
Using Cilk to Write Multipro
essor Chess ProgramsDon DaileyCharles E. LeisersonMIT Laboratory for Computer S
ien
eSeptember 27, 2001Cilk (pronoun
ed \silk") is a C-based, algorithmi
, multithreaded language for parallelprogramming developed at the MIT Laboratory for Computer S
ien
e. Cilk makes it easy toprogram irregular parallel appli
ations su
h as
hess. The Cilk programmer need not worryabout proto
ols, job
oordination, and load balan
ing, sin
e they are handled automati
allyby Cilk's runtime system using provably eÆ
ient me
hanisms. Cilk has been used to pro-gram a variety of multipro
essor
hess programs, in
luding the award-winning ?So
rates andCilk
hess programs. This paper overviews the Cilk language, illustrating how Cilk supportsthe programming of parallel game-tree sear
h and other
hess me
hanisms.1 Introdu
tionThe Super
omputing Te
hnologies (Superte
h) Resear
h Group in the MIT Laboratory forComputer S
ien
e began developing the Cilk multithreaded language [5, 8, 22, 27℄ in 1994.Development of Cilk has been intertwined with the development of a series of
omputer
hess programs: StarTe
h, ?So
rates, and Cilk
hess. Although the development of Cilkitself has been funded by the U.S. Defense Advan
ed Resear
h Proje
ts Agen
y (DARPA),all of our
hess programs have been \skunkworks," developed in our spare time withoutresear
h support.1 Nevertheless, over the years,
omputer
hess has provided mu
h of theimpetus for evolving the Cilk language.Our �rst parallel
hess program was StarTe
h [30, 31℄, written by Bradley Kuszmaul.StarTe
h's evaluation fun
tion is a software version of Hans Berliner's serial Hite
h pro-gram [4℄. The parallel sear
h algorithm, whi
h Kuszmaul
alled \Jamboree sear
h," usesthe \young brothers wait" heuristi
 [18℄ to parallelize S
out sear
h [34℄. StarTe
h wonThird Prize in the 1993 ACM International Computer-Chess Championship [29℄ runningon a 512-node Conne
tion Ma
hine CM5 at the University of Illinois National Center forSuper
omputer Appli
ations (NCSA).1The MIT Laboratory for Computer S
ien
e has made dis
retionary funds available for us to enter our
hess programs in
omputer-
hess tournaments around the world. We are grateful for this support.1

Our experien
e with StarTe
h
onvin
ed us that the logi
 of the game-tree sear
h itselfshould be separated from the logi
 of s
heduling, load balan
ing, and job
oordination. InStarTe
h, the appli
ation and system logi
 are intermixed in an event-driven state ma
hine,produ
ing obs
ure
ode that was undebuggable by anyone but someone of Kuszmaul's
aliber.Fortunately, the Superte
h group's resear
h fo
us was soon to provide better te
hnology.At the time Kuszmaul was working on StarTe
h, two
ollateral resear
h e�orts were un-derway in the MIT Laboratory for Computer S
ien
e. Mi
hael Halbherr, Chris Joerg, andYuli Zhou were developing a multithreaded language
alled PCM [25℄ within the data
owresear
h group led by Professor Arvind. In addition, Robert Blumofe and Charles Leisersonof the Superte
h group were investigating algorithms for s
heduling multithreaded
omputa-tions [9, 10℄. The two teams
ombined for
es to develop the �rst version of a runtime systemwe
alled Cilk. Cilk-1 uses the same C prepro
essing front-end as PCM, but it in
orporatesa provably good \work-stealing" s
heduler based on the ideas of Blumofe and Leiserson.While designing Cilk-1, the Superte
h team started to work with Don Dailey and LarryKaufman on a new
hess program: ?So
rates [26℄. This program was based on Dailey andKaufman's serial So
rates program, whi
h had won First Prize in the 1993 ACM InternationalComputer-Chess Championship [29℄, where StarTe
h won Third Prize. Parallelizing theserial algorithm with Cilk-1 took about a month and a half of e�ort, most of whi
h was doneby Dailey and Joerg. Eventually, ?So
rates won Third Prize in the 1994 ACM InternationalComputer-Chess Championship [33℄ running on NCSA's 512-node CM5. Later, ?So
rateswon Se
ond Prize in the 1995 ICCAWorld Computer-Chess Championship [40℄ in Hong Kongrunning on the 1824-node Intel Paragon at Sandia National Laboratories in New Mexi
o,losing to the program Fritz in the tie-breaking playo� game.Although Cilk-1 insulates the programmer from s
heduling and other runtime issues, itis still a painful language to use, be
ause the parallel-programming model, whi
h is basedon expli
it
ontinuation passing, demands that the programmer write diÆ
ult-to-debug pro-to
ols. Cilk-1 la
ks subroutine-like
all/return semanti
s, requiring instead that threads
ommuni
ate
ontrol expli
itly. Although one
an \wire up" any parallel
ontrol stru
turein Cilk-1, the resulting
ode is so proto
ol-laden that for ?So
rates, only Joerg was
apableof modifying it without introdu
ing bugs. Ironi
ally, we had over
ome the limitations ofStarTe
h, whi
h enabled us to write far more
ompli
ated
ode, but whi
h on
e again we
ould not debug. Although we had made strides in allowing appli
ations to be
oded withoutworrying about s
heduling, Cilk-1 still requires the programmer to engineer a rat's nest ofproto
ols for threads to
ommuni
ate. We needed a way of writing proto
ol-free, or at leastlargely proto
ol-free, multithreaded
ode.Our se
ond version of Cilk provides a
all/return semanti
s for parallelism using simplespawn and syn
 keywords, features that remain in today's Cilk-5. Instead of being a simpleC prepro
essor, Rob Miller implemented Cilk-2's
ompiler
ilk2
 [32℄ as a type-
he
kingsour
e-to-sour
e translator whi
h
ompiles a Cilk sour
e into a C postsour
e. The C post-sour
e is then run through an ordinary C
ompiler and linked with the Cilk runtime systemto produ
e obje
t
ode. Cilk-2 was a resounding su

ess. Its
all/return parallelism simpli-�ed the
oding of many appli
ations, in
luding graphi
s rendering by ray tra
ing and protein2

folding by ba
ktra
k sear
h.The one appli
ation that we found ourselves unable to
ode in \pure" Cilk-2, however,was
omputer
hess. One reason was that
omputer
hess requires a global transpositiontable in whi
h previously evaluated positions are stored. Sin
e ?So
rates was developedfor distributed-memory parallel
omputers, su
h as the Conne
tion Ma
hine CM5 and IntelParagon, it keeps its transposition table stored a
ross the individual memories of pro
essors.These platforms la
k hardware support for shared memory. Sin
e Cilk-2 provides no softwareremedy, ?So
rates must store and look up
hess positions expli
itly using the Strata [12℄\a
tive" message-passing layer. Although the a
tive messaging is en
apsulated within thesoftware module for the transpostion table, we were disappointed that
hess
ould not beprogrammed without resorting to a proto
ol layer.Cilk-3 tried to address this shared-memory issue by providing software distributed sharedmemory, supported by the
ilk2

ompiler. Be
ause Cilk-3 operates on large virtual-memory pages, however, it supports a relaxed model of
onsisten
y [7, 6℄. Although Cilk-3's
onsisten
y model allowed us to write appli
ations su
h as matrix multipli
ation and LU-de
omposition, the model does not support the kind of �ne-grained shared a

