
Programming with Exceptions in JCilk 1

John S. Danaher I-Ting Angelina Lee Charles E. Leiserson

Computer Science and Artificial Intelligence Laboratory, MassachusettsInstitute of
Technology, Cambridge, MA 02139, USA

Abstract

JCilk extends the serial subset of the Java language by importing the fork-join primitives
spawn andsync from the Cilk multithreaded language, thereby providing call-return
semantics for multithreaded subcomputations. In addition, JCilk transparently integrates
Java’s exception handling with multithreading by extending the semantics of Java’s try
andcatch constructs, but without adding new keywords. This extension is “faithful”in
that it obeys Java’s ordinary serial semantics when executed on a singleprocessor. When
executed in parallel, however, an exception thrown by a JCilk computation causes its sibling
computations to abort, which yields a clean semantics in which the enclosingcilk try
block need only handle a single exception.

The exception semantics of JCilk allow programs with speculative computations tobe
programmed easily. Speculation is essential in order to parallelize programs such as branch-
and-bound or heuristic search. We show how JCilk’s linguistic mechanisms can be used to
program the “queens” puzzle and a parallel alpha-beta search.

We have implemented JCilk’s semantic model in a prototype compiler and runtime sys-
tem, called JCilk-1. The compiler implements continuations in a novel fashion by intro-
ducinggoto statements into Java. The JCilk-1 runtime system shadows the dynamic hi-
erarchy ofcilk try blocks using a “try tree,” allowing the system to chase down side
computations that must be aborted. Performance studies indicate that JCilk’sexception
mechanism incurs minimal overhead, contributing at most a few percent on top of the cost
for aspawn/return.

1 Introduction

JCilk is a Java-based multithreaded language for parallel programming that extends
the semantics of Java (Goslinget al., 2000) by introducing “Cilk-like” (SuperTech,

1 This research was supported in part by the Singapore-MIT Alliance andby NSF Grant
ACI-0324974. I-Ting Angelina Lee was supported in part by a Sun Microsystems Fellow-
ship. John S. Danaher is now employed at Google, Inc.

Preprint submitted to Elsevier Science 29 May 2006

1 cilk int f1() {
2 int w = spawn A();
3 int x = B();
4 int y = spawn C();
5 int z = D();
6 sync;
7 return w + x + y + z;
8 }

Fig. 1. A simple JCilk program.

2001; Frigoet al., 1998) linguistic constructs for parallel control. JCilk supplies
Java with the ability for procedures to be executed in parallel and return results,
much as Cilk provides call-return semantics for multithreading in a C language
(Kernighan and Ritchie, 1988) context. These facilities arenot available in Java’s
threading model (Goslinget al., 2000, Ch. 11) or in the Posix thread specification
(Institute of Electrical and Electronic Engineers, 1996) for C threading libraries.
When embedding new linguistic primitives into an existing language, however, one
must ensure that the new constructs interact nicely with existing constructs. Java’s
exception mechanism turns out to be the language feature most directly impacted
by the new Cilk-like primitives, but surprisingly, the interaction is synergistic, not
antagonistic.

The philosophy behind our JCilk extension to Java follows that of the Cilk exten-
sion to C: the multithreaded language should be a true semantic parallel extension
of the base language. JCilk extends serial Java by adding new keywords that al-
low the program to execute in parallel. (JCilk currently omits entirely Java’s mul-
tithreaded support as provided by theThread class, but we hope eventually to
integrate the JCilk extensions with Java threads.) If the JCilk keywords for paral-
lel control are elided from a JCilk program, however, a syntactically correct Java
program results, which we call theserial elision(Frigo et al., 1998) of the JCilk
program. JCilk is afaithful extension of Java, because the serial elision of a JCilk
program is a correct (but not necessarily the sole) interpretation of the JCilk pro-
gram’s parallel semantics.

To be specific, JCilk introduces three new keywords —cilk, spawn, andsync
— which are the same keywords used to extend C into Cilk, and they have essen-
tially the same meaning in JCilk as they do in Cilk. The keywordcilk is used as
a method modifier to declare the method to be acilk method, which is analogous
to a regular Java method except that it can be spawned to execute in parallel. When
a parent method spawns a child method, which is accomplishedby preceding the
method call with thespawn keyword, the parent can continue to execute in parallel
with its spawned child. Thesync keyword acts as a local barrier. JCilk ensures that
program control cannot go beyond async statement until all previously spawned
children have terminated. In general, until acilk method executes async state-
ment, it cannot safely use results returned by previously spawned children.

2

To illustrate how we have introduced these Cilk primitives into Java, consider the
simple JCilk program shown in Figure 1. The methodf1 spawns the methodA to
run in parallel in line 2, calls the methodB normally (serially) in line 3, spawnsC
in parallel in line 4, calls methodD normally in line 5, and then itself waits at the
sync in line 6 until all the subcomputationsA andC have completed. When they
both complete,f1 computes the sum of their returned values as its returned value
in line 7.

The original Cilk language provides these simple semantics for spawn andsync,
but it requires no semantics for exceptions, because spawned functions in Cilk can
only return normally, just as C functions can only return normally. Java, however,
allows a method to signal an exception rather than return normally, and JCilk’s
semantics must cope with this eventuality. How should the code in Figure 1 behave
when one or more of the spawned or called methods signals an exception?

In ordinary Java, an exception causes a nonlocal transfer ofcontrol to nearest dy-
namically enclosingcatch clause that handles the exception. TheJava Language
Specification(Goslinget al., 2000, pp. 219–220) states,

“During the process of throwing an exception, the Java virtual machine abruptly
completes, one by one, any expressions, statements, methodand constructor in-
vocations, initializers, and field initialization expressions that have begun but not
completed execution in the current thread. This process continues until a handler
is found that indicates that it handles that particular exception by naming the
class of the exception or a superclass of the class of the exception.”

In JCilk, we have striven to preserve these semantics while extending them to cope
gracefully with the parallelism provided by the Cilk primitives. Specifically, JCilk
extends the notion of “abruptly completes” to encompass theimplicit aborting of
any spawned side computations along the path from the point where the exception
is thrown to the point where it is caught. Thus, for example, in Figure 1, ifA and/or
C is still executing whenD throws an exception, then they are aborted.

A little thought reveals that the decision to implicitly abort side computations po-
tentially opens a Pandora’s box of subsidiary linguistic problems to be resolved.
Aborting might cause a computation to be interrupted asynchronously (Gosling
et al., 2000, Sec. 11.3.2), causing havoc in programmer understanding of code be-
havior. What exactly gets aborted when an exception is thrown? Can the abort itself
be caught so that a spawned method can clean up?

We believe that JCilk provides good solutions to these subsidiary problems. JCilk
provides for “semisynchronous” aborts to simplify the reasoning about program
behavior when an abort occurs. The semantics of JCilk make it easy to understand
the behavior of parallel code when exceptions occur, while faithfully extending
Java semantics. JCilk provides for aborts themselves to be caught by defining a new
subclass ofThrowable, calledCilkAbort, thereby allowing programmers to

3

clean up an aborted subcomputation.

As a testament to how well JCilk integrates Java’s exception mechanism with Cilk’s
spawn andsync constructs, programming speculative applications in JCilkis
even more straightforward than in Cilk. Speculation is essential for parallelizing
programs such as branch-and-bound or heuristic search (Feldmannet al., 1993;
Kuszmaul, 1995; Dailey and Leiserson, 2002). The Cilk language provides the key-
wordsinlet andabort, which allow speculative computations to be managed.
JCilk’s integration ofspawn andsync with Java’s exception-handling semantics
obviates Cilk’sinlet andabort keywords for programming speculative appli-
cations such as the so-called “queens” puzzle and parallel alpha-beta search. As we
shall see, however, the inlet and abort mechanisms still exist conceptually within
the JCilk language.

In this paper, we describe JCilk’s semantics and how Cilk-likemultithreading is
integrated with Java’s existing exception semantics. Section 2 describes the ba-
sic concepts underlying JCilk, and Section 3 explains JCilk’sexception semantics
more precisely. Section 4 shows how JCilk’s linguistic constructs can be used to
program a search for a solution to the queens puzzle. Section5 presents a parallel
alpha-beta search application coded in JCilk, which demonstrates the use of JCilk’s
linguistics constructs in more depth. Section 6 overviews the prototype JCilk-1
compiler and runtime system which implements the JCilk language semantics. Sec-
tion 7 describes the implementation of exceptions in JCilk-1, which keeps track of
the dynamic hierarchy ofcilk try statements using a “try tree” data structure.
Section 8 evaluates the performance of JCilk-1’s exception mechanism and offers
insight into how a highly tuned implementation would perform. Section 9 presents
related work, and Section 10 provides some concluding remarks.

2 Basic JCilk concepts

This section describes the basic concepts underlying the JCilk language beyond
the simplecilk, spawn, andsync keywords described in Section 1. We first
present the language’s syntax. We go on to describe the notion of a program cursor,
which is analogous to a program counter. We then discuss how JCilk’s support for
“implicit atomicity” simplifies reasoning about concurrency. Finally, we describe
how users can safely clean up aborting methods using the built-in exception class
CilkAbort.

Syntax

JCilk inherits its basic mechanisms for parallelism from Cilk. As mentioned in Sec-
tion 1, the JCilk language extends Java by including three newkeywords:cilk,

4

spawn, andsync. The keywordcilk is a method modifier. In order to make
parallelism manifest to programmers, JCilk enforces the constraint thatspawn and
sync can only be used inside a method declared to becilk. A cilk method can
call a Java method, but a Java method cannot spawn (or call) acilkmethod. Simi-
larly, acilkmethod can only be spawned but cannot be called. In addition to being
a method modifier, thecilk keyword can be used as a modifier of atry state-
ment, and JCilk enforces the constraint thatspawn andsync keywords can only
be used within acilk try block, but not within anycatch orfinally clauses
of thecilk try statement. Placingspawn or sync keywords within an ordi-
narytry block is illegal in JCilk. The reasontry blocks containingspawn and
sync must be declaredcilk is that when an exception occurs, thesetry state-
ments may contain multiple threads of control during exception handling. Although
a JCilk compiler could detect and automatically insert acilk keyword before a
try statement containingspawn or sync, we feel the programmer should be ex-
plicitly aware of the inherent parallelism. We disallowspawn andsync within
catch or finally clauses for implementation simplicity, and because we know
of no applications that would benefit from this flexibility.

Program cursors

When acilk method is spawned, aprogram cursoris created for the method in-
stance, which is more-or-less equivalent to its program counter, but at the language
level rather than machine level. When the method returns, itsprogram cursor is
destroyed. For example, in the simple JCilk program from Figure 1, the spawning
of A andC in lines 2 and 4 creates new program cursors that can executeA andC
independently from their parentf1.

A cilk method contains only oneprimary program cursor. When it calls an or-
dinary Java (non-cilk) method, we view the Java method as executing using the
cilk method’s primary cursor. In Figure 1, for example, the methodsB andD in
lines 3 and 5 execute usingf1’s primary cursor.

