Portable Checkpointing for Heterogeneous Architectures

Balkrishna Ramkumar

Dept. of Electrical and Computer Engineering

University of lowa
lowa City, TA 52242
ramkumar@eng.uiowa.edu

Phone: 319-335-5957

Abstract

Current approaches for checkpointing assume sys-
tem homogeneity, where checkpointing and recovery
are both performed on the same processor architecture
and operating system configuration. Sometimes it is
desirable or necessary to recover a failed computation
on a different processor architecture. For such situ-
ations checkpointing and recovery must be portable.
In this paper, we argue that source-to-source compi-
lation is an appropriate concept for this purpose. We
describe the compilation techniques that we developed
for the design of the c2ftc prototype. The c2ftc
compiler enables machine-independent checkpoints by
automatic generation of checkpointing and recovery
code. Sequential C programs are compiled into fault
tolerant C programs, whose checkpoints can be mi-
grated across heterogeneous networks, and restarted
on binary incompatible architectures. Experimental
results on several systems provide evidence that the
performance penalty of portable checkpointing is neg-
ligible for realistic checkpointing frequencies.

1 Introduction

Large distributed systems are inherently heteroge-
neous in nature. Even relatively small local area net-
works usually consist of a mixture of binary incompati-
ble hardware components and are operated by an even
larger variety of operating systems. Providing appli-
cation fault tolerance in such environments is a key
technical challenge, especially since it requires that
checkpointing and recovery be portable across the con-
stituent architectures and operating systems.

Obstacles to portability range from the architec-
ture over the operating system to the language level.
Architectural hazards include differences in represen-
tations of basic data types and alignments, or spe-
cialized hardware support for programming languages,
e.g. register windows of SPARC architectures, that af-
fect the stack frame layout. Differences among imple-

Volker Strumpen
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
strumpen@theory.lcs.mit.edu

Phone: 617-253-1531

mentations of operating systems, such as UNIX fla-
vors BSD/System V /Linux, surface in specific process
address space layouts and system calls. Several pro-
gramming language features are not portable. Dy-
namic memory management schemes vary from sys-
tem to system. Pointers are not portable across dif-
ferent address space layouts. Implementations of low-
level features like setjmp/longjmp and socket or pipe-
based communication mechanisms further exacerbate
the problem.

In this paper, we argue that the two key require-
ments for portable checkpoints — stack environment
portability and pointer portability — can be provided
by means of source-to-source compilation based on the
following code transformations: (1) Provide machine-
independence of the stack environment by compiling
entry points into functions that resemble computed
goto’s. The key to manipulating the program counter
and stack pointer in a portable manner is to use the
basic function call and return mechanism at the source
code level. (2) Pointers are transformed into portable,
checkpoint internal offsets. Other aspects such as data
representation conversion, and runtime support are
not covered in this article, but can be found in [9].

We have developed c2ftc, a source-to-source com-
piler that translates C programs into fault tolerant C
programs. This prototype generates code for saving
and recovering portable checkpoints to enable fault
tolerance across heterogeneous architectures. The
c2ftc compiler instruments the source program based
on potential checkpoint locations in the program spec-
ified by the programmer. These checkpoints can be
restored on binary incompatible architectures. c2ftc
maintains checkpoints in a Unwersal Checkpoint For-
mat (UCF), a machine independent format which is
customizable for any given configuration of heteroge-
neous machines by specifying basic data types includ-
ing byte order, size and alignment. Other repesenta-
tion issues such as the encoding of denormalized num-
bers can be handled by supplying architecture specific

conversion routines.

The remainder of this paper is organized as follows.
In Section 2, we describe related work in the area of
checkpointing and recovery. Section 3 describes the
benefits of the source-to-source compilation approach
to portable checkpointing. Our algorithm for check-
pointing the runtime stack in the presence of pointers
is described in some detail in Section 4. In Section b5,
we present experimental results showing that the per-
formance penalty for portability is negligible. Finally,
we discuss limitations of compiler support for portable
checkpointing in Section 6.

2 Related Work

Elnozahy et al. [2] and Plank et al. [6] have pro-
posed efficient implementation techniques to minimize
the overhead of checkpointing to few percent of the
execution time. The techniques developed in [2, 6]
rely on efficient page-based bulk copying and hard-
ware support to identify memory pages modified since
the last checkpoint. Unfortunately, these optimiza-
tions are restricted to binary compatible hardware and
operating systems. However, the remarkably low over-
head afforded by these optimizations suggests that it
is possible to achieve checkpoint portability at only
marginally higher cost.

The issue of portability across heterogeneous ar-
chitectures has been addressed in the language com-
munity [3, 4]. Languages like Java [4] provide an
interpreter-based approach to portability where the
program byte code is first “migrated” to the client
platform for local interpretation. Unfortunately, such
schemes severely compromise performance since they
run at least an order of magnitude slower than compa-
rable C programs. Another possibility is “compilation
on the fly” [3] which provides portability by compiling
the source code on the desired target machine imme-
diately prior to execution. This technique requires
the construction of a complex language environment.
Moreover, to date neither interpreter-based systems
nor compilation on the fly are explicitly designed to
support fault tolerance.

