
A Consistency Architecture for Hierarchical Shared Caches

Edya Ladan-Mozes and Charles E. Leiserson
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

{edya,cel}@mit.edu

ABSTRACT

Hierarchical Cache Consistency (HCC) is a scalable cache-con-
sistency architecture for chip multiprocessors in which caches are
shared hierarchically. HCC’s cache-consistency protocol is embed-
ded in the message-routing network that interconnects the caches,
providing a distributed and scalable alternative to bus-based and
directory-based consistency mechanisms. The HCC consistency
protocol is “progressive” in that every message makes monotonic
progress without timeouts, retries, negative acknowledgments, or
retreating in any way. The latency is at most proportional to the di-
ameter of the network. For HCC with a binary fat-tree network, the
protocol requires at most 13 bits of additional state per cache line,
no matter how large the system. We prove that the HCC protocol is
deadlock free and provides sequential consistency.

Categories and Subject Descriptors

B.3.2 [Hardware]: Memory Structures—Cache Memories, Shared

Memory; C.1.4 [Computer Systems Organization]: Processor Ar-
chitectures—Parallel Architectures

General Terms

Design, Performance, Theory

Keywords

Cache consistency, Deadlock, Fat-tree, Mapping collision, Mem-
ory hierarchy, Message race, Progressive protocol, Sequential con-
sistency, Shared caches.

1. INTRODUCTION
Multicore technology will soon allow hundreds of processor cores

to be placed on a single semiconductor die. The trend toward
steeper memory hierarchies is continuing as well, leading to on-
chip shared caches as a mean of exploiting instruction and data lo-
cality among the cores. Today, most chip multiprocessors (CMP’s)
share only their last level of cache, however. Cache consistency
is usually maintained using either snoopy-bus or directory-based
protocols, which typically employ timeouts, retries, or negative ac-
knowledgments in order to avoid anomalies such as deadlock and
livelock ([36] is a notable exception), and thus they do not guaran-
tee absolute forward progress. Extending these protocols to more
levels of hierarchy can be a significant design challenge.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’08, June 14–16, 2008, Munich, Germany.
Copyright 2008 ACM 978-1-59593-973-9/08/06 ...$5.00.

L1

L2

L3

L4

L5

P P P P P P P P P P P P P P P P

MEMORY

Figure 1: The HCC architecture imposed on a fat-tree interconnection net-
work. Each memory bank is the root of a tree of caches, any of which may
hold a location from the bank. The caches forming the tree rooted at one
such memory bank are marked with dots.

This paper proposes a simple architectural strategy, called HCC,
for Hierarchical Cache Consistency, which works with a vari-
ety of hierarchical networks. We give a fully distributed cache-
consistency protocol which is progressive: each message makes
monotonic progress without timeouts, retries, or negative acknowl-
edgments. Thus, although messages may be delayed by congestion,
once sent, they never need to be resent, thereby minimizing inter-
connect bandwidth.

The HCC architecture consists of multiple levels of shared caches
connecting the cores (or processors) to the main memory. Figure 1
shows one possible design of a butterfly fat-tree [25] in which pro-
cessors connect at the leaves, banks of main memory connect to
the roots, and shared caches occupy the internal nodes. The key
topological property of the HCC architecture is that there exists a
unique path through the network from each core to each memory
bank. This unique-path property ensures that the paths from the
cores to a given memory bank form a tree rooted at the memory
bank. It also guarantees that for any cache and for any memory
location, there is exactly one parent at the next higher level that
can store the same location. In Figure 1, the caches forming such a
tree for one memory bank are shown cross-hatched. Each cache is
shared by its children caches in the next lower level, and can com-
municate only with its immediate children and parents. HCC can
operate with more children and/or parents than shown in Figure 1
to meet engineering constraints, and it also supports unbalanced
structures, multibutterfly-like [24] randomized connections, and a
variety of optimizations, as long as the unique-path property is kept.

HCC’s progressive protocol is fully distributed among the shared

�� ����������	��
�� �� ����������	��
�� ���� �����
�����

��������������
SWITCH

P2����������������������������
C2

P1

C1

��������������
Figure 2: A shared cache node with two parents and two children.

caches. We prove that the HCC protocol supports sequential con-
sistency1 [23] and is deadlock free. The latency imposed by the
HCC protocol is at most proportional to the diameter of the net-
work. The HCC protocol distributes directory information among
the shared caches, keeping bounded state per cache line. Each
shared cache operates deterministically using only the local infor-
mation it possesses. The protocol is highly asynchronous, and the
system can handle any combination of messages correctly with-
out deadlock, including message races that result from conflicting
requests. The HCC protocol presented here implements the Mod-
ify/Shared/Invalid (MSI) protocol [5, 16, 33], but other protocols,
such as MESI [18] and MOESI [4], can be implemented similarly.

Figure 2 depicts the general form of a cache with two parents
and two children. Two incoming wires and one outgoing wire run
between a cache and each of its children, and two outgoing wires
and one incoming wire run from a cache to each of its parents.
The cache itself contains three components: a set of cache lines, a
switch, and control logic. The cache lines maintain state informa-
tion and data for the memory location stored in the cache line. The
switch routes messages in and out of the cache. The control logic
updates the state of the appropriate cache line and creates new mes-
sages to send in response to an incoming message dealing with a
particular cache line. Our correctness and latency bounds require
no assumptions about whether the cache lines are organized as fully
associative, multiway associative, or direct mapped, although these
decisions may affect aggregate performance and should be made
judiciously depending on the engineering context [34].

Since this paper focuses on correctness and liveness issues which
are generally orthogonal to the topological concerns, we present
HCC assuming a binary fat-tree architecture where each cache has
two children and one parent. For this exemplary unoptimized de-
sign, the HCC protocol requires only 13 additional bits of state per
cache line beyond that used in an ordinary unshared cache.

Overall system operation

Communication is initiated by the processors, each of which exe-
cutes an instruction stream containing loads and stores. The L1-
cache attached to a processor translates loads and stores into the
HCC protocol requests. Following the MSI protocol, a cache line
can be written (stored) only if the state of the line in the L1-cache
indicates a Modify access permission, which is the highest permis-
sion possible. A cache line can be read (load) in either a Modify or
a Shared access permission, and if the state indicates that the cache

1Weaker memory models can be supported by HCC with less effort, but sequential
consistency is easier for the programmer [17], and it demonstrates the efficacy of the
HCC architectural strategy.

line is Invalid, the lowest permission, it cannot be read or written.
Request messages sent from a child to its parent ask to upgrade
the child’s current state of the memory location. Requests from the
parent to a child ask to downgrade.

The progressive HCC protocol avoids deadlock in part by prop-
erly routing messages on the three wires between caches depicted
in Figure 2, depending on the type of communication. The unique-
path property ensures that for a given memory location z capable
of being stored in a cache i, only one of i’s parents, denoted by
PARENT(i, z), is also capable of holding z. Request messages from
a child i to its parent j are routed on QWIRE〈i, j〉. Likewise, reply
messages from a child i to its parent j are routed on YWIRE〈i, j〉.
Both requests and replies from a parent j to a child i are routed on
WIRE〈j, i〉. Each wire may contain buffering to store one or more
messages, but no buffering is required. Flow-control logic stalls the
sender if the wire is busy with a previous message.

A cache in the HCC architecture operates as follows. Among all
the messages arriving on its incoming wires, the switch chooses a
message to process, prioritizing parent messages over child mes-
sages and within child messages, replies over requests. The logic
takes the message and consults the state of the appropriate cache
line. If it can process the message (parent messages and child
replies can always be processed), it updates the line state, and pos-
sibly provides the switch with new messages to be sent. If it cannot
process the message (which can only occur for child requests), it
leaves the message on the incoming wire, possibly delaying other
messages that wish to use the wire. This routine, which we assume
is executed atomically, then repeats. The operation of a cache can
be optimized — for example, by parallelizing the logic to handle
multiple messages simultaneously — but we have opted for sim-
plicity to explain the key concepts and establish the basic correct-
ness and liveness properties of the progressive protocol.

The remainder of this paper is organized as follows. Section 2
describes the states and messages used in HCC. Section 3 shows
how states are updated, and Section 4 describes the control flow of
messages. Section 5 provides graph definitions used in Section 6 to
prove that HCC is deadlock free and in Section 7 to prove that HCC
supports sequential consistency. Section 8 briefly reviews related
work, and Section 9 offers some concluding remarks.

2. HCC STATES AND MESSAGES
This section describes the state information and messages at-

tributes and syntax used by the HCC protocol. The state infor-
mation per cache line amounts to 13 bits beyond the data itself for
a binary fat-tree network.

Cache lines

The location (or tag) z of a cache line is the memory location that
is mapped to the cache line. For a given cache i and location z, the
function CACHE-LINE(z, i) maps z to a line in i. Memory loca-
tions may be mapped to different cache lines in different caches. In
addition to storing the contents of the memory location, each cache
line maintains the following auxiliary information:

• LS ∈ {M, S, I}— The location state of a location z indicates
its access permission: Modify (M), Shared (S), or Invalid (I).

• CS — The child state, which is stored separately for each of the
cache’s children, represents the knowledge this cache has about
the state of z for the particular child. In addition to the three
MSI states, CS can be in the following intermediate states:

◦ A pending state P indicating that a request regarding loca-
tion z has been made to this child, and this cache is pending
on a reply from this child.

◦ A waiting state W indicating that this child is awaiting a

z\z
′ I WM WS P

I I IWM IWS IP

S S SP

M M MP

P P PWM PWS

W W

C C

Figure 3: The possible values of a
child state (CS).

z\z
′ N W P

N N NW NP

P P PW

W W WP

C C

Figure 4: The possible
values of a parent state
(PS).

reply regarding location z from this cache.

◦ A message-race state C indicating that this child was waiting
for a reply regarding z from this cache, but in the meantime
this cache received a request also regarding z from its parent.

• PS — The parent state keeps track of requests sent to the par-
ent. The parent state can be P for pending, W for waiting, C for
message race, or N for empty.

We say that the state of a line is steady if LS and CS are M, S, or
I and PS = N. When LS = I and all children states are I, we say
that the state is all-invalid. Each L1-cache keeps only location and
parent states for each line. Each memory bank keeps only location
and children states, as well as one additional bit RS = {M, S},
called the requested state, which indicates the access permission
requested in the message currently being processed.