JCilk allowssecondaryprogram cursors to be created as well. In particular, when
acilk method is spawned, its return value is incorporated into theparent method
by a secondary cursor. Incorporating a return value may be more involved than the
case of a simple assignment, such as the ones shown in lines 2 and 4 in Figure 1.
Figure 2 illustrates a program in which the returned values from spawned methods
B andC and called methodD augment the variabley, rather than just assigning to it,
as the return value fromA does to the variablex. Although a child’s cursor normally
stays within the child, for circumstances such as those in lines 4 and 5, the child’s
cursor operates for a time in its parentf2 to perform the update. JCilk encapsulates
these secondary cursors using a mechanism from the originalCilk language, called
an inlet, which is a small piece of code that operates within the parent on behalf
of the child. Although Cilk’sinlet keyword does not find its way into the JCilk

5

1 cilk int f2() {
2 int x, y = 0;
3 x = spawn A();
4 y += spawn B();
5 y += spawn C();
6 y += D();
7 sync;
8 return x + y;
9 }

Fig. 2. Implicit atomicity simplifies reasoning about multiple JCilk threads operating within
the same method.

language, as we shall see in Section 3, the concept of an inletis used extensively
when handling exceptions in JCilk.

Implicit atomicity

Since reasoning about race conditions between an inlet and the parent, or between
inlets, could be problematic, JCilk supports the idea ofimplicit atomicity. To un-
derstand this concept, we first define aJCilk thread2 to be a maximal sequence
of statements executed by a single program cursor that includes no parallel con-
trol. From a linguistic point of view, a JCilk thread executesno spawn or sync
statements, nor exits from acilk method orcilk try.

For example, when the methodf1 in Figure 1 runs, four threads are executed by
f1’s primary program cursor:

(1) from the beginning off1 to the point in line 2 where theA computation is
actually spawned;

(2) from the point in line 2 where theA computation is actually spawned to the
point in line 4 where theC computation is actually spawned, including the
entire call toB;

(3) from the point in line 4 where theC computation is actually spawned to the
sync in line 6, including the entire call toD;

(4) from thesync in line 6 to the point wheref1 returns.

In addition, two threads corresponding to the assignments of w andy in lines 2
and 4 are executed by secondary program cursors.

In Figure 2, similar threads can be determined, but in addition, when a spawned
method such asB in line 4 returns, an inlet runs the updating ofy as a separate
thread from the others. JCilk’s support for implicit atomicity guarantees that all

2 Although JCilk is implemented using Java threads, JCilk threads and Java threads are
different concepts. Generally, when we say “thread,” we mean a JCilk thread. If we mean a
Java thread, we shall say so explicitly.

6

JCilk threads executing in the same method instance execute atomically with re-
spect to each other, that is, the instructions of the threadsdo not interleave. Said
more operationally, JCilk’s scheduler performs all its actions at thread boundaries,
and it executes only one of a method instance’s threads at a time. In the case off2,
the updates ofy in lines 4, 5, and 6 all execute atomically. The updates caused by
the returns ofB andC are executed by JCilk’s built-in inlets, and the update caused
by D’s return is executed byf2’s primary program cursor.

Implicit atomicity places no constraints on the interactions between JCilk threads
in different method instances, however. It is the responsibility of the programmer
to handle those interactions using synchronized methods, locks, nonblocking syn-
chronization, which can be subtle to implement in Java due toits memory model
— see, for example, Lea (1999); Pugh (2000); Gontmakher and Schuster (2000);
Mansonet al. (2005) — and other such techniques. This paper does not address
these synchronization issues, which are orthogonal to our focus on the linguistic
constructs for exceptions.

Because of the havoc that can be caused by aborting computations asynchronously,
JCilk leverages the notion of implicit atomicity by ensuringthat all aborts occur
semisynchronously; that is, when a method is aborted, all its program cursors re-
side at thread boundaries. Semisynchronous aborts ease theprogrammer’s task of
understanding what happens when the computation is aborted, limiting the reason-
ing to those points where parallel control must be understood anyway. For example,
in Figure 1 ifC throws an exception whenD is executing, then the thread runningD
returns fromD and continues on to thesync in line 6 off2 before possibly being
aborted. Since aborts are by their nature nondeterministic, JCilk cannot guarantee
that when an exception is thrown, a computation always immediately aborts when
its primary program cursor reaches the next thread boundary. What it promises is
only that when an abort occurs, the primary cursor resides atsomethread boundary,
and likewise for secondary cursors.

TheCilkAbort exception

JCilk provides a built-in exception3 classCilkAbort, which inherits directly
from Throwable, as do the built-in Java exception classesException and
Error. When JCilk determines that a method must be aborted, it causesaCilkAbort
to be thrown in the method. The programmer can choose to catchaCilkAbort if
clean-up is desired. The catching and handling of aCilkAbort exception is not
required, however, and theCilkAbort exception is implemented as an unchecked
exception.

3 In keeping with the usage in Goslinget al. (2000), when we refer to an exception, we
mean any instance of the classThrowable or its subclasses.

7

1 cilk int f3() {
2 int x, y;
3 cilk try {
4 x = spawn A();
5 } catch(Exception e) {
6 x = 0;
7 }
8 cilk try {
9 y = spawn B();

10 } catch(Exception e) {
11 y = 0;
12 }
13 sync;
14 return x + y;
15 }

Fig. 3. Handling exceptions withcilk try when aborting is unnecessary.

3 The JCilk language features

This section discusses the semantics of JCilk exceptions. Webegin with a simple
example of the use ofcilk try that illustrates two important notions. The first is
the concept that a primary program cursor can leave acilk try statement before
the statement completes. The second is the idea of a “catchlet,” which is an inlet that
executes the body of thecatch clause of acilk try. We then give a complete
semantics forcilk try. We conclude with a description of how theCilkAbort
exception can be handled by user code.

Thecilk try statement

Figure 3 illustrates the use ofcilk try and demonstrates how this linguistic
construct interacts with the spawning of subcomputations.The parent methodf3
spawns the childcilk methodA in line 4, but its primary program cursor contin-
ues within the parent, proceeding to spawn another childB in line 9. As before, the
primary cursor continues inf3 until it hits thesync in line 13, at which pointf3
is suspended until the two children complete.

Observe thatf3’s primary cursor can continue on beyond the scope of thecilk
try statements even thoughA andB may yet throw exceptions. If the primary
cursor were held up at the end of thecilk try block, writing acatch clause
would preclude parallelism.

In the code from the figure, if one of the children throws an exception, it is caught
by the correspondingcatch clause. Thecatch clause may be executed long after
the primary cursor has left thecilk try block, however. As with the example of
an inlet updating a local variable in Figure 2, if methodA signals an exception,
A’s cursor must operate onf3 to execute thecatch clause in lines 5–7. This

8

functionality is provided by acatchlet, which is an inlet that runs on the parent
(in this casef3) of the method (in this caseA) that threw the exception. As with
ordinary inlets, JCilk guarantees that the catchlet runs atomically with respect to
other program cursors running onf3.

Similar to a catchlet, afinallet runs atomically with respect to other program cursors
if the cilk try statement contains afinally clause.

Aborting side computations

We are almost ready to tackle the full semantics ofcilk try, which includes the
aborting of side computations when an exception is thrown, but we require one key
concept in the Java language specification (Goslinget al., 2000, Sec. 11.3):

“A statement or expression isdynamically enclosedby a catch clause if it
appears within thetry block of thetry statement of which thecatch clause
is a part, or if the caller of the statement or expression is dynamically enclosed
by thecatch clause.”

In Java code, when an exception is thrown, control is transferred from the code that
caused the exception to the nearest dynamically enclosingcatch clause handles
the exception.

JCilk faithfully extends these semantics, using the notion of “dynamically enclos-
ing” to determine, in a manner consistent with Java’s notionof “abrupt comple-
tion,” which method instances should be aborted. (See the quotation in Section 1.)
Specifically, when an exception is thrown, JCilk delivers aCilkAbort exception
semisynchronously to theside computationsof the exception. The side compu-
tations include all methods that are dynamically enclosed by the catch clause
that handles the exception, which can include the primary program cursor of the
method containing thatcilk try statement if that cursor still resides in thecilk
try statement. JCilk thus throws aCilkAbort exception at the point of the pri-
mary cursor in that case. Moreover, thecatch clause handling theCilkAbort
thrown to a to-be-abortedcilk block is not executed until all its children have
completed, allowing the side computation to be “unwound” ina structured way
from the leaves up.

Figure 4 shows acilk try statement. If methodA throws an exception that is
caught by thecatch clause beginning in line 6, the side computation that is sig-
naled to be aborted includesB and any of its descendants, if B has been spawned
but hasn’t returned. The side computation also includes theprimary program cursor
for f4, unless it has already exited thecilk try statement. It does not includeC,
which is not dynamically enclosed by thecatch clause.

9

1 cilk int f4() {
2 int x, y, z;
3 cilk try {
4 x = spawn A();
5 y = spawn B();
6 } catch(Exception e) {
7 x = y = 0;
8 handle(e);
9 }

10 z = spawn C();
11 sync;
12 return x + y + z;
13 }

Fig. 4. Handling exceptions withcilk try when aborting might be necessary.

Although JCilk makes no guarantee that the abort executes quickly after an excep-
tion’s side computation is signaled to abort, it makes a best-effort attempt to do
so. If the side computations are executed speculatively, the overall correctness of a
programmer’s code should not depend on whether the “aborted” methods complete
normally or abruptly, and if abruptly, quickly or slowly.

The semantics ofcilk try

After an exception is thrown, when and how is it handled? The exception-handling
mechanism decomposes exception handling into six actions:

(1) Select an exception to be handled by the nearest dynamically enclosingcatch
clause that handles the exception.

(2) Signal the side computations to be aborted.
(3) Wait until all dynamically enclosed spawned methods complete, either nor-

mally or abruptly by dint of Action 2.
(4) Wait until the method’s primary program cursor exits thecilk try block,

either normally or by dint of Action 2.
(5) Run the catchlet associated with the selected exception.
(6) If thecilk try contains afinally clause, run the associated finallet.

The exception-handling mechanism executes these actions as follows. If one or
more exceptions are thrown, Action 1 selects one of them. Mirroring Java’s cascad-
ing abrupt completion, all dynamically enclosedcilk try statements between
the point where the exception is thrown and where it is caughtalso select the same
exception, even though theircatch clauses do not handle it. Action 2 is then initi-
ated to signal the side computation to abort. The mechanism now waits in Actions 3
and 4 until the side computations terminate. At this point Action 5 safely executes
thecatch clause, which is followed by Action 6 to execute thefinally clause,
if it exists.

10

1 cilk int f5() {
2 for(int i=0; i<10; i++) {
3 int a = 0;
4 cilk try {
5 a = spawn A(i);
6 } finally {
7 System.out.println("In iteration "
8 + i + " A returns " + a);
9 }

10 }
11 sync;
12 }

Fig. 5. A loop containing acilk try illustrating a race condition between the update of
i in line 2 and the read ofi in line 8.

