
Portable Checkpointing for Heterogeneous ArchitecturesBalkrishna Ramkumar Volker StrumpenDept. of Electrical and Computer Engineering Laboratory for Computer ScienceUniversity of Iowa Massachusetts Institute of TechnologyIowa City, IA 52242 Cambridge, MA 02139ramkumar@eng.uiowa.edu strumpen@theory.lcs.mit.eduPhone: 319-335-5957 Phone: 617-253-1531AbstractCurrent approaches for checkpointing assume sys-tem homogeneity, where checkpointing and recoveryare both performed on the same processor architectureand operating system con�guration. Sometimes it isdesirable or necessary to recover a failed computationon a di�erent processor architecture. For such situ-ations checkpointing and recovery must be portable.In this paper, we argue that source-to-source compi-lation is an appropriate concept for this purpose. Wedescribe the compilation techniques that we developedfor the design of the c2ftc prototype. The c2ftccompiler enables machine-independent checkpoints byautomatic generation of checkpointing and recoverycode. Sequential C programs are compiled into faulttolerant C programs, whose checkpoints can be mi-grated across heterogeneous networks, and restartedon binary incompatible architectures. Experimentalresults on several systems provide evidence that theperformance penalty of portable checkpointing is neg-ligible for realistic checkpointing frequencies.1 IntroductionLarge distributed systems are inherently heteroge-neous in nature. Even relatively small local area net-works usually consist of a mixture of binary incompati-ble hardware components and are operated by an evenlarger variety of operating systems. Providing appli-cation fault tolerance in such environments is a keytechnical challenge, especially since it requires thatcheckpointing and recovery be portable across the con-stituent architectures and operating systems.Obstacles to portability range from the architec-ture over the operating system to the language level.Architectural hazards include di�erences in represen-tations of basic data types and alignments, or spe-cialized hardware support for programming languages,e.g. register windows of SPARC architectures, that af-fect the stack frame layout. Di�erences among imple-

mentations of operating systems, such as UNIX 
a-vors BSD/SystemV/Linux, surface in speci�c processaddress space layouts and system calls. Several pro-gramming language features are not portable. Dy-namic memory management schemes vary from sys-tem to system. Pointers are not portable across dif-ferent address space layouts. Implementations of low-level features like setjmp/longjmp and socket or pipe-based communication mechanisms further exacerbatethe problem.In this paper, we argue that the two key require-ments for portable checkpoints | stack environmentportability and pointer portability | can be providedby means of source-to-source compilation based on thefollowing code transformations: (1) Provide machine-independence of the stack environment by compilingentry points into functions that resemble computedgoto's. The key to manipulating the program counterand stack pointer in a portable manner is to use thebasic function call and return mechanism at the sourcecode level. (2) Pointers are transformed into portable,checkpoint internal o�sets. Other aspects such as datarepresentation conversion, and runtime support arenot covered in this article, but can be found in [9].We have developed c2ftc, a source-to-source com-piler that translates C programs into fault tolerant Cprograms. This prototype generates code for savingand recovering portable checkpoints to enable faulttolerance across heterogeneous architectures. Thec2ftc compiler instruments the source program basedon potential checkpoint locations in the program spec-i�ed by the programmer. These checkpoints can berestored on binary incompatible architectures. c2ftcmaintains checkpoints in a Universal Checkpoint For-mat (UCF), a machine independent format which iscustomizable for any given con�guration of heteroge-neous machines by specifying basic data types includ-ing byte order, size and alignment. Other repesenta-tion issues such as the encoding of denormalized num-bers can be handled by supplying architecture speci�c