Special states for mapping collisions

A mapping collision occurs when a cache receives a request from
a child regarding a memory location z′ that maps to the same line
as a location z that is already in its cache. When two locations z
and z′ are mapped to the same cache line, the child state must also
represent the knowledge this cache has about the state of z′ for the
particular child. We refer to the location that is currently stored
in the cache line as z, and the location that is mapped to the same
location but is not stored in cache as z′.

The states of z′ can be one of the following:

• A waiting-for-shared state WS, which indicates that this child
is awaiting Shared access permission to a location z′ that is
mapped to the same line as location z already in the cache.

• A waiting-for-modify state WM, which indicates that this child
is awaiting Modify access permission to a location z′ that is
mapped to the same line as location z already in the cache.

• A different-location-pending state P, which indicates that this
child must send an invalidation reply regarding location z,
where z is the location currently saved in the cache and is
mapped to the same line as z′ (which is no longer stored in
the cache and is being invalidated).

The state representation of location z′ that maps to the same line
as z is combined with the state of z stored in the cache. Figure 3
shows these states for CS and the combinations they may create
with the state of z, and Figure 4 shows these states and combina-
tions for PS . In both CS and PS , the first letter indicates the state
regarding location z that is stored in the cache line, and the second
indicates the state of another location z′ that is not in the cache line.
For example, in CS , MP means that the child has Modify access
permission to location z, and this cache is also pending on a reply
from this child regarding location z′. If z′ is invalid, then only one
letter is used to express the state of z. For the parent state, these
additional states indicate whether the parent is awaiting a reply or
if this cache is pending on a message from the parent regarding an-
other location that maps to the same line. If z′ is N, then only one
letter is used to express the state of z stored in the cache line.

The overhead incurred by state information

The cache-line overhead imposed by the additional information
kept by HCC in case where each cache has two children (by the
unique path property each memory location stored in the cache line
has only one parent) is 13 bits for a cache, calculated as follows:

LS CS0 CS1 PS Total

2 bits 4 bits 4 bits 3 bits 13 bits

Only 5 bits are required for each L1-cache line, since they do not
have children, and only 11 bits are required for each location in
memory, since they do not have parents (but do have the RS bit).
These bounds can be improved by suitable encoding and by opti-
mizing to avoid unused combinations.

Messages

A cache sends messages to and receives messages from its children
and parents. A message m includes the following attributes:

• direction ∈ {C, P}— The direction tells whether m was re-
ceived from a child (C) or a parent (P).

• type ∈ {Q,Y }— The message type indicates whether m is a
request (Q) or a reply (Y).

• location ∈ Z — The memory location that the message deals
with. This location may be mapped to a different cache line in
each cache and is usually denoted as z.

• access ∈ {M, S, I} — In a request message, the access per-

mission indicates the access permission desired for the memory
location (as in the definition of LS). In reply messages, it in-
dicates what permission for the location is granted. If a cache
line holds a location in a given state, a request to change the
access permission to a lower state is a downgrade. Otherwise,
the request is an upgrade.

• contents ∈ Z— The contents of memory location z, which is
usually denoted by d, is the data stored at z. This information is
only attached to reply messages.

For notational convenience, we adopt a simple syntax to describe
messages. The notation CQM〈z〉 means that the message is a re-
quest (Q) from a child (C) to obtain the contents of location z with
M access permission. The message CY I〈z, d〉means that the mes-
sage is a reply from a child in which the access permission of z is
downgraded to I and the contents of location z is d.

3. THE CONTROL LOGIC
The progressive HCC protocol employs a transition function to

change the line states in caches and to create new messages to be
sent. The transition function maintains several invariants to imple-
ment sequential consistency using an MSI strategy [33]. It copes
with the hierarchical and asynchronous nature of the HCC architec-
ture, races between messages, and eviction. The transition function
exploits parallelism in the architecture, ensuring that the latency to
fulfill a request is at most proportional to the network diameter.

Invariants

The HCC protocol maintains the following key invariants:
Inclusion property [7, 22]: A cache contains all the lines stored

by its children. In fact, one can maintain a “weak” inclusion prop-
erty where a cache contains only all the state information (but not
necessarily the contents) of all the lines stored by its children. For
simplicity, however, this paper assumes “strong” inclusion.

Permission-inclusion property: If a cache i holds a location z,
then its parent j = PARENT(i, z) must hold z with access permis-
sion at least as strong as i’s. For example, j cannot evict z without
first causing i to evict z (and recursively). As another example, if i

and j both hold z with access permission S and i wishes to upgrade
to M, then j must also first upgrade to M.

Single-request property: If a cache i sends a request to either
child or parent cache j involving a memory location z, it cannot
send a second request to j involving z until after it has received a
reply to its first request.

Location-mapping property: Memory locations may be mapped
to different cache lines in different caches. If locations z and z′ are
mapped to the same cache line li in cache i, however, then they are
also mapped to the same cache line lj in j, where j is a child of i.

MSI property: If an L1-cache holds a location z in the M state,
no other L1-cache holds z in either the M or S states.

Transition tables

The transitions describe the actions to be taken when a message
is processed. Figures 5–8 describe in detail the transitions of the
HCC protocol for shared caches. Since messages received from
Child 0 and from Child 1 are symmetric, we omit table entries
involving messages from Child 1. The state of a cache line is
(LS ,CS0 ,CS1 ,PS). The protocol for L1-caches differs slightly
from that for a regular cache, because L1-caches do not have chil-
dren. Thus, the state of a line in an L1-cache is (LS ,PS), and no
CS fields are needed. Likewise, the protocol for the memory also
differs, because the memory does not have a parent, only children.
The state of a line in memory is (LS , CS0 ,CS1) and the RS bit
kept for each line in the memory.

To illustrate how the transition tables maintain the invariants, we
shall walk through a simple example from a single cache’s point
of view. Although the progressive protocol typically involves more
than one cache, we can understand how the invariants are main-
tained by focusing on the role of just a single cache. Section 4
takes a global view of the control flow among caches.

Suppose that cache i receives a request CQM〈z〉 from Child 0
for a location z that it does not hold but for which it has space (no
eviction is necessary). The state of line l = CACHE-LINE(z, i)
to where z will be mapped is all-invalid: (I, I, I, N). When the
request CQM〈z〉 from Child 0 is processed, transition 4 in Figure 5
changes the state to (I,W, I, P) and, to maintain the invariants,
forwards the message CQM〈z〉 to i’s parent. This new state of the
line indicates that cache i is pending on a reply from its parent and
that Child 0 is waiting for cache i to reply.

The cache continues to process messages dealing with other lo-
cations until the reply PY M〈x, d〉 arrives from its parent. At this
point, transition 76 in Figure 8 saves the data d in the cache, up-
dates the state of l to (M, M, I,N) (a steady state), and forwards
the message PY M〈x, d〉 to Child 0. As long as the location state
remains LS = M , cache i can manage the line in its subtree as
if it were the main memory because of the permission-inclusion
and MSI properties. For example, it need not communicate with
its parent to invalidate the location in one subtree and give Modify
permission to an L1-cache in the other subtree.

The transition tables handle more complicated situations than
this simple example illustrates, but the ideas are similar. This paper
includes only a partial set of the transitions for shared caches due to
space limitations. The rest of this section describes how the HCC
progressive protocol handles message races and mapping collisions
asynchronously and in latency proportional to network diameter.

Handling message races

One particular situation, called a message race, appears to threaten
correctness, however. Suppose that a CQM〈z〉 request from Child 0
arrives at cache i, and the state of line l = CACHE-LINE(z, i) in i
is (S, S, I,N). Cache i processes this request according to transi-
tion 7, updates the state of l, and forwards CQM〈z〉 to its parent

Message State Action New State

1 CQS〈z〉 I, I, I, N qp ← CQS〈z〉 I, W, I, P

2 CQS〈z〉 M, I, M, N qc2 ← PQS〈z〉 M, W, P, N

3 CQS〈z〉 S, I, S, N yc1 ← PY S〈z, d〉 S, S, S, N

4 CQM〈z〉 I, I, I, N qp ← CQM〈z〉 I, W, I, P

5 CQM〈z〉 M, I, M, N qc2 ← PQI〈z〉 M, W, P, N

6 CQM〈z〉 S, I, S, N qc2 ← PQI〈z〉 S, W, P, P
qp ← CQM〈z〉

7 CQM〈z〉 S, S, I, N qp ← CQM〈z〉 S, W, I, P

8 CQM〈z〉 S, S, S, N qc2 ← PQI〈z〉 S, W, P, P
qp ← CQM〈z〉

95 CQM〈z〉 M, S, S, N qc2 ← PQI〈z〉 M, W, P, N

101 CQS

˙

z′
¸

M, I, M, N qc2 ← PQI〈z〉 M, IWS , P, N

111,2 CQS

˙

z′
¸

S, I, S, N qc2 ← PQI〈z〉 S, IWS , P, NP
qp ← CQS

˙

z′
¸

121,3 CQS

˙

z′
¸

S, S, I, N qp ← CQS

˙

z′
¸

S, PWS , I, NP

131,3 CQS

˙

z′
¸

S, S, S, N qc2 ← PQI〈z〉 S, PWS , P, NP
qp ← CQS

˙

z′
¸

141,3,4 CQS

˙

z′
¸

M, S, S, N yp ← CY S〈z, d〉 S, PWS , P, NP
qp ← CQS

˙

z′
¸

qc2 ← PQI〈z〉

151 CQM

˙

z′
¸

M, I, M, N qc2 ← PQI〈z〉 M, IWM , P, N

161,2 CQM

˙

z′
¸

S, I, S, N qc2 ← PQI〈z〉 S, IWM , P, NP
qp ← CQM

˙

z′
¸

171 CQM

˙

z′
¸

S, S, I, N qp ← CQS

˙

z′
¸

S, PWM , I, NP

181,3 CQM

˙

z′
¸

S, S, S, N qc2 ← PQI〈z〉 S, PWM , P, NP
qp ← CQS

˙

z′
¸

191,3,4 CQM

˙

z′
¸

M, S, S, N yp ← CY S〈z, d〉 S, PWM , P, NP
qp ← CQS

˙

z′
¸

qc2 ← PQI〈z〉

Figure 5: Processing requests from Child 0. Notes: (1) Handling a request
for location z′ which maps to the same line as location z that is already
in cache. The content of the cache line reflects location z. (2) There is
no need to wait for the invalidation reply from Child 1 before requesting
z′ from the parent. (3) The new state indicates that this cache is pending
on invalidation replies from Child 0 and Child 1 regarding location z and
on its parent reply regarding z′. Child 0 is waiting for a reply from this
cache regarding location z′. (4) This cache has the most updated value of
z, which it sends to its parent. It cannot invalidate z since the children has
it in shared state. Similar actions should be taken when the state is MIIN,
MISN, and MSIN. There is no need to send an invalidation request to the
child whose state is I, and thus no need to change the state to be pending on
a reply for it.

j = PARENT(i, z). At this point, the state of l at cache i is no
longer steady. Now, suppose that before j can observe the request
from i, it sends i a PQI〈z〉 request. Here, the potential for deadlock
arises: before processing other messages regarding z, the parent j
must wait for a reply from i to its PQI〈z〉 request, and meanwhile,
before i can process another message involving z, it must wait for
a reply from j to its request CQM〈z〉. In order to solve such situa-
tions, HCC maintains the following priority rules:

• Parent messages can always be processed, even if the state of
the line is not steady.

