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Abstract

Multiprocessor scheduling in a shared multiprogramming environ-
ment is often structured as two-level scheduling, where a kernel-

ity over all time steps excluding th@(Tw. + Llg P) time steps
with the highest processor availability. Whéh /T, > P (the
job’s parallelism dominates th@ (T, + Llg P)-trimmed avail-

level job scheduler allots processors to jobs and a user-level task?Pility), the job achieves nearly perfect linear speedup. Conversely,

scheduler schedules the work of a job on the allotted processors. InWhenT1 /T < P, the asymptotic running time of the job is
this context, the number of processors allotted to a particular job N€&rly the length of its critical path.

may vary during the job’s execution, and the task scheduler must Categories and Subject DescriptorsD.4.1 [Softwarg Operating

adapt to these changes in processor resources. For overall systemystems - process management; FR€ory of Computatidn
efficiency, the task scheduler should also provide parallelism feed- Analysis of Algorithms and Problem Complexity.

back to the job scheduler to avoid the situation where a job is allot-
ted processors that it cannot use productively.

We present an adaptive task scheduler for multitasked jobs with
dependencies that provides continual parallelism feedback to the

job scheduler in the form of requests for processors. Our SChed'Job scheduling, Multiprocessing, Multiprogramming, Parallelism

_uler guarantees that a ]ob_completes near optimally while utiliz- feedback, Parallel computation, Processor allocation, Task schedul-
ing at least a constant fraction of the allotted processor cycles. Ouring Two-level scheduling, Space sharing, Trim analysis, Work
scheduler can be applied to schedule data-parallel programs, such ’ ' ’ '

as those written in High Performance Fortran (HPF), *Lisp, C*, .
NESL, and ZPL. 1. Introduction

Our analysis models the job scheduler as the task scheduler'sThe scheduling of a collection of parallel jobs onto a multiproces-
adversary, challenging the task scheduler to be robust to the systenor is an old and well-studied topic of research [15,17,18,22,31,36,
environment and the job scheduler's administrative policies. For 39 50,53,54]. In this paper, we study so-cabgace-sharing25]
example, the job scheduler can make available a huge number offor parallel jobs, where jobs occupy disjoint processor resousases,
processors exactly when the job has little use for them. To analyze opposed tdime-sharing[25], where different jobs may share the
the performance of our adaptive task scheduler under this stringentsame processor resources at different times. Space-sharied-sch
adversarial assumption, we introduce a new technique called “trim ylers can be implemented using a two-level strategy [25]: a kernel-
analysis,” which allows us to prove that our task scheduler performs |eveljob schedulemwhich allots processors to jobs, and a user-level
poorly on at most a small number of time steps, exhibiting near- task schedulemwhich schedules the tasks belonging to a given job
optimal behavior on the vast majority. onto the allotted processors. In this paper, we study how the task

To be precise, suppose that a job has wbyland critical-path  scheduler for a job can provide provably effective feedback to the
length T and is running on a machine with processors. Us-  job scheduler on the job’s parallelism. Our adaptive scheduler can
ing trim analysis, we prove that our scheduler completes the job in pe applied to schedule data-parallel languages such as High Perfor-
O(T1/P + T + L1g P) time steps, wherd. is the length of a ~ mance Fortran (HPF) [26], *Lisp [35], C* [45], NESL [4, 6], and
scheduling quantum anBl denotes thé (7., + L lg P)-trimmed ZPL [16].
availability. This quantity is the average of the processor availabil-  Like earlier research on task scheduling of data-parallel lan-
guages [3, 6, 24, 33, 43], we model the execution of a parallel job
as a dynamically unfolding directed acyclic graph (dagjasks
where each node in the dag represents a unit-time task. An edge
represents a serial dependency between taskswdheT; corre-
sponds to the total number of unit-time tasks in the dag and the
critical-path length T, corresponds to the length of the longest
chain of dependencies in the dag. A task becoraadyto be exe-
Permission to make digital or hard copies of all or part of this cuted when all its parents have been executed. Each job has its own
work for personal or classroom use is granted without fee provided task scheduler, and the task scheduler operates in an online manner,
that copies are not made or distributed for profit or commercial oblivious to the future characteristics of the dynamically unfolding
advantage and that copies bear this notice and the full citation on dag.
the first page. To copy otherwise, to republish, to post on servers  Most prior work on task scheduling for multitasked jobs deals
or to redistribute to lists, requires prior specific permission and/or With nonadaptivescheduling [5, 6, 10, 14, 30, 43], where the job
a fee. scheduler allots a fixed number of processors to the job for its
PPoPP'06 March 29-31, 2006, New York, New York, USA. entire lifetime. For jobs whose parallelism is unknown in advance
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and which may change during execution, this strategy may waste various other bookkeeping for scheduling, including time for the
processor cycles [50], because a job with low parallelism may be task scheduler to communicate with the job scheduler, which typi-
allotted more processors than it can productively use. Moreover, in cally involves a system call. Between quanta 1 andgq, the task
a multiprogrammed environment, nonadaptive scheduling may not scheduler determines its jobdesired,, which is the number of
allow a new job to start, because existing jobs may already be usingprocessors the job wants for quantymThe task scheduler pro-
most of the processors. vides the desird, to the job scheduler as its parallelism feedback.
With adaptivescheduling [1] (called “dynamic” scheduling in  The job scheduler follows some processor allocation policy to de-
many papers), the job scheduler can change the number of procestermine theprocessor availabilityp,, which is the number of pro-
sors allotted to a job while the job is executing. Thus, new jobs can cessors the job is entitled to get for the quantunTo make the
enter the system, because the job scheduler can simply recruit protask scheduler robust to different system environments and admin-
cessors from the already executing jobs and allot them to the newistrative policies, our analysis of AH&EEDY assumes that the job
job. Unfortunately, as with a nonadaptive scheduler, this strategy scheduler decides the availability of processors as an adversary.
may cause waste, because a job with low parallelism may still be  The number of processors the job receives for quanjuis

