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Abstract

Workstation networks are an underutilized yet valu-
able resource for solving large-scale parallel problems.
In this paper, we present “idle-initiated” techniques
for efficiently scheduling large-scale parallel computa-
tions on workstation networks. By “idle-initiated,” we
mean that idle computers actively search out work to
do rather than wait for work to be assigned. The idle-
wnttiated scheduler operates at both the macro and the
micro levels. On the macro level, a computer with-
out work joins an ongoing parallel computation as a
participant. On the micro level a participant with-
out work “steals” work from some other participant of
the same computation. We have implemented these
scheduling techniques in Phish, a portable system for
running dynamic parallel applications on a network of
workstations.

1 Introduction

Even with the annual exponential improvements in
microprocessor speed, a large body of problems can-
not be solved in a reasonable time on a single com-
puter. One method of reducing the time for solving
such problems is to develop algorithms to be used on
parallel supercomputers. Much effort has been ex-
pended in improving the performance of parallel su-
percomputers. Another resource for performing large-
scale parallel computations is networks of worksta-
tions. Workstation networks are increasingly preva-
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lent, and since much of a typical workstation’s com-
puting capacity goes unused [20], a workstation net-
work presents a large source of compute power on
which to run large-scale parallel applications. Fur-
thermore, a typical workstation is far less expensive
than a compute node of most massively parallel su-
percomputers [19]. Because of these characteristics,
networks of workstations are worthy of study as a way
of performing large-scale parallel computations.

When compared to a massively parallel supercom-
puter, such as the CM-5 from Thinking Machines, a
network of workstations suffers an obvious weakness:
network performance. In particular, the software over-
head incurred when sending a message on a typical
workstation is often at least two orders of magnitude
greater than the corresponding overhead on a paral-
lel supercomputer. Also, the bisection bandwidth of a
typical workstation network is again often at least two
orders of magnitude less than the bisection bandwidth
of a parallel supercomputer’s interconnect. Despite
these limitations, we demonstrate later that for some
applications a good scheduler running on a network of
workstations can reduce the interprocessor communi-
cations to the point where the modest communication
performance does not degrade the overall application
performance. Furthermore, and more importantly,
improving workstation networks with low-latency and
high-bandwidth interconnects (such as ATM) is a very
active field of research [3, 15, 17], which is closing the
gap between workstation networks and supercomputer
interconnects.

Parallel computing on a network of workstations
presents a vast array of scheduling choices. Specifi-
cally, when given a set of parallel jobs to execute, a
scheduler must answer several questions for each pro-
cessor:

e Should the processor work on a parallel job at all?
e When should the processor work on parallel jobs?

e Which parallel job should the processor work on?



Many supercomputers answer these questions with a
very limited set of possibilities. For example, the CM-
5 divides its processors into a small number of fixed-
size partitions. FEach partition is run either in ded-
icated mode, where the processors complete one job
after another, or in time-sharing mode, where the pro-
cessors are gang-scheduled to the jobs in round-robin
fashion. Thus, all the processors work on parallel jobs
all the time, and all the processors in a given partition
work on the same parallel job. For example, if 4 jobs
wish to run in a 32-node time-shared partition, then
each job runs on all 32 processors for some quantum
of time until the job is preempted by the round-robin
scheduler.

Clearly, this technique of allocating the 32 proces-
sors to the 4 jobs may not be the most efficient choice.
First, empirical evidence (though in a somewhat differ-
ent context) [26] indicates that better throughput may
be achieved by space-sharing rather than time-sharing
— in other words, assign each of the 4 jobs to 8 of the
processors. In this manner, each job gets a dedicated
set of processors, and all context-switching overheads
are avoided. Also, with space-sharing comes another
possibility. Suppose the available parallelism in one of
the jobs decreases. In this case, assigning some pro-
cessors to another job with excess available parallelism
is better than letting the processors sit idly.

To address these scheduling issues, we have de-
veloped and implemented some new scheduling tech-
niques in a prototype system. We refer to our schedul-
ing techniques as idle-initiated because idle comput-
ers actively search out work to do rather than wait
for work to be assigned. The idle-initiated scheduler
works on both the macro and the micro levels.

The macro-level scheduler is responsible for assign-
ing processors to parallel jobs and operates with the
following goals:

1. Space-share rather than time-share.

2. Accommodate dynamically changing amounts of
parallelism among jobs.

3. Allow owners to retain sovereignty over their ma-
chines.

These goals and the resulting macro-level, idle-
initiated scheduler are all discussed in Section 2.

