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lent, and since much of a typical workstation's com-puting capacity goes unused [20], a workstation net-work presents a large source of compute power onwhich to run large-scale parallel applications. Fur-thermore, a typical workstation is far less expensivethan a compute node of most massively parallel su-percomputers [19]. Because of these characteristics,networks of workstations are worthy of study as a wayof performing large-scale parallel computations.When compared to a massively parallel supercom-puter, such as the CM-5 from Thinking Machines, anetwork of workstations su�ers an obvious weakness:network performance. In particular, the software over-head incurred when sending a message on a typicalworkstation is often at least two orders of magnitudegreater than the corresponding overhead on a paral-lel supercomputer. Also, the bisection bandwidth of atypical workstation network is again often at least twoorders of magnitude less than the bisection bandwidthof a parallel supercomputer's interconnect. Despitethese limitations, we demonstrate later that for someapplications a good scheduler running on a network ofworkstations can reduce the interprocessor communi-cations to the point where the modest communicationperformance does not degrade the overall applicationperformance. Furthermore, and more importantly,improving workstation networks with low-latency andhigh-bandwidth interconnects (such as ATM) is a veryactive �eld of research [3, 15, 17], which is closing thegap between workstation networks and supercomputerinterconnects.Parallel computing on a network of workstationspresents a vast array of scheduling choices. Speci�-cally, when given a set of parallel jobs to execute, ascheduler must answer several questions for each pro-cessor:� Should the processor work on a parallel job at all?� When should the processor work on parallel jobs?� Which parallel job should the processor work on?



Many supercomputers answer these questions with avery limited set of possibilities. For example, the CM-5 divides its processors into a small number of �xed-size partitions. Each partition is run either in ded-icated mode, where the processors complete one jobafter another, or in time-sharing mode, where the pro-cessors are gang-scheduled to the jobs in round-robinfashion. Thus, all the processors work on parallel jobsall the time, and all the processors in a given partitionwork on the same parallel job. For example, if 4 jobswish to run in a 32-node time-shared partition, theneach job runs on all 32 processors for some quantumof time until the job is preempted by the round-robinscheduler.Clearly, this technique of allocating the 32 proces-sors to the 4 jobs may not be the most e�cient choice.First, empirical evidence (though in a somewhat di�er-ent context) [26] indicates that better throughput maybe achieved by space-sharing rather than time-sharing| in other words, assign each of the 4 jobs to 8 of theprocessors. In this manner, each job gets a dedicatedset of processors, and all context-switching overheadsare avoided. Also, with space-sharing comes anotherpossibility. Suppose the available parallelism in one ofthe jobs decreases. In this case, assigning some pro-cessors to another job with excess available parallelismis better than letting the processors sit idly.To address these scheduling issues, we have de-veloped and implemented some new scheduling tech-niques in a prototype system. We refer to our schedul-ing techniques as idle-initiated because idle comput-ers actively search out work to do rather than waitfor work to be assigned. The idle-initiated schedulerworks on both the macro and the micro levels.The macro-level scheduler is responsible for assign-ing processors to parallel jobs and operates with thefollowing goals:1. Space-share rather than time-share.2. Accommodate dynamically changing amounts ofparallelism among jobs.3. Allow owners to retain sovereignty over their ma-chines.These goals and the resulting macro-level, idle-initiated scheduler are all discussed in Section 2.The micro-level scheduler is responsible for assign-ing the tasks that comprise a parallel job to the partic-ipating processors of that job. The micro-level sched-uler operates with the following goals:1. Preserve communications and memory locality.

