Portable High-Performance Programs
by
Matteo Frigo

Laurea, Universita di Padova (1992)
Dottorato di Ricerca, Universita di Padova (1996)

Submitted to the Department of Electrical Engineering anth@uter Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1999
© Matteo Frigo, MCMXCIX. All rights reserved.

The author hereby grants to MIT permission to reproduce #stdlulite publicly paper
and electronic copies of this thesis document in whole oin, @nd to grant others the
right to do so.

Department of Electrical Engineering and Computer Science
June 23, 1999

Certifled DY
Charles E. Leiserson

Professor of Computer Science and Engineering
Thesis Supervisor

ACCEPIEA DY . .
Arthur C. Smith
Chairman, Departmental Committee on Graduate Students

Copyright © 1999 Matteo Frigo.

Permission is granted to make and distribute verbatim sopii¢his thesis provided the copy-
right notice and this permission notice are preserved ocogiles.

Permission is granted to copy and distribute modified vassad this thesis under the conditions
for verbatim copying, provided that the entire resultingivid work is distributed under the terms
of a permission notice identical to this one.

Permission is granted to copy and distribute translatidrnthis thesis into another language,
under the above conditions for modified versions, excefitttis permission notice may be stated
in a translation approved by the Free Software Foundation.

Portable High-Performance Programs

by
Matteo Frigo

Submitted to the Department of Electrical Engineering anch@uter Science
on June 23, 1999, in partial fulfilment of the
requirements for the degree of
Doctor of Philosophy

Abstract

This dissertation discusses how to write computer progtuatsattain both high performance and
portability, despite the fact that current computer systbiave different degrees of parallelism, deep
memory hierarchies, and diverse processor architectures.

To cope with parallelism portably in high-performance peogs, we present th€ilk multi-
threaded programming system. In the Cilk-5 system, padnaittsgrams scale up to run efficiently
on multiple processors, but unlike existing parallel-peasgming environments, such as MPI and
HPF, Cilk programs “scale down” to run on one processor asieffily as a comparable C pro-
gram. The typical cost of spawning a parallel thread in Giik-only between 2 and 6 times the cost
of a C function call. This efficient implementation was guldsy thework-first principle, which
dictates that scheduling overheads should be borne by itimaktpath of the computation and not
by the work. We show how the work-first principle inspiredk&Inovel “two-clone” compilation
strategy and its Dijkstra-like mutual-exclusion protofot implementing the ready deque in the
work-stealing scheduler.

To cope portably with the memory hierarchy, we present asgtitally optimal algorithms
for rectangular matrix transpose, FFT, and sorting on cderpwith multiple levels of caching.
Unlike previous optimal algorithms, these algorithms @aehe oblivious no variables dependent
on hardware parameters, such as cache size and cachergth, leeed to be tuned to achieve
optimality. Nevertheless, these algorithms use an optamadunt of work and move data optimally
among multiple levels of cache. For a cache with sizand cache-line length whereZ = Q(L?)
the number of cache misses for@anx n matrix transpose i®(1 + mn/L). The number of cache
misses for either an-point FFT or the sorting of: numbers i9(1 + (n/L)(1 + log, n)). We
also give a®(mmnp)-work algorithm to multiply ann x n matrix by ann x p matrix that incurs
O(1 + (mn + np + mp) /L + mnp/Lv/Z) cache faults.

To attain portability in the face of both parallelism and themory hierarchy at the same time,
we examine thdocation consistencynemory model and thBACKER coherence algorithm for
maintaining it. We prove good asymptotic bounds on the eti@tdime of Cilk programs that use
location-consistent shared memory.

To cope with the diversity of processor architectures, weelbp the FFTW self-optimizing
program, a portable C library that computes Fourier tramséo FFTW is unique in that it can au-
tomatically tune itself to the underlying hardware in ortleiachieve high performance. Through
extensive benchmarking, FFTW has been shown to be typifagter than all other publicly avail-
able FFT software, including codes such as Sun’s Perforenbifrary and IBM’s ESSL that are
tuned to a specific machine. Most of the performance-ctitode of FFTW was generated auto-
matically by a special-purpose compiler written in ObjegtCaml, which uses symbolic evaluation
and other compiler techniques to produce “codelets”—oth sequences of C code that can be
assembled into “plans” to compute a Fourier transform. Atirme, FFTW measures the execution

3

time of many plans and uses dynamic programming to seledattest. Finally, the plan drives a
special interpreter that computes the actual transforms.

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering

Contents

11

1.2
1.3

2 Cilk
21
2.2
2.3
2.4
2.5
2.6
2.7
2.8
29

Portable high performance

The scope of this dissertation
1.1.1 Copingwith parallelism
1.1.2 Coping with the memory hierarchy

1.1.3 Coping with parallelism and memory hierarchy togethe.
1.1.4 Coping with the processor architecture
The methods of this dissertation
Contributions

History of Cilk e
The Cilklanguage e
The work-firstprinciple e
Example Cilk algorithms
Cilk's compilation strategy e
Implementation of work-stealing
Benchmarks
Related work
Conclusion

3 Cache-oblivious algorithms

3.1
3.2
3.3
3.4
3.5

Matrix multiplication
Matrix transpositionand FFT
Funnelsort
Distribution sort
Othercachemodels
351 Two-levelmodels
3.5.2 Multilevel idealcaches
353 TheSUMHmModel

11
13
14
16
17

19
21
22
26
28
31
36
41
43
44

3.6 Relatedwork 68
3.7 Conclusion 69
Portable parallel memory 71
4.1 Performance model and summaryofresults 74
4.2 Location consistency and th@a8<eR coherence algorithm 78
4.3 Analysis of executiontime e 79
4.4 Analysis of space utilization o 86
45 Relatedwork 92
4.6 Conclusion e 93
A theory of memory models 94
5.1 Computation-centric memorymodels, 96
5.2 Constructibility e 99
5.3 Models based ontopological sortso 102
5.4 Dag-consistent memorymodels e 104
5.5 Dag consistency and location consistency 108
5.6 DISCUSSION o o 109
FFTW 111
6.1 Background 114
6.2 Performanceresults 116
6.3 FFTW'sruntime structure e 127
6.4 The FFTWcodeletgenerator it 133
6.5 Creationoftheexpressiondag e ... 137
6.6 Thesimplifier 140
6.6.1 Whatthe simplifierdoes 140
6.6.2 Implementation of the simplifier 143
6.7 Thescheduler 145
6.8 Real and multidimensional transforms L. 148
6.9 Pragmaticaspects of FFTW 150
6.10 Relatedwork 152
6.11 Conclusion 153
Conclusion 155
7.1 Futurework 155
7.2 SUMMANY . . . o o e e e e e e e e e e e e e e e 815

Acknowledgements

This brief chapter is the most important of all. Computergpaons will be outdated, and theorems
will be shown to be imprecise, incorrect, or just irreleyemit the love and dedition of all people
who knowingly or unknowingly have contributed to this woska lasting proof that life is supposed
to be beautiful and indeed it is.

