaeism makes this
strategy easy to implement.

Although speculation can enhance parallelism, it can b#ecive, because the
program incurs more work. For speculation to be effectie,dhances should be
good that the speculative computation will need to be peréat. The queens pro-
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1 public class Queens {

2 private int n;

3 private cilk void g(int[] cfg, int row throws Result {
4 bool ean flag = true;

5 if(row==n) {

6 throw new Result (cfg);

7 }

8 for(int col = 0; col < n; col ++) {

9 int[] ncfg = newint[n];

10 System arraycopy(cfg, 0, ncfg, 0, n);
11 ncfg[row] = col;

12 i f(safe(row, col, ncfg)) {

13 spawn q(ncfg, rowtl);

14 if(flag) {

15 sync;

16 flag = fal se;

17 }

18 }

19 }

20 sync;

21 }

22 public static cilk void main(String argv[]) {
23 int n = Integer.parselnt(argv[O0]);
24 int[] cfg = newint[n];

25 int[] ans = null;

26 cilk try {

27 spawn (new Queens(n)).q(cfg, 0);
28 } catch(Result e)

29 ans = (int[]) e.getValue();

30 }

31 sync;

32 if(ans !'= null) {

33 Systemout.print("Solution: ");
34 for(int i =0; i <n; i++) {

35 Systemout.print(ans[i] + " ");
36 }

37 Systemout.print("\n");

38 } else {

39 Systemout.println("No solutions.");
40 }

41 }

42 }

Fig. 8. The queens puzzle coded in JCilk. The methadle determines whether it is
possible to place a new queen on the board in a particular squar&®eEhg t exception
(which extends clas&xcept i on) notifies themai n method when a result is found.
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gram uses the heuristic that if the first child of a node in th&rch tree does not
contain a safe configuration, then neither do its siblindausT it spawns off the
first child serially, and only when that child returns (unsessfully) does it spawn
off the remaining children in parallel.

The queens program works as follows. When the program stiagisai n method
constructs a new instance of the clgsgeens with user inpuin and spawns theg
method to search for a safe configuration. Theethod takes in two arguments:
the current configurationf g of queens on the board, and the current raw to
be searched. It loops through all columns in the current oofimtl safe positions to
place a queen in the current row. The ordinary Java metlhded, whose definition
we omit for brevity, determines whether placing a queen wm rew and column
col conflicts with other queens already placed on the boardelttis no conflict,
a childg method is spawned in line 13 to perform the subsearch witheequeen
placed in the positiorr(ow, col ).

After the first child of the current node is spawned, thenethod executessync
in line 15, suspending the method until the first child resuBy setting the boolean
fl ag tof al se, subsequent children are spawned without an immedgiatec,
thereby allowing them to run in parallel.

The parallel search continues until it finds a configuratiowhich every row con-
tains a queen. At this poirdf g contains a legal placement of alqueens. The
successfut] method throws the user-defined exceptt@sul t (whose definition
we also omit for brevity) in line 6 to signal that it has founsidution. TheResul t
exception is used to communicate betweengfadmai n methods.

The program exploits JCilk’s implicit abort semantics to idvextraneous com-
putation. When one legal placement is found, some outstgridimethods might
still be executing; those subsearches are now redundanstandd be aborted.
The implicit abort mechanism does exactly what we desirenndhside computa-
tion throws an exception: it automatically aborts all siglicomputations and their
children dynamically enclosed by the catching clause. is ¢itample, since the
Resul t exception propagates upward until it is caught in line 28h&frtai n
method, all outstanding methods abort automatically. To ensure that all side
computations have terminated and t& ch clause has been executed, tieg n
method executessy nc statement in line 31 before it prints out the solution.

5 Parallel alpha-beta search

This section explores the coding of a parallel alpha-begackein JCilk, which
highlights JCilk’s semantics in more depth. Like the queemgam, our alpha-
beta code exploits JCilk's exception-handling mechanisabtot speculative com-
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putations that are found to be unnecessary. In addition Jilk program provides
an example that exploits the implicit lexical-scope rulensure correct execution.

Alpha-beta search (Knuth and Moore, 1975; Winston, 1992)tisn used when
programming two-player games such as chess or checkesddsically a “mini-
max” (Russell and Norvig, 2003) search algorithm appliedhwatipha-beta prun-
ing” (Russell and Norvig, 2003), a technique for pruning orglevant parts of the
game tree so that more ply of depth can be searched withinea gime bound.
Since the search algorithm is described in virtually evatgoduction to adversar-
ial search (see, for example, Russell and Norvig (2003, Cmd@)Wéinston (1992,
Ch. 6)), we assume a basic familiarity with this search ssat€he idea of the al-
gorithm is that if White can make a move in a position so gootiBteck would not
make the move leading to that position, then there is no poisg¢arching White’s
other moves from that position. Therefore, those additiomaves can be pruned
in what is termed &eta cutoff.

The basic alpha-beta search algorithm is inherently séxéalause the information
from searching one child of a node in the game tree is usedutoepsubsequent
children. It is difficult to use information gained from selaing one child to prune
another if one wishes to search all children in parallel.

One key observation helps to parallelize alpha-beta seargame tree in which
children are ordered optimally at every none, either allchigddren of a node are
searched (the nodemaximal), or only one child needs to be searched to generate
a cutoff (the node isingular). This observation suggests a parallel search strategy
calledyoung brothers wai{Feldmanret al., 1993): if the first child searched fails

to generate a cutoff, the algorithm speculates that the rodeximal, and thus
searching the rest of the children in parallel wastes no wdokimplement this
strategy, the parallel alpha-beta algorithm first searetes it considers to be the
best child. If the score returned by the best child genematagoff, the algorithm
prunes the rest of the children and returns immediatelye@iise, the algorithm
speculates that the node is maximal and spawns searchéshaf s#maining chil-
dren in parallel. If one of the children returns a score tleategates a beta cutoff,
however, the other children are aborted, since their woskideeen rendered super-
fluous.

Figure 9 shows a JCilk implementation of this parallel sealgorithm using the
negamaxstrategy (Knuth and Moore, 1975), where scores are alwaysed from
the perspective of the side to move in the game tree. In thasegty, when subse-
guent moves are searched, #legpha andbet a roles are reversed and the scores
returned are negated. Teear ch method is called with the current board config-
uration, the depth to search, and #igopha andbet a values that bound the search
of the current node. When invoked, the code first checks fobése case by call-
ing the method sDone in line 3, which returng r ue if this node is a leaf of the
game tree: the depth has been reached, the board configusaidraw, or one side

16



has lost. (The definition farsDone is omitted for simplicity.) Ifi sDone returns
t r ue, the algorithm evaluates and returns a “static evaluat@ri'score” of the
current board configuration. Otherwise, it generates slistcessor s of legal
moves that can be made from the current board configuratiiesTiccessor s
list contains the moves in best-first order as determined twerordering heuris-
tics.