The micro-level scheduler is responsible for assign-
ing the tasks that comprise a parallel job to the partic-
ipating processors of that job. The micro-level sched-
uler operates with the following goals:

1. Preserve communications and memory locality.

2. Accommodate dynamic parallelism.

These goals and the resulting micro-level, idle-
initiated scheduler are all discussed in Section 2 after
the macro-level scheduler.

The idle-initiated scheduler is implemented in the
Phish prototype system. Phish provides a simple pro-
gramming model and an execution vehicle for parallel
applications with unstructured and/or dynamic par-
allelism — the type of applications that are difficult
to implement in the data-parallel or message-passing
styles. The Phish runtime system allows applications
to utilize a dynamically changing set of workstations.
In particular, workstations, when left idle, may join
an ongoing computation and then leave the compu-
tation when reclaimed by their owners. Also, work-
stations may join and leave an ongoing computation
in response to the availability of parallelism within
the computation. The Phish implementation operates
with the following goals:

1. Execute large-scale parallel applications on large
numbers of processors.

2. Utilize compute resources that would otherwise

go idle.

3. Provide fault tolerance so that applications can
run for long periods of time.

4. Do not interfere with the normal day-to-day use
and management of the workstation network.

5. Achieve linear parallel speedup with only modest
degradations in efficiency.

These goals and our first prototype implementation
are all discussed in Section 3.

This prototype is currently operational at the MIT
Laboratory for Computer Science, and we have run
a couple of large-scale applications: a protein-folding
application and a ray tracer. In Section 4 we re-
port preliminary performance data from these and
two other “toy” applications. These data demon-
strate the high degree of efficiency delivered by the
micro-level scheduler’s ability to preserve communica-
tion and memory locality. For example, in an execu-
tion of the protein-folding application with 8 worksta-
tions, despite the over 10 million tasks executed, only
133 were ever migrated from one workstation to an-
other, and yet the execution achieved almost perfect
8-fold speedup.

The remainder of this paper is organized as follows.
Section 2 discusses the idle-initiated scheduler at both
the macro and micro levels, and Section 3 discusses



the implementation of this scheduler in Phish. Pre-
liminary application performance is presented in Sec-
tion 4. This paper closes with a discussion of related
work 1n Section 5 and conclusions in Section 6.

2 Idle-initiated scheduling

We have developed idle-initiated scheduling tech-
niques in order to effectively schedule large-scale, dy-
namic parallel computations on a network of worksta-
tions. Idle-initiated scheduling operates on both the
macro level and the micro level.

Macro-level scheduling

The role of the macro-level (or inter-application)
scheduler is to determine which workstations are idle
and to assign these idle workstations to parallel jobs.

Each workstation owner can set his or her own pol-
icy on “idleness” versus “busyness.” For example,
some owners may decide that their machines are idle
— that 1s, available to be used for parallel jobs — only
when nobody is logged in. Other owners may make
their machines available so long as the CPU load is
below some threshold. We believe that maintaining
the owner’s sovereignty is essential if we want owners
to allow their machines to be used for parallel compu-
tation.

When a workstation becomes idle, it requests a job
from a pool of parallel jobs managed by the macro-
level scheduler. If parallel jobs are available, the sched-
uler assigns a job to the workstation. Note that when
it assigns a job to a workstation, the scheduler keeps
that job in its pool so that the job can also be as-
signed to other idle workstations. If no parallel job
is available, the workstation continues requesting jobs
until either a job becomes available or the workstation
becomes busy. Once a workstation receives a job, it
runs a participating process under the control of the
micro-level scheduler described below until the process
dies.

The participating process can die for several rea-
sons. In the simplest case, the job may terminate.
Second, the owner’s idleness policy may determine
that the workstation is no longer available for parallel
computation. In this case, the process’s data migrates
before termination to another process of the same par-
allel job. Third, the amount of parallelism in the job
may decrease to the point where a participant is un-
able to keep busy. As the parallelism in an application
shrinks, some of its participating processes die, and
the macro-level scheduler accommodates this time-
varying parallelism by reassigning the freed worksta-

tions to other jobs. Finally, the macro-level scheduler
may preempt the process due to scheduling priority.
This preemption is the only case in which the macro-
level scheduler performs time-sharing. Whenever pos-
sible, however, the macro-level scheduler shares com-
pute resources among parallel jobs by space-sharing.