We made the decision in JCilk that if multiple concurrent exceptions are thrown
to the samecilk block, only one is selected to be handled. In particular, if one
of these exceptions is aCilkAbort exception, theCilkAbort exception is se-
lected to be handled. The rationale is that the other exceptions come from side
computations, which will be aborted anyway. This decision is consistent with ordi-
nary Java semantics, and it fits in well with the idea of implicit aborting.

The decision to allow the primary program cursor possibly toexit a cilk try
block with afinally clause before the finallet is run reflects the notion that
finally is generally used to clean up (Goslinget al., 2000, Ch. 11), not to estab-
lish a precondition for subsequent execution. Moreover, JCilk does provide a way
to ensure that afinally clause is executed before the code following thecilk
try statement: simply place async statement immediately after thefinally
clause.

Secondary program cursors within loops

When a primary program cursor exits acilk try block in a loop before itscatch
clause orfinally clause is run and proceeds to another iteration of a loop, a
secondary program cursor eventually executes thecatch or finally clause. As
in the Cilk language, this situation requires the programmerto reason carefully
about the code.

In particular, it is possible to write code with a race condition, such as the one il-
lustrated in Figure 5. The programmer is attempting to spawnA(0), A(1), . . .,
A(9) in parallel and print out the values returned for each iteration with the itera-
tion numberi. Unfortunately, the primary cursor may change the value ofi before
a given child completes, thereby causing the secondary cursor created when the
child returns to use the wrong value when it executes the print statement in line 8
in thefinally clause.

11

1 cilk int f6() {
2 for(int i=0; i<10; i++) {
3 int a = 0;
4 int icopy = i;
5 cilk try {
6 a = spawn A(icopy);
7 } finally {
8 System.out.println("In iteration "
9 + icopy + " A returns " + a);

10 }
11 }
12 sync;
13 }

Fig. 6. JCilk’s lexical-scope rule can be exploited to fix the race condition from Figure 5.

This situation is called adata race(or, ageneral race, as defined by Netzer and
Miller (1992)), which occurs when two threads operating in parallel both access a
variable and one modifies it. In this case,f5’s primary cursor increments the value
of i in line 2 in parallel with the secondary cursor executing thefinally block
which readsi in line 8. Whereas JCilk’s support for implicit atomicity guarantees
that thefinally block executes atomically with respect tof5’s primary cursor,
it does not guarantee that data races do not occur. In this case, the data race makes
the code incorrect.

The race condition in the code from Figure 5 can be fixed by declaring a new loop
local variableicopy, as shown in Figure 6. The only differences between code
in Figure 5 and Figure 6 are the additional declaration of theloop variableicopy
in line 4 of Figure 6 and replacing the reading ofi in line 8 of Figure 5 with the
reading oficopy in line 9 of Figure 6. Every timef6 iterates its loop, a new copy
of the variableicopy is created and initialized with the current value ofi. When
the finally clause executes on behalf of an iterationi, thefinally clause
reads and prints the corresponding value oficopy as determined by alexical-
scope rule(Aho et al., 1986, Sec. 7.4). The JCilk compiler and runtime system
provide an efficient implementation of the lexical-scope rule which avoids creating
many extraneous versions of loop variables.

Handling aborts

In the original Cilk language, when a side computation is aborted, it essentially
just halted and vanished without giving the programmer any opportunity to clean
up partially completed work. JCilk exploits Java’s exception semantics to provide
a natural way for programmers to handleCilkAbort exceptions.

When JCilk’s exception mechanism signals a method in a side computation to
abort, it causes aCilkAbort to be thrown semisynchronously within the method.
The programmer can catch theCilkAbort exception and restore any modified

12

1 cilk void f7() {
2 cilk try {
3 spawn A()
4 } catch(CilkAbort e) {
5 cleanupA();
6 }
7 cilk try {
8 spawn B()
9 } catch(CilkAbort e) {

10 cleanupB();
11 }
12 cilk try {
13 spawn C()
14 } catch(CilkAbort e) {
15 cleanupC();
16 }
17 sync;
18 }

Fig. 7. CatchingCilkAbort.

data structures to a consistent state. As when any exceptionis thrown, pertinent
finally blocks, if any, are also executed.

The code in Figure 7 shows howCilkAbort exceptions can be caught. If any of
A, B, or C throws an exception that is not handled withinf7 while the others are
still executing, then those others are aborted. Any spawnedmethods that abort have
their corresponding cleanup method called.

4 The queens puzzle

This section illustrates how a parallel solution to the so-called “queens” puzzle can
be programmed using the JCilk extensions to Java. The goal of the puzzle is to find
a configuration ofn queens on ann-by-n chessboard such that no queen attacks
another, that is, no two queens occupy the same row, column, or diagonal. Figure 8
shows the JCilk code. The program would be an ordinary Java program if the three
keywordscilk, spawn, andsync were elided, but the JCilk semantics make
this program highly parallel.

The program uses a speculative parallel search. It spawns many branches in the
hopes of finding a “safe” configuration of then queens. When one branch discovers
such a configuration, the others abort. JCilk’s exception mechanism makes this
strategy easy to implement.

Although speculation can enhance parallelism, it can be ineffective, because the
program incurs more work. For speculation to be effective, the chances should be
good that the speculative computation will need to be performed. The queens pro-

13

1 public class Queens {
2 private int n;

...
3 private cilk void q(int[] cfg, int row) throws Result {
4 boolean flag = true;
5 if(row == n) {
6 throw new Result(cfg);
7 }
8 for(int col = 0; col < n; col++) {
9 int[] ncfg = new int[n];

10 System.arraycopy(cfg, 0, ncfg, 0, n);
11 ncfg[row] = col;

12 if(safe(row, col, ncfg)) {
13 spawn q(ncfg, row+1);
14 if(flag) {
15 sync;
16 flag = false;
17 }
18 }
19 }
20 sync;
21 }

22 public static cilk void main(String argv[]) {
...

23 int n = Integer.parseInt(argv[0]);
24 int[] cfg = new int[n];
25 int[] ans = null;

26 cilk try {
27 spawn (new Queens(n)).q(cfg, 0);
28 } catch(Result e) {
29 ans = (int[]) e.getValue();
30 }
31 sync;

32 if(ans != null) {
33 System.out.print("Solution: ");
34 for(int i = 0; i < n; i++) {
35 System.out.print(ans[i] + " ");
36 }
37 System.out.print("\n");
38 } else {
39 System.out.println("No solutions.");
40 }
41 }
42 }

Fig. 8. The queens puzzle coded in JCilk. The methodsafe determines whether it is
possible to place a new queen on the board in a particular square. TheResult exception
(which extends classException) notifies themain method when a result is found.

14

gram uses the heuristic that if the first child of a node in the search tree does not
contain a safe configuration, then neither do its siblings. Thus, it spawns off the
first child serially, and only when that child returns (unsuccessfully) does it spawn
off the remaining children in parallel.

The queens program works as follows. When the program starts,themain method
constructs a new instance of the classQueens with user inputn and spawns theq
method to search for a safe configuration. Theq method takes in two arguments:
the current configurationcfg of queens on the board, and the current rowrow to
be searched. It loops through all columns in the current row to find safe positions to
place a queen in the current row. The ordinary Java methodsafe, whose definition
we omit for brevity, determines whether placing a queen in row row and column
col conflicts with other queens already placed on the board. If there is no conflict,
a childqmethod is spawned in line 13 to perform the subsearch with thenew queen
placed in the position (row, col).

After the first child of the current node is spawned, theq method executes async
in line 15, suspending the method until the first child returns. By setting the boolean
flag to false, subsequent children are spawned without an immediatesync,
thereby allowing them to run in parallel.

The parallel search continues until it finds a configuration in which every row con-
tains a queen. At this pointcfg contains a legal placement of alln queens. The
successfulq method throws the user-defined exceptionResult (whose definition
we also omit for brevity) in line 6 to signal that it has found asolution. TheResult
exception is used to communicate between theq andmain methods.

The program exploits JCilk’s implicit abort semantics to avoid extraneous com-
putation. When one legal placement is found, some outstanding q methods might
still be executing; those subsearches are now redundant andshould be aborted.
The implicit abort mechanism does exactly what we desire when a side computa-
tion throws an exception: it automatically aborts all sibling computations and their
children dynamically enclosed by the catching clause. In this example, since the
Result exception propagates upward until it is caught in line 28 of the main
method, all outstandingq methods abort automatically. To ensure that all side
computations have terminated and thecatch clause has been executed, themain
method executes async statement in line 31 before it prints out the solution.

5 Parallel alpha-beta search

This section explores the coding of a parallel alpha-beta search in JCilk, which
highlights JCilk’s semantics in more depth. Like the queens program, our alpha-
beta code exploits JCilk’s exception-handling mechanism toabort speculative com-

15

putations that are found to be unnecessary. In addition, this JCilk program provides
an example that exploits the implicit lexical-scope rule toensure correct execution.

Alpha-beta search (Knuth and Moore, 1975; Winston, 1992) isoften used when
programming two-player games such as chess or checkers. It is basically a “mini-
max” (Russell and Norvig, 2003) search algorithm applied with “alpha-beta prun-
ing” (Russell and Norvig, 2003), a technique for pruning out irrelevant parts of the
game tree so that more ply of depth can be searched within a given time bound.
Since the search algorithm is described in virtually every introduction to adversar-
ial search (see, for example, Russell and Norvig (2003, Ch. 6) and Winston (1992,
Ch. 6)), we assume a basic familiarity with this search strategy. The idea of the al-
gorithm is that if White can make a move in a position so good that Black would not
make the move leading to that position, then there is no pointin searching White’s
other moves from that position. Therefore, those additional moves can be pruned
in what is termed abeta cutoff.

The basic alpha-beta search algorithm is inherently serial, because the information
from searching one child of a node in the game tree is used to prune subsequent
children. It is difficult to use information gained from searching one child to prune
another if one wishes to search all children in parallel.

One key observation helps to parallelize alpha-beta search: in game tree in which
children are ordered optimally at every none, either all thechildren of a node are
searched (the node ismaximal), or only one child needs to be searched to generate
a cutoff (the node issingular). This observation suggests a parallel search strategy
calledyoung brothers wait(Feldmannet al., 1993): if the first child searched fails
to generate a cutoff, the algorithm speculates that the nodeis maximal, and thus
searching the rest of the children in parallel wastes no work. To implement this
strategy, the parallel alpha-beta algorithm first searcheswhat it considers to be the
best child. If the score returned by the best child generatesa cutoff, the algorithm
prunes the rest of the children and returns immediately. Otherwise, the algorithm
speculates that the node is maximal and spawns searches of all the remaining chil-
dren in parallel. If one of the children returns a score that generates a beta cutoff,
however, the other children are aborted, since their work has been rendered super-
fluous.

