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Abstract
Multiprocessor scheduling in a shared multiprogramming environ-
ment is often structured as two-level scheduling, where a kernel-
level job scheduler allots processors to jobs and a user-level task
scheduler schedules the work of a job on the allotted processors. In
this context, the number of processors allotted to a particular job
may vary during the job’s execution, and the task scheduler must
adapt to these changes in processor resources. For overall system
efficiency, the task scheduler should also provide parallelism feed-
back to the job scheduler to avoid the situation where a job is allot-
ted processors that it cannot use productively.

We present an adaptive task scheduler for multitasked jobs with
dependencies that provides continual parallelism feedback to the
job scheduler in the form of requests for processors. Our sched-
uler guarantees that a job completes near optimally while utiliz-
ing at least a constant fraction of the allotted processor cycles. Our
scheduler can be applied to schedule data-parallel programs, such
as those written in High Performance Fortran (HPF), *Lisp, C*,
NESL, and ZPL.

Our analysis models the job scheduler as the task scheduler’s
adversary, challenging the task scheduler to be robust to the system
environment and the job scheduler’s administrative policies. For
example, the job scheduler can make available a huge number of
processors exactly when the job has little use for them. To analyze
the performance of our adaptive task scheduler under this stringent
adversarial assumption, we introduce a new technique called “trim
analysis,” which allows us to prove that our task scheduler performs
poorly on at most a small number of time steps, exhibiting near-
optimal behavior on the vast majority.

To be precise, suppose that a job has workT1 and critical-path
length T∞ and is running on a machine withP processors. Us-
ing trim analysis, we prove that our scheduler completes the job in
O(T1/P̃ + T∞ + L lg P ) time steps, whereL is the length of a
scheduling quantum and̃P denotes theO(T∞ + L lg P )-trimmed
availability. This quantity is the average of the processor availabil-
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ity over all time steps excluding theO(T∞ + L lg P ) time steps
with the highest processor availability. WhenT1/T∞ ≫ P̃ (the
job’s parallelism dominates theO(T∞ + L lg P )-trimmed avail-
ability), the job achieves nearly perfect linear speedup. Conversely,
when T1/T∞ ≪ P̃ , the asymptotic running time of the job is
nearly the length of its critical path.

Categories and Subject DescriptorsD.4.1 [Software]: Operating
Systems - process management; F.2 [Theory of Computation]:
Analysis of Algorithms and Problem Complexity.

General Terms Algorithms, Performance, Theory.

Keywords Adaptive scheduling, Adversary, Critical path, Data-
parallel computing, Greedy scheduling, Instantaneous parallelism,
Job scheduling, Multiprocessing, Multiprogramming, Parallelism
feedback, Parallel computation, Processor allocation, Task schedul-
ing, Two-level scheduling, Space sharing, Trim analysis, Work.

1. Introduction
The scheduling of a collection of parallel jobs onto a multiproces-
sor is an old and well-studied topic of research [15,17,18,22,31,36,
39,50,53,54]. In this paper, we study so-calledspace-sharing[25]
for parallel jobs, where jobs occupy disjoint processor resources,as
opposed totime-sharing [25], where different jobs may share the
same processor resources at different times. Space-sharing sched-
ulers can be implemented using a two-level strategy [25]: a kernel-
level job schedulerwhich allots processors to jobs, and a user-level
task schedulerwhich schedules the tasks belonging to a given job
onto the allotted processors. In this paper, we study how the task
scheduler for a job can provide provably effective feedback to the
job scheduler on the job’s parallelism. Our adaptive scheduler can
be applied to schedule data-parallel languages such as High Perfor-
mance Fortran (HPF) [26], *Lisp [35], C* [45], NESL [4, 6], and
ZPL [16].

Like earlier research on task scheduling of data-parallel lan-
guages [3, 6, 24, 33, 43], we model the execution of a parallel job
as a dynamically unfolding directed acyclic graph (dag) oftasks,
where each node in the dag represents a unit-time task. An edge
represents a serial dependency between tasks. Thework T1 corre-
sponds to the total number of unit-time tasks in the dag and the
critical-path length T∞ corresponds to the length of the longest
chain of dependencies in the dag. A task becomesreadyto be exe-
cuted when all its parents have been executed. Each job has its own
task scheduler, and the task scheduler operates in an online manner,
oblivious to the future characteristics of the dynamically unfolding
dag.

Most prior work on task scheduling for multitasked jobs deals
with nonadaptivescheduling [5, 6, 10, 14, 30, 43], where the job
scheduler allots a fixed number of processors to the job for its
entire lifetime. For jobs whose parallelism is unknown in advance



and which may change during execution, this strategy may waste
processor cycles [50], because a job with low parallelism may be
allotted more processors than it can productively use. Moreover, in
a multiprogrammed environment, nonadaptive scheduling may not
allow a new job to start, because existing jobs may already be using
most of the processors.

With adaptivescheduling [1] (called “dynamic” scheduling in
many papers), the job scheduler can change the number of proces-
sors allotted to a job while the job is executing. Thus, new jobs can
enter the system, because the job scheduler can simply recruit pro-
cessors from the already executing jobs and allot them to the new
job. Unfortunately, as with a nonadaptive scheduler, this strategy
may cause waste, because a job with low parallelism may still be
allotted more processors than it can productively use.

The solution we present is an adaptive scheduling strategy
where the task scheduler providesparallelism feedbackto the job
scheduler so that when a job cannot use many processors, those
processors can be reallotted to jobs with ample need. Based on this
parallelism feedback, the job scheduler adaptively changes the al-
lotment of processors according to the availability of processors in
the current system environment and the job scheduler’s administra-
tive policy.

The question of how the job scheduler should partition the
multiprocessor among the various jobs has been studied extensively
[17, 18, 22, 23, 31, 36, 38, 39, 41, 46, 47, 55], but the administrative
policy of the job scheduler is not the focus of this paper. Instead,
we study the problem of how the task scheduler provides effective
parallelism feedback to the job scheduler without knowing the
future progress of the job, the future availability of processors, or
the administrative priorities of the job scheduler.