2. Accommodate dynamic parallelism.These goals and the resulting micro-level, idle-initiated scheduler are all discussed in Section 2 afterthe macro-level scheduler.The idle-initiated scheduler is implemented in thePhish prototype system. Phish provides a simple pro-gramming model and an execution vehicle for parallelapplications with unstructured and/or dynamic par-allelism | the type of applications that are di�cultto implement in the data-parallel or message-passingstyles. The Phish runtime system allows applicationsto utilize a dynamically changing set of workstations.In particular, workstations, when left idle, may joinan ongoing computation and then leave the compu-tation when reclaimed by their owners. Also, work-stations may join and leave an ongoing computationin response to the availability of parallelism withinthe computation. The Phish implementation operateswith the following goals:1. Execute large-scale parallel applications on largenumbers of processors.2. Utilize compute resources that would otherwisego idle.3. Provide fault tolerance so that applications canrun for long periods of time.4. Do not interfere with the normal day-to-day useand management of the workstation network.5. Achieve linear parallel speedup with only modestdegradations in e�ciency.These goals and our �rst prototype implementationare all discussed in Section 3.This prototype is currently operational at the MITLaboratory for Computer Science, and we have runa couple of large-scale applications: a protein-foldingapplication and a ray tracer. In Section 4 we re-port preliminary performance data from these andtwo other \toy" applications. These data demon-strate the high degree of e�ciency delivered by themicro-level scheduler's ability to preserve communica-tion and memory locality. For example, in an execu-tion of the protein-folding application with 8 worksta-tions, despite the over 10 million tasks executed, only133 were ever migrated from one workstation to an-other, and yet the execution achieved almost perfect8-fold speedup.The remainder of this paper is organized as follows.Section 2 discusses the idle-initiated scheduler at boththe macro and micro levels, and Section 3 discusses



the implementation of this scheduler in Phish. Pre-liminary application performance is presented in Sec-tion 4. This paper closes with a discussion of relatedwork in Section 5 and conclusions in Section 6.2 Idle-initiated schedulingWe have developed idle-initiated scheduling tech-niques in order to e�ectively schedule large-scale, dy-namic parallel computations on a network of worksta-tions. Idle-initiated scheduling operates on both themacro level and the micro level.Macro-level schedulingThe role of the macro-level (or inter-application)scheduler is to determine which workstations are idleand to assign these idle workstations to parallel jobs.Each workstation owner can set his or her own pol-icy on \idleness" versus \busyness." For example,some owners may decide that their machines are idle| that is, available to be used for parallel jobs | onlywhen nobody is logged in. Other owners may maketheir machines available so long as the CPU load isbelow some threshold. We believe that maintainingthe owner's sovereignty is essential if we want ownersto allow their machines to be used for parallel compu-tation.When a workstation becomes idle, it requests a jobfrom a pool of parallel jobs managed by the macro-level scheduler. If parallel jobs are available, the sched-uler assigns a job to the workstation. Note that whenit assigns a job to a workstation, the scheduler keepsthat job in its pool so that the job can also be as-signed to other idle workstations. If no parallel jobis available, the workstation continues requesting jobsuntil either a job becomes available or the workstationbecomes busy. Once a workstation receives a job, itruns a participating process under the control of themicro-level scheduler described below until the processdies.The participating process can die for several rea-sons. In the simplest case, the job may terminate.Second, the owner's idleness policy may determinethat the workstation is no longer available for parallelcomputation. In this case, the process's data migratesbefore termination to another process of the same par-allel job. Third, the amount of parallelism in the jobmay decrease to the point where a participant is un-able to keep busy. As the parallelism in an applicationshrinks, some of its participating processes die, andthe macro-level scheduler accommodates this time-varying parallelism by reassigning the freed worksta-