Thanks to Charles Leiserson, my most recent advisor, fargbaigreat teacher. He is always
around when you need him, and he always gets out of the way wewlon't. (Almost always,
that is. | wish he had not been around that day in Singaporen\Wwhkeconvinced me to eat curried
fish heads.)

| remember the first day | met Gianfranco Bilardi, my first advi He was having trouble
with a computer, and he did not seem to understand how comspwtek. Later | learned that real
computers are the only thing Gianfranco has trouble witkanyother branch of human knowledge
he is perfectly comfortable.

Thanks to Arvind and Martin Rinard for serving on my thesimeoaittee. Arvind and his student
Jan-Willem Maessen acquainted me with functional programgnand they had a strong influence
on my coding style and philosophy. Thanks to Toni Mian fortfintroducing me to Fourier trans-
forms. Thanks to Alan Edelman for teaching me numericalyaigbnd algorithms. Thanks to Guy
Steele and Gerry Sussman for writing the papers from whiehrned what computer science is all
about.

It was a pleasure to develop Cilk together with Keith Randaie of the most talented hackers
| have ever met. Thanks to Steven Johnson for sharing theebwtdeveloping FFTW, and for
many joyful moments. Volker Strumpen influenced many of myrent thoughts about computer
science as well as much of my personality. From him | learnéat about computer systems.
Members of the Cilk group were a constant source of inspinathacks, and fun. Over the years, |
was honored to work with Bobby Blumofe, Guang-len Cheng, Dailey, Mingdong Feng, Chris
Joerg, Bradley Kuszmaul, Phil Lisiecki, Alberto Medina,Ridiller, Aske Plaat, Harald Prokop,
Sridhar Ramachandran, Bin Song, Andrew Stark, and Yuli ZAtanks to my officemates, Derek
Chiou and James Hoe, for many hours of helpful and enjoyabieersations.

Thanks to Tom Toffoli for hosting me in his house when | firstivaad to Boston. Thanks to

Irena Sebeda for letting me into Tom’s house, because Tormowtasf country that day. Thanks
for Benoit Dubertret for being my business partner in shtparmouse and a keg of beer, and for the
good time we had during that partnership.

| wish to thanks all other people who made my stay in Bostooyathjle: Eric Chang, Nicole
Lazo, Victor Luchangco, Betty Pun, Stefano Soatto, Stefamtaro, Joel Villa, Carmen Young.
Other people made my stay in Boston enjoyable even thoughniiver came to Boston (proving
that computers are good for something): Luca AndreuccigAtb Cammozzo, Enrico Giordani,
Gian Uberto Lauri, Roberto Totaro. Thanks to Andrea Piefpaioa and Geppino Pucci for helpful
discussions and suggestions at the beginning of my gradtiadees.

Thanks to Giuseppe (Pino) Torresin and the whole staff ofrigidin for their help and support
during these five years, especially in difficult moments.

| am really grateful to Compagq for awarding me the Digital ipguent Corporation Fellowship.
Additional financial support was provided by the Defense @ubed Research Projects Agency
(DARPA) under Grants N00014-94-1-0985 and F30602-97-1602

Many companies donated equipment that was used for thercbsgescribed in this document.
Thanks to SUN Microsystems Inc. for its donation of a cluste® 8-processor Ultra HPC 5000
SMPs, which served as the primary platform for the develapnoé Cilk and of earlier versions
of FFTW. Thanks to Compag for donating a cluster of 7 4-pregesAlphaServer 4100. Thanks
to Intel Corporation for donating a four-processor Pentira machine, and thanks to the Linux
community for giving us a decent OS to run on it.

The Cilk and FFTW distributions use many tools from the GNUj@ct, includingautomake,
texinfo, andlibtool developed by the Free Software Foundation. gbefft program was
written using Objective Caml, a small and elegant languaneldped by Xavier Leroy. This dis-
sertation was written on Linux using thgX'system by Donald E. Knuth, GNU Emacs, and various
other free tools such gmuplot, perl, and thescm Scheme interpreter by Aubrey Jaffer.

Finally, my parents Adriano and Germana, and my siblingstdMand Enrico deserve special
thanks for their continous help and love. Now it's time to gmrte and stay with them again.

| would have graduated much earlier had not Sandra takero€ane so well. She was patient
throughout this whole adventure.

Chapter 1

Portable high performance

This dissertation shows how to write computer programs wlpesformance is portable in the face
of multiprocessorsmultilevel hierarchical memoryand diversgrocessor architectures

1.1 The scope of this dissertation

Our investigation of portable high performance focuses emegal-purpose shared memory multi-
processor machines with a memory hierarchy, which includpracessor PC's and workstations,
symmetric multiprocessors (SMP’s), and CC-NUMA machingshsas the SGI Origin 2000. We
are focusing on machines with shared memory because thegmmonly available today and they
are growing in popularity because they offer good perforceatow cost, and a single system image
that is easy to administer. Although we are focusing on sharemory multiprocessor machines,
some of our techniques for portable high performance coeallddplied to other classes of machines
such as networks of workstations, vector computers, and p&essors.

While superficially similar, shared-memory machines ditienong each other in many ways.
The most obvious difference is the degree of parallelise,(the number of processors). Fur-
thermore, platforms differ in the organization of the meynbierarchy and in their processor ar-
chitecture. In this dissertation we shall learn theorétoal empirical approaches to write high-
performance programs that are reasonably oblivious t@tians in these parameters. These three
areas by no means exhaust the full topic of portability imkagrformance systems, however. For
example, we are not addressing important topics such aaslgpp@performance in disk I/O, graphics,
user interfaces, and networking. We leave these topicgtiosfuesearch.

1.1.1 Coping with parallelism

As multiprocessors become commonplace, we ought to writdlpbprograms that run efficiently
both on single-processor and on multiprocessor platfosmthat a user can run a program to extract

maximum efficiency from whatever hardware is available, asdftware developer does not need
to maintain both a serial and a parallel version of the sarde.cd/e ought to write these portable
parallel programs, but we don’t. Typically instead, a patgdrogram running on one processor is so
much slower and/or more complicated than the corresporsingl program that people prefer to
use two separate codes. The Cilk-5 multithreaded langudgeh | have designed and implemented
together with Charles Leiserson and Keith Randall [58],resgks this problem. In Cilk, one can
write parallel multithreaded programs that run efficiemttyany number of processors, including 1,
and are in most cases not significantly more complicatedtti@oorresponding serial codes.