Li and Fuchs [5] were among the first to demon-
strate the use of compilers for automatically inserting
potential checkpoint locations into programs. At run-
time, heuristics are used to determine which of these
checkpoints will be activated, with the goal to mini-
mize the checkpointing overhead. This work does not
address portability.

Theimer and Hayes [10] present a recompilation-
based approach to heterogeneous process migration.
The idea to utilize compilation for that purpose is
similar to our approach. However, the compilation

technique proposed is very different. Their idea 1s to,
upon migration, translate the state of a program into
a machine independent state. Then, a migration pro-
gram 1s generated that represents the state, and can be
compiled on a target machine. When run, the machine
independent migration program recreates the process.
Rather than compiling a migration program each time
that a checkpoint is to be taken, we instrument the
original program with code that barely affects the run-
time during normal execution, avoids the overhead of
compiling a migration program, and is conceptually
much simpler.

Zhou et al. [11] describe the Mermaid system for
distributed shared memory on heterogeneous systems.
This system is not fault tolerant, but generates data
representation conversion routines automatically for
all shared memory objects. This paper provides a de-
tailed treatment on conversion. A major difference to
c2ftc is the conversion code generation for complex
data types. Wheres Mermaid uses “utility software”
to generate this code, c2ftc utilizes the information
provided by the abstract syntax tree to this end. An-
other design decision of Mermaid is to dedicate a page
of memory to a particular data type. Although the
authors defend this scheme in the context of dynam-
ically allocated shared memory, such an organization
is clearly impractical for the runtime stack, which has
to be converted too when saving a checkpoint.

Seligman and Beguelin [7] have developed check-
pointing and restart algorithms in the context of the
Dome C++ environment. Dome’s checkpointing is de-
signed for portability, but requires that the program
be written in the form of a main loop that computes
and checkpoints alternately. This obviates the need to
store the runtime stack. In contrast, our approach pro-
vides a general mechanism to save the runtime stack.

3 Source-to-Source Compilation

We argue that source-to-source compilation pro-
vides an elegant solution for portable checkpointing in
heterogeneous environments. The design of the c2ftc
compiler has shown that source-to-source compilation
solves the following three key problems:

o Preservation of program semantics: Source-to-
source code transformations guarantee that pro-
gram semantics remain invariant, because they
are target independent.

e Conversion of program data: Type information
i1s in general not available at runtime. Genera-
tion of conversion code at compile time ensures
its availability during checkpointing.

e Portable runtime support: The approach per-
mits the choice of transformations for fault tol-
erance that do not expose architecture dependen-
cies, thereby enabling portable runtime support.

Source-code level transformations can provide
portability where system-based approaches would be-
come very complex or even fail. For example, in order
to capture the state of the stack at the system level,
not only do program counter, stack pointer and other
architecture specific state need to be saved, knowl-
edge of compiler-specific behavior is also necessary.
The stack frame layout must be known in order to
associate type information with corresponding mem-
ory locations to effect conversion of data representa-
tions. Some compilers do not reserve stack space for
variables stored in registers. In such cases, a system-
based approach would also have to provide support for
saving and restoring register contents across machines
with potentially different register sets. It 1s unclear
how portability could be provided in such situations.

Source-to-source compilation also provides oppor-
tunities for additional optimizations that cannot be
exploited by system-based schemes:

e It is possible to perform live variable analysis at
compile time and reduce the amount of data that
needs to be checkpointed.

e Compile-time analysis can be used to identify po-
tential checkpoint locations in a program to the
end of reducing checkpointing overhead.

e Compile-time analysis can be used to support
garbage collection of the heap at run time before
checkpoints are taken.

However, it remains to be seen whether compile-
time analysis 1s powerful enough to reduce checkpoint-
ing overheads to the degree that page-based tech-
niques as proposed by Elnozahy el al. [2] improve
performance.

Source-to-source compilation does furthermore per-
mit the use of system-level optimizations like copy-on-
write or communication latency-hiding [8] during the
transfer of a checkpoint to stable storage. This benefit
is significant, since this transfer represents the most
time-consuming part of checkpointing, given today’s
relatively low network and disk performance.

4 Shadow Checkpointing

c2ftc applies fault tolerance transformations to the
abstract syntax tree of a C program. These transfor-
mations involve analysis, minor changes to the source
code such as moving function calls out of expressions,

and adds new code to effect portable checkpoints at
the application level.

Currently, the user must specify potential check-
point locations by inserting a call to the library func-
tion checkpoint. The frequency of checkpointing is
controlled using a timer that activates checkpointing
when the next potential checkpoint location is visited.
Then, the state of the program is pushed onto the
shadow stack, which is subsequently saved on stable
storage. The shadow stack is maintained in the Uni-
versal Checkpoint Format. On UCF-incompatible ma-
chines, data are converted on-the-fly while pushing the
state onto the shadow stack, and vice versa during re-
covery. The code for pushing and popping variables
from the shadow stack as well as for conversion is com-
piler generated.

