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Cilk (pronounced “silk”) is a C-based, algorithmic, multithreaded language for parallel
programming developed at the MIT Laboratory for Computer Science. Cilk makes it easy to
program irregular parallel applications such as chess. The Cilk programmer need not worry
about protocols, job coordination, and load balancing, since they are handled automatically
by Cilk’s runtime system using provably efficient mechanisms. Cilk has been used to pro-
gram a variety of multiprocessor chess programs, including the award-winning xSocrates and
Cilkchess programs. This paper overviews the Cilk language, illustrating how Cilk supports
the programming of parallel game-tree search and other chess mechanisms.

1 Introduction

The Supercomputing Technologies (Supertech) Research Group in the MIT Laboratory for
Computer Science began developing the Cilk multithreaded language [5, 8, 22, 27] in 1994.
Development of Cilk has been intertwined with the development of a series of computer
chess programs: StarTech, xSocrates, and Cilkchess. Although the development of Cilk
itself has been funded by the U.S. Defense Advanced Research Projects Agency (DARPA),
all of our chess programs have been “skunkworks,” developed in our spare time without
research support.! Nevertheless, over the years, computer chess has provided much of the
impetus for evolving the Cilk language.

Our first parallel chess program was StarTech [30, 31], written by Bradley Kuszmaul.
StarTech’s evaluation function is a software version of Hans Berliner’s serial Hitech pro-
gram [4]. The parallel search algorithm, which Kuszmaul called “Jamboree search,” uses
the “young brothers wait” heuristic [18] to parallelize Scout search [34]. StarTech won
Third Prize in the 1993 ACM International Computer-Chess Championship [29] running
on a 512-node Connection Machine CM5 at the University of Illinois National Center for
Supercomputer Applications (NCSA).

!The MIT Laboratory for Computer Science has made discretionary funds available for us to enter our
chess programs in computer-chess tournaments around the world. We are grateful for this support.



Our experience with StarTech convinced us that the logic of the game-tree search itself
should be separated from the logic of scheduling, load balancing, and job coordination. In
StarTech, the application and system logic are intermixed in an event-driven state machine,
producing obscure code that was undebuggable by anyone but someone of Kuszmaul’s caliber.
Fortunately, the Supertech group’s research focus was soon to provide better technology.

At the time Kuszmaul was working on StarTech, two collateral research efforts were un-
derway in the MIT Laboratory for Computer Science. Michael Halbherr, Chris Joerg, and
Yuli Zhou were developing a multithreaded language called PCM [25] within the dataflow
research group led by Professor Arvind. In addition, Robert Blumofe and Charles Leiserson
of the Supertech group were investigating algorithms for scheduling multithreaded computa-
tions [9, 10]. The two teams combined forces to develop the first version of a runtime system
we called Cilk. Cilk-1 uses the same C preprocessing front-end as PCM, but it incorporates
a provably good “work-stealing” scheduler based on the ideas of Blumofe and Leiserson.

While designing Cilk-1, the Supertech team started to work with Don Dailey and Larry
Kaufman on a new chess program: xSocrates [26]. This program was based on Dailey and
Kaufman’s serial Socrates program, which had won First Prize in the 1993 ACM International
Computer-Chess Championship [29], where StarTech won Third Prize. Parallelizing the
serial algorithm with Cilk-1 took about a month and a half of effort, most of which was done
by Dailey and Joerg. Eventually, xSocrates won Third Prize in the 1994 ACM International
Computer-Chess Championship [33] running on NCSA’s 512-node CM5. Later, xSocrates
won Second Prize in the 1995 ICCA World Computer-Chess Championship [40] in Hong Kong
running on the 1824-node Intel Paragon at Sandia National Laboratories in New Mexico,
losing to the program Fritz in the tie-breaking playoff game.

Although Cilk-1 insulates the programmer from scheduling and other runtime issues, it
is still a painful language to use, because the parallel-programming model, which is based
on explicit continuation passing, demands that the programmer write difficult-to-debug pro-
tocols. Cilk-1 lacks subroutine-like call/return semantics, requiring instead that threads
communicate control explicitly. Although one can “wire up” any parallel control structure
in Cilk-1, the resulting code is so protocol-laden that for xSocrates, only Joerg was capable
of modifying it without introducing bugs. Ironically, we had overcome the limitations of
StarTech, which enabled us to write far more complicated code, but which once again we
could not debug. Although we had made strides in allowing applications to be coded without
worrying about scheduling, Cilk-1 still requires the programmer to engineer a rat’s nest of
protocols for threads to communicate. We needed a way of writing protocol-free, or at least
largely protocol-free, multithreaded code.

Our second version of Cilk provides a call/return semantics for parallelism using simple
spawn and sync keywords, features that remain in today’s Cilk-5. Instead of being a simple
C preprocessor, Rob Miller implemented Cilk-2’s compiler cilk2c [32] as a type-checking
source-to-source translator which compiles a Cilk source into a C postsource. The C post-
source is then run through an ordinary C compiler and linked with the Cilk runtime system
to produce object code. Cilk-2 was a resounding success. Its call/return parallelism simpli-
fied the coding of many applications, including graphics rendering by ray tracing and protein



folding by backtrack search.

