
Using Cilk to Write Multiproessor Chess ProgramsDon DaileyCharles E. LeisersonMIT Laboratory for Computer SieneSeptember 27, 2001Cilk (pronouned \silk") is a C-based, algorithmi, multithreaded language for parallelprogramming developed at the MIT Laboratory for Computer Siene. Cilk makes it easy toprogram irregular parallel appliations suh as hess. The Cilk programmer need not worryabout protools, job oordination, and load balaning, sine they are handled automatiallyby Cilk's runtime system using provably eÆient mehanisms. Cilk has been used to pro-gram a variety of multiproessor hess programs, inluding the award-winning ?Sorates andCilkhess programs. This paper overviews the Cilk language, illustrating how Cilk supportsthe programming of parallel game-tree searh and other hess mehanisms.1 IntrodutionThe Superomputing Tehnologies (Superteh) Researh Group in the MIT Laboratory forComputer Siene began developing the Cilk multithreaded language [5, 8, 22, 27℄ in 1994.Development of Cilk has been intertwined with the development of a series of omputerhess programs: StarTeh, ?Sorates, and Cilkhess. Although the development of Cilkitself has been funded by the U.S. Defense Advaned Researh Projets Ageny (DARPA),all of our hess programs have been \skunkworks," developed in our spare time withoutresearh support.1 Nevertheless, over the years, omputer hess has provided muh of theimpetus for evolving the Cilk language.Our �rst parallel hess program was StarTeh [30, 31℄, written by Bradley Kuszmaul.StarTeh's evaluation funtion is a software version of Hans Berliner's serial Hiteh pro-gram [4℄. The parallel searh algorithm, whih Kuszmaul alled \Jamboree searh," usesthe \young brothers wait" heuristi [18℄ to parallelize Sout searh [34℄. StarTeh wonThird Prize in the 1993 ACM International Computer-Chess Championship [29℄ runningon a 512-node Connetion Mahine CM5 at the University of Illinois National Center forSuperomputer Appliations (NCSA).1The MIT Laboratory for Computer Siene has made disretionary funds available for us to enter ourhess programs in omputer-hess tournaments around the world. We are grateful for this support.1



Our experiene with StarTeh onvined us that the logi of the game-tree searh itselfshould be separated from the logi of sheduling, load balaning, and job oordination. InStarTeh, the appliation and system logi are intermixed in an event-driven state mahine,produing obsure ode that was undebuggable by anyone but someone of Kuszmaul's aliber.Fortunately, the Superteh group's researh fous was soon to provide better tehnology.At the time Kuszmaul was working on StarTeh, two ollateral researh e�orts were un-derway in the MIT Laboratory for Computer Siene. Mihael Halbherr, Chris Joerg, andYuli Zhou were developing a multithreaded language alled PCM [25℄ within the dataowresearh group led by Professor Arvind. In addition, Robert Blumofe and Charles Leisersonof the Superteh group were investigating algorithms for sheduling multithreaded omputa-tions [9, 10℄. The two teams ombined fores to develop the �rst version of a runtime systemwe alled Cilk. Cilk-1 uses the same C preproessing front-end as PCM, but it inorporatesa provably good \work-stealing" sheduler based on the ideas of Blumofe and Leiserson.While designing Cilk-1, the Superteh team started to work with Don Dailey and LarryKaufman on a new hess program: ?Sorates [26℄. This program was based on Dailey andKaufman's serial Sorates program, whih had won First Prize in the 1993 ACM InternationalComputer-Chess Championship [29℄, where StarTeh won Third Prize. Parallelizing theserial algorithm with Cilk-1 took about a month and a half of e�ort, most of whih was doneby Dailey and Joerg. Eventually, ?Sorates won Third Prize in the 1994 ACM InternationalComputer-Chess Championship [33℄ running on NCSA's 512-node CM5. Later, ?Sorateswon Seond Prize in the 1995 ICCAWorld Computer-Chess Championship [40℄ in Hong Kongrunning on the 1824-node Intel Paragon at Sandia National Laboratories in New Mexio,losing to the program Fritz in the tie-breaking playo� game.Although Cilk-1 insulates the programmer from sheduling and other runtime issues, itis still a painful language to use, beause the parallel-programming model, whih is basedon expliit ontinuation passing, demands that the programmer write diÆult-to-debug pro-tools. Cilk-1 laks subroutine-like all/return semantis, requiring instead that threadsommuniate ontrol expliitly. Although one an \wire up" any parallel ontrol struturein Cilk-1, the resulting ode is so protool-laden that for ?Sorates, only Joerg was apableof modifying it without introduing bugs. Ironially, we had overome the limitations ofStarTeh, whih enabled us to write far more ompliated ode, but whih one again weould not debug. Although we had made strides in allowing appliations to be oded withoutworrying about sheduling, Cilk-1 still requires the programmer to engineer a rat's nest ofprotools for threads to ommuniate. We needed a way of writing protool-free, or at leastlargely protool-free, multithreaded ode.Our seond version of Cilk provides a all/return semantis for parallelism using simplespawn and syn keywords, features that remain in today's Cilk-5. Instead of being a simpleC preproessor, Rob Miller implemented Cilk-2's ompiler ilk2 [32℄ as a type-hekingsoure-to-soure translator whih ompiles a Cilk soure into a C postsoure. The C post-soure is then run through an ordinary C ompiler and linked with the Cilk runtime systemto produe objet ode. Cilk-2 was a resounding suess. Its all/return parallelism simpli-�ed the oding of many appliations, inluding graphis rendering by ray traing and protein2