Figure 9 shows a JCilk implementation of this parallel searchalgorithm using the
negamaxstrategy (Knuth and Moore, 1975), where scores are always viewed from
the perspective of the side to move in the game tree. In this strategy, when subse-
quent moves are searched, thealpha andbeta roles are reversed and the scores
returned are negated. Thesearch method is called with the current board config-
uration, the depth to search, and thealpha andbeta values that bound the search
of the current node. When invoked, the code first checks for thebase case by call-
ing the methodisDone in line 3, which returnstrue if this node is a leaf of the
game tree: the depth has been reached, the board configuration is a draw, or one side

16

has lost. (The definition forisDone is omitted for simplicity.) IfisDone returns
true, the algorithm evaluates and returns a “static evaluation”or “score” of the
current board configuration. Otherwise, it generates a listsuccessors of legal
moves that can be made from the current board configuration. Thissuccessors
list contains the moves in best-first order as determined by move-ordering heuris-
tics.

The search begins with the first move stored in thesuccessors list, which os-
tensibly corresponds to the best child. When this child returns with a score,alpha
is updated, and the condition for a beta cutoff is checked. Ifthe score generates a
beta cutoff (meaning this node is singular), the score for this node (which is stored
in beta in this case) is returned. If the score does not generate a beta cutoff, the
algorithm then proceeds to spawn the rest of the children in parallel, with the re-
maining moves stored in thesuccessors list. As each of these children returns,
thealpha value is again updated and the condition for a beta cutoff is checked.
If any of these children happens to generate a beta cutoff, a user-defined exception
Result (whose definition is omitted) is thrown, causing all children spawned in
parallel by this node to be aborted. TheResult object contains a single field to
store the score of the node so that the score can be communicated back to its parent.

Thesearchmethod is first invoked by therootSearchmethod, which initiates
the searches from the root node. The definition of therootSearch method is
omitted because it is similar to the definition of thesearch method. The only
differences are that no checks for beta cutoffs are performed, because no beta cutoff
can occur at the root of the game tree, and the values foralpha andbeta are
initialized to the minimum and maximum values that can be represented with an
int type, respectively. One could mergerootSearch andsearch into a single
method with a flag indicating whether the current node is the root node, but we
chose to separate them into distinct methods for simplicity.

The code for thesearch method shown in Figure 9 capitalizes on three JCilk
language features:

• implicit abort semantics,
• the lexical-scope rule,
• implicit atomicity.

We now examine howsearch makes use of each of these features.

First, thesearch method exploits JCilk’s implicit abort semantics to abort extra-
neous computations spawned in line 29. This part of the code is similar to line 13
in the queens code from Figure 8.

Second, the code exploits JCilk’s support for the lexical-scope rule. Specifically, the
finally clause (lines 32–40) is contained within a loop, and it refers to the loop
local variablescore2. Sincescore2 is declared within the loop (in line 24), the

17

1 private cilk int search(Board board, int depth,
int alpha, int beta)

throws Result {
2 int score1;

3 if(isDone(board, depth)) {
4 return eval(board);
5 }
6 List successors = board.legalMoves();
7 List move = (List) successors.pop_front();
8 Board nextBoard = (Board) board.copy();
9 nextBoard.move(move);

10 cilk try {
11 score1 = spawn search(nextBoard, depth+1,

-beta, -alpha);
12 } catch(Result e) {
13 score1 = e.getValue();
14 }
15 sync;
16 score1 = -score1;
17 if(score1 > alpha) {
18 alpha = score1;
19 }
20 if(alpha >= beta) {
21 return alpha;
22 }

23 while(mayPlay(successors)) {
24 int score2 = -Integer.MAX_VALUE;
25 move = (List) successors.pop_front();
26 nextBoard = (Board) board.copy();
27 nextBoard.move(move);
28 cilk try {
29 score2 = spawn search(nextBoard, depth+1,

-beta, -alpha);
30 } catch(Result e) {
31 score2 = e.getValue();
32 } finally {
33 score2 = -score2;
34 if(score2 > alpha) {
35 alpha = score2;
36 }
37 if(alpha >= beta) {
38 throw new Result(alpha);
39 }
40 }
41 }
42 sync;
43 return alpha;
44 }

Fig. 9. A parallel alpha-beta search coded in JCilk.

18

lexical-scope rule applies. When eachfinally clause refers toscore2, it re-
solves to the version corresponding to the iteration to which thefinally belongs
lexically. This “correct” resolution ofscore2 is crucial to the correctness of the
alpha-beta code.

Third, the code exploits JCilk’s guarantee of implicit atomicity. In particular, in the
samefinally clause (lines 32–40), an assignment to the local variablealpha
is made in line 35. Even thoughalpha is written simultaneously by multiple sec-
ondary program cursors (executingfinally clauses from different iterations),
JCilk’s guarantee of implicit atomicity causes all the instantiations of thefinally
clause to execute atomically with respect to one another. Since the order of their ex-
ecution does not matter, the code is correct.

This parallel alpha-beta search demonstrates the expressiveness of JCilk’s language
features and their semantics. Without the support of any oneof these three features,
the parallel alpha-beta search could not be programmed so easily. Compared to a
parallel alpha-beta search coded in Cilk (Dailey and Leiserson, 2002), this imple-
mentation is arguably cleaner and simpler.

6 The JCilk-1 prototype implementation

We have implemented the JCilk semantics in a prototype systemcalled JCilk-1.
Although an ideal implementation of JCilk might incorporatea JCilk virtual ma-
chine analogous to a Java Virtual Machine (JVM) (Lindholm and Yellin, 2000)
and a compiler that translates directly to bytecode, the JCilk-1 strategy required
much less work. JCilk-1 consists of two components — a runtimesystem and a
compiler — both which heavily leverage the existing Java infrastructure, albeit at
the cost of some overheads that would not be incurred by an ideal implementa-
tion. JCilk-1’s runtime system is implemented in Java and is modeled after the Cilk
runtime system (SuperTech, 2001; Frigoet al., 1998) which incorporates a random-
ized work-stealing scheduler. The JCilk-1 compiler compiles JCilk source code into
Java bytecode with library calls to the runtime system. The bytecode along with the
runtime libraries can be executed on any standard JVM. This section overviews the
structure of the JCilk-1 runtime system and compiler.

The JCilk-1 runtime system

JCilk-1’s runtime system schedules threads dynamically according to available pro-
cessor resources using a Cilk-like work-stealing scheduling algorithm (Blumofe
and Leiserson, 1999; Frigoet al., 1998). A collection of Java threads, calledwork-
ers, schedule and execute the JCilk threads. Each worker maintains aready deque
(doubly-ended queue) ofactivation frameseach containing the variables associated

19

with the corresponding method instances that are ready to execute. Each deque has
two ends, aheadand atail, from which frames can be added or removed. A worker
operates locally on the tail of its own deque, treating it much as Java treats its call
stack, pushing and popping spawned frames. When a worker runsout of work, it
becomes athief and attempts to steal a frame from another worker, called itsvic-
tim, at random. The thief steals the frame from the head of the victim’s deque, that
is, the opposite end from which the victim is working. The stolen frame is always
the oldest frame in the victim’s deque. If the victim has no work to be stolen, the
thief simply chooses another victim at random and repeats the process.

As an example of how work-stealing operates, suppose that a methodA spawns a
methodB. The worker executingA immediately begins work onB, leavingA for
later resumption. If a thief stealsA, it resumes the execution from where the original
(victim) worker left off. Later, whenB attempts to return control to its parentA, it
instead notifiesA’s current worker that its subcomputation has completed. Itpasses
B’s result, which can be either a return value or a thrown exception, back toA’s
current worker.

If the method was spawned as part of an assignment operation and has returned a
value, then that value must eventually be stored into the appropriate variable. This
action is accomplished by an inlet created by the compiler for this purpose. The
inlet takes the return value as an argument and assigns it either to a field in some
object or to an entry in the method’s frame on the ready deque.An inlet created
from a more complex assignment operation (such asx += spawn A()) might
perform a small operation (in this case, an addition) beforestoring the result. The
inlet executes atomically with respect to other threads executing on the method
where the return value is stored. As we shall see in Section 7,the JCilk-1 compiler
also creates catchlets and finallets from the code incatch andfinally clauses,
respectively, as part of JCilk’s exception-handling mechanism.

The JCilk-1 compiler

The driving philosophy in the design of the JCilk-1 compiler has been that a user
should pay the overhead of running parallel code only when using JCilk’s parallel
extensions. A JCilk program should be compiled so that blockscontaining only
regular Java code run without any compiler-induced slowdown. The JCilk-1 com-
piler borrows heavily from the two-clone compilation strategy (Frigoet al., 1998)
used in Cilk to minimize the work overhead.

JCilk-1’s compiler capitalizes on an important property of its work-stealing algo-
rithm. The frame at the head of a worker’s deque is a special frame called aclo-
sure. A closure’s bookkeeping is somewhat more complicated thanthat for ordinary
frames, because a closure may have several children executing on different workers.
In contrast, all other frames on the deque are much simpler, in part because each

20

has at most one child, which executes on the same processor. When the JCilk-1
compiler compiles a method, it produces two separateclonesof the method as out-
put. Theslow clonehandles all the vagaries of bookkeeping for closures, whereas
the fast cloneis optimized for the common case of an ordinary frame having only
a single child executing on the same processor.

We would have preferred that the JCilk-1 compiler mimic the Cilk strategy (as de-
scribed in Frigoet al.(1998)) by performing a JCilk-to-Java translation, translating
only JCilk keywords while leaving regular Java code intact. The generated Java
postsource would have the same general structure as the original JCilk program,
but the JCilk keywordscilk, spawn, andsync would be expanded into the Java
statements necessary to actually accomplish their functionality. Unfortunately, this
strategy does not work.

To see why, remember that the JCilk keywords define the boundaries of JCilk
threads, as described in Section 2. These boundaries are points where the method
instance’s frame can potentially migrate from one worker toanother. That is, two
JCilk threads separated by a boundary might execute on two different workers.
When migration occurs during a steal, the thief needs access to the most recent state
of local variables and must reset its primary program cursorto the point where the
victim left off. The mechanism to allow this resumption is called acontinuation.
The Cilk system, which is implemented in C, supports a continuation mechanism
usinggoto statements.

Adopting this approach for JCilk-1 is problematic, however,since the Java language
has nogoto statement. To support a continuation mechanism without slowing
down pure Java code, we created an intermediate language called GoJava which
is a minimal extension of Java to allowgoto statements in limited and specific
circumstances. Since Java bytecode already contains jump instructions, compiling
a GoJava program into ordinary Java bytecode required minimal changes to a Java
compiler.

JCilk-1’s compiler compiles a JCilk program using a two-stagecompilation pro-
cess. The first stage is a source-to-source translation fromJCilk to GoJava. This
stage expands all JCilk keywords into their effects and leaves regular Java code
unaffected. This translation from JCilk source to GoJava postsource is performed
using Polyglot (Nystromet al., 2003), a compiler toolkit designed specifically for
implementing Java language extensions. The second stage ofthe compilation pro-
cess translates the GoJava postsource to Java bytecode using Jgo, a compiler for
GoJava which we created by minimally modifying GCJ, the Gnu Compiler for Java
(GNU, 2004). This second stage adds no additional overhead as compared to using
GCJ directly, maintaining the property that pure Java code suffers no slowdown.