The shadow stack essentially doubles the memory
requirement of an application. One of several op-
tions to service memory, if the DRAM cannot hold the
shadow stack, is to memory-map the shadow stack to
local disk, trading in checkpointing overhead for mem-
ory requirement. This will still be substantially faster
than transferring a large checkpoint via a network.

The Universal Checkpoint Format specifies the lay-
out of a portable checkpoint by specifying the data
representations and alignments of basic data types.
UCF 1s a flexible and adaptable format that can be
customized to a particular network by specifying byte
order, size and alignment of basic types, as well as
complex data representations such as denormalized
numbers. Typically, data representations and align-
ments of the majority of available machines in the
network should be chosen as the UCF format to min-
imize the overhead of converting data types to and
from the UCF format on UCF-incompatible systems.
In evolving networks, the UCF format can be changed
as frequently as necessary; this only requires that pro-
grams requiring checkpointing be recompiled before
execution.

Several UCF-related issues involving the conversion
of pointers into offsets, the transparent generation of
conversion code for complex data types, the handling
of function pointers, pointers from stack to heap, heap
to stack, data/bss to stack, stack to data/bss, etc., are
not presented here due to lack of space. A discussion
may be found in [9)].

4.1 Checkpointing the Stack

We begin by first considering only non-pointer vari-
ables on the runtime stack. The algorithm is then
extended in Section 4.2 to support pointer variables.

The basic approach for saving the variables on the
stack is to visit each stack frame, and save its lo-

cal variables identified at compile time.! The stack
is checkpointed by returning the active function call
sequence, thereby visiting each individual stack frame
starting from the top of the stack down to the bottom.
For each stack frame visited, the state of the local vari-
ables is pushed onto the shadow stack. The stack must
then be restored by executing the original function
call sequence again. c2ftc generates code to access
each local variable by name rather than block-copying
the stack. This eliminates problems caused by non-
portable implementations based on setjmp/longjmp
pairs, as for example used in 1ibckpt [6].

In order to preserve the program’s state while
checkpointing, none of the program’s statements may
be executed. Therefore, the program must be instru-
mented with function calls and returns to visit the
each stack frame during checkpointing without affect-
ing the semantics of normal execution. Compile time
analysis identifies function call sequences that can lead
to a potential checkpoint location. All functions that
lie in such a sequence are subject to instrumentation.

For each function requiring instrumentation, stack
growth may happen in one of two modes: normal ez-
ecution, or stack restoration. For the latter, it is nec-
essary to supply a “computed goto” at the top of the
function body that causes a jump to the next func-
tion call in the call sequence leading to the checkpoint
location. This is accomplished by c¢2ftc by insert-
ing a jump table with goto statements to each of the
function calls in the function body that can lead to a
potential checkpoint location.

Stack shrinkage may also occur in one of two modes:
normal execution, or stack saving when an activated
checkpoint location is visited. For the latter, it is nec-
essary to provide a function call wrapper that will save
variables in the current stack frame upon return from
the function call, and then cause a return from the
calling function to save its parent’s frame.

We illustrate the transformations performed by
c2ftc by means of an example. Figure 1 shows
a recursive program to compute Fibonacci numbers.
Functions main and checkpoint are provided in a li-
brary. Here, main is supplied only to clarify the func-
tion call sequence. The application consists of the
functions chkpt main, which substitutes the original
function main by renaming, and function £ib. We as-
sume that a potential checkpoint location is specified
within £ib by means of a call to function checkpoint.
c2ftc transforms function fib into the code spread
over Figures 2, 3 and 4. Function main is transformed
analogously.

The program may execute in one of four modes.

1 An optimized version would only save the live variables de-
termined by data-flow analysis.

extern int checkpoint();

main(int argc, char *argv[]) {
chkpt_main(argc, argv);

}

chkpt_main(int argc, char *argv[]) {
int n, result;

n = atoi(argv[il);
result = fib(n);
}

fib(int n) {
if (n > 2)
return (fib(n-1) + fib(n-2));
else {
checkpoint();
return 1;
¥
¥

Figure 1: Code fragment to illustrate the Shadow
Checkpoint Algorithm.

This mode of execution 1s kept in the global state vari-
able _SL_chkptmode.

Normal execution: During normal execution of the
program the execution mode is set to _SL_EXEC.
The jump table is skipped (Figure 2), and variable
_SL_callid is assigned to encode the entry point
into the function for use during the restore and
recover phases (Figure 3).

Save phase: The variables of the stack frames are
saved on the shadow stack. Value _SL_SAVE is as-
signed to _SL_chkptmode in function checkpoint
before it returns. Then, the variables of the call-
ing function are stored, and this function returns.
This process is repeated until all stack frames on
the call sequence between main and checkpoint
are popped from the runtime stack. Local vari-
ables, including _SL_callid, are saved by macro
_SL_SAVE £ib_0 given in Figure 4.