The search begins with the first move stored insluiecessor s list, which os-
tensibly corresponds to the best child. When this child retwith a scoreal pha

is updated, and the condition for a beta cutoff is checkethdfscore generates a
beta cutoff (meaning this node is singular), the score figrribde (which is stored
in bet a in this case) is returned. If the score does not generatesachgtff, the
algorithm then proceeds to spawn the rest of the childreramalfel, with the re-
maining moves stored in treuccessor s list. As each of these children returns,
theal pha value is again updated and the condition for a beta cutofhiecked.

If any of these children happens to generate a beta cutoffeadefined exception
Resul t (whose definition is omitted) is thrown, causing all childlisgpawned in
parallel by this node to be aborted. TResul t object contains a single field to
store the score of the node so that the score can be comneahlzatk to its parent.

Thesear ch method is first invoked by theoot Sear ch method, which initiates
the searches from the root node. The definition ofrtb®t Sear ch method is
omitted because it is similar to the definition of thear ch method. The only
differences are that no checks for beta cutoffs are perfdrtmecause no beta cutoff
can occur at the root of the game tree, and the valuealfpha andbet a are
initialized to the minimum and maximum values that can beesgnted with an
i nt type, respectively. One could memgeot Sear ch andsear ch into a single
method with a flag indicating whether the current node is tw node, but we
chose to separate them into distinct methods for simplicity

The code for thesear ch method shown in Figure 9 capitalizes on three JCilk
language features:

¢ implicit abort semantics,
¢ the lexical-scope rule,
e implicit atomicity.

We now examine howear ch makes use of each of these features.

First, thesear ch method exploits JCilk’s implicit abort semantics to abortrax
neous computations spawned in line 29. This part of the coderiilar to line 13
in the queens code from Figure 8.

Second, the code exploits JCilk’s support for the lexicalpgcrule. Specifically, the
final |y clause (lines 32—-40) is contained within a loop, and it eferthe loop
local variablescor e2. Sincescor e2 is declared within the loop (in line 24), the

17



1 private cilk int search(Board board, int depth,
int al pha, int beta)
throws Result {

2 int scorel

3 i f(isDone(board, depth)) {

4 return eval (board);

5 }

6 Li st successors = board. | egal Moves();

7 Li st nove = (List) successors.pop_front();

8 Board nextBoard = (Board) board. copy();

9 next Boar d. move( nove) ;

10 cilk try {

11 scorel = spawn search(next Board, depth+1
-beta, -alpha);

12 } catch(Result e) {

13 scorel = e.getVal ue();

14 }

15 sync;

16 scorel = -scorel

17 if(scorel > al pha) {

18 al pha = scorel,;

19 }

20 i f(al pha >= beta) {

21 return al pha;

22 }

23 whi | e(mayPl ay(successors)) {

24 int score2 = -Integer. MAX VALUE

25 nmove = (List) successors.pop_front();

26 next Board = (Board) board. copy();

27 next Boar d. nove( nmove) ;

28 cilk try {

29 score2 = spawn sear ch(next Board, depth+1,

-beta, -alpha);

30 } catch(Result e) {

31 score2 = e.getVal ue();

32 } finally {

33 score2 = -scorez;

34 i f(score2 > al pha) {

35 al pha = score2

36 }

37 i f(al pha >= beta) {

38 t hrow new Resul t (al pha);

39 }

40 }

41 }

42 sync;

43 return al pha;

44 }

Fig. 9. A parallel alpha-beta search coded in JCilk.
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lexical-scope rule applies. When eathnal | y clause refers t@cor e2, it re-
solves to the version corresponding to the iteration to twthef i nal | y belongs
lexically. This “correct” resolution oscor e2 is crucial to the correctness of the
alpha-beta code.

Third, the code exploits JCilk’s guarantee of implicit ateityi. In particular, in the
samef i nal | y clause (lines 32—-40), an assignment to the local variabjgha

is made in line 35. Even thougil pha is written simultaneously by multiple sec-
ondary program cursors (executifignal | y clauses from different iterations),
JCilk's guarantee of implicit atomicity causes all the imstations of thef i nal | y
clause to execute atomically with respect to one anotheceShe order of their ex-
ecution does not matter, the code is correct.

This parallel alpha-beta search demonstrates the expeassis of JCilk’s language
features and their semantics. Without the support of anyobtieese three features,
the parallel alpha-beta search could not be programmedsily.€2ompared to a
parallel alpha-beta search coded in Cilk (Dailey and Letser2002), this imple-
mentation is arguably cleaner and simpler.

6 TheJCilk-1 prototypeimplementation

We have implemented the JCilk semantics in a prototype systdied JCilk-1.
Although an ideal implementation of JCilk might incorporatdCilk virtual ma-
chine analogous to a Java Virtual Machine (JVM) (Lindholnd afellin, 2000)
and a compiler that translates directly to bytecode, thekdJCstrategy required
much less work. JCilk-1 consists of two components — a runsystem and a
compiler — both which heavily leverage the existing Javaastructure, albeit at
the cost of some overheads that would not be incurred by aal idglementa-
tion. JCilk-1's runtime system is implemented in Java andaslebed after the Cilk
runtime system (SuperTech, 2001; Friggal., 1998) which incorporates a random-
ized work-stealing scheduler. The JCilk-1 compiler congil€ilk source code into
Java bytecode with library calls to the runtime system. Tytednde along with the
runtime libraries can be executed on any standard JVM. Husm overviews the
structure of the JCilk-1 runtime system and compiler.

The JCilk-1 runtime system

JCilk-1's runtime system schedules threads dynamicallgraieg to available pro-
cessor resources using a Cilk-like work-stealing schedudilgorithm (Blumofe
and Leiserson, 1999; Friget al., 1998). A collection of Java threads, calledrk-

ers schedule and execute the JCilk threads. Each worker masraaeady deque
(doubly-ended queue) aftivation frameseach containing the variables associated
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with the corresponding method instances that are readyeicués. Each deque has
two ends, dneadand atail, from which frames can be added or removed. A worker
operates locally on the tail of its own deque, treating it mas Java treats its call
stack, pushing and popping spawned frames. When a workeowns work, it
becomes dhief and attempts to steal a frame from another worker, calledats
tim, at random. The thief steals the frame from the head of thewgdeque, that

is, the opposite end from which the victim is working. Thelatoframe is always
the oldest frame in the victim’s deque. If the victim has nakvio be stolen, the
thief simply chooses another victim at random and repeatgpitbcess.