folding by baktrak searh.The one appliation that we found ourselves unable to ode in \pure" Cilk-2, however,was omputer hess. One reason was that omputer hess requires a global transpositiontable in whih previously evaluated positions are stored. Sine ?Sorates was developedfor distributed-memory parallel omputers, suh as the Connetion Mahine CM5 and IntelParagon, it keeps its transposition table stored aross the individual memories of proessors.These platforms lak hardware support for shared memory. Sine Cilk-2 provides no softwareremedy, ?Sorates must store and look up hess positions expliitly using the Strata [12℄\ative" message-passing layer. Although the ative messaging is enapsulated within thesoftware module for the transpostion table, we were disappointed that hess ould not beprogrammed without resorting to a protool layer.Cilk-3 tried to address this shared-memory issue by providing software distributed sharedmemory, supported by the ilk2 ompiler. Beause Cilk-3 operates on large virtual-memory pages, however, it supports a relaxed model of onsisteny [7, 6℄. Although Cilk-3'sonsisteny model allowed us to write appliations suh as matrix multipliation and LU-deomposition, the model does not support the kind of �ne-grained shared aess of largetables needed by a hess appliation.In addition, although all/return semantis allow the ontrol for a wide variety of pro-grams to be easily oded, the nondeterministi parallel searhing algorithms required byomputer hess annnot be oded. The Superteh group debated whether the researhprogress on Cilk-2 and Cilk-3 had been wasted for the omputer-hess appliation, sineneither all/return semantis nor software distributed shared memory had provided any realanswer to the omplexities of oding omputer hess.Part of the answer was provided by hardware vendors. Thanks to a generous donation in1996 by Sun Mirosystems, the Superteh researh group obtained aess to a 12-proessorEnterprise 5000 system, a \symmetri multitproessor" providing onsistent shared mem-ory. With this omputer system, oding a hess transposition table was trivial, sine eahomputer ould diretly aess all of memory without interrupting another proessor.Researh provided the rest of the answer. Inspired by work at Berkeley [15℄, Cilk-4introdued the \inlet" onept into Cilk-4. An inlet is a linguisti mehanism whih fail-itates oding of the nondeterministi searh required for parallel game-tree searhing (seeSetion 2). In addition to inlets, Cilk-4 provides an \abort" feature to allow speulativeomputations to be terminated when it is determined that they are no longer needed. Withthese features, programming parallel nondeterministi appliations, suh as hess, beomesmuh easier.Keith Randall led the implementation of Cilk-4, whih was the �rst version of Cilkdesigned for shared-memory multiproessors. Eventually, Matteo Frigo engineered a ma-jor rewrite of Cilk-4 to produe the more stable and maintainable Cilk-5 release. VolkerStrumpen also ontributed to enhaning the robustness of the system, and many otherswrote software omponents. The urrent Cilk-5 release runs on most shared-memory multi-proessors (Silion Graphis, Sun, Digital/Compaq, Intel, et.).Our latest hess program Cilkhess was written with help from many of the members of3



the Superteh group. Cilkhess uses the inlet feature of Cilk-5 to implement a parallel versionof the MTD(f) searh algorithm [36℄. Cilkhess won First Prize at the 1996 Duth OpenComputer-Chess Championship [41℄ running on MIT's 12-proessor Sun Enterprise 5000, andSeond Prize in 1997 [42℄ and 1998 [43℄ running on Boston University's 64-proessor SilionGraphis Origin 2000. At the 1999 World Computer-Chess Championship [17℄, running ona 256-proessor SGI Origin 2000 at NASA Ames, Cilkhess ended up fourth out of a �eld of30 programs, 1=2 point behind the program Shredder, whih beame World Champion as aresult of the tournament.The remainder of this paper illustrates how Cilk supports the programming of multipro-essor hess programs. Setion 2 overviews Cilk's linguisti mehanisms. Setion 3 desribeshow the performane of Cilk programs an be modeled, using the ?Sorates hess programfor illustration. Setion 4 shows how Cilk supports the programming of a hess searh algo-rithm. Setion 5 explores how Cilk supports other aspets of hess programming, inludingtransposition tables and repetition testing. Finally, Setion 6 o�ers some onluding remarks.2 The Cilk languageThe Cilk multithreaded language onsists of C augmented by �ve new keywords to indiateparallel ontrol. This setion overviews the Cilk language, explaining the role of eah ofkeyword in the programming of parallel appliations.Figure 1 shows a Cilk program that omputes the nth Fibonai number.2 The programuses three Cilk keywords: ilk, spawn, and syn. Observe that if these keywords aredeleted, a syntatially and semantially orret C program results, whih we all the Celision of the Cilk program. Cilk is a faithful extension of C in that a Cilk program'sC elision provides a legal implementation of the parallel semantis. Cilk introdues no newdata types.The keyword ilk identi�es a Cilk proedure de�nition. A Cilk proedure is the parallelanalog of a C funtion, having an argument list and body just like a C funtion. A Cilkproedure may spawn subproedures in parallel and synhronize upon their ompletion.Most of the work in a Cilk proedure is exeuted serially, just like C, but parallelism isreated when the invoation of a Cilk proedure is immediately preeded by the keywordspawn. A spawn is the parallel analog of a C funtion all, and like a C funtion all, whena Cilk proedure is spawned, exeution proeeds to the hild. In an ordinary C funtionall, the parent is not resumed until after its hild returns. In ontrast, a Cilk spawnallows the parent to ontinue to exeute in parallel with the hild. Indeed, the parent anontinue to spawn o� hildren, produing a high degree of parallelism. Cilk's sheduler takesthe responsibility of sheduling the spawned proedures on the proessors of the parallelomputer.A Cilk proedure annot safely use the return values of the hildren it has spawned until2This program uses an ineÆient, exponential-time algorithm. Although logarithmi-time methods areknown [14, page 850℄, this program nevertheless provides a good didati example.4