tions to other jobs. Finally, the macro-level schedulermay preempt the process due to scheduling priority.This preemption is the only case in which the macro-level scheduler performs time-sharing. Whenever pos-sible, however, the macro-level scheduler shares com-pute resources among parallel jobs by space-sharing.The preference for space-sharing over time-sharingis supported both by intuition and to some extent byempirical data. In the context of shared-memory mul-tiprocessors, Tucker and Gupta [26] found that utiliza-tion and throughput are improved by space-sharing in-stead of time-sharing. They cite context-switch over-head as a signi�cant factor. In the realm of message-passing parallel computing, Brewer and Kuszmaul [5]found another reason to avoid time-sharing. Theyfound that achieving performance in message passingis critically tied to the rate at which messages can bereceived. When a process is swapped-out, it cannotreceive messages | messages �ll up available bu�ersand potentially clog the network.Micro-level schedulingOn the micro level, each parallel job consists of a poolof discrete tasks. Tasks are dynamically created be-cause the execution of a task can spawn new tasks.Furthermore, tasks can have synchronization require-ments in that some tasks may need to wait for othertasks to be executed. The role of the micro-level (orintra-application) scheduler, then, is to assign tasks toparticipating processes.Each participating process maintains its own list ofready tasks whose synchronization requirements havebeen met. For example, Figure 1(a) shows the stateof a participating process's list of ready tasks. Whilethe queue is not empty, the process works on readytasks in a LIFO order. It works on tasks at the headof the list and inserts any newly spawned ready tasksat the head of the list. In Figure 1(b), the process hasexecuted task D, which spawned tasks E, F, and G.At some point, the participating process �nishes ex-ecuting all of its ready tasks. Of course, there maystill be ready tasks that need to be executed in thelists of other participants. In order to get one of thoseready tasks to work on, the participant without readytasks becomes a thief. The thief chooses uniformlyat random a victim participant, from which to steal aready task. If the victim's list of ready tasks is notempty, it gives the thief the task at the tail of thelist. Thus, stealing tasks is done in a FIFO manner.In Figure 1(c), the participant process has become avictim. A thief has stolen task A, which was at thetail. If, on the other hand, the victim's queue of ready
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(a) (b) (c)Figure 1: The local ready task list of a participant.(a) The queue contains four tasks: A, B, C, and D.(b) After executing task D which spawns three childtasks: E, F, and G. (c) After some other participantsteals task A.tasks is empty, the thief chooses another victim fromwhich to steal a task. If no task can be found even af-ter many attempted steals, the amount of parallelismin the job must have decreased. In response to thisdecrease in parallelism, the thief process terminates,and the terminated process's workstation goes backunder the control of the macro-level scheduler to beassigned another job.With CPU speeds increasing faster than networkand memory speeds, the overhead incurred by net-work communication, cache misses, and page faultsbecomes ever more signi�cant to application perfor-mance. Thus, preserving communication and memorylocality is essential to performance. Our micro-levelscheduler preserves communication and memory lo-cality by working on tasks in LIFO order and stealingtasks in FIFO order.This claim is supported by intuition, analytic re-sults, and empirical data. Intuitively, executing tasksin LIFO order preserves memory locality by keepingthe process's working set small, because whenever atask is executed, the next task to be executed is of-ten closely related to the �rst task. Stealing in FIFOorder has an intuitive payo� in preserving communica-tion locality, because for computations with a tree-likestructure, the task at the tail of the ready list is oftena task near the base of the tree, and therefore, a taskthat will spawn many descendent tasks. Analytic re-sults of Blumofe and Leiserson [2] show that for a largeclass of dynamic computations, the randomized workstealing strategy combined with LIFO execution order

and FIFO steal order achieves linear speedup (withhigh probability) as well as tightly bounded commu-nication and memory requirements. In Section 4, wepresent empirical evidence that our micro-level sched-uler preserves both communication and memory local-ity.3 PhishPhish is a portable package for running dynamic par-allel applications on a network of workstations. Inthis section, we present an overview of the Phish sys-tem. Because of space constraints, we are unable topresent a detailed description of the entire Phish sys-tem. Rather, we focus on how Phish implements theidle-initiated scheduler.At the macro-level scheduling, Phish consists of thePhishJobQ and the PhishJobManager as shown in Fig-ure 2. The PhishJobQ, an RPC server, resides on onecomputer and manages the pool of parallel jobs. Whena Phish application begins execution, it is submittedto the PhishJobQ. When an idle workstation requestsa job, the PhishJobQ assigns one of its parallel jobsto the idle workstation. Our current implementationof the PhishJobQ uses a non-preemptive round-robinscheduling algorithm to assign jobs.The PhishJobManager, a background daemon, re-sides on every workstation that is part of the Phishnetwork and tries to obtain a job from the PhishJobQwhen the workstation becomes idle. Our current im-plementation of the PhishJobManager uses a very con-servative policy | a workstation is deemed idle onlywhen no users are logged in. While users are loggedin, the PhishJobManager checks every �ve minutes tosee if they have logged out. As soon as the PhishJob-Manager discovers that its workstation is idle, it re-quests a job from the PhishJobQ. If the PhishJobQresponds negatively because the parallel job pool isempty, then the PhishJobManager continues to re-quest a job every thirty seconds until it gets a jobfrom the PhishJobQ. If the PhishJobQ responds posi-tively by assigning a job, the PhishJobManager startsa worker process to participate in the job and waitsfor the worker to terminate. In the meantime, thePhishJobManager checks every two seconds to see ifanyone has logged in. If the PhishJobManager discov-ers that the workstation is no longer idle, it terminatesthe worker process. Future implementations of Phishwill provide opportunities for using and studying moresophisticated job assignment algorithms and di�erentidleness policies.At the micro-level scheduling, an executing Phish