Restore phase: The runtime stack, which has been
destructed during the save phase, is reconstructed
during the restore phase by reexecuting the orig-
inal call sequence from main to checkpoint.
Value _SL_RESTORE is assigned to _SL_chkptmode
in function main. Since more than one function
call may lie on a call sequence to checkpoint,
variable _SL_callid is used to identify which call
is in the call sequence being restored, cf. Fig-
ure 3. Local variables are restored by macro
_SL_RESTORE fib_0 given in Figure 4.

Recover phase: Recovery is almost the same as the
restore phase. The only difference 1s that the vari-

int fib(int n)
{
unsigned long _SL_callid, _SL_addr;

int _SL_funO, _SL_funi;

switch (_SL_chkptmode) {
case(_SL_EXEC): break;
case (_SL_RESTORE) :
_SL_addr = s_stack.top;
_SL_RESTORE_fib_O;
_SL_CONVERT_fib_0(_SL_addr);
switch(_SL_callid) {
case(0): goto L_SL_callO;
case(1): goto L_SL_calll;
case(2): goto L_SL_call2;
}
case (_SL_RECOVER):
_SL_addr = s_stack.top;
_SL_CONVERT_fib_0(_SL_addr);
_SL_RESTORE_fib_O;
switch(_SL_callid) {
case(0): goto L_SL_callO;
case(1): goto L_SL_calll;
case(2): goto L_SL_call2;
}

Figure 2: The jump table generated at the entry of
function fib.

ables have to be converted before they can be
popped from the shadow stack, whereas during
the restore phase they need to be restored, and
then converted to be available in UCF represen-
tation on the shadow stack, cf. Figure 2. The
conversion function _SL_CONVERT £ib_0 is shown
in Figure 4.

Note that all variables on the runtime stack are ac-
cessed by name to push and pop them from the shadow
stack (Figure 4). This renders the checkpointing code
independent of differences in the organization of the
runtime stack on different machines. Once the state
of the runtime stack has been restored, the contents
of the shadow stack is part of the checkpoint, which
can be written to stable storage.

4.2 Pointers

The basic idea to provide pointer portability is
straightforward: Pointers are translated into displace-
ments within the checkpoint. The implementation of
this idea is described in the following.

We classify pointers using two orthogonal cate-
gories: their target segments and the direction de-
noting the order in which the pointer and its target
are pushed onto the shadow stack. The following tar-
get segments are common in UNIX environments, and
have to be distinguished when treating pointers since

if(£1>2){

_SL_callid = O;
L_SL_callO:

_SL_fun0 = fib(n-1);
switch (_SL_chkptmode) {
case(_SL_EXEC): break;
case(_SL_SAVE): _SL_SAVE_fib_0;
return O;

}

_SL_callid = 1;
L_SL_calll:
_SL_funl = fib(n-2);
switch (_SL_chkptmode) {
case(_SL_EXEC): break;
case(_SL_SAVE): _SL_SAVE_fib_0;

return O;
¥
return _SL_funO + _SL_funl;
¥
else {
_SL_callid = 2;
L_SL_call2:
checkpoint();

switch (_SL_chkptmode) {
case(_SL_EXEC): break;
case(_SL_SAVE): _SL_SAVE_fib_0;

return O;
¥
return 1;
¥
¥

Figure 3: The function call wrappers generated in the
body of function f£ib.

segment addresses and sizes differ from target to tar-
get. In the UCF format, all pointer displacements are
tagged to identify their target segments.

1. Stack pointer: The shadow stack offset is the
displacement between the pointer address on the
shadow stack and its target on the shadow stack.

2. Heap pointer: The shadow stack offset is cal-
culated with respect to the bottom of the heap
segment. The use of user-level memory manage-
ment ensures that this offset is target invariant.

3. Data/bss pointer: The shadow stack offset is
the displacement between the pointer address on
the shadow stack and its target on the shadow
stack.

4. Text pointer: These are function pointers or
pointers to constant character strings in C. The
latter do not require any special attention, be-
cause they will be available automatically after
recovery. Function pointers are translated into a
unique identifier assigned by the runtime system.

#define _SL_SAVE_fib_0 { \
*--((unsigned long *) s_stack.top) = _SL_callid; \

*--((int *) s_stack.top) = n; \
*—-((int *) s_stack.top) = _SL_funO; \
*—-((int *) s_stack.top) = _SL_funi; \

}

#define _SL_RESTORE_fib_0 { \
_SL_funl = *((int *) s_stack.top)++; \
_SL_funO = *((int *) s_stack.top)++; \
n = #((int *) s_stack.top)++; \
_SL_callid = #((unsigned long *) s_stack.top)++; \

¥

static __inline__ void _SL_CONVERT_fib_0(addr)

unsigned long addr;

{
_SL_conv_word(addr) ; ((int *) addr)++;
_SL_conv_word(addr) ; ((int *) addr)++;
_SL_conv_word(addr) ; ((int *) addr)++;
_SL_conv_word(addr); ((unsigned long *) addr)++;

¥

Figure 4: Compiler generated code for saving, restor-
ing and converting the variables in function £ib.