ess of largetables needed by a
hess appli
ation.In addition, although
all/return semanti
s allow the
ontrol for a wide variety of pro-grams to be easily
oded, the nondeterministi
 parallel sear
hing algorithms required by
omputer
hess
annnot be
oded. The Superte
h group debated whether the resear
hprogress on Cilk-2 and Cilk-3 had been wasted for the
omputer-
hess appli
ation, sin
eneither
all/return semanti
s nor software distributed shared memory had provided any realanswer to the
omplexities of
oding
omputer
hess.Part of the answer was provided by hardware vendors. Thanks to a generous donation in1996 by Sun Mi
rosystems, the Superte
h resear
h group obtained a

ess to a 12-pro
essorEnterprise 5000 system, a \symmetri
 multitpro
essor" providing
onsistent shared mem-ory. With this
omputer system,
oding a
hess transposition table was trivial, sin
e ea
h
omputer
ould dire
tly a

ess all of memory without interrupting another pro
essor.Resear
h provided the rest of the answer. Inspired by work at Berkeley [15℄, Cilk-4introdu
ed the \inlet"
on
ept into Cilk-4. An inlet is a linguisti
 me
hanism whi
h fa
il-itates
oding of the nondeterministi
 sear
h required for parallel game-tree sear
hing (seeSe
tion 2). In addition to inlets, Cilk-4 provides an \abort" feature to allow spe
ulative
omputations to be terminated when it is determined that they are no longer needed. Withthese features, programming parallel nondeterministi
 appli
ations, su
h as
hess, be
omesmu
h easier.Keith Randall led the implementation of Cilk-4, whi
h was the �rst version of Cilkdesigned for shared-memory multipro
essors. Eventually, Matteo Frigo engineered a ma-jor rewrite of Cilk-4 to produ
e the more stable and maintainable Cilk-5 release. VolkerStrumpen also
ontributed to enhan
ing the robustness of the system, and many otherswrote software
omponents. The
urrent Cilk-5 release runs on most shared-memory multi-pro
essors (Sili
on Graphi
s, Sun, Digital/Compaq, Intel, et
.).Our latest
hess program Cilk
hess was written with help from many of the members of3

the Superte
h group. Cilk
hess uses the inlet feature of Cilk-5 to implement a parallel versionof the MTD(f) sear
h algorithm [36℄. Cilk
hess won First Prize at the 1996 Dut
h OpenComputer-Chess Championship [41℄ running on MIT's 12-pro
essor Sun Enterprise 5000, andSe
ond Prize in 1997 [42℄ and 1998 [43℄ running on Boston University's 64-pro
essor Sili
onGraphi
s Origin 2000. At the 1999 World Computer-Chess Championship [17℄, running ona 256-pro
essor SGI Origin 2000 at NASA Ames, Cilk
hess ended up fourth out of a �eld of30 programs, 1=2 point behind the program Shredder, whi
h be
ame World Champion as aresult of the tournament.The remainder of this paper illustrates how Cilk supports the programming of multipro-
essor
hess programs. Se
tion 2 overviews Cilk's linguisti
 me
hanisms. Se
tion 3 des
ribeshow the performan
e of Cilk programs
an be modeled, using the ?So
rates
hess programfor illustration. Se
tion 4 shows how Cilk supports the programming of a
hess sear
h algo-rithm. Se
tion 5 explores how Cilk supports other aspe
ts of
hess programming, in
ludingtransposition tables and repetition testing. Finally, Se
tion 6 o�ers some
on
luding remarks.2 The Cilk languageThe Cilk multithreaded language
onsists of C augmented by �ve new keywords to indi
ateparallel
ontrol. This se
tion overviews the Cilk language, explaining the role of ea
h ofkeyword in the programming of parallel appli
ations.Figure 1 shows a Cilk program that
omputes the nth Fibona

i number.2 The programuses three Cilk keywords:
ilk, spawn, and syn
. Observe that if these keywords aredeleted, a synta
ti
ally and semanti
ally
orre
t C program results, whi
h we
all the Celision of the Cilk program. Cilk is a faithful extension of C in that a Cilk program'sC elision provides a legal implementation of the parallel semanti
s. Cilk introdu
es no newdata types.The keyword
ilk identi�es a Cilk pro
edure de�nition. A Cilk pro
edure is the parallelanalog of a C fun
tion, having an argument list and body just like a C fun
tion. A Cilkpro
edure may spawn subpro
edures in parallel and syn
hronize upon their
ompletion.Most of the work in a Cilk pro
edure is exe
uted serially, just like C, but parallelism is
reated when the invo
ation of a Cilk pro
edure is immediately pre
eded by the keywordspawn. A spawn is the parallel analog of a C fun
tion
all, and like a C fun
tion
all, whena Cilk pro
edure is spawned, exe
ution pro
eeds to the
hild. In an ordinary C fun
tion
all, the parent is not resumed until after its
hild returns. In
ontrast, a Cilk spawnallows the parent to
ontinue to exe
ute in parallel with the
hild. Indeed, the parent
an
ontinue to spawn o�
hildren, produ
ing a high degree of parallelism. Cilk's s
heduler takesthe responsibility of s
heduling the spawned pro
edures on the pro
essors of the parallel
omputer.A Cilk pro
edure
annot safely use the return values of the
hildren it has spawned until2This program uses an ineÆ
ient, exponential-time algorithm. Although logarithmi
-time methods areknown [14, page 850℄, this program nevertheless provides a good dida
ti
 example.4

#in
lude <stdlib.h>#in
lude <stdio.h>#in
lude <
ilk.h>
ilk int fib (int n){ if (n<2){ return(n);}else{ int x, y;x = spawn fib (n-1);y = spawn fib (n-2);syn
;return (x+y);}}
ilk int main (int arg
,
har *argv[℄){ int n, result;n = atoi(argv[1℄);result = spawn fib(n);syn
;printf ("Result: %d\n", result);return 0;}Figure 1: A parallel Cilk program to
ompute the nth Fibona

i number.
5

it exe
utes a syn
 statement. If all of its
hildren have not
ompleted when it exe
utes asyn
, the pro
edure suspends and does not resume until all of its
hildren have
ompleted.The syn
 statement is a lo
al \barrier," not a global one as, for example, is sometimes usedin message-passing programming. In Cilk, a syn
 waits only for the spawned
hildren ofthe pro
edure to
omplete, not for the whole world. When all of its
hildren return, thepro
edure resumes exe
ution at the point immediately following the syn
 statement. In theFibona

i example, a syn
 statement is required before the statement return (x+y) to avoidthe anomaly that would o

ur if x and y were summed before both had been
omputed. ACilk programmer uses the spawn and syn
 keywords to expose the parallelism in a program,and the Cilk runtime system takes the responsibility of s
heduling the exe
ution of thepro
edures eÆ
iently.Cilk's runtime system supports C's semanti
s for sta
k-allo
ated storage. A pointer toa lo
al variable
an be passed to a subroutine, but a pointer to a lo
al variable
annotbe returned, sin
e lo
al variables are deallo
ated automati
ally on a return. Cilk supportsexa
tly these semanti
s, while allowing subpro
edures to exe
ute in parallel. In addition,Cilk supports heap memory through a mallo
() fun
tion.Most parallel appli
ations
an be programmed in Cilk using only the
ilk, spawn, andsyn
 keywords, but some tasks, su
h as
hess, require spe
ulative work to be done. Forexample, a sear
h may spawn o� two subsear
hes in parallel, only to dis
over that oneof these sear
hes returns a
lear result, thereby making the other sear
h irrelevant. Cilkprovides two additional keywords | inlet and abort | whi
h allow su
h nondeterministi
programs to be
oded. These �ve keywords make up the entirety of the Cilk language. Otherparallel-programming me
hanisms, su
h as lo
ks for mutual ex
lusion, are provided throughlibrary fun
tions. We shall �rst explain inlets, and then the abort me
hanism.Cilk's inlet feature provides
exibility in how values are returned from a
hild to itsparent. Ordinarily, the valued returned by a spawned pro
edure is stored into a variable inits parent's frame:x = spawn foo(y);An inlet allows the returned value to be in
orporated into its parent's frame in a more
omplex way.An inlet is essentially a C fun
tion internal to a Cilk pro
edure.3 Normally in Cilk, thespawning of a pro
edure must o