conversion routines.The remainder of this paper is organized as follows.In Section 2, we describe related work in the area ofcheckpointing and recovery. Section 3 describes thebene�ts of the source-to-source compilation approachto portable checkpointing. Our algorithm for check-pointing the runtime stack in the presence of pointersis described in some detail in Section 4. In Section 5,we present experimental results showing that the per-formance penalty for portability is negligible. Finally,we discuss limitations of compiler support for portablecheckpointing in Section 6.2 Related WorkElnozahy et al. [2] and Plank et al. [6] have pro-posed e�cient implementation techniques to minimizethe overhead of checkpointing to few percent of theexecution time. The techniques developed in [2, 6]rely on e�cient page-based bulk copying and hard-ware support to identify memory pages modi�ed sincethe last checkpoint. Unfortunately, these optimiza-tions are restricted to binary compatible hardware andoperating systems. However, the remarkably low over-head a�orded by these optimizations suggests that itis possible to achieve checkpoint portability at onlymarginally higher cost.The issue of portability across heterogeneous ar-chitectures has been addressed in the language com-munity [3, 4]. Languages like Java [4] provide aninterpreter-based approach to portability where theprogram byte code is �rst \migrated" to the clientplatform for local interpretation. Unfortunately, suchschemes severely compromise performance since theyrun at least an order of magnitude slower than compa-rable C programs. Another possibility is \compilationon the 
y" [3] which provides portability by compilingthe source code on the desired target machine imme-diately prior to execution. This technique requiresthe construction of a complex language environment.Moreover, to date neither interpreter-based systemsnor compilation on the 
y are explicitly designed tosupport fault tolerance.Li and Fuchs [5] were among the �rst to demon-strate the use of compilers for automatically insertingpotential checkpoint locations into programs. At run-time, heuristics are used to determine which of thesecheckpoints will be activated, with the goal to mini-mize the checkpointing overhead. This work does notaddress portability.Theimer and Hayes [10] present a recompilation-based approach to heterogeneous process migration.The idea to utilize compilation for that purpose issimilar to our approach. However, the compilation

technique proposed is very di�erent. Their idea is to,upon migration, translate the state of a program intoa machine independent state. Then, a migration pro-gram is generated that represents the state, and can becompiled on a target machine. When run, the machineindependent migration program recreates the process.Rather than compiling a migration program each timethat a checkpoint is to be taken, we instrument theoriginal program with code that barely a�ects the run-time during normal execution, avoids the overhead ofcompiling a migration program, and is conceptuallymuch simpler.Zhou et al. [11] describe the Mermaid system fordistributed shared memory on heterogeneous systems.This system is not fault tolerant, but generates datarepresentation conversion routines automatically forall shared memory objects. This paper provides a de-tailed treatment on conversion. A major di�erence toc2ftc is the conversion code generation for complexdata types. Wheres Mermaid uses \utility software"to generate this code, c2ftc utilizes the informationprovided by the abstract syntax tree to this end. An-other design decision of Mermaid is to dedicate a pageof memory to a particular data type. Although theauthors defend this scheme in the context of dynam-ically allocated shared memory, such an organizationis clearly impractical for the runtime stack, which hasto be converted too when saving a checkpoint.Seligman and Beguelin [7] have developed check-pointing and restart algorithms in the context of theDome C++ environment. Dome's checkpointing is de-signed for portability, but requires that the programbe written in the form of a main loop that computesand checkpoints alternately. This obviates the need tostore the runtime stack. In contrast, our approach pro-vides a general mechanism to save the runtime stack.3 Source-to-Source CompilationWe argue that source-to-source compilation pro-vides an elegant solution for portable checkpointing inheterogeneous environments. The design of the c2ftccompiler has shown that source-to-source compilationsolves the following three key problems:� Preservation of program semantics: Source-to-source code transformations guarantee that pro-gram semantics remain invariant, because theyare target independent.� Conversion of program data: Type informationis in general not available at runtime. Genera-tion of conversion code at compile time ensuresits availability during checkpointing.