Various researchers [17, 18, 31, 39, 55] have used the notion of
instantaneous parallelism,1 the number of processors the job can
effectively use at the current moment, as the parallelism feedback
to the job scheduler. Although using instantaneous parallelism for
parallelism feedback is simple, it can cause gross misallocation
of processor resources [48]. For example, the parallelism of a job
may change substantially during a scheduling quantum, alternating
between parallel and serial phases. The sampling of instantaneous
parallelism at a scheduling event between quanta may lead the
task scheduler to request either too many or too few processors
depending on which phase is currently active, whereas the desirable
request might be something in between. Consequently, the job may
systematically waste processor cycles on the one hand or take too
long to complete on the other.

In this paper, we present an adaptive greedy task scheduler,
called A-GREEDY, which provides parallelism feedback. A-GREEDY
guarantees not to waste many processor cycles while simultane-
ously ensuring that the job completes quickly. Instead of using in-
stantaneous parallelism, A-GREEDY provides parallelism feedback
to the job scheduler based on a single summary statistic and the
job’s behavior on the previous quantum. Even though A-GREEDY
provides parallelism feedback using the past behavior of the job
and we do not assume that the job’s future parallelism is correlated
with its history of parallelism, our analysis shows that A-GREEDY
schedules the job well with respect to both waste and completion
time.

Our scheduling model is as follows. We assume that time is
broken into a sequence of equal-sizescheduling quanta1, 2, . . .
of lengthL, and the job scheduler is free to reallocate processors
between quanta. The quantum lengthL is a system configuration
parameter chosen to be long enough to amortize the time to real-
locate processors among the various jobs and the time to perform

1 These researchers actually use the general term “parallelism,” but we
prefer the more descriptive term.

various other bookkeeping for scheduling, including time for the
task scheduler to communicate with the job scheduler, which typi-
cally involves a system call. Between quantaq − 1 andq, the task
scheduler determines its job’sdesiredq, which is the number of
processors the job wants for quantumq. The task scheduler pro-
vides the desiredq to the job scheduler as its parallelism feedback.
The job scheduler follows some processor allocation policy to de-
termine theprocessor availabilitypq, which is the number of pro-
cessors the job is entitled to get for the quantumq. To make the
task scheduler robust to different system environments and admin-
istrative policies, our analysis of A-GREEDY assumes that the job
scheduler decides the availability of processors as an adversary.

The number of processors the job receives for quantumq is
the job’s allotment aq = min {dq, pq}, which is the smaller of
its desire and the processor availability. For example, suppose that
a job requestsdq = 5 processors and the job scheduler decides
that the availability ispq = 10. Then, the job is allottedaq =
min {dq, pq} = min {5, 10} = 5 processors. If the availability is
only pq = 3, however, the job’s allotment isaq = min {5, 3} = 3.
Once a job is allotted its processors, the allotment does not change
during the quantum. Consequently, the task scheduler must do a
good job before a quantum of estimating how many processors it
will need for allL time steps of the quantum, as well as do a good
job of scheduling the tasks on the allotted processors.

In an adaptive setting where the number of processors allotted
to a job can change during execution, bothT1/P andT∞ are lower
bounds on the running time, whereP is the mean of the processor
availability during the computation. An adversarial job scheduler,
however, can prevent any thread scheduler from providing good
speedup with respect to the mean availabilityP in the worst case.
For example, if the adversary chooses a huge number of processors
for the job’s processor availability just when the job has little
instantaneous parallelism, no adaptive scheduling algorithm can
effectively utilize the available processors on that quantum.

We introduce a technique calledtrim analysis to analyze the
time bound of adaptive thread schedulers under these adversarial
conditions. From the field of statistics, trim analysis borrows the
idea of ignoring a few “outliers.” Atrimmed mean, for example, is
calculated by discarding a certain number of lowest and highest
values and then computing the mean of those that remain. For
our purposes, it suffices to trim the availability from just the high
side. For a given valueR, we define theR-high-trimmed mean
availability as the mean availability after ignoring theR steps with
the highest availability. A good thread scheduler should provide
linear speedup with respect to anR-trimmed availability, whereR
is as small as possible.

Our A-GREEDY algorithm uses a greedy scheduler [9, 14, 30],
which, when coupled with A-GREEDY’s parallelism-feedback
strategy, is provably effective. We prove that
A-GREEDY guarantees linear speedup with respect to theO(T∞ +
L lg P )-trimmed availability. Specifically, consider a job with work
T1 and critical-path lengthT∞ running on a machine withP pro-
cessors and a scheduling quantum of lengthL. A-GREEDY com-
pletes the job inO(T1/P̃ + T∞ + L lg P ) time steps, wherẽP
denotes theO(T∞ + L lg P )-trimmed availability. Thus, the job
achieves linear speed up with respect toP̃ whenT1/T∞ ≫ P̃ ,
that is, when the job’s parallelism dominates theO(T∞ + L lg P )-
trimmed availability. In addition, we prove that the total number of
processor cycles wasted by the job isO(T1), representing at most
a constant factor overhead.

The remainder of this paper is organized as follows. Section 2
presents the adaptive greedy task scheduler A-GREEDY. Section 3
provides a trim analysis for the special case of A-GREEDY when
the scheduling quantum has length1, i.e. task schedulers request
the processors from the job scheduler at each time step, and Sec-



tion 4 extends this trim analysis to the general case. Section 5 dis-
cusses how A-GREEDY can be applied to schedule data-parallel
jobs with bounded time, space, and waste. Section 6 describes re-
lated work, and Section 7 offers some concluding remarks.

2. The Adaptive Greedy Algorithm
This section presents the adaptive greedy task scheduler A-GREEDY.
Before each quantum, A-GREEDY provides parallelism feedback
to the job scheduler based on the job’s history of utilization using a
simple multiplicative-increase, multiplicative-decrease algorithm.
A-GREEDY classifies
quanta as “satisfied” versus “deprived” and “efficient” versus
“inefficient.” Of the four possibilities of classification, however,
A-GREEDY only uses three: inefficient, efficient and satisfied, and
efficient and deprived. Using this three-way classification and the
job’s desire for the previous quantum, it computes the desire for the
next quantum.