Figure 10 shows the GoJava postsource from the first compilation stage when run
on theq method of the JCilk Queens code from Figure 8. Notice that thespawn

21

1 private void q(Worker worker, CilkFrame frame)
2 throws Result {
3 Queens_nqueens_frame f = (Queens_nqueens_frame)frame;
4 switch(f._pc) {
5 case 1:
6 goto _cilk_sync1;
7 case 2:
8 goto _cilk_sync2;
9 }

...
10 for(f._col = 0; f._col < n; f._col++) {

...
11 if(safe(f._row, f._col, f._ncfg)) {
12 f._pc = 1;
13 try {
14 q_fast(worker, nconfig, f._row+1);
15 } catch(Result e) {
16 if(worker.popFrameCheckExc(e)) {
17 return;
18 } else {
19 throw e;
20 }
21 } catch (RuntimeException e) {

...
22 }
23 if(worker.popFrameCheck(null)) {
24 return;
25 }
26 _cilk_sync1: ;
27 if(f._flag) {
28 f._pc = 2;
29 if(!worker.sync()) {
30 return;
31 }
32 _cilk_sync2: ;
33 f._flag = false;
34 }
35 }
36 }
37 f._pc = 3;
38 if(!worker.sync()) {
39 return;
40 }
41 _cilk_sync3: ;
42 return;
43 }

Fig. 10. The GoJava output of the JCilk compiler’s first stage when run ontheq method
of the JCilk Queens code from Figure 8. This code is for the slow clone in thetwo-clone
compilation strategy (Frigoet al., 1998), and it is only called when a stolen (migrated)
computation is resumed.

22

statement has been replaced with lines 12–26. Before the call, the current primary
program cursor (line 12) is stored into the frame. After the call completes (either
with an exception or a normal return value), a call to the worker (lines 16 and 23)
checks to see whether a steal has occurred and immediately returns from the method
if it has. A thief that steals this method reads thepc field in the frame and jumps
from the top of the method (line 6) to the appropriate continuation point, here at
line 26.

7 JCilk-1’s implementation of exceptions

The implementation of JCilk’s exception-handling mechanism is based on a data
structure, called a “try tree,” which shadows the dynamic hierarchy ofcilk try
statements. This section shows how JCilk-1 uses try trees to choose an exception to
handle, to signal aborts to side computations, and to signalan abort at the catching
method’s program cursor when necessary. We also describe how catchlets are used
to executecatch clauses atomically.

The try tree

Due to the potential parallelism in acilk block, JCilk-1 must be ready to han-
dle whatever exceptions may arise out of the parallel computations spawned from
within the samecilk block. The system must select only one of possibly many
concurrent exceptions to be handled. Moreover, it must determine which side com-
putations should be aborted and signal them, which can be complicated.

As an example, consider the methods in Figure 11. The methodthreeWay con-
tains three spawns: methodA is not enclosed by anycilk try statement, method
B is enclosed by onecilk try statement, and methodC is enclosed by two
nestedcilk try statements. Depending on what kind of exception the call to
C() throws, different sets of spawned methods might receive theabort signal. For
example, ifC throws aRuntimeException, thenB could be aborted (assuming
it was still running), butA would continue normally.

In order to determine which spawned child methods should be aborted, the worker
must track the location in the parent method where they were originally spawned.
This information is maintained using a data structure called a try tree. In the same
way that the ready deque mirrors the Java call stack, the try tree mirrors the dynamic
hierarchy of nestedcilk try statements. Each worker “owns” one try tree.

Because of the way that work-stealing scheduler operates (described in Section 6),
the closure is the only frame within the deque that might havechildren running
on other workers. Thus, it is sufficient to maintain the try tree only in closures. In

23

1 cilk void threeWay() throws IOException {
2 spawn A();
3 cilk try {
4 spawn B();
5 cilk try {
6 spawn C(); //throws exception.
7 } catch(ArithmeticException e) {
8 cleanupC();
9 }

10 } catch(RuntimeException e) {
11 cleanupB();
12 }
13 D();
14 sync;
15 }

Fig. 11. A method containing nestedcilk blocks, each containing aspawn statement.

addition, maintaining the try tree in the closure does not add significant overhead,
because the vast majority of the work is done deeper in the ready deque.

The try tree for a worker tracks in whichcilk block the top-level method (repre-
sented by the closure) spawned off children currently executing on other workers.
Each internal node represents acilk block, which can be either acilk method
body or acilk try block. A leaf represents either the primary program cursor on
the try tree’s worker or a spawned call currently executing on a different worker.
A node’s parent in the try tree represents thecilk block most directly containing
the node. Thus, each leaf’s parent corresponds to thecilk block from which the
method was spawned.

One of the nodes in the try tree is designated as thecursor node. The cursor node
tracks thecilk block containing the worker’s current primary program cursor. The
cursor node can be either a leaf or an internal node. When the cursor node is a leaf,
it means that a child method is spawned but is being executed on the same worker.

Maintaining the try tree is straightforward. Whenever the top-level method enters
a cilk try statement, a new node representing thecilk try block is created
as a child of the cursor node, and the cursor node is moved downto the new node.
Whenever the top-level method leaves acilk try statement normally (not as a
result of a thrown exception), the cursor node moves up a level. Whenever work is
stolen, the try tree is migrated over to the thief along with the closure, and a new
node is created as a child of the current cursor node, representing a spawn call now
executing on the victim. Whenever a spawn call executing on a different worker
completes (either normally or abruptly), the leaf representing the spawn call is then
removed from the try tree.

24

The abort signal

Before a side computation can be aborted, it first must be signaled to abort. The
abort signal is delivered to a worker via a flag that the workerchecks only at thread
boundaries: when a spawned method returns, at async statement, or when acilk
try statement completes. Each time a spawned method returns, ifthe abort flag is
set to indicate the worker has received a signal to abort, then whatever value (if
any) was being returned by the spawned method is discarded. In its place, a (new)
CilkAbort exception is thrown.

Although there are no return values to replace in cases whereabort happens after
a sync statement or when acilk try completes, a (new)CilkAbort is still
thrown. This strategy ensures that everycilk block acts as if it has received the
signal, even though the actual signal was only sent to each worker once. The amount
of work done per worker to signal the exception is thus dependent only on the size
of its try tree, and is independent of the depth of each worker’s ready deque.

Aborting side computations

The try tree guides the aborting of side computations. When anexception is caught
and propagated back to a top-level method in a ready deque, the exception is logi-
cally thrown by the child method corresponding to a leaf in that method’s try tree.
The leaf either represents a spawned child executing on another worker which ter-
minated by throwing an exception, or it represents the primary program cursor on
the try tree’s worker and the throwing method is executing onthe same worker. A
lookup table produced by the compiler tells the worker how many levels up the try
tree the exception is caught. If the exception will not be caught in this method, the
exception propagates all the way up to the root of the try tree. This process thus
determines the “catching node” of the exception in this method.

Once the catching node has been identified, we know which sidecomputations to
abort, namely, those methods that are also dynamically enclosed by thecilk try
statement containing the catching node that handles the exception. These dynam-
ically enclosed methods are represented by leaves in the catching node’s subtree.
For efficiency reasons, and because we know that all work contained in that subtree
should be aborted, we signal the abort to all of those children simultaneously and
asynchronously—that is, we signal them all as soon as possible, without waiting for
any acknowledgment from any of the affected workers. The signaling worker also
propagates the abort signal recursively through the affected children’s try trees to
all of their children, and their children’s children, and soon. This strategy of propa-
gation creates no semantic problems, because all of these methods operate logically
in parallel, and they should all be signaled to abort eventually. Consequently, they
might as well be signaled immediately. Even though the abortsignal is sent to
all descendants simultaneously and asynchronously, theCilkAbort exception is

25

thrown semisynchronously (as JCilk’s semantics guarantee), because each worker
checks its abort flag only at thread boundaries.

Even after a child method has been signaled to abort, it may still return an ordinary
return value or a non-CilkAbort exception. This case happens when the child
method doesn’t have a chance to check for the abort flag beforeit completes. Since
these signaled methods should have been aborted, any value or non-CilkAbort
exception that they returned are discarded and replaced with CilkAbort excep-
tions.

Among the side computations that must be signaled to abort isthe method contain-
ing thecilk try statement itself if the primary program cursor still resides in
thecilk try statement. This case requires a careful implementation, because the
method containing thecilk try is running on the same worker that initiates the
propagation of abort signals.

We use a two-step process to signal the abort. First, we spin off the closure in the
worker’s ready deque as if it were being stolen. The new childframe left behind
is now a new closure which can be aborted in the same way that each of the other
spawned children are aborted. This action leaves the parentframe (the original
closure) in an unacceptable state, however: the next statement the parent executes
is the statement following the spawn in the method we just spun off, which likely is
still inside the aborted block. To rectify this situation, we move the try-tree cursor
node and the frame’s primary program cursor both to a point immediately after
the catchingtry statement if it is acilk try statement. If the catching node
is acilk method block, we instead advance the primary cursor to the end of the
method. Since the method must still wait for all side computations to complete, it
acts as if the execution had encountered async statement.

Executing catchlets and inlets

After all side computations have aborted, the corresponding catching block of the
catch clause handling the exception needs to be executed as a catchlet. If the
cilk try statement contains anyfinally block, the corresponding finallet
needs to be executed as well. The semisynchronous nature of inlets, catchlets, and
finallets is enforced by only executing them atspawn andsync statements using
a mechanism similar to the one that checks for an abort signal. If any exception is
thrown, it is propagated up the try tree, and the appropriatechildren are signaled
to abort. The leaves representing the throwing child methodand the aborted child
methods are removed from the tree once they terminate. When all of a node’s chil-
dren in the tree have been removed, its catchlet and finallet (if any) execute as inlets
and then that node is removed from the tree as well.

26

Ignoring exceptions

Concurrent exceptions can potentially occur when methods are executed in parallel.
These methods are represented by different leaves in the trytree, possibly residing
in different levels. Since eachcilk try statement handles at most one exception,
at most one exception should be selected at each node in the try tree. As we climb
up the tree from a leaf that has thrown an exception up to its catching node, we
examine each node we pass through. If the current node has notyet selected an
exception, we store the new exception in the node and continue up the tree. On the
other hand, if the node has already selected an exception earlier, we discard the
new exception, preventing it from propagating further, andwe continue up the tree
with the earlier exception. When we reach the catching node, we perform the same
check, again either selecting the new exception or discarding it. In general, the later
exception is discarded if the current node has already picked another exception. The
only time a later exception takes precedence is when it is aCilkAbort exception.

Handling an Error exception

JCilk’s implementation of exceptions generally prevents the worker thread from
ever catching any exceptions thrown in user code. While this behavior is desired
for typical cases (a user’s deliberately thrown exception should not affect a worker),
we must handle a thrownError exception differently. All Java exception objects
describe a way in which a computation has failed. TheError exception is no
exception. Consequently, it is propagated back up to parent methods just as any
exception would be. Because theError probably also describes a fatal condition
which the worker itself needs to know about, however, it is also rethrown at the
worker level. TheError then propagates all the way up through the worker thread,
ultimately terminating the worker itself.

