
Using Cilk to Write Multipro
essor Chess ProgramsDon DaileyCharles E. LeisersonMIT Laboratory for Computer S
ien
eSeptember 27, 2001Cilk (pronoun
ed \silk") is a C-based, algorithmi
, multithreaded language for parallelprogramming developed at the MIT Laboratory for Computer S
ien
e. Cilk makes it easy toprogram irregular parallel appli
ations su
h as 
hess. The Cilk programmer need not worryabout proto
ols, job 
oordination, and load balan
ing, sin
e they are handled automati
allyby Cilk's runtime system using provably eÆ
ient me
hanisms. Cilk has been used to pro-gram a variety of multipro
essor 
hess programs, in
luding the award-winning ?So
rates andCilk
hess programs. This paper overviews the Cilk language, illustrating how Cilk supportsthe programming of parallel game-tree sear
h and other 
hess me
hanisms.1 Introdu
tionThe Super
omputing Te
hnologies (Superte
h) Resear
h Group in the MIT Laboratory forComputer S
ien
e began developing the Cilk multithreaded language [5, 8, 22, 27℄ in 1994.Development of Cilk has been intertwined with the development of a series of 
omputer
hess programs: StarTe
h, ?So
rates, and Cilk
hess. Although the development of Cilkitself has been funded by the U.S. Defense Advan
ed Resear
h Proje
ts Agen
y (DARPA),all of our 
hess programs have been \skunkworks," developed in our spare time withoutresear
h support.1 Nevertheless, over the years, 
omputer 
hess has provided mu
h of theimpetus for evolving the Cilk language.Our �rst parallel 
hess program was StarTe
h [30, 31℄, written by Bradley Kuszmaul.StarTe
h's evaluation fun
tion is a software version of Hans Berliner's serial Hite
h pro-gram [4℄. The parallel sear
h algorithm, whi
h Kuszmaul 
alled \Jamboree sear
h," usesthe \young brothers wait" heuristi
 [18℄ to parallelize S
out sear
h [34℄. StarTe
h wonThird Prize in the 1993 ACM International Computer-Chess Championship [29℄ runningon a 512-node Conne
tion Ma
hine CM5 at the University of Illinois National Center forSuper
omputer Appli
ations (NCSA).1The MIT Laboratory for Computer S
ien
e has made dis
retionary funds available for us to enter our
hess programs in 
omputer-
hess tournaments around the world. We are grateful for this support.1



Our experien
e with StarTe
h 
onvin
ed us that the logi
 of the game-tree sear
h itselfshould be separated from the logi
 of s
heduling, load balan
ing, and job 
oordination. InStarTe
h, the appli
ation and system logi
 are intermixed in an event-driven state ma
hine,produ
ing obs
ure 
ode that was undebuggable by anyone but someone of Kuszmaul's 
aliber.Fortunately, the Superte
h group's resear
h fo
us was soon to provide better te
hnology.At the time Kuszmaul was working on StarTe
h, two 
ollateral resear
h e�orts were un-derway in the MIT Laboratory for Computer S
ien
e. Mi
hael Halbherr, Chris Joerg, andYuli Zhou were developing a multithreaded language 
alled PCM [25℄ within the data
owresear
h group led by Professor Arvind. In addition, Robert Blumofe and Charles Leisersonof the Superte
h group were investigating algorithms for s
heduling multithreaded 
omputa-tions [9, 10℄. The two teams 
ombined for
es to develop the �rst version of a runtime systemwe 
alled Cilk. Cilk-1 uses the same C prepro
essing front-end as PCM, but it in
orporatesa provably good \work-stealing" s
heduler based on the ideas of Blumofe and Leiserson.While designing Cilk-1, the Superte
h team started to work with Don Dailey and LarryKaufman on a new 
hess program: ?So
rates [26℄. This program was based on Dailey andKaufman's serial So
rates program, whi
h had won First Prize in the 1993 ACM InternationalComputer-Chess Championship [29℄, where StarTe
h won Third Prize. Parallelizing theserial algorithm with Cilk-1 took about a month and a half of e�ort, most of whi
h was doneby Dailey and Joerg. Eventually, ?So
rates won Third Prize in the 1994 ACM InternationalComputer-Chess Championship [33℄ running on NCSA's 512-node CM5. Later, ?So
rateswon Se
ond Prize in the 1995 ICCAWorld Computer-Chess Championship [40℄ in Hong Kongrunning on the 1824-node Intel Paragon at Sandia National Laboratories in New Mexi
o,losing to the program Fritz in the tie-breaking playo� game.Although Cilk-1 insulates the programmer from s
heduling and other runtime issues, itis still a painful language to use, be
ause the parallel-programming model, whi
h is basedon expli
it 
ontinuation passing, demands that the programmer write diÆ
ult-to-debug pro-to
ols. Cilk-1 la
ks subroutine-like 
all/return semanti
s, requiring instead that threads
ommuni
ate 
ontrol expli
itly. Although one 
an \wire up" any parallel 
ontrol stru
turein Cilk-1, the resulting 
ode is so proto
ol-laden that for ?So
rates, only Joerg was 
apableof modifying it without introdu
ing bugs. Ironi
ally, we had over
ome the limitations ofStarTe
h, whi
h enabled us to write far more 
ompli
ated 
ode, but whi
h on
e again we
ould not debug. Although we had made strides in allowing appli
ations to be 
oded withoutworrying about s
heduling, Cilk-1 still requires the programmer to engineer a rat's nest ofproto
ols for threads to 
ommuni
ate. We needed a way of writing proto
ol-free, or at leastlargely proto
ol-free, multithreaded 
ode.Our se
ond version of Cilk provides a 
all/return semanti
s for parallelism using simplespawn and syn
 keywords, features that remain in today's Cilk-5. Instead of being a simpleC prepro
essor, Rob Miller implemented Cilk-2's 
ompiler 
ilk2
 [32℄ as a type-
he
kingsour
e-to-sour
e translator whi
h 
ompiles a Cilk sour
e into a C postsour
e. The C post-sour
e is then run through an ordinary C 
ompiler and linked with the Cilk runtime systemto produ
e obje
t 
ode. Cilk-2 was a resounding su

ess. Its 
all/return parallelism simpli-�ed the 
oding of many appli
ations, in
luding graphi
s rendering by ray tra
ing and protein2