As an example of how work-stealing operates, suppose thathatA spawns a
methodB. The worker executingl immediately begins work o, leaving A for
later resumption. If a thief steal§ it resumes the execution from where the original
(victim) worker left off. Later, whenB attempts to return control to its paresf it
instead notifiesd’s current worker that its subcomputation has completguasses
B’s result, which can be either a return value or a thrown ettaepback toA’s
current worker.

If the method was spawned as part of an assignment operatéhas returned a
value, then that value must eventually be stored into theogpgte variable. This
action is accomplished by an inlet created by the compiletHs purpose. The
inlet takes the return value as an argument and assignsd@red a field in some
object or to an entry in the method’s frame on the ready defuodnlet created
from a more complex assignment operation (suck as= spawn A() ) might
perform a small operation (in this case, an addition) bestoeing the result. The
inlet executes atomically with respect to other threadsatkeg on the method
where the return value is stored. As we shall see in SectitreZJCilk-1 compiler
also creates catchlets and finallets from the codminch andf i nal | y clauses,
respectively, as part of JCilk's exception-handling medran

The JCilk-1 compiler

The driving philosophy in the design of the JCilk-1 compilastbeen that a user
should pay the overhead of running parallel code only whemgu¥Cilk’s parallel
extensions. A JCilk program should be compiled so that bledtaining only
regular Java code run without any compiler-induced slowdoihe JCilk-1 com-
piler borrows heavily from the two-clone compilation sagy (Frigoet al, 1998)
used in Cilk to minimize the work overhead.

JCilk-1's compiler capitalizes on an important property tsfwork-stealing algo-
rithm. The frame at the head of a worker’'s deque is a spe@atdrcalled alo-
sure A closure’s bookkeeping is somewhat more complicated tihairfor ordinary
frames, because a closure may have several children exgomdifferent workers.
In contrast, all other frames on the deque are much simplgrait because each
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has at most one child, which executes on the same processen Wa JCilk-1
compiler compiles a method, it produces two sepackteesof the method as out-
put. Theslow clonehandles all the vagaries of bookkeeping for closures, vasere
thefast cloneis optimized for the common case of an ordinary frame havinlyg o
a single child executing on the same processor.

We would have preferred that the JCilk-1 compiler mimic thkGtrategy (as de-
scribed in Frigaet al. (1998)) by performing a JCilk-to-Java translation, tratista
only JCilk keywords while leaving regular Java code intadte Generated Java
postsource would have the same general structure as theabrdilk program,
but the JCilk keywordsi | k, spawn, andsync would be expanded into the Java
statements necessary to actually accomplish their fumaity. Unfortunately, this
strategy does not work.

To see why, remember that the JCilk keywords define the boigsdaf JCilk
threads, as described in Section 2. These boundaries ares pdiere the method
instance’s frame can potentially migrate from one workearother. That is, two
JCilk threads separated by a boundary might execute on tvierelit workers.
When migration occurs during a steal, the thief needs acoels tost recent state
of local variables and must reset its primary program cuigdine point where the
victim left off. The mechanism to allow this resumption idled a continuation.
The Cilk system, which is implemented in C, supports a continonanechanism
usinggot o statements.

Adopting this approach for JCilk-1 is problematic, howesgearce the Java language
has nogot o statement. To support a continuation mechanism withowtistp
down pure Java code, we created an intermediate languadge &dJava which
is a minimal extension of Java to allogot o statements in limited and specific
circumstances. Since Java bytecode already contains jstoictions, compiling
a GoJava program into ordinary Java bytecode required ralrshanges to a Java
compiler.

JCilk-1's compiler compiles a JCilk program using a two-stagmpilation pro-
cess. The first stage is a source-to-source translation J@ifk to GoJava. This
stage expands all JCilk keywords into their effects and leaegular Java code
unaffected. This translation from JCilk source to GoJavdsmusce is performed
using Polyglot (Nystronet al, 2003), a compiler toolkit designed specifically for
implementing Java language extensions. The second stdge ocbmpilation pro-
cess translates the GoJava postsource to Java bytecodelgsina compiler for
GoJava which we created by minimally modifying GCJ, the Gnu @itanfor Java
(GNU, 2004). This second stage adds no additional overheadrapared to using
GCJ directly, maintaining the property that pure Java cofferstno slowdown.

Figure 10 shows the GoJava postsource from the first congpilatage when run
on theq method of the JCilk Queens code from Figure 8. Notice thas{hawn
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private void g(Wrker worker, G |kFranme frane)
throws Result {

}

Queens_nqueens_frane f = (Queens_nqueens_frane)frane;
switch(f. _pc) {
case 1:
goto _cilk_syncl;
case 2:
goto _cilk_sync2;
}

for(f._col =0; f. col <n; f. col++) {

if(safe(f. _row, f. col, f. ncfg)) {
f. pc = 1;
try {
g_fast(worker, nconfig, f. _rowtl);
} catch(Result e) {
i f(worker. popFraneCheckExc(e)) {
return;
} else {
t hrow e;

} catch (Runti meException e) {

}
i f (worker. popFranmeCheck(null)) {
return;

._pc = 2;
i f(!worker.sync()) {
return;

_sync?2: ;
ag = fal se;

cilk
_fl
}
}
}
f. pc = 3;

i f(!worker.sync()) {
return;

_cilk_sync3: ;
return;

Fig. 10. The GoJava output of the JCilk compiler’s first stage when ruth@qg method

of the JCilk Queens code from Figure 8. This code is for the slow clone itwxeclone
compilation strategy (Friget al, 1998), and it is only called when a stolen (migrated)
computation is resumed.
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statement has been replaced with lines 12—-26. Before thetoalkurrent primary
program cursor (line 12) is stored into the frame. After thé completes (either
with an exception or a normal return value), a call to the woifknes 16 and 23)
checks to see whether a steal has occurred and immedidtgigygé&om the method
if it has. A thief that steals this method reads geefield in the frame and jumps
from the top of the method (line 6) to the appropriate cordtian point, here at
line 26.

7 JCilk-1'simplementation of exceptions

The implementation of JCilk's exception-handling mechanis based on a data
structure, called a “try tree,” which shadows the dynamexdwichy ofci | k try
statements. This section shows how JCilk-1 uses try tredsomse an exception to
handle, to signal aborts to side computations, and to semabort at the catching
method’s program cursor when necessary. We also descnbedtchlets are used
to executecat ch clauses atomically.

The try tree

Due to the potential parallelism in@ | k block, JCilk-1 must be ready to han-
dle whatever exceptions may arise out of the parallel coatjmuts spawned from
within the sameci | k block. The system must select only one of possibly many
concurrent exceptions to be handled. Moreover, it mustroete which side com-
putations should be aborted and signal them, which can beleated.