ur as a separate statement and not in an expression. Anex
eption to this rule is made if the spawn is performed as an argument to an inlet. In this
ase, the pro
edure is spawned, and when it returns, the inlet is invoked. In the meantime,
ontrol of the parent pro
edure pro
eeds to the statement following the inlet.Figure 2 illustrates how the fib() fun
tion
an be
oded using an inlet. The inletsummer() is de�ned to take a returned value result and add it to the variable x in theframe of the pro
edure that does the spawning. All the variables of fib() are availablewithin summer(), sin
e it is an internal fun
tion of fib().3If a Cilk program
ontains inlets, its C elision
ontains internal fun
tions, whi
h are not allowed inANSI C. Cilk is based on Gnu C, however, whi
h does permit internal fun
tions.6

ilk int fib (int n){ int x = 0;inlet void summer (int result){ x += result;return;}if (n<2){ return n;}else{ summer(spawn fib (n-1));summer(spawn fib (n-2));syn
;return (x);}}Figure 2: Computing the nth Fibona

i number using an inlet.

7

Ensuring proper semanti
s for a program
an be diÆ
ult if several inlets of a pro
edure,and possibly the pro
edure itself, update the same variables simultaneously. To ease theprogramming of these intera
tions, Cilk guarantees that these logi
ally parallel \threads"operate atomi
ally with respe
t to one another. In other words, when updating variables inthe pro
edure frame, an inlet need not worry that frame variables are being simultaneouslyupdated by the pro
edure itself or by another inlet. This impli
it atomi
ity makes it fairlyeasy to reason about
on
urren
y involving the inlets of a pro
edure instan
e without lo
king,de
laring
riti
al regions, or the like.Cilk's abort keyword allows spe
ulative work to be aborted without waiting for it to
omplete. The abort statement, when exe
uted inside an inlet,
auses all of the already-spawned des
endants of the pro
edure to terminate immediately. Cilk takes the responsibilityof hunting down all the des
endants and terminating them.As an example, suppose that a sear
h spawns o� two subsear
hes in parallel, and ea
hsubsear
h returns its results via an inlet. If the result of one of the subsear
hes obviatesthe need to
ontinue exe
uting the other subsear
h, Cilk's abort me
hanism
an be used toterminate it. We shall see in Se
tion 4 how the abort statement eases the programming ofparallel alpha-beta sear
h.The Cilk-5 referen
e manual [24℄ provides
omplete do
umentation of the Cilk language.3 Cilk performan
eCilk supports an algorithmi
 programming model for parallel
omputation. Spe
i�
ally, Cilkguarantees that programs are s
heduled eÆ
iently by its runtime system. This guaranteeenables algorithms to be designed whose performan
e
an be predi
ted analyti
ally. In thisse
tion, we overview Cilk's performan
e model. We illustrate how ?So
rates allowed us tovalidate this model and how in turn, Cilk's performan
e model allowed us to make intelligentde
isions about the design of the
hess program.Modeling Cilk program exe
utionA Cilk program exe
ution
onsists of a
olle
tion of pro
edures|te
hni
ally, pro
edureinstan
es|ea
h of whi
h is broken into a sequen
e of nonblo
king \threads." In Cilk ter-minology, a thread is a maximal sequen
e of instru
tions that ends with a spawn, syn
,or return statement. The �rst thread that exe
utes when a pro
edure is
alled is the pro-
edure's initial thread, and the subsequent threads are su

essor threads. At runtime, thebinary \spawn" relation
auses pro
edure instan
es to be stru
tured as a rooted tree, andthe dependen
ies among their threads form a dire
ted a
y
li
 graph (dag) embedded in thisspawn tree, as is illustrated in Figure 3.A
orre
t exe
ution of a Cilk program must obey all the dependen
ies in the dag, sin
e athread
annot be exe
uted until all the threads on whi
h it depends have
ompleted. Thesedependen
ies form a partial order, permitting many ways of s
heduling the threads in thedag. The order in whi
h the dag unfolds and the mapping of threads onto pro
essors are8

Figure 3: The Cilk model of multithreaded
omputation. Ea
h pro
edure, shown as a roundedre
tangle, is broken into sequen
es of threads, shown as
ir
les. A downward edge indi
ates thespawning of a subpro
edure. A horizontal edge indi
ates the
ontinuation to a su

essor thread.An upward edge indi
ates the returning of a value to a parent pro
edure. All three types of edgesare dependen
ies that
onstrain the order in whi
h threads are s
heduled.
ru
ial de
isions made by Cilk's s
heduler. Every a
tive pro
edure has asso
iated state thatrequires storage, and every dependen
y between threads assigned to di�erent pro
essorsrequires
ommuni
ation. Thus, di�erent s
heduling poli
ies
an yield di�erent spa
e andtime requirements for the
omputation.It
an be shown that for general multithreaded dags, no good s
heduling poli
y exists.That is, a dag
an be
onstru
ted for whi
h any s
hedule that provides linear speedup alsorequires vastly more than linear expansion of spa
e [9℄. Fortunately, every Cilk programgenerates a well-stru
tured dag whi
h
an be s
heduled eÆ
iently [10℄.The Cilk runtime system implements a provably eÆ
ient s
heduling poli
y based onrandomized work-stealing. During the exe
ution of a Cilk program, when a pro
essor runsout of work, it asks another pro
essor
hosen at random for work to do. Lo
ally, a pro
essorexe
utes pro
edures in ordinary serial order (just like the C language's runtime system does),exploring the spawn tree in a depth-�rst manner. When a
hild pro
edure is spawned, thepro
essor saves lo
al variables of the parent on the bottom of a sta
k and
ommen
es workon the
hild. When the
hild returns, the bottom of the sta
k is popped (just like C) andthe parent resumes. When another pro
essor requests work, however, work is stolen fromthe top of the sta
k, that is, from the end opposite that whi
h is normally used.Performan
e modelingCilk's work-stealing s
heduler exe
utes any Cilk
omputation in nearly optimal time. Froman abstra
t theoreti
al perspe
tive (dis
ounting
a
he e�e
ts and other phenomena that leadto superlinear speedups), there are two fundamental limits as to how fast a Cilk program
an9

run. Let us denote by TP the exe
ution time of a given
omputation on P pro
essors. Thework of the
omputation is the total time needed to exe
ute all threads in the dag. We
andenote the work by T1, sin
e the work is essentially the exe
ution time of the
omputationon one pro
essor.The �rst limit di
tates that with T1 work and P pro
essors, the lower boundTP � T1=P (1)must hold. The reason is that in one step, at most P work
an be done by the P pro
essors.Consequently, to do all of the T1 work, it must take at least T1=P time. The se
ond limit isbased on the program's
riti
al-path length , denoted by T1, whi
h is the exe
ution timeof the
omputation on an in�nite number of pro
essors, or equivalently, the time needed toexe
ute threads along the longest path of dependen
y.The se
ond lower bound is simply TP � T1 : (2)This bound says that a �nite number of pro
essors
annot exe
ute the
omputation fasterthan an in�nite number of pro
essors.Cilk's randomized work-stealing s
heduler exe
utes a Cilk
omputation on P pro
essorsin expe
ted time TP � T1=P +O(T1) ;whi
h is asymptoti
ally optimal. Empiri
ally, the
onstant fa
tor hidden by the big O isoften
lose to 1 or 2 [8℄, and the formulaTP � T1=P + T1 ; (3)whi
h resembles \Brent's theorem" [11℄, is a good approximation of runtime. Cilk providesautomati
 timing instrumentation that
an
al
ulate the measures of work and
riti
al-pathlength during program exe
ution, thus allowing programmers to predi
t performan
e a
rossthe range of possible ma
hine sizes. Moreover, Cilk has been engineered so that the
ostof spawning is only 2{6 times the
ost of an ordinary C fun
tion
all, the a
tual valuedepending on the parti
ular
omputer platform. Sin
e the number of spawns performed by areal program during runtime tends to be relatively small, spawns have a negligible impa
t onrunning time. The low
ost of spawns en
ourages Cilk programmers to think about spawningas a natural and inexpensive way to expose parallelism in their appli
ations.The performan
e model provided by Equation (3)
an be interpreted using the notion ofparallelism , whi
h is de�ned as P = T1=T1. The parallelism is the average amount of workfor every step along the
riti
al path. Whenever P � P , meaning that the a
tual numberof pro
essors is mu
h smaller than the parallelism of the appli
ation, we have equivalentlythat T1=P � T1. Thus, the model predi
ts that TP � T1=P and the Cilk program runswith almost perfe
t linear speedup.Of
ourse, the degree to whi
h Equation (3) a