The one application that we found ourselves unable to code in “pure” Cilk-2, however,
was computer chess. One reason was that computer chess requires a global transposition
table in which previously evaluated positions are stored. Since xSocrates was developed
for distributed-memory parallel computers, such as the Connection Machine CM5 and Intel
Paragon, it keeps its transposition table stored across the individual memories of processors.
These platforms lack hardware support for shared memory. Since Cilk-2 provides no software
remedy, *Socrates must store and look up chess positions explicitly using the Strata [12]
“active” message-passing layer. Although the active messaging is encapsulated within the
software module for the transpostion table, we were disappointed that chess could not be
programmed without resorting to a protocol layer.

Cilk-3 tried to address this shared-memory issue by providing software distributed shared
memory, supported by the cilk2c compiler. Because Cilk-3 operates on large virtual-
memory pages, however, it supports a relaxed model of consistency [7, 6]. Although Cilk-3’s
consistency model allowed us to write applications such as matrix multiplication and LU-
decomposition, the model does not support the kind of fine-grained shared access of large
tables needed by a chess application.

In addition, although call/return semantics allow the control for a wide variety of pro-
grams to be easily coded, the nondeterministic parallel searching algorithms required by
computer chess cannnot be coded. The Supertech group debated whether the research
progress on Cilk-2 and Cilk-3 had been wasted for the computer-chess application, since
neither call/return semantics nor software distributed shared memory had provided any real
answer to the complexities of coding computer chess.

Part of the answer was provided by hardware vendors. Thanks to a generous donation in
1996 by Sun Microsystems, the Supertech research group obtained access to a 12-processor
Enterprise 5000 system, a “symmetric multitprocessor” providing consistent shared mem-
ory. With this computer system, coding a chess transposition table was trivial, since each
computer could directly access all of memory without interrupting another processor.

Research provided the rest of the answer. Inspired by work at Berkeley [15], Cilk-4
introduced the “inlet” concept into Cilk-4. An inlet is a linguistic mechanism which facil-
itates coding of the nondeterministic search required for parallel game-tree searching (see
Section 2). In addition to inlets, Cilk-4 provides an “abort” feature to allow speculative
computations to be terminated when it is determined that they are no longer needed. With
these features, programming parallel nondeterministic applications, such as chess, becomes
much easier.

Keith Randall led the implementation of Cilk-4, which was the first version of Cilk
designed for shared-memory multiprocessors. Eventually, Matteo Frigo engineered a ma-
jor rewrite of Cilk-4 to produce the more stable and maintainable Cilk-5 release. Volker
Strumpen also contributed to enhancing the robustness of the system, and many others
wrote software components. The current Cilk-5 release runs on most shared-memory multi-
processors (Silicon Graphics, Sun, Digital/Compaq, Intel, etc.).

Our latest chess program Cilkchess was written with help from many of the members of



the Supertech group. Cilkchess uses the inlet feature of Cilk-5 to implement a parallel version
of the MTD(f) search algorithm [36]. Cilkchess won First Prize at the 1996 Dutch Open
Computer-Chess Championship [41] running on MIT’s 12-processor Sun Enterprise 5000, and
Second Prize in 1997 [42] and 1998 [43] running on Boston University’s 64-processor Silicon
Graphics Origin 2000. At the 1999 World Computer-Chess Championship [17], running on
a 256-processor SGI Origin 2000 at NASA Ames, Cilkchess ended up fourth out of a field of
30 programs, 1/2 point behind the program Shredder, which became World Champion as a
result of the tournament.

The remainder of this paper illustrates how Cilk supports the programming of multipro-
cessor chess programs. Section 2 overviews Cilk’s linguistic mechanisms. Section 3 describes
how the performance of Cilk programs can be modeled, using the xSocrates chess program
for illustration. Section 4 shows how Cilk supports the programming of a chess search algo-
rithm. Section 5 explores how Cilk supports other aspects of chess programming, including
transposition tables and repetition testing. Finally, Section 6 offers some concluding remarks.

2 The Cilk language

The Cilk multithreaded language consists of C augmented by five new keywords to indicate
parallel control. This section overviews the Cilk language, explaining the role of each of
keyword in the programming of parallel applications.

Figure 1 shows a Cilk program that computes the nth Fibonacci number.” The program
uses three Cilk keywords: cilk, spawn, and sync. Observe that if these keywords are
deleted, a syntactically and semantically correct C program results, which we call the C
elision of the Cilk program. Cilk is a faithful extension of C in that a Cilk program’s
C elision provides a legal implementation of the parallel semantics. Cilk introduces no new
data types.

The keyword cilk identifies a Cilk procedure definition. A Cilk procedure is the parallel
analog of a C function, having an argument list and body just like a C function. A Cilk
procedure may spawn subprocedures in parallel and synchronize upon their completion.

Most of the work in a Cilk procedure is executed serially, just like C, but parallelism is
created when the invocation of a Cilk procedure is immediately preceded by the keyword
spawn. A spawn is the parallel analog of a C function call, and like a C function call, when
a Cilk procedure is spawned, execution proceeds to the child. In an ordinary C function
call, the parent is not resumed until after its child returns. In contrast, a Cilk spawn
allows the parent to continue to execute in parallel with the child. Indeed, the parent can
continue to spawn off children, producing a high degree of parallelism. Cilk’s scheduler takes
the responsibility of scheduling the spawned procedures on the processors of the parallel
computer.