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Worker Worker WorkerWorkerFigure 3: The Clearinghouse provides services to allthe workers participating in a parallel job.onds. Likewise, a worker process communicates withthe Clearinghouse once to register, once to unregister,and once every 2 minutes to obtain an update. Theonly other communication between the Clearinghouseand its workers is for I/O which is bu�ered as muchas possible. Although we have not empirically testedthe system's scalability, we conjecture that Phish canbe scaled to over a thousand workstations.Phish applications are coded using a simple exten-sion to the C programming language and a simple pre-processor that outputs native C embellished with callsto the Phish scheduling library. We support this pro-gramming model on both the CM-5 with the Strata[4, 13] scheduling library and on a network of work-stations with Phish. More details of this programmingmodel can be found in [13].Once a program has been compiled and bound withthe Phish library, a user can set o� a urry of parallelcomputation on workstations throughout the networkby simply invoking the program on his or her work-station. For example, simply typing \ray my-scene"will run our parallel ray tracer on the data given inthe �le my-scene. By default, this simple commandstarts up the Clearinghouse and the �rst worker onthe local workstation, so the computation begins rightaway. Also by default, it automatically submits thejob to the PhishJobQ. Thus, as other workstationsbecome idle, they automatically begin working on theray-tracing job.We conclude this section with a couple of commentsabout the Phish implementation. Since the round-triplatency of the network is very high, almost all commu-nications are done with split-phase operations; that is,the runtime system almost always works while wait-ing for a reply message. In order to achieve split-phasecommunications, all communications are implementedon top of UDP/IP messages. Finally, Phish is fault tol-erant. Enough redundant state is maintained so thatlost work can be redone in the event of a machinecrash.



4 Application performanceCurrently, we have 2 toy applications and 2 real ap-plications with more on the way. The toy applica-tions are fib and nqueens. The fib application isa naive, doubly-recursive program that computes Fi-bonacci numbers. The nqueens application counts bybacktrack search the number of ways of arranging nqueens on an n � n chess board such that no queencan capture any other. The real applications are pro-tein folding and ray tracing. The protein-folding ap-plication �nds all possible foldings of a polymer intoa lattice and computes a histogram of the energy val-ues. This application was developed by Chris Joergof the MIT Laboratory for Computer Science and Vi-jay Pande of the MIT Center for Material Sciencesand Engineering. The ray-tracing application rendersimages by tracing light rays around a mathematicalmodel of a scene. More details of both the ray tracerand the protein folder can be found in [13].We begin with data measuring the serial slowdownincurred by parallel scheduling overhead. The serialslowdown of an application is measured as the ratio ofthe single-processor execution time of the parallel codeto the execution time of the best serial implementationof the same algorithm. For example, if the serial slow-down is 3.0 and the best serial implementation runs in10 seconds, then our parallel implementation runs in30 seconds on one processor. Another way of lookingat this number is to say that the parallel implemen-tation needs 3 processors | assuming linear speedup| in order to break even. Serial slowdown arises dueto the extra overhead that the parallel implementationincurs by packaging tasks so they can be run in parallel(as opposed to simple procedure calls in the serial im-plementation), scheduling the execution of these tasks,and polling the network for messages.Serial slowdown data for 3 applications are given inTable 1. In general, we see that the serial slowdownincurred by Phish on our network of workstations isslightly greater than that su�ered by Strata on theCM-5. Phish must work harder in its scheduling be-cause it operates with a dynamic processor set whileStrata operates with a static processor set.For the individual applications, on one end of thespectrum, we see rather large serial slowdown for fib,and on the other end, we see almost no serial slowdownfor ray. The fib application incurs serial slowdownbecause of its tiny grain size; it does almost nothingbut spawn parallel tasks, which are simple procedurecalls in the serial implementation. The fairly coarsegrain size of the ray application incurs very little serialslowdown.