Pointers with these four targets can exist as au-
tomatic variables on the stack, dynamically allocated
variables on the heap, and as global variables in the
data/bss segment. Note that the classification of
pointers by their target segments permits the handling
of pointer casting or the use of opaque pointers (e.g.
void #*) during parameter passing.

Pointers are also classified with respect to their di-
rection relative to the order in which they are pushed
onto the shadow stack:

1. Forward pointer: The pointer is pushed onto
the shadow stack before its target object.

2. Backward pointer: The pointer is pushed onto
the shadow stack after its target object.

Call-by-reference parameters are pointers into an
ancestor frame on the runtime stack. During exe-
cution, the stack frame (callee frame) containing a
pointer passed as a parameter is always pushed onto
the runtime stack after the caller’s frame. During
the save phase, the callee frame 1s pushed onto the
shadow stack before the caller frame. Thus, all inter-
frame pointers are forward stack pointers. Intra-frame
pointers, on the other hand, may be either forward or
backward stack pointers.

4.3 Stack Pointers

Forward and backward stack pointers must be
treated differently when translating them into ma-
chine independent offsets. We consider each of them
separately.

4.3.1 Checkpointing Forward Stack Pointers

The conversion of a pointer into its portable offset,
when 1t is saved on the shadow stack, is accomplished
by introducing a temporary data structure called a
pointer stack. The pointer stack keeps track of all
pointers found on the runtime stack in order to effect
its conversion into its corresponding offset. During the
save phase, when a pointer is encountered, two actions
are taken: (a) the pointer is copied onto the shadow
stack, (b) its shadow stack address is pushed onto the
pointer stack. This is necessary, because the location
of the target on the shadow stack i1s not known yet.

During the restore phase, any object being restored
to the runtime stack may potentially be the target of
one or more pointers elsewhere on the runtime stack.
When an object o is restored from address A, on the
shadow stack, entries in the pointer stack are checked
to see if the object is a pointer target. If so, for each
such pointer on the pointer stack, the difference be-
tween the pointer’s shadow stack address and the tar-
get shadow stack address A, is computed, and stored
in the corresponding pointer stack entry.

Once the entire runtime stack has been restored,
the computed displacements in the pointer stack are
then written into the corresponding locations in the
shadow stack, thereby overwriting the pointer target
addresses with portable offsets.

extern int checkpoint();

chkpt_main() functionl(long *p)

{ {
long al[4]; p +=1;
checkpoint();
functioni(a); *p = 2;

} }

Figure 5: Code fragment illustrating the Shadow
Checkpoint Algorithm with call-by-reference; cf. Fig-
ure 6.

As an example, consider the code fragment in Fig-
ure 5 and the illustration in Figure 6. During the
save phase, the variables of functioni, in particular
pointer p, are pushed onto the shadow stack. In Fig-
ure 6, p is stored on the stack at X,, and pushed
into Xp; on the shadow stack. At this time, a pointer
to p’s address on the shadow stack X, is pushed on
the pointer stack. Next, the frame of chkpt_main is
pushed onto the shadow stack. In Figure 6, the target
address of p is the array element a[1], marked X, and
its shadow X,.

During the restore phase, the frame of chkpt_main
is restored before the frame of functioni. Before
restoring array a, the pointer stack is checked for a
reference into a on the stack. In this example, the

activation stack

shadow stack

activation stack

shadow stack

- lsave/push
stack mai n functionl
growth restore/call Xos ?
chkpt _nmai n
chkpt _mai n
offset
a[3]
a[3] a[2] l
a[2] Xs a[1] -
X a[1] a[0] Treﬂore/pop
a[0]
functionl offset
Xp
checkpoi nt Tsave/return pointer stack

Figure 6: Checkpointing the stack in the presence of
a call-by-reference.

pointer in X,, points to address X. Note that for ar-
rays it is necessary to check that X, lies within the
address range of the array a. The shadow stack offset
can be computed according to the rule

offset = pointer target address — pointer address,

where both addresses are shadow stack addresses. In
Figure 6, offset = X, — X,,. X, is retrieved from
the pointer stack.? The offset cannot be stored imme-
diately in X,,, because it holds the value of pointer
p, which is needed, when restoring the stack frame of
functionil. Once the entire stack is restored, a sweep
through the pointer stack copies the offsets into the
addresses on the shadow stack. Offset X, — X, will
overwrite the value of p in address X;.

4.3.2 Recovery of Forward Stack Pointers

Although recovery from a checkpoint is conceptu-
ally very similar to the restore phase, recovering point-
ers presents a difference. All pointer offsets have to
be transformed into virtual addresses again. Unlike
the checkpointing transformation, this reverse trans-
formation does not require a pointer stack. Figure 7
illustrates the recovery from the checkpoint in Fig-
ure 6.