To classify a quantumq as satisfied versus deprived, A-GREEDY
compares the job’s allotmentaq with its desiredq. The quantumq
is satisfiedif aq = dq, that is, the job receives as many processors
as A-GREEDY requested on its behalf from the job scheduler. Oth-
erwise, ifaq < dq, the quantum isdeprived, because the job did
not receive as many processors as A-GREEDY requested.

Classifying a quantum as efficient versus inefficient is more
complicated. We define theusageuq of a quantumq as the amount
of work completed by the job during the quantum, which is to say,
the total number of unit-time tasks in the dag that were completed
during the quantum. The maximum possible usage for a quantumq
is Laq, whereL is the length of quanta andaq is the job’s allotment
for quantumq. A-GREEDY uses autilization parameterδ, where
0 < δ ≤ 1, as a threshold to differentiate between efficient and
inefficient quanta. Typical values forδ might be90–95%. We call
a quantumq efficient if uq ≥ δLaq, that is, the usage is at least
a δ fraction of the maximum possible usage, in which case the
job wastes few (at most(1 − δ)Laq) processor cycles. We call a
quantumq inefficient otherwise.

A-GREEDY calculates the desiredq of the current quantumq
based on the previous desiredq−1 and the three-way classification
of quantumq− 1 as inefficient, efficient and satisfied, and efficient
and deprived. The initial desire isd1 = 1. A-GREEDY uses a
responsiveness parameterρ > 1 to determine how quickly the
scheduler responds to changes in parallelism. Typical values ofρ
might range between1.2 and2.0. Figure 1 shows the pseudocode
of A-GREEDY for one quantum. The algorithm takes as input the
quantumq, the utilization parameterδ, and the responsiveness
parameterρ. Intuitively, it operates as follows:
• If quantumq − 1 was inefficient, A-GREEDY overestimated

the desire. In this case, A-GREEDY does not care whether the
quantum is satisfied or deprived, and it decreases the desire
(line 4) in quantumq.
• If quantumq − 1 was efficient and satisfied, the job effectively

utilized the processors that A-GREEDY requested on its behalf.
Thus, A-GREEDY speculates that the job can use more proces-
sors and increases the desire (line 6) in quantumq.
• If quantumq− 1 was efficient but deprived, the job used all the

processors it was allotted, but A-GREEDY had requested more
processors for the job than the job actually received from the
job scheduler. Since A-GREEDY has no evidence whether the
job could have used all the processors requested, it maintains
the same desire (line 7) in quantumq.

Remarkably, this simple algorithm provides strong guarantees on
waste and performance.

A-GREEDY(q, δ, ρ)
1 if q = 1
2 then dq ← 1 � base case
3 elseif uq−1 < Lδaq−1

4 then dq ← dq−1/ρ � inefficient
5 elseif aq−1 = dq−1

6 then dq ← ρdq−1 � efficient and satisfied
7 else dq ← dq−1 � efficient and deprived
8 Report desiredq to the job scheduler.
9 Receive allotmentaq from the job scheduler.

10 Greedily schedule onaq processors forL time steps.

Figure 1: Pseudocode for the adaptive greedy algorithm. A-GREEDY pro-
vides parallelism feedback to a job scheduler in the form of adesire for pro-
cessors. Before quantumq, A-GREEDY uses the previous quantum’s desire
dq−1, allotmentaq−1, and usageuq−1 to compute the current quantum’s
desiredq based on the utilization parameterδ and the responsiveness pa-
rameterρ.

3. Trim Analysis for Unit Quanta
This section uses a trim analysis to analyze A-GREEDY for the
special case whereL = 1, that is, where each quantum is aunit
quantum consisting of only a single time step. For unit quanta,
adaptive scheduling can be done efficiently using instantaneous
parallelism as feedback. Surprisingly, A-GREEDY’s algorithm for
desire estimation, which only uses historical information, provides
nearly as good time bounds. Moreover, as we shall see in Section 4,
these bounds can be extended to the case whenL≫ 1. In contrast,
although a task scheduler based on instantaneous parallelism can
be used for unit quanta, a straightforward extension toL ≫ 1
would require the task scheduler to know the future parallelism of
the job for allL time steps of the quantum. The analysis for unit
quanta given in this section gives intuition for the effectiveness of
A-GREEDY’s strategy for desire estimation.

For unit quanta, we shall prove that A-GREEDY with utiliza-
tion parameterδ = 1 completes a job with workT1 and critical-
path lengthT∞ in at mostT ≤ T1/P̃ + 2T∞+ logρ P + 1 time
steps, whereP is the number of processors in the machine and
P̃ is the(2T∞ + logρ P + 1)-trimmed availability. In contrast, a
greedy task scheduler that uses instantaneous parallelism as feed-
back completes the job in at mostT ≤ T1/P̃ + T∞ time steps,
whereP̃ is theT∞-trimmed availability. Thus, even without up-to-
date information on instantaneous parallelism, A-GREEDY oper-
ates nearly as efficiently. Moreover, the total number of processor
cycles wasted by A-GREEDY in the course of the computation is
bounded byρT1. (Instantaneous parallelism wastes none.)

To prove the completion-time bounds, we use a trim analysis.
We label each quantum as eitheraccountedor deductible. Ac-
counted quanta are those whereuq = pq, that is, the usage equals
the processor availability. The deductible quanta are those where
uq < pq. Our trim analysis will show that when we ignore the rela-
tively few deductible quanta, we obtain linear speedup on the more
numerous accounted quanta.

We first relate the labeling of accounted and deductible to the
three-way classification of quanta as inefficient, efficient and satis-
fied, and efficient and deprived.

Inefficient: In an inefficient quantumq, we haveuq < aq ≤
pq, that is, the job uses fewer processors than it was allotted,
and therefore it uses fewer processors than those available. Thus,
inefficient quanta are deductible quanta, irrespective of whether
they were satisfied or deprived.



Efficient and satisfied: On an efficient quantumq, we haveuq =
aq. Sinceaq = min {pq, dq} by definition, on a satisfied quantum,
we haveaq = dq ≤ pq. Thus, we haveuq ≤ pq. Since we cannot
guarantee thatuq = pq, we assume pessimistically that quantumq
is deductible.