The preference for space-sharing over time-sharing
is supported both by intuition and to some extent by
empirical data. In the context of shared-memory mul-
tiprocessors, Tucker and Gupta [26] found that utiliza-
tion and throughput are improved by space-sharing in-
stead of time-sharing. They cite context-switch over-
head as a significant factor. In the realm of message-
passing parallel computing, Brewer and Kuszmaul [5]
found another reason to avoid time-sharing. They
found that achieving performance in message passing
is critically tied to the rate at which messages can be
received. When a process is swapped-out, it cannot
receive messages — messages fill up available buffers
and potentially clog the network.

Micro-level scheduling

On the micro level, each parallel job consists of a pool
of discrete tasks. Tasks are dynamically created be-
cause the execution of a task can spawn new tasks.
Furthermore, tasks can have synchronization require-
ments in that some tasks may need to wait for other
tasks to be executed. The role of the micro-level (or
intra-application) scheduler, then, is to assign tasks to
participating processes.

Each participating process maintains its own list of
ready tasks whose synchronization requirements have
been met. For example, Figure 1(a) shows the state
of a participating process’s list of ready tasks. While
the queue is not empty, the process works on ready
tasks in a LIFO order. It works on tasks at the head
of the list and inserts any newly spawned ready tasks
at the head of the list. In Figure 1(b), the process has
executed task D, which spawned tasks E, F, and G.

At some point, the participating process finishes ex-
ecuting all of its ready tasks. Of course, there may
still be ready tasks that need to be executed in the
lists of other participants. In order to get one of those
ready tasks to work on, the participant without ready
tasks becomes a thief. The thief chooses uniformly
at random a wvictim participant, from which to steal a
ready task. If the victim’s list of ready tasks i1s not
empty, it gives the thief the task at the tail of the
list. Thus, stealing tasks is done in a FIFO manner.
In Figure 1(c), the participant process has become a
victim. A thief has stolen task A, which was at the
tail. If, on the other hand, the victim’s queue of ready
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Figure 1: The local ready task list of a participant.
(a) The queue contains four tasks: A, B, C, and D.
(b) After executing task D which spawns three child
tasks: E, F, and G. (c) After some other participant
steals task A.

tasks is empty, the thief chooses another victim from
which to steal a task. If no task can be found even af-
ter many attempted steals, the amount of parallelism
in the job must have decreased. In response to this
decrease in parallelism, the thief process terminates,
and the terminated process’s workstation goes back
under the control of the macro-level scheduler to be
assigned another job.

With CPU speeds increasing faster than network
and memory speeds, the overhead incurred by net-
work communication, cache misses, and page faults
becomes ever more significant to application perfor-
mance. Thus, preserving communication and memory
locality is essential to performance. Our micro-level
scheduler preserves communication and memory lo-
cality by working on tasks in LIFO order and stealing
tasks in FIFO order.

This claim 1s supported by intuition, analytic re-
sults, and empirical data. Intuitively, executing tasks
in LIFO order preserves memory locality by keeping
the process’s working set small, because whenever a
task 1s executed, the next task to be executed is of-
ten closely related to the first task. Stealing in FIFO
order has an intuitive payoff in preserving communica-
tion locality, because for computations with a tree-like
structure, the task at the tail of the ready list is often
a task near the base of the tree, and therefore, a task
that will spawn many descendent tasks. Analytic re-
sults of Blumofe and Leiserson [2] show that for a large
class of dynamic computations, the randomized work
stealing strategy combined with LIFO execution order

and FIFO steal order achieves linear speedup (with
high probability) as well as tightly bounded commu-
nication and memory requirements. In Section 4, we
present empirical evidence that our micro-level sched-
uler preserves both communication and memory local-

ity.

3 Phish

Phish is a portable package for running dynamic par-
allel applications on a network of workstations. In
this section, we present an overview of the Phish sys-
tem. Because of space constraints, we are unable to
present a detailed description of the entire Phish sys-
tem. Rather, we focus on how Phish implements the
idle-initiated scheduler.

At the macro-level scheduling, Phish consists of the
PhishJob@ and the PhishJobManager as shown in Fig-
ure 2. The PhishJob@Q, an RPC server, resides on one
computer and manages the pool of parallel jobs. When
a Phish application begins execution, it is submitted
to the PhishJobQ. When an idle workstation requests
a job, the PhishJob@Q assigns one of its parallel jobs
to the idle workstation. Qur current implementation
of the PhishJob() uses a non-preemptive round-robin
scheduling algorithm to assign jobs.