fib nqueens rayCM-5 4.44 1.09 1.00SparcStation 10 5.90 1.12 1.04Table 1: Serial slowdown measured for three applica-tions on the CM-5 using the Strata scheduling libraryand on a SparcStation 10 using Phish.Of course, if our applications are going to su�erany serial slowdown, there ought to be some paral-lel speedup forthcoming. Figure 4 shows the aver-age execution time and Figure 5 shows the parallelspeedup achieved by the protein-folding (pfold) ap-plication running on a network of SparcStation 1's us-ing Phish. In general, measuring speedup with Phishis complicated by the fact that the computers partic-ipating in a computation do not start up at the sametime. Therefore, even if they stay with the compu-tation until the end and terminate at (very nearly)the same time, each participating computer runs fora di�erent amount of time. Also, the participatingcomputers may di�er in computing power. To cir-cumvent this heterogeneity, we did our measurementsusing only SparcStation 1's. To deal with participantsrunning for di�erent amounts of time, we attemptedto start each participating computer at as close to thesame time as possible. (Actually, starting all the par-ticipants at exactly the same time is impossible sinceeach participant must begin by registering with theClearinghouse) We then measured the speedup withP participants as the ratio of the execution time of theparallel implementation running with one participantto the average execution time of the P participants.Speci�cally, let T1 denote the execution time of theparallel implementation running with one participant,and let TP (i) for i = 1; 2; : : : ; P denote the executiontime of the ith participant in a parallel execution withP participants. Then the P -processor speedup SP isgiven by SP = P T1PPi=1 TP (i) :(To simplify presentation, this de�nition of speedupis slightly generous. When we perform an execu-tion with P participants, rather than consider it asa P -processor execution, we should consider it a �-processor execution with � de�ned as the time averageof the number of processors participating in the exe-cution. In practice, this modi�ed de�nition does notchange our results by very much since we were ableto start all the participants at reasonably close to the
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5 Related workMuch recent work in operating systems has gone toimproving the utilization of workstation networks. Tovarying degrees, distributed operating systems such asV [9], Sprite [21], and Amoeba [25] view the worksta-tion network as a pool of processors on which processesare transparently placed and migrated. This trans-parent process placement improves throughput andutilization by more evenly spreading the load acrossprocessors. Unlike Phish, which focuses on dynamicparallel applications, these systems are concerned pri-marily with static distributed applications.Among systems that do directly address parallelcomputing on workstation networks, some focus pri-marily on message-passing. Of particular note in thiscategory is PVM [22]. PVM provides a collection ofmessage passing and coordination primitives that anapplication can use to orchestrate the operation of itsvarious parallel components. PVM does not, however,provide much support for scheduling beyond a basic,static scheduler. In contrast, Phish provides a rela-tively high-level programming model that relieves theprogrammer of the need to schedule at the message-passing level.The Parform [6] is a message-passing system withan emphasis on dynamic load balancing. The Parformemploys load sensors to determine dynamically the rel-ative load of the various machines that make up theParform. This information is then used to divide anddistribute the various parallel tasks. In contrast, theidle-initiated scheduler does not move a task unless anidle machine requests work.The EcliPSe system [23] and the DIB system [11]employ workstation networks to run parallel appli-cations from speci�c domains. EcliPSe performsstochastic simulation, and DIB performs backtracksearch. DIB is of particular relevance to us, since back-track search exhibits dynamic parallelism. In fact,DIB's scheduler inspired our idle-initiated scheduler.This type of scheduling technique actually goes backbefore DIB to MultiLisp [14] and has become knownas work stealing [2].Other systems address parallel computing on a net-work of workstations by maintaining shared globalstate. In the Ivy system [18], the global state is apaged virtual address space. Pages migrate betweenprocessors on demand while a protocol ensures theconsistency of multiple copies of a page. As an al-ternate approach, the shared global state in systemssuch as Emerald [16], Amber [8], Amoeba/Orca [24]and Network Objects [1] is a collection of abstract datatypes or objects. Objects can be placed on and mi-