#inlude <stdlib.h>#inlude <stdio.h>#inlude <ilk.h>ilk int fib (int n){ if (n<2){ return(n);}else{ int x, y;x = spawn fib (n-1);y = spawn fib (n-2);syn;return (x+y);}}ilk int main (int arg, har *argv[℄){ int n, result;n = atoi(argv[1℄);result = spawn fib(n);syn;printf ("Result: %d\n", result);return 0;}Figure 1: A parallel Cilk program to ompute the nth Fibonai number.
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it exeutes a syn statement. If all of its hildren have not ompleted when it exeutes asyn, the proedure suspends and does not resume until all of its hildren have ompleted.The syn statement is a loal \barrier," not a global one as, for example, is sometimes usedin message-passing programming. In Cilk, a syn waits only for the spawned hildren ofthe proedure to omplete, not for the whole world. When all of its hildren return, theproedure resumes exeution at the point immediately following the syn statement. In theFibonai example, a syn statement is required before the statement return (x+y) to avoidthe anomaly that would our if x and y were summed before both had been omputed. ACilk programmer uses the spawn and syn keywords to expose the parallelism in a program,and the Cilk runtime system takes the responsibility of sheduling the exeution of theproedures eÆiently.Cilk's runtime system supports C's semantis for stak-alloated storage. A pointer toa loal variable an be passed to a subroutine, but a pointer to a loal variable annotbe returned, sine loal variables are dealloated automatially on a return. Cilk supportsexatly these semantis, while allowing subproedures to exeute in parallel. In addition,Cilk supports heap memory through a mallo() funtion.Most parallel appliations an be programmed in Cilk using only the ilk, spawn, andsyn keywords, but some tasks, suh as hess, require speulative work to be done. Forexample, a searh may spawn o� two subsearhes in parallel, only to disover that oneof these searhes returns a lear result, thereby making the other searh irrelevant. Cilkprovides two additional keywords | inlet and abort | whih allow suh nondeterministiprograms to be oded. These �ve keywords make up the entirety of the Cilk language. Otherparallel-programming mehanisms, suh as loks for mutual exlusion, are provided throughlibrary funtions. We shall �rst explain inlets, and then the abort mehanism.Cilk's inlet feature provides exibility in how values are returned from a hild to itsparent. Ordinarily, the valued returned by a spawned proedure is stored into a variable inits parent's frame:x = spawn foo(y);An inlet allows the returned value to be inorporated into its parent's frame in a moreomplex way.An inlet is essentially a C funtion internal to a Cilk proedure.3 Normally in Cilk, thespawning of a proedure must our as a separate statement and not in an expression. Anexeption to this rule is made if the spawn is performed as an argument to an inlet. In thisase, the proedure is spawned, and when it returns, the inlet is invoked. In the meantime,ontrol of the parent proedure proeeds to the statement following the inlet.Figure 2 illustrates how the fib() funtion an be oded using an inlet. The inletsummer() is de�ned to take a returned value result and add it to the variable x in theframe of the proedure that does the spawning. All the variables of fib() are availablewithin summer(), sine it is an internal funtion of fib().3If a Cilk program ontains inlets, its C elision ontains internal funtions, whih are not allowed inANSI C. Cilk is based on Gnu C, however, whih does permit internal funtions.6



ilk int fib (int n){ int x = 0;inlet void summer (int result){ x += result;return;}if (n<2){ return n;}else{ summer(spawn fib (n-1));summer(spawn fib (n-2));syn;return (x);}}Figure 2: Computing the nth Fibonai number using an inlet.
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Ensuring proper semantis for a program an be diÆult if several inlets of a proedure,and possibly the proedure itself, update the same variables simultaneously. To ease theprogramming of these interations, Cilk guarantees that these logially parallel \threads"operate atomially with respet to one another. In other words, when updating variables inthe proedure frame, an inlet need not worry that frame variables are being simultaneouslyupdated by the proedure itself or by another inlet. This impliit atomiity makes it fairlyeasy to reason about onurreny involving the inlets of a proedure instane without loking,delaring ritial regions, or the like.Cilk's abort keyword allows speulative work to be aborted without waiting for it toomplete. The abort statement, when exeuted inside an inlet, auses all of the already-spawned desendants of the proedure to terminate immediately. Cilk takes the responsibilityof hunting down all the desendants and terminating them.As an example, suppose that a searh spawns o� two subsearhes in parallel, and eahsubsearh returns its results via an inlet. If the result of one of the subsearhes obviatesthe need to ontinue exeuting the other subsearh, Cilk's abort mehanism an be used toterminate it. We shall see in Setion 4 how the abort statement eases the programming ofparallel alpha-beta searh.The Cilk-5 referene manual [24℄ provides omplete doumentation of the Cilk language.3 Cilk performaneCilk supports an algorithmi programming model for parallel omputation. Spei�ally, Cilkguarantees that programs are sheduled eÆiently by its runtime system. This guaranteeenables algorithms to be designed whose performane an be predited analytially. In thissetion, we overview Cilk's performane model. We illustrate how ?Sorates allowed us tovalidate this model and how in turn, Cilk's performane model allowed us to make intelligentdeisions about the design of the hess program.Modeling Cilk program exeutionA Cilk program exeution onsists of a olletion of proedures|tehnially, proedureinstanes|eah of whih is broken into a sequene of nonbloking \threads." In Cilk ter-minology, a thread is a maximal sequene of instrutions that ends with a spawn, syn,or return statement. The �rst thread that exeutes when a proedure is alled is the pro-edure's initial thread, and the subsequent threads are suessor threads. At runtime, thebinary \spawn" relation auses proedure instanes to be strutured as a rooted tree, andthe dependenies among their threads form a direted ayli graph (dag) embedded in thisspawn tree, as is illustrated in Figure 3.A orret exeution of a Cilk program must obey all the dependenies in the dag, sine athread annot be exeuted until all the threads on whih it depends have ompleted. Thesedependenies form a partial order, permitting many ways of sheduling the threads in thedag. The order in whih the dag unfolds and the mapping of threads onto proessors are8