The PhishJobManager, a background daemon, re-
sides on every workstation that i1s part of the Phish
network and tries to obtain a job from the PhishJobQ
when the workstation becomes idle. Our current im-
plementation of the PhishJobManager uses a very con-
servative policy — a workstation is deemed idle only
when no users are logged in. While users are logged
in, the PhishJobManager checks every five minutes to
see if they have logged out. As soon as the PhishJob-
Manager discovers that its workstation is idle, 1t re-
quests a job from the PhishJobQ. If the PhishJobQ
responds negatively because the parallel job pool is
empty, then the PhishJobManager continues to re-
quest a job every thirty seconds until it gets a job
from the PhishJobQ. If the PhishJobQ responds posi-
tively by assigning a job, the PhishJobManager starts
a worker process to participate in the job and waits
for the worker to terminate. In the meantime, the
PhishJobManager checks every two seconds to see if
anyone has logged in. If the PhishJobManager discov-
ers that the workstation is no longer idle, it terminates
the worker process. Future implementations of Phish
will provide opportunities for using and studying more
sophisticated job assignment algorithms and different
idleness policies.

At the micro-level scheduling, an executing Phish
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Figure 2: Parallel jobs are submitted to the
PhishJobQ. Each workstation in the network runs the
PhishJobManager, and when the PhishJobManager
determines that its workstation is available to run a
parallel job, it gets a job from the PhishJob@Q. In this
example, the PhishJobQ has 3 jobs, and each work-
station with no user logged in (those not shaded) is
participating in one of the jobs.

job consists of a Clearinghouse and one or more work-
ers as illustrated in Figure 3. The Clearinghouse is
a special program (independent of the particular ap-
plication) that is responsible for keeping track of all
worker processes participating in the job and provid-
ing various services to the workers. A worker 1s a par-
ticipating process, which is an instance of the actual
application program. When a worker starts, it regis-
ters with the Clearinghouse, and when a worker quits,
it unregisters. Workers can find out about the other
workers participating in the job by obtaining periodic
updates from the Clearinghouse. Workers can per-
form I/O through the Clearinghouse, so a user need
only watch the Clearinghouse to see job output. When
a parallel job is started, a Clearinghouse must also be
started. Often, a worker process is also started on the
same workstation as the Clearinghouse.

The PhishJob@ and Clearinghouse represent poten-
tial bottlenecks to the scalability of the Phish sys-
tem, but these concerns are largely mitigated by the
coarse granularity of the services they provide. The
PhishJobManager on a given workstation communi-
cates with the PhishJobQ at most once every 30 sec-

Clearing-
house

Worker Worker Worker Worker

Figure 3: The Clearinghouse provides services to all
the workers participating in a parallel job.

onds. Likewise, a worker process communicates with
the Clearinghouse once to register, once to unregister,
and once every 2 minutes to obtain an update. The
only other communication between the Clearinghouse
and its workers is for I/O which is buffered as much
as possible. Although we have not empirically tested
the system’s scalability, we conjecture that Phish can
be scaled to over a thousand workstations.

Phish applications are coded using a simple exten-
sion to the C programming language and a simple pre-
processor that outputs native C embellished with calls
to the Phish scheduling library. We support this pro-
gramming model on both the CM-5 with the Strata
[4, 13] scheduling library and on a network of work-
stations with Phish. More details of this programming
model can be found in [13].

Once a program has been compiled and bound with
the Phish library, a user can set off a flurry of parallel
computation on workstations throughout the network
by simply invoking the program on his or her work-
station. For example, simply typing “ray my-scene”
will run our parallel ray tracer on the data given in
the file my-scene. By default, this simple command
starts up the Clearinghouse and the first worker on
the local workstation, so the computation begins right
away. Also by default, it automatically submits the
job to the PhishJob@. Thus, as other workstations
become idle, they automatically begin working on the
ray-tracing job.

We conclude this section with a couple of comments
about the Phish implementation. Since the round-trip
latency of the network is very high, almost all commu-
nications are done with split-phase operations; that is,
the runtime system almost always works while wait-
ing for a reply message. In order to achieve split-phase
communications, all communications are implemented
on top of UDP/IP messages. Finally, Phish is fault tol-
erant. Enough redundant state is maintained so that
lost work can be redone in the event of a machine
crash.