8 Performance

This section describes empirical studies that seek to understand whether JCilk’s
linguistic primitives for exceptions can be efficiently supported. We first evaluate
overheads in our prototype JCilk-1 implementation without the exception mecha-
nism so that we can establish a baseline against which to benchmark. We establish
that JCilk-1 obtains near-perfect linear speedup on up to16 processors for simple
benchmarks, and that the overhead ofspawn is about30 times the cost of an ordi-
nary Java method call. We argue that suitable optimizationscould bring thespawn
overhead down by a factor of10 in a highly tuned implementation. We demonstrate
thatcilk try imposes only a small overhead in our prototype and that even in an
highly tuned implementation, the overhead would be minimal. Finally, we present
evidence that the time to abort a computation is reasonable and that it grows only

27

slowly with the number of processors.

Experimental setup

All our measurements were taken on a Sun Fire 6800 with16 1.2-gigahertz Ultra-
SPARC-III processors, each with2 gigabytes of main memory, running Solaris 9
OS (64-bit sparcv9 kernel modules). We compiled our runtime system and executed
the compiled JCilk program with Java2 Platform Standard Edition (J2SE5.0) re-
leased by Sun Microsystems (2004). Because the JVM does not distribute newly
created threads across the processors quickly, after starting up the JCilk-1 runtime
system, we let the worker threads run idly for roughly a minute before starting the
benchmark, so that they are properly distributed across themachine before mea-
surements begin. In addition, we run the benchmarks twice ineach execution, and
take the timing measurement in the second run, in order to warm up the system and
possibly take advantage of optimizations done in JVM.

Our studies use four benchmarks:

• Queens — the queens puzzle from Section 4 given in Figure 8.
• CountQueens— similar toQueens from Section 4, but counts the total num-

ber of safe configurations ofn queens on ann-by-n chessboard, instead of just
finding a single solution.

• Fib — computes thenth Fibonacci number using an exponential-time recursive
algorithm.

• FibTry — semantically the same asFib, but with the spawns nested within
three nestedcilk try blocks.

System performance

The “counting-queens” puzzle serves as a good benchmark to establish a baseline
for overall system performance. Unlike the queens puzzle presented in Section 4,
CountQueens does not involve speculative computing or implicit abort. Conse-
quently, the program executes a uniform amount of work across each run given the
same numbern of queens to place on then-by-n board. Our implementation of
the counting-queens puzzle simply walks through all possible board configurations
and increments a counter whenever a safe configuration is found. Even though the
program does not utilize JCilk’s exception mechanism, the try-tree data structure is
maintained throughout the execution.

Figure 12 tabulates JCilk-1’s performance when runningCountQueens with in-
put sizen = 15, averaging over20 runs. The program obtains almost perfect linear
speedup up to16 processors.4 The last column in the figure shows the speedup

4 The occasional superlinear speedup is presumably due to the JVM’s inconsistent perfor-

28

proc exec time speedup % efficiency
P TP T1/TP (T1/TP)/P

1 441.6 s 1.00 100%
2 220.1 s 2.01 100%
3 145.0 s 3.05 102%
4 109.0 s 4.05 101%
5 87.6 s 5.04 101%
6 74.2 s 5.95 99%
7 62.8 s 7.03 100%
8 55.2 s 8.00 100%
9 48.2 s 9.16 102%

10 44.3 s 9.98 100%
11 40.0 s 11.04 100%
12 36.6 s 12.08 101%
13 34.4 s 12.84 99%
14 32.2 s 13.73 98%
15 30.0 s 14.70 98%
16 28.9 s 15.29 96%

Fig. 12. The execution time in seconds ofCountQueens with input parametern = 15
when running on the JCilk-1 runtime system. The first column shows the numberP of
processors used during execution. The second column shows the average execution timeTP

of the program onP processors. The third column gives the speedupT1/TP , and the last
column normalizes the speedup as a fraction of the theoretical maximum-possiblespeedup.

as a fraction(T1/TP)/P of perfect linear speedup. Since the program’s serial eli-
sion executes in roughlyTserial = 400 seconds, the work overhead of the counting
queens puzzle isT1/Tserial − 1 ≈ 10%. (This value could be reduced by simply
“coarsening” the recursion to avoid spawning near the leaves of the spawn tree,
thereby lengthening the average thread length.)

Overhead forspawn/return

Our second experiment measures the work overheads inherentin a spawn state-
ment and its correspondingreturn statement in our JCilk-1 prototype implemen-
tation. This study allows us to estimate what the overhead would be in a highly
tuned production implementation, thereby enabling us to gauge the overhead of
JCilk exception semantics more realistically. To estimate thespawn/return over-
head of our prototype implementation, we benchmarked the Fibonacci program
Fib on one processor against the execution time of its corresponding Java serial
elision.

The JCilk program for theFib code uses an exponential time algorithm: with input
parametern, it recursively spawns itself withn-1 andn-2 and then sums the val-
ues returned by the two spawned methods. Async statement before the summing

mance model.

29

variant spawn time spawn overhead cumulative saving incremental saving
Fib0 191.37 ns 31.1 0.0% 0.0%
Fib1 71.31 ns 11.6 62.7% 62.7%
Fib2 54.08 ns 8.8 71.7% 9.0%
Fib3 48.17 ns 7.8 74.8% 3.1%
Fib4 17.45 ns 2.8 90.9% 16.1%
Fib5 6.41 ns 1.0 96.7% 5.8%

Fig. 13. Breakdown of overheads forFib running on one processor averaged over20 runs.
The first column labels the benchmark. The second column shows the time perspawn call
in nanoseconds. The third column shows thespawn/return overhead compared to an
ordinary Java method call, which we measured as about6.2 nanoseconds. The last column
shows the percentage savings compared to the unmodifiedFib0 code.

of the return values ensures that the spawned methods have terminated properly.
TheFib code makes a good benchmark for estimating thespawn/return over-
head, because it spawns recursively and performs no real computation besides one
addition. Thesync statement does not contribute to the work overhead, becauseit
compiles into an empty statement in the fast clone. Therefore, the work overhead
benchmarked byFib mainly comes from itsspawn and correspondingreturn
statements.

Our methodology for obtaining a breakdown of overheads was as follows. First, we
timed the execution of the generated GoJava postsource thatresulted from compil-
ing theFib code. Then, we took away a portion of the GoJava code responsible
for a particular overhead and timed the execution of the resulting program. We at-
tributed the decrease in execution time to the removed GoJava code. We repeated
this process, removing one additional overhead, and then a third, and the last, until
only a “bare-bones” version ofFib remained.

Specifically, we benchmarked the following variants onFib:

• Fib0 — the GoJava postsource produced by compiling the original JCilk Fib
program.

• Fib1 — produced from theFib0 postsource by removing the synchronization
overhead for the work-stealing protocol.

• Fib2 — produced fromFib1 by removing the compiler-generated Javatry
statements for intercepting potential exceptions thrown by spawned calls.

• Fib3 — produced fromFib2 by removing the state saving of a method before
aspawn.

• Fib4 — produced fromFib3 by removing the compiler-generated calls to the
runtime system to push and pop spawned activation frames.

• Fib5 — produced fromFib4 by eliminating the code that allocates and frees
memory for spawned activation frames.

Figure 13 shows a breakdown of JCilk-1’s overheads forFib on the Sun Fire 6800.
To sanity-check these numbers, we individually removed oneparticular overhead

30

(synchronization, generatedtry statements, and state saving) fromFib0 without
removing the other two. Then, we summed up the times requiredby the individual
overheads together with the execution time ofFib3 and compared the resulting
time to the execution time of the unmodifiedFib0 code. The two times differed
by less than 10%.

Next, we verified that the difference betweenFib4 andFib5 corresponds to the
overhead saved from removing the frame allocations. Since we could not com-
pletely remove the code for allocating activation frames without removing code for
pushing and popping the frames, we opted to allocate one static frame which is
reused throughout execution. Even though this modificationis not quite the same
as removing the frame allocations completely, it roughly simulates the same effect
by preventing new allocations. We compared the time saved byusing a single static
frame with the time difference betweenFib4 andFib5. The two times differed
by approximately 10%.

Finally, we compared the execution times betweenFib3 andFib4, attributing the
decrease in time to the removal of the calls to the runtime system for pushing and
popping activation frames. We could not easily verify this overhead calculation as
we did before, because the synchronization code is initiated by push and pop calls to
the runtime system. Since our measurements of the other overheads substantiate our
methodology, however, we feel confident in the numbers. Moreover, theFib5 code
has a work overhead of1.04 times that of its serial elision, which seems consistent.

As shown in Figure 13, thespawn/return overhead in our prototype JCilk-1 im-
plementation is just over30 times that of the serial elision. The overhead for mem-
ory management is the second lowest of the five measured overheads. It would have
been far higher had we not circumvented Java’s memory manager by implement-
ing our own type-specific memory pool to recycle activation frames throughout the
execution.

Compared to our JCilk-1 implementation, a production-quality implementation of
JCilk would significantly reduce all of these overheads. An ideal implementation
would build the JCilk primitives directly into a JVM, insteadof building on top of
a JVM, as we mentioned in Section 6. A large part of these overheads stem from
duplicating work already done by the JVM. Specifically, JCilk-1’s ready deque
shadows the JVM stack but allows work-stealing to occur. If the JCilk runtime sys-
tem were built directly into a JVM, the overhead for creatingnew frames when
a spawn is executed would be nearly identical to an ordinary Java method call.
In addition, the redundant state-saving done by JCilk-1 before a spawn could
be eliminated entirely. Synchronization for the work-stealing protocol would be
cheaper as well, because we could synchronize directly through memory, rather
than using Java’s heavy-weight synchronization variables. We would also be able
to remove all thetry-and-catch wrappers for checking and intercepting unex-
pected exceptions at every level ofspawn calls, and instead, set an internal vari-

31

Construct time cilk try %
cilk try 2.34 ns 100%
Javatry 0.39 ns 600%
JCilk-1spawn 191.37 ns 1%
Highly tunedspawn 12.33 ns 19%
Java method call 6.16 ns 38%

Fig. 14. The overhead of acilk try statement. The first column indicates the linguistic
construct. The second column indicates the time overhead for using the construct. The third
column normalizes the overhead forcilk try by dividing2.34 ns by the overhead of the
construct. Each measurement was obtained by averaging over20 runs.

able to indicate which top frame an unexpected exception should be delivered to,
should it occur. Although it is unrealistic to expect that wecould eliminate all the
overheads, it seems reasonable that a highly tuned JCilk implementation could re-
duce thespawn/return overhead to perhaps twice the cost of a Java method call.
Experience from Cilk-5 (Frigoet al., 1998) indicates that even without a direct im-
plementation, aspawn/return overhead of2–6 times the cost of a Java method
call is achievable.