As an example, consider the methods in Figure 11. The mdthogeWay con-
tains three spawns: meth@ds not enclosed by anyi | k t r y statement, method

B is enclosed by onei | k try statement, and method is enclosed by two
nestedci | k try statements. Depending on what kind of exception the call to
C() throws, different sets of spawned methods might receivaltioet signal. For
example, ifCthrows aRunt i meExcept i on, thenB could be aborted (assuming

it was still running), butA would continue normally.

In order to determine which spawned child methods shouldbeted, the worker
must track the location in the parent method where they wegenally spawned.
This information is maintained using a data structure dadigy tree In the same
way that the ready deque mirrors the Java call stack, thegeynirrors the dynamic
hierarchy of nestedi | k t r y statements. Each worker “owns” one try tree.

Because of the way that work-stealing scheduler operatssiided in Section 6),
the closure is the only frame within the deque that might haviedren running
on other workers. Thus, it is sufficient to maintain the tgetonly in closures. In
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1 cilk void threeWay() throws | OException {
2 spawn A();

3 cilk try {

4 spawn B();

5 cilk try {

6 spawn C(); //throws exception.
7 } catch(Arithnmeti cException e) {
8 cl eanupC();

9

10 } catch(Runti neException e) {

11 cl eanupB();

12 }

13 X();

14 sync;

15 }

Fig. 11. A method containing nested | k blocks, each containingspawn statement.

addition, maintaining the try tree in the closure does naot significant overhead,
because the vast majority of the work is done deeper in thayréaque.

The try tree for a worker tracks in whiah | k block the top-level method (repre-
sented by the closure) spawned off children currently etkegwn other workers.
Each internal node representsial k block, which can be eitherai | k method
body oraci | k t ry block. A leaf represents either the primary program cursor o
the try tree’s worker or a spawned call currently executingadifferent worker.

A node’s parent in the try tree represents thé k block most directly containing
the node. Thus, each leaf’s parent corresponds taitthék block from which the
method was spawned.

One of the nodes in the try tree is designated agtiisor node The cursor node
tracks theci | k block containing the worker’s current primary program our$he

cursor node can be either a leaf or an internal node. When tkeraoode is a leaf,
it means that a child method is spawned but is being executéideosame worker.

Maintaining the try tree is straightforward. Whenever the-level method enters
acil k t ry statement, a new node representingdhé k t ry block is created
as a child of the cursor node, and the cursor node is moved tiotine new node.
Whenever the top-level method leavesid k t r y statement normally (not as a
result of a thrown exception), the cursor node moves up a. é&leenever work is
stolen, the try tree is migrated over to the thief along wité ¢tlosure, and a new
node is created as a child of the current cursor node, ragregea spawn call now
executing on the victim. Whenever a spawn call executing oiffareint worker
completes (either normally or abruptly), the leaf représgrthe spawn call is then
removed from the try tree.
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The abort signal

Before a side computation can be aborted, it first must be lgigria abort. The
abort signal is delivered to a worker via a flag that the wodkescks only at thread
boundaries: when a spawned method returnssgtrec statement, or whena | k

t ry statement completes. Each time a spawned method retuths,abort flag is
set to indicate the worker has received a signal to abom theatever value (if
any) was being returned by the spawned method is discandéd.place, a (new)
Ci | kAbort exception is thrown.

Although there are no return values to replace in cases vdi®yd happens after
async statement or when ai | k t ry completes, a (newdi | kAbor t is still
thrown. This strategy ensures that everny k block acts as if it has received the
signal, even though the actual signal was only sent to eadkewonce. The amount
of work done per worker to signal the exception is thus depenhdnly on the size
of its try tree, and is independent of the depth of each wiwkeady deque.

Aborting side computations

The try tree guides the aborting of side computations. Whesxaaption is caught
and propagated back to a top-level method in a ready degeiextteption is logi-
cally thrown by the child method corresponding to a leaf it ttmethod’s try tree.
The leaf either represents a spawned child executing omenatorker which ter-
minated by throwing an exception, or it represents the piyrpaogram cursor on
the try tree’s worker and the throwing method is executinghensame worker. A
lookup table produced by the compiler tells the worker howyrlavels up the try
tree the exception is caught. If the exception will not begtdun this method, the
exception propagates all the way up to the root of the try. {ffiés process thus
determines the “catching node” of the exception in this rméth

Once the catching node has been identified, we know whichcsidgutations to
abort, namely, those methods that are also dynamicallpsedlby theci | k try
statement containing the catching node that handles theptago. These dynam-
ically enclosed methods are represented by leaves in tohiogtnode’s subtree.
For efficiency reasons, and because we know that all worlagwed in that subtree
should be aborted, we signal the abort to all of those childimultaneously and
asynchronously—that is, we signal them all as soon as dessitthout waiting for
any acknowledgment from any of the affected workers. Theaigg worker also
propagates the abort signal recursively through the &tkechildren’s try trees to
all of their children, and their children’s children, andasa This strategy of propa-
gation creates no semantic problems, because all of thebedseperate logically
in parallel, and they should all be signaled to abort evdlytuaonsequently, they
might as well be signaled immediately. Even though the abigral is sent to
all descendants simultaneously and asynchronouslyith&Abor t exception is
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thrown semisynchronously (as JCilk's semantics guaranbegpuse each worker
checks its abort flag only at thread boundaries.

Even after a child method has been signaled to abort, it nilagestirn an ordinary
return value or a noi& | kAbor t exception. This case happens when the child
method doesn’t have a chance to check for the abort flag béfmyenpletes. Since
these signaled methods should have been aborted, any vato®-Gi | kAbor t
exception that they returned are discarded and replacédGvitk Abor t excep-
tions.

Among the side computations that must be signaled to abtir¢ismmethod contain-
ing theci | k t ry statement itself if the primary program cursor still reside
theci | k t ry statement. This case requires a careful implementatiaause the
method containing thei | k t ry is running on the same worker that initiates the
propagation of abort signals.

We use a two-step process to signal the abort. First, we $ptheoclosure in the
worker’s ready deque as if it were being stolen. The new dindche left behind
is now a new closure which can be aborted in the same way tbhtafdhe other
spawned children are aborted. This action leaves the p&@ne (the original
closure) in an unacceptable state, however: the next statetime parent executes
is the statement following the spawn in the method we jush i) which likely is
still inside the aborted block. To rectify this situationgwove the try-tree cursor
node and the frame’s primary program cursor both to a poimectiately after
the catching ry statement if it is eci | k t ry statement. If the catching node
is aci | k method block, we instead advance the primary cursor to tdeoéthe
method. Since the method must still wait for all side compaoites to complete, it
acts as if the execution had encounterexyac statement.