� Portable runtime support: The approach per-mits the choice of transformations for fault tol-erance that do not expose architecture dependen-cies, thereby enabling portable runtime support.Source-code level transformations can provideportability where system-based approaches would be-come very complex or even fail. For example, in orderto capture the state of the stack at the system level,not only do program counter, stack pointer and otherarchitecture speci�c state need to be saved, knowl-edge of compiler-speci�c behavior is also necessary.The stack frame layout must be known in order toassociate type information with corresponding mem-ory locations to e�ect conversion of data representa-tions. Some compilers do not reserve stack space forvariables stored in registers. In such cases, a system-based approach would also have to provide support forsaving and restoring register contents across machineswith potentially di�erent register sets. It is unclearhow portability could be provided in such situations.Source-to-source compilation also provides oppor-tunities for additional optimizations that cannot beexploited by system-based schemes:� It is possible to perform live variable analysis atcompile time and reduce the amount of data thatneeds to be checkpointed.� Compile-time analysis can be used to identify po-tential checkpoint locations in a program to theend of reducing checkpointing overhead.� Compile-time analysis can be used to supportgarbage collection of the heap at run time beforecheckpoints are taken.However, it remains to be seen whether compile-time analysis is powerful enough to reduce checkpoint-ing overheads to the degree that page-based tech-niques as proposed by Elnozahy et al. [2] improveperformance.Source-to-source compilation does furthermore per-mit the use of system-level optimizations like copy-on-write or communication latency-hiding [8] during thetransfer of a checkpoint to stable storage. This bene�tis signi�cant, since this transfer represents the mosttime-consuming part of checkpointing, given today'srelatively low network and disk performance.4 Shadow Checkpointingc2ftc applies fault tolerance transformations to theabstract syntax tree of a C program. These transfor-mations involve analysis, minor changes to the sourcecode such as moving function calls out of expressions,

and adds new code to e�ect portable checkpoints atthe application level.Currently, the user must specify potential check-point locations by inserting a call to the library func-tion checkpoint. The frequency of checkpointing iscontrolled using a timer that activates checkpointingwhen the next potential checkpoint location is visited.Then, the state of the program is pushed onto theshadow stack , which is subsequently saved on stablestorage. The shadow stack is maintained in the Uni-versal Checkpoint Format. On UCF-incompatible ma-chines, data are converted on-the-
y while pushing thestate onto the shadow stack, and vice versa during re-covery. The code for pushing and popping variablesfrom the shadow stack as well as for conversion is com-piler generated.The shadow stack essentially doubles the memoryrequirement of an application. One of several op-tions to service memory, if the DRAM cannot hold theshadow stack, is to memory-map the shadow stack tolocal disk, trading in checkpointing overhead for mem-ory requirement. This will still be substantially fasterthan transferring a large checkpoint via a network.The Universal Checkpoint Format speci�es the lay-out of a portable checkpoint by specifying the datarepresentations and alignments of basic data types.UCF is a 