urately predi
ts the performan
e ofan appli
ation depends on how \ideal" the ma
hine is on whi
h the appli
ation is run.10

If the ma
hine has inadequate memory bandwidth, for example, performan
e will su�er
ompared what is predi
ted by this performan
e model. As it turns out, however, we havefound Equation (3) to be an ex
ellent predi
tor of performan
e over a wide range of parallel
omputers.Using
hess to ben
hmark Cilk's s
hedulerIn an early paper on Cilk [8℄, we used our ?So
rates
hess program to do
ument the eÆ
a
yof Cilk's s
heduler on the Conne
tion Ma
hine CM5 parallel
omputer. Figure 4 shows agraph borrowed from that paper. The �gure shows the out
ome from many experimentsof running ?So
rates on a variety of
hess positions using various numbers of pro
essors.Ea
h \+" symbol in the �gure indi
ates the measured speedup WP=TP for a P -pro
essorrun against the ma
hine size P for that run, where WP is the work of the
omputation.For
larity in this dis
ussion, we denote the work in a P -pro
essor
omputation by WP ,rather than by T1 as we have done thus far, be
ause ?So
rates uses a \spe
ulative" sear
halgorithm. Re
all that as we have de�ned the term \work," it is the total time needed toexe
ute all the threads in the
omputation dag. For a deterministi
 parallel algorithm, thework of a program is the same, independent of the number of pro
essors on whi
h the programis run, and hen
e, it is a

urate to use T1 to represent the work. For a nondeterministi

omputation exe
uted on several pro
essors, however, the
omputation dag may vary fromrun to run. Consequently, the work WP represented in a P -pro
essor
omputation dag maybear little or no relation to the work T1 of a serial exe
ution. Sin
e our goal is to evaluate theeÆ
a
y of Cilk's s
heduler, we fo
us on the speedup WP=TP , be
ause the normal speedupT1=TP in
orporates work overhead produ
ed by ?So
rates's spe
ulative sear
h algorithm forwhi
h Cilk's s
heduler is not responsible.In order to
ompare the out
omes for di�erent runs, we have normalized ea
h axis bydividing by the parallelismWP=T1. Thus, a normalized ma
hine size of 1:0 on the horizontalaxis indi
ates a run where the parallelism equals the ma
hine size. A normalized ma
hinesize of 0:1 indi
ates a run in whi
h the parallelism ex
eeds the ma
hine size by a fa
tor of 10.On the verti
al axis, a normalized speedup of 1:0 indi
ates a run that attains the maximumpossible speedup. A normalized speedup of 0:1 indi
ates a run in whi
h the speedup is 1=10the maximum possible.The two lower bounds (1) and (2) provide upper bounds on speedup, whi
h
an beinterpreted as lines in Figure 4. The horizontal line at 1:0 is the upper bound on speedupobtained from the
riti
al-path length, and the 45-degree line is the linear speedup bound.In addition, the
urve for Equation (3) is plotted, and as
an be seen from the �gure, itinterpolates the data reasonably well.The �gure shows that on runs for whi
h the parallelism ex
eeds the number of pro
es-sors, Cilk's s
heduler obtains nearly perfe
t linear speedup. This region is where we normallywould like an appli
ation to run, sin
e otherwise the marginal return on an additional pro-
essor is diminishing. In the region where the number of pro
essors is large
ompared tothe parallelism, the data is more s
attered, but the speedup is generally within a fa
tor of11

.

.
Linear Speedup Boun

dCritical Path Bound

NormalizedSpe
edup

Normalized Machine Size

1
0.1
0.01 10.10.01Figure 4: Normalized speedups for the ?So
rates
hess program running on a Conne
tion Ma
hineCM5.2 of the upper bound given by
riti
al-path length. We prefer not to operate in this range,sin
e the appli
ation
ould run nearly as fast with fewer pro
essors. If the appli
ation doesnot exhibit good parallelism, however, it may be for
ed to operate in this domain. For-tunately, good
hess algorithms exhibit a high degree of parallelism, and all of our
hessprograms operate in the linear-speedup regime most of the time. (Although we have spot-veri�ed this performan
e model for later versions of Cilk, we have not repeated the extensivedata-gathering.)?So
rates speedup anomalyThe measures of work and
riti
al-path length provide an algorithmi
 basis for evaluat-ing the performan
e of Cilk programs, a feature we were able to exploit when designingthe sear
h algorithm for ?So
rates. For the the 1994 ACM International Computer ChessChampionship, our program ran on NCSA's 512-node CM5. Be
ause of the high demandfor this massively parallel pro
essor, one of the largest ma
hines of its day, our a

ess to itwas limited. Consequently, we developed and tested most of our
ode on a 32-node CM5 atMIT.During development, in an attempt to optimize ?So
rates performan
e, one of our pro-grammers suggested a
hange to the sear
h algorithm. We ben
hmarked the original versionof the algorithm against the proposed version on the MIT ma
hine, and we dis
overed the12

new version to be signi�
antly faster. Nevertheless, we abandoned the proposed
hange,be
ause our analysis of work and
riti
al-path length indi
ated that it would be far sloweron the mu
h larger NCSA ma
hine to be used in the tournament.To understand this speedup anomaly, the numeri
al �gures in the following s
enario havebeen simpli�ed for dida
ti
 purposes. The original program ran the ben
hmark in T32 = 65se
onds on the 32-node MIT ma
hine. The proposed program ran the ben
hmark in T 032 = 40se
onds on the MIT ma
hine. But these numbers tell us little about what might happen onthe 512-node NCSA ma
hine.Fortunately, Cilk's instrumentation allowed us to analyze the situation. We dis
overedthat the original program had work T1 = 2048 se
onds and
riti
al-path length T1 = 1se
ond. The proposed program had work T 01 = 1024 se
onds and a mu
h longer
riti
al-pathlength of T 01 = 8 se
onds. Using the model 3, we
an verify thatT32 = 2048=32 + 1 = 65 ;T 032 = 1024=32 + 8 = 40 :In the a
tual in
ident, the agreement between model and experiment was
lose, but notexa
t. (We also
oped with the nondeterminism of ?So
rates's sear
h algorithm.)With work and
riti
al-path lengths in hand, we were now in a position to extrapolatethe performan
e of the two algorithms on the 512-node ma
hine:T512 = 2048=512 + 1 = 5 ;T 0512 = 1024=512 + 8 = 10 :The model predi
ts that on the tournament ma
hine, the proposed
hange would slow per-forman
e by a fa
tor of 2.On the larger NCSA ma
hine, the proposed program's longer
riti
al-path length dom-inates the running time be
ause of insuÆ
ient parallelism. The parallelism of the originalprogram is P = T1=T1 = 2048=1 = 2048, whereas the parallelism of the proposed pro-gram is P 0 = T 01=T 01 = 1024=8 = 128. Thus, the proposed program runs out of parallelismon the 512-pro
essor NCSA ma
hine, whereas the original program still has some parallel\sla
kness" to exploit.In the a
tual in
ident, the model predi
ted nearly a fa
tor-of-3 degradation on the NCSAma
hine. Subsequent testing on the ma
hine itself
on�rmed this predi
tion. Cilk's guaran-tee of eÆ
ient s
heduling, together with the performan
e model it engenders, saved us froma
ostly design error.4 Programming alpha-beta sear
hThis se
tion shows how a parallel version of alpha-beta sear
h [28℄
an be programmedin Cilk. Although ?So
rates and Cilk
hess use di�erent parallel variants of minimax sear
hbased on S
out sear
h [34℄ and MTD(f) [35℄, respe
tively, all the ideas in these parallel sear
h13