allotted more processors than it can productively use. the job’sallotment a, = min {dq, ps}, Which is the smaller of
The solution we present is an adaptive scheduling strategy its desire and the processor availability. For example, suppose that
where the task scheduler providesrallelism feedbacko the job a job requestgl, = 5 processors and the job scheduler decides

scheduler so that when a job cannot use many processors, thoséhat the availability isp, = 10. Then, the job is allotted, =
processors can be reallotted to jobs with ample need. Based on thianin {d,, p,} = min {5,10} = 5 processors. If the availability is
parallelism feedback, the job scheduler adaptively changes the al-only p, = 3, however, the job’s allotment i, = min {5, 3} = 3.
lotment of processors according to the availability of processors in Once a job is allotted its processors, the allotment does not change
the current system environment and the job scheduler's administra-during the quantum. Consequently, the task scheduler must do a
tive policy. good job before a quantum of estimating how many processors it
The question of how the job scheduler should partition the will need for all L time steps of the quantum, as well as do a good
multiprocessor among the various jobs has been studied extensiveljjob of scheduling the tasks on the allotted processors.
[17,18,22,23,31, 36, 38, 39,41, 46,47, 55], but the adminig&ati In an adaptive setting where the number of processors allotted
policy of the job scheduler is not the focus of this paper. Instead, to a job can change during execution, b@ily P andT.. are lower
we study the problem of how the task scheduler provides effective bounds on the running time, whefeis the mean of the processor
parallelism feedback to the job scheduler without knowing the availability during the computation. An adversarial job scheduler,
future progress of the job, the future availability of processors, or however, can prevent any thread scheduler from providing good
the administrative priorities of the job scheduler. speedup with respect to the mean availabiltyn the worst case.
Various researchers [17, 18, 31, 39, 55] have used the notion of For example, if the adversary chooses a huge number of prosessor
instantaneous parallelisni the number of processors the job can for the job’s processor availability just when the job has little
effectively use at the current moment, as the parallelism feedbackinstantaneous parallelism, no adaptive scheduling algorithm can
to the job scheduler. Although using instantaneous parallelism for effectively utilize the available processors on that quantum.
parallelism feedback is simple, it can cause gross misallocation  We introduce a technique callédm analysisto analyze the
of processor resources [48]. For example, the parallelism of a job time bound of adaptive thread schedulers under these adversarial
may change substantially during a scheduling quantum, alternatingconditions. From the field of statistics, trim analysis borrows the
between parallel and serial phases. The sampling of instantaneousdea of ignoring a few “outliers.” Arimmed mean for example, is
parallelism at a scheduling event between quanta may lead thecalculated by discarding a certain number of lowest and highest
task scheduler to request either too many or too few processorsvalues and then computing the mean of those that remain. For
depending on which phase is currently active, whereas the desirablepur purposes, it suffices to trim the availability from just the high
request might be something in between. Consequently, the job mayside. For a given valu&, we define theR-high-trimmed mean
systematically waste processor cycles on the one hand or take tocavailability as the mean availability after ignoring tfiesteps with
long to complete on the other. the highest availability. A good thread scheduler should provide
In this paper, we present an adaptive greedy task scheduler,jinear speedup with respect to @trimmed availability, where?
called A-GREEDY, which provides parallelism feedback. ARGEDY s as small as possible.
guarantees not to waste many processor cycles while simultane-  Qur A-GREEDY algorithm uses a greedy scheduler [9, 14, 30],
ously ensuring that the job completes quickly. Instead of using in- which, when coupled with A-BEEDY's parallelism-feedback
stantaneous parallelism, AREEDY provides parallelism feedback  strategy, is provably effective. We prove that
to the job scheduler based on a single summary statistic and theA-GReeDY guarantees linear speedup with respect taakE,, +
job’s behavior on the previous quantum. Even though REEDY L1g P)-trimmed availability. Specifically, consider a job with work
provides parallelism feedback using the past behavior of the job 7, and critical-path lengtfl,, running on a machine witl pro-
and we do not assume that the job’s future parallelism is correlated cessors and a scheduling quantum of lengthA-GREEDY com-
with its history of parallelism, our analysis shows that AR&EDY pletes the job inO(Ty /P + Tw, + Llg P) time steps, wheré®
schedules the job well with respect to both waste and completion denotes theD (7., + Llg P)-trimmed availability. Thus, the job

time. ) ) _ . achieves linear speed up with respectRravhen T’ /T, > P,
Our scheduling model is as follows. We assume that time is that is, when the job’s parallelism dominates O + L1g P)-
broken into a sequence of equal-seheduling quantal, 2, ... trimmed availability. In addition, we prove that the total number of

of length L, and the job scheduler is free to reallocate processors processor cycles wasted by the jol(i¢77 ), representing at most
between quanta. The quantum lendthis a system configuration 3 constant factor overhead.

parameter chosen to be long enough to amortize the time to real-  The remainder of this paper is organized as follows. Section 2
locate processors among the various jobs and the time to performpresems the adaptive greedy task scheduler®e&by. Section 3
provides a trim analysis for the special case of RE&EDY when

the scheduling quantum has lengdthi.e. task schedulers request
the processors from the job scheduler at each time step, and Sec-

1These researchers actually use the general term “pasaiglbut we
prefer the more descriptive term.



tion 4 extends this trim analysis to the general case. Section 5 dis-

cusses how A-BEEDY can be applied to schedule data-parallel

A-GREEDY(q, 6, p)

jobs with bounded time, space, and waste. Section 6 describes re- 1 ifg=1

lated work, and Section 7 offers some concluding remarks.