Efficient and deprived: As before, on an efficient quantumq, we
haveuq = aq. On a deprived quantum, we have by definition that
aq < dq, and sinceaq = min {pq, dq}, we haveaq = pq. Thus,
we haveuq = aq = pq, and quantumq is accounted.

Time Analysis

We prove the completion time bound of A-GREEDY by bounding
the number of deductible and accounted quanta separately. We
use a potential function argument to prove that the number of
deductible quanta is at most2T∞ + logρ P + 1. We then show
that the number of accounted quanta is at mostT1/PA, where
T1 is the total work and̃P and PA is the mean availability on
accounted quanta. Thus, the total time to complete the job is at most
T1/PA + 2T∞ + logρ P + 1, which is the sum of the number of
accounted and deductible quanta, since each quantum consists of
a single time step. Finally, we show thatPA ≥ P̃ , whereP̃ is
the (2T∞ + L logρ P + 1)-trimmed availability, which yields the
desired result.

Our analysis uses a characterization of greedy scheduling based
on whether the job uses all its allotted processors on a given step.
We define a step to becompleteif the job uses all the allotted
processors in the step andincompleteif the job does not use all
the available processors. In the special case of A-GREEDY with
unit quanta, an inefficient quantum consists of a single incomplete
step and an efficient quantum consists of a single complete step.
The following lemma from the literature [7, 10, 19] shows that
whenever a greedy scheduler (including A-GREEDY) schedules an
incomplete step, the job makes progress on its critical path.

LEMMA 1. Any greedy scheduler reduces the length of a job’s
remaining critical path by1 after every incomplete step.

We next bound the maximum desire during the course of the
computation.

LEMMA 2. Suppose thatA-GREEDY schedules a job on a machine
with P processors. Ifρ is A-GREEDY’s responsiveness parameter,
then for every quantumq, the job’s desire satisfiesdq ≤ ρP .

Proof. We use induction on the number of quanta. The base case
d1 = 1 holds trivially. If a given quantumq − 1 was inefficient,
the desiredq decreases, and thusdq < dq−1 ≤ ρP by induction.
If quantumq − 1 was efficient and satisfied, thendq = ρdq−1 =
ρaq−1 ≤ ρP . If quantumq − 1 was efficient and deprived, then
dq = dq−1 ≤ ρP by induction.

The deductible quanta for A-GREEDY are either inefficient or
efficient and satisfied. The next lemma bounds their number.

LEMMA 3. Suppose thatA-GREEDY schedules a job with critical-
path lengthT∞ on a machine withP processors. Ifρ is A-GREEDY’s
responsiveness parameter,δ = 1 is its utilization parameter, and
L = 1 is the quantum length, then the schedule produces at most
2T∞ + logρ P + 1 deductible quanta.

Proof. We use a potential-function argument based on the job’s
desiredq before quantumq. Define the potential before quantumq
to be

Φ(q) = 2T q
∞ − logρ dq ,

whereT q
∞ denotes the length of the remaining critical path before

quantumq is executed, that is, the length of the longest path in the
unexecuted dag. The initial potential is

Φ(1) = 2T∞ − logρ d1

= 2T∞ ,

since the desire in the first quantum isd1 = 1. If the job executes
for Q quanta, the final potential is

Φ(Q + 1) = 2T Q+1
∞ − logρ dQ+1

≥ 0− logρ(ρP )

= − logρ P − 1 ,

by Lemma 2. Since the potential starts at2T∞ and is at least
− logρ P − 1 at the end of the computation, the total decrease of
the potential isΦ(1)− Φ(Q + 1) ≤ 2T∞ + logρ P + 1.

We now compute the decrease in potential during each quantum
based on the three-way classification. Each case will use the fact
that the decrease in potential during any quantumq is

∆Φ = Φ(q)− Φ(q + 1)

= (2T q
∞ − logρ dq)− (2T q+1

∞ − logρ dq+1)

= 2(T q
∞ − T q+1

∞ )− (logρ dq − logρ dq+1) .

Inefficient: An inefficient quantumq consists of a single incom-
plete step. After an incomplete step, the length of the remain-
ing critical path reduces by1 (Lemma 1). Moreover, we have
dq+1 = dq/ρ, since A-GREEDY reduces the desire after an inef-
ficient quantum. Thus, the decrease in potential after an inefficient
quantum is

∆Φ = 2(T q
∞ − T q+1

∞ )− (logρ dq − logρ dq+1)

= 2 (T q
∞ − (T q

∞ − 1))−
(
logρ dq − logρ(dq/ρ)

)

= 2(1)− (1)

= 1 .

Efficient and satisfied: A-GREEDY increases the desire after ev-
ery efficient and satisfied quantum (dq+1 = ρdq). The remaining
critical-path length never increases. Thus, the decrease in potential
is

∆Φ = 2(T q
∞ − T q+1

∞ )− (logρ dq − logρ dq+1)

≥ 0−
(
logρ dq − logρ(ρdq)

)

= 1 .

Efficient and deprived: After efficient and satisfied quanta,
A-GREEDY maintains the previous desire (dq+1 = dq), and, as
before, the critical-path length never increases. Thus, the decrease
in potential is

∆Φ = 2(T q
∞ − T q+1

∞ )− (logρ dq − logρ dq+1)

≥ 0 .

Thus, the potential never increases, and it decreases by at least
1 after every deductible quantum. Thus, the number of deductible
quanta is at most2T∞ +logρ P +1, the total decrease in potential.

We now bound the number of accounted quanta.

LEMMA 4. Suppose thatA-GREEDYschedules a job with workT1.
If δ = 1 is A-GREEDY’s utilization parameter andL = 1 is the
quantum length, then the schedule produces at mostT1/PA ac-
counted quanta, wherePA is the mean availability on accounted
quanta.