folding by ba
ktra
k sear
h.The one appli
ation that we found ourselves unable to 
ode in \pure" Cilk-2, however,was 
omputer 
hess. One reason was that 
omputer 
hess requires a global transpositiontable in whi
h previously evaluated positions are stored. Sin
e ?So
rates was developedfor distributed-memory parallel 
omputers, su
h as the Conne
tion Ma
hine CM5 and IntelParagon, it keeps its transposition table stored a
ross the individual memories of pro
essors.These platforms la
k hardware support for shared memory. Sin
e Cilk-2 provides no softwareremedy, ?So
rates must store and look up 
hess positions expli
itly using the Strata [12℄\a
tive" message-passing layer. Although the a
tive messaging is en
apsulated within thesoftware module for the transpostion table, we were disappointed that 
hess 
ould not beprogrammed without resorting to a proto
ol layer.Cilk-3 tried to address this shared-memory issue by providing software distributed sharedmemory, supported by the 
ilk2
 
ompiler. Be
ause Cilk-3 operates on large virtual-memory pages, however, it supports a relaxed model of 
onsisten
y [7, 6℄. Although Cilk-3's
onsisten
y model allowed us to write appli
ations su
h as matrix multipli
ation and LU-de
omposition, the model does not support the kind of �ne-grained shared a

ess of largetables needed by a 
hess appli
ation.In addition, although 
all/return semanti
s allow the 
ontrol for a wide variety of pro-grams to be easily 
oded, the nondeterministi
 parallel sear
hing algorithms required by
omputer 
hess 
annnot be 
oded. The Superte
h group debated whether the resear
hprogress on Cilk-2 and Cilk-3 had been wasted for the 
omputer-
hess appli
ation, sin
eneither 
all/return semanti
s nor software distributed shared memory had provided any realanswer to the 
omplexities of 
oding 
omputer 
hess.Part of the answer was provided by hardware vendors. Thanks to a generous donation in1996 by Sun Mi
rosystems, the Superte
h resear
h group obtained a

ess to a 12-pro
essorEnterprise 5000 system, a \symmetri
 multitpro
essor" providing 
onsistent shared mem-ory. With this 
omputer system, 
oding a 
hess transposition table was trivial, sin
e ea
h
omputer 
ould dire
tly a

ess all of memory without interrupting another pro
essor.Resear
h provided the rest of the answer. Inspired by work at Berkeley [15℄, Cilk-4introdu
ed the \inlet" 
on
ept into Cilk-4. An inlet is a linguisti
 me
hanism whi
h fa
il-itates 
oding of the nondeterministi
 sear
h required for parallel game-tree sear
hing (seeSe
tion 2). In addition to inlets, Cilk-4 provides an \abort" feature to allow spe
ulative
omputations to be terminated when it is determined that they are no longer needed. Withthese features, programming parallel nondeterministi
 appli
ations, su
h as 
hess, be
omesmu
h easier.Keith Randall led the implementation of Cilk-4, whi
h was the �rst version of Cilkdesigned for shared-memory multipro
essors. Eventually, Matteo Frigo engineered a ma-jor rewrite of Cilk-4 to produ
e the more stable and maintainable Cilk-5 release. VolkerStrumpen also 
ontributed to enhan
ing the robustness of the system, and many otherswrote software 
omponents. The 
urrent Cilk-5 release runs on most shared-memory multi-pro
essors (Sili
on Graphi
s, Sun, Digital/Compaq, Intel, et
.).Our latest 
hess program Cilk
hess was written with help from many of the members of3



the Superte
h group. Cilk
hess uses the inlet feature of Cilk-5 to implement a parallel versionof the MTD(f) sear
h algorithm [36℄. Cilk
hess won First Prize at the 1996 Dut
h OpenComputer-Chess Championship [41℄ running on MIT's 12-pro
essor Sun Enterprise 5000, andSe
ond Prize in 1997 [42℄ and 1998 [43℄ running on Boston University's 64-pro
essor Sili
onGraphi
s Origin 2000. At the 1999 World Computer-Chess Championship [17℄, running ona 256-pro
essor SGI Origin 2000 at NASA Ames, Cilk
hess ended up fourth out of a �eld of30 programs, 1=2 point behind the program Shredder, whi
h be
ame World Champion as aresult of the tournament.The remainder of this paper illustrates how Cilk supports the programming of multipro-
essor 
hess programs. Se
tion 2 overviews Cilk's linguisti
 me
hanisms. Se
tion 3 des
ribeshow the performan
e of Cilk programs 
an be modeled, using the ?So
rates 
hess programfor illustration. Se
tion 4 shows how Cilk supports the programming of a 
hess sear
h algo-rithm. Se
tion 5 explores how Cilk supports other aspe
ts of 
hess programming, in
ludingtransposition tables and repetition testing. Finally, Se
tion 6 o�ers some 
on
luding remarks.2 The Cilk languageThe Cilk multithreaded language 
onsists of C augmented by �ve new keywords to indi
ateparallel 
ontrol. This se
tion overviews the Cilk language, explaining the role of ea
h ofkeyword in the programming of parallel appli
ations.Figure 1 shows a Cilk program that 
omputes the nth Fibona

i number.2 The programuses three Cilk keywords: 
ilk, spawn, and syn
. Observe that if these keywords aredeleted, a synta
ti
ally and semanti
ally 
orre
t C program results, whi
h we 
all the Celision of the Cilk program. Cilk is a faithful extension of C in that a Cilk program'sC elision provides a legal implementation of the parallel semanti
s. Cilk introdu
es no newdata types.The keyword 
ilk identi�es a Cilk pro
edure de�nition. A Cilk pro
edure is the parallelanalog of a C fun
tion, having an argument list and body just like a C fun
tion. A Cilkpro
edure may spawn subpro
edures in parallel and syn
hronize upon their 
ompletion.Most of the work in a Cilk pro
edure is exe
uted serially, just like C, but parallelism is
reated when the invo
ation of a Cilk pro
edure is immediately pre
eded by the keywordspawn. A spawn is the parallel analog of a C fun
tion 
all, and like a C fun
tion 
all, whena Cilk pro
edure is spawned, exe
ution pro
eeds to the 
hild. In an ordinary C fun
tion
all, the parent is not resumed until after its 
hild returns. In 
ontrast, a Cilk spawnallows the parent to 
ontinue to exe
ute in parallel with the 
hild. Indeed, the parent 
an
ontinue to spawn o� 
hildren, produ
ing a high degree of parallelism. Cilk's s
heduler takesthe responsibility of s
heduling the spawned pro
edures on the pro
essors of the parallel
omputer.A Cilk pro
edure 
annot safely use the return values of the 
hildren it has spawned until2This program uses an ineÆ
ient, exponential-time algorithm. Although logarithmi
-time methods areknown [14, page 850℄, this program nevertheless provides a good dida
ti
 example.4