A Cilk procedure cannot safely use the return values of the children it has spawned until
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2This program uses an inefficient, exponential-time algorithm. Although logarithmic-time methods are
known [14, page 850], this program nevertheless provides a good didactic example.



#include <stdlib.h>
#include <stdio.h>
#include <cilk.h>

cilk int fib (int n)
{
if (n<2)
{
return(n) ;
+
else
{
int x, y;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return (x+y);

cilk int main (int argc, char *argv[])
{

int n, result;

n = atoi(argv[1]);

result = spawn fib(n);

sync;

printf ("Result: %d\n", result);

return 0;

Figure 1: A parallel Cilk program to compute the nth Fibonacci number.



it executes a sync statement. If all of its children have not completed when it executes a
sync, the procedure suspends and does not resume until all of its children have completed.
The sync statement is a local “barrier,” not a global one as, for example, is sometimes used
in message-passing programming. In Cilk, a sync waits only for the spawned children of
the procedure to complete, not for the whole world. When all of its children return, the
procedure resumes execution at the point immediately following the sync statement. In the
Fibonacci example, a sync statement is required before the statement return (x+y) to avoid
the anomaly that would occur if x and y were summed before both had been computed. A
Cilk programmer uses the spawn and sync keywords to expose the parallelism in a program,
and the Cilk runtime system takes the responsibility of scheduling the execution of the
procedures efficiently.

Cilk’s runtime system supports C’s semantics for stack-allocated storage. A pointer to
a local variable can be passed to a subroutine, but a pointer to a local variable cannot
be returned, since local variables are deallocated automatically on a return. Cilk supports
exactly these semantics, while allowing subprocedures to execute in parallel. In addition,
Cilk supports heap memory through a malloc() function.

Most parallel applications can be programmed in Cilk using only the cilk, spawn, and
sync keywords, but some tasks, such as chess, require speculative work to be done. For
example, a search may spawn off two subsearches in parallel, only to discover that one
of these searches returns a clear result, thereby making the other search irrelevant. Cilk
provides two additional keywords — inlet and abort — which allow such nondeterministic
programs to be coded. These five keywords make up the entirety of the Cilk language. Other
parallel-programming mechanisms, such as locks for mutual exclusion, are provided through
library functions. We shall first explain inlets, and then the abort mechanism.

Cilk’s wnlet feature provides flexibility in how values are returned from a child to its
parent. Ordinarily, the valued returned by a spawned procedure is stored into a variable in
its parent’s frame:

x = spawn foo(y);

An inlet allows the returned value to be incorporated into its parent’s frame in a more
complex way.

An inlet is essentially a C function internal to a Cilk procedure.®> Normally in Cilk, the
spawning of a procedure must occur as a separate statement and not in an expression. An
exception to this rule is made if the spawn is performed as an argument to an inlet. In this
case, the procedure is spawned, and when it returns, the inlet is invoked. In the meantime,
control of the parent procedure proceeds to the statement following the inlet.

Figure 2 illustrates how the fib() function can be coded using an inlet. The inlet
summer () is defined to take a returned value result and add it to the variable x in the
frame of the procedure that does the spawning. All the variables of fib() are available
within summer (), since it is an internal function of fib().

3If a Cilk program contains inlets, its C elision contains internal functions, which are not allowed in
ANSI C. Cilk is based on Gnu C, however, which does permit internal functions.



cilk int fib (int n)
{

int x = 0;

inlet void summer (int result)
{

X += result;

return;

3

if (n<2)
{

return n;

}

else

{
summer (spawn fib (n-1));
summer (spawn fib (n-2));
sync;
return (x);

Figure 2: Computing the nth Fibonacci number using an inlet.



Ensuring proper semantics for a program can be difficult if several inlets of a procedure,
and possibly the procedure itself, update the same variables simultaneously. To ease the
programming of these interactions, Cilk guarantees that these logically parallel “threads”
operate atomically with respect to one another. In other words, when updating variables in
the procedure frame, an inlet need not worry that frame variables are being simultaneously
updated by the procedure itself or by another inlet. This implicit atomicity makes it fairly
easy to reason about concurrency involving the inlets of a procedure instance without locking,
declaring critical regions, or the like.

Cilk’s abort keyword allows speculative work to be aborted without waiting for it to
complete. The abort statement, when executed inside an inlet, causes all of the already-
spawned descendants of the procedure to terminate immediately. Cilk takes the responsibility
of hunting down all the descendants and terminating them.

As an example, suppose that a search spawns off two subsearches in parallel, and each
subsearch returns its results via an inlet. If the result of one of the subsearches obviates
the need to continue executing the other subsearch, Cilk’s abort mechanism can be used to
terminate it. We shall see in Section 4 how the abort statement eases the programming of
parallel alpha-beta search.

The Cilk-5 reference manual [24] provides complete documentation of the Cilk language.

3 Cilk performance

Cilk supports an algorithmic programming model for parallel computation. Specifically, Cilk
guarantees that programs are scheduled efficiently by its runtime system. This guarantee
enables algorithms to be designed whose performance can be predicted analytically. In this
section, we overview Cilk’s performance model. We illustrate how xSocrates allowed us to
validate this model and how in turn, Cilk’s performance model allowed us to make intelligent
decisions about the design of the chess program.