Analogous to the restore phase, the shadow stack
is restored from the top to the bottom, i.e. the frame
of function chkpt_main is copied first. Note that a
shadow stack pop operation affects an entire object.
Array a is restored as a whole, not element-wise. In
order to recover forward pointers — here p to a[l] —

?Determining X requires some additional offset computa-
tion, details can be found in [9].

stack main functionl
growth restore/call Xps offset
chkpt _mai n
chkpt _nai n
offset
a[3]
a[3] |~ .- a[2]
alg) < % ar1] 1
x| aly 5 -1_alo Trm,e,pop
alo] =71
functionl
Xp ©
checkpoi nt

Figure 7: Recovery of the stack in the presence of a
call-by-reference.

the address of each object’s element on the runtime
stack is stored in its location on the shadow stack
after the value of the element has been restored on
the runtime stack; cf. broken lines in Figure 7. This
mapping 1s needed, when functioni is restored. The
frame of functioni contains the offset to a[l] in ad-
dress X,;. Recovering pointer p involves the trans-
formation of the offset into the pointer. This requires
the lookup operation: p= [Xps + [Xps]]. The pointer
can be found in the shadow stack address which is
computed according to the rule:

pointer address = shadow pointer address + offset.

This simple lookup is bought by saving the complete
mapping of the restore target addresses on the runtime
stack in the shadow stack. This expense is justified by
the fact, that recovery will be the infrequent case.

4.3.3 Backward Stack Pointers

The only backward pointers that might occur on
the stack are intra-frame pointers. The number of
backward stack pointers can be restricted to the case
where the pointer target is another pointer by choos-
ing the order in which variables are pushed on the
shadow stack appropriately. c2ftc generates save and
restore macros such that all non-pointer variables are
saved after, and restored before, pointer variables. All
pointers to non-pointer variables will then be forward
pointers. Only a pointer pointing to another pointer
may potentially be a backward stack pointer.

Checkpointing of backward pointers is illustrated
in Figure 8, where X, is a backward stack pointer
to X. To deal with backward pointers, the save al-
gorithm presented thus far is modified as follows: For

activation stack shadow stack
stack main restore/call chkpt _mai n
growth Xs _
. 7|
chkpt _mai n /// Ioffset
T %9
L —
X —
° |
) offset | O
checkpoi nt
save/return
backward pointer stack
pointer stack

Figure 8: Checkpointing in the presence of a backward
stack pointer.

each stack frame, before saving any variables on the
shadow stack, all pointer targets of backward point-
ers are saved in a data structure called the backward
pointer stack. In Figure 8, X, the pointer target of
backward stack pointer X, is pushed onto the back-
ward pointer stack.

Objects are then copied onto the shadow stack as
before. If the object is pointed to from the backward
pointer stack, i.e. it is a backward pointer target, its
address on the shadow stack is saved temporarily by
overwriting the object on the runtime stack with its
address on the shadow stack. In the example, the
value of X becomes X;. Next, when the backward
pointer in X, is saved, its shadow address X, is
pushed onto the pointer stack. Furthermore, since the
pointer can be recognized as a backward stack pointer
by comparing its target address with its own address,
the offset 1s calculated, and saved on the pointer stack.
In the example, the offset is [X,] — Xp, = X, — X,

The restore phase is the same as before except that
it requires the additional step of restoring backward
pointers from the backward pointer stack to the run-
time stack. Finally, the pointer stack offsets are trans-
ferred to the shadow stack as described earlier. Recov-
ery of backward pointers can be implemented similar-
ily to that of forward pointers. However, the pointer
stack 1s needed to store the pointer’s shadow address
until the target is visited.

The difference in the treatment of forward and
backward stack pointers is the computation of the off-
set. Whereas the offset of forward pointers is com-
puted during the restore phase, offsets of backward
pointers can be computed during the save phase, be-
cause the pointer target has been copied before the
backward pointer is visited.

5 Experimental Results

We present two experiments to evaluate the per-
formance of portable checkpoints: (1) A micro-bench-
mark measures the code instrumentation penalty, and
(2) a small application program demonstrates the
checkpointing overhead and performance in the pres-
ence of failure and recovery. For more experimental
analysis, the reader is refered to [9].

5.1 Code Instrumentation Penalty

The transformation of the Fibonacci program in
Figure 1 into the code in Figures 2, 3 and 4 results
in a good test case for the runtime overhead due to
code instrumentation. The extremely fine granular-
ity of function £ib yields a program to measure the
destruction and reconstruction of small stack frames
corresponding to the save and restore phases, when-
ever the base case of the recursion is visited.

System plain | instr. | ovh

[s] | [s] | [%]
HP9000/705 / HPUX9.0 9.0 | 34.9 | 289
HP9000/715 / HPUX9.0 2.7 | 11.1 | 301
1486DX475 / Linux 20.0 | 38.0 | 90
SPARCstationl4 / Sunosd.1 | 27.5 | 66.7 | 143
SPARCstation20 / Sunoss.3 | 5.8 | 14.5 | 150

Table 1: Overhead of code instrumentation.