Overhead forcilk try

Our third experiment studied the work overhead in JCilk-1 associated withcilk
try statements. When running on one processor, acilk try statement imposes
no overhead compared with a Javatry, becausecilk try simply compiles into
an ordinary Javatry. Running on multiple processors incurs additional overhead
for cilk try when work is stolen (see Section 7). This overhead includes the
overhead for using the ordinary Javatry construct and the overhead for maintain-
ing the try tree data structure in the runtime system. If the work per processor of the
computation dominates its critical-path length, however,this overhead is provably
small (Frigoet al., 1998; Blumofe and Leiserson, 1999).

To estimate the overheads in JCilk-1 associated with thecilk try statements, we
compared the execution times ofFib andFibTry, which does the same compu-
tation asFib except with10 additional but unnecessary nestedcilk try state-
ments enclosing the twospawn calls. We added10 nestedcilk try statements
in FibTry instead of just one, because thecilk try overhead is relatively small
compared with other overheads in JCilk, and onecilk try statement imposes
insufficient overhead to affect the execution time significantly.

Figure 14 shows the overheads forcilk try and other constructs, as well as the
ratio of thecilk try overhead to the overhead of each of the constructs. These
measurements were obtained as follows. We executedFib andFibTry on16 pro-
cessors, calculated the total work (i.e., the sum of execution times spent on all16
processors) for both benchmarks, and attributed the increase in total work between
Fib andFibTry to the additionalcilk try statements. The overhead measure-

32

ment forcilk try in Figure 14 was obtained by dividing the increased work by
the total number ofcilk try statements executed. We averaged the values thus
obtained over20 runs. Similarly, we obtained the ordinary Javatry overhead by
comparing the serial elisions ofFib andFibTry and then normalizing the differ-
ence appropriately.

Is the overhead of acilk try statement high or low? Since a Javatry state-
ment is about17% of the speed of acilk try statement, the overhead ofcilk
try would appear to be considerable. Whenever a programmer usescilk try,
however, thecilk try block likely contains aspawn statement, and compared
to aspawn/return in the current JCilk-1 implementation, the overhead ofcilk
try is negligible: only 1.2%. As we have argued, however, JCilk-1’s spawn over-
head can be improved dramatically. To make a fair comparison, the overhead of
cilk try should be compared to a more-realistic value forspawn/return in
a highly tuned, production-quality implementation. To this end, assume that the
spawn/return overhead can be reduced to twice the cost of an ordinary Java
method call. Under this assumption, aspawn would cost12.33 ns instead of the
almost200 ns as in JCilk-1. The cost ofcilk try would be 19% of this highly
tunedspawn/return, and about 38% of a Java method call itself. Since the real
work of programs generally dominatesspawn/return, we can expect that the
cilk try overhead would rarely be seen in realistic applications.

Abort time

Our final experiment examines the time it takes to abort a computation. Figure 15
shows results of our study which measured the abort time in milliseconds when
runningQueens with input sizen = 28. We measured the abort time as follows.
The timing starts at the point immediately before the throw of the Result ex-
ception in line 6 of Figure 8 that triggers the implicit abortof the appropriate side
computations. The timing stops when the exception is caughtin line 28 of Figure 8
and all appropriate side computations have terminated.

The clustering of data points in Figure 15 indicates that theabort process typically
completes in under10 milliseconds and grows slowly as the number of processors
increases. We compare this value with its corresponding Java elision with the same
input size,n = 28. The exception propagation time (from the point of throw to the
point of catch) in the Java elision is approximately0.2 milliseconds. The abort time
on a single processor is roughly0.4–0.5 milliseconds, which is about2–3 times the
cost of the Java elision. The abort time for multiple processors falls in the range
between5 and10 milliseconds, growing slowly as the number of processors in-
creases. Since a speculative computation such asQueens can run for an arbitrarily
long time if it is not aborted, we view10 milliseconds as acceptable performance.

In order to understand the abort overhead, we inserted code into the Java elision so

33

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16

ab
o
rt

 t
im

e
in

 m
il

li
se

co
n
d
s

number of processors

Fig. 15. The time to abort theQueens computation with input parametern = 28 as a
function of number of processors. For each number of processors,the program was run20
times and the individual times are plotted.

that the exception is caught and rethrown at each level of recursion, thereby simu-
lating behavior similar to an abort process. We discovered that Java’s performance
varied greatly depending on the contents of thecatch clause, because Java em-
ploys “just-in-time” (JIT) compilation technology when itencounters code that is
frequently executed. For instance, by inserting a loop incrementing some variable
for 1000 times into the catch handler (call this Case 1), the exceptionpropagation
time costs less than2 milliseconds. By inserting a function call in the catch handler
(call this Case 2), where the function does the same loop with increment operations,
the exception propagation time increases up to≈ 7.5 milliseconds. On the other
hand, if the code has been “warmed up” by executing it once in advance before tak-
ing measurements, Case 1 still has≈ 2 milliseconds of exception propagation time,
while Case 2 now has only≈ 0.12 milliseconds propagation time. After warming
up, the code from Case 2 is optimized, but not the code from Case 1.

These studies lead us to conjecture that a large part of the abort overhead comes
from propagating exceptions between stack frames. The calls to the JCilk-1 runtime
library are apparently too complex to allow Java’s JIT technology to optimize them.
We speculate that a more-direct implementation of JCilk in the JVM would yield an
abort time of0.2 milliseconds or better. A better implementation of Java’s exception
mechanism would likely improve the abort time even further.

The data set contains several outliers, which tend to increase in frequency as the
number of processors grows. We suspect that these outliers are caused by other

34

processes in the operating system or in the JVM during program execution. Since
the abort time is extremely short, it is sensitive to any interference. Should a worker
involved in an abort be context-switched out when an abort occurs, its temporary
inability to participate in the abort process could significantly delay the abort.

Since the abort signal is detected only at thread boundaries, the length of the abort
process is correlated to the average thread length in the JCilk program. If the per-
formance of aborting is critical in an application with longthreads, JCilk’syield
statement5 provides a way for the user to manually shorten threads. Ayield in
a piece of code indicates that a thread boundary should be inserted at that point. If
a program contains a long piece of pure Java code, breaking itinto smaller threads
usingyield allows the JCilk-1 system to check for abort more frequently.

In summary, although JCilk-1 is only a prototype implementation, our performance
studies indicate that it performs well enough for many applications and that further
engineering should allow it to perform even better. In particular, JCilk-1’s exception
mechanism, which involves the implicit aborting of side computations, is competi-
tive with Java’s unoptimized native mechanism, and it couldbe improved to run as
fast as Java’s optimized mechanism.

9 Related work

This section places JCilk and its exception-handling semantics into the context of
other research in parallel programming languages. A key difference between JCilk
and most other work on concurrent exception handling is thatJCilk provides a
faithful extension of the semantics of a serial exception mechanism, that is, the
serial elision of the JCilk program is a Java program that implements the JCilk
program’s semantics.

Most parallel languages do not provide an exception-handling mechanism. For
example, none of the parallel functional languages VAL (Ackerman and Dennis,
1979), SISAL (Gaudiotet al., 1997), Id (Nikhil, 1991), parallel Haskell (Nikhil
et al., 1995; Adityaet al., 1995), MultiLisp (Halstead, 1985), and NESL (Blel-
loch, 1993) and none of the parallel imperative languages Fortran 90 (Adamset al.,
1992), High Performance Fortran (Richardson, 1996) (Merlinand Chapman, 1997),
Declarative Ada (Thornley, 1993, 1995), C* (Hatcheret al., 1991a), Dataparallel C
(Hatcheret al., 1991b), Split-C (Culleret al., 1993), and Cilk (SuperTech, 2001)
contain exception-handling mechanisms. The reason for this omission is simple:
these languages were derived from serial languages that lacked such linguistics.6

5 Theyield statement is currently not implemented in JCilk-1.
6 In the case of Declarative Ada, the researchers extended a subset of Ada that does not
include Ada’s exception package.

35

Some parallel languages do provide exception support, because they are built upon
languages that support exception handling under serial semantics. These languages
include Mentat (Grimshaw, 1993), which is based on C++; OpenMP (OpenMP,
2002), which provides a set of compiler directives and library functions compati-
ble with C++; and Java Fork/Join Framework (Lea, 2000), whichsupports divide-
and-conquer programming in Java. Although these languagesinherit an exception-
handling mechanism, their designs do not address exception-handling in a concur-
rent context.

Tazuneki and Yoshida (Tazuneki and Yoshida, 2000) and Issarny (Issarny, 1991)
have investigated the semantics of concurrent exception-handling, taking different
approaches from our work. In particular, these researcherspursue new linguistic
mechanisms for concurrent exceptions, rather than extending them faithfully from
a serial base language as does JCilk. The treatment of multiple exceptions thrown
simultaneously is another point of divergence.

Tazuneki and Yoshida’s exception-handling framework is introduced in the con-
text of DOOCE, a distributed object-oriented computing environment. They focus
on handling multiple exceptions which are propagated from concurrently active
objects. DOOCE adapts Java’s syntax for exception handling,extending it syn-
tactically and semantically to handle multiple exceptions. Unlike JCilk, however,
DOOCE allows a program to handle multiple exceptions by listing several excep-
tion classes as parameters to a singlecatch clause with the semantics that the
catch clause executes only when all those exceptions are thrown. DOOCE’s se-
mantics include a new resumption model as an alternative to the termination model
of Java: when exceptions occur and are handled by acatch clause, thecatch
clause can indicate that the program should resume execution at the beginning of
thetry statement instead of after thecatch block.

The cooperation model proposed by Issarny provides a way to handle exceptions in
a language that supports communication between threads. Ifa thread terminates due
to an exception, all later threads synchronously throw the same exception when they
later attempt to communicate with the terminated thread. Unlike JCilk’s model,
the cooperation model accepts all of the simultaneous exceptions that occur when
multiple threads involved in communication have terminated. Those exceptions are
passed to a handler which resolves them into a single concerted exception repre-
senting all of the failures.

The recent version of the Java Language, known as Tiger or Java 1.5 during de-
velopment and now called Java 5.0 (McLaughlin and Flanagan,2004), provides
call-return semantics for threads similar on the surface toJCilk. In particular, Java
5.0 provides a protocol that is similar to that of JCilk. Although Java 5.0 (like every-
thing else in Java) uses an object-based semantics for multithreading, rather than
JCilk’s choice of a linguistic semantics, it does move in the direction of provid-
ing more linguistic support for multithreading. In particular, Java 5.0 introduces

36

theExecutor interface, which provides a mechanism to decouple the schedul-
ing from execution. It also introduces theCallable interface, which, like the
earlierRunnable interface, encapsulates a method which can be run at a later
time (and potentially on a different thread). UnlikeRunnable, Callable al-
lows its encapsulated method to return a value or throw an exception. When a
Callable is submitted to anExecutor, it returns aFuture object. Theget
method of that object waits for theCallable to complete, and then it returns the
value that theCallable’s method returned. If that method throws an exception,
thenFuture.get throws anExecutionException containing the original
exception as its cause. (TheFuture object also provides a nonblockingisDone
method to see if theCallable is already done.)