2. The Adaptive Greedy Algorithm

This section presents the adaptive greedy task schedulerBEGy.
Before each quantum, A+&EDY provides parallelism feedback

to the job scheduler based on the job’s history of utilization using a 1

simple multiplicative-increase, multiplicative-decrease algorithm.
A-GREEDY classifies
guanta as “satisfied” versus “deprived” and “efficient” versus
“inefficient.” Of the four possibilities of classification, however,
A-GREEDY only uses three: inefficient, efficient and satisfied, and
efficient and deprived. Using this three-way classification and the

thend, «— 1 > base case
elsaif Ug—1 < Ldaq_1
thend, «— dq—1/p > inefficient

elseif ag—1 = dg—1

then dg «— pdg—1 > efficient and satisfied
dsed; — dg—1 > efficient and deprived
Report desire, to the job scheduler.
Receive allotmeni, from the job scheduler.
Greedily schedule om, processors fof time steps.

OV ~NOoOURWN

Figure 1: Pseudocode for the adaptive greedy algorithm. REGDY pro-
vides parallelism feedback to a job scheduler in the formd#sire for pro-
cessors. Before quantum A-GREEDY uses the previous quantum'’s desire
dq—1, allotmentay_1, and usage:;_1 to compute the current quantum’s
desired, based on the utilization parameiiand the responsiveness pa-

job’s desire for the previous quantum, it computes the desire for the rameterp.

next quantum.

To classify a quantum as satisfied versus deprived, AREGEDY
compares the job’s allotment, with its desired,. The quantuny
is satisfiedif a; = dg, that is, the job receives as many processors
as A-GREEDY requested on its behalf from the job scheduler. Oth-
erwise, ifag < dg, the quantum isleprived because the job did
not receive as many processors as REEDY requested.

Classifying a quantum as efficient versus inefficient is more
complicated. We define thesageu, of a quantumy as the amount
of work completed by the job during the quantum, which is to say,
the total number of unit-time tasks in the dag that were completed
during the quantum. The maximum possible usage for a quagptum
is Lag, whereL is the length of quanta ang, is the job’s allotment
for quantumg. A-GREEDY uses autilization parameterd, where
0 < 0 < 1, as a threshold to differentiate between efficient and
inefficient quanta. Typical values férmight be90-95%. We call
a quantuny efficientif u, > dLag, that is, the usage is at least
a ¢ fraction of the maximum possible usage, in which case the
job wastes few (at mostl — §)La,) processor cycles. We call a
guantumy inefficient otherwise.

A-GREEDY calculates the desiré, of the current quantum
based on the previous desilg_; and the three-way classification
of quantumy — 1 as inefficient, efficient and satisfied, and efficient
and deprived. The initial desire i$; 1. A-GREEDY uses a
responsiveness parameter > 1 to determine how quickly the
scheduler responds to changes in parallelism. Typical valugs of
might range betweeh.2 and2.0. Figure 1 shows the pseudocode
of A-GREEDY for one quantum. The algorithm takes as input the
quantumg, the utilization parameted, and the responsiveness
parametep. Intuitively, it operates as follows:

e If quantumg — 1 was inefficient, A-&REEDY overestimated
the desire. In this case, AREEDY does not care whether the

3. Trim Analysisfor Unit Quanta

This section uses a trim analysis to analyze REGDY for the
special case wherg = 1, that is, where each quantum isiait
guantum consisting of only a single time step. For unit quanta,
adaptive scheduling can be done efficiently using instantaneous
parallelism as feedback. Surprisingly, ARGEDY's algorithm for
desire estimation, which only uses historical information, provides
nearly as good time bounds. Moreover, as we shall see in Section 4,
these bounds can be extended to the case When1. In contrast,
although a task scheduler based on instantaneous parallelism can
be used for unit quanta, a straightforward extensiord to> 1
would require the task scheduler to know the future parallelism of
the job for all L time steps of the quantum. The analysis for unit
quanta given in this section gives intuition for the effectiveness of
A-GREEDY's strategy for desire estimation.

For unit quanta, we shall prove that ARGEDY with utiliza-
tion parametep = 1 completes a job with work’ and critical-
path lengthT in at mostT’ < Ti /P + 2T+ log, P + 1 time
steps, whereP is the number of processors in the machine and
Pis the (2T + log, P + 1)-trimmed availability. In contrast, a
greedy task scheduler that uses instantaneous parallelism as feed-
back completes the job in at ma#t< T3 /P + T time steps,
whereP is theT-trimmed availability. Thus, even without up-to-
date information on instantaneous parallelism, REEDY oper-
ates nearly as efficiently. Moreover, the total number of processor
cycles wasted by A-EEDY in the course of the computation is
bounded byT;. (Instantaneous parallelism wastes none.)

To prove the completion-time bounds, we use a trim analysis.
We label each quantum as eitheccountedor deductible Ac-

quantum is satisfied or deprived, and it decreases the desirecounted quanta are those wherg= p,, that is, the usage equals

(line 4) in quantumy.

¢ If quantumg — 1 was efficient and satisfied, the job effectively
utilized the processors that AREEDY requested on its behalf.
Thus, A-GREEDY speculates that the job can use more proces-
sors and increases the desire (line 6) in quanjum

e If quantumg — 1 was efficient but deprived, the job used all the
processors it was allotted, but AREEDY had requested more
processors for the job than the job actually received from the
job scheduler. Since A-REEDY has no evidence whether the

the processor availability. The deductible quanta are those where
uq < pg. Our trim analysis will show that when we ignore the rela-
tively few deductible quanta, we obtain linear speedup on the more
numerous accounted quanta.

We first relate the labeling of accounted and deductible to the
three-way classification of quanta as inefficient, efficient and satis-
fied, and efficient and deprived.