Cilk is a simple extension of the C language with fork/joingikelism. Portability of Cilk pro-
grams derives from the observation, based on “Brent’s #1abf32, 71], that any Cilk computation
can be characterized by two quantities:vitsrk T, which is the total time needed to execute the
computation on one processor, anddtgical-path length T,,, which is the execution time of the
computation on a computer with an infinite number of procesand a perfect scheduler (imag-
ine God’s computer). Work and critical-path are propertéthe computation alone, and they do
not depend on the number of processors executing the cotigoutdn previous work, Blumofe
and Leiserson [30, 25] designed Cilk’s “work-stealing” edbler and proved that it executes a Cilk
program onP processors in timé&p, where

Tp < Ty/P + O(Ts) - (1.1)

In this dissertation we improve on their work by observingttBquation (1.1) suggests both an
efficient implementation strategy for Cilk and an algoritbhrdesign that only focuses on work and
critical path, as we shall now discuss.

In the current Cilk-5 implementation, a typical Cilk prograunning on a single processor is
only less than 5% slower than the corresponding sequentimb@am. To achieve this efficiency,
we aimed at optimizing the system for the common case, likehnafithe literature about compilers
[124] and computer architectures [79]. Rather than undedshg quantitatively the common case,
mainly by studying the behavior of existing (and sometimetslated) programs such as the SPEC
benchmarks, the common-case behavior of Cilk is predicfexitbeoretical analysis that culminates
into thework-first principle. Specifically, overheads in the Cilk system can be divided work
and critical-path overhead. The work-first principle stateat Cilk incurs only work overhead in the
common case, and therefore we should put effort in redutiegen at the expense of critical-path
overhead. We shall derive the work-first principle from Bipra(1.1) in Chapter 2, where we also
show how this principle inspired a “two-clone” compilatistiategy for Cilk and a Dijkstra-like [46]
work-stealing protocol that does not use locks in the comnase.

With an efficient implementation of Cilk and a performancedelosuch as Equation (1.1),
we can now design portable high-performance multithreadgdrithms. Typically in Cilk, these

10

algorithms have divide-and-conqueflavor. For example, the canonical Cilk matrix multiplieati
program is recursive. To multiply 2 matrices of sizex n, it splits each input matrix into 4 parts of
sizen/2xn/2, and it computes 8 matrix products recursively. (See Seeétid.) In Cilk, even loops
are typically expressed as recursive procedures, bedaigsgtrategy minimizes the critical path of
the program. To see why, consider a loop that incrementy element of an arrayl of lengthn.
This program would be expressed in Cilk as a recursive proeethat incrementsl[0] if n = 1,
and otherwise calls itself recursively to increment the tvatves ofA in parallel. This procedure
performsO(n) work, since the work of the recursion grows geometricallgt srdominated by the
leaves, and the procedure ha®@gn) critical path, because with an infinite number of processors
we reach the leaves of the recursion in ti@élgn), and all leaves can be computed in parallel.
The naive implementation that forksthreads in a loop, where each thread increments one array
element, is not as good in the Cilk model, because the lasadhrannot be created until all previous
threads have been, yielding a critical path proportional.to

Besides being high-performance, Cilk programs are alstabla;, because they do not depend
on the value of. Cilk shares this property with functional languages siuecMaltilisp [75], Mul-T
[94], Id [119], and data-parallel languages such as NESI, [2BL [34], and High Performance
Fortran [93, 80]. Among these languages, only NESL and ZRtufe an algorithmic performance
model like Cilk, and like Cilk, ZPL is efficient in practice I6]. The data-parallel style encouraged
by NESL and ZPL, however, can suffer large performance piesabecause it introduces tempo-
rary arrays, which increase memory usage and pollute thieecaCompilers can eliminate these
temporaries with well-understood analyses [100], but trayesis is complicated and real compilers
are not always up to this task [116]. The divide-and-concamproach of Cilk is immune from
these difficulties, and allows a more natural expressiomrefjular problems. We will see another
example of the importance of divide and conquer for portdiidg performance in Section 1.1.2
below.

1.1.2 Coping with the memory hierarchy

Modern computer systems are equipped wittaahe or fast memory. Computers typically have
one or more levels of cache, which constitute themory hierarchy and any programming sys-
tem must deal with caches if it hopes to achieve high perfaomaTo understand how to program
caches efficiently and portably, in this dissertation wel@gthe idea otache obliviousnessAl-
though a cache-oblivious algorithm does not “know” how lig tache is and how the cache is
partitioned into “cache lines,” these algorithms nevdebe use the cache asymptotically as effi-
ciently as their cache-aware counterparts. In Chapter Zhai see cache-oblivious algorithms for
matrix transpose and multiplication, FFT, and sorting. pablems such as sorting where lower
bounds on execution time and “cache complexity” are knotwesé cache-oblivious algorithms are

11

optimal in both respects.

A key idea for cache-oblivious algorithms is agalivide and conquer To illustrate cache
obliviousness, consider again a divide and conquer mattiltiptication program that multiplies
two square matrices of size x n. Assume that initiallyn is big, so that the problem cannot
be solved fully within the cache, and therefore some traffitMeen the cache and the slow main
memory is necessary. The program partitions a problem efrsinto 8 subproblems of size/2
recursively, untiln = 1, in which case it computes the product directly. Even thotighinitial
array is too big to fit into cache, at some point during the rgiom n reaches some valug, so
small that two matrices of sizg x ng can be multiplied fully within the cache. The program is not
aware of this transition and it continues the recursion dtawmn = 1, but the cache system is built
in such a way that it loads every element of thex ny subarrays only once from main memory.
With the appropriate assumptions about the behavior ofalebe; this algorithm can be proven to
use the cache asymptotically optimally, even though it dagsdepend on parameters such as the
size of the cache. (See Chapter 3.) An algorithm does noseafily use the cache optimally just
because it is divide-and-conquer, of course, but in mangscti®e recursion can be designed so that
the algorithm is (asymptotically) optimal no matter howgkathe cache is.

How can | possibly advocate recursion instead of loops fgh lmerformance programs, given
that procedure calls are so expensive? | have two answehgstolijection. First, procedure calls
are nottoo expensive, and the overhead of the recursion is amortized@s as the leaves of the
recursion perform enough work. | have coded the procedwkatids 1 to every element of an
array using both a loop and a full recursion. The recursiagram is about 8 times slower than
the loop on a 143-MHz UltraSPARC. If we unroll the leaves o tiecursion so that each leaf
performs about 100 additions, the difference becomes hess10%. To put things in perspective,
100 additions is roughly the work required to multiply twox 4 matrices or to perform a 16-
point Fourier transform. Second, we should keep in mind¢batent processors and compilers are
optimized for loop execution and not for recursion, and eguently procedure calls are relatively
more expensive than they could be if we designed systemgitdypio support efficient recursion.
Since divide and conquer is so advantageous for portablkegégormance programs, we should
see this as a research opportunity to investigate architdannovations and compiler techniques
that reduce the cost of procedure calls. For example, we caagilers that unroll recursion in the
same way current compilers unroll loops.