Figure 3: The Cilk model of multithreaded omputation. Eah proedure, shown as a roundedretangle, is broken into sequenes of threads, shown as irles. A downward edge indiates thespawning of a subproedure. A horizontal edge indiates the ontinuation to a suessor thread.An upward edge indiates the returning of a value to a parent proedure. All three types of edgesare dependenies that onstrain the order in whih threads are sheduled.ruial deisions made by Cilk's sheduler. Every ative proedure has assoiated state thatrequires storage, and every dependeny between threads assigned to di�erent proessorsrequires ommuniation. Thus, di�erent sheduling poliies an yield di�erent spae andtime requirements for the omputation.It an be shown that for general multithreaded dags, no good sheduling poliy exists.That is, a dag an be onstruted for whih any shedule that provides linear speedup alsorequires vastly more than linear expansion of spae [9℄. Fortunately, every Cilk programgenerates a well-strutured dag whih an be sheduled eÆiently [10℄.The Cilk runtime system implements a provably eÆient sheduling poliy based onrandomized work-stealing. During the exeution of a Cilk program, when a proessor runsout of work, it asks another proessor hosen at random for work to do. Loally, a proessorexeutes proedures in ordinary serial order (just like the C language's runtime system does),exploring the spawn tree in a depth-�rst manner. When a hild proedure is spawned, theproessor saves loal variables of the parent on the bottom of a stak and ommenes workon the hild. When the hild returns, the bottom of the stak is popped (just like C) andthe parent resumes. When another proessor requests work, however, work is stolen fromthe top of the stak, that is, from the end opposite that whih is normally used.Performane modelingCilk's work-stealing sheduler exeutes any Cilk omputation in nearly optimal time. Froman abstrat theoretial perspetive (disounting ahe e�ets and other phenomena that leadto superlinear speedups), there are two fundamental limits as to how fast a Cilk program an9



run. Let us denote by TP the exeution time of a given omputation on P proessors. Thework of the omputation is the total time needed to exeute all threads in the dag. We andenote the work by T1, sine the work is essentially the exeution time of the omputationon one proessor.The �rst limit ditates that with T1 work and P proessors, the lower boundTP � T1=P (1)must hold. The reason is that in one step, at most P work an be done by the P proessors.Consequently, to do all of the T1 work, it must take at least T1=P time. The seond limit isbased on the program's ritial-path length , denoted by T1, whih is the exeution timeof the omputation on an in�nite number of proessors, or equivalently, the time needed toexeute threads along the longest path of dependeny.The seond lower bound is simply TP � T1 : (2)This bound says that a �nite number of proessors annot exeute the omputation fasterthan an in�nite number of proessors.Cilk's randomized work-stealing sheduler exeutes a Cilk omputation on P proessorsin expeted time TP � T1=P +O(T1) ;whih is asymptotially optimal. Empirially, the onstant fator hidden by the big O isoften lose to 1 or 2 [8℄, and the formulaTP � T1=P + T1 ; (3)whih resembles \Brent's theorem" [11℄, is a good approximation of runtime. Cilk providesautomati timing instrumentation that an alulate the measures of work and ritial-pathlength during program exeution, thus allowing programmers to predit performane arossthe range of possible mahine sizes. Moreover, Cilk has been engineered so that the ostof spawning is only 2{6 times the ost of an ordinary C funtion all, the atual valuedepending on the partiular omputer platform. Sine the number of spawns performed by areal program during runtime tends to be relatively small, spawns have a negligible impat onrunning time. The low ost of spawns enourages Cilk programmers to think about spawningas a natural and inexpensive way to expose parallelism in their appliations.The performane model provided by Equation (3) an be interpreted using the notion ofparallelism , whih is de�ned as P = T1=T1. The parallelism is the average amount of workfor every step along the ritial path. Whenever P � P , meaning that the atual numberof proessors is muh smaller than the parallelism of the appliation, we have equivalentlythat T1=P � T1. Thus, the model predits that TP � T1=P and the Cilk program runswith almost perfet linear speedup.Of ourse, the degree to whih Equation (3) aurately predits the performane ofan appliation depends on how \ideal" the mahine is on whih the appliation is run.10