4 Application performance

Currently, we have 2 toy applications and 2 real ap-
plications with more on the way. The toy applica-
tions are £ib and nqueens. The fib application is
a naive, doubly-recursive program that computes Fi-
bonacci numbers. The nqueens application counts by
backtrack search the number of ways of arranging n
queens on an n X n chess board such that no queen
can capture any other. The real applications are pro-
tein folding and ray tracing. The protein-folding ap-
plication finds all possible foldings of a polymer into
a lattice and computes a histogram of the energy val-
ues. This application was developed by Chris Joerg
of the MIT Laboratory for Computer Science and Vi-
jay Pande of the MIT Center for Material Sciences
and Engineering. The ray-tracing application renders
images by tracing light rays around a mathematical
model of a scene. More details of both the ray tracer
and the protein folder can be found in [13].

We begin with data measuring the serial slowdown
incurred by parallel scheduling overhead. The serial
slowdown of an application is measured as the ratio of
the single-processor execution time of the parallel code
to the execution time of the best serial implementation
of the same algorithm. For example, if the serial slow-
down 1s 3.0 and the best serial implementation runs in
10 seconds, then our parallel implementation runs in
30 seconds on one processor. Another way of looking
at this number is to say that the parallel implemen-
tation needs 3 processors — assuming linear speedup
— 1n order to break even. Serial slowdown arises due
to the extra overhead that the parallel implementation
incurs by packaging tasks so they can be run in parallel
(as opposed to simple procedure calls in the serial im-
plementation), scheduling the execution of these tasks,
and polling the network for messages.

Serial slowdown data for 3 applications are given in
Table 1. In general, we see that the serial slowdown
incurred by Phish on our network of workstations is
slightly greater than that suffered by Strata on the
CM-5. Phish must work harder in its scheduling be-
cause 1t operates with a dynamic processor set while
Strata operates with a static processor set.

For the individual applications, on one end of the
spectrum, we see rather large serial slowdown for £ib,
and on the other end, we see almost no serial slowdown
for ray. The £ib application incurs serial slowdown
because of its tiny grain size; it does almost nothing
but spawn parallel tasks, which are simple procedure
calls in the serial implementation. The fairly coarse
grain size of the ray application incurs very little serial
slowdown.

fib | nqueens | ray
CM-b 4.44 1.09 1.00
SparcStation 10 || 5.90 1.12 1.04

Table 1: Serial slowdown measured for three applica-
tions on the CM-5 using the Strata scheduling library
and on a SparcStation 10 using Phish.

Of course, if our applications are going to suffer
any serial slowdown, there ought to be some paral-
lel speedup forthcoming. Figure 4 shows the aver-
age execution time and Figure 5 shows the parallel
speedup achieved by the protein-folding (pfold) ap-
plication running on a network of SparcStation 1’s us-
ing Phish. In general, measuring speedup with Phish
is complicated by the fact that the computers partic-
ipating in a computation do not start up at the same
time. Therefore, even if they stay with the compu-
tation until the end and terminate at (very nearly)
the same time, each participating computer runs for
a different amount of time. Also, the participating
computers may differ in computing power. To cir-
cumvent this heterogeneity, we did our measurements
using only SparcStation 1’s. To deal with participants
running for different amounts of time, we attempted
to start each participating computer at as close to the
same time as possible. (Actually, starting all the par-
ticipants at exactly the same time is impossible since
each participant must begin by registering with the
Clearinghouse) We then measured the speedup with
P participants as the ratio of the execution time of the
parallel implementation running with one participant
to the average execution time of the P participants.
Specifically, let T} denote the execution time of the
parallel implementation running with one participant,
and let Tp(i) for i = 1,2,..., P denote the execution
time of the ¢th participant in a parallel execution with
P participants. Then the P-processor speedup Sp is
given by

T
Sp=P—p—.

i) Te(i)
(To simplify presentation, this definition of speedup
is slightly generous. When we perform an execu-
tion with P participants, rather than consider it as
a P-processor execution, we should consider it a p-
processor execution with p defined as the time average
of the number of processors participating in the exe-
cution. In practice, this modified definition does not
change our results by very much since we were able
to start all the participants at reasonably close to the
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Figure 4: Average execution time of the Phish pfold
application running on a network of SparcStation 1’s
versus the number of participants. The average exe-
cution time of a P-participant execution is given by
(Zle Tp(1))/P where Tp(i) is the wall-clock execu-
tion time of the ¢th participant. When doing this ex-
periment, we used idle workstations, so the wall-clock
time is virtually the same as the sum of the user and
system times given by the “rusage” system call.

same time.)