algorithms
an be illustrated in the
ontext of alpha-beta sear
h. This se
tion outlines thebasi
 \young-brothers-wait" strategy [18℄ for parallelizing alpha-beta sear
h, and then itprovides a walk-through of Cilk
ode that implements the strategy.Sin
e alpha-beta sear
h is des
ribed in virtually every introdu
tion to adversarial sear
h(see, for example, [20, page 66℄ and [44, Chapter 6℄), we shall assume basi
 familiarity withthis sear
h strategy. The key idea is that if White
an make a move in a position whi
h is sogood that Bla
k will not make the move leading to that position, then there is no point insear
hing White's other moves from that position. Those additional moves
an be pruned.In order to get maximal pruning, therefore, it is advantageous to sear
h the moves at a nodein the sear
h tree in best-�rst order.The basi
 alpha-beta sear
h algorithm is inherently serial, sin
e it uses information fromthe sear
h of one
hild of a node to prune subsequent
hildren. When
hildren are sear
hedin parallel, however, it is hard to use information gained from sear
hing one
hild to pruneanother. If one looks at an optimal game tree, however, one �nds an interesting property:all of the nodes are either maximal (all of the
hildren are sear
hed) or singular (only one ofthe
hildren is sear
hed).This observation suggests a parallel sear
h strategy
alled young brothers wait [18℄:if the �rst
hild of a node fails to generate a
uto� (the node is not singular), spe
ulate thatthe node is maximal, and thus sear
hing the remaining
hildren in parallel wastes no work.To implement this strategy, the parallel alpha-beta algorithm �rst sear
hes what it
onsidersto be its best
hild, just like serial alpha-beta sear
h. When that
hild returns, it maybe that the alpha-beta algorithm prunes the rest of the
hildren (a so-
alled beta-
uto�),and the sear
h returns immediately. Otherwise, the algorithm spe
ulates that the node ismaximal, and it spawns o� all the remaining
hildren in parallel. If one returns with a s
orethat
auses a beta-
uto�, the other
hildren are aborted, sin
e their work has been renderedunne
essary.We now walk through a Cilk implementation of this parallel sear
h algorithm. The walk-through is broken into four parts. As will be seen, the
ode is minimally di�erent from a Cimplementation of alpha-beta sear
h, in
orporating only six instan
es of Cilk keywords. Thealgorithm presented is a simple \full-width" sear
h, shorn of mate and draw dete
tion fordida
ti

onvenien
e. Mate and draw dete
tion, as well as sear
h heuristi
s su
h as null-move[2, 3, 16, 23℄ or killers [1, 39℄,
an be in
orporated into this
ode without diÆ
ulty, as hasbeen done in both ?So
rates and Cilk
hess.The �rst part of the
ode de�nes the Cilk pro
edure sear
h:
ilk int sear
h(position *prev, int move, int depth){ position
ur; /*
urrent position */int bests
ore = -INF; /* best s
ore so far */int num_moves; /* number of
hildren */int mv; /* index of
hild */int s
; /*
hild's s
ore */int
utoff = FALSE; /* have we seen a
utoff? */14

This
ode assumes that the
urrent position is generated by the
hild, not the parent. Thus,a pointer to the parent position is passed in the parameter prev, and the
urrent position willbe produ
ed by applying move to the parent position. The parameter depth is de
rementedby ea
h re
ursive
all until it be
omes 0, so that the algorithm implements a full-widthsear
h. The position data stru
ture
ontains �elds alpha and beta delimiting the windowof the sear
h.The se
ond part of the
ode de�nes the inlet
at
h, whi
h in
orporates a
hild's s
oreinto the
urrent node:inlet void
at
h(int
hild_s
){
hild_s
 = -
hild_s
; /* negamax */if (
hild_s
 > bests
ore){ bests
ore =
hild_s
;if (
hild_s
 >
ur.alpha){
ur.alpha =
hild_s
;if (
hild_s
 >=
ur.beta){
utoff = TRUE; /* no need to sear
h further */abort; /* terminate other
hildren */}}}}The
ode implements a \negamax" [28℄ strategy wherein s
ores are always viewed from thepoint of view of the side to move. If the value
hild s
 returned by a
hild is the best sofar, the variable bests
ore is updated to re
ord that fa
t. If the
hild's s
ore ex
eeds the
urrent value for alpha, then
ur.alpha is updated. Finally, if the
hild's s
ore equals orex
eeds the
urrent value for beta, a beta-
uto� o

urs. The
ag
utoff is set, whi
h, aswe shall see, will pre
lude future
hildren from being spawned. In addition,
hildren thathave already been spawned are aborted.The third part of the
ode is identi
al to an alpha-beta sear
h in pure C,
ontaining noCilk keywords:/*
reate
urrent position and set up for sear
h */make_move(prev, &move, &
ur);s
 = eval(&
ur); /* stati
 evaluation */if (depth <= 0) /* leaf node */{ 15

return(s
);}
ur.alpha = -prev->beta; /* negamax */
ur.beta = -prev->alpha;/* generate moves, hopefully in best-first order */num_moves = gen_moves (&
ur);The indi
ated move is made on the board, updating the
ur stru
ture with the new position.A stati
 evaluation of the
urrent position is made. If the
urrent position is a leaf node ofthe sear
h, be
ause the desired depth of sear
h has been a
hieved, the s
ore from the stati
evaluation is returned. Otherwise, the alpha-beta window for the
urrent sear
h is updated,and the move generator is
alled.The �nal part of the
ode performs the a
tual sear
h:/* sear
h the moves */for (mv=0; !
utoff && mv<num_moves; mv++){
at
h(spawn sear
h(&
ur, mv, depth-1));if (mv==0) syn
; /* young brothers wait */}syn
; /* this syn
 is outside the loop so that thesear
hes after the first exe
ute in parallel */return(bests
ore);}The loop spawns o� the
hildren of the
urrent position. The loop guard terminates the loopif a
hild
auses a beta-
uto�, whi
h is dis
overed within the
at
h inlet. After the �rst
hildis spawned o�, a syn
 is exe
uted, suspending the loop until after the �rst
hild returns,thus implementing the young-brothers-wait strategy. The remaining
hildren are spawnedo� in parallel, sin
e no subsequent syn
 o

urs within the loop. After all the
hildren arespawned o�, the algorithm syn
s so that the best s
ore of all the
hildren
an be returned.Alpha-beta sear
h makes a strong
ase for Cilk's eÆ
ient expressiveness. The di�eren
ebetween an ordinary C program for alpha-beta sear
h and the Cilk program is only sixkeywords. Indeed, if minimizing the number of instan
es of Cilk keywords were the goal, the�nal syn