If the mahine has inadequate memory bandwidth, for example, performane will su�erompared what is predited by this performane model. As it turns out, however, we havefound Equation (3) to be an exellent preditor of performane over a wide range of parallelomputers.Using hess to benhmark Cilk's shedulerIn an early paper on Cilk [8℄, we used our ?Sorates hess program to doument the eÆayof Cilk's sheduler on the Connetion Mahine CM5 parallel omputer. Figure 4 shows agraph borrowed from that paper. The �gure shows the outome from many experimentsof running ?Sorates on a variety of hess positions using various numbers of proessors.Eah \+" symbol in the �gure indiates the measured speedup WP=TP for a P -proessorrun against the mahine size P for that run, where WP is the work of the omputation.For larity in this disussion, we denote the work in a P -proessor omputation by WP ,rather than by T1 as we have done thus far, beause ?Sorates uses a \speulative" searhalgorithm. Reall that as we have de�ned the term \work," it is the total time needed toexeute all the threads in the omputation dag. For a deterministi parallel algorithm, thework of a program is the same, independent of the number of proessors on whih the programis run, and hene, it is aurate to use T1 to represent the work. For a nondeterministiomputation exeuted on several proessors, however, the omputation dag may vary fromrun to run. Consequently, the work WP represented in a P -proessor omputation dag maybear little or no relation to the work T1 of a serial exeution. Sine our goal is to evaluate theeÆay of Cilk's sheduler, we fous on the speedup WP=TP , beause the normal speedupT1=TP inorporates work overhead produed by ?Sorates's speulative searh algorithm forwhih Cilk's sheduler is not responsible.In order to ompare the outomes for di�erent runs, we have normalized eah axis bydividing by the parallelismWP=T1. Thus, a normalized mahine size of 1:0 on the horizontalaxis indiates a run where the parallelism equals the mahine size. A normalized mahinesize of 0:1 indiates a run in whih the parallelism exeeds the mahine size by a fator of 10.On the vertial axis, a normalized speedup of 1:0 indiates a run that attains the maximumpossible speedup. A normalized speedup of 0:1 indiates a run in whih the speedup is 1=10the maximum possible.The two lower bounds (1) and (2) provide upper bounds on speedup, whih an beinterpreted as lines in Figure 4. The horizontal line at 1:0 is the upper bound on speedupobtained from the ritial-path length, and the 45-degree line is the linear speedup bound.In addition, the urve for Equation (3) is plotted, and as an be seen from the �gure, itinterpolates the data reasonably well.The �gure shows that on runs for whih the parallelism exeeds the number of proes-sors, Cilk's sheduler obtains nearly perfet linear speedup. This region is where we normallywould like an appliation to run, sine otherwise the marginal return on an additional pro-essor is diminishing. In the region where the number of proessors is large ompared tothe parallelism, the data is more sattered, but the speedup is generally within a fator of11



.

.
Linear Speedup Boun

dCritical Path Bound

NormalizedSpe
edup

Normalized Machine Size

1
0.1
0.01 10.10.01Figure 4: Normalized speedups for the ?Sorates hess program running on a Connetion MahineCM5.2 of the upper bound given by ritial-path length. We prefer not to operate in this range,sine the appliation ould run nearly as fast with fewer proessors. If the appliation doesnot exhibit good parallelism, however, it may be fored to operate in this domain. For-tunately, good hess algorithms exhibit a high degree of parallelism, and all of our hessprograms operate in the linear-speedup regime most of the time. (Although we have spot-veri�ed this performane model for later versions of Cilk, we have not repeated the extensivedata-gathering.)?Sorates speedup anomalyThe measures of work and ritial-path length provide an algorithmi basis for evaluat-ing the performane of Cilk programs, a feature we were able to exploit when designingthe searh algorithm for ?Sorates. For the the 1994 ACM International Computer ChessChampionship, our program ran on NCSA's 512-node CM5. Beause of the high demandfor this massively parallel proessor, one of the largest mahines of its day, our aess to itwas limited. Consequently, we developed and tested most of our ode on a 32-node CM5 atMIT.During development, in an attempt to optimize ?Sorates performane, one of our pro-grammers suggested a hange to the searh algorithm. We benhmarked the original versionof the algorithm against the proposed version on the MIT mahine, and we disovered the12



new version to be signi�antly faster. Nevertheless, we abandoned the proposed hange,beause our analysis of work and ritial-path length indiated that it would be far sloweron the muh larger NCSA mahine to be used in the tournament.To understand this speedup anomaly, the numerial �gures in the following senario havebeen simpli�ed for didati purposes. The original program ran the benhmark in T32 = 65seonds on the 32-node MIT mahine. The proposed program ran the benhmark in T 032 = 40seonds on the MIT mahine. But these numbers tell us little about what might happen onthe 512-node NCSA mahine.Fortunately, Cilk's instrumentation allowed us to analyze the situation. We disoveredthat the original program had work T1 = 2048 seonds and ritial-path length T1 = 1seond. The proposed program had work T 01 = 1024 seonds and a muh longer ritial-pathlength of T 01 = 8 seonds. Using the model 3, we an verify thatT32 = 2048=32 + 1 = 65 ;T 032 = 1024=32 + 8 = 40 :In the atual inident, the agreement between model and experiment was lose, but notexat. (We also oped with the nondeterminism of ?Sorates's searh algorithm.)With work and ritial-path lengths in hand, we were now in a position to extrapolatethe performane of the two algorithms on the 512-node mahine:T512 = 2048=512 + 1 = 5 ;T 0512 = 1024=512 + 8 = 10 :The model predits that on the tournament mahine, the proposed hange would slow per-formane by a fator of 2.On the larger NCSA mahine, the proposed program's longer ritial-path length dom-inates the running time beause of insuÆient parallelism. The parallelism of the originalprogram is P = T1=T1 = 2048=1 = 2048, whereas the parallelism of the proposed pro-gram is P 0 = T 01=T 01 = 1024=8 = 128. Thus, the proposed program runs out of parallelismon the 512-proessor NCSA mahine, whereas the original program still has some parallel\slakness" to exploit.In the atual inident, the model predited nearly a fator-of-3 degradation on the NCSAmahine. Subsequent testing on the mahine itself on�rmed this predition. Cilk's guaran-tee of eÆient sheduling, together with the performane model it engenders, saved us froma ostly design error.4 Programming alpha-beta searhThis setion shows how a parallel version of alpha-beta searh [28℄ an be programmedin Cilk. Although ?Sorates and Cilkhess use di�erent parallel variants of minimax searhbased on Sout searh [34℄ and MTD(f) [35℄, respetively, all the ideas in these parallel searh13