#in
lude <stdlib.h>#in
lude <stdio.h>#in
lude <
ilk.h>
ilk int fib (int n){ if (n<2){ return(n);}else{ int x, y;x = spawn fib (n-1);y = spawn fib (n-2);syn
;return (x+y);}}
ilk int main (int arg
, 
har *argv[℄){ int n, result;n = atoi(argv[1℄);result = spawn fib(n);syn
;printf ("Result: %d\n", result);return 0;}Figure 1: A parallel Cilk program to 
ompute the nth Fibona

i number.
5



it exe
utes a syn
 statement. If all of its 
hildren have not 
ompleted when it exe
utes asyn
, the pro
edure suspends and does not resume until all of its 
hildren have 
ompleted.The syn
 statement is a lo
al \barrier," not a global one as, for example, is sometimes usedin message-passing programming. In Cilk, a syn
 waits only for the spawned 
hildren ofthe pro
edure to 
omplete, not for the whole world. When all of its 
hildren return, thepro
edure resumes exe
ution at the point immediately following the syn
 statement. In theFibona

i example, a syn
 statement is required before the statement return (x+y) to avoidthe anomaly that would o

ur if x and y were summed before both had been 
omputed. ACilk programmer uses the spawn and syn
 keywords to expose the parallelism in a program,and the Cilk runtime system takes the responsibility of s
heduling the exe
ution of thepro
edures eÆ
iently.Cilk's runtime system supports C's semanti
s for sta
k-allo
ated storage. A pointer toa lo
al variable 
an be passed to a subroutine, but a pointer to a lo
al variable 
annotbe returned, sin
e lo
al variables are deallo
ated automati
ally on a return. Cilk supportsexa
tly these semanti
s, while allowing subpro
edures to exe
ute in parallel. In addition,Cilk supports heap memory through a mallo
() fun
tion.Most parallel appli
ations 
an be programmed in Cilk using only the 
ilk, spawn, andsyn
 keywords, but some tasks, su
h as 
hess, require spe
ulative work to be done. Forexample, a sear
h may spawn o� two subsear
hes in parallel, only to dis
over that oneof these sear
hes returns a 
lear result, thereby making the other sear
h irrelevant. Cilkprovides two additional keywords | inlet and abort | whi
h allow su
h nondeterministi
programs to be 
oded. These �ve keywords make up the entirety of the Cilk language. Otherparallel-programming me
hanisms, su
h as lo
ks for mutual ex
lusion, are provided throughlibrary fun
tions. We shall �rst explain inlets, and then the abort me
hanism.Cilk's inlet feature provides 
exibility in how values are returned from a 
hild to itsparent. Ordinarily, the valued returned by a spawned pro
edure is stored into a variable inits parent's frame:x = spawn foo(y);An inlet allows the returned value to be in
orporated into its parent's frame in a more
omplex way.An inlet is essentially a C fun
tion internal to a Cilk pro
edure.3 Normally in Cilk, thespawning of a pro
edure must o

ur as a separate statement and not in an expression. Anex
eption to this rule is made if the spawn is performed as an argument to an inlet. In this
ase, the pro
edure is spawned, and when it returns, the inlet is invoked. In the meantime,
ontrol of the parent pro
edure pro
eeds to the statement following the inlet.Figure 2 illustrates how the fib() fun
tion 
an be 
oded using an inlet. The inletsummer() is de�ned to take a returned value result and add it to the variable x in theframe of the pro
edure that does the spawning. All the variables of fib() are availablewithin summer(), sin
e it is an internal fun
tion of fib().3If a Cilk program 
ontains inlets, its C elision 
ontains internal fun
tions, whi
h are not allowed inANSI C. Cilk is based on Gnu C, however, whi
h does permit internal fun
tions.6




ilk int fib (int n){ int x = 0;inlet void summer (int result){ x += result;return;}if (n<2){ return n;}else{ summer(spawn fib (n-1));summer(spawn fib (n-2));syn
;return (x);}}Figure 2: Computing the nth Fibona

i number using an inlet.

7



Ensuring proper semanti
s for a program 
an be diÆ
ult if several inlets of a pro
edure,and possibly the pro
edure itself, update the same variables simultaneously. To ease theprogramming of these intera
tions, Cilk guarantees that these logi
ally parallel \threads"operate atomi
ally with respe
t to one another. In other words, when updating variables inthe pro
edure frame, an inlet need not worry that frame variables are being simultaneouslyupdated by the pro
edure itself or by another inlet. This impli
it atomi
ity makes it fairlyeasy to reason about 
on
urren
y involving the inlets of a pro
edure instan
e without lo
king,de
laring 
riti
al regions, or the like.Cilk's abort keyword allows spe
ulative work to be aborted without waiting for it to
omplete. The abort statement, when exe
uted inside an inlet, 
auses all of the already-spawned des
endants of the pro
edure to terminate immediately. Cilk takes the responsibilityof hunting down all the des
endants and terminating them.As an example, suppose that a sear
h spawns o� two subsear
hes in parallel, and ea
hsubsear
h returns its results via an inlet. If the result of one of the subsear
hes obviatesthe need to 
ontinue exe
uting the other subsear
h, Cilk's abort me
hanism 
an be used toterminate it. We shall see in Se
tion 4 how the abort statement eases the programming ofparallel alpha-beta sear
h.The Cilk-5 referen
e manual [24℄ provides 
omplete do
umentation of the Cilk language.3 Cilk performan
eCilk supports an algorithmi
 programming model for parallel 
omputation. Spe
i�
ally, Cilkguarantees that programs are s
heduled eÆ
iently by its runtime system. This guaranteeenables algorithms to be designed whose performan
e 
an be predi
ted analyti
ally. In thisse
tion, we overview Cilk's performan
e model. We illustrate how ?So
rates allowed us tovalidate this model and how in turn, Cilk's performan
e model allowed us to make intelligentde
isions about the design of the 
hess program.Modeling Cilk program exe
utionA Cilk program exe
ution 
onsists of a 
olle
tion of pro
edures|te
hni
ally, pro
edureinstan
es|ea
h of whi
h is broken into a sequen
e of nonblo
king \threads." In Cilk ter-minology, a thread is a maximal sequen
e of instru
tions that ends with a spawn, syn
,or return statement. The �rst thread that exe
utes when a pro
edure is 
alled is the pro-
edure's initial thread, and the subsequent threads are su

essor threads. At runtime, thebinary \spawn" relation 
auses pro
edure instan
es to be stru
tured as a rooted tree, andthe dependen
ies among their threads form a dire
ted a
y
li
 graph (dag) embedded in thisspawn tree, as is illustrated in Figure 3.A 
orre
t exe
ution of a Cilk program must obey all the dependen
ies in the dag, sin
e athread 
annot be exe
uted until all the threads on whi
h it depends have 
ompleted. Thesedependen
ies form a partial order, permitting many ways of s
heduling the threads in thedag. The order in whi
h the dag unfolds and the mapping of threads onto pro
essors are8