exible and adaptable format that can becustomized to a particular network by specifying byteorder, size and alignment of basic types, as well ascomplex data representations such as denormalizednumbers. Typically, data representations and align-ments of the majority of available machines in thenetwork should be chosen as the UCF format to min-imize the overhead of converting data types to andfrom the UCF format on UCF-incompatible systems.In evolving networks, the UCF format can be changedas frequently as necessary; this only requires that pro-grams requiring checkpointing be recompiled beforeexecution.Several UCF-related issues involving the conversionof pointers into o�sets, the transparent generation ofconversion code for complex data types, the handlingof function pointers, pointers from stack to heap, heapto stack, data/bss to stack, stack to data/bss, etc., arenot presented here due to lack of space. A discussionmay be found in [9].4.1 Checkpointing the StackWe begin by �rst considering only non-pointer vari-ables on the runtime stack. The algorithm is thenextended in Section 4.2 to support pointer variables.The basic approach for saving the variables on thestack is to visit each stack frame, and save its lo-



cal variables identi�ed at compile time.1 The stackis checkpointed by returning the active function callsequence, thereby visiting each individual stack framestarting from the top of the stack down to the bottom.For each stack frame visited, the state of the local vari-ables is pushed onto the shadow stack. The stack mustthen be restored by executing the original functioncall sequence again. c2ftc generates code to accesseach local variable by name rather than block-copyingthe stack. This eliminates problems caused by non-portable implementations based on setjmp/longjmppairs, as for example used in libckpt [6].In order to preserve the program's state whilecheckpointing, none of the program's statements maybe executed. Therefore, the program must be instru-mented with function calls and returns to visit theeach stack frame during checkpointing without a�ect-ing the semantics of normal execution. Compile timeanalysis identi�es function call sequences that can leadto a potential checkpoint location. All functions thatlie in such a sequence are subject to instrumentation.For each function requiring instrumentation, stackgrowth may happen in one of two modes: normal ex-ecution, or stack restoration. For the latter, it is nec-essary to supply a \computed goto" at the top of thefunction body that causes a jump to the next func-tion call in the call sequence leading to the checkpointlocation. This is accomplished by c2ftc by insert-ing a jump table with goto statements to each of thefunction calls in the function body that can lead to apotential checkpoint location.Stack shrinkage may also occur in one of two modes:normal execution, or stack saving when an activatedcheckpoint location is visited. For the latter, it is nec-essary to provide a function call wrapper that will savevariables in the current stack frame upon return fromthe function call, and then cause a return from thecalling function to save its parent's frame.We illustrate the transformations performed byc2ftc by means of an example. Figure 1 showsa recursive program to compute Fibonacci numbers.Functions main and checkpoint are provided in a li-brary. Here, main is supplied only to clarify the func-tion call sequence. The application consists of thefunctions chkpt main, which substitutes the originalfunction main by renaming, and function fib. We as-sume that a potential checkpoint location is speci�edwithin fib by means of a call to function checkpoint.c2ftc transforms function fib into the code spreadover Figures 2, 3 and 4. Function main is transformedanalogously.The program may execute in one of four modes.1An optimized version would only save the live variables de-termined by data-
ow analysis.

extern int checkpoint();main(int argc, char *argv[]) {chkpt_main(argc, argv);}chkpt_main(int argc, char *argv[]) {int n, result;n = atoi(argv[1]);result = fib(n);}fib(int n) {if (n > 2)return (fib(n-1) + fib(n-2));else {checkpoint();return 1;}}Figure 1: Code fragment to illustrate the ShadowCheckpoint Algorithm.This mode of execution is kept in the global state vari-able SL chkptmode.Normal execution: During normal execution of theprogram the execution mode is set to SL EXEC.The jump table is skipped (Figure 2), and variableSL callid is assigned to encode the entry pointinto the function for use during the restore andrecover phases (Figure 3).Save phase: The variables of the stack frames aresaved on the shadow stack. Value SL SAVE