Inefficient: In an inefficient quantuny, we haveu, < aq <

job could have used all the processors requested, it maintainsy, = that is, the job uses fewer processors than it was allotted,

the same desire (line 7) in quantum

and therefore it uses fewer processors than those available. Thus,

Remarkably, this simple algorithm provides strong guarantees on inefficient quanta are deductible quanta, irrespective of whether

waste and performance.

they were satisfied or deprived.



Efficient and satisfied: On an efficient quantung, we haveu, = = 2T,
aq. Sinceaq = min {pq, dq} by definition, on a satisfied quantum,
we havea, = dy < pq. Thus, we have:, < p,. Since we cannot
guarantee that, = pq, we assume pessimistically that quantgm

since the desire in the first quantumdis = 1. If the job executes
for @ quanta, the final potential is

is deductible. PQ+1) = 2T+ _ log, dq+1
Efficient and deprived: As before, on an efficient quantumwe > 0—log,(pP)
haveu, = a4. On a deprived quantum, we have by definition that — _log P—1
; . g )
aq < dq, and sincez, = min {p,, dq}, we havea, = pq. Thus, P
we haveu, = a4 = pq, @and quantung is accounted. by Lemma 2. Since the potential starts 2., and is at least
) ) —log, P — 1 at the end of the computation, the total decrease of
Time Analysis the potential isb(1) — d(Q + 1) < 2T + log, P + 1.
We prove the completion time bound of AREEDY by bounding We now compute the decrease in potential during each quantum

the number of deductible and accounted quanta separately. Webased on the three-way classification. Each case will use the fact
use a potential function argument to prove that the number of that the decrease in potential during any quanius
deductible quanta is at mo8t + log, P + 1. We then show

that the number of accounted quanta is at mBstPa, where AP = ®(q)-P(¢+1)
Ty is the total work andP and P4 is the mean availability on = (2T —log,d,) — (2T —log, dg11)
accounted quanta. Thus, the total time to complete the job is at most — (T — T (log, d, — log, dq+1) -

T1/Pa + 2Ts + log, P + 1, which is the sum of the number of
accounted and deductible quanta, since each guantum consists ofnefficient: ~ An inefficient quantuny consists of a single incom-

a single time step. Finally, we show th& > P, whereP is plete step. After an incomplete step, the length of the remain-
the (27 + Llog, P + 1)-trimmed availability, which yields the ing critical path reduces by (Lemma 1). Moreover, we have
desired result. dq+1 = dg/p, since A-GREEDY reduces the desire after an inef-

Our analysis uses a characterization of greedy scheduling basedicient quantum. Thus, the decrease in potential after an inefficient
on whether the job uses all its allotted processors on a given step.quantum is
We define a step to beompleteif the job uses all the allotted

processors in the step ammtompleteif the job does not use all A® = 2ATL —TL) - (log, dy — log, dy1)

the available processors. In the special case of REEDY with = 2(T%L — (T - 1)) - (1Og dy — log (dq/p))
unit quanta, an inefficient quantum consists of a single incomplete e e

step and an efficient quantum consists of a single complete step. = 20—

The following lemma from the literature [7, 10, 19] shows that = 1.

whenever a greedy scheduler (including AR€EDY) schedules an

incomplete step, the job makes progress on its critical path. Efficient and satisfied: A-GREEDY increases the desire after ev-

ery efficient and satisfied quanturi,(.. = pd,). The remalnlng
LEMMA 1. Any greedy scheduler reduces the length of a job's critical-path length never increases. Thus, the decrease in potential

remaining critical path byl after every incomplete step. O is
We next bound the maximum desire during the course of the AD = 2TL —TLH) - (log, dq — log,, dg+1)
computation. | | > 0- (logp dy - logp(pdq))
LEMMA 2. Suppose thah-GREEDY schedules a job on a machine - 1
with P processors. Ip is A-GREEDY'S responsiveness parameter, ’
then for every quantum, the job's desire satisfiet;, < pP. Efficient and deprived: After efficient and satisfied quanta,

A-GREEDY maintains the previous desiré,(1 = dg4), and, as
before, the critical-path length never increases. Thus, the decrease
in potential is

= 2(TL —TL™) — (log, dg — log, dg+1)

Proof. We use induction on the number of quanta. The base case
di1 = 1 holds trivially. If a given quantung — 1 was inefficient,

the desired, decreases, and thdg < d,—1 < pP by induction.

If guantumg — 1 was efficient and satisfied, thely = pd,—1 = AD
pag—1 < pP. If quantumg — 1 was efficient and deprived, then

dq = dg—1 < pP by induction. z 0.
The deductible quanta for A-&EEDY are either inefficient or Thus, the potential never increases, and it decreases by at least
efficient and satisfied. The next lemma bounds their number. 1 after every deductible quantum. Thus, the number of deductible
. . o uanta is at mostT. log P+ 1, the total decrease in potential.
LEMMA 3. Suppose thah-GREEDY schedules a job with critical- g oo log, £+ P 0
path lengthl's, on a machine wittP processors. Ip is A-GREEDY'S
responsiveness parametér= 1 is its utilization parameter, and We now bound the number of accounted quanta.

L = 1is the quantum Ier]gth, then the schedule produces at most| .y via 4. Suppose thah-GREEDY schedules a job with worK; .
2T + log, P + 1 deductible quanta. If § = 1is A-GREEDY's utilization parameter and, = 1 is the
Proof. We use a potential-function argument based on the job's quantum length, then the schedule produces at rfipgP4 ac-
desired, before quantung. Define the potential before quantum counted quanta, wher®, is the mean availability on accounted
to be quanta.