Modeling Cilk program execution

A Cilk program execution consists of a collection of procedures—technically, procedure
instances—each of which is broken into a sequence of nonblocking “threads.” In Cilk ter-
minology, a thread is a maximal sequence of instructions that ends with a spawn, sync,
or return statement. The first thread that executes when a procedure is called is the pro-
cedure’s initial thread, and the subsequent threads are successor threads. At runtime, the
binary “spawn” relation causes procedure instances to be structured as a rooted tree, and
the dependencies among their threads form a directed acyclic graph (dag) embedded in this
spawn tree, as is illustrated in Figure 3.

A correct execution of a Cilk program must obey all the dependencies in the dag, since a
thread cannot be executed until all the threads on which it depends have completed. These
dependencies form a partial order, permitting many ways of scheduling the threads in the
dag. The order in which the dag unfolds and the mapping of threads onto processors are



Figure 3: The Cilk model of multithreaded computation. Each procedure, shown as a rounded
rectangle, is broken into sequences of threads, shown as circles. A downward edge indicates the
spawning of a subprocedure. A horizontal edge indicates the continuation to a successor thread.
An upward edge indicates the returning of a value to a parent procedure. All three types of edges
are dependencies that constrain the order in which threads are scheduled.

crucial decisions made by Cilk’s scheduler. Every active procedure has associated state that
requires storage, and every dependency between threads assigned to different processors
requires communication. Thus, different scheduling policies can yield different space and
time requirements for the computation.

It can be shown that for general multithreaded dags, no good scheduling policy exists.
That is, a dag can be constructed for which any schedule that provides linear speedup also
requires vastly more than linear expansion of space [9]. Fortunately, every Cilk program
generates a well-structured dag which can be scheduled efficiently [10].

The Cilk runtime system implements a provably efficient scheduling policy based on
randomized work-stealing. During the execution of a Cilk program, when a processor runs
out of work, it asks another processor chosen at random for work to do. Locally, a processor
executes procedures in ordinary serial order (just like the C language’s runtime system does),
exploring the spawn tree in a depth-first manner. When a child procedure is spawned, the
processor saves local variables of the parent on the bottom of a stack and commences work
on the child. When the child returns, the bottom of the stack is popped (just like C) and
the parent resumes. When another processor requests work, however, work is stolen from
the top of the stack, that is, from the end opposite that which is normally used.

Performance modeling

Cilk’s work-stealing scheduler executes any Cilk computation in nearly optimal time. From
an abstract theoretical perspective (discounting cache effects and other phenomena that lead
to superlinear speedups), there are two fundamental limits as to how fast a Cilk program can



run. Let us denote by T the execution time of a given computation on P processors. The
work of the computation is the total time needed to execute all threads in the dag. We can
denote the work by 77, since the work is essentially the execution time of the computation
on one processor.

The first limit dictates that with 7} work and P processors, the lower bound

Tp >T,/P (1)

must hold. The reason is that in one step, at most P work can be done by the P processors.
Consequently, to do all of the 77 work, it must take at least 77 /P time. The second limit is
based on the program’s critical-path length, denoted by T, which is the execution time
of the computation on an infinite number of processors, or equivalently, the time needed to
execute threads along the longest path of dependency.

The second lower bound is simply

Tp > To . (2)

This bound says that a finite number of processors cannot execute the computation faster
than an infinite number of processors.
Cilk’s randomized work-stealing scheduler executes a Cilk computation on P processors
in expected time
Tp <T/P+0(T) ,

which is asymptotically optimal. Empirically, the constant factor hidden by the big O is
often close to 1 or 2 [8], and the formula

Tp~T/P+ Ty, (3)

which resembles “Brent’s theorem” [11], is a good approximation of runtime. Cilk provides
automatic timing instrumentation that can calculate the measures of work and critical-path
length during program execution, thus allowing programmers to predict performance across
the range of possible machine sizes. Moreover, Cilk has been engineered so that the cost
of spawning is only 2-6 times the cost of an ordinary C function call, the actual value
depending on the particular computer platform. Since the number of spawns performed by a
real program during runtime tends to be relatively small, spawns have a negligible impact on
running time. The low cost of spawns encourages Cilk programmers to think about spawning
as a natural and inexpensive way to expose parallelism in their applications.

The performance model provided by Equation (3) can be interpreted using the notion of
parallelism, which is defined as P = T} /T,,. The parallelism is the average amount of work
for every step along the critical path. Whenever P < P, meaning that the actual number
of processors is much smaller than the parallelism of the application, we have equivalently
that 71/P > T. Thus, the model predicts that Tp ~ T}/P and the Cilk program runs
with almost perfect linear speedup.

Of course, the degree to which Equation (3) accurately predicts the performance of
an application depends on how “ideal” the machine is on which the application is run.
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If the machine has inadequate memory bandwidth, for example, performance will suffer
compared what is predicted by this performance model. As it turns out, however, we have
found Equation (3) to be an excellent predictor of performance over a wide range of parallel
computers.

Using chess to benchmark Cilk’s scheduler

In an early paper on Cilk [8], we used our xSocrates chess program to document the efficacy
of Cilk’s scheduler on the Connection Machine CM5 parallel computer. Figure 4 shows a
graph borrowed from that paper. The figure shows the outcome from many experiments
of running xSocrates on a variety of chess positions using various numbers of processors.
Each “+” symbol in the figure indicates the measured speedup Wp/Tp for a P-processor
run against the machine size P for that run, where Wp is the work of the computation.