Executing catchlets and inlets

After all side computations have aborted, the correspandatching block of the
cat ch clause handling the exception needs to be executed as detattlhe
ci |l k try statement contains arfyi nal | y block, the corresponding finallet
needs to be executed as well. The semisynchronous naturketsf, icatchlets, and
finallets is enforced by only executing themsgtawn andsync statements using
a mechanism similar to the one that checks for an abort sigreatly exception is
thrown, it is propagated up the try tree, and the appropdhiielren are signaled
to abort. The leaves representing the throwing child metratithe aborted child
methods are removed from the tree once they terminate. Whehaahode’s chil-
dren in the tree have been removed, its catchlet and findléaty) execute as inlets
and then that node is removed from the tree as well.
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Ignoring exceptions

Concurrent exceptions can potentially occur when methagleyacuted in parallel.
These methods are represented by different leaves in thee&ypossibly residing
in different levels. Since eadi | k t r y statement handles at most one exception,
at most one exception should be selected at each node iryttiedr As we climb
up the tree from a leaf that has thrown an exception up to tishoay node, we
examine each node we pass through. If the current node hasnhetlected an
exception, we store the new exception in the node and cantipuhe tree. On the
other hand, if the node has already selected an exceptitiereare discard the
new exception, preventing it from propagating further, amdcontinue up the tree
with the earlier exception. When we reach the catching nodegevform the same
check, again either selecting the new exception or disegiitiin general, the later
exception is discarded if the current node has already gdiakether exception. The
only time a later exception takes precedence is when i€isl&k Abor t exception.

Handling an Er r or exception

JCilk's implementation of exceptions generally prevents worker thread from
ever catching any exceptions thrown in user code. While taisabior is desired
for typical cases (a user’s deliberately thrown exceptioyusd not affect a worker),
we must handle a throwr r or exception differently. All Java exception objects
describe a way in which a computation has failed. Hne or exception is no
exception. Consequently, it is propagated back up to paretihads just as any
exception would be. Because tkBer or probably also describes a fatal condition
which the worker itself needs to know about, however, it alkethrown at the
worker level. Theer r or then propagates all the way up through the worker thread,
ultimately terminating the worker itself.

8 Performance

This section describes empirical studies that seek to stated whether JCilk’s
linguistic primitives for exceptions can be efficiently gpapted. We first evaluate
overheads in our prototype JCilk-1 implementation withdw ¢xception mecha-
nism so that we can establish a baseline against which tchbear&. We establish
that JCilk-1 obtains near-perfect linear speedup on ujs tprocessors for simple
benchmarks, and that the overhead pawn is about30 times the cost of an ordi-
nary Java method call. We argue that suitable optimizaton$d bring thes pawn
overhead down by a factor @6 in a highly tuned implementation. We demonstrate
thatci | k t ry imposes only a small overhead in our prototype and that evan i
highly tuned implementation, the overhead would be minirRadally, we present
evidence that the time to abort a computation is reasonaluléhet it grows only

27



slowly with the number of processors.

Experimental setup

All our measurements were taken on a Sun Fire 6800 With.2-gigahertz Ultra-
SPARC-III processors, each withgigabytes of main memory, running Solaris 9
OS ((4-bit sparcv9 kernel modules). We compiled our runtime systed executed
the compiled JCilk program with JaZaPlatform Standard Edition £$E 5.0) re-
leased by Sun Microsystems (2004). Because the JVM does stabdie newly
created threads across the processors quickly, afteingta the JCilk-1 runtime
system, we let the worker threads run idly for roughly a menogfore starting the
benchmark, so that they are properly distributed acrossniéaehine before mea-
surements begin. In addition, we run the benchmarks twieaah execution, and
take the timing measurement in the second run, in order tonwsgrthe system and
possibly take advantage of optimizations done in JVM.

Our studies use four benchmarks:

e Queens — the queens puzzle from Section 4 given in Figure 8.

e Count Queens — similar toQueens from Section 4, but counts the total num-
ber of safe configurations of queens on an-by-n chessboard, instead of just
finding a single solution.

e Fi b — computes theith Fibonacci number using an exponential-time recursive
algorithm.

e Fi bTry — semantically the same &3 b, but with the spawns nested within
three nestedi | k t r y blocks.

System performance

The “counting-queens” puzzle serves as a good benchmastdblesh a baseline
for overall system performance. Unlike the queens puzaseunted in Section 4,
Count Queens does not involve speculative computing or implicit abortn€e-
guently, the program executes a uniform amount of work aceash run given the
same numbern of queens to place on theby-n board. Our implementation of
the counting-queens puzzle simply walks through all pdsdibard configurations
and increments a counter whenever a safe configuration mlfdtven though the
program does not utilize JCilk’'s exception mechanism, thértre data structure is
maintained throughout the execution.

Figure 12 tabulates JCilk-1's performance when run@ognt Queens with in-
put sizen = 15, averaging ove20 runs. The program obtains almost perfect linear
speedup up td6 processors. The last column in the figure shows the speedup

4 The occasional superlinear speedup is presumably due to the JVMissiatent perfor-
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#proc exectime speedup % efficiency

P Tp Ti/Tp (T1/Tp)/P
1 4416s 1.00 100%
2 2201s 2.01 100%
3 14505 3.05 102%
4 109.0s 4.05 101%
5  87.6s 5.04 101%
6  742s 5.95 99%
7  628s 7.03 100%
8  55.2s 8.00 100%
9  482s 9.16 102%
10  443s 9.98 100%
11 40.0s  11.04 100%
12 36.6s  12.08 101%
13 344s 1284 99%
14  322s 1373 98%
15  30.0s  14.70 98%
16  289s  15.29 96%

Fig. 12. The execution time in seconds@unt Queens with input parameten, = 15
when running on the JCilk-1 runtime system. The first column shows the numiwodr
processors used during execution. The second column shows thgaexecution timép
of the program orP processors. The third column gives the speefiyff ’p, and the last
column normalizes the speedup as a fraction of the theoretical maximum-pegsbiup.

as a fractionT,/Tp)/ P of perfect linear speedup. Since the program'’s serial eli-
sion executes in roughly,..;. = 400 seconds, the work overhead of the counting
queens puzzle i%) /Tieia — 1 ~ 10%. (This value could be reduced by simply
“coarsening” the recursion to avoid spawning near the leafehe spawn tree,
thereby lengthening the average thread length.)