Proof. Let A be the set of accounted quanta, andD be the set
of deductible quanta. The mean availability on accounted quanta is
PA = (1/ |A|)

∑
q∈A

pq. The total number of tasks executed over
the course of the computation isT1 =

∑
q∈A∪D

uq, since each
of theT1 tasks is executed exactly once in either an accounted or



a deductible quantum. Since accounted quanta are those for which
uq = pq, we have

T1 =
∑

q∈A∪D

uq

≥
∑

q∈A

uq

=
∑

q∈A

pq

= |A|PA

Thus, the number of accounted quanta is|A| ≤ T1/PA.
We can now bound the completion time of a job scheduled by

A-GREEDY with unit quanta.

THEOREM 5. Suppose thatA-GREEDY schedules a job with work
T1 and critical-path lengthT∞ on a machine withP processors. If
ρ is A-GREEDY’s responsiveness parameter,δ = 1 is its utilization
parameter, andL = 1 is the quantum length, thenA-GREEDY
completes the job in

T ≤ T1/P̃ + 2T∞ + logρ P + 1

time steps, wherẽP is the(2T∞+logρ P +1)-trimmed availability.

Proof. The proof is a trim analysis. LetA be the set of accounted
quanta, andD be the set of deductible quanta. Lemma 3 shows that
there are|D| ≤ 2T∞ + L lg P + 1 deductible time steps, since
each quantum consists of a single time step. We havePA ≥ P̃ ,
since the mean availability on the accounted time steps (we trim
the|D| deductible steps) must be at least the(2T∞ + L lg P + 1)-
trimmed availability (we trim the2T∞ +L lg P +1 steps that have
the highest availability). From Lemma 4, the number of accounted
quanta is|A| ≤ T1/PA ≤ T1/P̃ , and sinceT = L(|A| + |D|),
the desired time bound follows.

Waste Analysis

We now prove the waste bound for A-GREEDY with unit quanta.
Let wq = aq − uq be the waste of quantumq. In efficient quanta,
the usage isuq = aq, and the waste iswq = 0. Therefore,
the job wastes processor cycles only on inefficient quanta. The
next theorem shows that the waste on inefficient quanta can be
amortized against the work done on efficient quanta.

THEOREM 6. Suppose thatA-GREEDY schedules a job with work
T1 on a machine. Ifρ is A-GREEDY’s responsiveness parameter,
δ = 1 is its utilization parameter, andL = 1 is the quantum length,
thenA-GREEDY wastes at mostρT1 processor cycles in the course
of its computation.

Proof. We use a potential-function argument based on the job’s
desiredq before quantumq. Define the potentialΨ(q) before quan-
tum q as

Ψ(q) = ρT q
1 +

ρ

ρ− 1
dq ,

whereT q
1 is the total number of unexecuted tasks in the computa-

tion before quantumq. Thus, the initial potential is

Ψ(1) = ρT 1
1 +

ρ

ρ− 1
d1

= ρT1 + ρ/(ρ− 1) ,

sinced1 = 1. If the job executes forQ quanta, the final potential is

Ψ(Q + 1) = ρT Q+1

1 +
ρ

ρ− 1
dQ+1

≥ 0 + ρ/(ρ− 1) ,

= ρ/(ρ− 1) ,

since the desiredq of any quantumq is at least1. Therefore the
total decrease in potential isΨ(1)−Ψ(Q + 1) ≤ ρT1.

Based on the three-way classification, we shall show that if the
waste on quantumq is wq = aq − uq, then the potential decreases
by at leastwq during the quantum. Each way will use the fact that
the decrease in potential during any quantumq is

∆Ψq = Ψ(q)−Ψ(q + 1)

=

(
ρT q

1 +
ρ

ρ− 1
dq

)
−

(
ρT q+1

1 +
ρ

ρ− 1
dq+1

)

= ρ(T q
1 − T q+1

1 ) +
ρ

ρ− 1
(dq − dq+1) .

Inefficient: For any quantumq, wq < aq, which is to say, the
number of processor cycles wasted is less than the total number of
processor cycles allotted. Since the allotment isaq ≤ dq, we have
wq < dq. After an inefficient quantumq, A-GREEDY reduces the
desire to bedq+1 = dq/ρ. Thus, the decrease in potential is

∆Ψq = ρ(T q
1 − T q+1

1 ) +
ρ

ρ− 1
(dq − dq+1)

>
ρ

ρ− 1
(dq − dq/ρ)

= dq

> wq .

Efficient and satisfied: Since no processor cycles are wasted on
any efficient quantumq, we havewq = 0 and the remaining work
reduces byuq = aq. On an efficient and satisfied quantumq, the
allotment is the same as the desire (aq = dq) and A-GREEDY
increases the desire (dq+1 = ρdq) after the quantum. Thus, the
decrease in potential is

∆Ψq = ρ(T q
1 − T q+1

1 ) +
ρ

ρ− 1
(dq − dq+1)

= ρaq +
ρ

ρ− 1
(dq − ρdq)

= ρdq − ρdq

= 0

= wq .

Efficient and deprived: On any efficient quantumq, we have
wq = 0 and the amount of remaining work reduces byuq = aq.
Since the quantumq is efficient and deprived, we havedq+1 = dq,
because A-GREEDY maintains the previous desire. Therefore, the
decrease in potential is

∆Ψ = ρ(T q
1 − T q+1

1 ) +
ρ

ρ− 1
(dq − dq+1)

= ρaq + 0

> 0

= wq .

In all three cases, if the job wasteswq processors in quantumq,
the potential decreases by at leastwq. Consequently, the total waste
during the course of the computation is at mostρT1, the total
decrease in potential.

4. Trim Analysis of the General Case
We now use a trim analysis to analyze the general case of A-GREEDY
when each scheduling quantum hasL time steps,δ is the utilization
parameter,ρ is the responsiveness parameter, andP is the number
of processors in the machine. For a job with workT1 and critical-
path lengthT∞, A-GREEDY achieves the following bounds on run-
ning time and waste, wherẽP is the(2T∞/(1−δ)+L logρ P +L)-



trimmed availability:

T ≤
T1

δP̃
+

2T∞

1− δ
+ L logρ P + L ,

W ≤
1 + ρ− δ

δ
T1 .