algorithms an be illustrated in the ontext of alpha-beta searh. This setion outlines thebasi \young-brothers-wait" strategy [18℄ for parallelizing alpha-beta searh, and then itprovides a walk-through of Cilk ode that implements the strategy.Sine alpha-beta searh is desribed in virtually every introdution to adversarial searh(see, for example, [20, page 66℄ and [44, Chapter 6℄), we shall assume basi familiarity withthis searh strategy. The key idea is that if White an make a move in a position whih is sogood that Blak will not make the move leading to that position, then there is no point insearhing White's other moves from that position. Those additional moves an be pruned.In order to get maximal pruning, therefore, it is advantageous to searh the moves at a nodein the searh tree in best-�rst order.The basi alpha-beta searh algorithm is inherently serial, sine it uses information fromthe searh of one hild of a node to prune subsequent hildren. When hildren are searhedin parallel, however, it is hard to use information gained from searhing one hild to pruneanother. If one looks at an optimal game tree, however, one �nds an interesting property:all of the nodes are either maximal (all of the hildren are searhed) or singular (only one ofthe hildren is searhed).This observation suggests a parallel searh strategy alled young brothers wait [18℄:if the �rst hild of a node fails to generate a uto� (the node is not singular), speulate thatthe node is maximal, and thus searhing the remaining hildren in parallel wastes no work.To implement this strategy, the parallel alpha-beta algorithm �rst searhes what it onsidersto be its best hild, just like serial alpha-beta searh. When that hild returns, it maybe that the alpha-beta algorithm prunes the rest of the hildren (a so-alled beta-uto�),and the searh returns immediately. Otherwise, the algorithm speulates that the node ismaximal, and it spawns o� all the remaining hildren in parallel. If one returns with a sorethat auses a beta-uto�, the other hildren are aborted, sine their work has been renderedunneessary.We now walk through a Cilk implementation of this parallel searh algorithm. The walk-through is broken into four parts. As will be seen, the ode is minimally di�erent from a Cimplementation of alpha-beta searh, inorporating only six instanes of Cilk keywords. Thealgorithm presented is a simple \full-width" searh, shorn of mate and draw detetion fordidati onveniene. Mate and draw detetion, as well as searh heuristis suh as null-move[2, 3, 16, 23℄ or killers [1, 39℄, an be inorporated into this ode without diÆulty, as hasbeen done in both ?Sorates and Cilkhess.The �rst part of the ode de�nes the Cilk proedure searh:ilk int searh( position *prev, int move, int depth ){ position ur; /* urrent position */int bestsore = -INF; /* best sore so far */int num_moves; /* number of hildren */int mv; /* index of hild */int s; /* hild's sore */int utoff = FALSE; /* have we seen a utoff? */14



This ode assumes that the urrent position is generated by the hild, not the parent. Thus,a pointer to the parent position is passed in the parameter prev, and the urrent position willbe produed by applying move to the parent position. The parameter depth is derementedby eah reursive all until it beomes 0, so that the algorithm implements a full-widthsearh. The position data struture ontains �elds alpha and beta delimiting the windowof the searh.The seond part of the ode de�nes the inlet ath, whih inorporates a hild's soreinto the urrent node:inlet void ath( int hild_s ){ hild_s = -hild_s; /* negamax */if ( hild_s > bestsore ){ bestsore = hild_s;if ( hild_s > ur.alpha ){ ur.alpha = hild_s;if ( hild_s >= ur.beta ){ utoff = TRUE; /* no need to searh further */abort; /* terminate other hildren */}}}}The ode implements a \negamax" [28℄ strategy wherein sores are always viewed from thepoint of view of the side to move. If the value hild s returned by a hild is the best sofar, the variable bestsore is updated to reord that fat. If the hild's sore exeeds theurrent value for alpha, then ur.alpha is updated. Finally, if the hild's sore equals orexeeds the urrent value for beta, a beta-uto� ours. The ag utoff is set, whih, aswe shall see, will prelude future hildren from being spawned. In addition, hildren thathave already been spawned are aborted.The third part of the ode is idential to an alpha-beta searh in pure C, ontaining noCilk keywords:/* reate urrent position and set up for searh */make_move( prev, &move, &ur );s = eval( &ur ); /* stati evaluation */if ( depth <= 0 ) /* leaf node */{ 15



return( s );}ur.alpha = -prev->beta; /* negamax */ur.beta = -prev->alpha;/* generate moves, hopefully in best-first order */num_moves = gen_moves ( &ur );The indiated move is made on the board, updating the ur struture with the new position.A stati evaluation of the urrent position is made. If the urrent position is a leaf node ofthe searh, beause the desired depth of searh has been ahieved, the sore from the statievaluation is returned. Otherwise, the alpha-beta window for the urrent searh is updated,and the move generator is alled.The �nal part of the ode performs the atual searh:/* searh the moves */for ( mv=0; !utoff && mv<num_moves; mv++ ){ ath( spawn searh( &ur, mv, depth-1 ) );if ( mv==0 ) syn; /* young brothers wait */}syn; /* this syn is outside the loop so that thesearhes after the first exeute in parallel */return( bestsore );}The loop spawns o� the hildren of the urrent position. The loop guard terminates the loopif a hild auses a beta-uto�, whih is disovered within the ath inlet. After the �rst hildis spawned o�, a syn is exeuted, suspending the loop until after the �rst hild returns,thus implementing the young-brothers-wait strategy. The remaining hildren are spawnedo� in parallel, sine no subsequent syn ours within the loop. After all the hildren arespawned o�, the algorithm syns so that the best sore of all the hildren an be returned.Alpha-beta searh makes a strong ase for Cilk's eÆient expressiveness. The di�erenebetween an ordinary C program for alpha-beta searh and the Cilk program is only sixkeywords. Indeed, if minimizing the number of instanes of Cilk keywords were the goal, the�nal syn ould be eliminated by inorporating it into the syn within the loop. The odewould be more rypti, however.The ode for minimaz searh in a high-performane hess program is far more ompliatedthan the simple alpha-beta algorithm presented here. Among the major issues faed in areal program is how to minimize the likelhood that speulative ode is exeuted futilely. Anybranhes of the searh tree that are pruned by a serial searh algorithm represent wasted16