Overhead forspawn/r et ur n

Our second experiment measures the work overheads inheramstpawn state-
ment and its correspondimget ur n statement in our JCilk-1 prototype implemen-
tation. This study allows us to estimate what the overheadldvbe in a highly
tuned production implementation, thereby enabling us taggathe overhead of
JCilk exception semantics more realistically. To estimagspawn/r et ur n over-
head of our prototype implementation, we benchmarked tberfécci program
Fi b on one processor against the execution time of its correbpgrlava serial
elision.

The JCilk program for th€i b code uses an exponential time algorithm: with input
parameten, it recursively spawns itself with- 1 andn- 2 and then sums the val-
ues returned by the two spawned methodsyhc statement before the summing

mance model.
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variant spawntime spawn overhead cumulative saving incrementalgsavin

Fi b0 191.37 ns 31.1 0.0% 0.0%
Fi bl 71.31ns 11.6 62.7% 62.7%
Fi b2 54.08 ns 8.8 71.7% 9.0%
Fi b3 48.17 ns 7.8 74.8% 3.1%
Fi b4 17.45ns 2.8 90.9% 16.1%
Fi b5 6.41ns 1.0 96.7% 5.8%

Fig. 13. Breakdown of overheads fér b running on one processor averaged d\eruns.
The first column labels the benchmark. The second column shows the tirapaen call

in nanoseconds. The third column shows #fawn/r et ur n overhead compared to an
ordinary Java method call, which we measured as abh@utanoseconds. The last column
shows the percentage savings compared to the unmo#ified code.

of the return values ensures that the spawned methods havieaéed properly.
TheFi b code makes a good benchmark for estimatingsgpawn/r et ur n over-
head, because it spawns recursively and performs no regdutatron besides one
addition. Thesync statement does not contribute to the work overhead, betause
compiles into an empty statement in the fast clone. Theeetbe work overhead
benchmarked b¥i b mainly comes from its pawn and correspondinget ur n
statements.

Our methodology for obtaining a breakdown of overheads \wdslbws. First, we
timed the execution of the generated GoJava postsourceethdted from compil-
ing theFi b code. Then, we took away a portion of the GoJava code redgensi
for a particular overhead and timed the execution of theltiagyrogram. We at-
tributed the decrease in execution time to the removed Godade. We repeated
this process, removing one additional overhead, and thieindg &and the last, until
only a “bare-bones” version &fi b remained.

Specifically, we benchmarked the following variantsForb:

e Fi b0 — the GoJava postsource produced by compiling the origiGak Fi b
program.

e Fi b1 — produced from th&i b0 postsource by removing the synchronization
overhead for the work-stealing protocol.

e Fi b2 — produced fromFi b1 by removing the compiler-generated Jaway
statements for intercepting potential exceptions throwsgawned calls.

e Fi b3 — produced fronFi b2 by removing the state saving of a method before
aspawn.

e Fi b4 — produced fronFi b3 by removing the compiler-generated calls to the
runtime system to push and pop spawned activation frames.

e Fi b5 — produced fronFi b4 by eliminating the code that allocates and frees
memory for spawned activation frames.

Figure 13 shows a breakdown of JCilk-1's overhead$-fdv on the Sun Fire 6800.
To sanity-check these numbers, we individually removed paréicular overhead
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(synchronization, generatéd y statements, and state saving) fréimb0 without
removing the other two. Then, we summed up the times reqbiyete individual
overheads together with the execution timeFotb3 and compared the resulting
time to the execution time of the unmodifi€d bO code. The two times differed
by less than 10%.

Next, we verified that the difference betweeinb4 andFi b5 corresponds to the
overhead saved from removing the frame allocations. Sineecould not com-
pletely remove the code for allocating activation framethaut removing code for
pushing and popping the frames, we opted to allocate onie §taine which is
reused throughout execution. Even though this modificasarot quite the same
as removing the frame allocations completely, it roughigidates the same effect
by preventing new allocations. We compared the time savetsing a single static
frame with the time difference betweé&n b4 andFi b5. The two times differed
by approximately 10%.

Finally, we compared the execution times betwEBeb3 andFi b4, attributing the
decrease in time to the removal of the calls to the runtimé&gaygor pushing and
popping activation frames. We could not easily verify thigidead calculation as
we did before, because the synchronization code is initiaygoush and pop calls to
the runtime system. Since our measurements of the otheneaes substantiate our
methodology, however, we feel confident in the numbers. g theFi b5 code
has a work overhead af04 times that of its serial elision, which seems consistent.

As shown in Figure 13, thepawn/r et ur n overhead in our prototype JCilk-1 im-
plementation is just oved0 times that of the serial elision. The overhead for mem-
ory management is the second lowest of the five measuredeaashit would have
been far higher had we not circumvented Java’s memory marggenplement-
ing our own type-specific memory pool to recycle activaticanies throughout the
execution.

Compared to our JCilk-1 implementation, a production-quafitplementation of
JCilk would significantly reduce all of these overheads. Agaldmplementation
would build the JCilk primitives directly into a JVM, instead building on top of

a JVM, as we mentioned in Section 6. A large part of these @aath stem from
duplicating work already done by the JVM. Specifically, JEilk ready deque
shadows the JVM stack but allows work-stealing to occuhéfdCilk runtime sys-
tem were built directly into a JVM, the overhead for creatmgyv frames when
a spawn is executed would be nearly identical to an ordinary Javehotketall.

In addition, the redundant state-saving done by JCilk-1 feefos pawn could
be eliminated entirely. Synchronization for the work-$iteg protocol would be
cheaper as well, because we could synchronize directhugffiranemory, rather
than using Java’s heavy-weight synchronization variabéss would also be able
to remove all the r y-andcat ch wrappers for checking and intercepting unex-
pected exceptions at every levelsghawn calls, and instead, set an internal vari-
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Construct time cilktry %

cilktry 2.34ns 100%
Javat ry 0.39ns 600%
JCilk-1spawn 191.37 ns 1%
Highly tunedspawn  12.33 ns 19%
Java method call 6.16 ns 38%

Fig. 14. The overhead of@i | k t ry statement. The first column indicates the linguistic
construct. The second column indicates the time overhead for using theumbrishe third
column normalizes the overhead forl k t r y by dividing 2.34 ns by the overhead of the
construct. Each measurement was obtained by averagin@@vens.

able to indicate which top frame an unexpected exceptionldime delivered to,
should it occur. Although it is unrealistic to expect that emild eliminate all the
overheads, it seems reasonable that a highly tuned JCillemmaitation could re-
duce thespawn/r et ur n overhead to perhaps twice the cost of a Java method call.
Experience from Cilk-5 (Friget al., 1998) indicates that even without a direct im-
plementation, & pawn/r et ur n overhead ok—6 times the cost of a Java method
call is achievable.