Cache-oblivious algorithms are designed foridaal cache which is fully associative (objects
can reside anywhere in the cache) and features an optimaiscient replacement policy. In the
same way as a Cilk parallel algorithm is characterized byitek and critical-path length, a cache-
oblivious algorithm can be characterized by its whirkand by itscache complexity)(Z, L), which
measures the traffic between the cache and the main memorytivhneache containg words and
it is partitioned into “lines” of lengthl.. This theoretical framework allows algorithmic design for

12

the rangeZ, L) of interest.

Our understanding of cache obliviousness is somewhatétieak at this point, since today’s
computers do not feature ideal caches. Nevertheless, ¢a¢-¢dche assumptions are satisfied in
many cases. Consider for example the compilation of sttdiigdé code with many (local) variables,
more than can fit into the register set of a processor. We @ thie registers as the “cache” and
the rest of the memory as “main memory.” The compiler facesptitoblem of allocating variables
to registers so as to minimize the transfers between regiated memory, that is, the number of
“register spills” [115]. Because the whole sequences ofs®es is known in advance, the compiler
can implement the optimal replacement strategy from [18]ictv replaces the register accessed
farthest in the future. Consequently, with a cache-ohligialgorithm and a good compiler, one can
write a single piece of C code that minimizes the traffic bemvesgisters and memory in such a
way that the same code is (asymptotically) optimal for angber of CPU registers. | have used
this idea in the FFTW “codelet generator” (see Chapter 6)clwhenerates cache-oblivious fast

Fourier transform programs.

1.1.3 Coping with parallelism and memory hierarchy togethe

What happens when we parallelize a cache-oblivious alguritvith Cilk? The execution-time
upper bound from [25] (that is, Equation (1.1)) does not liolithe presence of caches, because the
proof does not account for the time spent in servicing cacissas. Furthermore, cache-oblivious
algorithms are not necessarily cache-optimal when theyeseeuted in parallel, because of the
communication among caches.

In this dissertation, we combine the theories of Cilk and axfhe obliviousness to provide a
performance bound similar to Equation (1.1) for Cilk pragssthat use hierarchical shared memory.
To prove this bound, we need to be precise about how we wantonyetm behave (the “memory
model”), and we must specify a protocol that maintains suotodel. This dissertation presents a
memory model calledbcation consistencyand the B.CCKER coherence algorithm for maintaining
it. If BACKER is used in conjunction with the Cilk scheduler, we derive armbon the execution
time similar to Equation (1.1), but which takes the cache gewity into account. Specifically, we
prove that a Cilk program with work}, critical path7s,, and cache complexit§(Z, L) runs onP
processors in expected time

Tp =O((Ty + pQ(Z, L))/ P + nZTs/L)

wherey is the cost of transferring one cache line between main memd the cache. As in
Equation (1.1), the first terfif} + pQ(Z, L) is the execution time on one processor when cache
effects are taken into account. The second te#fl, /L accounts for the overheads of parallelism.
Informally, this term says that we might have to refill the lmadrom scratch from time to time,

13

where each refill costs timeZ/L, but this operation can happen at m@st times on average.
Although this model is simplistic, and it does not accoumnttfe fact that the service time is not
constant in practice (for example, on CC-NUMA machineslk @ith BACKER is to my knowledge
the only system that provides performance bounds accauftinwork, critical path, and cache
complexity.

Location consistency is defined within a novamputation-centricframework on memory
models. The implications of this framework are not direatyevant to the main point of this
dissertation, which is how to write portable fast programs, | think that the computation-centric
framework is important from a “cultural” perspective, aheétefore in Chapter 5 | have included a
condensed version of the computation-centric theory | ldeveloped elsewhere [54].

1.1.4 Coping with the processor architecture

We personally like Brent’s algorithm for univariate
minimization, as found on pages 79-80 of his
book “Algorithms for Minimization Without
Derivatives.” It is pretty reliable and pretty
fast, but we cannot explain how it works.

(Gerald Jay Sussman)

While work, critical path, and cache complexity constitatelean high-level algorithmic char-
acterization of programs, and while the Cilk theory is reedaly accurate in predicting the perfor-
mance of parallel programs, a multitude of real-life dstaile not captured by the simple theoretical
analysis of Cilk and of cache-oblivious algorithms. Cutkemwe lack good models to analyze the
dependence of algorithms on the virtual memory system,skedativity of caches, the depth of a
processor pipeline, the number and the relative speedsofifial units within a processor, out-
of-order execution, branch predictors, not to mention ésissiterlocks, prefetching instructions,
cache coherence, delayed branches, hazard detectossatidexceptions, and the aggressive code
transformations that compilers operate on programs. Wérgtiar to these parameters generically
as “processor architecture.” Even though compilers arengisé to any high-performance system,
imagine for now that the compiler is part of some black boxechl'processor” that accepts our
program and produces the results we care about.

The behavior of “processors” these days can be quite amatingu experiment with your
favorite computer, you will discover that performance is aditive—that is, the execution time of
a program is not the sum of the execution time of its comp@eand it is not even monotonic.
For example, documented cases exist [95] where adding aphaastruction to a program doubles
its speed, a phenomenon caused by the interaction of a sleprtilith a particular implementation

14

of branch prediction. As another example, the Pentium famil processors is much faster at
loading double precision floating-point numbers from megmbthe address is a multiple of 8 (I
have observed a factor of 3 performance difference soms}iniéevertheless, compilers lilgc

do not enforce this alignment because it would break binampatibility with existing 80386
code, where the alignment was not important for performa@mnsequently, your program might
become suddenly fast or slow when you add a local variablegpto@edure. While it is unfortunate
that the system as a whole exhibits these behaviors, we thlame processors: The architectural
features that cause these anomalies are the very sourcecbf ahthe processor performance. In
current processor architectures we gave away understendasigns to buy performance—a pact
with the devil [107] perhaps, but a good deal nonetheless.

Since we have no good model of processors, we cannot desglife-oblivious” or “compiler-
oblivious” algorithms like we did for caches. Nevertheless can still write portable high-performance
programs if we adopt a “closed loop” approach. Our previegbiiques were open-loop, and pro-
grams were by design oblivious to the number of processatshencache. To cope with processors
architectures, we will write closed-loop programs capaifleetermining their own performance
and of adjusting their behavior to the complexity of the emwiment.