Figure 1 shows measurements of £ib(35) without
storing checkpoints, but executing the save and restore
phases of the Shadow Checkpoint Algorithm. Not sur-
prisingly, code instrumentation generates substantial
overhead for the Fibonacci program. The cost of a
function call increases by a factor 2-4 depending on
the architecture. Since this example represents the
pathological case where each function call represents
an insignificant amount of computation, it provides an
empirical upper bound on the runtime penalty paid by
the instrumentation.

5.2 Heat Equation

We use a Jacobi-type iteration to solve the heat dif-
fusion problem on a 256 x 256 grid, executing 1, 000 it-
erations. Two dynamically allocated two-dimensional
double arrays are used, one to hold the temperature
values of the current iteration, the other to store the
results of the five-point-stencil computation. The ar-
rays determine the checkpoint size to be slightly larger
than 1 MByte.

A potential checkpoint location is placed within the
outer iteration loop. It is thus visited 1,000 times.

UCF compatible UCF incompatible

[S] CthS tChkpt ovh trec tchkpt ovh trec

oo 0 196.1 7 196.1 | 196.1 7 196.1
128 1 198.0 8 201.3 | 198.0 8 202.6
64 3 200.4 9 207.2 | 201.9 10 209.5
32 6 205.2 12 | 215.0 | 207.8 13 220.5
16 12 213.0 16 | 231.6 | 218.7 19 240.7
8 24 228.9 25 | 262.3 | 240.5 31 282.7
4 47 262.9 44 | 331.6 | 285.2 56 374.1
2 91 324.2 7T | 453.2 | 363.0 98 539.0
1 168 430.3 | 135 | 684.4 | 505.3 | 176 | 846.5
0 1000 | 1662.5 | 807 — 1996.5 | 990 —

runtime without instrumentation: 183.2 s

(a) IBM Thinkpad i486DX475 / Linux

Te | # of UCF compatible UCF incompatible
[S] CthS tChkpt ovh trec tchkpt ovh trec
o0 0 62.1 0 62.1 | 62.1 0 62.1
32 1 62.3 1 62.7 | 62.5 1 62.8
16 3 62.6 1 63.7 | 62.7 1 64.1
8 7 62.9 2 65.8 | 63.4 3 66.7
4 15 63.8 3 69.9 | 64.9 5 71.9
2 30 65.6 6 77.6 | 67.5 9 81.5
1 59 68.8 11 92.5 | 72.7 | 18 | 100.2
0 1000 | 173.7 | 181 — 241.0 | 290 —

runtime without instrumentation: 61.8 s

(b) Sun SPARCstation20 / Sun0S5.3 (Solaris)

Figure 9: Heat equation on two systems, storing UCF checkpoints on the local disk. 7, is the checkpoint timer
interval. Runtimes #.51,; without failures and ¢,.. in the presence of failures are given in seconds, the overhead
of checkpointing (ovh) given in per cent (¢.pgp: With respect to the runtime without instrumentation).

Figure 9 summarizes the results of our experiments
on an IBM Thinkpad 701 based on an Intel 486 DX475
processor operated by Linux, and on a Sun SPARCsta-
tion20 running SunOS 5.3, with checkpointing to local
disk. We measured the runtimes for a range of timer
intervals leading to different numbers of checkpoints
during execution, for UCF compatible and UCF in-
compatible checkpointing, and including failures and
recovery.? Measurements are denoted UCF compati-
ble, if the UCF specification matches the system archi-
tecture. For UCF incompatible checkpointing, align-
ments and conversions, involving swapping the byte
sex, are performed on the 1486 to match the format of
the SPARCstation and vice versa.

Figure 9 illustrates how often checkpoints can
be saved without affecting performance substantially.
The overhead is less than 10 %, if the checkpointing in-
terval T, larger than 32 seconds on the Thinkpad, and
larger than 1 second on the SPARCstation. Although
these values depend on the checkpoint size, they are
small compared to typical system MTBF values. Note
that the conversion penalties paid for UCF incompat-
ibility are only severe if the checkpointing frequency
is unrealistically high.

The columns labeled #,.. in Figure 9 give the min-
imum run times of the program, if one failure occurs
per checkpointing interval. This “ideal” failure situ-
ation is simulated by exiting the program just after
a checkpoint has been stored, capturing the exit sta-
tus within a shell script that immediately invokes the

3Note that code instrumentation introduces a runtime
penalty on the 1486 for T, = co, but does not affect the runtime
on the SPARCstation.

program again with the recover option enabled. Since
the program is aborted immediately after a checkpoint
is stored, no replay of lost computation i1s required.
Furthermore, the time for failure detection as well as
downtimes are (almost) zero. Since the state is re-
covered from local disk, no overhead is incurred by
transferring the checkpoint via the network.