Overhead forci | ktry

Our third experiment studied the work overhead in JCilk-loasged withci | k

t ry statements. When running on one processol, lak t r y statement imposes
no overhead compared with a Javay, becausei | k t ry simply compiles into

an ordinary Javar y. Running on multiple processors incurs additional overhead
for ci | k try when work is stolen (see Section 7). This overhead includes t
overhead for using the ordinary Javay construct and the overhead for maintain-
ing the try tree data structure in the runtime system. If toekvper processor of the
computation dominates its critical-path length, howetlds overhead is provably
small (Frigoet al, 1998; Blumofe and Leiserson, 1999).

To estimate the overheads in JCilk-1 associated witlctHek t r y statements, we
compared the execution timesfeif b andFi bTr y, which does the same compu-
tation asFi b except with10 additional but unnecessary nestad k t ry state-
ments enclosing the twepawn calls. We added0 nestecci | k t ry statements
in Fi bTry instead of just one, because ttiel k t r y overhead is relatively small
compared with other overheads in JCilk, and amné k t r y statement imposes
insufficient overhead to affect the execution time signiftba

Figure 14 shows the overheads tarl k t r y and other constructs, as well as the
ratio of theci | k t ry overhead to the overhead of each of the constructs. These
measurements were obtained as follows. We exedtitbcandFi bTry on16 pro-
cessors, calculated the total work (i.e., the sum of exesutmes spent on all6
processors) for both benchmarks, and attributed the iseri@etotal work between

Fi b andFi bTry to the additionati | k t r y statements. The overhead measure-
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ment forci | k t ry in Figure 14 was obtained by dividing the increased work by
the total number o€i | k t ry statements executed. We averaged the values thus
obtained oveR0 runs. Similarly, we obtained the ordinary Javay overhead by
comparing the serial elisions &f b andFi bTr y and then normalizing the differ-
ence appropriately.

Is the overhead of ai | k t ry statement high or low? Since a Javay state-
ment is about 7% of the speed of @&i | k t ry statement, the overhead off | k

t ry would appear to be considerable. Whenever a programmercusdstry,
however, theci | k t ry block likely contains aspawn statement, and compared
to aspawn/r et ur n in the current JCilk-1 implementation, the overheadiof k

t ry is negligible: only 1.2%. As we have argued, however, JCikspawn over-
head can be improved dramatically. To make a fair comparig@overhead of

ci | k try should be compared to a more-realistic valuefpawn/r et ur n in

a highly tuned, production-quality implementation. Tostleind, assume that the
spawn/r et ur n overhead can be reduced to twice the cost of an ordinary Java
method call. Under this assumptionspawn would cost12.33 ns instead of the
almost200 ns as in JCilk-1. The cost @i | k t ry would be 19% of this highly
tunedspawn/r et ur n, and about 38% of a Java method call itself. Since the real
work of programs generally dominatepawn/r et ur n, we can expect that the

ci | k t ry overhead would rarely be seen in realistic applications.

Abort time

Our final experiment examines the time it takes to abort a cdatipn. Figure 15
shows results of our study which measured the abort time liisedonds when
runningQueens with input sizen = 28. We measured the abort time as follows.
The timing starts at the point immediately before the thrdwhe Resul t ex-
ception in line 6 of Figure 8 that triggers the implicit aboftthe appropriate side
computations. The timing stops when the exception is candine 28 of Figure 8
and all appropriate side computations have terminated.

The clustering of data points in Figure 15 indicates thatthert process typically
completes in under0 milliseconds and grows slowly as the number of processors
increases. We compare this value with its corresponding dision with the same
input size,n = 28. The exception propagation time (from the point of throwtte t
point of catch) in the Java elision is approximately milliseconds. The abort time

on a single processor is rougltlyl—0.5 milliseconds, which is abo@-3 times the
cost of the Java elision. The abort time for multiple prooesdalls in the range
between5 and 10 milliseconds, growing slowly as the number of processofs in
creases. Since a speculative computation su€uasns can run for an arbitrarily
long time if it is not aborted, we view0 milliseconds as acceptable performance.

In order to understand the abort overhead, we inserted odol¢hie Java elision so
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Fig. 15. The time to abort th@ueens computation with input parameter = 28 as a
function of number of processors. For each number of procegherprogram was ru0
times and the individual times are plotted.

that the exception is caught and rethrown at each level ofrsean, thereby simu-
lating behavior similar to an abort process. We discovenatliava’s performance
varied greatly depending on the contents of ¢fa¢ ch clause, because Java em-
ploys “just-in-time” (JIT) compilation technology whenencounters code that is
frequently executed. For instance, by inserting a loopaemanting some variable
for 1000 times into the catch handler (call this Case 1), the excemtiopagation
time costs less thahmilliseconds. By inserting a function call in the catch handl
(call this Case 2), where the function does the same loop natlement operations,
the exception propagation time increases up:zt@.5 milliseconds. On the other
hand, if the code has been “warmed up” by executing it oncevwaiace before tak-
ing measurements, Case 1 still kag milliseconds of exception propagation time,
while Case 2 now has onk 0.12 milliseconds propagation time. After warming
up, the code from Case 2 is optimized, but not the code from Case 1

These studies lead us to conjecture that a large part of i aberhead comes
from propagating exceptions between stack frames. Thetcethe JCilk-1 runtime
library are apparently too complex to allow Java’s JIT textbgy to optimize them.
We speculate that a more-direct implementation of JCilk&J¥iM would yield an
abort time of).2 milliseconds or better. A better implementation of Javataption
mechanism would likely improve the abort time even further.

The data set contains several outliers, which tend to iser@afrequency as the
number of processors grows. We suspect that these outhersaaised by other
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processes in the operating system or in the JVM during progreecution. Since
the abort time is extremely short, it is sensitive to anyrfietence. Should a worker
involved in an abort be context-switched out when an abartis its temporary
inability to participate in the abort process could sigmifity delay the abort.

Since the abort signal is detected only at thread bounddhiesength of the abort
process is correlated to the average thread length in thk gaigram. If the per-
formance of aborting is critical in an application with lotigeads, JCilk'yi el d
statement provides a way for the user to manually shorten threadgi &l d in
a piece of code indicates that a thread boundary should beéasat that point. If
a program contains a long piece of pure Java code, breakimg ismaller threads
usingyi el d allows the JCilk-1 system to check for abort more frequently.

In summary, although JCilk-1 is only a prototype implemadntgtour performance
studies indicate that it performs well enough for many aggpions and that further
engineering should allow it to perform even better. In paittar, JCilk-1's exception
mechanism, which involves the implicit aborting of side gautations, is competi-
tive with Java’s unoptimized native mechanism, and it cdaddmproved to run as
fast as Java’s optimized mechanism.