• Child replies can always be processed, even if the state of the
line is not steady.

• Child requests can only be processed if the line’s state is steady.

Since child replies are sent on different wires than child requests,
they are never blocked by requests that cannot be processed.

Resuming our example, cache i processes the PQI〈z〉 request
from j by following transition 52, forwarding the PQI〈z〉 request
to Child 0, and changing the line state to indicate that a race has
occurred. The parent j, however, cannot process the child CQM〈z〉
request from i, since the state of the line in j is not steady and the
child request has lower priority (although i need not send it again).

Message State Action New State

20 CY I〈z, d〉 M, P, I, W save d in cache I, I, I, N
yp ← CY I〈z, d〉

21 CY S〈z, d〉 M, P, I, W save d in cache S, S, I, N
yp ← CY S〈z, d〉

221 CY I〈z, d〉 M, P, W, N save d in cache M, I, M, N
yc2 ← PY M〈z, d〉

23 CY S〈z, d〉 M, P, W, N save d in cache M, S, S, N
yc2 ← PY S〈z, d〉

242 CY I〈z, d〉 M, P, P, W none M, I, P, W

252 CY I〈z, d〉 S, P, P, W none S, I, P, W

26 CY I〈z, d〉 S, P, I, W yp ← CY I〈z, d〉 I, I, I, N

27 CY I〈z, d〉 M, P, W, N save d in cache M, I, M, N
yc2 ← PY M〈z, d〉

283 CY I〈z, d〉 S, P, W, P none S, I, W, P

29 CY I〈z, d〉 S, C, I, C yp ← CY I〈z, d〉 I, W, I, P

302 CY I〈z, d〉 S, C, P, C none S, W, P, C

312 CY I〈z, d〉 S, P, C, C none S, I, C, C

324 CY I〈z, d〉 S, P, W, C yp ← CY I〈z, d〉 I, I, W, P

334 CY I〈z, d〉 M, P, C, C yp ← CY I〈z, d〉 I, I, W, P

345 CY I〈z, d〉 M, M, I, N save d in cache M, I, I, N

355 CY I〈z, d〉 M, S, I, N none M, I, I, N

36 CY I〈z, d〉 M, S, S, N none M, I, S, N

37 CY I〈z, d〉 S, S, S, N none S, I, S, N

385 CY I〈z, d〉 S, S, I, N none S, I, I, N

391,5 CY I〈z, d〉 M, P, I, N save d in cache M, I, I, N

405 CY I〈z, d〉 S, P, I, N none S, I, I, N

41 CY I〈z, d〉 S, P, P, N none S, I, P, N

Figure 6: Processing replies from Child 0 when the state involves only one
memory location. When a reply arrives from a child with new data for z and
a reply is sent to the parent, the data in the reply to the parent is that received
in the reply from the child. Notes: (1) Child 0 had the line in M state. (2)
Pending on Child 1. (3) Pending on the parent. (4) Child 1 already replied
to the conflicting message. (5) The cache is free to evict the line now.

When a reply from Child 0 arrives at i, transition 29 is triggered, the
reply is forwarded to j, and i’s state is reconstructed as if the race
had not occurred. These actions leave i waiting for the reply from
j to its original request. Meanwhile, j can now process the reply
from i to its original request, because the reply from i is sent on
the reply wire YWIRE〈i, j〉 and thus is not blocked by the original
request from i, which was sent on the request wire QWIRE〈i, j〉.

It is possible that when cache i processes the CQM〈z〉 request,
the state of l is as depicted in transition 8. Then, in addition to
the CQM〈z〉 request sent to j, cache i sends a PQI〈z〉 request to
Child 1. If a race now occurs, i sends a PQI〈z〉 request only to
Child 0 (transition 53), thereby preserving the single-request prop-
erty, since i has already sent a request to Child 1 involving the same
location and cannot send another one. After cache i receives replies
from both children, it sends a CY I〈z, d〉 reply to its parent j and
then waits for a reply from j to its original CQM〈z〉 request. Be-
cause the memory banks have no parents, their transitions need not
deal with races.

Handling mapping collisions

The HCC protocol handles mapping collisions differently when lo-
cation z (which is already in the cache) is in Shared access permis-
sion or in Modify access permission. The goal in both cases is to
allow HCC to process each request in latency that is at most pro-
portional to the diameter of the network. The state of the cache line
can represent the state of at most two memory locations z and z′.
Any other request from a child regarding another location z′′ that
is mapped to the same line as z and z′ waits until the state of the
line is steady (and thus represents the state of one memory loca-

Message State Action New State

42 PQI〈z〉 M, I, M, N qc2 ← PQI〈z〉 M, I, P, W

43 PQI〈z〉 M, M, I, N qc1 ← PQI〈z〉 M, I, P, W

44 PQI〈z〉 M, S, S, N qc1 ← PQI〈z〉 M, P, P, W
qc2 ← PQI〈z〉

45 PQS〈z〉 M, I, M, N qc2 ← PQS〈z〉 M, I, P, W

46 PQS〈z〉 M, M, I, N qc1 ← PQS〈z〉 M, P, I, W

47 PQS〈z〉 M, S, S, N yp ← CY S〈z, d〉 S, S, S, N

48 PQI〈z〉 S, I, S, N qc2 ← PQI〈z〉 S, I, P, W

49 PQI〈z〉 S, S, I, N qc1 ← PQI〈z〉 S, P, I, W

50 PQI〈z〉 S, S, S, N qc1 ← PQI〈z〉 S, P, P, W
qc2 ← PQI〈z〉

511 PQI〈z〉 I, I, I, N none I, I, I, N

52 PQI〈z〉 S, W, I, P qc1 ← PQI〈z〉 S, C, I, C

53 PQI〈z〉 S, W, P, P qc1 ← PQI〈z〉 S, C, P, C

54 PQI〈z〉 S, I, W, P qc2 ← PQI〈z〉 S, I, C, C

55 PQI〈z〉 S, P, W, P qc2 ← PQI〈z〉 S, P, C, C

562 PQI〈z〉 M, W, P, N qp ← CQM〈z〉 M, C, P, C

57 PQI〈z〉 M, P, I, N none M, P, I, W

58 PQI〈z〉 M, I, P, N none M, I, P, W

59 PQI〈z〉 S, P, I, N none S, P, I, W

60 PQI〈z〉 S, I, P, N none S, I, P, W

61 PQI〈z〉 S, P, P, N none S, P, P, W

623,5 PQI〈z〉 M, IWS ,P, N none M, IWS , P, W

633,5 PQI〈z〉 S, IWS , P, NP none S, IWS , P, PW

643,5 PQI〈z〉 S, PWS , I, NP none S, PWS , I, PW

653,5 PQI〈z〉 S, PWS , P, NP none S, PWS , P, PW

663,5 PQI〈z〉 M, IWM , P, N none M, IWM , P, W

673,5 PQI〈z〉 S, IWM , P, NP none S, IWM , P, PW

683,5 PQI〈z〉 S, PWM , I, NP none S, PWM , I, PW

693,5 PQI〈z〉 S, PWM , P, NP none S, PWM , P, PW

703,4,5 PQI〈z〉 S, S, IP, N none S, S, IP, NW

713,4,5 PQI〈z〉 S, I, SP, N none S, I, SP, NW

723,4,5 PQI〈z〉 M, M, IP, N none M, M, IP, NW

733,4,5 PQI〈z〉 M, I, MP, N none M, I, MP, NW

Figure 7: Processing requests from the parent. Notes: (1) Evicted line.
(2) This cache receives a request to evict z before z is sent to Child 0 (still
pending on Child 1 invalidation reply). The cache sends a request to the
parent to upgrade to M state, (otherwise the cache would not be pending
on Child 1) and indicates a conflict. (3) Processing an invalidation request
for z while already in the process of evicting z. (4) In this case z and z′

do not map to the same line at the parent cache. The content of the line in
this cache corresponds to location z′. (5) Similar transitions exist when the
state and new state for Child 0 and Child 1 are switched.

tion). Also, the parent may send requests to its child only if it is
indicated in the state of the line at the parent that this child has the
line in Shared or Modify access permission. Therefore, the parent
never sends a request regarding z′′ that may be mapped to the same
location as z and z′, because the child cannot have z′′ in its cache.