Figure 3: The Cilk model of multithreaded 
omputation. Ea
h pro
edure, shown as a roundedre
tangle, is broken into sequen
es of threads, shown as 
ir
les. A downward edge indi
ates thespawning of a subpro
edure. A horizontal edge indi
ates the 
ontinuation to a su

essor thread.An upward edge indi
ates the returning of a value to a parent pro
edure. All three types of edgesare dependen
ies that 
onstrain the order in whi
h threads are s
heduled.
ru
ial de
isions made by Cilk's s
heduler. Every a
tive pro
edure has asso
iated state thatrequires storage, and every dependen
y between threads assigned to di�erent pro
essorsrequires 
ommuni
ation. Thus, di�erent s
heduling poli
ies 
an yield di�erent spa
e andtime requirements for the 
omputation.It 
an be shown that for general multithreaded dags, no good s
heduling poli
y exists.That is, a dag 
an be 
onstru
ted for whi
h any s
hedule that provides linear speedup alsorequires vastly more than linear expansion of spa
e [9℄. Fortunately, every Cilk programgenerates a well-stru
tured dag whi
h 
an be s
heduled eÆ
iently [10℄.The Cilk runtime system implements a provably eÆ
ient s
heduling poli
y based onrandomized work-stealing. During the exe
ution of a Cilk program, when a pro
essor runsout of work, it asks another pro
essor 
hosen at random for work to do. Lo
ally, a pro
essorexe
utes pro
edures in ordinary serial order (just like the C language's runtime system does),exploring the spawn tree in a depth-�rst manner. When a 
hild pro
edure is spawned, thepro
essor saves lo
al variables of the parent on the bottom of a sta
k and 
ommen
es workon the 
hild. When the 
hild returns, the bottom of the sta
k is popped (just like C) andthe parent resumes. When another pro
essor requests work, however, work is stolen fromthe top of the sta
k, that is, from the end opposite that whi
h is normally used.Performan
e modelingCilk's work-stealing s
heduler exe
utes any Cilk 
omputation in nearly optimal time. Froman abstra
t theoreti
al perspe
tive (dis
ounting 
a
he e�e
ts and other phenomena that leadto superlinear speedups), there are two fundamental limits as to how fast a Cilk program 
an9



run. Let us denote by TP the exe
ution time of a given 
omputation on P pro
essors. Thework of the 
omputation is the total time needed to exe
ute all threads in the dag. We 
andenote the work by T1, sin
e the work is essentially the exe
ution time of the 
omputationon one pro
essor.The �rst limit di
tates that with T1 work and P pro
essors, the lower boundTP � T1=P (1)must hold. The reason is that in one step, at most P work 
an be done by the P pro
essors.Consequently, to do all of the T1 work, it must take at least T1=P time. The se
ond limit isbased on the program's 
riti
al-path length , denoted by T1, whi
h is the exe
ution timeof the 
omputation on an in�nite number of pro
essors, or equivalently, the time needed toexe
ute threads along the longest path of dependen
y.The se
ond lower bound is simply TP � T1 : (2)This bound says that a �nite number of pro
essors 
annot exe
ute the 
omputation fasterthan an in�nite number of pro
essors.Cilk's randomized work-stealing s
heduler exe
utes a Cilk 
omputation on P pro
essorsin expe
ted time TP � T1=P +O(T1) ;whi
h is asymptoti
ally optimal. Empiri
ally, the 
onstant fa
tor hidden by the big O isoften 
lose to 1 or 2 [8℄, and the formulaTP � T1=P + T1 ; (3)whi
h resembles \Brent's theorem" [11℄, is a good approximation of runtime. Cilk providesautomati
 timing instrumentation that 
an 
al
ulate the measures of work and 
riti
al-pathlength during program exe
ution, thus allowing programmers to predi
t performan
e a
rossthe range of possible ma
hine sizes. Moreover, Cilk has been engineered so that the 
ostof spawning is only 2{6 times the 
ost of an ordinary C fun
tion 
all, the a
tual valuedepending on the parti
ular 
omputer platform. Sin
e the number of spawns performed by areal program during runtime tends to be relatively small, spawns have a negligible impa
t onrunning time. The low 
ost of spawns en
ourages Cilk programmers to think about spawningas a natural and inexpensive way to expose parallelism in their appli
ations.The performan
e model provided by Equation (3) 
an be interpreted using the notion ofparallelism , whi
h is de�ned as P = T1=T1. The parallelism is the average amount of workfor every step along the 
riti
al path. Whenever P � P , meaning that the a
tual numberof pro
essors is mu
h smaller than the parallelism of the appli
ation, we have equivalentlythat T1=P � T1. Thus, the model predi
ts that TP � T1=P and the Cilk program runswith almost perfe
t linear speedup.Of 
ourse, the degree to whi
h Equation (3) a

urately predi
ts the performan
e ofan appli
ation depends on how \ideal" the ma
hine is on whi
h the appli
ation is run.10