®(q) = 2T —log, dy Proof. Let A be the set of accounted quanta, ande the set
whereTs, denotes the length of the remaining critical path before of deductible quanta. The mean availability on accounted quanta is
quantumy is executed, that is, the length of the longest path inthe p, = (1/]A|) zqupq, The total number of tasks executed over
unexecuted dag. The initial p0tem'a| Is the course of the computation® = Y _, , ug, Since each
®(1) = 2T —log,d: of the T tasks is executed exactly once in either an accounted or



a deductible quantum. Since accounted quanta are those for whichsince the desiré, of any quantury is at leastl. Therefore the

uq = pq, We have

Ty

D

qeEAUD

S,

qEA

>

qEA

|A] Pa

Thus, the number of accounted quantgds < Ti/Pa. U

We can now bound the completion time of a job scheduled by
A-GREEDY with unit quanta.

Y]

THEOREM5. Suppose thaf-GREEDY schedules a job with work
T: and critical-path lengthil', on a machine withP processors. If
pis A-GREEDY's responsiveness parametér= 1 is its utilization
parameter, andL = 1 is the quantum length, theA-GREEDY
completes the job in

T <Ti/P+2Tw +1log, P+ 1
time steps, wher® is the(27 +log, P+1)-trimmed availability.

Proof. The proof is a trim analysis. Let be the set of accounted
quanta, and be the set of deductible quanta. Lemma 3 shows that
there arelD| < 2T + Llg P + 1 deductible time steps, since
each quantum consists of a single time step. We Haye> P,

total decrease in potential (1) — U(Q + 1) < pT7.

Based on the three-way classification, we shall show that if the
waste on quantunp is wq = aq — uq, then the potential decreases
by at leastw, during the quantum. Each way will use the fact that
the decrease in potential during any quantuis

AV, = Y(g)-¥(¢+1)
p p
= <pT1q =+ p—ldq> — (pTI‘1+1 —+ p—ldq+1>
= p(I7 -1 + pp%l(dq —dgt1) -
Inefficient: For any quantuny, wy < ag4, Which is to say, the

number of processor cycles wasted is less than the total number of
processor cycles allotted. Since the allotmentjs< d,, we have
wq < dg. After an inefficient quanturg, A-GREEDY reduces the
desire to bel,11 = dq/p. Thus, the decrease in potential is

AW, = (=T L~ dy)
> L da = dafp)
= dq
> Wq -

Efficient and satisfied: Since no processor cycles are wasted on
any efficient quanturg, we havew, = 0 and the remaining work
reduces by, = aq. On an efficient and satisfied quantymthe

since the mean availability on the accounted time steps (we trim 5| 1otment is the same as the desitg (= d,) and A-GREEDY

the|D| deductible steps) must be at least (B&.. + L1g P + 1)-
trimmed availability (we trim th@T., + L lg P + 1 steps that have
the highest availability). From Lemma 4, the number of accounted
quanta islA| < Ty/P4 < T1/P, and sincel’ = L(|A| + | D)),

the desired time bound follows. 0

Waste Analysis

We now prove the waste bound for AREEDY with unit quanta.
Letwy, = aq — uq be the waste of quantum In efficient quanta,
the usage isu; = a4, and the waste isv, = 0. Therefore,

the job wastes processor cycles only on inefficient quanta. The

increases the desire{.1 = pd,) after the quantum. Thus, the
decrease in potential is

AV = p(T] = TP 4 L (dy — o)
p
= paq+ ﬁ(dq — pdyq)
= pdg — pdq
= 0
= wg.

next theorem shows that the waste on inefficient quanta can beEfficient and deprived: On any efficient quantung, we have

amortized against the work done on efficient quanta.

THEOREM 6. Suppose thaf-GREEDY schedules a job with work
T1 on a machine. Ifp is A-GREEDY's responsiveness parameter,
0 = lisits utilization parameter, and = 1 is the quantum length,
thenA-GREEDY wastes at mogtT; processor cycles in the course
of its computation.

Proof. We use a potential-function argument based on the job’s
desired, before quantuny. Define the potentiall (¢) before quan-

tumgq as
p
() = 17 + Ly

whereTY is the total number of unexecuted tasks in the computa-
tion before quantum. Thus, the initial potential is

w(1) o

— Tt P
P1+p_1

Ty +p/(p—1),
sinced; = 1. If the job executes fof) quanta, the final potential is

v(Q+1)

TQ+1 P d
Py +p—1 Q+1

O+p/(p_1)a
p/(pfl)a

V

wg = 0 and the amount of remaining work reducesiyy= aq.
Since the quanturp is efficient and deprived, we hadg;, = dg,
because A-@EEDY maintains the previous desire. Therefore, the
decrease in potential is

AY p(T{ = T) +

P
= F(dq —dgy1)
= pag+0
0

Wy .

Y

In all three cases, if the job wasteg processors in quantug)
the potential decreases by at leagt Consequently, the total waste
during the course of the computation is at mp§t, the total
decrease in potential. |

4. Trim Analysisof the General Case

We now use a trim analysis to analyze the general case oREEBY
when each scheduling quantum Hagme stepsg is the utilization
parametery is the responsiveness parameter, &d the number
of processors in the machine. For a job with watkand critical-
path lengthl'., A-GREEDY achieves the following bounds on run-
ning time and waste, wheteis the(27. /(1—0)+Llog, P+L)-



trimmed availability: Proof. Let A be the set of accounted quanta, andJdbe the set

T, 2T of deductible quanta. The mean availability on accounted quanta
T < —=+ 1—s + Llog, P+ L, is Py = (1/1]4]) ququ. The total number of tasks executed in
(15}1 p—35 the course of the computation i§ = quAUD uq. Since the
w < fﬂ . accounted quanta are those for which> ¢ Lp,, we have
As in Section 3, we label each quantum as either accounted or T = Z Ugq
deductible. Recall that a quantupof length L and processor avail- 4eAUD
ability p, has a total ofLp, processor cycles available. Accounted
quanta are those for which, > JLp,, that is, the job uses at > Zuq
least as fraction of all available processor cycles. The deductible qeA
quanta are those for which, < Ldp4. By the same logic as in
Section 3, inefficient quanta or efficient and satisfied quanta are la- z Z 0Lpq
beled deductible. Efficient and deprived quanta, on the other hand, q€A
are labeled accounted. = OL|A|Pa.
Time Analysis Therefore, the total number of accounted quanta is at most
|A| <T1/5LPa. O