When the access permission of z is Shared: Suppose that
Child 0 sends the request CQM〈z

′〉 and z′ maps to the same line
as a location z already in the cache. If the state of the line indicates
that Child 1 has a shared access permission to it, the cache sends an
invalidation request to Child 1, but it also forwards the request from
Child 0 for z′. If Child 0 also holds z in Shared access permission,
then the new state of the line indicates that Child 0 still needs to
invalidate location z, but no message needs to be sent. When all
the invalidation replies that are needed (as indicated by the state of
the line) arrive, the cache forward an invalidation reply for loca-
tion z to the parent. In this way, there is no need to wait for the
invalidation process of z to complete before processing the request

Message State Action New State

74 PY S〈z, d〉 I, W, I, P save d in cache S, I, S, N
yc1 ← PY S〈z, d〉

75 PY S〈z, d〉 I, I, W, P save d in cache S, I, S, N
yc2 ← PY S〈z, d〉

76 PY M〈z, d〉 I, W, I, P save d in cache M, M, I, N
yc1 ← PY M〈z, d〉

77 PY M〈z, d〉 I, I, W, P save d in cache M, I, M, N
yc2 ← PY M〈z, d〉

781 PY M〈z, d〉 S, W, I, P save d in cache M, M, I, N
yc1 ← PY M〈z, d〉

791 PY M〈z, d〉 S, I, W, P save d in cache M, I, M, N
yc2 ← PY M〈z, d〉

802 PY M〈z, d〉 S, W, P, P none M, W, P, N

81 PY M〈z, d〉 S, P, W, P none M, P, W, N

823 PY S

˙

z′, d
¸

S, IWS , P, NP save d in cache S, S, IP, N
yc1 ← PY S

˙

z′, d
¸

833 PY S

˙

z′, d
¸

S, P, IWS , NP save d in cache S, IP, S, N
yc2 ← PY S

˙

z′, d
¸

843 PY S

˙

z′, d
¸

S, PWS , I, NP save d in cache S, SP, I, N
yc1 ← PY S

˙

z′, d
¸

853 PY S

˙

z′, d
¸

S, I, PWS , NP save d in cache S, I, SP, N
yc2 ← PY S

˙

z′, d
¸

863 PY S

˙

z′, d
¸

S, PWS , P, NP save d in cache S, SP, IP, N
yc1 ← PY S

˙

z′, d
¸

873 PY S

˙

z′, d
¸

S, P, PWS , NP save d in cache S, IP, SP, N
yc2 ← PY S

˙

z′, d
¸

883 PY M

˙

z′, d
¸

S, IWM , P, NP save d in cache M, M, IP, N
yc1 ← PY M

˙

z′, d
¸

893 PY M

˙

z′, d
¸

S, P, IWM , NP save d in cache M, IP M, N
yc2 ← PY M

˙

z′, d
¸

903 PY M

˙

z′, d
¸

S, PWM , I, NP save d in cache M, MP, I, N
yc1 ← PY M

˙

z′, d
¸

913 PY M

˙

z′, d
¸

S, I, PWM , NP save d in cache M, I, MP, N
yc2 ← PY M

˙

z′, d
¸

923 PY M

˙

z′, d
¸

S, PWM , P, NP save d in cache M, MP, IP, N
yc1 ← PY M

˙

z′, d
¸

933 PY M

˙

z′, d
¸

S, P, PWM , NP save d in cache M, IP MP, N
yc2 ← PY M

˙

z′, d
¸

Figure 8: Processing replies from the parent. Notes: (1) Saving d is unnec-
essary, because it is already in cache. (2) Pending on Child 1 to preserve
the MSI property. (3) No need to wait for the invalidation reply from Child
1 regarding location z. The new state indicates that the invalidation reply
has not yet been received, however. The content of the line now reflects
location z′. Child requests regarding locations mapping to the same line
will wait.

for z′. Rather, they are run in parallel, thus achieving latency that
is at most proportional to the network’s diameter.

When the access permission of z is Modified: Suppose that
Child 0 sends either a CQM〈z

′〉 or a CQS〈z
′〉 request and a loca-

tion z′ maps to the same line as z. Then, the cache first invalidates
z at Child 1 and forwards the invalidation reply to the parent. After
that, it sends the request for z′ to the parent. Since there can only
be at most one path leading to the L1-cache that has the Modified
access permission for z, the delay imposed on the request for z′ is
at most proportional to the diameter of the network.

When a mapping collision occurs at an L1-cache, the L1-cache
evicts the location currently in the cache before requesting the new
location that is mapped to the same line. Also, since the memory is
by definition big enough to hold all memory locations, no mapping
collisions can occur in the memory.

4. CONTROL FLOW
To prove strong properties of the HCC architecture, we formal-

ize the operation of caches beyond the simple execution of tran-
sition tables as described in Section 3. We model the operation

of the switch and the priority logic by which messages are chosen
for processing as a concurrent event-driven program containing a
set of continuation-passing handlers. The concurrent program can
be reduced to a resource-limited state machine within each cache.
Section 5 uses this program to produce a computation graph for the
execution of the progressive protocol, which is used in Sections 6
and 7 to prove deadlock freedom and sequential consistency.

Resources, locking, and synchronization

During its operation, a cache uses different resources. To keep the
locations’ states, the cache manages a set of cache lines. To send
and receive messages, the cache manages several wires. Specifi-
cally, the HCC resources in each cache i are the following:

• Cache i’s lines.

• QWIRE〈i, j〉 — The wire on which cache i sends request mes-
sages to its parent cache j.

• YWIRE〈i, j〉— The wire on which cache i sends reply messages
to its parent cache j.

• WIRE〈i, j〉 — The wire on which cache i sends requests and
replies to its child cache j.

• EWIRE〈i〉— A nonexistent wire attached to all L1-caches.

The message sent on a wire QWIRE〈i, j〉 is denoted QWIRE〈i, j〉
.msg . Each wire maintains extra state called action storage. While
processing a message, a cache may create new messages to send.
These messages are buffered in the action storage associated with
the input wire on which the message arrived until they can be deliv-
ered to the appropriate output wire. The action storage associated
with input wires contains the following fields:

• Message yp — a reply to a parent,

• Message yc0 — a reply to Child 0,

• Message yc1 — a reply to Child 1,

• Message qp — a request to a parent,

• Message qc0 — a request to Child 0,

• Message qc1 — a request to Child 1.

To synchronize among accesses to shared resources (cache lines,
wires, and their action storage), a lock is attached to each resource.
Locking is governed by three procedures: ACQUIRE, RELEASE, and
TRY-ACQUIRE. Whenever an ACQUIRE is called on some resource,
it blocks the calling thread until the resource’s lock is acquired.
The lock is released by calling RELEASE on the resource. The
TRY-ACQUIRE attempts to acquire the lock, but if it fails, it does
not block. Instead, TRY-ACQUIRE always returns immediately with
an indication whether the lock was successfully acquired.

The handlers employ a collection of service routines:

• CACHE-LINE(i, z) — The line in cache i to which memory lo-
cation z is mapped.

• PARENT(i, z) — The parent of cache i with respect to memory
location z.

• CHILD0(i) — The cache identified as Child 0 of cache i

• CHILD1(i) — The cache identified as Child 1 of cache i.

• IS-L1-CACHE(i) — Indicating whether cache i is an L1-cache.

• CHANGE-STATE(i, j, w) — Atomically updates the state of line
l = CACHE-LINE(j, w.msg.location) according to the transi-
tion tables in Figures 5–8 and places the messages to send in
wire w’s action storage. The fields of the action storage that are
not explicitly set by CHANGE-STATE are set to NIL.

• IS-STEADY-STATE(i, l) — A predicate indicating whether line
l in cache i is in a steady state.

The resources used by the HCC code consist only of the cache
lines, the wires that interconnect the caches, and the wires’ limited

Handler CHILD0-REQ (Cache from, Cache to)
requires QWIRE〈from, to〉

1 m← QWIRE〈from, to〉.msg

2 z ← m.location
3 l← CACHE-LINE(to, z)
4 p ← PARENT(to, z)
5 c1 ← CHILD1(to)
6 ACQUIRE(l)
7 CHANGE-STATE(from, to, QWIRE〈from, to〉)
8 if yc0 6= NIL

9 then ACQUIRE(WIRE〈to, from〉)
10 WIRE〈to, from〉.msg ← yc0

11 RELEASE(QWIRE〈from, to〉)
12 RELEASE(l)
13 else if qp 6= NIL

14 then ACQUIRE(QWIRE〈to, p〉)
15 QWIRE〈to, p〉.msg ← qp

16 if qc1 6= NIL

17 then ACQUIRE(WIRE〈to, c1〉)
18 WIRE〈to, c1〉.msg ← qc1

19 RELEASE(QWIRE〈from, to〉)
20 dispatch

Figure 9: The CHILD0-REQ handler is dis-
patched to execute in cache to when a request
message m is sent from its Child 0. Precondi-
tions for executing the handler include (1) the
wire lock QWIRE〈from , to〉 is held and (2) mes-
sage m is enqueued on the wire.

Handler PARENT-REPLY (Cache from, Cache to)
requires WIRE〈from, to〉

1 m← WIRE〈from, to〉.msg

2 z ← m.location
3 l← CACHE-LINE(to, z)
4 c0 ← CHILD0(to)
5 c1 ← CHILD1(to)
6 CHANGE-STATE(from, to, WIRE〈from, to〉)
7 if yc0 6= NIL

8 then ACQUIRE(WIRE〈to, c0〉)
9 WIRE〈to, c0〉.msg ← yc0

10 RELEASE(WIRE〈from, to〉)
11 RELEASE(l)
12 elseif yc1 6= NIL

13 then ACQUIRE(WIRE〈to, c1〉)
14 WIRE〈to, c1〉.msg ← yc1

15 RELEASE(WIRE〈from, to〉)
16 RELEASE(l)
17 else RELEASE(WIRE〈from, to〉)
18 if IS-L1-CACHE(to)
19 then RELEASE(l)
20 dispatch

Figure 10: The PARENT-REPLY handler exe-
cutes in cache to when a reply message m is
sent from its parent from . Preconditions for
executing the handler include (1) the wire lock
WIRE〈from, to〉 is held, (2) message m is en-
queued on the wire, and (3) the lock on l is held.

Handler PARENT-REQ (Cache from, Cache to)
requires WIRE〈from, to〉

1 m← WIRE〈from, to〉.msg

2 z ← m.location
3 l ← CACHE-LINE(to, z)
4 c0 ← CHILD0(to)
5 c1 ← CHILD1(to)
6 success ← TRY-ACQUIRE(l)
7 CHANGE-STATE(from, to, WIRE〈from, to〉)
8 if yp 6= NIL

9 then ACQUIRE(YWIRE〈to, from〉)
10 YWIRE〈to, from〉.msg ← yp

11 RELEASE(WIRE〈from, to〉)
12 if success

13 then RELEASE(l)
14 else if qc0 6= NIL

15 then ACQUIRE(WIRE〈to, c0〉)
16 WIRE〈to, c0〉.msg ← qc0

17 if qc1 6= NIL

18 then ACQUIRE(WIRE〈to, c1〉)
19 WIRE〈to, c1〉.msg ← qc1

20 RELEASE(WIRE〈from, to〉)
21 dispatch

Figure 11: The PARENT-REQ handler executes in
cache to when a request message m is sent from one
of its children. Preconditions for executing the han-
dler include (1) wire lock WIRE〈from, to〉 is held
and (2) message m is enqueued on the wire.