is as-signed to SL chkptmode in function checkpointbefore it returns. Then, the variables of the call-ing function are stored, and this function returns.This process is repeated until all stack frames onthe call sequence between main and checkpointare popped from the runtime stack. Local vari-ables, including SL callid, are saved by macroSL SAVE fib 0 given in Figure 4.Restore phase: The runtime stack, which has beendestructed during the save phase, is reconstructedduring the restore phase by reexecuting the orig-inal call sequence from main to checkpoint.Value SL RESTORE is assigned to SL chkptmodein function main. Since more than one functioncall may lie on a call sequence to checkpoint,variable SL callid is used to identify which callis in the call sequence being restored, cf. Fig-ure 3. Local variables are restored by macroSL RESTORE fib 0 given in Figure 4.Recover phase: Recovery is almost the same as therestore phase. The only di�erence is that the vari-



int fib(int n){ unsigned long _SL_callid, _SL_addr;int _SL_fun0, _SL_fun1;switch (_SL_chkptmode) {case(_SL_EXEC): break;case(_SL_RESTORE):_SL_addr = s_stack.top;_SL_RESTORE_fib_0;_SL_CONVERT_fib_0(_SL_addr);switch(_SL_callid) {case(0): goto L_SL_call0;case(1): goto L_SL_call1;case(2): goto L_SL_call2;}case(_SL_RECOVER):_SL_addr = s_stack.top;_SL_CONVERT_fib_0(_SL_addr);_SL_RESTORE_fib_0;switch(_SL_callid) {case(0): goto L_SL_call0;case(1): goto L_SL_call1;case(2): goto L_SL_call2;}} ::Figure 2: The jump table generated at the entry offunction fib.ables have to be converted before they can bepopped from the shadow stack, whereas duringthe restore phase they need to be restored, andthen converted to be available in UCF represen-tation on the shadow stack, cf. Figure 2. Theconversion function SL CONVERT fib 0 is shownin Figure 4.Note that all variables on the runtime stack are ac-cessed by name to push and pop them from the shadowstack (Figure 4). This renders the checkpointing codeindependent of di�erences in the organization of theruntime stack on di�erent machines. Once the stateof the runtime stack has been restored, the contentsof the shadow stack is part of the checkpoint, whichcan be written to stable storage.4.2 PointersThe basic idea to provide pointer portability isstraightforward: Pointers are translated into displace-ments within the checkpoint. The implementation ofthis idea is described in the following.We classify pointers using two orthogonal cate-gories: their target segments and the direction de-noting the order in which the pointer and its targetare pushed onto the shadow stack. The following tar-get segments are common in UNIX environments, andhave to be distinguished when treating pointers since

::if (n > 2) {_SL_callid = 0;L_SL_call0:_SL_fun0 = fib(n-1);switch (_SL_chkptmode) {case(_SL_EXEC): break;case(_SL_SAVE): _SL_SAVE_fib_0;return 0;}_SL_callid = 1;L_SL_call1:_SL_fun1 = fib(n-2);switch (_SL_chkptmode) {case(_SL_EXEC): break;case(_SL_SAVE): _SL_SAVE_fib_0;return 0;}return _SL_fun0 + _SL_fun1;}else {_SL_callid = 2;L_SL_call2:checkpoint();switch (_SL_chkptmode) {case(_SL_EXEC): break;case(_SL_SAVE): _SL_SAVE_fib_0;return 0;}return 1;}}Figure 3: The function call wrappers generated in thebody of function fib.segment addresses and sizes di�er from target to tar-get. In the UCF format, all pointer displacements aretagged to identify their target segments.1. Stack pointer: The shadow stack o�set is thedisplacement between the pointer address on theshadow stack and its target on the shadow stack.2. Heap pointer: The shadow stack o�set is cal-culated with respect to the bottom of the heapsegment. The use of user-level memory manage-ment ensures that this o�set is target invariant.3. Data/bss pointer: The shadow stack o�set isthe displacement between the pointer address onthe shadow stack and its target on the shadowstack.4. Text pointer: These are function pointers orpointers to constant character strings in C. Thelatter do not require any special attention, be-cause they will be available automatically afterrecovery. Function pointers are translated into aunique identi�er assigned by the runtime system.