For clarity in this discussion, we denote the work in a P-processor computation by Wp,
rather than by 77 as we have done thus far, because xSocrates uses a “speculative” search
algorithm. Recall that as we have defined the term “work,” it is the total time needed to
execute all the threads in the computation dag. For a deterministic parallel algorithm, the
work of a program is the same, independent of the number of processors on which the program
is run, and hence, it is accurate to use 77 to represent the work. For a nondeterministic
computation executed on several processors, however, the computation dag may vary from
run to run. Consequently, the work Wp represented in a P-processor computation dag may
bear little or no relation to the work 77 of a serial execution. Since our goal is to evaluate the
efficacy of Cilk’s scheduler, we focus on the speedup Wp/Tp, because the normal speedup
T, /Tp incorporates work overhead produced by xSocrates’s speculative search algorithm for
which Cilk’s scheduler is not responsible.

In order to compare the outcomes for different runs, we have normalized each axis by
dividing by the parallelism Wp /T,. Thus, a normalized machine size of 1.0 on the horizontal
axis indicates a run where the parallelism equals the machine size. A normalized machine
size of 0.1 indicates a run in which the parallelism exceeds the machine size by a factor of 10.
On the vertical axis, a normalized speedup of 1.0 indicates a run that attains the maximum
possible speedup. A normalized speedup of 0.1 indicates a run in which the speedup is 1/10
the maximum possible.

The two lower bounds (1) and (2) provide upper bounds on speedup, which can be
interpreted as lines in Figure 4. The horizontal line at 1.0 is the upper bound on speedup
obtained from the critical-path length, and the 45-degree line is the linear speedup bound.
In addition, the curve for Equation (3) is plotted, and as can be seen from the figure, it
interpolates the data reasonably well.

The figure shows that on runs for which the parallelism exceeds the number of proces-
sors, Cilk’s scheduler obtains nearly perfect linear speedup. This region is where we normally
would like an application to run, since otherwise the marginal return on an additional pro-
cessor is diminishing. In the region where the number of processors is large compared to
the parallelism, the data is more scattered, but the speedup is generally within a factor of
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Figure 4: Normalized speedups for the xSocrates chess program running on a Connection Machine
CMb5.

2 of the upper bound given by critical-path length. We prefer not to operate in this range,
since the application could run nearly as fast with fewer processors. If the application does
not exhibit good parallelism, however, it may be forced to operate in this domain. For-
tunately, good chess algorithms exhibit a high degree of parallelism, and all of our chess
programs operate in the linear-speedup regime most of the time. (Although we have spot-
verified this performance model for later versions of Cilk, we have not repeated the extensive
data-gathering.)

*xSocrates speedup anomaly

The measures of work and critical-path length provide an algorithmic basis for evaluat-
ing the performance of Cilk programs, a feature we were able to exploit when designing
the search algorithm for xSocrates. For the the 1994 ACM International Computer Chess
Championship, our program ran on NCSA’s 512-node CM5. Because of the high demand
for this massively parallel processor, one of the largest machines of its day, our access to it
was limited. Consequently, we developed and tested most of our code on a 32-node CM5 at
MIT.

During development, in an attempt to optimize xSocrates performance, one of our pro-
grammers suggested a change to the search algorithm. We benchmarked the original version
of the algorithm against the proposed version on the MIT machine, and we discovered the

12



new version to be significantly faster. Nevertheless, we abandoned the proposed change,
because our analysis of work and critical-path length indicated that it would be far slower
on the much larger NCSA machine to be used in the tournament.

To understand this speedup anomaly, the numerical figures in the following scenario have
been simplified for didactic purposes. The original program ran the benchmark in T3, = 65
seconds on the 32-node MIT machine. The proposed program ran the benchmark in 7%, = 40
seconds on the MIT machine. But these numbers tell us little about what might happen on
the 512-node NCSA machine.

Fortunately, Cilk’s instrumentation allowed us to analyze the situation. We discovered
that the original program had work 7} = 2048 seconds and critical-path length T, = 1
second. The proposed program had work 77 = 1024 seconds and a much longer critical-path
length of 7" = 8 seconds. Using the model 3, we can verify that

Ty, = 2048/32+1=65,
Ti, = 1024/32+8 =40 .

In the actual incident, the agreement between model and experiment was close, but not
exact. (We also coped with the nondeterminism of xSocrates’s search algorithm.)

With work and critical-path lengths in hand, we were now in a position to extrapolate
the performance of the two algorithms on the 512-node machine:

Tso = 2048/512+1=5,
Ti, = 1024/512+8 =10 .

The model predicts that on the tournament machine, the proposed change would slow per-
formance by a factor of 2.

On the larger NCSA machine, the proposed program’s longer critical-path length dom-
inates the running time because of insufficient parallelism. The parallelism of the original
program is P = T,/T,, = 2048/1 = 2048, whereas the parallelism of the proposed pro-
gram is P = T7/T!, = 1024/8 = 128. Thus, the proposed program runs out of parallelism
on the 512-processor NCSA machine, whereas the original program still has some parallel
“slackness” to exploit.

In the actual incident, the model predicted nearly a factor-of-3 degradation on the NCSA
machine. Subsequent testing on the machine itself confirmed this prediction. Cilk’s guaran-
tee of efficient scheduling, together with the performance model it engenders, saved us from
a costly design error.