Handler CHILD0-REPLY (Cache from, Cache to)
requires YWIRE〈from, to〉

1 m← YWIRE〈from, to〉.msg

2 z ← m.location
3 l← CACHE-LINE(to, z)
4 p ← PARENT(to)
5 c1 ← CHILD1(to)
6 success ← TRY-ACQUIRE(l)
7 CHANGE-STATE(from, to, YWIRE〈from, to〉)
8 if yp 6= NIL

9 then ACQUIRE(YWIRE〈to, p〉)
10 YWIRE〈to, p〉.msg ← yp

11 if qp 6= NIL

12 then ACQUIRE(QWIRE〈to, p〉)
13 QWIRE〈to, p〉.msg ← qp

14 RELEASE(YWIRE〈from, to〉)
15 else RELEASE(YWIRE〈from, to〉)
16 if IS-STEADY-STATE(to, l)
17 then RELEASE(l)
18 elseif yc1 6= NIL

19 then ACQUIRE(WIRE〈to, c1〉)
20 WIRE〈to, c1〉.msg ← yc1

21 RELEASE(YWIRE〈from, to〉)
22 RELEASE(l)

//all other cases fail hence success = TRUE

23 else if success

24 then RELEASE(YWIRE〈from, to〉)
25 RELEASE(l)
26 dispatch

Figure 12: The CHILD0-REPLY handler executes in cache to when a reply
message m is sent from its Child 0 from . Preconditions for executing the
handler include (1) the wire lock YWIRE〈from , to〉 is held and (2) message
m is enqueued on the wire. Note that if success is TRUE, then no messages
are dispatched.

action storage. Therefore, the program can be reduced to a limited-
resource state machine. We have implemented a simplified version
of the HCC progressive protocol using Bluespec [6].

The HCC event-driven code

The operation of the HCC progressive protocol is organized as a
set of handlers, which are blocks of code that communicate using
continuation passing. Although the entire HCC code is too large
to present, Figures 9–13 give the pseudocode for a subset of the

Handler LOAD (Cache from, Location z)

1 l← CACHE-LINE(from, z)
2 ACQUIRE(EWIRE〈from〉)
3 ACQUIRE(l)
4 to ← PARENT(from, z)
5 m ← CQS〈z〉
6 CHANGE-STATE(NIL, from, EWIRE〈from〉)
7 if yp 6= NIL

8 then ACQUIRE(YWIRE〈from, to〉)
9 YWIRE〈from, to〉.msg ← yp

10 if qp 6= NIL

11 then ACQUIRE(QWIRE〈from, to〉)
12 QWIRE〈from, to〉.msg ← qp

13 RELEASE(EWIRE〈from〉)
14 dispatch

Figure 13: The LOAD procedure invoked on an L1-cache from on memory
location z. The STORE procedure is identical to LOAD except that Line 5
is replaced with m ← CQM 〈z〉.

handlers that convey the essential ideas.
A handler is invoked when a cache receives a message on an in-

coming wire. The specific handler invoked depends on the type of
message, and it assumes that the sender properly acquired the lock
on the wire before dispatching the message. The handler changes
the cache-line state of the location named in the message accord-
ing to the transition tables. This change is performed atomically by
the hardware within the cache, including the storing of messages
in the action storage. If the transition function indicates that out-
going messages need to be sent, the cache acquires locks on the
outgoing wires it needs and places the messages on them. Then, it
releases the lock on the incoming wire, and, if appropriate, releases
the line lock as well. Finally, it dispatches the messages to their
destinations, causing the appropriate handlers to be processed by
the destination caches. If more than one handler is available to run
in a cache, the cache picks one, prioritizing parent messages over
child messages and, within child messages, replies over requests.

The code for handling parent requests in Figure 11 reflects the
higher priority of parent requests using TRY-ACQUIRE on a line
instead of the regular ACQUIRE. In Line 6, if the lock is already
taken, then a race has occurred. The update of the state of the line

in Line 7 reflects this race. The lock on the line is released in Lines
12–13 only if the TRY-ACQUIRE in Line 6 was successful.

The TRY-ACQUIRE function is also used in Figure 12 Line 6 to
handle eviction. Suppose that a child from needs to evict location z
from the cache to accommodate another request. Then, it acquires
the reply wire YWIRE〈from, to〉 to its parent to, places the reply
CYI〈z, d〉 on the wire, which invokes CHILD0-REPLY(from, to)
in cache to after messages are dispatched. Cache to does not “ex-
pect” this message, however, since it never sent a request to from ,
and therefore the lock on l = CACHE-LINE(to, z) may not be held.
Therefore, it first locks l before it can process the reply. If it suc-
ceeds in locking l, this reply only evicts z from the cache from

and (as indicated by the transition function) does not generate any
messages. Hence, if the lock was successfully acquired, after the
update of the state, it is released. If the lock was not successfully
acquired, it indicates that some other request regarding line l was
being processed. Nevertheless, since replies from the child have
higher priority than requests, they can be processed even if the lock
was not acquired by the handler.

5. COMPUTATION GRAPHS
Based on the control flow code in Section 4, this section pro-

vides graph definitions such as activity graphs, various predicates
on their edges, and how activity graphs form a computation graph.
These definitions are used in Sections 6 and 7 to prove that HCC is
deadlock-free and implements sequential consistency.

Let G be a directed graph, where V (G) is the set of vertices
belonging to G and E(G) is the set of edges belonging to G. If
e = (u, v) ∈ E(G), where u, v ∈ V (G), we call u the tail of e and
v the head of e, written u = tail(e) and v = head(e), respectively.
An edge e ∈ E(G) connects to e′ ∈ E(G) if head(e) = tail(e′).
A path p of length n ≥ 0 from a vertex v0 ∈ V (G) to a vertex
vn ∈ V (G) is a sequence 〈e1, e2, . . . , en〉 of edges in E(G) such
that e1 leaves v0, en enters vn, and for i = 1, . . . , n − 1, we have
that ei connects to ei+1. For v, v′ ∈ V (G) and e, e′ ∈ E(G), if
there exists a path from v to v′, we write v �G v′; if there exists
a path from head(e) to tail(e′), we write e �G e′; if there exists a
path from v to tail(e), we write v �G e; and if there exists a path
from head(e) to v′ ∈ V (G), we write e �G v′. A directed graph
is a dag if it contains no cycles. A dag is rooted if there exists a
unique vertex root(G) ∈ V (G) such that for all e ∈ E(G), we
have root(G) �G e. A cycle is a positive-length path from a vertex
v to itself. The in-degree of a vertex v ∈ V (G) is in-deg(v) =
|{e ∈ E(G) : v = head(e)}|. Likewise, the out-degree of a vertex
v ∈ V (G) is out-deg(v) = |{u ∈ V (G) : u = tail(e)}|. A vertex
v ∈ V (G) is a fork if out-deg(v) > 1 and a join if in-deg(v) > 1.
If out-deg(v) = 0, then v is a sink.

We model the execution of a concurrent event-driven program as
a rooted activity graph G on a set L of locks and a set Z of memory
locations. Whenever a handler executes an instruction, an edge e
corresponding to the instruction is added to E(G) that connects
from the previous instruction executed by the handler. For each
edge e ∈ E(G), we define the executer of e to be the cache that
executes e’s instruction. When dispatch is called from a handler, a
parallel execution is forked for each message delivered to another
cache, and a dispatch edge is created from the last instruction of
the handler to the first instruction of each new handler invoked.

Within a cache, if a handler operating on a location z does not
generate any messages for other caches, it is defined to be a joiner.
The transition function ensures that this situation only occurs when
the cache line is pending on more than one reply. If a subsequent
handler operates on location z and does generate a message and the
state of the cache line becomes steady, we call it a last updater. A

� !"# $%& '(# $)&"(# & *"(+"# &� !"#)$%& ,- �./01"'# $)&'(#)$2& (#)$3& *'(# $)& ,- �./01"'#)$2&45+"!601"'#)$3& � !"#2$%&(#2$)&*'(#)$2&*� !"#2$%&45+"!601"7�8#2$)&
� !"#3$%&98(#3$)& *(#)$3& *� !"#3$%&9 ,- �.:01"7�8#3$)&*8(#3$)&

(#)$ &*(#2$)&*� !"#)$%&45+"!601"7�8#)$ &*(#)$ & *� !"# $%& #;$<& #=$<&(S,I,S,N)

(S,S,I)

>0?#)2'(#)$2&&>0?#)$3$(#)$3&& >0?#3$)$8(#3$)&&
>0?# $! �$"(# &&>0?# $) $'(# $)&&

>0?#2$) $(#2$)&&

0 @-" !5A" BC 6-" +"?B2+>" !. >56"? 5! 5>'2 +"D0E +"�"5?" ? !. >56". F8 5 *F"CB+" 6-" !5A" BC 6-"+"?B2+>"D0>0? ?65!.? CB+ ,-5!G"0=656"D0� !" ?65!.? CB+ >5>-"0� !"0 9 ;!. >56"? 5 6+805>'2 +"D

ki

j

u

Figure 14: An example activity created by the execution of STORE(i, z).
A lock acquisition is shown by naming the resource, and a lock release
is shown by prepending a tilde to the resource name. When a handler is
invoked, its name is also shown. The dispatch edges are dashed and the join
edge is marked by a dash followed by two dots.

dispatch edge connects the last updater to the first instruction of the
handler it invokes, but we also create a join edge connecting the
last instruction of each joiner to the first instruction of the handler
invoked by the last updater.

We define the following predicates on edges of an activity graph:

• ACQ(e, l) — e successfully executes ACQUIRE(l) or
TRY-ACQUIRE(l) ;

• REL(e, l) — e executes RELEASE(l);

• W(e, z) — either e executes Line 7 of PARENT-REQ(from, to),
where to is an L1-cache, the message on the wire involves loca-
tion z, and CACHE-LINE(to, z).LS = M before the change; or
e executes Line 6 of handler LOAD(from, z′) or STORE(from,
z′), where CACHE-LINE(from, z′) is occupied with location z
and CACHE-LINE(from, z′).LS = M before the change.

• R(e, z) — either e executes Line 7 of PARENT-REQ(from, to),
where to is an L1-cache, the message on the wire involves loca-
tion z, and CACHE-LINE(to, z).LS = S before the change; or
e executes Line 6 of handler LOAD(from, z′) or STORE(from,
z′), where CACHE-LINE(from, z ′) is occupied with location z
and CACHE-LINE(from, z′).LS = S before the change.