As in Section 3, we label each quantum as either accounted or
deductible. Recall that a quantumq of lengthL and processor avail-
ability pq has a total ofLpq processor cycles available. Accounted
quanta are those for whichuq ≥ δLpq, that is, the job uses at
least aδ fraction of all available processor cycles. The deductible
quanta are those for whichuq < Lδpq. By the same logic as in
Section 3, inefficient quanta or efficient and satisfied quanta are la-
beled deductible. Efficient and deprived quanta, on the other hand,
are labeled accounted.

Time Analysis

We bound the accounted and deductible quanta separately. We first
show how inefficient quanta affect the remaining critical path of the
job.

LEMMA 7. A-GREEDY reduces the length of a job’s remaining
critical path by at least(1 − δ)L after every inefficient quantum,
whereδ is A-GREEDY’s utilization parameter andL is the quan-
tum length.

Proof. The total number of tasks completed in an inefficient
quantumq is less thanδLaq. Therefore, there can be at mostδL
complete steps in an inefficient quantum, since on a complete step,
the job uses all the allotted processors, completingaq tasks. Since
there areL time steps in a quantum, there are at least(1 − δ)L
incomplete steps. Thus, the critical path reduces by at least(1 −
δ)L, since Lemma 1 shows that every incomplete step reduces the
critical path by1.

The next lemma bounds the number of deductible quanta.

LEMMA 8. Suppose thatA-GREEDY schedules a job with critical-
path lengthT∞ on a machine withP processors. Ifρ is A-GREEDY’s
responsiveness parameter,δ is its utilization parameter, andL is
the quantum length, then the schedule produces at most2T∞/(1−
δ)L + logρ P + 1 deductible quanta.

Proof. We use a potential-function argument as in Lemma 3.
Define the potential before quantumq as

Φ(q) = 2T q
∞/(1− δ)L− logρ dq ,

whereT q
∞ is the remaining critical path before quantumq. If the

job completes inQ quanta, the total decrease in potential is

Φ1 − ΦQ+1 =
2T∞ − 0

(1− δ)L
− (logρ 1− logρ dQ+1)

≤
2T∞

(1− δ)L
+ logρ P + 1 ,

sincedQ+1 ≤ ρP by Lemma 2.
We can compute the decrease in potential during each quan-

tum based on the three-way classification. By arguments similar
to those in Lemma 3, we can show that the potential decreases
by at least1 after every deductible quantum and that it never in-
creases. Therefore, the total number of deductible quanta is at most
2T∞/((1− δ)L) + logρ P + 1, the total decrease in potential.

We now bound the number of accounted quanta.

LEMMA 9. Suppose thatA-GREEDY schedules a job with work
T1. If δ is A-GREEDY’s utilization parameter andL is the quantum
length, then the schedule produces at mostT1/δLPA accounted
quanta, wherePA is the mean availability on accounted quanta.

Proof. Let A be the set of accounted quanta, and letD be the set
of deductible quanta. The mean availability on accounted quanta
is PA = (1/ |A|)

∑
q∈A

pq. The total number of tasks executed in
the course of the computation isT1 =

∑
q∈A∪D

uq. Since the
accounted quanta are those for whichuq ≥ δLpq, we have

T1 =
∑

q∈A∪D

uq

≥
∑

q∈A

uq

≥
∑

q∈A

δLpq

= δL |A|PA .

Therefore, the total number of accounted quanta is at most
|A| ≤ T1/δLPA.

The next theorem provides the time bound for A-GREEDY.

THEOREM 10. Suppose thatA-GREEDY schedules a job with
work T1 and critical-path lengthT∞ on a machine withP pro-
cessors. Ifρ is A-GREEDY’s responsiveness parameter,δ is its uti-
lization parameter, andL is the quantum length, thenA-GREEDY
completes the job in

T ≤ T1/δP̃ + 2T∞/(1− δ) + L logρ P + L

time steps, wherẽP is the(2T∞/(1−δ)+L logρ P +L)-trimmed
availability.

Proof. The proof is a trim analysis. LetA be the set of accounted
quanta, andD be the set of deductible quanta. Lemma 8 shows that
there are|D| ≤ 2T∞/(1 − δ)L + logρ P + 1 deductible quanta,
and hence at mostL |D| = 2T∞/(1 − δ) + L logρ P + L time
steps belong to deductible quanta. We have thatPA ≥ P̃ , since the
mean availability on the accounted time steps (we trim theL |D|
deductible steps) must be at least the(2T∞/(1− δ) + L logρ P +
L)-trimmed availability (we trim the2T∞/(1−δ)+L logρ P +L
steps that have the highest availability). From Lemma 9, the number
of accounted quanta is|A| ≤ T1/δPA ≤ T1/δP̃ , and since
T = L(|A|+ |D|), the desired time bound follows.

Waste Analysis

We now prove the waste bound for A-GREEDY.

THEOREM 11. Suppose thatA-GREEDY schedules a job with
work T1 on a machine. Ifρ is A-GREEDY’s responsiveness pa-
rameter,δ is its utilization parameter, andL is the quantum length,
thenA-GREEDY wastes at most(1 + ρ− δ)T1/δ processor cycles
in the course of its computation.

Proof. We prove the bound using a potential-function argument
similar to the one presented in Theorem 6. In this case the potential
before quantumq is defined as

Ψ(q) =
1 + ρ− δ

δ
T q

1 +
ρ

ρ− 1
Ldq ,

whereT q
1 is the total number of unexecuted tasks in the compu-

tation before quantumq and dq is the desire for quantumq. By
arguments similar to those presented in Theorem 6, one can show
that if the job wasteswq processors in quantumq, then the po-
tential decreases by at leastwq in quantumq. If the computation
completes inQ quanta, the total decrease in potential in the course
of the computation is

Ψ(1)−Ψ(Q + 1) =
1 + ρ− δ

δ
(T1 − TQ+1)



+
ρ

ρ− 1
L(d1 − dQ+1)

≤
1 + ρ− δ

δ
T1 ,

sinced1 = 1 anddQ+1 ≥ 1. Therefore, the total waste is at most
(1 + ρ− δ)T1/δ, the total decrease in potential.

We can decompose the bounds of Theorems 10 and 11 into
separate bounds for accounted and deductible quanta.