4 Programming alpha-beta search
This section shows how a parallel version of alpha-beta search [28] can be programmed

in Cilk. Although xSocrates and Cilkchess use different parallel variants of minimax search
based on Scout search [34] and MTD(f) [35], respectively, all the ideas in these parallel search
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algorithms can be illustrated in the context of alpha-beta search. This section outlines the
basic “young-brothers-wait” strategy [18] for parallelizing alpha-beta search, and then it
provides a walk-through of Cilk code that implements the strategy.

Since alpha-beta search is described in virtually every introduction to adversarial search
(see, for example, [20, page 66] and [44, Chapter 6]), we shall assume basic familiarity with
this search strategy. The key idea is that if White can make a move in a position which is so
good that Black will not make the move leading to that position, then there is no point in
searching White’s other moves from that position. Those additional moves can be pruned.
In order to get maximal pruning, therefore, it is advantageous to search the moves at a node
in the search tree in best-first order.

The basic alpha-beta search algorithm is inherently serial, since it uses information from
the search of one child of a node to prune subsequent children. When children are searched
in parallel, however, it is hard to use information gained from searching one child to prune
another. If one looks at an optimal game tree, however, one finds an interesting property:
all of the nodes are either maximal (all of the children are searched) or singular (only one of
the children is searched).

This observation suggests a parallel search strategy called young brothers wait [18]:
if the first child of a node fails to generate a cutoff (the node is not singular), speculate that
the node is maximal, and thus searching the remaining children in parallel wastes no work.
To implement this strategy, the parallel alpha-beta algorithm first searches what it considers
to be its best child, just like serial alpha-beta search. When that child returns, it may
be that the alpha-beta algorithm prunes the rest of the children (a so-called beta-cutoff),
and the search returns immediately. Otherwise, the algorithm speculates that the node is
maximal, and it spawns off all the remaining children in parallel. If one returns with a score
that causes a beta-cutoff, the other children are aborted, since their work has been rendered
unnecessary.

We now walk through a Cilk implementation of this parallel search algorithm. The walk-
through is broken into four parts. As will be seen, the code is minimally different from a C
implementation of alpha-beta search, incorporating only six instances of Cilk keywords. The
algorithm presented is a simple “full-width” search, shorn of mate and draw detection for
didactic convenience. Mate and draw detection, as well as search heuristics such as null-move
[2, 3, 16, 23] or killers [1, 39], can be incorporated into this code without difficulty, as has
been done in both xSocrates and Cilkchess.

The first part of the code defines the Cilk procedure search:

cilk int search( position *prev, int move, int depth )

{
position cur; /* current position */
int bestscore = -INF; /* best score so far */
int num_moves; /* number of children x/
int mv; /* index of child */
int sc; /* child’s score x/
int cutoff = FALSE; /* have we seen a cutoff? x/
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This code assumes that the current position is generated by the child, not the parent. Thus,
a pointer to the parent position is passed in the parameter prev, and the current position will
be produced by applying move to the parent position. The parameter depth is decremented
by each recursive call until it becomes 0, so that the algorithm implements a full-width
search. The position data structure contains fields alpha and beta delimiting the window
of the search.

The second part of the code defines the inlet catch, which incorporates a child’s score
into the current node:

inlet void catch( int child_sc )

{
child_sc = -child_sc; /* negamax */
if ( child_sc > bestscore )
{
bestscore = child_sc;
if ( child_sc > cur.alpha )
{
cur.alpha = child_sc;
if ( child_sc >= cur.beta )
{
cutoff = TRUE; /* no need to search further */
abort; /* terminate other children */
+
+
}
}

The code implements a “negamax” [28] strategy wherein scores are always viewed from the
point of view of the side to move. If the value child_sc returned by a child is the best so
far, the variable bestscore is updated to record that fact. If the child’s score exceeds the
current value for alpha, then cur.alpha is updated. Finally, if the child’s score equals or
exceeds the current value for beta, a beta-cutoff occurs. The flag cutoff is set, which, as
we shall see, will preclude future children from being spawned. In addition, children that
have already been spawned are aborted.

The third part of the code is identical to an alpha-beta search in pure C, containing no
Cilk keywords:

/* create current position and set up for search */
make_move( prev, &move, &cur );

sc = eval( &cur ); /* static evaluation *x/
if ( depth <= 0 ) /* leaf node */
{
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return( sc );

}
cur.alpha = -prev->beta; /* negamax */
cur.beta = —prev->alpha;

/* generate moves, hopefully in best-first order */
num_moves = gen_moves ( &cur );

The indicated move is made on the board, updating the cur structure with the new position.
A static evaluation of the current position is made. If the current position is a leaf node of
the search, because the desired depth of search has been achieved, the score from the static
evaluation is returned. Otherwise, the alpha-beta window for the current search is updated,
and the move generator is called.

The final part of the code performs the actual search:

/* search the moves */
for ( mv=0; !cutoff && mv<num_moves; mv++ )
{
catch( spawn search( &cur, mv, depth-1 ) );
if ( mv==0 ) sync; /* young brothers wait */

}

sync; /* this sync is outside the loop so that the
searches after the first execute in parallel */
return( bestscore );

}

The loop spawns off the children of the current position. The loop guard terminates the loop
if a child causes a beta-cutoff, which is discovered within the catch inlet. After the first child
is spawned off, a sync is executed, suspending the loop until after the first child returns,
thus implementing the young-brothers-wait strategy. The remaining children are spawned
off in parallel, since no subsequent sync occurs within the loop. After all the children are
spawned off, the algorithm syncs so that the best score of all the children can be returned.