The graph of Figure 5 shows that we are getting
close to perfectly linear speedup for the pfold applica-
tion, even with 32 participants. With 32 participants,
the execution time is getting short enough that some
of the fixed overheads, especially registering with the
Clearinghouse, are becoming significant. In fact, all
4 of our applications demonstrate similar speedups,
but for lack of space we only present the pfold data.
We realize that achieving linear speedup is often easy
— just make the problem size large enough. There-
fore, the serial slowdown data are far more significant
in assessing Phish’s performance. In particular, the
fact that an application with a tiny grain size such
as £ib suffers less than a factor of 6 loss in efficiency
(and achieves linear speedup), shows that the idle-
initiated scheduler can effectively execute fine-grain
parallel applications. This efficiency in the face of
highly limited network performance comes from the
idle-initiated scheduler’s ability to preserve locality,
as we now show.

Table 2 presents some data that indicate the ex-
tent to which our idle-initiated scheduler 1s able to
preserve locality. These data present several message
and scheduling statistics for a 4-participant and an
8-participant execution of the pfold application.

When comparing the number of tasks executed to
the maximum tasks in use, which effectively measures
the size of the largest working set of any participant,
we see that even though more than 10 million tasks are

—e— Relative Speed-Up
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Figure 5: Speedup of the Phish pfold application
running on a network of SparcStation 1’s versus the
number of participants. The P-participant speedup
is computed as Sp = PTl/Zle Tp(7), where Tp(%)
is the wall-clock execution time of the 7th participant
and 77 is the wall-clock execution time of the parallel
program with one participant. The dashed line repre-
sents perfect linear speedup.

4 participants | 8 participants

Tasks executed 10,390,216 10,390,216
Max tasks in use 59 59
Tasks stolen 70 133
Synchronizations 10,390,214 10,390,214
Nomn-local synchs 55 122
Messages sent 1,598 1,998
Execution time 182 sec. 94 sec.

Table 2: A variety of Phish message and scheduling
statistics taken from a 4- and an 8-participant execu-
tion of the pfold application.

executed, no participant ever has more than 59 tasks
in use. Thus, our LIFO scheduler keeps the working
set small, which is vital to achieving good performance
because of the hierarchical memory organization of
modern RISC workstations. Furthermore, increasing
the number of participants does not increase the size
of the working set. This property provably holds [2]
for an algorithm that is only slightly different from the
one we use.

The remaining data in Table 2 show the extent to
which the idle-initiated scheduler is able to avoid ex-
pensive network communication. Very few tasks need
to be stolen. Also, an overwhelming majority of syn-
chronizations are local and therefore do not require
any network communication. Ultimately, very few
messages are sent.



5 Related work

Much recent work in operating systems has gone to
improving the utilization of workstation networks. To
varying degrees, distributed operating systems such as
V [9], Sprite [21], and Amoeba [25] view the worksta-
tion network as a pool of processors on which processes
are transparently placed and migrated. This trans-
parent process placement improves throughput and
utilization by more evenly spreading the load across
processors. Unlike Phish, which focuses on dynamic
parallel applications, these systems are concerned pri-
marily with static distributed applications.

Among systems that do directly address parallel
computing on workstation networks, some focus pri-
marily on message-passing. Of particular note in this
category is PVM [22]. PVM provides a collection of
message passing and coordination primitives that an
application can use to orchestrate the operation of its
various parallel components. PVM does not, however,
provide much support for scheduling beyond a basic,
static scheduler. In contrast, Phish provides a rela-
tively high-level programming model that relieves the
programmer of the need to schedule at the message-
passing level.

The Parform [6] is a message-passing system with
an emphasis on dynamic load balancing. The Parform
employs load sensors to determine dynamically the rel-
ative load of the various machines that make up the
Parform. This information 1s then used to divide and
distribute the various parallel tasks. In contrast, the
idle-initiated scheduler does not move a task unless an
idle machine requests work.