9 Redated work

This section places JCilk and its exception-handling seicgirito the context of
other research in parallel programming languages. A kégreiice between JCilk
and most other work on concurrent exception handling is Ji@kk provides a
faithful extension of the semantics of a serial exceptiorcima@ism, that is, the
serial elision of the JCilk program is a Java program that @m@nts the JCilk
program’s semantics.

Most parallel languages do not provide an exception-hagdihechanism. For
example, none of the parallel functional languages VAL (&ckan and Dennis,
1979), SISAL (Gaudioet al, 1997), Id (Nikhil, 1991), parallel Haskell (Nikhil
et al, 1995; Adityaet al, 1995), MultiLisp (Halstead, 1985), and NESL (Blel-
loch, 1993) and none of the parallel imperative languagesdo90 (Adamet al.,,
1992), High Performance Fortran (Richardson, 1996) (Marhia Chapman, 1997),
Declarative Ada (Thornley, 1993, 1995), C* (Hatcle¢al,, 1991a), Dataparallel C
(Hatcheret al,, 1991b), Split-C (Culleet al, 1993), and Cilk (SuperTech, 2001)
contain exception-handling mechanisms. The reason ferdmission is simple:
these languages were derived from serial languages thatdaich linguistics.

> Theyi el d statement is currently not implemented in JCilk-1.
6 In the case of Declarative Ada, the researchers extended a stil#sda that does not
include Ada’s exception package.
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Some parallel languages do provide exception supportusedaey are built upon
languages that support exception handling under serisisges. These languages
include Mentat (Grimshaw, 1993), which is based on C++; Oper{penMP,
2002), which provides a set of compiler directives and hpifanctions compati-
ble with C++; and Java Fork/Join Framework (Lea, 2000), wiigpports divide-
and-conquer programming in Java. Although these languabest an exception-
handling mechanism, their designs do not address excejptindling in a concur-
rent context.

Tazuneki and Yoshida (Tazuneki and Yoshida, 2000) andrgsgssarny, 1991)
have investigated the semantics of concurrent exceptmaliing, taking different
approaches from our work. In particular, these researgharsue new linguistic
mechanisms for concurrent exceptions, rather than extgrilem faithfully from
a serial base language as does JCilk. The treatment of neuétigleptions thrown
simultaneously is another point of divergence.

Tazuneki and Yoshida’s exception-handling framework tsodiuced in the con-
text of DOOCE, a distributed object-oriented computing eswinent. They focus
on handling multiple exceptions which are propagated framcarrently active
objects. DOOCE adapts Java’'s syntax for exception handérggnding it syn-
tactically and semantically to handle multiple exceptiddslike JCilk, however,
DOOCE allows a program to handle multiple exceptions byrigs8everal excep-
tion classes as parameters to a singge ch clause with the semantics that the
cat ch clause executes only when all those exceptions are thro@®OCE’s se-
mantics include a new resumption model as an alternativeettermination model
of Java: when exceptions occur and are handled bgitach clause, thecat ch
clause can indicate that the program should resume execattithe beginning of
thet r y statement instead of after tbat ch block.

The cooperation model proposed by Issarny provides a wagridlb exceptions in
alanguage that supports communication between threadthriéad terminates due
to an exception, all later threads synchronously throw émeesexception when they
later attempt to communicate with the terminated threadik€r)Cilk’'s model,
the cooperation model accepts all of the simultaneous é&xrepthat occur when
multiple threads involved in communication have termidaféhose exceptions are
passed to a handler which resolves them into a single c@tterception repre-
senting all of the failures.

The recent version of the Java Language, known as Tiger ar U&vduring de-
velopment and now called Java 5.0 (McLaughlin and Flanag@@4), provides
call-return semantics for threads similar on the surfaciik. In particular, Java
5.0 provides a protocol that is similar to that of JCilk. Altlgih Java 5.0 (like every-
thing else in Java) uses an object-based semantics fortimeétding, rather than
JCilk’s choice of a linguistic semantics, it does move in tiveation of provid-

ing more linguistic support for multithreading. In partiay Java 5.0 introduces
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the Execut or interface, which provides a mechanism to decouple the sthed
ing from execution. It also introduces ti@al | abl e interface, which, like the
earlierRunnabl e interface, encapsulates a method which can be run at a later
time (and potentially on a different thread). Unlikeinnabl e, Cal | abl e al-
lows its encapsulated method to return a value or throw aeptian. When a
Cal | abl e is submitted to afexecut or, it returns aFut ur e object. Theget
method of that object waits for thH@al | abl e to complete, and then it returns the
value that theCal | abl e’s method returned. If that method throws an exception,
thenFut ur e. get throws anExecut i onExcept i on containing the original
exception as its cause. (TRet ur e object also provides a nonblocking Done
method to see if th€al | abl e is already done.)

One notable difference between JCilk and Java 5.0 is that'S@akallel semantics
for exceptions faithfully extend Java’s serial seman#dtough Java 5.0’s excep-
tion mechanism is not a seamless and faithful extensiorsagtial semantics, as
a practical matter, it represents a positive step in thectime of making parallel
computations linguistically callable.

10 Conclusion

CLU (Liskov and Snyder, 1979) was the first language to cledeline and im-
plement the semantics for an exception-handling mecharbatonly in a serial
context. Although much effort has been spent on develomotst software, and
languages to aid in the writing of multithreaded progranesnparatively little re-
search explores how exception mechanisms should be extdad® concurrent
context. The JCilk language explores how concurrency candmereemantically
consistent with the exception mechanisms of modern sesrapaiting.

Because of the semantic richness of exception linguistmt$, in serial and paral-
lel programming, we believe that exceptions should be supge@fficiently. Some
programmers view exceptions as occurring relatively opfiently, and hence im-
plementations of exception mechanisms, including mangeotitJVM implemen-
tations, tend to be slow. Today’s JVM's tend to use the “hantthble” method
(Atkinsonet al, 1978) used by CLU, which assumes that exceptions occusrarel
The alternative “branch table” method (Atkinsenal., 1978) provides much faster
exception handling, but the designers of CLU rejected thieémentation because
it increases the cost of a normal return. Back in the 1970'enW@LU was de-
signed, this overhead was perhaps substantial, but to@agost of the extra reg-
ister operations on overall runtime should be negligible. b&lieve that JIVM im-
plementers should reconsider using branch tables or ddiateage mechanisms to
make exceptional returns cost much the same as an ordinainpdesturns. There
should be no performance penalty for programming elegamwitly exceptions, ei-
ther for serial computing or parallel computing.
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