Alpha-beta search makes a strong case for Cilk’s efficient expressiveness. The difference
between an ordinary C program for alpha-beta search and the Cilk program is only six
keywords. Indeed, if minimizing the number of instances of Cilk keywords were the goal, the
final sync could be eliminated by incorporating it into the sync within the loop. The code
would be more cryptic, however.

The code for minimaz search in a high-performance chess program is far more complicated
than the simple alpha-beta algorithm presented here. Among the major issues faced in a
real program is how to minimize the likelhood that speculative code is executed futilely. Any
branches of the search tree that are pruned by a serial search algorithm represent wasted
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work. When Cilkchess runs on a large multiprocessor, for example, the work can expand by
a factor of 3. Good move-ordering heuristics tend to minimize the expansion of work.

5 Other parallel programming issues

In this section, we explore several other issues that arise when using Cilk to program a
chess program. First, we examine how Cilk’s locking primitives support atomic accesses to a
transposition table. Second, we investigate how Cilk’s shared-memory programming model
simplifies the problem of discovering draws by repetition.

Cilk support for atomicity

All modern chess programs keep a transposition table to store positions that the program
has seen. A chess position is entered into the transposition table when the search of that
position returns a score. The entry for each position typically includes the depth that the
position was searched, a bound on the score, move-ordering information, and various other
heuristic and bookkeeping data. The idea is that if the program sees the same position in
a later search, it may be able to use the information stored in the transposition table to
improve the quality of the search or avoid the search altogether. Transposition tables are
usually stored as large hash tables.

When two parallel threads access a common entry in a transposition table, anomalous
behavior can result if one or both attempt to change the entry. This problem arises when
the entry cannot be modified as a single atomic operation. While one thread is in the midst
of changing several words of data, the other thread may see an entry consisting of both new
(changed) and old (unchanged) data. To operate correctly, the second thread should see
either the old data in its entirety or the new data in its entirety, but never a mixture.

Cilk provides mutual-exclusion locks to allow the creation of atomic regions of code. In
Cilk, a lock has type Cilk_lockvar. The two operations on locks are Cilk_lock to test a lock
and block if it is already acquired, and Cilk _unlock to release a lock. Both functions take an
object of type Cilk_lockvar as a single argument. The lock object must be initialized using
Cilk_lock_init () before it is used. The region of code between a Cilk_lock statement and
the corresponding Cilk_unlock statement is called a eritical section.

The following code illustrates how Cilk’s mutual exclusion locks can be used to enforce
atomicity in a transposition table ttab.

typedef struct

{
Cilk_lockvar lock;
int key;
int score;
int bestmove;
int depth;
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}
ttentry;

ttentry ttab[TTSIZE];

void init_ttab()

{

int i;

for (i=0; i<TTSIZE; i++)

{

Cilk_lock_init(ttab[i].lock);

+
}
void update_entry( ttentry *e, int key, int score, ... )
{

Cilk_lock(e->lock); /* begin critical section */

e->key = key;

e->score = score;

Cilk_unlock(e—>lock); /* end critical section */
}

A Cilk lock is stored as part of each transposition-table entry. Cilk locks must be initialized
before their first use. This initialization is performed by the C function init_ttab() which
must be called before the transposition table is used. The function update_entry() up-
dates the entry e atomically by acquiring e->1ock before modifying the entry and releasing
e->lock afterwards. Thus, if two threads simultaneously attempt to change the entry, they
execute in sequence without interference.

Why use a lock for each entry rather than a single lock for the entire transposition table?
After all, wouldn’t a single lock be simpler and save space? A single-lock solution can indeed
work effectively if the number of processors on which Cilk is run is small, but it does not scale
well with the number of processors. The problem is that while a lock is held, every other
thread that attempts to acquire the lock must wait. As the number of threads increases,
the lock becomes a bottleneck, causing time to be wasted by threads waiting for the lock to
be released. In contrast, using one lock per table entry yields a scalable solution. Since the
number of entries is usually far larger than the number of active threads, the chances of two
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threads contending for a lock is small, and little time is wasted.

The Supertech research group argued long and hard about whether locks should be
included in Cilk. Cilk-5 represents great progress over Cilk-1 in reducing the amount of
protocol that a programmer must write. The protocol of acquiring and releasing locks,
albeit simple, reverses that progress. Eventually, we decided that the practical need for
atomicity outweighed the complexity of locks. Our decision was aided by the development
of a debugging tool we call the Nondeterminator [13, 19].

The Nondeterminator finds data races in Cilk code. A data race occurs when two
parallel threads, holding no locks in common, access the same memory location, and one
of the threads modifies the location. Data races may be intended by the programmer, but
they are more likely to be bugs. The Nondeterminator executes the Cilk code serially on a
given input, using a novel data structure that keeps track of what threads operate logically
in parallel. Every read and write by the program is instrumented to see if a date race exists.
The Nondeterminator is not a verification tool, since it simulates actual execution on a given
input, but it does provide a guarantee of finding races if they exist.