If the ma
hine has inadequate memory bandwidth, for example, performan
e will su�er
ompared what is predi
ted by this performan
e model. As it turns out, however, we havefound Equation (3) to be an ex
ellent predi
tor of performan
e over a wide range of parallel
omputers.Using 
hess to ben
hmark Cilk's s
hedulerIn an early paper on Cilk [8℄, we used our ?So
rates 
hess program to do
ument the eÆ
a
yof Cilk's s
heduler on the Conne
tion Ma
hine CM5 parallel 
omputer. Figure 4 shows agraph borrowed from that paper. The �gure shows the out
ome from many experimentsof running ?So
rates on a variety of 
hess positions using various numbers of pro
essors.Ea
h \+" symbol in the �gure indi
ates the measured speedup WP=TP for a P -pro
essorrun against the ma
hine size P for that run, where WP is the work of the 
omputation.For 
larity in this dis
ussion, we denote the work in a P -pro
essor 
omputation by WP ,rather than by T1 as we have done thus far, be
ause ?So
rates uses a \spe
ulative" sear
halgorithm. Re
all that as we have de�ned the term \work," it is the total time needed toexe
ute all the threads in the 
omputation dag. For a deterministi
 parallel algorithm, thework of a program is the same, independent of the number of pro
essors on whi
h the programis run, and hen
e, it is a

urate to use T1 to represent the work. For a nondeterministi

omputation exe
uted on several pro
essors, however, the 
omputation dag may vary fromrun to run. Consequently, the work WP represented in a P -pro
essor 
omputation dag maybear little or no relation to the work T1 of a serial exe
ution. Sin
e our goal is to evaluate theeÆ
a
y of Cilk's s
heduler, we fo
us on the speedup WP=TP , be
ause the normal speedupT1=TP in
orporates work overhead produ
ed by ?So
rates's spe
ulative sear
h algorithm forwhi
h Cilk's s
heduler is not responsible.In order to 
ompare the out
omes for di�erent runs, we have normalized ea
h axis bydividing by the parallelismWP=T1. Thus, a normalized ma
hine size of 1:0 on the horizontalaxis indi
ates a run where the parallelism equals the ma
hine size. A normalized ma
hinesize of 0:1 indi
ates a run in whi
h the parallelism ex
eeds the ma
hine size by a fa
tor of 10.On the verti
al axis, a normalized speedup of 1:0 indi
ates a run that attains the maximumpossible speedup. A normalized speedup of 0:1 indi
ates a run in whi
h the speedup is 1=10the maximum possible.The two lower bounds (1) and (2) provide upper bounds on speedup, whi
h 
an beinterpreted as lines in Figure 4. The horizontal line at 1:0 is the upper bound on speedupobtained from the 
riti
al-path length, and the 45-degree line is the linear speedup bound.In addition, the 
urve for Equation (3) is plotted, and as 
an be seen from the �gure, itinterpolates the data reasonably well.The �gure shows that on runs for whi
h the parallelism ex
eeds the number of pro
es-sors, Cilk's s
heduler obtains nearly perfe
t linear speedup. This region is where we normallywould like an appli
ation to run, sin
e otherwise the marginal return on an additional pro-
essor is diminishing. In the region where the number of pro
essors is large 
ompared tothe parallelism, the data is more s
attered, but the speedup is generally within a fa
tor of11
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rates 
hess program running on a Conne
tion Ma
hineCM5.2 of the upper bound given by 
riti
al-path length. We prefer not to operate in this range,sin
e the appli
ation 
ould run nearly as fast with fewer pro
essors. If the appli
ation doesnot exhibit good parallelism, however, it may be for
ed to operate in this domain. For-tunately, good 
hess algorithms exhibit a high degree of parallelism, and all of our 
hessprograms operate in the linear-speedup regime most of the time. (Although we have spot-veri�ed this performan
e model for later versions of Cilk, we have not repeated the extensivedata-gathering.)?So
rates speedup anomalyThe measures of work and 
riti
al-path length provide an algorithmi
 basis for evaluat-ing the performan
e of Cilk programs, a feature we were able to exploit when designingthe sear
h algorithm for ?So
rates. For the the 1994 ACM International Computer ChessChampionship, our program ran on NCSA's 512-node CM5. Be
ause of the high demandfor this massively parallel pro
essor, one of the largest ma
hines of its day, our a

ess to itwas limited. Consequently, we developed and tested most of our 
ode on a 32-node CM5 atMIT.During development, in an attempt to optimize ?So
rates performan
e, one of our pro-grammers suggested a 
hange to the sear
h algorithm. We ben
hmarked the original versionof the algorithm against the proposed version on the MIT ma
hine, and we dis
overed the12



new version to be signi�
antly faster. Nevertheless, we abandoned the proposed 
hange,be
ause our analysis of work and 
riti
al-path length indi
ated that it would be far sloweron the mu
h larger NCSA ma
hine to be used in the tournament.To understand this speedup anomaly, the numeri
al �gures in the following s
enario havebeen simpli�ed for dida
ti
 purposes. The original program ran the ben
hmark in T32 = 65se
onds on the 32-node MIT ma
hine. The proposed program ran the ben
hmark in T 032 = 40se
onds on the MIT ma
hine. But these numbers tell us little about what might happen onthe 512-node NCSA ma
hine.Fortunately, Cilk's instrumentation allowed us to analyze the situation. We dis
overedthat the original program had work T1 = 2048 se
onds and 
riti
al-path length T1 = 1se
ond. The proposed program had work T 01 = 1024 se
onds and a mu
h longer 
riti
al-pathlength of T 01 = 8 se
onds. Using the model 3, we 
an verify thatT32 = 2048=32 + 1 = 65 ;T 032 = 1024=32 + 8 = 40 :In the a
tual in
ident, the agreement between model and experiment was 
lose, but notexa
t. (We also 
oped with the nondeterminism of ?So
rates's sear
h algorithm.)With work and 
riti
al-path lengths in hand, we were now in a position to extrapolatethe performan
e of the two algorithms on the 512-node ma
hine:T512 = 2048=512 + 1 = 5 ;T 0512 = 1024=512 + 8 = 10 :The model predi
ts that on the tournament ma
hine, the proposed 
hange would slow per-forman
e by a fa
tor of 2.On the larger NCSA ma
hine, the proposed program's longer 
riti
al-path length dom-inates the running time be
ause of insuÆ
ient parallelism. The parallelism of the originalprogram is P = T1=T1 = 2048=1 = 2048, whereas the parallelism of the proposed pro-gram is P 0 = T 01=T 01 = 1024=8 = 128. Thus, the proposed program runs out of parallelismon the 512-pro
essor NCSA ma
hine, whereas the original program still has some parallel\sla
kness" to exploit.In the a
tual in
ident, the model predi
ted nearly a fa
tor-of-3 degradation on the NCSAma
hine. Subsequent testing on the ma
hine itself 
on�rmed this predi
tion. Cilk's guaran-tee of eÆ
ient s
heduling, together with the performan
e model it engenders, saved us froma 
ostly design error.4 Programming alpha-beta sear
hThis se
tion shows how a parallel version of alpha-beta sear
h [28℄ 
an be programmedin Cilk. Although ?So
rates and Cilk
hess use di�erent parallel variants of minimax sear
hbased on S
out sear
h [34℄ and MTD(f) [35℄, respe
tively, all the ideas in these parallel sear
h13