ould be eliminated by in
orporating it into the syn
 within the loop. The
odewould be more
rypti
, however.The
ode for minimaz sear
h in a high-performan
e
hess program is far more
ompli
atedthan the simple alpha-beta algorithm presented here. Among the major issues fa
ed in areal program is how to minimize the likelhood that spe
ulative
ode is exe
uted futilely. Anybran
hes of the sear
h tree that are pruned by a serial sear
h algorithm represent wasted16

work. When Cilk
hess runs on a large multipro
essor, for example, the work
an expand bya fa
tor of 3. Good move-ordering heuristi
s tend to minimize the expansion of work.5 Other parallel programming issuesIn this se
tion, we explore several other issues that arise when using Cilk to program a
hess program. First, we examine how Cilk's lo
king primitives support atomi
 a

esses to atransposition table. Se
ond, we investigate how Cilk's shared-memory programming modelsimpli�es the problem of dis
overing draws by repetition.Cilk support for atomi
ityAll modern
hess programs keep a transposition table to store positions that the programhas seen. A
hess position is entered into the transposition table when the sear
h of thatposition returns a s
ore. The entry for ea
h position typi
ally in
ludes the depth that theposition was sear
hed, a bound on the s
ore, move-ordering information, and various otherheuristi
 and bookkeeping data. The idea is that if the program sees the same position ina later sear
h, it may be able to use the information stored in the transposition table toimprove the quality of the sear
h or avoid the sear
h altogether. Transposition tables areusually stored as large hash tables.When two parallel threads a

ess a
ommon entry in a transposition table, anomalousbehavior
an result if one or both attempt to
hange the entry. This problem arises whenthe entry
annot be modi�ed as a single atomi
 operation. While one thread is in the midstof
hanging several words of data, the other thread may see an entry
onsisting of both new(
hanged) and old (un
hanged) data. To operate
orre
tly, the se
ond thread should seeeither the old data in its entirety or the new data in its entirety, but never a mixture.Cilk provides mutual-ex
lusion lo
ks to allow the
reation of atomi
 regions of
ode. InCilk, a lo
k has type Cilk lo
kvar. The two operations on lo
ks are Cilk lo
k to test a lo
kand blo
k if it is already a
quired, and Cilk unlo
k to release a lo
k. Both fun
tions take anobje
t of type Cilk lo
kvar as a single argument. The lo
k obje
t must be initialized usingCilk lo
k init() before it is used. The region of
ode between a Cilk lo
k statement andthe
orresponding Cilk unlo
k statement is
alled a
riti
al se
tion .The following
ode illustrates how Cilk's mutual ex
lusion lo
ks
an be used to enfor
eatomi
ity in a transposition table ttab.typedef stru
t{ Cilk_lo
kvar lo
k;int key;int s
ore;int bestmove;int depth; 17

...}ttentry;ttentry ttab[TTSIZE℄;void init_ttab(){ int i;for (i=0; i<TTSIZE; i++){ Cilk_lo
k_init(ttab[i℄.lo
k);}}void update_entry(ttentry *e, int key, int s
ore, ...){ Cilk_lo
k(e->lo
k); /* begin
riti
al se
tion */e->key = key;e->s
ore = s
ore;...Cilk_unlo
k(e->lo
k); /* end
riti
al se
tion */}A Cilk lo
k is stored as part of ea
h transposition-table entry. Cilk lo
ks must be initializedbefore their �rst use. This initialization is performed by the C fun
tion init ttab() whi
hmust be
alled before the transposition table is used. The fun
tion update entry() up-dates the entry e atomi
ally by a
quiring e->lo
k before modifying the entry and releasinge->lo
k afterwards. Thus, if two threads simultaneously attempt to
hange the entry, theyexe
ute in sequen
e without interferen
e.Why use a lo
k for ea
h entry rather than a single lo
k for the entire transposition table?After all, wouldn't a single lo
k be simpler and save spa
e? A single-lo
k solution
an indeedwork e�e
tively if the number of pro
essors on whi
h Cilk is run is small, but it does not s
alewell with the number of pro
essors. The problem is that while a lo
k is held, every otherthread that attempts to a
quire the lo
k must wait. As the number of threads in
reases,the lo
k be
omes a bottlene
k,
ausing time to be wasted by threads waiting for the lo
k tobe released. In
ontrast, using one lo
k per table entry yields a s
alable solution. Sin
e thenumber of entries is usually far larger than the number of a
tive threads, the
han
es of two18

threads
ontending for a lo
k is small, and little time is wasted.The Superte
h resear
h group argued long and hard about whether lo
ks should bein
luded in Cilk. Cilk-5 represents great progress over Cilk-1 in redu
ing the amount ofproto
ol that a programmer must write. The proto
ol of a
quiring and releasing lo
ks,albeit simple, reverses that progress. Eventually, we de
ided that the pra
ti
al need foratomi
ity outweighed the
omplexity of lo
ks. Our de
ision was aided by the developmentof a debugging tool we
all the Nondeterminator [13, 19℄.The Nondeterminator �nds data ra
es in Cilk
ode. A data ra
e o

urs when twoparallel threads, holding no lo
ks in
ommon, a

ess the same memory lo
ation, and oneof the threads modi�es the lo
ation. Data ra
es may be intended by the programmer, butthey are more likely to be bugs. The Nondeterminator exe
utes the Cilk
ode serially on agiven input, using a novel data stru
ture that keeps tra
k of what threads operate logi
allyin parallel. Every read and write by the program is instrumented to see if a date ra
e exists.The Nondeterminator is not a veri�
ation tool, sin
e it simulates a
tual exe
ution on a giveninput, but it does provide a guarantee of �nding ra
es if they exist.At this point, we must
onfess that Cilk
hess does
ontain a data ra
e. We have des
ribedhow Cilk's library fun
tions for lo
king
an be used to make a

esses to the transpositiontable atomi
. Cilk
hess, however, does not lo
k a

esses to the transposition table. Wede
ided that the overhead for lo
king would a
tually weaken the program more on averagethan if we did no lo
king. We indeed risk that a ra
e might o

ur, but we have determinedthat the odds that it a
tually would a�e
t the out
ome of a
ompetition is negligible. Thus,Cilk
hess is provably, and intentionally, non-bug-free.Parallel testing for repetitionsThe rules of
hess allow a player to
laim a draw if his move brings about the third repetitionof a position (with the same side to move). Computer programs usually implement this ruleduring a sear
h by
onsidering any position that mat
hes an an
estor in the game tree to bea draw. A
ommon implementation of this strategy is to use a hash table for bookkeeping.We now examine why this hash-table strategy breaks down in a parallel implementation andhow Cilk's shared-memory semanti
s allow repetitions to be easily dete
ted in parallel.The hash-table approa
h to repetition testing is fairly simple. All positions that havea
tually been played in the game are entered into the hash table before the sear
h begins.During the sear
h, whenever a position is en
ountered, it is entered into the hash table. The
hildren of the position are then re
ursively sear
hed. S
ores are ba
ked up in a

ordan
ewith the minimax sear
h algorithm to produ
e a s
ore for the position. When the s
ore hasbeen
omputed, the position is removed from the hash table. During the re
ursive sear
h, ifa position is en
ountered that is already in the hash table, a repeated position has o

urred.In a parallel
hess program, a naive implementation of this strategy fails to work. First,the problems of atomi
ally updating the hash table must be solved, but that is not themain diÆ
ulty. When a thread
omes a
ross a position stored in the hash table, the threaddoes not know if the position was en
ountered by its an
estor | a real repetition | or by19