#define _SL_SAVE_fib_0 { \*--((unsigned long *) s_stack.top) = _SL_callid; \*--((int *) s_stack.top) = n; \*--((int *) s_stack.top) = _SL_fun0; \*--((int *) s_stack.top) = _SL_fun1; \}#define _SL_RESTORE_fib_0 { \_SL_fun1 = *((int *) s_stack.top)++; \_SL_fun0 = *((int *) s_stack.top)++; \n = *((int *) s_stack.top)++; \_SL_callid = *((unsigned long *) s_stack.top)++; \}static __inline__ void _SL_CONVERT_fib_0(addr)unsigned long addr;{ _SL_conv_word(addr); ((int *) addr)++;_SL_conv_word(addr); ((int *) addr)++;_SL_conv_word(addr); ((int *) addr)++;_SL_conv_word(addr); ((unsigned long *) addr)++;}Figure 4: Compiler generated code for saving, restor-ing and converting the variables in function fib.Pointers with these four targets can exist as au-tomatic variables on the stack, dynamically allocatedvariables on the heap, and as global variables in thedata/bss segment. Note that the classi�cation ofpointers by their target segments permits the handlingof pointer casting or the use of opaque pointers (e.g.void *) during parameter passing.Pointers are also classi�ed with respect to their di-rection relative to the order in which they are pushedonto the shadow stack:1. Forward pointer: The pointer is pushed ontothe shadow stack before its target object.2. Backward pointer: The pointer is pushed ontothe shadow stack after its target object.Call-by-reference parameters are pointers into anancestor frame on the runtime stack. During exe-cution, the stack frame (callee frame) containing apointer passed as a parameter is always pushed ontothe runtime stack after the caller's frame. Duringthe save phase, the callee frame is pushed onto theshadow stack before the caller frame. Thus, all inter-frame pointers are forward stack pointers. Intra-framepointers, on the other hand, may be either forward orbackward stack pointers.4.3 Stack PointersForward and backward stack pointers must betreated di�erently when translating them into ma-chine independent o�sets. We consider each of themseparately.

4.3.1 Checkpointing Forward Stack PointersThe conversion of a pointer into its portable o�set,when it is saved on the shadow stack, is accomplishedby introducing a temporary data structure called apointer stack. The pointer stack keeps track of allpointers found on the runtime stack in order to e�ectits conversion into its corresponding o�set. During thesave phase, when a pointer is encountered, two actionsare taken: (a) the pointer is copied onto the shadowstack, (b) its shadow stack address is pushed onto thepointer stack. This is necessary, because the locationof the target on the shadow stack is not known yet.During the restore phase, any object being restoredto the runtime stack may potentially be the target ofone or more pointers elsewhere on the runtime stack.When an object o is restored from address Ao on theshadow stack, entries in the pointer stack are checkedto see if the object is a pointer target. If so, for eachsuch pointer on the pointer stack, the di�erence be-tween the pointer's shadow stack address and the tar-get shadow stack address Ao is computed, and storedin the corresponding pointer stack entry.Once the entire runtime stack has been restored,the computed displacements in the pointer stack arethen written into the corresponding locations in theshadow stack, thereby overwriting the pointer targetaddresses with portable o�sets.extern int checkpoint();chkpt_main() function1(long *p){ {long a[4]; p += 1;checkpoint();function1(a); *p = 2;} }Figure 5: Code fragment illustrating the ShadowCheckpoint Algorithm with call-by-reference; cf. Fig-ure 6.As an example, consider the code fragment in Fig-ure 5 and the illustration in Figure 6. During thesave phase, the variables of function1, in particularpointer p, are pushed onto the shadow stack. In Fig-ure 6, p is stored on the stack at Xp, and pushedinto Xps on the shadow stack. At this time, a pointerto p's address on the shadow stack Xps is pushed onthe pointer stack. Next, the frame of chkpt_main ispushed onto the shadow stack. In Figure 6, the targetaddress of p is the array element a[1], markedX, andits shadow Xs.During the restore phase, the frame of chkpt_mainis restored before the frame of function1. Beforerestoring array a, the pointer stack is checked for areference into a on the stack. In this example, the