We bound the accounted and deductible quanta separately. We first
show how inefficient quanta affect the remaining critical path of the
job. THEOREM10. Suppose thatA-GREEDY schedules a job with
work 77 and critical-path lengthl., on a machine withP pro-
cessors. Ip is A-GREEDY's responsiveness parametéis its uti-
lization parameter, and. is the quantum length, thelh-GREEDY
completes the job in

T <T\/6P +2Ts /(1 —6) + Llog, P+ L

The next theorem provides the time bound for AREEDY.

LEMMA 7. A-GREEDY reduces the length of a job’s remaining
critical path by at leasi(1 — §) L after every inefficient quantum,
whered is A-GREEDY's utilization parameter and. is the quan-
tum length.

Proof. The total number of tasks completed in an inefficient - .
quantumyg is less thans La,. Therefore, there can be at madst time steps, wher€ is the(27w /(1 — ) + Llog, P+ L)-trimmed
complete steps in an inefficient quantum, since on a complete step 2vailability.

the job uses all the allotted processors, completingasks. Since  proof.  The proof is a trim analysis. Let be the set of accounted
there areL time steps in a quantum, there are at lgdst- 0)L guanta, and be the set of deductible quanta. Lemma 8 shows that

incomplete steps. Thus, the critical path reduces by at ldast there ard D| < 2T, /(1 — §)L + log, P + 1 deductible quanta,
)L, since Lemma 1 shows that every incomplete step reduces thegng hence at most |D| = 2T /(1 o 8) + Llog, P + L time
O > ?

critical path byl. ] steps belong to deductible quanta. We have fhat> P, since the
The next lemma bounds the number of deductible quanta. mean availability on the accounted time steps (we trimH@®)|

LEMMA 8. Suppose thah-GREEDY schedules a job with critical- ~ deductible steps) must be at least (3. /(1 — §) + Llog, P +
path lengthl .. on a machine wittP processors. Ip is A-GReepy's  L)-trimmed availability (we trim th@T’ /(1 —6) + Llog, P+ L

responsiveness parametéris its utilization parameter, and. is steps that have the highest availability). From Lemma 9, the number
the quantum length, then the schedule produces at 2Tasy/ (1 — of accounted quanta ifA| < T1/6Pa < Ti/6P, and since
§)L + log, P + 1 deductible quanta. T = L(JA| + |D|), the desired time bound follows. Ul

Proof. We use a potential-function argument as in Lemma 3.
Define the potential before quantupas

®(q) =275 /(1 - 0)L —log, dq ,

whereTZ is the remaining critical path before quantymif the
job completes irQ) quanta, the total decrease in potential is

Waste Analysis
We now prove the waste bound for ARGEDY.
THEOREM11. Suppose thatA-GREEDY schedules a job with

work 77 on a machine. Ifp is A-GREEDY'S responsiveness pa-
rameter, is its utilization parameter, and is the quantum length,

_ 2T -0 thenA-GREEDY wastes at modil + p — §)71 /0 processor cycles
01— Pon1 = 1-0L (log, 1 —log, dg+1) in the course of its computation.
< 2T +log, P+1, Proof. We prove the bound using a potential-function argument
(1-4)L i similar to the one presented in Theorem 6. In this case the potential
sincedg 1 < pP by Lemma 2. before quantung is defined as
We can compute the decrease in potential during each quan- 14p—36
tum based on the three-way classification. By arguments similar (@)= —5 b ke

to those in Lemma 3, we can show that the potential decreases ] )
by at leastl after every deductible quantum and that it never in- WhereTY is the total number of unexecuted tasks in the compu-
creases. Therefore, the total number of deductible quanta is at mostation before quantum andd, is the desire for quantum. By
2T /((1 — 6)L) + log, P + 1, the total decrease in potentidll arguments similar to those presented in Theorem 6, one can show

We now bound the number of accounted quanta that if the job wastesv, processors in quantum, then the po-

: tential decreases by at leasy, in quantumg. If the computation

LEMMA 9. Suppose thaAA-GREEDY schedules a job with work ~ completes iR quanta, the total decrease in potential in the course
T:.If 6 is A-GREEDY's utilization parameter and. is the quantum of the computation is
length, then the schedule produces at niBstéLP4 accounted 14p—6

quanta, whereP,4 is the mean availability on accounted quanta. (1) -w(Q+1) = T(Tl —To+1)



+p%1L(d1 —dq+1)
14+p—9
1

sinced; = 1 anddg+:1 > 1. Therefore, the total waste is at most
(1+ p—96)T1/4, the total decrease in potential.

Tla

O

We can decompose the bounds of Theorems 10 and 11 into
separate bounds for accounted and deductible quanta.

COROLLARY 12. Suppose thaA-GREEDY schedules a job with
work T and critical-path lengthl., on a machine withP proces-
sors, and suppose thatis A-GREEDY'S responsiveness param-
eter, § is its utilization parameter, and. is the quantum length.
Let T, and Ty be the number of time steps in accounted and de-
ductible quanta, respectively, and f, and W, be the waste on
accounted and deductible quanta, respectively. TReGREEDY
achieves the following bounds:

T. < (1/8T/P,

T, < (2min{L,1/(1—8)})Te + Llog, P+ L,
W, < (1/6-1)T1,

Wa < (p/6)T1.