another thread exploring another part of the game tree that just happened to examine thesame position. One
an imagine keeping tra
k of whi
h game-tree nodes are asso
iated withwhi
h thread of exe
ution, but su
h bookkeeping s
hemes qui
kly be
ome unwieldy.To dete
t repeated positions, Cilk
hess uses a method that parallelizes easily. For everyboard position, a pointer is maintained to the parent's position. When evaluating a position,Cilk
hess walks the
hain of an
estors from the
urrent position ba
kwards to the beginningof the game and
ompare to see if the same position already appears in the
hain. Cilk
hessa
tually
he
ks only every se
ond position starting from the fourth ba
k, sin
e a repeatedposition must have the same side on move and two
onse
utive positions with the same sideon move
annot repeat. (Cilk
hess also a

elerates the pro
ess by
omparing the hash keysof the positions.)It might seem that the
ost of s
anning an
estors
ould be
ome large, but the s
an
an usually be terminated qui
kly. Some moves, like
aptures or pawn pushes, have the
hara
teristi
 that on
e played, no sequen
e of subsequent moves
an bring about a positionthat existed before the exe
ution of that move. These irreversible moves provide a barrierabove whi
h the s
an need not explore. Our empiri
al studies of middle-game positionsindi
ate that the number of an
estors that need to be
he
ked is less than 2 on average,although this number in
reases slightly in the endgame. This strategy of s
anning an
estorsba
k to an irreversible move was used in the CHESS 4.5 program [39, page 103℄.Be
ause of Cilk's strong support for shared-memory semanti
s, the parallel Cilk
odefor the an
estor s
an is identi
al to the serial C
ode. No parallel
onstru
ts whatsoeverare needed. Although the s
ans of several threads may interse
t at
ommon an
estors, nolo
king or
oordination is required, be
ause the an
estor data stru
tures are only being read,not modi�ed. Some parallel languages require spe
ial me
hanisms to dereferen
e pointers toshared memory, but Cilk does not. Consequently,
ompared with the C implementation, theCilk implementation in
urs no undue performan
e penalty. The
ode is the same.6 Con
lusionTo produ
e high-performan
e parallel appli
ations, programmers often fo
us on
ommuni-
ation
osts and exe
ution time, quantities that are dependent on spe
i�
 ma
hine
on�gu-rations. Cilk's philosophy argues that a programmer should think instead about work and
riti
al-path length, abstra
tions that
an be used to
hara
terize the performan
e of analgorithm independent of the ma
hine
on�guration. Cilk provides a programming modelin whi
h work and
riti
al-path length are measurable quantities, and it delivers guaranteedperforman
e as a fun
tion of these quantities. Moreover, Cilk programs \s
ale down" torun on one pro
essor with nearly the eÆ
ien
y of analogous C programs. Consequently, anyperforman
e tuning of the C elision of the Cilk program automati
ally a

rue to the Cilkprogram itself.The Superte
h resear
h group in LCS found that
omputer
hess was an ideal vehi
le fordeveloping parallel-programming te
hnology. Resear
h groups
an easily wander o� solvingabstra
t problems having no pra
ti
al signi�
an
e. Chess is a formidable real-world prob-20

lem whi
h long predates
omputers, not an arti�
ial problem tailor-made to highlight ourresear
h. Chess
hallenged our resear
h group to address previously negle
ted issues involv-ing the parallel programming of irregular and symboli

omputations, rather than regularand numeri
al problems that typify mu
h of the existing literature on parallel
omputing.Students worked on an engaging problem that allowed them to highlight their parallel-programming resear
h results in an externally visible way, (i.e., they
ould explain it to theirparents). Tournament events motivated the team and gave us \end-to-end" [38℄ unbiasedfeedba
k on our work. Finally,
hess programming was just plain fun!The
ombination of
hess and Cilk allowed the Superte
h team to explore a gamut ofissues a
ross
omputer s
ien
e. Too often, students
ome out of s
hool believing that intel-le
tual a
tivity is segregated into disparate, nonoverlapping areas. Chess and Cilk allowedus to integrate knowledge in algorithms, arti�
ial intelligen
e, programming languages,
on-
urren
y,
omputer ar
hite
ture, software engineering, and high performan
e. The
ross-pollination of ideas re�ned Cilk into a simple, but powerful, tool for parallel programming.The Cilk developers are
urrently working on enhan
ing the Cilk system environment,in
luding support for parallel I/O and streams, job s
heduling, and fault toleran
e. Cilk soft-ware, do
umentation, publi
ations, and up-to-date information are available via the Web athttp://superte
h.l
s.mit.edu/
ilk. Detailed des
riptions of the foundation and historyof Cilk
an be found in [5, 27, 37, 21℄.A
knowledgmentsMany people have
ontributed to the series of Cilk
hess programs produ
ed by the Superte
hresear
h group of the MIT Laboratory for Computer S
ien
e. Spe
ial thanks go to ChrisJoerg, who has
ontinually provided solid input to every program, even after re
eiving hisPh.D. Others who have
ontributed over the years to our
hess programs in
lude Reid Bar-ton, Don Beal, Bobby Blumofe, Matteo Frigo, Geo�rey Gelman, Runako Godfrey, Mi
haelHalbherr, Larry Kaufman, Bradley Kuszmaul, Phil Lisie
ki, Aske Plaat, Ryan Porter, Har-ald Prokop, Keith Randall, and Yuli Zhou. Thanks to Chris Joerg and Ernst Heinz forthoughtful
omments on drafts of this manus
ript. Finally, thanks to Mi
hael Dertouzos,Dire
tor of MIT's Laboratory for Computer S
ien
e, for providing �nan
ial assistan
e sothat our
hess programs
ould
ompete in
omputer-
hess
ompetitions.Referen
es[1℄ S.G. Akl and M.M. Newborn. The prin
ipal
ontinuation and the killer heuristi
. In1977 ACM Annual Conferen
e, pages 466{473, Seattle, Washington. ACM.[2℄ Don F. Beal. Experiments with the null move. In Don F. Beal, editor, Advan
es inComputer Chess, volume 5. Elsevier S
ien
e, 1989.21

[3℄ Don F. Beal. A generalised quiesen
e sear
h algorithm. Arti�
ial Intelligen
e, 43(1):85{98, April 1990.[4℄ Hans Berliner and Carl Ebeling. Pattern knowledge and sear
h: the SUPREM ar
hi-te
ture. Arti�
ial Intelligen
e, 38(2):161{198, Mar
h 1989.[5℄ Robert D. Blumofe. Exe
uting Multithreaded Programs EÆ
iently. PhD thesis, De-partment of Ele
tri
al Engineering and Computer S
ien
e, Massa
husetts Institute ofTe
hnology, September 1995.[6℄ Robert D. Blumofe, Matteo Frigo, Chrisopher F. Joerg, Charles E. Leiserson, andKeith H. Randall. An analysis of dag-
onsistent distributed shared-memory algorithms.In Pro
eedings of the Eighth Annual ACM Symposium on Parallel Algorithms and Ar-
hite
tures, pages 297{308, Padua, Italy, June 1996.[7℄ Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, andKeith H. Randall. Dag-
onsistent distributed shared memory. In Pro
eedings of the10th International Parallel Pro
essing Symposium, Honolulu, Hawaii, April 1996.[8℄ Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,Keith H. Randall, and Yuli Zhou. Cilk: An eÆ
ient multithreaded runtime system.In Pro
eedings of the Fifth ACM SIGPLAN Symposium on Prin
iples and Pra
ti
e ofParallel Programming (PPoPP), pages 207{216, Santa Barbara, California, July 1995.[9℄ Robert D. Blumofe and Charles E. Leiserson. Spa
e-eÆ
ient s
heduling of multithreaded
omputations. In Pro
eedings of the Twenty Fifth Annual ACM Symposium on Theoryof Computing, pages 362{371, San Diego, California, May 1993.[10℄ Robert D. Blumofe and Charles E. Leiserson. S
heduling multithreaded
omputationsby work stealing. In Pro
eedings of the 35th Annual Symposium on Foundations ofComputer S
ien
e, pages 356{368, Santa Fe, New Mexi
o, November 1994.[11℄ Ri
hard P. Brent. The parallel evaluation of general arithmeti
 expressions. Journal ofthe ACM, 21(2):201{206, April 1974.[12℄ Eri
 A. Brewer and Robert Blumofe. Strata: A multi-layer
ommuni
ations library.MIT Laboratory for Computer S
ien
e. Available as ftp://ftp.l
s.mit.edu/pub/superte
h/strata/strata.tar.Z.[13℄ Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and An-drew F. Stark. Dete
ting data ra
es in Cilk programs that use lo
ks. In Pro
eedings ofthe Tenth Annual ACM Symposium on Parallel Algorithms and Ar
hite
tures, PuertoVallarta, Mexi
o, June 1998.[14℄ Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introdu
tion to Algo-rithms. The MIT Press, Cambridge, Massa
husetts, 1990.22