algorithms 
an be illustrated in the 
ontext of alpha-beta sear
h. This se
tion outlines thebasi
 \young-brothers-wait" strategy [18℄ for parallelizing alpha-beta sear
h, and then itprovides a walk-through of Cilk 
ode that implements the strategy.Sin
e alpha-beta sear
h is des
ribed in virtually every introdu
tion to adversarial sear
h(see, for example, [20, page 66℄ and [44, Chapter 6℄), we shall assume basi
 familiarity withthis sear
h strategy. The key idea is that if White 
an make a move in a position whi
h is sogood that Bla
k will not make the move leading to that position, then there is no point insear
hing White's other moves from that position. Those additional moves 
an be pruned.In order to get maximal pruning, therefore, it is advantageous to sear
h the moves at a nodein the sear
h tree in best-�rst order.The basi
 alpha-beta sear
h algorithm is inherently serial, sin
e it uses information fromthe sear
h of one 
hild of a node to prune subsequent 
hildren. When 
hildren are sear
hedin parallel, however, it is hard to use information gained from sear
hing one 
hild to pruneanother. If one looks at an optimal game tree, however, one �nds an interesting property:all of the nodes are either maximal (all of the 
hildren are sear
hed) or singular (only one ofthe 
hildren is sear
hed).This observation suggests a parallel sear
h strategy 
alled young brothers wait [18℄:if the �rst 
hild of a node fails to generate a 
uto� (the node is not singular), spe
ulate thatthe node is maximal, and thus sear
hing the remaining 
hildren in parallel wastes no work.To implement this strategy, the parallel alpha-beta algorithm �rst sear
hes what it 
onsidersto be its best 
hild, just like serial alpha-beta sear
h. When that 
hild returns, it maybe that the alpha-beta algorithm prunes the rest of the 
hildren (a so-
alled beta-
uto�),and the sear
h returns immediately. Otherwise, the algorithm spe
ulates that the node ismaximal, and it spawns o� all the remaining 
hildren in parallel. If one returns with a s
orethat 
auses a beta-
uto�, the other 
hildren are aborted, sin
e their work has been renderedunne
essary.We now walk through a Cilk implementation of this parallel sear
h algorithm. The walk-through is broken into four parts. As will be seen, the 
ode is minimally di�erent from a Cimplementation of alpha-beta sear
h, in
orporating only six instan
es of Cilk keywords. Thealgorithm presented is a simple \full-width" sear
h, shorn of mate and draw dete
tion fordida
ti
 
onvenien
e. Mate and draw dete
tion, as well as sear
h heuristi
s su
h as null-move[2, 3, 16, 23℄ or killers [1, 39℄, 
an be in
orporated into this 
ode without diÆ
ulty, as hasbeen done in both ?So
rates and Cilk
hess.The �rst part of the 
ode de�nes the Cilk pro
edure sear
h:
ilk int sear
h( position *prev, int move, int depth ){ position 
ur; /* 
urrent position */int bests
ore = -INF; /* best s
ore so far */int num_moves; /* number of 
hildren */int mv; /* index of 
hild */int s
; /* 
hild's s
ore */int 
utoff = FALSE; /* have we seen a 
utoff? */14



This 
ode assumes that the 
urrent position is generated by the 
hild, not the parent. Thus,a pointer to the parent position is passed in the parameter prev, and the 
urrent position willbe produ
ed by applying move to the parent position. The parameter depth is de
rementedby ea
h re
ursive 
all until it be
omes 0, so that the algorithm implements a full-widthsear
h. The position data stru
ture 
ontains �elds alpha and beta delimiting the windowof the sear
h.The se
ond part of the 
ode de�nes the inlet 
at
h, whi
h in
orporates a 
hild's s
oreinto the 
urrent node:inlet void 
at
h( int 
hild_s
 ){ 
hild_s
 = -
hild_s
; /* negamax */if ( 
hild_s
 > bests
ore ){ bests
ore = 
hild_s
;if ( 
hild_s
 > 
ur.alpha ){ 
ur.alpha = 
hild_s
;if ( 
hild_s
 >= 
ur.beta ){ 
utoff = TRUE; /* no need to sear
h further */abort; /* terminate other 
hildren */}}}}The 
ode implements a \negamax" [28℄ strategy wherein s
ores are always viewed from thepoint of view of the side to move. If the value 
hild s
 returned by a 
hild is the best sofar, the variable bests
ore is updated to re
ord that fa
t. If the 
hild's s
ore ex
eeds the
urrent value for alpha, then 
ur.alpha is updated. Finally, if the 
hild's s
ore equals orex
eeds the 
urrent value for beta, a beta-
uto� o

urs. The 
ag 
utoff is set, whi
h, aswe shall see, will pre
lude future 
hildren from being spawned. In addition, 
hildren thathave already been spawned are aborted.The third part of the 
ode is identi
al to an alpha-beta sear
h in pure C, 
ontaining noCilk keywords:/* 
reate 
urrent position and set up for sear
h */make_move( prev, &move, &
ur );s
 = eval( &
ur ); /* stati
 evaluation */if ( depth <= 0 ) /* leaf node */{ 15



return( s
 );}
ur.alpha = -prev->beta; /* negamax */
ur.beta = -prev->alpha;/* generate moves, hopefully in best-first order */num_moves = gen_moves ( &
ur );The indi
ated move is made on the board, updating the 
ur stru
ture with the new position.A stati
 evaluation of the 
urrent position is made. If the 
urrent position is a leaf node ofthe sear
h, be
ause the desired depth of sear
h has been a
hieved, the s
ore from the stati
evaluation is returned. Otherwise, the alpha-beta window for the 
urrent sear
h is updated,and the move generator is 
alled.The �nal part of the 
ode performs the a
tual sear
h:/* sear
h the moves */for ( mv=0; !
utoff && mv<num_moves; mv++ ){ 
at
h( spawn sear
h( &
ur, mv, depth-1 ) );if ( mv==0 ) syn
; /* young brothers wait */}syn
; /* this syn
 is outside the loop so that thesear
hes after the first exe
ute in parallel */return( bests
ore );}The loop spawns o� the 
hildren of the 
urrent position. The loop guard terminates the loopif a 
hild 
auses a beta-
uto�, whi
h is dis
overed within the 
at
h inlet. After the �rst 
hildis spawned o�, a syn
 is exe
uted, suspending the loop until after the �rst 
hild returns,thus implementing the young-brothers-wait strategy. The remaining 
hildren are spawnedo� in parallel, sin
e no subsequent syn
 o