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5 Experimental ResultsWe present two experiments to evaluate the per-formance of portable checkpoints: (1) A micro-bench-mark measures the code instrumentation penalty, and(2) a small application program demonstrates thecheckpointing overhead and performance in the pres-ence of failure and recovery. For more experimentalanalysis, the reader is refered to [9].5.1 Code Instrumentation PenaltyThe transformation of the Fibonacci program inFigure 1 into the code in Figures 2, 3 and 4 resultsin a good test case for the runtime overhead due tocode instrumentation. The extremely �ne granular-ity of function fib yields a program to measure thedestruction and reconstruction of small stack framescorresponding to the save and restore phases, when-ever the base case of the recursion is visited.System plain instr. ovh[s] [s] [%]HP9000/705 / HPUX9.0 9.0 34.9 289HP9000/715 / HPUX9.0 2.7 11.1 301i486DX475 / Linux 20.0 38.0 90SPARCstation1+ / Sunos4.1 27.5 66.7 143SPARCstation20 / Sunos5.3 5.8 14.5 150Table 1: Overhead of code instrumentation.Figure 1 shows measurements of fib(35) withoutstoring checkpoints, but executing the save and restorephases of the Shadow Checkpoint Algorithm. Not sur-prisingly, code instrumentation generates substantialoverhead for the Fibonacci program. The cost of afunction call increases by a factor 2{4 depending onthe architecture. Since this example represents thepathological case where each function call representsan insigni�cant amount of computation, it provides anempirical upper bound on the runtime penalty paid bythe instrumentation.5.2 Heat EquationWe use a Jacobi-type iteration to solve the heat dif-fusion problem on a 256�256 grid, executing 1; 000 it-erations. Two dynamically allocated two-dimensionaldouble arrays are used, one to hold the temperaturevalues of the current iteration, the other to store theresults of the �ve-point-stencil computation. The ar-rays determine the checkpoint size to be slightly largerthan 1MByte.A potential checkpoint location is placed within theouter iteration loop. It is thus visited 1; 000 times.



Tc # of UCF compatible UCF incompatible[s] ckpts tchkpt ovh trec tchkpt ovh trec1 0 196.1 7 196.1 196.1 7 196.1128 1 198.0 8 201.3 198.0 8 202.664 3 200.4 9 207.2 201.9 10 209.532 6 205.2 12 215.0 207.8 13 220.516 12 213.0 16 231.6 218.7 19 240.78 24 228.9 25 262.3 240.5 31 282.74 47 262.9 44 331.6 285.2 56 374.12 91 324.2 77 453.2 363.0 98 539.01 168 430.3 135 684.4 505.3 176 846.50 1000 1662.5 807 | 1996.5 990 |runtime without instrumentation: 183.2 s
Tc # of UCF compatible UCF incompatible[s] ckpts tchkpt ovh trec tchkpt ovh trec1 0 62.1 0 62.1 62.1 0 62.132 1 62.3 1 62.7 62.5 1 62.816 3 62.6 1 63.7 62.7 1 64.18 7 62.9 2 65.8 63.4 3 66.74 15 63.8 3 69.9 64.9 5 71.92 30 65.6 6 77.6 67.5 9 81.51 59 68.8 11 92.5 72.7 18 100.20 1000 173.7 181 | 241.0 290 |runtime without instrumentation: 61.8 s(a) IBM Thinkpad i486DX475 / Linux (b) Sun SPARCstation20 / SunOS5.3 (Solaris)Figure 9: Heat equation on two systems, storing UCF checkpoints on the local disk. Tc is the checkpoint timerinterval. Runtimes tchkpt without failures and trec in the presence of failures are given in seconds, the overheadof checkpointing (ovh) given in per cent (tchkpt with respect to the runtime without instrumentation).Figure 9 summarizes the results of our experimentson an IBM Thinkpad 701 based on an Intel 486DX475processor operated by Linux, and on a Sun SPARCsta-tion20 running SunOS 5.3, with checkpointing to localdisk. We measured the runtimes for a range of timerintervals leading to di�erent numbers of checkpointsduring execution, for UCF compatible and UCF in-compatible checkpointing, and including failures andrecovery.3 Measurements are denoted UCF compati-ble, if the UCF speci�cation matches the system archi-tecture. For UCF incompatible checkpointing, align-ments and conversions, involving swapping the bytesex, are performed on the i486 to match the format ofthe SPARCstation and vice versa.Figure 9 illustrates how often checkpoints canbe saved without a�ecting performance substantially.The overhead is less than 10%, if the checkpointing in-terval Tc larger than 32 seconds on the Thinkpad, andlarger than 1 second on the SPARCstation. Althoughthese values depend on the checkpoint size, they aresmall compared to typical system MTBF values. Notethat the conversion penalties paid for UCF incompat-ibility are only severe if the checkpointing frequencyis unrealistically high.The columns labeled trec in Figure 9 give the min-imum run times of the program, if one failure occursper checkpointing interval. This \ideal" failure situ-ation is simulated by exiting the program just aftera checkpoint has been stored, capturing the exit sta-tus within a shell script that immediately invokes the3Note that code instrumentation introduces a runtimepenalty on the i486 for Tc =1, but does not a�ect the runtimeon the SPARCstation.