One notable difference between JCilk and Java 5.0 is that JCilk’s parallel semantics
for exceptions faithfully extend Java’s serial semantics.Although Java 5.0’s excep-
tion mechanism is not a seamless and faithful extension of its serial semantics, as
a practical matter, it represents a positive step in the direction of making parallel
computations linguistically callable.

10 Conclusion

CLU (Liskov and Snyder, 1979) was the first language to cleanlydefine and im-
plement the semantics for an exception-handling mechanism, but only in a serial
context. Although much effort has been spent on developing tools, software, and
languages to aid in the writing of multithreaded programs, comparatively little re-
search explores how exception mechanisms should be extended to a concurrent
context. The JCilk language explores how concurrency can be made semantically
consistent with the exception mechanisms of modern serial computing.

Because of the semantic richness of exception linguistics, both in serial and paral-
lel programming, we believe that exceptions should be supported efficiently. Some
programmers view exceptions as occurring relatively infrequently, and hence im-
plementations of exception mechanisms, including many current JVM implemen-
tations, tend to be slow. Today’s JVM’s tend to use the “handler table” method
(Atkinsonet al., 1978) used by CLU, which assumes that exceptions occur rarely.
The alternative “branch table” method (Atkinsonet al., 1978) provides much faster
exception handling, but the designers of CLU rejected this implementation because
it increases the cost of a normal return. Back in the 1970’s, when CLU was de-
signed, this overhead was perhaps substantial, but today the cost of the extra reg-
ister operations on overall runtime should be negligible. We believe that JVM im-
plementers should reconsider using branch tables or related linkage mechanisms to
make exceptional returns cost much the same as an ordinary method returns. There
should be no performance penalty for programming elegantlywith exceptions, ei-
ther for serial computing or parallel computing.

37

Acknowledgments

Many thanks to Scott Ananian and Bradley Kuszmaul of MIT CSAIL for their co-
pious comments. Thanks also to Bradley Kuszmaul of MIT CSAIL and Christine
Flood and Dave Dice of Sun Microsystems Research for their help in understand-
ing and debugging performance problems. Kunal Agrawal, Jeremy Fineman, Viktor
Kuncak, Martin Rinard, Gideon Stupp, and Jim Sukha of MIT CSAILand Wong
Weng Fai of National University of Singapore engaged us in many helpful discus-
sions. We gratefully acknowledge the generosity of the University of Rochester for
access to their Sun Fire 6800 for our empirical studies.

References

Ackerman, W., Dennis, J. B., 1979. VAL — A value oriented algorithmic language. Tech.
Rep. TR-218, Massachusetts Institute of Technology Laboratory for Computer Science.

Adams, J., Brainerd, W., Martin, J., Smith, B., Wagener, J., 1992. Fortran 90 Handbook.
McGraw-Hill.

Aditya, S., Arvind, Maessen, J.-W., Augustsson, L., Nikhil, R. S., June 1995. Semantics of
pH: A parallel dialect of Haskell. In: Hudak, P. (Ed.), Proc. Haskell Workshop, La Jolla,
CA USA. pp. 35–49.
URL citeseer.ist.psu.edu/aditya95semantics.html

Aho, A. V., Sethi, R., Ullman, J. D., 1986. Compilers: principles, techniques,and tools.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Atkinson, R. R., Liskov, B. H., Scheifler, R. W., 1978. Aspects of implementing CLU. In:
ACM 78: Proceedings of the 1978 Annual Conference. ACM Press, New York, NY,
USA, pp. 123–129.

Blelloch, G. E., Apr. 1993. NESL: A nested data-parallel language (version 2.6). Tech. Rep.
CMU-CS-93-129, School of Computer Science, Carnegie Mellon University.

Blumofe, R. D., Leiserson, C. E., Sep. 1999. Scheduling multithreaded computations by
work stealing. Journal of the ACM 46 (5), 720–748.

Culler, D. E., Arpaci-Dusseau, A. C., Goldstein, S. C., Krishnamurthy, A.,Lumetta, S., von
Eicken, T., Yelick, K. A., 1993. Parallel programming in Split-C. In: Supercomputing
’93. IEEE Computer Society, pp. 262–273.

Dailey, D., Leiserson, C. E., 2002. Using Cilk to write multiprocessor chess programs. The
Journal of the International Computer Chess Association.

Feldmann, R., Mysliwietz, P., Monien, B., 1993. Game tree search on a massively parallel
system. Advances in Computer Chess 7, 203–219.

Frigo, M., Leiserson, C. E., Randall, K. H., 1998. The implementation of the Cilk-5 multi-
threaded language. In: PLDI ’98: Proceedings of the ACM SIGPLAN 1998 Conference
on Programming Language Design and Implementation. ACM Press, New York, NY,
USA, pp. 212–223.

Gaudiot, J.-L., DeBoni, T., Feo, J., BöHm, W., Najjar, W., Miller, P., 1997. The Sisal model
of functional programming and its implementation. In: PAS ’97: Proceedings of the 2nd

38

AIZU International Symposium on Parallel Algorithms / Architecture Synthesis. IEEE
Computer Society, p. 112.

GNU, Oct. 2004. The GNU compiler for the Java programming language.
URL http://gcc.gnu.org/java/

Gontmakher, A., Schuster, A., 2000. Java consistency: Nonoperational characterizations
for Java memory behavior. ACM Trans. Comput. Syst. 18 (4), 333–386.

Gosling, J., Joy, B., Steele, G., Bracha, G., 2000. The Java Language Specification, 2nd
Edition. Addison-Wesley, Boston, Massachusetts.

Grimshaw, A. S., 1993. Easy-to-use object-oriented parallel processing with Mentat. Com-
puter 26 (5), 39–51.

Halstead, Jr., R. H., Oct. 1985. Multilisp: A language for concurrent symbolic computation.
ACM TOPLAS 7 (4), 501–538.

Hatcher, P. J., Lapadula, A. J., Jones, R. R., Quinn, M. J., Anderson,R. J., 1991a. A
production-quality C* compiler for hypercube multicomputers. In: PPOPP ’91: Proceed-
ings of the Third ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. ACM Press, pp. 73–82.

Hatcher, P. J., Quinn, M. J., Lapadula, A. J., Anderson, R. J., Jones,R. R., 1991b. Dat-
aparallel C: A SIMD programming language for multicomputers. In: Sixth Distributed
Memory Computing Conference. IEEE Computer Society, pp. 91–98.

Institute of Electrical and Electronic Engineers, 1996. Information technology — Portable
Operating System Interface (POSIX) — Part 1: System application program interface
(API) [C language]. IEEE Std 1003.1.

Issarny, V., 1991. An exception handling model for parallel programmingand its verifica-
tion. In: SIGSOFT ’91: Proceedings of the Conference on Software for Critical Systems.
ACM Press, New York, NY, USA, pp. 92–100.

Kernighan, B. W., Ritchie, D. M., 1988. The C Programming Language, 2ndEdition. Pren-
tice Hall, Inc.

Knuth, D. E., Moore, R. W., Winter 1975. An analysis of alpha-beta pruning. Artificial
Intelligence 6 (4), 293–326.

Kuszmaul, B. C., Mar. 1995. The StarTech massively parallel chess program. The Journal
of the International Computer Chess Association 18 (1), 3–20.

Lea, D., 1999. Concurrent Programming in Java: Design Principles and Patterns, 2nd Edi-
tion. Addison-Wesley, Boston, Massachusetts.

Lea, D., 2000. A Java fork/join framework. In: JAVA ’00: Proceedings of the ACM 2000
Conference on Java Grande. ACM Press, pp. 36–43.

Lindholm, T., Yellin, F., 2000. The Java Virtual Machine Specification, 2nd Edition.
Addison-Wesley, Boston, Massachusetts.

Liskov, B. H., Snyder, A., Nov. 1979. Exception handling in CLU. IEEE Transactions on
Software Engineering 5 (6), 546–558.

Manson, J., Pugh, W., Adve, S. V., Jan 2005. The java memory model. In: Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of ProgrammingLan-
guages. pp. 378–391.

McLaughlin, B., Flanagan, D., 2004. Java 1.5 Tiger: A Developer’s Notebook. O’Reilly
Media, Inc.

Merlin, J., Chapman, B., 1997. High Performance Fortran.
URL citeseer.ist.psu.edu/merlin97high.html

Netzer, R. H. B., Miller, B. P., March 1992. What are race conditions? ACM Letters on

39

Programming Languages and Systems 1 (1), 74–88.
Nikhil, R., July 1991. ID language reference manual. Computation StructureGroup Memo

284-2, Massachusetts Institute of Technology, 545 Technology Square, Cambridge, Mas-
sachusetts 02139.

Nikhil, R. S., Arvind, Hicks, J. E., Aditya, S., Augustsson, L., Maessen, J.-W., Zhou, Y.,
1995. pH Language Reference Manual, Version 1.0. Computation Structures Group,
Massachusetts Institute of Technology Laboratory for Computer Science, technical
Memo CSG-Memo-369.
URL citeseer.ist.psu.edu/nikhil95ph.html

Nystrom, N., Clarkson, M., Myers, A. C., Apr. 2003. Polyglot: An extensible compiler
framework for Java. In: Proceedings of the 12th International Conference on Compiler
Construction. Springer-Verlag, pp. 138–152.

OpenMP, 2002. OpenMP C and C++ application program interface.
URL http://www.openmp.org/drupal/mp-documents/cspec20.pdf

Pugh, W., 2000. The Java memory model is fatally flawed. Concurrency: Practice and Ex-
perience 12 (6), 445–455.

Richardson, H., 1996. High Performance Fortran: history, overview and current develop-
ments.
URL citeseer.ist.psu.edu/richardson96high.html

Russell, S. J., Norvig, P., 2003. Artificial Intelligence: A Modern Approach. Pearson Edu-
cation Inc., Upper Saddle River, New Jersey.

Sun Microsystems, 2004. Java 2 platform standard edition 5.0.
URL http://java.sun.com/j2se/1.5.0/

SuperTech, Nov. 2001. Cilk 5.3.2 Reference Manual. Supercomputing Technologies
Group, MIT Laboratory for Computer Science, 545 Technology Square, Cambridge,
Massachusetts 02139.
URL http://supertech.lcs.mit.edu/cilk/manual-5.3.2.pdf

Tazuneki, S., Yoshida, T., 2000. Concurrent exception handling in a distributed object-
oriented computing environment. In: ICPADS ’00: Proceedings of the Seventh Inter-
national Conference on Parallel and Distributed Systems: Workshops. IEEE Computer
Society, Washington, DC, USA, p. 75.

Thornley, J., Apr. 1993. The Programming Language Declarative Ada Reference Manual.
Computer Science Department, California Institute of Technology.
URL http://caltechcstr.library.caltech.edu/211/

Thornley, J., 1995. Declarative Ada: Parallel dataflow programming in a familiar context.
In: CSC’95: Proceedings of the 1995 ACM 23rd Annual Conferenceon Computer Sci-
ence. ACM Press, pp. 73–80.

Winston, P. H., 1992. Artificial Intelligence, 3rd Edition. Addison-Wesley,Reading, Mas-
sachusetts.

40