work. When Cilkhess runs on a large multiproessor, for example, the work an expand bya fator of 3. Good move-ordering heuristis tend to minimize the expansion of work.5 Other parallel programming issuesIn this setion, we explore several other issues that arise when using Cilk to program ahess program. First, we examine how Cilk's loking primitives support atomi aesses to atransposition table. Seond, we investigate how Cilk's shared-memory programming modelsimpli�es the problem of disovering draws by repetition.Cilk support for atomiityAll modern hess programs keep a transposition table to store positions that the programhas seen. A hess position is entered into the transposition table when the searh of thatposition returns a sore. The entry for eah position typially inludes the depth that theposition was searhed, a bound on the sore, move-ordering information, and various otherheuristi and bookkeeping data. The idea is that if the program sees the same position ina later searh, it may be able to use the information stored in the transposition table toimprove the quality of the searh or avoid the searh altogether. Transposition tables areusually stored as large hash tables.When two parallel threads aess a ommon entry in a transposition table, anomalousbehavior an result if one or both attempt to hange the entry. This problem arises whenthe entry annot be modi�ed as a single atomi operation. While one thread is in the midstof hanging several words of data, the other thread may see an entry onsisting of both new(hanged) and old (unhanged) data. To operate orretly, the seond thread should seeeither the old data in its entirety or the new data in its entirety, but never a mixture.Cilk provides mutual-exlusion loks to allow the reation of atomi regions of ode. InCilk, a lok has type Cilk lokvar. The two operations on loks are Cilk lok to test a lokand blok if it is already aquired, and Cilk unlok to release a lok. Both funtions take anobjet of type Cilk lokvar as a single argument. The lok objet must be initialized usingCilk lok init() before it is used. The region of ode between a Cilk lok statement andthe orresponding Cilk unlok statement is alled a ritial setion .The following ode illustrates how Cilk's mutual exlusion loks an be used to enforeatomiity in a transposition table ttab.typedef strut{ Cilk_lokvar lok;int key;int sore;int bestmove;int depth; 17



...}ttentry;ttentry ttab[TTSIZE℄;void init_ttab(){ int i;for (i=0; i<TTSIZE; i++){ Cilk_lok_init(ttab[i℄.lok);}}void update_entry( ttentry *e, int key, int sore, ... ){ Cilk_lok(e->lok); /* begin ritial setion */e->key = key;e->sore = sore;...Cilk_unlok(e->lok); /* end ritial setion */}A Cilk lok is stored as part of eah transposition-table entry. Cilk loks must be initializedbefore their �rst use. This initialization is performed by the C funtion init ttab() whihmust be alled before the transposition table is used. The funtion update entry() up-dates the entry e atomially by aquiring e->lok before modifying the entry and releasinge->lok afterwards. Thus, if two threads simultaneously attempt to hange the entry, theyexeute in sequene without interferene.Why use a lok for eah entry rather than a single lok for the entire transposition table?After all, wouldn't a single lok be simpler and save spae? A single-lok solution an indeedwork e�etively if the number of proessors on whih Cilk is run is small, but it does not salewell with the number of proessors. The problem is that while a lok is held, every otherthread that attempts to aquire the lok must wait. As the number of threads inreases,the lok beomes a bottlenek, ausing time to be wasted by threads waiting for the lok tobe released. In ontrast, using one lok per table entry yields a salable solution. Sine thenumber of entries is usually far larger than the number of ative threads, the hanes of two18



threads ontending for a lok is small, and little time is wasted.The Superteh researh group argued long and hard about whether loks should beinluded in Cilk. Cilk-5 represents great progress over Cilk-1 in reduing the amount ofprotool that a programmer must write. The protool of aquiring and releasing loks,albeit simple, reverses that progress. Eventually, we deided that the pratial need foratomiity outweighed the omplexity of loks. Our deision was aided by the developmentof a debugging tool we all the Nondeterminator [13, 19℄.The Nondeterminator �nds data raes in Cilk ode. A data rae ours when twoparallel threads, holding no loks in ommon, aess the same memory loation, and oneof the threads modi�es the loation. Data raes may be intended by the programmer, butthey are more likely to be bugs. The Nondeterminator exeutes the Cilk ode serially on agiven input, using a novel data struture that keeps trak of what threads operate logiallyin parallel. Every read and write by the program is instrumented to see if a date rae exists.The Nondeterminator is not a veri�ation tool, sine it simulates atual exeution on a giveninput, but it does provide a guarantee of �nding raes if they exist.At this point, we must onfess that Cilkhess does ontain a data rae. We have desribedhow Cilk's library funtions for loking an be used to make aesses to the transpositiontable atomi. Cilkhess, however, does not lok aesses to the transposition table. Wedeided that the overhead for loking would atually weaken the program more on averagethan if we did no loking. We indeed risk that a rae might our, but we have determinedthat the odds that it atually would a�et the outome of a ompetition is negligible. Thus,Cilkhess is provably, and intentionally, non-bug-free.Parallel testing for repetitionsThe rules of hess allow a player to laim a draw if his move brings about the third repetitionof a position (with the same side to move). Computer programs usually implement this ruleduring a searh by onsidering any position that mathes an anestor in the game tree to bea draw. A ommon implementation of this strategy is to use a hash table for bookkeeping.We now examine why this hash-table strategy breaks down in a parallel implementation andhow Cilk's shared-memory semantis allow repetitions to be easily deteted in parallel.The hash-table approah to repetition testing is fairly simple. All positions that haveatually been played in the game are entered into the hash table before the searh begins.During the searh, whenever a position is enountered, it is entered into the hash table. Thehildren of the position are then reursively searhed. Sores are baked up in aordanewith the minimax searh algorithm to produe a sore for the position. When the sore hasbeen omputed, the position is removed from the hash table. During the reursive searh, ifa position is enountered that is already in the hash table, a repeated position has ourred.In a parallel hess program, a naive implementation of this strategy fails to work. First,the problems of atomially updating the hash table must be solved, but that is not themain diÆulty. When a thread omes aross a position stored in the hash table, the threaddoes not know if the position was enountered by its anestor | a real repetition | or by19