program again with the recover option enabled. Sincethe program is aborted immediately after a checkpointis stored, no replay of lost computation is required.Furthermore, the time for failure detection as well asdowntimes are (almost) zero. Since the state is re-covered from local disk, no overhead is incurred bytransferring the checkpoint via the network.A single recovery on a UCF compatible architec-ture costs about 2 s on the i486, and about 0:4 s onthe SPARCstation20. These numbers are dominatedby the use of the local disk as stable storage for thecheckpoint. Both systems su�er from an overheadpenalty due to data representation conversion duringrecovery. The di�erence between the runtimes of therecovered experiments with UCF incompatible archi-tectures and UCF compatible architectures gives theoverhead of two conversions, one during checkpointingand the other during recovery.The conclusion of these experiments is that thecheckpointing overhead is negligible for reasonablecheckpointing frequencies, even when conversion intoUCF representation is required.6 LimitationsThe generation of code to save and recover portablecheckpoints by means of source-to-source compilationis a powerful and versatile method. However, the ap-proach has its limitations. We �rst identify problemsthat will limit any solution for the problem of portablecheckpointing of C programs:� Use of non-portable features in programs: Ifcheckpoints are to be portable, it is essential that



the programs being checkpointed themselves beportable.� Loss in 
oating point accuracy due to data rep-resentation conversion: This problem can only beaddressed by conformance to standards.� Ambiguous type information when generatingcheckpointing code: If variables, for example, aredeclared as integers and casted to pointers, thecheckpoint is likely to be incorrect. A similarambiguity arises when interpreting the value ofa union via �elds of di�erent type. This problemwould not arise in programming languages with astrict type system.� Functions with side e�ects: If a function in a callsequence to a checkpoint causes side e�ects, and iscalled in expressions such as if conditions, it maynot be possible to instrument such function callsfor checkpointing without changing the programsemantics. We expect the programmer to cleanup the code, if c2ftc detects such a situation.The following represent c2ftc speci�c limitations:� We did not address �le I/O and interprocess com-munication for c2ftc yet. We expect to provideportability based on the approach of loggingmes-sage determinants [1], which is applicable to both�le I/O and interprocess communication.� Our current runtime support is targeted at Unixdialects. There is no restriction, in principle, inadapting it to other systems, although a perfor-mance penalty may be incurred at runtime.� The described approach assumes that the appli-cation program uses the memory allocation func-tions supplied by c2ftc, which transparently re-place the C memory management library rou-tines. If the application accesses allocated mem-ory incompatible with the type information sup-plied in the allocation request, the runtime librarywill be unable to perform the saving, restoringand conversion of heap data correctly.7 ConclusionWe have introduced the concept of portable check-points, and presented a source-to-source compiler ap-proach to implement portable checkpoints for het-erogeneous computer networks. Furthermore, wehave demonstrated that the overhead introduced byportable checkpointing is very low when reasonablecheckpoint intervals are chosen.The proposed compiler approach only requires that(1) a user program be submitted to a front-end source-to-source C compiler before compilation on the desired
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