The EcliPSe system [23] and the DIB system [11]
employ workstation networks to run parallel appli-
cations from specific domains. EcliPSe performs
stochastic simulation, and DIB performs backtrack
search. DIB is of particular relevance to us, since back-
track search exhibits dynamic parallelism. In fact,
DIB’s scheduler inspired our idle-initiated scheduler.
This type of scheduling technique actually goes back
before DIB to MultiLisp [14] and has become known
as work stealing [2].

Other systems address parallel computing on a net-
work of workstations by maintaining shared global
state. In the Ivy system [18], the global state is a
paged virtual address space. Pages migrate between
processors on demand while a protocol ensures the
consistency of multiple copies of a page. As an al-
ternate approach, the shared global state in systems
such as Emerald [16], Amber [8], Amoeba/Orca [24]
and Network Objects [1] is a collection of abstract data
types or objects. Objects can be placed on and mi-

grated between the network nodes. Operations can
be invoked on an object no matter where the object is
located, and protocols ensure the consistency of dupli-
cate objects. These systems support varying degrees
of concurrency and fault tolerance.

These systems with global-state are largely orthog-
onal to ours, because they focus on the efficient imple-
mentation of shared global state while mostly ignor-
ing scheduling issues. We have taken the reverse tact
by concentrating on scheduling issues without imple-
menting any kind of shared global state. As a con-
sequence, the current Phish implementation is some-
what limited in the types of applications that can be
run. On the other hand, there are important applica-
tions that don’t need a shared global state for which
Phish delivers tremendous performance. In the future,
we plan to add shared global state to Phish.

Linda [7] combines shared global state and schedul-
ing issues into one simple paradigm: generative com-
munication. The basic idea is that objects called “tu-
ples” can be placed in, removed from, or simply read
from a common “tuple-space.” This simple notion
turns out to be surprisingly expressive. Although no
particular scheduling is actually built into Linda, our
scheduling techniques — or any scheduling technique
for that matter — could be implemented with Linda.

In fact, Piranha [12] is a system built on top of
Linda with design goals very similar to those of Phish.
(The fact that these systems share a piscene name is
purely coincidental.) Like Phish, Piranha allows a par-
allel application to run on a set of workstations that
may grow and shrink during the course of its execu-
tion. In particular, as workstations become idle, they
may join an ongoing computation, and when reclaimed
by their owners, workstations may leave a computa-
tion. Piranha’s creators call this capability “adaptive
parallelism.” This capability is also present in the
Benevolent Bandit Laboratory [10], a PC-based sys-
tem. Phish also possesses this capability, and Phish’s
macro-level scheduler is very similar to these other sys-
tems. Phish’s micro-level scheduler, however, is very
different and works with the macro-level to give Phish
the added capability of adapting parallelism to inter-
nal, as well as external, forces. In particular, Phish
allows workstations to join and leave a computation
in response to growing and shrinking levels of paral-
lelism within the computation.

6 Future work and conclusions

With Phish and the Strata scheduling library both

supporting the same programming model, we natu-



rally plan to run applications using both the worksta-
tion network and the CM-5 together. Also, we plan to
give Phish capabilities to run applications over wide-
area networks with heterogeneous network resources.
Using the CM-5 together with a network of worksta-
tions actually fits into our plans for supporting het-
erogeneous networks because the CM-5 is essentially
a network of workstations.

We are already working on some extension of our
theoretical work-stealing results to incorporate net-
work heterogeneity. The focus of this research is ac-
commodating heterogeneous network capability as op-
posed to heterogeneous computer capability. Almost
all microprocessors manufactured today are within
a single order of magnitude of each other in terms
of performance. Interconnection networks, on the
other hand, have vastly differing capabilities. Our
new scheduling techniques attempt to preserve local-
ity with respect to those network cuts that have the
least bandwidth.

Besides the future work just mentioned, we have
several other planned extensions. These include new
applications, support for checkpointing, a graphical in-
terface, implementation of other macro-level schedul-
ing policies; and support for globally shared data
structures.

We conclude with the following points about Phish.

e Phish’s macro-level scheduler allows workstations
to join and leave an ongoing computation in re-
sponse to the availability of idle cycles.

e Phish’s macro-level scheduler cooperates with its
micro-level scheduler to allow workstations to join
and leave an ongoing computation in response to
the availability of parallelism within the compu-
tation.

e Phish’s micro-level scheduler delivers high perfor-
mance to dynamic parallel applications by pre-
serving memory and communication locality.

e Phish is highly fault-tolerant and therefore able
to run large-scale applications for long periods of
time with almost no administrative effort.
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