To explore this idea, | have developedeadf-optimizing progranthat can measure its own exe-
cution speed to adapt itself to the “process&FTW is a comprehensive library of fast C routines
for computing thediscrete Fourier transform(DFT) in one or more dimensions, of both real and
complex data, and of arbitrary input size. FFTW automdiicadapts itself to the machine it is run-
ning on so as to maximize performance, and it typically ysediynificantly better performance than
all other publicly available DFT software. More interegfliyy while retaining complete portability,
FFTW is competitive with or faster than proprietary codeglhsas Sun’s Performance Library and
IBM’'s ESSL library, which are highly tuned for a single mawhi

In order to adapt itself to the hardware, FFTW uses the ptppigat the computation of a Fourier
transform can be decomposed into subproblems, and thigrgesition can typically be accom-
plished in many ways. FFTW tries many different decomposgj itmeasuresheir execution time,
and it remembers the one that happens to run faster on ayarticachine. FFTW does not attempt
to build a performance model and to predict the performarfieegiven decomposition, because all
my attempts to build a precise enough performance modelg@iid have failed. Instead, by mea-
suring its own execution time, FFTW approaches portabitita closed loop, end-to-end fashion,
and it compensates for our lack of understanding and fomtipedcision of our theories.

FFTW's portability is enabled by the extensive usenwtaprogramming About 95% of the
FFTW system is comprised afodelets which are optimized sequences of C code that compute
subproblems of a Fourier transform. These codelets werergtd automatically by special-
purpose compilercalledgenfft, which can only produce optimized Fourier transform progga
but it excels at this taskgenfft separates the logic of an algorithm from its implementatithe

15

user specifies an algorithm at a high level (the “prograntij] also how he or she wants the code
to be implemented (the “metaprogram”). The advantage ohpregramming is twofold. First,
genfft iS necessary to produce a space of decompositions largglemhmuself-optimization to be
effective, since it would be impractical to write all codsleéy hand. For example, the current FFTW
system comprises 120 codelets for a total of more than 5689 of code. Only a few codelets are
used in typical situations, but it is important that all bai&able in order to be able to select the fast
ones. Second, the distinction between the program and ttepmgram allows for easy changes in
case we are desperate because every other portabilityiqeehiails. For examplegenfft was at
one point modified to generate code for processors, sucle @&oilverPC [83], which feature a fused
multiply-add instruction. (This instruction computes— a + bc in one cycle.) This modification
required only 30 lines of code, and it improved the perforoeaaf FFTW on the PowerPC by 5-
10%, although it was subsequently disabled because it didan FFTW on other machines. This
example shows that machine-specific optimizations can &igyeéaplemented if necessary. While
less desirable than a fully automatic system, changingriég lis still better than changing 56,000.
While recursive divide and conquer algorithms suffer frdra bverheads of procedure calls,
genfft helps overcoming the performance costs of the recursiondelgts incur no recursion
overhead in the codelets, becaggafft unrolls the recursion completely. The main FFTW self-
optimizing algorithm is also explicitly recursive, and dlts a codelet at the leaf of the recursion.
Since codelets perform a significant amount of work, howetrer overhead of this recursion is
negligible. The FFTW system is described in Chapter 6.
This [other algorithm for univariate minimization]
is not so nice. It took 17 iterations [where Brent's
algorithm took 5] and we didn’t get anywhere near

as good an answer as we got with Brent. On
the other hand, we understand how this works!

(Gerald Jay Sussman)

1.2 The methods of this dissertation

Our discussion of portable high performance draws ideasrattiods from both the computer the-
ory and systems literatures. In some cases our discussibmevéntirely theoretical, like for exam-

ple the asymptotic analysis of cache-oblivious algorithis is customary in theoretical analyses,
we assume an idealized model and we happily disregard eurfatstors. In other cases, we will

discuss at length implementation details whose only p@ji®$o save a handful CPU cycles. The
Cilk work-stealing protocol is an example of this systemgrapch. You should not be surprised if
we use these complementary sets of techniques, becausattine af the problem of portable high

16

performance demands both. Certainly, we cannot say thahaitpie is high-performance if it has
not been implemented, and therefore in this dissertatiopayeattention to many implementation
details and to empirical performance results. On the othadhwe cannot say anything about the
portability of a technique unless we prove mathematicéidy the technique works on all machines.
Consequently, this dissertation oscillates between yhaad practice, aiming at understanding sys-
tems and algorithms from both points of view whenever pdéssidnd you should be prepared to
switch mind set from time to time.

1.3 Contributions

This dissertation shows how to write fast programs whostopaance is portable. My main con-
tributions consist in two portable high-performance saftasystems, and in theoretical analyses of
portable high-performance algorithms and systems.

» The Cilk language and an efficient implementation of Cilk MPS. Cilk provides simple
yet powerful constructs for expressing parallelism in apligption. The language provides
the programmer with parallel semantics that are easy torstadel and use. Cilk's compila-
tion and runtime strategies, which are inspired by the “wiindt principle,” are effective for
writing portable high-performance parallel programs.

» Cache-oblivious algorithmprovide performance and portability across platforms wiith
ferent cache sizes. They are oblivious to the parametenseofmiemory hierarchy, and yet
they use multiple levels of caches asymptotically optisnallhis document presents cache-
oblivious algorithms for matrix transpose and multiplioat FFT, and sorting that are asymp-
totically as good as previously known cache-aware algmsttand provably optimal for those
problems whose optimal cache complexity is known.

» The location consistency memory model andBaeKER coherence algorithnmarry Cilk
with cache-oblivious algorithms. This document provesdyperformance bounds for Cilk
programs that uses location consistency.

» The FFTW self-optimizing librarymplements Fourier transforms of complex and real data
in one or more dimensions. While FFTW does not require maehpecific performance
tuning, its performance is comparable with or better thashesathat were tuned for specific
machines.

The rest of this dissertation is organized as follows. Géaptescribes the work-first principle
and the implementation of Cilk-5. Chapter 3 defines cachwiobkness and gives cache-oblivious

17

algorithms for matrix transpose, multiplication, FFT, asutting. Chapter 4 presents location con-
sistency and BCKER, and analyzes the performance of Cilk programs that usarctdcal shared

memory. Chapter 5 presents the computation-centric thefanemory models. Chapter 6 describes
the FFTW self-optimizing library angenfft. Finally, Chapter 7 offers some concluding remarks.

18

Chapter 2

Cilk

This chapter describes tl@lk system, which copes with parallelism in portable high-perfance
programs. Portability in the context of parallelism is Uguaalled scalability a program scales
if it attains good parallel speed-up. To really attain poldgparallel high performance, however,
we must write parallel programs that both “scale up” and lsaown” to run efficiently on a
single processor—as efficiently as any sequential proghatperforms the same task. In this way,
users can exploit whatever hardware is available, and oeged do not need to maintain separate
sequential and parallel versions of the same code.

Cilk is a multithreaded language for parallel programmimt generalizes the semantics of C by
introducing simple linguistic constructs for parallel tah The Cilk language implemented by the
Cilk-5 release [38] uses the theoretically efficient schedfrom [25], but it was designed to scale
down as well as to scale up. Typically, a Cilk program runs simgle processor with less than 5%
slowdown relatively to a comparable C program. Cilk-5 isigiesd to run efficiently on contem-
porary symmetric multiprocessors (SMP’s), which providedware support for shared memory.
The Cilk group has coded many applications in Cilk, inclgdihexSocrates and Cilkchess chess-
playing programs which have won prizes in international petitions. | was part of the team of
Cilk programmers which won First Prize, undefeated in altahes, in the ICFP’98 Programming
Contest sponsored by the 1998 International Conferenceinctienal Programming.