COROLLARY 12. Suppose thatA-GREEDY schedules a job with
workT1 and critical-path lengthT∞ on a machine withP proces-
sors, and suppose thatρ is A-GREEDY’s responsiveness param-
eter, δ is its utilization parameter, andL is the quantum length.
Let Ta and Td be the number of time steps in accounted and de-
ductible quanta, respectively, and letWa andWd be the waste on
accounted and deductible quanta, respectively. Then,A-GREEDY
achieves the following bounds:

Ta ≤ (1/δ)T1/P̃ ,

Td ≤ (2 min {L, 1/(1− δ)})T∞ + L logρ P + L ,

Wa ≤ (1/δ − 1)T1 ,

Wd ≤ (ρ/δ)T1 .

As can be seen from these inequalities, the bounds for accounted
quanta are stronger than those for deductible quanta. The reason
is that the job scheduler in our model is adversarial. In practice,
however, it seems unlikely that the job scheduler would actually
act as an adversary. Thus, A-GREEDY’s behavior on the deductible
quanta is likely to be much better than these worst-case bounds
predict. Moreover, since the adversary’s bad behavior is limited to
relatively few deductible quanta, we conjecture that in practice the
overall time and waste of a real scheduler based on A-GREEDY
more closely follows the bounds for accounted quanta.

5. Adaptive Data-Parallel Scheduling
In this section, we discuss a practical application of
A-GREEDY to schedule programs written in data-parallel lan-
guages, such as High Performance Fortran (HPF) [26], *Lisp [35],
C* [45], NESL [4, 6], and ZPL [16]. Indeed, data-parallel job
scheduling algorithms in the literature often model a job as a dag
of tasks [3,6,24,33,51]. Of particular interest is the work by Blel-
loch and his coauthors [3, 6, 43] which provides various nonadap-
tive task schedulers for a generalized class of data-parallel jobs,
called nesteddata-parallel jobs. Specifically, their “prioritized”
task schedulers are provably efficient with respect to both time
and space. This section applies the desire-estimation strategy of
A-GREEDY to data-parallel scheduling. In particular, A-GREEDY
can be combined with prioritized task schedulers to produce adap-
tive task schedulers that are provably efficient with respect to time,
space, and waste.

Data-parallel languages present the abstraction of operations
on vectors (or matrices), rather than on single scalar values. The
total number of vector operations corresponds to the critical-path
length of the computation, and the total number of scalar operations
corresponds to the work. The time to perform a vector operation
on a given number of processors may vary, because vectors may
have different lengths from operation to operation. The time may
also vary due to vector operations requiring different amounts of
work. For example, one vector operation might be an element-wise
addition operation, taking time proportional to the length of the
vectors, and another vector operation might be an outer-product,
taking time proportional to the product of vector lengths.

In an multiprogramming setting, several data-parallel programs
might share a single parallel machine, and the job scheduler
changes the allotment of processors to various jobs based on their
parallelism feedback and its administrative policy. A typical data-
parallel task scheduler might map the individual scalar operations
to the allotted processors before each vector operation, perhaps
using central control. The instantaneous parallelism of the job is
simply the work in the next vector operation, which is typically
known to the task scheduler, because it knows the vector lengths.
If the task scheduler can communicate with the job scheduler be-
fore every vector operation, then using instantaneous parallelism
as feedback works fine. This strategy may induce high scheduling
overheads, however, since it may not be possible to amortize com-
munication with the job scheduler over a single vector operation.
Since the task scheduler only knows the parallelism of the next
vector operation, not of subsequent ones, if the task scheduler exe-
cutes multiple vector operations in a single scheduling quantum, an
A-GREEDY-like adaptive strategy for parallelism feedback should
outperform a strategy based on instantaneous parallelism.

Blelloch, Gibbons, and Matias’s prioritized task scheduler [3],
called PDF, provides good bounds for data-parallel scheduling. The
machine model used in this work is a synchronousP -processor
EREW-PRAM [32] augmented with a “scan” primitive [28, 29].
Suppose that a job hasT1 work and a critical-path length ofT∞,
and suppose that executing the job in a serial, depth-first fashion
usesS1 space. Then, PDF completes the job in at mostO(T1/P +
T∞) time steps and requires less thanS1 + O(PT∞) space. Blel-
loch and Greiner [6] extend the PDF algorithms to schedule pro-
grams written in the nested data-parallel language NESL with only
a small increase in the running time and space.

Combining PDF with A-GREEDYproduces an algorithm A-PDF
that can schedule data-parallel jobs efficiently in an adaptive
setting. A-PDF uses the parallelism feedback mechanisms of
A-GREEDY to interact with the job scheduler. At the beginning
of each quantumq, A-PDF calculates the desiredq based on the
three-way classification of the previous quantum and reports the de-
sire to the job scheduler according to the algorithm in Figure 1. The
job scheduler allotsaq = min(pq, dq) processors to the job. Then,
A-PDF uses the prioritized depth-first-like techniques described
in [3] for task synchronization and execution onaq processors in
the quantumq. For each time step in quantumq, if there are more
thanaq processors in the ready pool, theaq ready tasks with high-
est priorities are scheduled. Otherwise, all the ready tasks in the
pool are scheduled.

The next theorem — which can be proved in a straightforward
fashion by combining our analysis of A-GREEDY with that of [3]
— bounds the time, space, and waste of A-PDF.

THEOREM 13. Suppose thatA-PDF schedules a job with workT1

and critical pathT∞ on aP -processor EREW-PRAM augmented
with a scan primitive, whereL is the quantum size,̃P is the
O(T∞ + L lg P )-trimmed availability, andS1 is the space taken
for a serial schedule. Then,A-PDF completes the job inT steps,
takesS space, and wastesW processor cycles, where

T = O(T1/P̃ + T∞ + L lg P )

S ≤ S1 + O(PT∞) ,

W = O(T1) .