At this point, we must confess that Cilkchess does contain a data race. We have described
how Cilk’s library functions for locking can be used to make accesses to the transposition
table atomic. Cilkchess, however, does not lock accesses to the transposition table. We
decided that the overhead for locking would actually weaken the program more on average
than if we did no locking. We indeed risk that a race might occur, but we have determined
that the odds that it actually would affect the outcome of a competition is negligible. Thus,
Cilkchess is provably, and intentionally, non-bug-free.

Parallel testing for repetitions

The rules of chess allow a player to claim a draw if his move brings about the third repetition
of a position (with the same side to move). Computer programs usually implement this rule
during a search by considering any position that matches an ancestor in the game tree to be
a draw. A common implementation of this strategy is to use a hash table for bookkeeping.
We now examine why this hash-table strategy breaks down in a parallel implementation and
how Cilk’s shared-memory semantics allow repetitions to be easily detected in parallel.
The hash-table approach to repetition testing is fairly simple. All positions that have
actually been played in the game are entered into the hash table before the search begins.
During the search, whenever a position is encountered, it is entered into the hash table. The
children of the position are then recursively searched. Scores are backed up in accordance
with the minimax search algorithm to produce a score for the position. When the score has
been computed, the position is removed from the hash table. During the recursive search, if
a position is encountered that is already in the hash table, a repeated position has occurred.
In a parallel chess program, a naive implementation of this strategy fails to work. First,
the problems of atomically updating the hash table must be solved, but that is not the
main difficulty. When a thread comes across a position stored in the hash table, the thread
does not know if the position was encountered by its ancestor — a real repetition — or by
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another thread exploring another part of the game tree that just happened to examine the
same position. One can imagine keeping track of which game-tree nodes are associated with
which thread of execution, but such bookkeeping schemes quickly become unwieldy.

To detect repeated positions, Cilkchess uses a method that parallelizes easily. For every
board position, a pointer is maintained to the parent’s position. When evaluating a position,
Cilkchess walks the chain of ancestors from the current position backwards to the beginning
of the game and compare to see if the same position already appears in the chain. Cilkchess
actually checks only every second position starting from the fourth back, since a repeated
position must have the same side on move and two consecutive positions with the same side
on move cannot repeat. (Cilkchess also accelerates the process by comparing the hash keys
of the positions.)

It might seem that the cost of scanning ancestors could become large, but the scan
can usually be terminated quickly. Some moves, like captures or pawn pushes, have the
characteristic that once played, no sequence of subsequent moves can bring about a position
that existed before the execution of that move. These trreversible moves provide a barrier
above which the scan need not explore. Our empirical studies of middle-game positions
indicate that the number of ancestors that need to be checked is less than 2 on average,
although this number increases slightly in the endgame. This strategy of scanning ancestors
back to an irreversible move was used in the CHESS 4.5 program [39, page 103].

Because of Cilk’s strong support for shared-memory semantics, the parallel Cilk code
for the ancestor scan is identical to the serial C code. No parallel constructs whatsoever
are needed. Although the scans of several threads may intersect at common ancestors, no
locking or coordination is required, because the ancestor data structures are only being read,
not modified. Some parallel languages require special mechanisms to dereference pointers to
shared memory, but Cilk does not. Consequently, compared with the C implementation, the
Cilk implementation incurs no undue performance penalty. The code is the same.

6 Conclusion

To produce high-performance parallel applications, programmers often focus on communi-
cation costs and execution time, quantities that are dependent on specific machine configu-
rations. Cilk’s philosophy argues that a programmer should think instead about work and
critical-path length, abstractions that can be used to characterize the performance of an
algorithm independent of the machine configuration. Cilk provides a programming model
in which work and critical-path length are measurable quantities, and it delivers guaranteed
performance as a function of these quantities. Moreover, Cilk programs “scale down” to
run on one processor with nearly the efficiency of analogous C programs. Consequently, any
performance tuning of the C elision of the Cilk program automatically accrue to the Cilk
program itself.

The Supertech research group in LCS found that computer chess was an ideal vehicle for
developing parallel-programming technology. Research groups can easily wander off solving
abstract problems having no practical significance. Chess is a formidable real-world prob-
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lem which long predates computers, not an artificial problem tailor-made to highlight our
research. Chess challenged our research group to address previously neglected issues involv-
ing the parallel programming of irregular and symbolic computations, rather than regular
and numerical problems that typify much of the existing literature on parallel computing.
Students worked on an engaging problem that allowed them to highlight their parallel-
programming research results in an externally visible way, (i.e., they could explain it to their
parents). Tournament events motivated the team and gave us “end-to-end” [38] unbiased
feedback on our work. Finally, chess programming was just plain fun!

The combination of chess and Cilk allowed the Supertech team to explore a gamut of
issues across computer science. Too often, students come out of school believing that intel-
lectual activity is segregated into disparate, nonoverlapping areas. Chess and Cilk allowed
us to integrate knowledge in algorithms, artificial intelligence, programming languages, con-
currency, computer architecture, software engineering, and high performance. The cross-
pollination of ideas refined Cilk into a simple, but powerful, tool for parallel programming.

The Cilk developers are currently working on enhancing the Cilk system environment,
including support for parallel I/O and streams, job scheduling, and fault tolerance. Cilk soft-
ware, documentation, publications, and up-to-date information are available via the Web at
http://supertech.lcs.mit.edu/cilk. Detailed descriptions of the foundation and history
of Cilk can be found in [5, 27, 37, 21].
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