O

In an multiprogramming setting, several data-parallel programs
might share a single parallel machine, and the job scheduler
changes the allotment of processors to various jobs based on their
parallelism feedback and its administrative policy. A typical data-
parallel task scheduler might map the individual scalar operations
to the allotted processors before each vector operation, perhaps
using central control. The instantaneous parallelism of the job is
simply the work in the next vector operation, which is typically
known to the task scheduler, because it knows the vector lengths.
If the task scheduler can communicate with the job scheduler be-
fore every vector operation, then using instantaneous parallelism
as feedback works fine. This strategy may induce high scheduling
overheads, however, since it may not be possible to amortize com-
munication with the job scheduler over a single vector operation.
Since the task scheduler only knows the parallelism of the next
vector operation, not of subsequent ones, if the task scheduler exe-
cutes multiple vector operations in a single scheduling quantum, an
A-GREEDY-like adaptive strategy for parallelism feedback should
outperform a strategy based on instantaneous parallelism.

Blelloch, Gibbons, and Matias’s prioritized task scheduler [3],
called PDF, provides good bounds for data-parallel scheduling. The
machine model used in this work is a synchronduprocessor
EREW-PRAM [32] augmented with a “scan” primitive [28, 29].
Suppose that a job h&§ work and a critical-path length &f,
and suppose that executing the job in a serial, depth-first fashion
usesS; space. Then, PDF completes the job in at @&t /P +

As can be seen from these inequalities, the bounds for accountedr,. ) time steps and requires less théin+ O(PT ) space. Blel-
quanta are stronger than those for deductible quanta. The reasonoch and Greiner [6] extend the PDF algorithms to schedule pro-

is that the job scheduler in our model is adversarial. In practice,
however, it seems unlikely that the job scheduler would actually
act as an adversary. Thus, ARGEDY's behavior on the deductible

grams written in the nested data-parallel language NESL with only
a small increase in the running time and space.
Combining PDF with A-&REEDY produces an algorithm A-PDF

quanta is likely to be much better than these worst-case boundsthat can schedule data-parallel jobs efficiently in an adaptive

predict. Moreover, since the adversary’s bad behavior is limited to
relatively few deductible quanta, we conjecture that in practice the
overall time and waste of a real scheduler based on Re&by
more closely follows the bounds for accounted quanta.

5. Adaptive Data-Parallel Scheduling

In this section, we discuss a practical application of
A-GREEDY to schedule programs written in data-parallel lan-
guages, such as High Performance Fortran (HPF) [26], *Lisp [35]
C* [45], NESL [4, 6], and ZPL [16]. Indeed, data-parallel job
scheduling algorithms in the literature often model a job as a dag
of tasks [3, 6,24, 33, 51]. Of particular interest is the work by Blel-
loch and his coauthors [3, 6, 43] which provides various nonadap-
tive task schedulers for a generalized class of data-parallel jobs,
called nesteddata-parallel jobs. Specifically, their “prioritized”

setting. A-PDF uses the parallelism feedback mechanisms of
A-GREEDY to interact with the job scheduler. At the beginning
of each quantung, A-PDF calculates the desitg, based on the
three-way classification of the previous quantum and reports the de-
sire to the job scheduler according to the algorithm in Figure 1. The
job scheduler allots, = min(p,, dq) processors to the job. Then,
A-PDF uses the prioritized depth-first-like techniques described
in [3] for task synchronization and execution ap processors in
the quantuny. For each time step in quantumif there are more
thana, processors in the ready pool, thg ready tasks with high-
est priorities are scheduled. Otherwise, all the ready tasks in the
pool are scheduled.

The next theorem — which can be proved in a straightforward
fashion by combining our analysis of AREEDY with that of [3]
— bounds the time, space, and waste of A-PDF.

task schedulers are provably efficient with respect to both time THEoREM13. Suppose that-PDF schedules a job with work;
and space. This section applies the desire-estimation strategy ofand critical path7., on a P-processor EREW-PRAM augmented

A-GREEDY to data-parallel scheduling. In particular, AREEDY

can be combined with prioritized task schedulers to produce adap-
tive task schedulers that are provably efficient with respect to time,
space, and waste.

with a scan primitive, wherd. is the quantum sizeP is the
O(Tw + Llg P)-trimmed availability, andS; is the space taken
for a serial schedule. The®\-PDF completes the job ifi" steps,
takesS space, and wastd§” processor cycles, where

Data-parallel languages present the abstraction of operations

on vectors (or matrices), rather than on single scalar values. The
total number of vector operations corresponds to the critical-path
length of the computation, and the total number of scalar operations
corresponds to the work. The time to perform a vector operation

on a given number of processors may vary, because vectors may

have different lengths from operation to operation. The time may
also vary due to vector operations requiring different amounts of
work. For example, one vector operation might be an element-wise
addition operation, taking time proportional to the length of the
vectors, and another vector operation might be an outer-product,
taking time proportional to the product of vector lengths.

T = O(Ti/P+Tx+ LligP)
S < S$1+0(PTx),
W = O(T).

a

Narlikar and Blelloch [43] present an asynchronous algorithm
which can be used to schedule data-parallel jobs. Their algorithm
obtains the bound¥” = O(T1/P + TolgP) andS = S1 +
O(PTx 1g P). A-GREEDY can be combined with this scheduler



as well, producing the following bounds: In this paper, we introduced trim analysis as a means of limit-
ing a powerful adversary, which enabling us to analyze an adaptive

T = OM/P+TxlgP+LIgh), scheduler with parallelism feedback. The idea of ignoring a few

S = S514+0(PTlgP), outliers while calculating averages is often used in statistics to ig-
W = Oh), nore anomalous data points. Teachers sometimes ignore the low-

_ est score when computing a student’s grade, and in the Olympic
whereP is theO(Tw 1g P + L1g P)-trimmed availability. Games, the lowest and the highest scores are sometimes ignored
when judges average competitors’ scores. In theoretical computer