grated between the network nodes. Operations canbe invoked on an object no matter where the object islocated, and protocols ensure the consistency of dupli-cate objects. These systems support varying degreesof concurrency and fault tolerance.These systems with global-state are largely orthog-onal to ours, because they focus on the e�cient imple-mentation of shared global state while mostly ignor-ing scheduling issues. We have taken the reverse tactby concentrating on scheduling issues without imple-menting any kind of shared global state. As a con-sequence, the current Phish implementation is some-what limited in the types of applications that can berun. On the other hand, there are important applica-tions that don't need a shared global state for whichPhish delivers tremendous performance. In the future,we plan to add shared global state to Phish.Linda [7] combines shared global state and schedul-ing issues into one simple paradigm: generative com-munication. The basic idea is that objects called \tu-ples" can be placed in, removed from, or simply readfrom a common \tuple-space." This simple notionturns out to be surprisingly expressive. Although noparticular scheduling is actually built into Linda, ourscheduling techniques | or any scheduling techniquefor that matter | could be implemented with Linda.In fact, Piranha [12] is a system built on top ofLinda with design goals very similar to those of Phish.(The fact that these systems share a piscene name ispurely coincidental.) Like Phish, Piranha allows a par-allel application to run on a set of workstations thatmay grow and shrink during the course of its execu-tion. In particular, as workstations become idle, theymay join an ongoing computation, and when reclaimedby their owners, workstations may leave a computa-tion. Piranha's creators call this capability \adaptiveparallelism." This capability is also present in theBenevolent Bandit Laboratory [10], a PC-based sys-tem. Phish also possesses this capability, and Phish'smacro-level scheduler is very similar to these other sys-tems. Phish's micro-level scheduler, however, is verydi�erent and works with the macro-level to give Phishthe added capability of adapting parallelism to inter-nal, as well as external, forces. In particular, Phishallows workstations to join and leave a computationin response to growing and shrinking levels of paral-lelism within the computation.6 Future work and conclusionsWith Phish and the Strata scheduling library bothsupporting the same programming model, we natu-



rally plan to run applications using both the worksta-tion network and the CM-5 together. Also, we plan togive Phish capabilities to run applications over wide-area networks with heterogeneous network resources.Using the CM-5 together with a network of worksta-tions actually �ts into our plans for supporting het-erogeneous networks because the CM-5 is essentiallya network of workstations.We are already working on some extension of ourtheoretical work-stealing results to incorporate net-work heterogeneity. The focus of this research is ac-commodating heterogeneous network capability as op-posed to heterogeneous computer capability. Almostall microprocessors manufactured today are withina single order of magnitude of each other in termsof performance. Interconnection networks, on theother hand, have vastly di�ering capabilities. Ournew scheduling techniques attempt to preserve local-ity with respect to those network cuts that have theleast bandwidth.Besides the future work just mentioned, we haveseveral other planned extensions. These include newapplications, support for checkpointing, a graphical in-terface, implementation of other macro-level schedul-ing policies, and support for globally shared datastructures.We conclude with the following points about Phish.� Phish's macro-level scheduler allows workstationsto join and leave an ongoing computation in re-sponse to the availability of idle cycles.� Phish's macro-level scheduler cooperates with itsmicro-level scheduler to allow workstations to joinand leave an ongoing computation in response tothe availability of parallelism within the compu-tation.� Phish's micro-level scheduler delivers high perfor-mance to dynamic parallel applications by pre-serving memory and communication locality.� Phish is highly fault-tolerant and therefore ableto run large-scale applications for long periods oftime with almost no administrative e�ort.AcknowledgmentsPhish was intentionally designed to do on a networkof workstations what Strata does on the CM-5, andtherefore, Phish owes its heritage to Strata. EricBrewer developed the Strata communications library,and Mike Halbherr, Chris Joerg, and Yuli Zhou de-veloped the Strata scheduling library. Phish also took
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