urs within the loop. After all the 
hildren arespawned o�, the algorithm syn
s so that the best s
ore of all the 
hildren 
an be returned.Alpha-beta sear
h makes a strong 
ase for Cilk's eÆ
ient expressiveness. The di�eren
ebetween an ordinary C program for alpha-beta sear
h and the Cilk program is only sixkeywords. Indeed, if minimizing the number of instan
es of Cilk keywords were the goal, the�nal syn
 
ould be eliminated by in
orporating it into the syn
 within the loop. The 
odewould be more 
rypti
, however.The 
ode for minimaz sear
h in a high-performan
e 
hess program is far more 
ompli
atedthan the simple alpha-beta algorithm presented here. Among the major issues fa
ed in areal program is how to minimize the likelhood that spe
ulative 
ode is exe
uted futilely. Anybran
hes of the sear
h tree that are pruned by a serial sear
h algorithm represent wasted16



work. When Cilk
hess runs on a large multipro
essor, for example, the work 
an expand bya fa
tor of 3. Good move-ordering heuristi
s tend to minimize the expansion of work.5 Other parallel programming issuesIn this se
tion, we explore several other issues that arise when using Cilk to program a
hess program. First, we examine how Cilk's lo
king primitives support atomi
 a

esses to atransposition table. Se
ond, we investigate how Cilk's shared-memory programming modelsimpli�es the problem of dis
overing draws by repetition.Cilk support for atomi
ityAll modern 
hess programs keep a transposition table to store positions that the programhas seen. A 
hess position is entered into the transposition table when the sear
h of thatposition returns a s
ore. The entry for ea
h position typi
ally in
ludes the depth that theposition was sear
hed, a bound on the s
ore, move-ordering information, and various otherheuristi
 and bookkeeping data. The idea is that if the program sees the same position ina later sear
h, it may be able to use the information stored in the transposition table toimprove the quality of the sear
h or avoid the sear
h altogether. Transposition tables areusually stored as large hash tables.When two parallel threads a

ess a 
ommon entry in a transposition table, anomalousbehavior 
an result if one or both attempt to 
hange the entry. This problem arises whenthe entry 
annot be modi�ed as a single atomi
 operation. While one thread is in the midstof 
hanging several words of data, the other thread may see an entry 
onsisting of both new(
hanged) and old (un
hanged) data. To operate 
orre
tly, the se
ond thread should seeeither the old data in its entirety or the new data in its entirety, but never a mixture.Cilk provides mutual-ex
lusion lo
ks to allow the 
reation of atomi
 regions of 
ode. InCilk, a lo
k has type Cilk lo
kvar. The two operations on lo
ks are Cilk lo
k to test a lo
kand blo
k if it is already a
quired, and Cilk unlo
k to release a lo
k. Both fun
tions take anobje
t of type Cilk lo
kvar as a single argument. The lo
k obje
t must be initialized usingCilk lo
k init() before it is used. The region of 
ode between a Cilk lo
k statement andthe 
orresponding Cilk unlo
k statement is 
alled a 
riti
al se
tion .The following 
ode illustrates how Cilk's mutual ex
lusion lo
ks 
an be used to enfor
eatomi
ity in a transposition table ttab.typedef stru
t{ Cilk_lo
kvar lo
k;int key;int s
ore;int bestmove;int depth; 17



...}ttentry;ttentry ttab[TTSIZE℄;void init_ttab(){ int i;for (i=0; i<TTSIZE; i++){ Cilk_lo
k_init(ttab[i℄.lo
k);}}void update_entry( ttentry *e, int key, int s
ore, ... ){ Cilk_lo
k(e->lo
k); /* begin 
riti
al se
tion */e->key = key;e->s
ore = s
ore;...Cilk_unlo
k(e->lo
k); /* end 
riti
al se
tion */}A Cilk lo
k is stored as part of ea
h transposition-table entry. Cilk lo
ks must be initializedbefore their �rst use. This initialization is performed by the C fun
tion init ttab() whi
hmust be 
alled before the transposition table is used. The fun
tion update entry() up-dates the entry e atomi
ally by a
quiring e->lo
k before modifying the entry and releasinge->lo
k afterwards. Thus, if two threads simultaneously attempt to 
hange the entry, theyexe
ute in sequen
e without interferen
e.Why use a lo
k for ea
h entry rather than a single lo
k for the entire transposition table?After all, wouldn't a single lo
k be simpler and save spa
e? A single-lo
k solution 
an indeedwork e�e
tively if the number of pro
essors on whi
h Cilk is run is small, but it does not s
alewell with the number of pro
essors. The problem is that while a lo
k is held, every otherthread that attempts to a
quire the lo
k must wait. As the number of threads in
reases,the lo
k be
omes a bottlene
k, 
ausing time to be wasted by threads waiting for the lo
k tobe released. In 
ontrast, using one lo
k per table entry yields a s
alable solution. Sin
e thenumber of entries is usually far larger than the number of a
tive threads, the 
han
es of two18



threads 
ontending for a lo
k is small, and little time is wasted.The Superte
h resear
h group argued long and hard about whether lo
ks should bein
luded in Cilk. Cilk-5 represents great progress over Cilk-1 in redu
ing the amount ofproto
ol that a programmer must write. The proto
ol of a
quiring and releasing lo
ks,albeit simple, reverses that progress. Eventually, we de
ided that the pra
ti
al need foratomi
ity outweighed the 
omplexity of lo
ks. Our de
ision was aided by the developmentof a debugging tool we 
all the Nondeterminator [13, 19℄.The Nondeterminator �nds data ra
es in Cilk 
ode. A data ra
e o

urs when twoparallel threads, holding no lo
ks in 
ommon, a

ess the same memory lo
ation, and oneof the threads modi�es the lo
ation. Data ra
es may be intended by the programmer, butthey are more likely to be bugs. The Nondeterminator exe
utes the Cilk 
ode serially on agiven input, using a novel data stru
ture that keeps tra
k of what threads operate logi
allyin parallel. Every read and write by the program is instrumented to see if a date ra
e exists.The Nondeterminator is not a veri�
ation tool, sin
e it simulates a
tual exe
ution on a giveninput, but it does provide a guarantee of �nding ra
es if they exist.At this point, we must 
onfess that Cilk
hess does 
ontain a data ra
e. We have des
ribedhow Cilk's library fun
tions for lo
king 
an be used to make a