[15℄ David E. Culler, Anurag Sah, Klaus Erik S
hauser, Thorsten von Ei
ken, and JohnWawrzynek. Fine-grain parallelism with minimal hardware support: A
ompiler-
ontrolled threaded abstra
t ma
hine. In Pro
eedings of the Fourth International Con-feren
e on Ar
hite
tural Support for Programming Languages and Operating Systems,pages 164{175, Santa Clara, California, April 1991.[16℄ Christian Donninger. Null move and deep sear
h: Sele
tive sear
h heuristi
s for obtuse
hess programs. ICCA Journal, 16(3):137{143, September 1993.[17℄ Mathias Feist. The 9th World Computer-Chess Championship. ICCA Journal,22(3):149{159, September 1999.[18℄ R. Feldmann, P. Mysliwietz, and B. Monien. Game tree sear
h on a massively parallelsystem. Advan
es in Computer Chess 7, pages 203{219, 1993.[19℄ Mingdong Feng and Charles E. Leiserson. EÆ
ient dete
tion of determina
y ra
es in Cilkprograms. In Pro
eedings of the Ninth Annual ACM Symposium on Parallel Algorithmsand Ar
hite
tures, pages 1{11, Newport, Rhode Island, June 1997.[20℄ Peter W. Frey. An introdu
tion to
omputer
hess. In Peter W. Frey, editor, Chess Skillin Man and Ma
hine,
hapter 3, pages 54{81. Springer-Verlag, se
ond edition, 1983.[21℄ Matteo Frigo. Portable High-Performan
e Programs. PhD thesis, Department of Ele
-tri
al Engineering and Computer S
ien
e, Massa
husetts Institute of Te
hnology, June1999.[22℄ Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of theCilk-5 multithreaded language. In ACM SIGPLAN '98 Conferen
e on ProgrammingLanguage Design and Implementation (PLDI), pages 212{223, Montreal, Canada, June1998.[23℄ G. Goets
h and M.S. Campbell. Experiments with the null-move heuristi
. In T.A.Marsland and J. S
hae�er, editors, Computers, Chess, and Cognition, pages 159{168.Springer, 1990.[24℄ Super
omputing Te
hnologies Group. Cilk 5.2 Referen
e Manual. MIT Laboratory forComputer S
ien
e, 545 Te
hnology Square, Cambridge, Massa
husetts 02139, July 1998.available on the World Wide Web at URL \http://superte
h.l
s.mit.edu/
ilk".[25℄ Mi
hael Halbherr, Yuli Zhou, and Chris F. Joerg. MIMD-style parallel programmingwith
ontinuation-passing threads. In Pro
eedings of the 2nd International Workshopon Massive Parallelism: Hardware, Software, and Appli
ations, Capri, Italy, September1994.[26℄ Chris Joerg and Bradley C. Kuszmaul. Massively parallel
hess. In Pro
eedings of theThird DIMACS Parallel Implementation Challenge, Rutgers University, New Jersey,O
tober 1994. Available as ftp://theory.l
s.mit.edu/pub/
ilk/dima
s94.ps.Z.23

[27℄ Christopher F. Joerg. The Cilk System for Parallel Multithreaded Computing. PhD the-sis, Department of Ele
tri
al Engineering and Computer S
ien
e, Massa
husetts Insti-tute of Te
hnology, January 1996.[28℄ Donald E. Knuth and Ronald W. Moore. An analysis of alpha-beta pruning. Arti�
ialIntelligen
e, 6(4):293{326, Winter 1975.[29℄ Danny Kope
 and Mike Valvo. The 23rd ACM International Computer-Chess Champi-onship. ICCA Journal, 16(1):38{46, Mar
h 1993.[30℄ Bradley C. Kuszmaul. Syn
hronized MIMD Computing. PhD thesis, Departmentof Ele
tri
al Engineering and Computer S
ien
e, Massa
husetts Institute of Te
hno-logy, May 1994. Available as MIT Laboratory for Computer S
ien
e Te
hni
al ReportMIT/LCS/TR-645 or ftp://theory.l
s.mit.edu/pub/bradley/phd.ps.Z.[31℄ Bradley C. Kuszmaul. The STARTECH massively parallel
hess program. ICCA Jour-nal, 18(1):3{19, Mar
h 1995.[32℄ Robert C. Miller. A type-
he
king prepro
essor for Cilk 2, a multithreaded C language.Master's thesis, Department of Ele
tri
al Engineering and Computer S
ien
e, Massa-
husetts Institute of Te
hnology, May 1995.[33℄ M. Newborn. The 24th ACM International Computer-Chess Championship. ICCAJournal, 17(3):159{164, September 1994.[34℄ Judea Pearl. Asymptoti
 properties of minimax trees and game-sear
hing pro
edures.Arti�
ial Intelligen
e, 14(2):113{138, September 1980.[35℄ Aske Plaat. Resear
h Re: sear
h & Re-sear
h. PhD thesis, Erasmus University, Rotter-dam, The Netherlands, June 1996.[36℄ Aske Plaat, Jonathan S
hae�er, Wim Pijls, and Arie de Bruin. Best-�rst �xed-depthminimax algorithms. Arti�
ial Intelligen
e, 87:255{293, November 1996.[37℄ Keith H. Randall. Cilk: EÆ
ient Multithreaded Computing. PhD thesis, Department ofEle
tri
al Engineering and Computer S
ien
e, Massa
husetts Institute of Te
hnology,May 1998.[38℄ J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design.ACM Transa
tions on Computer Systems, 2(4):277{288, November 1984.[39℄ David J. Slate and Lawren
e R. Atkin. CHESS 4.5|the Northwestern University
hessprogram. In Peter W. Frey, editor, Chess Skill in Man and Ma
hine,
hapter 4, pages82{118. Springer-Verlag, se
ond edition, 1983.[40℄ H. K. Tsang and Don F. Beal. The 8th World Computer-Chess Championship. ICCAJournal, 18(2):93{111, June 1995. 24

[41℄ Th. van der Storm. Report on the 16th Open Dut
h Computer-Chess Championship.ICCA Journal, 19(4):272{275, De
ember 1996.[42℄ Th. van der Storm. Report on the 17th Open Dut
h Computer-Chess Championship.ICCA Journal, 20(4):271{272, De
ember 1997.[43℄ Th. van der Storm. Report on the 18th Open Dut
h Computer-Chess Championship.ICCA Journal, 21(4):252{254, De
ember 1998.[44℄ Patri
k Henry Winston. Arti�
ial Intelligen
e. Addison-Wesley, Reading, Massa
hu-setts, third edition, 1992.

25