For an edge e ∈ E(G) and a memory location z ∈ Z, we define
RW(e, z) = R(e, z) ∨W(e, z), and we say that e accesses z. For
any predicate P : S → {TRUE, FALSE} on a set S, we define
P (S) ⊆ S to be {s ∈ S : P (s)}. For example, W(E(G), z) is the
set of edges that write to z.

Figure 14 depicts an activity graph generated by invoking a han-
dler STORE(i, z) in a given state of HCC presented in the figure.
Note that STORE(i, z) is identical to LOAD(i, z) except in one line
as explained in Figure 13.

For an edge e ∈ E(G) that releases a lock l ∈ L, define the re-

gion ender of e as the vertex ender(e) = head(d) if e connects to a
dispatch edge d and head(e) is not a fork node, and as ender(e) =
head(e) otherwise. An edge e1 ∈ E(G) that acquires a lock l ∈ L

and an edge e2 ∈ E(G) that releases l form a critical region if, for
all paths p from root(G) to ender(e2), we have e1 ∈ p and for all
edges e ∈ E(G) such that e 6= e2 and e1 ≺G e ≺G ender(e2), we
have ¬ACQ(e, l) and ¬REL(e, l). The critical region formed by e1

and e2 is CR(e1, e2, l) = {e ∈ E(G) : e1 �G e �G ender(e2)},
and we say that an edge e ∈ CR(e1, e2, l) holds lock l. It follows
that two critical regions whose edges hold the same lock are dis-
joint. Note that if a release of a lock connects to only one dispatch
edge and the state of the line that was updated before the release
of the lock becomes steady, then this dispatch edge was executed
by the last updater (there may or may not be joiners). If the lock
was acquired before a fork, then the definition of the critical region
guarantees that the lock is held on the paths executed by the joiners
as well, even though the release of the lock is performed only on
the path of the last updater.

A well-structured activity G on a set L of locks and a set Z
of memory locations is an activity in which for all e2 ∈ E(G)
such that REL(e2, l), there exists an edge e1 ∈ E(G) and lock
l ∈ L such that CR(e1, e2, l) is a critical region. An activity G on
a strictly linearly ordered set {L, >} of locks respects the ordering
of the locks if for all e1, e

′, e2 ∈ E(G) and l, l′ ∈ L such that
e′ ∈ CR(e1, e2, l) and e′ executes ACQUIRE(l′), we have l′ > l.
Note that we do not consider executions of TRY-ACQUIRE(l′) as
violating the order of locks even if l′ < l, because e′ need never
wait for the lock acquisition. A legal activity is a well-structured
activity that respects the ordering of locks.

A start-up graph over a set Z of memory locations is a dag G0

such that V (G0) = {s0, s1}, E(G0) = {(s0, s1)}, and for all
z ∈ Z, we have W((s0, s1), z). A computation graph over a
set L of locks and a set Z of memory locations is a dag CG =
G0 ∪ G1 ∪ G2 ∪ · · · ∪ Gn, where G0 is a start-up graph and for
i = 1, 2, . . . , n, each Gi is an activity on L and Z, and all activities
are disjoint. A legal computation is a computation in which all
activities are legal.

Each activity is initiated by a LOAD or STORE handler executed
in a processor. We assume that the processors obey the order-

consumption property, which requires each processor to consume
memory locations in the order it requests them. Multiple activities
initiated by LOAD and STORE handlers can be “in flight” simulta-
neously, but the processor executes the instructions in the program
order. The proper ordering of activities initiated by the same pro-
cessor can be represented by additional edges in CG .

A t-step execution of a computation graph CG is a mapping δ :
E(CG)→ {1, 2 . . t}∪ {∞} satisfying the following properties:

• for all e, e′ ∈ E(CG) such that e connects to e′, we have
δ(e) ≤ δ(e′), and

• for all e ∈ E(CG) and l ∈ L, if ACQ(e, l) and δ(e) < ∞, we
have

˛

˛

˘

e′ ∈ E(CG) : ACQ(e′, l) and δ(e′) < δ(e)
¯

˛

˛

=
˛

˛

˘

e′ ∈ E(CG) : REL(e′, l) and δ(e′) < δ(e)
¯˛

˛ (1)

At time t = 1, we have δ(e) = 1 for the single edge in G0. A
(t + 1)-step execution δ′ is an extension of a t-step execution δ if
for all e ∈ E(CG) such that δ(e) ≤ t, we have δ′(e) = δ(e). A
t-step execution of CG is complete if |CG | = t and incomplete

otherwise. If δ(e) = ∞ and there is no extension δ′ of δ such that
δ′(e) <∞ then e cannot be executed δ

6. DEADLOCK FREEDOM
In this section, we prove that the progressive HCC protocol is

deadlock free. We define a computation graph CG over a strictly
linearly ordered set (L, >) of locks and a set Z of memory loca-
tions to be deadlock free if all incomplete t-step executions of CG

can be extended. We show that legal computations can be extended
and that HCC produces a legal computation graph. We conclude
that HCC is deadlock free.

Lemma 1. Any legal computation graph CG over a strictly lin-

early ordered set (L, >) of locks and set Z of memory locations is

deadlock free.

PROOF. Suppose that δ is an incomplete t-step execution of CG

that cannot be extended (t < |CG|). Define K = {e ∈ E(CG) : e

connects to e′ ∈ E(CG) and δ(e′) = ∞}. Let L(t) = {l ∈ L :
there exists e ∈ K where e holds l} be the set of locks that are

being held by the edges in K. Let l∗ = max(L(t)) according to
the lock ordering, and let X = {e ∈ K : e holds l∗}.

Since all edges e ∈ X hold l∗ and CG is a legal computation
graph, there exist e1, e2 ∈ E(G) such that ACQ(e1, l

∗), δ(e1) ≤ t
and REL(e2, l

∗), δ(e2) =∞, and e ∈ X implies e ∈ CR(e1, e2, l
∗).

Observe that e 6= e2, since δ(e2) =∞ and δ(e) ≤ t.
Let e ∈ X be the edge such that for all e′ ∈ X, the longest path

from tail(e) to ender(e2) is at least as long as the longest path from
tail(e′) to ender(e2). Assume that e belongs to an activity G ∈
CG . Let us examine the properties of e and obtain a contradiction
to the supposition that δ cannot be extended.

If head(e) is a sink node, then e /∈ CR(e1, e2, l
∗), because it

cannot be on any path between tail(e1) and ender(e2). Therefore,
e cannot hold lock l∗, contradicting the fact that e holds l∗.

Suppose that head(e) is a join node and there exists an edge y 6=
e ∈ E(CG) such that head(y) = head(e) and δ(y) = ∞. By
the definition of a critical region, e1 must lie on all paths from
root(G) to ender(e2). Because CG is a legal computation in which
all activities are well formed and head(y) = head(e), we have that
y holds l∗. Since head(y) = head(e), edge e cannot lead to y,
and therefore e and y cannot belong to the same path that leads to
ender(e). Therefore, there must be an edge e′ ∈ E(CG) such that
e′ ∈ CR(e1, e2, l

∗), e′ ∈ X, and y belongs to a path from tail(e′)
to ender(e2). But, then the path from tail(e′) to ender(e2) includes
at least one more edge (y) than the path from tail(e) to ender(e2),
contradicting the way e was chosen.

If head(e) is neither a sink nor a join, or is a join but every edge
y 6= e such that head(e) = head(y) has δ(y) ≤ t. Then there exists
an e′ ∈ E(CG) such that e connects to e′, in-deg(head(e′)) =
1, and e′ cannot be executed. If for all such e′ and for all l ∈
L, we have ¬ACQ(e′, l), then by the t-step execution definition, δ
can be extended to δ′ : E(CG) → {1, 2 . . t, t + 1} ∪ {∞} such
that δ′(e′) = t + 1 is a t + 1-step execution, contradicting the
assumption that δ cannot be extended.

Otherwise, let D = {e′ ∈ E(CG) such that e connects to e′ and
ACQ(e′, l) for some lock l ∈ L and e′ cannot be executed}. There
exists e′′ ∈ D such that e′′ holds l∗, for otherwise e cannot be part
of any critical region, contradicting the assumption that CG is a
legal computation graph. Since e′′ cannot be executed, it follows
that Equation (1) does not hold, and we must consider two cases:

• If |{e′ ∈ E(CG) : ACQ(e′, l) and δ(e′) < δ(e)}| < |{e′ ∈
E(CG) : REL(e′, l) and δ(e′) < δ(e)}|, then there must exist
an edge e2 ∈ E(CG) such that REL(e2, l) and δ(e2) ≤ t and
there is no e1 ∈ CG such that ACQ(e1, l) and a critical region
CR(e1, e2, l) is formed. Hence, CG contains an activity that
is not well structured, contradicting the fact the CG is a legal
computation.

• If |{e′ ∈ E(CG) : ACQ(e′, l) and δ(e′) < δ(e)}| > |{e′ ∈
E(CG) : REL(e′, l) and δ(e′) < δ(e)}|, then if l ≤ l∗, in
which case e′′ is acquiring a lower-ordered lock than it already
holds, contradicting the assumption that all activities in CG re-
spect the order of locks. If l > l∗ and there is at least one

more acquire of l than releases, it follows that l is held by some
s ∈ K, and thus s holds the largest lock in K, contradicting the
the maximality of l∗

Hence, δ can be extended, and CG is deadlock free.

The order of locks in HCC

The strict linear ordering of locks in HCC is defined with respect
to the level of the caches in the cache hierarchy. If i is lower than
cache j, and li is a line in cache i and lj is a line in cache j, then
the order of the locks is the following:

1. li < QWIRE〈i, j〉 < lj ,

2. lj < WIRE〈j, i〉,

3. li < YWIRE〈i, j〉,

4. WIRE〈j, i〉 < YWIRE〈i, j〉,

5. EWIRE〈i〉 < li.

While processing a message, a cache j may need to acquire outgo-
ing wires. The order of the locks on the outgoing wires from j to
parent p, Child 0 c0 , and Child 1 c1 is as follows:

1. YWIRE〈j, p〉 < QWIRE〈j, p〉,

2. QWIRE〈j, p〉 < WIRE〈j, c0 〉 < WIRE〈j, c1 〉.

The partial order defined by these constraints can be extended to a
strict linear order.

We now show that all the activities formed by the HCC program
acquire locks in the proper order.