A single recovery on a UCF compatible architec-
ture costs about 2s on the 1486, and about 0.4s on
the SPARCstation20. These numbers are dominated
by the use of the local disk as stable storage for the
checkpoint. Both systems suffer from an overhead
penalty due to data representation conversion during
recovery. The difference between the runtimes of the
recovered experiments with UCF incompatible archi-
tectures and UCF compatible architectures gives the
overhead of two conversions, one during checkpointing
and the other during recovery.

The conclusion of these experiments is that the
checkpointing overhead is negligible for reasonable
checkpointing frequencies, even when conversion into
UCF representation is required.

6 Limitations

The generation of code to save and recover portable
checkpoints by means of source-to-source compilation
is a powerful and versatile method. However, the ap-
proach has its limitations. We first identify problems
that will limit any solution for the problem of portable
checkpointing of C programs:

e Use of non-portable features in programs: If
checkpoints are to be portable, it 1s essential that

the programs being checkpointed themselves be
portable.

e Loss in floating point accuracy due to data rep-
resentation conversion: This problem can only be
addressed by conformance to standards.

e Ambiguous type information when generating
checkpointing code: If variables, for example, are
declared as integers and casted to pointers, the
checkpoint is likely to be incorrect. A similar
ambiguity arises when interpreting the value of
a union via fields of different type. This problem
would not arise in programming languages with a
strict type system.

e Functions with side effects: If a function in a call
sequence to a checkpoint causes side effects, and is
called in expressions such as if conditions, it may
not be possible to instrument such function calls
for checkpointing without changing the program
semantics. We expect the programmer to clean
up the code, if ¢2ftc detects such a situation.

The following represent c2ftc specific limitations:

e We did not address file I/O and interprocess com-
munication for c2ftc yet. We expect to provide
portability based on the approach of logging mes-
sage determinants [1], which is applicable to both
file I/O and interprocess communication.

e Qur current runtime support is targeted at Unix
dialects. There is no restriction, in principle, in
adapting it to other systems, although a perfor-
mance penalty may be incurred at runtime.

e The described approach assumes that the appli-
cation program uses the memory allocation func-
tions supplied by c2ftc, which transparently re-
place the C memory management library rou-
tines. If the application accesses allocated mem-
ory incompatible with the type information sup-
plied in the allocation request, the runtime library
will be unable to perform the saving, restoring
and conversion of heap data correctly.

7 Conclusion

We have introduced the concept of portable check-
points, and presented a source-to-source compiler ap-
proach to implement portable checkpoints for het-
erogeneous computer networks. Furthermore, we
have demonstrated that the overhead introduced by
portable checkpointing is very low when reasonable
checkpoint intervals are chosen.

The proposed compiler approach only requires that
(1) a user program be submitted to a front-end source-
to-source C compiler before compilation on the desired

target machine, and (2) a run time library be linked
to produce the final executable. It does not limit the
choice of compiler or impose any system-specific de-
mands. This makes it easy to render a large subset
of C programs robust in the presence of faults and
recoverable on any UNIX-based system.

References

[1] Alvisi L., Hoppe B., Marzullo K. Nonblock-
ing and Orphan-Free Message Logging Protocols.
In 23rd Fault Tolerant Computing Symposium,
pages 145-154, Toulouse, France, June 1993.

[2] Elnozahy E.N., Johnson D. B., Zwaenepoel W.
The performance of consistent checkpointing. In
IEEE Symposium on Reliable and Distributed
Systems, pages 39-47, October 1992.

[3] Franz M. Code Generation on the Fly: A Key to
Portable Softare. PhD thesis, Institute for Com-
puter Systems, ETH Zurich, 1994.

[4] Gosling J. The Java Language Environment.
Technical report, Sun Microsystems, Mountain

View, California, 1995. White Paper.

[5] Li C-C. J., Stewart E.M., Fuchs W.K. Compiler
Assisted Full Checkpointing. Software - Prac-
tice and Experience, 24 no. 10:871-8861, October
1994.

[6] Plank J.S., Beck M., Kingsley G., Li K. Libckpt:
Transparent Checkpointing under Unix. In Pro-
ceedings of the Useniz Winter Technical Confer-
ence, San Francisco, CA, January 1995.

[7] Seligman E., Beguelin A. High-Level Fault Tol-
erance in Distributed Programs. Technical Re-
port CMU-CS-94-223, Carnegie-Mellon Univer-
sity, December 1994.

[8] Strumpen V. Software-Based Communication
Latency Hiding for Commodity Networks. In
International Conference on Parallel Processing,

August 1996.

[9] Strumpen V., Ramkumar B. Portable Check-
pointing and Recovery in Heterogeneous Environ-
ments. Technical Report 96-6-1, Dept. of Elec-
trical and Computer Engineering, University of
Towa, June 1996.

[10] Theimer M.M., Hayes B. Heterogeneous Process
Migration by Recompilation. In Proceedings of
the 11th International Conference on Distributed
Computing Systems, pages 18-25, July 1991.

[11] Zhou S., Stumm M., Li K., Wortman D. Het-
erogeneous Distributed Shared Memory. IEEE
Transactions on Parallel and Distributed Sys-

tems, 3 no. 5:540-554, September 1992.