6. Related Work science, however, when an adversary is too powerful, researcher

. ) . . . have generally tended to resort to making statistical assumptions
This section discusses related work on adaptive scheduling of mul- ghout the input to render the analysis tractable. Unfortunately, sta-
titasked jobs. Work in this area has generally centered on job sched-jstical assumptions may not be valid in a particular real-world set-
ulers, some of which use “dynamic equipartitioning” as a strategy ting. We are optimistic that trim analysis will find wider application
for allotting processors to jobs. Work on adaptive task scheduling peyond the scheduling problems studied here to situations where
has generally either not used parallelism feedback or been studiedsiatistical methods have heretofore been employed.
only empirically. _ - A-GREEDY's desire-estimation strategy is robust to incomplete

Adaptive job schedulers have been studied empirically [36,37, jrformation, which suggests that it should work well in the con-
39, 42, 53, 55] and theoretically [2, 17, 22, 23, 31, 41]. McCann, text of work-stealing schedulers [1, 10, 40]. Work-stealing is a
Vaswani, and Zahorjan [39] studied many different job schedulers practical and provably efficient method for scheduling dynamic
and evaluated them on a set of benchmarks. They also introducedyytithreaded computations [8, 12, 27, 34, 44]. Since work-stealing
the notion of dynamic equipartitioning, which gives each job a fair  schedulers employ distributed control, the task scheduler has no
allotment of processors, while allowing processors that cannot be gjrect information about the instantaneous parallelism of the job.
used by a job to be reallocated to other jobs. Their studies indicate o Greepy does not require perfect, up-to-date information to
that dynamic equipartitioning may be an effective strategy for adap- compute its parallelism feedback, however, and hence it is robust
tive job scheduling. Gu [31] proved that dynamic equipartitioning g |atency in the gathering of utilization data from processors. We
with instantaneous parallelism feedchl@sompeﬂtwe with re- are currently studying how the strategy of providing parallelism
spect to makespan for batched jobs with multiple phases, where thefeegback based on the history of utilization can be applied to work-
parallelism of the job remains constant during the phase and thestealing schedulers.
phases are relatively long compared with the length of a schedul- Dynamic equipartitioning [17,31,39,55] appears to be an effec-
ing quantum. Deng and Dymond [17] proved a similar result for e way for job schedulers to allocate processors to jobs. If task
mean response time for multiphase jobs regardless of their arrival schedulers provide parallelism feedback using instantaneous par-
times. Song [49] proves that a randomized distributed strategy cangjielism and parallelism rarely changes during a scheduling quan-
implement dynamic equipartitioning. _ tum, a dynamic-equipartitioning job scheduler can optimize global

Adaptive task scheduling without parallelism feedback has been properties like makespan and average completion time [17,31]. For
studied in the context of multithreading, primarily by Blumofe and - many practical situations, however, a job’s parallelism does change
his coauthors [1, 11, 13]. In this work, the task scheduler schedules qickly and often, making it difficult to obtain perfect information
threads using a “work-stealing” [10, 40] strategy, but it does not ahout parallelism. We conjecture that by coupling an AE&DY-
provide the feedback about the job’s parallelism to the job sched- |ike task scheduler with a dynamic-equipartitioning job scheduler,
uler. The workin [11,13] addresses networks of workstations where provably good global properties can be obtained.
processors may fail or join and leave a computation while the job = \we pave analyzed A-@EEDY using an adversarial model for
is running, showing that work-stealing provides a good foundation the job scheduler. In practice, however, one would not expect the
for adaptive task scheduling. In theoretical work, Arora, Blumofe, job scheduler to behave diabolically. Thus, observed bounds on
and Plaxton [1] exhibit a work-stealing task scheduler that prov- \aste and completion time may actually be smaller than the the-
ably completes ajob i0(71 /P + PT./P) expected time, where  qretical bounds we have proved. In particular, in this paper we
P is the average number of processor allotted to the job by the proved that the waste is at most a constant factor of the work. We
job scheduler. Although they provide no bounds on waste, one canpaye begun empirical studies, which although preliminary, seem to
prove that their algorithm may wast®(T1 + P ) processor cy- jndicate that the observed constant is actually quite a bit smaller
cles in an adversarial setting. - ) than the theoretical bound indicates. In this paper, we also proved

Adaptive task scheduling without parallelism feedback has also that A-GreeDY achieves a linear speedup over a trimmed avail-
been studied empirically in the context of data-parallel languages gpility, but it seems that it should actually achieve a linear speedup
[20, 21]. This work focuses on compiler and runtime support for oyer average availability in practice. The reason is that the avail-
environments where the number of processors changes while thepjjity in deductible steps should rarely be orders of magnitude
program executes. ) ) . higher than other steps, because the job scheduler is not a true ad-

Adaptive task scheduling with parallelism feedback has been yersary, We are currently engaged in empirical studies and in im-

studied empirically in [48, 49, 52]. These researchers use a job’s plementing a practical scheduler, both of which should shed light
history of processor utilization to provide feedback to dynamic- now A-GrREEDY performs in the real world.

equipartitioning job schedulers. These studies use different strate-
gies for parallelism feedback, and all report better system perfor-
mance with parallelism feedback than without, but it is not apparent Acknowledgments
which strategy is superior. We thank Jim Sukha, Bradley Kuszmaul, and Gideon Stupp of MIT
CSAIL for their help in designing and analyzing an early variant of
7 C lusi A-GREEDY. Siddhartha Sen, also of MIT CSAIL, contributed to an

: onclusion implementation of an adaptive scheduler for Cilk, which inspired
We conclude with a brief discussion of trim analysis and some ob- this research.
servations that suggest directions for future work on task schedul-
ing with parallelism feedback.
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