Lemma 2. All activities in CG are legal.

PROOF. A wire lock is released after all the resources needed
to process the message it delivered are acquired. A line lock is ac-
quired when the request on this line is processed and is held until
the reply is processed. Join edges connect the end of a joiner to the
first instruction of the handler invoked by the last updater. There-
fore, when the activity graph is built, it is well structured. Fol-
lowing the code in Section 4, one can verify that every ACQUIRE

obtains a lock ordered higher than what it already holds. Although
it is possible for a handler to execute TRY-ACQUIRE on a lower-
ordered lock, the handler never waits for this lock — if the lock
cannot be acquired, the handler simply proceeds. Therefore, the
activities respect the order of locks and are legal.

Theorem 3. The HCC protocol is deadlock free.

PROOF. Follows from Lemma 2.

7. SEQUENTIAL CONSISTENCY
Our definition of sequential consistency follows the definitions in

[15] with some minor but salient differences. We describe our defi-
nition and conditions for sequential consistency, and we prove that
computation graphs produced by the HCC protocol satisfy these
conditions.

Let V0(CG) = V (CG) − {s0}, and let E0(CG) = E(CG)−
E(G0). An observer function Φ : E0(CG) × Z → E(CG) on a
computation graph CG satisfies the following properties:

1. For all z ∈ Z and e ∈ E0(CG), we have W(Φ(e, z), z).

2. For all z ∈ Z and e ∈ E(CG), we have e 6� Φ(e, z).

A memory model over a set Z of memory locations is a pair (CG ,
Φ), where CG is a computation graph and Φ is an observer func-
tion for CG . The observer function is defined for all memory
locations and all edges. For our purposes, we only require a re-
laxed version of the observer function which is defined for all edges
on one memory location. A concrete (partial) observer function

Φ : E(CG)× Z → E(CG) satisfies the following constraints:

• For all e ∈ E0(CG) and z ∈ Z with RW(e, z), there exists an
e′ 6= e ∈ E(CG) such that W(e′, z) and Φ(e, z) = e′.

• For all e ∈ E0(CG), and z1, z2 ∈ Z such that z1 6= z2 and
RW(e, z1), the value of Φ(e, z2) is undefined.

Let e, e′ ∈ E(CG). Given a concrete observer function Φ on
a computation graph CG , define the set of dependency edges to
be DE(CG , Φ) = {(head(e), head(e′)) : there exists z ∈ Z
such that e = Φ(e′, z)}. The set of antidependency edges is
AE (CG, Φ) = {(head(e), head(e′)) : there exists z ∈ Z such that
R(e, z), W(e′, z), and Φ(e, z) = Φ(e′, z)} A concrete observer
function Φ satisfies the chained-writers property if for all z ∈ Z,
the subgraph of dependency edges induced by W(E, z) ⊆ E(CG)
forms a chain. That is, e, e′ ∈ W(E, z) where e 6= e′ implies that
Φ(e, z) 6= Φ(e′, z).

Definition 1. Let CG be a computation, and let τ be a topological

sort of E(CG). The last writer according to τ is the function L :
E0(CG)×Z → E(CG) such that for all e ∈ E(CG) and z ∈ Z,

we have

1. W(L(e, z), z),

2. τ (L(e, z)) < τ (e),

3. for all e′ ∈ E(CG) such that W(e′, z), we have τ (e′) ≤
τ (L(e, z)) or τ (e) ≤ τ (e′).

The function L is an observer function, because the first proper-
ties of both L and an observer function are identical and L’s second
property — τ (L(e, z)) < τ (e) — implies the second property of
an observer function — e 6� Φ(e, z).2 A memory model {CG , Φ}
over a set Z of memory locations is defined to be sequentially con-

sistent (SC) if CG is a computation graph and Φ is a last-writer
function for CG .

Lemma 4. Let Φ be a concrete observer function on a computation

graph CG that satisfies the chained-writers property, and suppose

that the augmented computation graph CG ′ defined by V (CG ′) =
V (CG) and E(CG ′) = E(CG)∪DE(CG , Φ)∪AE(CG , Φ) is

acyclic. Then, Φ can be extended to a last-writer observer function

on CG such that (CG , Φ) ∈ SC.

PROOF. For convenience, define V = V (CG) = V (CG ′) and
E = E(CG) = E(CG ′). Since CG ′ is acyclic, there exists a
topological sort τ of E. Let L be the last-writer function according
to τ . We shall show that Φ(e, z) = L(e, z) for all z ∈ Z and
e ∈ E for which Φ(e, z) is defined.

Assume for the purpose of contradiction that for some z ∈ Z,
there exists an e′ ∈ E for which Φ(e′, z) 6= L(e′, z). Let e ∈
{e′ ∈ V : Φ(e′, z) 6= L(e′, z)} such that τ (e) < τ (e′′) for all
e′′ ∈ {e′ ∈ V : Φ(e′, z) 6= L(e′, z)}, and let e1 = L(e, z) and
e2 = Φ(e, z). Thus, by assumption, we have e1 6= e2. More-
over, by the definitions of a concrete observer function and Defi-
nition 1, it must be that W(e1, z), W(e2, z), τ (e1) < τ (e), and
τ (e2) < τ (e). We consider two cases:

• τ (e1) < τ (e2) < τ (e): From Property 3 of Definition 1, we
have τ (e2) ≤ τ (L(e, z)) or τ (e) ≤ τ (e2), but since τ (e2) <
τ (e), it follows that τ (e2) ≤ τ (L(e, z)). Since e1 = L(e, z),
we obtain the contradiction that τ (e2) ≤ τ (e1).

• τ (e2) < τ (e1) < τ (e): Let k ∈ E be the edge with minimum
τ (k) such that τ (e2) < τ (k) and W(k, z). Since W(e1, z)
holds, we have that τ (k) ≤ τ (e1), and hence we have τ (e2) <
τ (k) ≤ τ (e1) < τ (e).

2Frigo’s original definition allows the second property of a last writer to be
τ(L(e, z)) � τ(e). We restrict that a write operation cannot observe itself, but
rather observes a previous write, as if the write operation first performs a read. As
shown, L is still an observer function, since if τ(L(e, z)) < τ(e), we have
e 6� Φ(e, z).

By Definition 1, we have e2 = L(k, z). Since τ (e) is the min-
imum over all other e′ ∈ E for which L(e′, z) 6= Φ(e′, z), it
must be that e2 = Φ(e, z) = Φ(k, z). But, since k 6= e and Φ
satisfies the chained-writer property, we obtain a contradiction.

Hence, Φ can be extended to a last-writer observer function on CG

such that (CG, Φ) ∈ SC.

Lemma 5. The HCC protocol preserves the MSI property.

PROOF. Follows the transition function and is omitted.

To prove that HCC implements sequential consistency, we must
show that it satisfies the conditions of Lemma 4. Specifically, adding
dependency and antidependency edges to CG must leave CG acyc-
lic, and we must exhibit a concrete observer function Φ on CG that
satisfies the chained-writers property. Since HCC is deadlock free
by Theorem 3, we can presume that the execution is complete.

In order to define the dependency and antidependency edges, we
include as part of the state of each message m a writer field m
.writer ∈ E(CG) and an invalidation list m.inval ⊆ E(CG),
and similarly we include for each cache line l the fields l.writer

and l.inval . This information is not needed for the actual opera-
tion of HCC and is only added for the purpose of proving sequen-
tial consistency. Intuitively, the writer is the edge (instruction) that
wrote the current value to the corresponding location, and the inval-
idation list contains edges that change state of a line in an L1-cache
to Invalid. These values are updated as follows:

• Whenever a cache receives a message with a given writer, it
updates the writer field in corresponding cache line.

• Whenever an instruction e executes in a handler operating in a
cache i such that W(e, z) for some location z, we set e.writer←
CACHE-LINE(i, z).writer and CACHE-LINE(i, z).writer ← e.

• Whenever a cache receives a message with an invalidation list,
it adds all the edges in the list to the existing invalidation list of
corresponding cache line.

• Whenever Line 7 of PARENT-REQ(from, to) executes, thereby
causing RW(e, z) to hold for a location z, then e is added to
CACHE-LINE(to, z).inval if the state of the line is changed to:
CACHE-LINE(to, z).LS = I .

• Whenever Line 6 of LOAD(from, z′) or STORE(from, z′) exe-
cutes where if CACHE-LINE(from, z′) is already occupied by
location z, thereby causing RW(e, z) to hold for a location
z 6= z′, then e is added to CACHE-LINE(from, z′).inval and
the line state is changed to CACHE-LINE(from, z′).LS = I .

We now add dependency and antidependency edges as follows:

1. For all e′ ∈ E(CG) such that R(e′, z), if e = e′.writer , then a
dependency edge (head(e), head(e′)) is added to E(CG).

2. For all e′ ∈ E(CG) such that W(e′, z), if e = e′.writer , then
a dependency edge (head(e), head(e′)) is added to E(CG).

3. For all e′ ∈ E(CG) such that W(e′, z) then for all e that are in
the invalidation list attached to the state of the line, we add the
antidependency edge (head(e), head(e′)) to E(CG).

Lemma 6. The computation graph CG with dependency and an-

tidependency edges is acyclic.

PROOF. Control edges that follow the program order cannot cre-
ate cycles in CG . By the way the writer and inval information
is gathered, from Lemma 5, and by the way the dependency and
antidependency edges (head(e), head(e′)) are added, it must be
that and τ (e) < τ (e′). Therefore, the computation graph CG is
acyclic.

The partial function LHCC : E(CG) × Z → E(CG) is de-
fined such that for all e ∈ E(CG) and z ∈ Z, we have that e′ =

LHCC(e) if the following constraints are satisfied: (1) RW(e, z) =
RW(e′, z), and (2) e′ = writer(e). If no such e′ exists, then
LHCC(e) is undefined.

Lemma 7. The partial function LHCC is a concrete observer func-

tion that satisfies the chained-writer property.

PROOF. The partial function LHCC satisfies the first property
of a concrete observer function, since e and e′ access the same
memory location and by the way CG was constructed. For e′ =
LHCC(e) to hold requires both e and e′ to access the same memory
location. Therefore, LHCC satisfies the second property of a con-
crete observer function as well. It also satisfies the chained-writers
property, since by Lemma 5, there is only one L1-cache that can
update a memory location at a given time.

Theorem 8. HCC implements sequential consistency.