Cilk's constructs for parallelism are simple. ParallelismCilk is expressed with call/return
semantics, and the language has a simple “inlet” mechamsmdndeterministic control. The
philosophy behind Cilk development has been to make thel&@ilguage a true parallel extension
of C, both semantically and with respect to performance. Quarallel computer, Cilk control
constructs allow the program to execute in parallel. If thikk €eywords for parallel control are
elided from a Cilk program, however, a syntactically and aetically correct C program results,

This chapter represents joint work with Charles Leisersahkeith Randall. A preliminary version appears in [58].
ICilk is not a functional language, but the contest was opeamtres in any programming language.

19

which we call theC elision (or more generally, theerial elision) of the Cilk program. Cilk is a
faithful extension of C, because the C elision of a Cilk program is eecbimplementation of the
semantics of the program. On one processor, a parallel @igram scales down to run nearly as
fast as its C elision.

Unlike in Cilk-1 [29], where the Cilk scheduler was an idéiathle piece of code, in Cilk-5
both the compiler and runtime system bear the respongilfilit scheduling. To obtain efficiency,
we have, of course, attempted to reduce scheduling ovesh&muime overheads have a larger im-
pact on execution time than others, however. The framewarkdentifying and optimizing the
common cases is provided by a theoretical understandinglki$ Gcheduling algorithm [25, 30].
According to this abstract theory, the performance of a Cidknputation can be characterized by
two quantities: itavork, which is the total time needed to execute the computatidallse and its
critical-path length, which is its execution time on an infinite number of processCilk provides
instrumentation that allows a user to measure these twditjgar) Within Cilk's scheduler, we can
identify a given cost as contributing to either work overdhea critical-path overhead. Much of the
efficiency of Cilk derives from the following principle, weti will be justified in Section 2.3.

The work-first principle: Minimize the scheduling overhead borne by the work of a
computation. Specifically, move overheads out of the wadlkoato the critical path.

The work-first principle was used informally during the dgsbf earlier Cilk systems, but Cilk-5
exploited the principle explicitly so as to achieve highfpenance. The work-first principle in-
spired a “two-clone” strategy for compiling Cilk programBbhe cilk2c compiler [111] is a type-
checking, source-to-source translator that transformitkes@urce into a C postsource which makes
calls to Cilk’s runtime library. The C postsource is then tbrough thegcc compiler to produce
object code. Theilk2c compiler produces two clones of every Cilk procedure—at*fakone
and a “slow” clone. The fast clone, which is identical in mastpects to the C elision of the Cilk
program, executes in the common case where serial semautfficee. The slow clone is executed
in the infrequent case when parallel semantics and its coitant bookkeeping are required. All
communication due to scheduling occurs in the slow clonecanttibutes to critical-path overhead,
but not to work overhead.

The work-first principle also inspired a Dijkstra-like [463hared-memory, mutual-exclusion
protocol as part of the runtime load-balancing schedulélik’sCscheduler uses a “work-stealing”
algorithm in which idle processors, callddeves “steal” threads from busy processors, caec
tims. Cilk's scheduler guarantees that the cost of stealingridmiés only to critical-path overhead,
and not to work overhead. Nevertheless, it is hard to avadrhtual-exclusion costs incurred by a
potential victim, which contribute to work overhead. To imiize work overhead, instead of using
locking, Cilk’'s runtime system uses a Dijkstra-like pratb¢which we call theTHE) protocol, to
manage the runtime deque of ready threads in the worksgealgorithm. An added advantage

20

of the THE protocol is that it allows an exception to be sigdalo a working processor with no
additional work overhead, a feature used in Cilk's abort ma@tsm.

Cilk features a provably efficient scheduler, but it cannaioally make sequential programs
parallel. To write portable parallel high performance, wasindesign scalable algorithms. In this
chapter, we will give simple examples of parallel dividedamonquer Cilk algorithms for matrix
multiplication and sorting, and we will learn how to analya@erk and critical-path length of Cilk
algorithms. The combination of these analytic techniquitk thie efficiency of the Cilk scheduler
allows us to write portable high-performance programs ¢bae with parallelism effectively.

The remainder of this chapter is organized as follows. 8ecil summarizes the develop-
ment history of Cilk. Section 2.2 overviews the basic featsuof the Cilk language. Section 2.3
justifies the work-first principle. Section 2.4 analyzeswwk and critical-path length of example
Cilk algorithms. Section 2.5 describes how the two-clomatsgy is implemented, and Section 2.6
presents the THE protocol. Section 2.7 gives empiricalende that the Cilk-5 scheduler is effi-
cient. Section 2.8 presents related work.

2.1 History of Cilk

While the following sections describe Cilk-5 as it is tod#tyjs important to start with a brief
summary of Cilk’s history, so that you can learn how the sysé®olved to its current state.

The original 1994 Cilk-1 release [25, 29, 85] featured thavpbly efficient, randomized, “work-
stealing” scheduler by Blumofe and Leiserson [25, 30]. Thie-Clanguage was clumsy and hard to
program, however, because parallelism was exposed “by’ ittty explicit continuation passing.
Nonetheless, theSocrates chess program was written in this language, atatig3rd in the 1994
International Computer Chess Championship running on NC&¥2-node CM5.

| became involved in the development of Cilk starting witHk&d. This system introduced
the same call/return semantics that Cilk-5 uses today. ifhigvation was made possible by the
outstanding work done by Rob Miller [111] on the1k2c type-checking preprocessor. As the
name suggests;ilk2c translates Cilk into C, performing semantic and dataflowlyaig in the
process. Most of Rob'silk2c is still used in the current Cilk-5.

Cilk-3 added shared memory to Cilk. The innovation of Cilkk@nsisted in a novel mem-
ory model calleddag consistency27, 26] and of the BCKER coherence algorithm to support it.
Cilk-3 was an evolutionary dead end as far as Cilk is conakrbecause it implemented shared
memory in software using special keywords to denote shamddhles, and both these techniques
disappeared from later versions of Cilk. The system wasential, however, in shaping the way
the Cilk authors thought about shared memory and multitte@aalgorithms. Dag consistency
led to the computation-centric theory of memory models diesd in Chapter 5. The analysis of
dag-consistent algorithms of [26] led to the notion of caobBviousness, which is described in

21

Chapter 3. Finally, the general algorithmic framework olkGind of cache-oblivious algorithms
provided a design model for FFTW (see Chapter 6).