Narlikar and Blelloch [43] present an asynchronous algorithm
which can be used to schedule data-parallel jobs. Their algorithm
obtains the boundsT = O(T1/P + T∞ lg P ) and S = S1 +
O(PT∞ lg P ). A-GREEDY can be combined with this scheduler



as well, producing the following bounds:

T = O(T1/P̃ + T∞ lg P + L lg P ) ,

S = S1 + O(PT∞ lg P ) ,

W = O(T1) ,

whereP̃ is theO(T∞ lg P + L lg P )-trimmed availability.

6. Related Work
This section discusses related work on adaptive scheduling of mul-
titasked jobs. Work in this area has generally centered on job sched-
ulers, some of which use “dynamic equipartitioning” as a strategy
for allotting processors to jobs. Work on adaptive task scheduling
has generally either not used parallelism feedback or been studied
only empirically.

Adaptive job schedulers have been studied empirically [36, 37,
39, 42, 53, 55] and theoretically [2, 17, 22, 23, 31, 41]. McCann,
Vaswani, and Zahorjan [39] studied many different job schedulers
and evaluated them on a set of benchmarks. They also introduced
the notion of dynamic equipartitioning, which gives each job a fair
allotment of processors, while allowing processors that cannot be
used by a job to be reallocated to other jobs. Their studies indicate
that dynamic equipartitioning may be an effective strategy for adap-
tive job scheduling. Gu [31] proved that dynamic equipartitioning
with instantaneous parallelism feedback is4-competitive with re-
spect to makespan for batched jobs with multiple phases, where the
parallelism of the job remains constant during the phase and the
phases are relatively long compared with the length of a schedul-
ing quantum. Deng and Dymond [17] proved a similar result for
mean response time for multiphase jobs regardless of their arrival
times. Song [49] proves that a randomized distributed strategy can
implement dynamic equipartitioning.

Adaptive task scheduling without parallelism feedback has been
studied in the context of multithreading, primarily by Blumofe and
his coauthors [1,11,13]. In this work, the task scheduler schedules
threads using a “work-stealing” [10, 40] strategy, but it does not
provide the feedback about the job’s parallelism to the job sched-
uler. The work in [11,13] addresses networks of workstations where
processors may fail or join and leave a computation while the job
is running, showing that work-stealing provides a good foundation
for adaptive task scheduling. In theoretical work, Arora, Blumofe,
and Plaxton [1] exhibit a work-stealing task scheduler that prov-
ably completes a job inO(T1/P + PT∞/P ) expected time, where
P is the average number of processor allotted to the job by the
job scheduler. Although they provide no bounds on waste, one can
prove that their algorithm may wasteΩ(T1 + PT∞) processor cy-
cles in an adversarial setting.

Adaptive task scheduling without parallelism feedback has also
been studied empirically in the context of data-parallel languages
[20, 21]. This work focuses on compiler and runtime support for
environments where the number of processors changes while the
program executes.

Adaptive task scheduling with parallelism feedback has been
studied empirically in [48, 49, 52]. These researchers use a job’s
history of processor utilization to provide feedback to dynamic-
equipartitioning job schedulers. These studies use different strate-
gies for parallelism feedback, and all report better system perfor-
mance with parallelism feedback than without, but it is not apparent
which strategy is superior.

7. Conclusion
We conclude with a brief discussion of trim analysis and some ob-
servations that suggest directions for future work on task schedul-
ing with parallelism feedback.

In this paper, we introduced trim analysis as a means of limit-
ing a powerful adversary, which enabling us to analyze an adaptive
scheduler with parallelism feedback. The idea of ignoring a few
outliers while calculating averages is often used in statistics to ig-
nore anomalous data points. Teachers sometimes ignore the low-
est score when computing a student’s grade, and in the Olympic
Games, the lowest and the highest scores are sometimes ignored
when judges average competitors’ scores. In theoretical computer
science, however, when an adversary is too powerful, researchers
have generally tended to resort to making statistical assumptions
about the input to render the analysis tractable. Unfortunately, sta-
tistical assumptions may not be valid in a particular real-world set-
ting. We are optimistic that trim analysis will find wider application
beyond the scheduling problems studied here to situations where
statistical methods have heretofore been employed.

A-GREEDY’s desire-estimation strategy is robust to incomplete
information, which suggests that it should work well in the con-
text of work-stealing schedulers [1, 10, 40]. Work-stealing is a
practical and provably efficient method for scheduling dynamic
multithreaded computations [8,12,27,34,44]. Since work-stealing
schedulers employ distributed control, the task scheduler has no
direct information about the instantaneous parallelism of the job.
A-GREEDY does not require perfect, up-to-date information to
compute its parallelism feedback, however, and hence it is robust
to latency in the gathering of utilization data from processors. We
are currently studying how the strategy of providing parallelism
feedback based on the history of utilization can be applied to work-
stealing schedulers.

Dynamic equipartitioning [17,31,39,55] appears to be an effec-
tive way for job schedulers to allocate processors to jobs. If task
schedulers provide parallelism feedback using instantaneous par-
allelism and parallelism rarely changes during a scheduling quan-
tum, a dynamic-equipartitioning job scheduler can optimize global
properties like makespan and average completion time [17,31]. For
many practical situations, however, a job’s parallelism does change
quickly and often, making it difficult to obtain perfect information
about parallelism. We conjecture that by coupling an A-GREEDY-
like task scheduler with a dynamic-equipartitioning job scheduler,
provably good global properties can be obtained.

We have analyzed A-GREEDY using an adversarial model for
the job scheduler. In practice, however, one would not expect the
job scheduler to behave diabolically. Thus, observed bounds on
waste and completion time may actually be smaller than the the-
oretical bounds we have proved. In particular, in this paper we
proved that the waste is at most a constant factor of the work. We
have begun empirical studies, which although preliminary, seem to
indicate that the observed constant is actually quite a bit smaller
than the theoretical bound indicates. In this paper, we also proved
that A-GREEDY achieves a linear speedup over a trimmed avail-
ability, but it seems that it should actually achieve a linear speedup
over average availability in practice. The reason is that the avail-
ability in deductible steps should rarely be orders of magnitude
higher than other steps, because the job scheduler is not a true ad-
versary. We are currently engaged in empirical studies and in im-
plementing a practical scheduler, both of which should shed light
how A-GREEDY performs in the real world.
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