PROOF. Lemma 6 shows that CG together with its dependency
and antidependency edges is acyclic. Lemma 7 proves thatLHCC is
a concrete observer function that satisfies the chained-writer prop-
erty. Since the processors follow the order-consumption property,
HCC implements sequential consistency.

8. RELATED WORK
Researchers have studied consistency protocols for large-scale

multiprocessors that employ hierarchical shared caches since the
late 1980’s. Wilson [40] proposes a tree-like hierarchy of shared
caches based on buses and sketches an adaptation of Goodman’s
consistency protocol [16]. Cheriton et al. [12] describe a distributed
parallel multi-computer that uses a memory hierarchy based on
shared caches. Mizrahi et al. [30] outline a distributed directory
protocol in a system where memory is embedded in the switches
of an interconnection network. Their protocol restricts sharing of
the data, however, allowing only one copy of each memory loca-
tion to reside in the system. Yang et al. [41] describe a consistency
protocol that works on both the Wilson and Mizrahi et al. archi-
tectures. None of this research, however, addresses issues of dead-
lock and message races that result from the hierarchy. These proto-
cols employ the inclusion property, and in [7], several conditions
for imposing the inclusion property for fully and set-associative
cache hierarchies are presented. Recently, attention has turned to
architectures that support CMP’s with variable degrees of hierar-
chy [1–3,8,9,21,29,35,38]. Acacio et al. [3] propose a hierarchical
scheme for directory-based consistency using a multilayer cluster-
ing concept. Shen and Arvind [36] offer a progressive protocol
based on term rewriting systems.

Some researchers [26, 31, 37] have suggested consistency pro-
tocols for limited-height memory hierarchies. Bolotin et al. [8]
describe an architecture with two levels of cache in which the L2-
cache stalls to provide a serialization point. They show how to im-
prove performance of a directory-based consistency protocol using
a priority-based network-on-chip. Marty and Hill [29] propose a
two-level virtual-memory hierarchy that outperforms a flattened ar-
chitecture. Acacio [2] suggests a three-level directory architecture,
while Chang and Sohi [9] offer a cooperative caching protocol.

Several studies on interconnects on CMP’s [11, 13, 20, 21] pro-
pose a variety of interconnects and suggest ways to reduce consis-
tency traffic. Martin et al. [27] describe a token-based consistency
protocol for a ring-based architecture. Marty and Hill [28] also de-
scribe a protocol for a ring-based architecture, focusing mainly on
efficiently and correctly ordering requests. Strauss et al. [39] sug-
gest a method to improve snooping protocols in ring-based CMP’s.

Some researchers [10,19,32] have proposed protocols for hierar-
chies of caches that share the same memory location, but the caches

themselves are not shared. This restriction helps in the invalida-
tion process, but in most cases read and write requests must still
go through memory. Eisley et al. [14] propose an architecture in
which directories are embedded within routing nodes. To address
the deadlock situation that might arise when a line is invalidated,
their scheme uses timeouts.

9. CONCLUSIONS AND FUTURE WORK
Cache-consistency protocols developed for hierarchical shared

caches often introduce nondeterminacy into the system by using
timeouts. Moreover, many existing protocols have serialization
bottlenecks that induce latency greater than the network diameter.
The HCC framework offers a progressive and scalable strategy for
implementing fully scalable cache-consistency architectures and
protocols that overcome these deficiencies.

This work suggests numerous extensions. The transition tables
can be compacted and logic simplified. The switches in caches
can be parallelized to handle multiple independent messages at one
time. Variants on the MSI strategy, such as MESI and MOESI,
can be implemented using the HCC framework. Caches can have
a larger number of children or parents than the binary scheme pre-
sented, and irregular network structures can be supported.

Interesting avenues of research include investigating the impact
of relaxing the strong inclusion and unique-path properties. In par-
ticular, what is the tradeoff between storage and communication if
only a weak-inclusion property is enforced? Do progressive proto-
cols exist for networks such as meshes where messages may have
several paths along which to travel?

10. REFERENCES
[1] M. Acacio, J. Gonzalez, J. Garcia, and J. Duato. A two-level

directory architecture for highly scalable cc-NUMA multiprocessors.
Trans. on Parallel and Distributed Systems, 16(1):67–79, 2005.

[2] M. E. Acacio. An architecture for high-performance scalable
shared-memory multiprocessors exploiting on-chip integration. IEEE
Trans. on Parallel Distributed Systems, 15(8):755–768, 2004.

[3] M. E. Acacio, J. Gonzalez, J. M. Garcia, and J. Duato. A new
scalable directory architecture for large-scale multiprocessors. In
IEEE HPCA, 2001.

[4] Advanced Micro Devices. AMD64 Architecture Programmer’s
Manual, Volume 2: System Programming, July 2007.

[5] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An evaluation
of directory schemes for cache coherence. In ISCA, 2008.

[6] Arvind. Bluespec: A language for hardware design, simulation,
synthesis and verification. In MEMOCODE, 2003.

[7] J.-L. Baer and W.-H. Wang. On the inclusion properties for
multi-level cache hierarchies. In ISCA, 1988.

[8] E. G. Bolotin, Z. Cidon, I. Ginosar, and A. R. Kolodny. The power of
priority: NoC based distributed cache coherency. In NOCS, 2007.

[9] J. Chang and G. S. Sohi. Cooperative caching for chip
multiprocessors. In ISCA, 2006.

[10] Y. Chang and L. Bhuyan. An efficient tree cache coherence protocol
for distributed shared memory multiprocessors. IEEE Trans. on

Computers, 48(3):352–360, 1999.
[11] L. Cheng, N. Muralimanohar, K. Ramani, R. Balasubramonian, and

J. B. Carter. Interconnect-aware coherence protocols for chip
multiprocessors. In ISCA, 2006.

[12] D. R. Cheriton, H. A. Goosen, and P. D. Boyle. Multi-level shared
caching techniques for scalability in VMP-M/C. In ISCA, pages
16–24, 1989.

[13] W. J. Dally and B. Towles. Route packets, not wires: on-chip
interconnection networks. In DAC, 2001.

[14] N. Eisley, L.-S. Peh, and L. Shang. In-network cache coherence. In
MICRO, 2006.

[15] M. Frigo. The weakest reasonable memory model. Master’s thesis,
MIT EECS, 1998.

[16] J. R. Goodman. Using cache memory to reduce processor-memory
traffic. In ISCA, 1983.

[17] M. Hill. Multiprocessors should support simple memory consistency
models. IEEE Computer, 31(8):28–34, 1998.

[18] Intel Corporation. Intel 64 and IA-32 Architectures Software

Developer’s Manual, Volume 3A: System Programming Guide, Part
1, October 2006.

[19] S. Kaxiras and J. R. Goodman. The GLOW cache coherence protocol
extensions for widely shared data. In ICS, 1996.

[20] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform
cache structure for wire-delay dominated on-chip caches. In
ASPLOS-X, 2002.

[21] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in
multi-core architectures: understanding mechanisms, overheads and
scaling. In ISCA, 2005.

[22] C.-Y. Lam and S. E. Madnick. Propeties of storage hierarchy systems
with multiple page sizes and redundant data. ACM Transaction on

Database Systems, 4(3):345–367, 1979.

[23] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess progranm. IEEE Trans. on Computers,
C-28(9):690–691, 1979.

[24] F. T. Leighton and B. M. Maggs. Fast algorithms for routing around
faults in multibutterflies and randomly-wired splitter networks. IEEE

Transaction on Computers, 41(5):578–587, 1992.
[25] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman,

M. N. Ganmukhi, J. V. Hill, W. D. Hillis, B. C. Kuszmaul, M. A. St.
Pierre, D. S. Wells, M. C. Wong, S.-W. Yang, and R. Zak. The
network architecture of the Connection Machine CM-5. In SPAA,
1992.

[26] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta,
and J. Hennessy. The DASH prototype: implementation and
performance. In ISCA, 1998.

[27] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token coherence:
decoupling performance and correctness. In ISCA, 2003.

[28] M. R. Marty and M. D. Hill. Coherence ordering for ring-based chip
multiprocessors. In MICRO, 2006.

[29] M. R. Marty and M. D. Hill. Virtual hierarchies to support server
consolidation. In ISCA, 2007.

[30] H. E. Mizrahi, J. L. Baer, E. D. Lazowska, and J. Zahorjan.
Introducing memory into the switch elements of multiprocessor
interconnection networks. In ISCA, 1989.

[31] S. Mori, H. Saito, M. Goshima, S. Tomita, M. Yanagihara, T. Tanaka,
D. Fraser, K. Joe, and H. Nitta. A distributed shared memory
multiprocessor ASURA: memory and cache architecture. In
Supercomputing, 1993.

[32] H. Nilsson and P. Stenstrom. The scalable tree protocol-a cache
coherence approach for large-scale multiprocessors. In IPDPS, 1992.

[33] D. A. Patterson and J. L. Hennessy. Computer Organization and

Design: The Hardware/Software Interface. Morgan Kaufmann,
second edition, 1998.

[34] S. Przybylski, M. Horowitz, and J. Hennessy. Characteristics of
performance-optimal multi-level cache hierarchies. In ISCA, 1989.

[35] A. Ros, M. E. Acacio, and J. M. Garcia. An efficient cache design for
scalable glueless shared-memory multiprocessors. In Computing
Frontiers. ACM Press, 2006.

[36] X. Shen and Arvind. Specification of memory models and design of
provably correct cache coherence protocols. Technical Report 398,
MIT Computation Structures Group, 1997.

[37] X. Shen, Arvind, and L. Rudolph. CACHET: an adaptive cache
coherence protocol for distributed shared-memory systems. In ICS,
1999.

[38] E. Speight, H. Shafi, L. Zhang, and R. Rajamony. Adaptive
mechanisms and policies for managing cache hierarchies in chip
multiprocessors. In ISCA, 2005.

[39] K. Strauss, X. Shen, and J. Torrellas. Flexible snooping: adaptive
forwarding and filtering of snoops in embedded-ring multiprocessors.
ISCA, 2006.

[40] A. W. Wilson, Jr. Hierarchical cache/bus architecture for shared
memory multiprocessors. In ISCA, 1987.

[41] Q. Yang, G. Thangadurai, and L. M. Bhuyan. Design of an adaptive
cache coherence protocol for large scale multiprocessors. IEEE

Trans. on Parallel and Distributed Systems, 3(3):281–293, 1992.