While the first three Cilk systems were primarily developedMPP’s such as the Thinking
Machines CM-5, the Cilk-4 system was targeted at symmetrittipnocessors. The system was
based on a novel “two-clone” compilation strategy (seei8e@.5 and [58]) that Keith Randall
invented. The Cilk language itself evolved to support “islleand nondeterministic programs. (See
Section 2.2.) Cilk-4 was designed at the beginning of 1996 aritten in the spring. The new
implementation was made possible by a substantial and entegb donation of SMP machines by
Sun Microsystems.

It soon became apparent, however, that the Cilk-4 systentagasomplicated, and in the Fall
of 1996 | decided to experiment with my own little Cilk systémitially called Milk, then Cilk-5).
Cilk-4 managed virtual memory explicitly in order to maiimahe illusion of a cactus stack [113],
but this design decision turned out to be a mistake, bechesgeed of maintaining a shared page ta-
ble complicated the implementation enormously, and memmapping from user space is generally
slow in current operating systerisThe new Cilk-5 runtime system was engineered from scratch
with simplicity as primary goal, and it used a simple heapdasamemory manager. Thealk2c
compiler did not change at all. While marginally slower tl@itk-4 on one processor, Cilk-5 turned
out to be faster on multiple processors because of simpiéogwls and fewer interactions with the
operating system. In addition to this new runtime systentk-Eifeatured a new debugging tool
called the “Nondeterminator” [52, 37], which finds data ageCilk programs.

2.2 The Cilk language

This section presents a brief overview of the Cilk externsitmC as supported by Cilk-5. (For a
complete description, consult the Cilk-5 manual [38].) Kay features of the language are the
specification of parallelism and synchronization, throtighspawn and sync keywords, and the
specification of nondeterminism, usitiglet andabort.

The basic Cilk language can be understood from an examplgurd-2-1 shows a Cilk pro-
gram that computes theth Fibonacci numbet. Observe that the program would be an ordinary C
program if the three keywordsilk, spawn, andsync were elided.

The keywordcilk identifiesfib as aCilk procedure which is the parallel analog to a C
function. Parallelism is created when the keywegdhwn precedes the invocation of a procedure.
The semantics of a spawn differs from a C function call onlyhat the parent can continue to
execute in parallel with the child, instead of waiting foe tthild to complete as is done in C. Cilk's

2\We could have avoid this mistake had we read Appel and Shdo [13
3This program uses an inefficient algorithm which runs in exgial time. Although logarithmic-time methods are
known [42, p. 850], this program nevertheless provides a glidactic example.

22

#include <stdlib.h>
#include <stdio.h>
#include <cilk.h>

cilk int fib (int n)

{
if (n<2) return n;
else {
int x, y;
x = spawn fib (n-1);
y = spawn fib (n-2);
sync;
return (x+y);
}
}
cilk int main (int argc, char *argv[])
{
int n, result;
n = atoi(argv[1]);
result = spawn fib(n);
sync;
printf ("Result: %d\n", result);
return O;
}

Figure 2-1: A simple Cilk program to compute theth Fibonacci number in parallel (using a very bad
algorithm).

scheduler takes the responsibility of scheduling the spawirocedures on the processors of the
parallel computer.

A Cilk procedure cannot safely use the values returned bghildren until it executes aync
statement. Theync statement is a local “barrier,” not a global one as, for examis used in
message-passing programming environments such as MHAI [h3#%e Fibonacci example, sync
statement is required before the statemestturn (x+y) to avoid the incorrect result that would
occur ifx andy are summed before they are computed. In addition to exgleithronization pro-
vided by thesync statement, every Cilk procedure syncs implicitly befonettrns, thus ensuring
that all of its children terminate before it does.

Cactus stack. Cilk extends the semantics of C by supporting cactus sta&:Kl[I3, 137] semantics
for stack-allocated objects. From the point of view of a Br@ilk procedure, a cactus stack behaves
much like an ordinary stack. The procedure can allocate &l rhemory by incrementing and
decrementing a stack pointer. The procedure views the ataaKkinearly addressed space extending

23

OO i
E

Figure 2-2. A cactus stack. The left-hand side shows a tree of procedutesre procedurel spawns
procedures3 andC', and procedur€’ spawns procedure® and E. The right-hand side shows the stack
view for the 5 procedures. For examplés;'sees” the frames of procedurdsandC’, but not that ofB.

back from its own stack frame to the frame of its parent andicoimg to more distant ancestors.
The stack becomes a cactus stack when multiple procedueesitexin parallel, each with its own
view of the stack that corresponds to its call history, asvshim Figure 2-2.

Cactus-stack allocation mirrors the advantages of an argiprocedure stack. Procedure-local
variables and arrays can be allocated and deallocated atitatty by the runtime system in a
natural fashion. Separate branches of the cactus stackhsarated from each other, allowing two
threads to allocate and free objects independently, evargthobjects may be allocated with the
same address. Procedures can reference common data thiheughared portion of their stack
address space.

Cactus stacks have many of the same limitations as ordinagegdure stacks [113]. For in-
stance, a child thread cannot return to its parent a poiotn bbject that it has allocated. Similarly,
sibling procedures cannot share storage that they credteatack. Just as with a procedure stack,
pointers to objects allocated on the cactus stack can onbatedy passed to procedures below the
allocation point in the call tree. To alleviate these liridgas, Cilk offers a heap allocator in the
style ofmalloc/free.

Inlets. Ordinarily, when a spawned procedure returns, the retuvate is simply stored into a
variable in its parent’s frame:

x = spawn foo(y);

Occasionally, one would like to incorporate the returnellieanto the parent’'s frame in a more
complex way. Cilk provides aimlet feature for this purpose, which was inspired in part by thetin
feature of TAM [45].

24

cilk int fib (int n)

{
int x = 0;
inlet void summer (int result)
{
X += result;
return;
}
if (n<2) return n;
else {
summer (spawn fib (n-1));
summer (spawn fib (n-2));
sync;
return (x);
}
}

Figure 2-3: Using an inlet to compute theth Fibonacci number.

Aninlet is essentially a C function internal to a Cilk proceel. In the normal syntax of Cilk, the
spawning of a procedure must occur as a separate statentembiin an expression. An exception
is made to this rule if the spawn is performed as an argumeantmlet call. In this case, the
procedure is spawned, and when it returns, the inlet is Etoldn the meantime, control of the
parent procedure proceeds to the statement following tle¢ @all. In principle, inlets can take
multiple spawned arguments, but Cilk-5 has the restricti@t exactly one argument to an inlet
may be spawned and that this argument must be the first arguih@ecessary, this restriction is
easy to program around.