esses to the transpositiontable atomi
. Cilk
hess, however, does not lo
k a

esses to the transposition table. Wede
ided that the overhead for lo
king would a
tually weaken the program more on averagethan if we did no lo
king. We indeed risk that a ra
e might o

ur, but we have determinedthat the odds that it a
tually would a�e
t the out
ome of a 
ompetition is negligible. Thus,Cilk
hess is provably, and intentionally, non-bug-free.Parallel testing for repetitionsThe rules of 
hess allow a player to 
laim a draw if his move brings about the third repetitionof a position (with the same side to move). Computer programs usually implement this ruleduring a sear
h by 
onsidering any position that mat
hes an an
estor in the game tree to bea draw. A 
ommon implementation of this strategy is to use a hash table for bookkeeping.We now examine why this hash-table strategy breaks down in a parallel implementation andhow Cilk's shared-memory semanti
s allow repetitions to be easily dete
ted in parallel.The hash-table approa
h to repetition testing is fairly simple. All positions that havea
tually been played in the game are entered into the hash table before the sear
h begins.During the sear
h, whenever a position is en
ountered, it is entered into the hash table. The
hildren of the position are then re
ursively sear
hed. S
ores are ba
ked up in a

ordan
ewith the minimax sear
h algorithm to produ
e a s
ore for the position. When the s
ore hasbeen 
omputed, the position is removed from the hash table. During the re
ursive sear
h, ifa position is en
ountered that is already in the hash table, a repeated position has o

urred.In a parallel 
hess program, a naive implementation of this strategy fails to work. First,the problems of atomi
ally updating the hash table must be solved, but that is not themain diÆ
ulty. When a thread 
omes a
ross a position stored in the hash table, the threaddoes not know if the position was en
ountered by its an
estor | a real repetition | or by19



another thread exploring another part of the game tree that just happened to examine thesame position. One 
an imagine keeping tra
k of whi
h game-tree nodes are asso
iated withwhi
h thread of exe
ution, but su
h bookkeeping s
hemes qui
kly be
ome unwieldy.To dete
t repeated positions, Cilk
hess uses a method that parallelizes easily. For everyboard position, a pointer is maintained to the parent's position. When evaluating a position,Cilk
hess walks the 
hain of an
estors from the 
urrent position ba
kwards to the beginningof the game and 
ompare to see if the same position already appears in the 
hain. Cilk
hessa
tually 
he
ks only every se
ond position starting from the fourth ba
k, sin
e a repeatedposition must have the same side on move and two 
onse
utive positions with the same sideon move 
annot repeat. (Cilk
hess also a

elerates the pro
ess by 
omparing the hash keysof the positions.)It might seem that the 
ost of s
anning an
estors 
ould be
ome large, but the s
an
an usually be terminated qui
kly. Some moves, like 
aptures or pawn pushes, have the
hara
teristi
 that on
e played, no sequen
e of subsequent moves 
an bring about a positionthat existed before the exe
ution of that move. These irreversible moves provide a barrierabove whi
h the s
an need not explore. Our empiri
al studies of middle-game positionsindi
ate that the number of an
estors that need to be 
he
ked is less than 2 on average,although this number in
reases slightly in the endgame. This strategy of s
anning an
estorsba
k to an irreversible move was used in the CHESS 4.5 program [39, page 103℄.Be
ause of Cilk's strong support for shared-memory semanti
s, the parallel Cilk 
odefor the an
estor s
an is identi
al to the serial C 
ode. No parallel 
onstru
ts whatsoeverare needed. Although the s
ans of several threads may interse
t at 
ommon an
estors, nolo
king or 
oordination is required, be
ause the an
estor data stru
tures are only being read,not modi�ed. Some parallel languages require spe
ial me
hanisms to dereferen
e pointers toshared memory, but Cilk does not. Consequently, 
ompared with the C implementation, theCilk implementation in
urs no undue performan
e penalty. The 
ode is the same.6 Con
lusionTo produ
e high-performan
e parallel appli
ations, programmers often fo
us on 
ommuni-
ation 
osts and exe
ution time, quantities that are dependent on spe
i�
 ma
hine 
on�gu-rations. Cilk's philosophy argues that a programmer should think instead about work and
riti
al-path length, abstra
tions that 
an be used to 
hara
terize the performan
e of analgorithm independent of the ma
hine 
on�guration. Cilk provides a programming modelin whi
h work and 
riti
al-path length are measurable quantities, and it delivers guaranteedperforman
e as a fun
tion of these quantities. Moreover, Cilk programs \s
ale down" torun on one pro
essor with nearly the eÆ
ien
y of analogous C programs. Consequently, anyperforman
e tuning of the C elision of the Cilk program automati
ally a

rue to the Cilkprogram itself.The Superte
h resear
h group in LCS found that 
omputer 
hess was an ideal vehi
le fordeveloping parallel-programming te
hnology. Resear
h groups 
an easily wander o� solvingabstra
t problems having no pra
ti
al signi�
an
e. Chess is a formidable real-world prob-20



lem whi
h long predates 
omputers, not an arti�
ial problem tailor-made to highlight ourresear
h. Chess 
hallenged our resear
h group to address previously negle
ted issues involv-ing the parallel programming of irregular and symboli
 
omputations, rather than regularand numeri
al problems that typify mu
h of the existing literature on parallel 
omputing.Students worked on an engaging problem that allowed them to highlight their parallel-programming resear
h results in an externally visible way, (i.e., they 
ould explain it to theirparents). Tournament events motivated the team and gave us \end-to-end" [38℄ unbiasedfeedba
k on our work. Finally, 
hess programming was just plain fun!The 
ombination of 
hess and Cilk allowed the Superte
h team to explore a gamut ofissues a
ross 
omputer s
ien
e. Too often, students 
ome out of s
hool believing that intel-le
tual a
tivity is segregated into disparate, nonoverlapping areas. Chess and Cilk allowedus to integrate knowledge in algorithms, arti�
ial intelligen
e, programming languages, 
on-
urren
y, 
omputer ar
hite
ture, software engineering, and high performan
e. The 
ross-pollination of ideas re�ned Cilk into a simple, but powerful, tool for parallel programming.The Cilk developers are 
urrently working on enhan
ing the Cilk system environment,in
luding support for parallel I/O and streams, job s
heduling, and fault toleran
e. Cilk soft-ware, do
umentation, publi
ations, and up-to-date information are available via the Web athttp://superte
h.l
s.mit.edu/
ilk. Detailed des
riptions of the foundation and historyof Cilk 
an be found in [5, 27, 37, 21℄.A
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