another thread exploring another part of the game tree that just happened to examine thesame position. One an imagine keeping trak of whih game-tree nodes are assoiated withwhih thread of exeution, but suh bookkeeping shemes quikly beome unwieldy.To detet repeated positions, Cilkhess uses a method that parallelizes easily. For everyboard position, a pointer is maintained to the parent's position. When evaluating a position,Cilkhess walks the hain of anestors from the urrent position bakwards to the beginningof the game and ompare to see if the same position already appears in the hain. Cilkhessatually heks only every seond position starting from the fourth bak, sine a repeatedposition must have the same side on move and two onseutive positions with the same sideon move annot repeat. (Cilkhess also aelerates the proess by omparing the hash keysof the positions.)It might seem that the ost of sanning anestors ould beome large, but the sanan usually be terminated quikly. Some moves, like aptures or pawn pushes, have theharateristi that one played, no sequene of subsequent moves an bring about a positionthat existed before the exeution of that move. These irreversible moves provide a barrierabove whih the san need not explore. Our empirial studies of middle-game positionsindiate that the number of anestors that need to be heked is less than 2 on average,although this number inreases slightly in the endgame. This strategy of sanning anestorsbak to an irreversible move was used in the CHESS 4.5 program [39, page 103℄.Beause of Cilk's strong support for shared-memory semantis, the parallel Cilk odefor the anestor san is idential to the serial C ode. No parallel onstruts whatsoeverare needed. Although the sans of several threads may interset at ommon anestors, noloking or oordination is required, beause the anestor data strutures are only being read,not modi�ed. Some parallel languages require speial mehanisms to dereferene pointers toshared memory, but Cilk does not. Consequently, ompared with the C implementation, theCilk implementation inurs no undue performane penalty. The ode is the same.6 ConlusionTo produe high-performane parallel appliations, programmers often fous on ommuni-ation osts and exeution time, quantities that are dependent on spei� mahine on�gu-rations. Cilk's philosophy argues that a programmer should think instead about work andritial-path length, abstrations that an be used to haraterize the performane of analgorithm independent of the mahine on�guration. Cilk provides a programming modelin whih work and ritial-path length are measurable quantities, and it delivers guaranteedperformane as a funtion of these quantities. Moreover, Cilk programs \sale down" torun on one proessor with nearly the eÆieny of analogous C programs. Consequently, anyperformane tuning of the C elision of the Cilk program automatially arue to the Cilkprogram itself.The Superteh researh group in LCS found that omputer hess was an ideal vehile fordeveloping parallel-programming tehnology. Researh groups an easily wander o� solvingabstrat problems having no pratial signi�ane. Chess is a formidable real-world prob-20



lem whih long predates omputers, not an arti�ial problem tailor-made to highlight ourresearh. Chess hallenged our researh group to address previously negleted issues involv-ing the parallel programming of irregular and symboli omputations, rather than regularand numerial problems that typify muh of the existing literature on parallel omputing.Students worked on an engaging problem that allowed them to highlight their parallel-programming researh results in an externally visible way, (i.e., they ould explain it to theirparents). Tournament events motivated the team and gave us \end-to-end" [38℄ unbiasedfeedbak on our work. Finally, hess programming was just plain fun!The ombination of hess and Cilk allowed the Superteh team to explore a gamut ofissues aross omputer siene. Too often, students ome out of shool believing that intel-letual ativity is segregated into disparate, nonoverlapping areas. Chess and Cilk allowedus to integrate knowledge in algorithms, arti�ial intelligene, programming languages, on-urreny, omputer arhiteture, software engineering, and high performane. The ross-pollination of ideas re�ned Cilk into a simple, but powerful, tool for parallel programming.The Cilk developers are urrently working on enhaning the Cilk system environment,inluding support for parallel I/O and streams, job sheduling, and fault tolerane. Cilk soft-ware, doumentation, publiations, and up-to-date information are available via the Web athttp://superteh.ls.mit.edu/ilk. Detailed desriptions of the foundation and historyof Cilk an be found in [5, 27, 37, 21℄.AknowledgmentsMany people have ontributed to the series of Cilk hess programs produed by the Supertehresearh group of the MIT Laboratory for Computer Siene. Speial thanks go to ChrisJoerg, who has ontinually provided solid input to every program, even after reeiving hisPh.D. Others who have ontributed over the years to our hess programs inlude Reid Bar-ton, Don Beal, Bobby Blumofe, Matteo Frigo, Geo�rey Gelman, Runako Godfrey, MihaelHalbherr, Larry Kaufman, Bradley Kuszmaul, Phil Lisieki, Aske Plaat, Ryan Porter, Har-ald Prokop, Keith Randall, and Yuli Zhou. Thanks to Chris Joerg and Ernst Heinz forthoughtful omments on drafts of this manusript. Finally, thanks to Mihael Dertouzos,Diretor of MIT's Laboratory for Computer Siene, for providing �nanial assistane sothat our hess programs ould ompete in omputer-hess ompetitions.Referenes[1℄ S.G. Akl and M.M. Newborn. The prinipal ontinuation and the killer heuristi. In1977 ACM Annual Conferene, pages 466{473, Seattle, Washington. ACM.[2℄ Don F. Beal. Experiments with the null move. In Don F. Beal, editor, Advanes inComputer Chess, volume 5. Elsevier Siene, 1989.21
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