Figure 2-3 illustrates how th&ib () function might be coded using inlets. The indgimmer ()
is defined to take a returned valnesult and add it to the variable in the frame of the procedure
that does the spawning. All the variablesfdfo () are available withinsummer (), since it is an
internal function offib().*

No lock is required around the accesses foy summer, because Cilk provides atomicity im-
plicitly. The concern is that the two updates might occurargtiel, and if atomicity is not imposed,
an update might be lost. Cilk provides implicit atomicity @mg the “threads” of a procedure in-
stance, where threadis a maximal sequence of instructions that does not contapaen, sync,
or return (either explicit or implicit) statement. An inlet is preded from containingpawn and
sync statements, and thus it operates atomically as a singladhrinplicit atomicity simplifies

“The C elision of a Cilk program with inlets is not ANSI C, besatANSI C does not support internal C functions.
Cilk is based on GNU C technology, however, which does pmtiis support.

25

reasoning about concurrency and nondeterminism withautirieg locking, declaration of critical
regions, and the like.

Cilk provides syntactic sugar to produce certain commosbdunlets implicitly. For example,
the statement += spawn fib(n-1) conceptually generates an inlet similar to the one in Figure
3.

Abort. Sometimes, a procedure spawns off parallel work which érldiscovers is unnecessary.
This “speculative” work can be aborted in Cilk using gt primitive inside an inlet. A common
use ofabort occurs during a parallel search, where many possibilitiesearched in parallel. As
soon as a solution is found by one of the searches, one wisha&sort any currently executing
searches as soon as possible so as not to waste processwcessolheabort statement, when
executed inside an inlet, causes all of the already-spawhidten of the procedure to terminate.

We considered using “futures” [76] with implicit synchraation, as well as synchronizing on
specific variables, instead of using the simpfawn and sync statements. We realized from the
work-first principle, however, that different synchrortisa mechanisms could have an impact only
on the critical-path of a computation, and so this issue Wwaeoondary concern. Consequently,
we opted for implementation simplicity. Also, in systemattBupport relaxed memory-consistency
models, the explicisync statement can be used to ensure that all side-effects fremiopisly
spawned subprocedures have occurred.

In addition to the control synchronization provideddgpnc, Cilk programmers can use explicit
locking to synchronize accesses to data, providing mutx@lsion and atomicity. Data synchro-
nization is an overhead borne on the work, however, and @dthave have striven to minimize
these overheads, fine-grain locking on contemporary psocgss expensive. We are currently in-
vestigating how to incorporate atomicity into the Cilk lalage so that protocol issues involved in
locking can be avoided at the user level. To aid in the delmgggf Cilk programs that use locks,
the Cilk group has developed a tool called the “Nondetertoitig37, 52], which detects common
synchronization bugs callethta races

2.3 The work-first principle

This section justifies the work-first principle stated at tegyinning of this chapter by showing
that it follows from three assumptions. First, we assume @il&'s scheduler operates in practice
according to the theoretical analysis presented in [25, S88tond, we assume that in the common
case, ample “parallel slackness” [145] exists, that is pallelism of a Cilk program exceeds the
number of processors on which we run it by a sufficient marghird, we assume (as is indeed the
case) that every Cilk program has a C elision against whichrie-processor performance can be
measured.

26

The theoretical analysis presented in [25, 30] cites twal@&mmental lower bounds as to how
fast a Cilk program can run. Let us denote’By the execution time of a given computation on
P processors. The work of the computation is tHgnand its critical-path length i¥,,. For a
computation with7; work, the lower bound’» > T7/P must hold, because at maBtunits of
work can be executed in a single step. In addition, the lowendTp» > T,, must hold, since a
finite number of processors cannot execute faster than aiténfiumber.

Cilk's randomized work-stealing scheduler [25, 30] exesw Cilk computation o#® proces-
sors in expected time

Tp = T1/P + O(Tx) , (2.1)

assuming an ideal parallel computer. This equation ressritdrent’'s theorem” [32, 71] and is
optimal to within a constant factor, sindg /P andT, are both lower bounds. We call the first
term on the right-hand side of Equation (2.1) therk term and the second term thatical-path
term. Importantly, all communication costs due to Cilk'’ieduler are borne by the critical-path
term, as are most of the other scheduling costs. To make thesbeads explicit, we define the
critical-path overheado be the smallest constant, such that

Tp < Ti/P + coToo - (2.2)

The second assumption needed to justify the work-first pi@docuses on the “common-
case” regime in which a parallel program operates. DefingénallelismasP = Ty /T, which
corresponds to the maximum possible speedup that the afipficcan obtain. Define also the
parallel slacknesg145] to be the ratia®/P. Theassumption of parallel slackness thatP /P >
€0, Which means that the numbgr of processors is much smaller than the parallelBmUnder
this assumption, it follows thal; /P > ¢, T, and hence from Inequality (2.2) th&p ~ T}/ P,
and we obtain linear speedup. The critical-path overhgatias little effect on performance when
sufficient slackness exists, although it does determine mmoweh slackness must exist to ensure
linear speedup.

Whether substantial slackness exists in common applitai®a matter of opinion and empiri-
cism, but we suggest that slackness is the common case. preseiveness of Cilk makes it easy to
code applications with large amounts of parallelism. Fodest-sized problems, many applications
exhibit a parallelism of over 200, yielding substantialcklzess on contemporary SMP’s. Even on
Sandia National Laboratory’s Intel Paragon, which corgdii24 nodes, theSocrates chess pro-
gram (coded in Cilk-1) ran in its linear-speedup regime myithe 1995 ICCA World Computer

5This abstract model of execution time ignores real-lifeadet such as memory-hierarchy effects, but is nonetheless
quite accurate [29].

27

Chess Championship (where it placed second in a field of Z2ti@ 2.7 describes a dozen other
diverse applications which were run on an 8-processor SMP ednsiderable parallel slackness.
The parallelism of these applications increases with robsize, thereby ensuring they will be
portable to large machines.

The third assumption behind the work-first principle is tigry Cilk program has a C elision
against which its one-processor performance can be meadigtus denote b¥y the running time
of the C elision. Then, we define theork overheadby ¢; = T3 /7s. Incorporating critical-path
and work overheads into Inequality (2.2) yields

Tp

IA

c1Ts/P + cooToo (2.3)
~ als/P,

since we assume parallel slackness.

We can now restate the work-first principle preciselinimize c¢;, even at the expense of a
larger ¢, because; has a more direct impact on performance. Adopting the wask4firinciple
may adversely affect the ability of an application to scgdlehowever, if the critical-path overhead
Cso 1S 100 large. But, as we shall see in Section 2.7, criticéivmaverhead is reasonably small in
Cilk-5, and many applications can be coded with large anwohparallelism.

The work-first principle pervades the Cilk-5 implementatid he work-stealing scheduler guar-
antees that with high probability, only(PT,) steal (migration) attempts occur (thati$(7’,,) on
average per processor), all costs for which are borne onritieat path. Consequently, the sched-
uler for Cilk-5 postpones as much of the scheduling cost asible to when work is being stolen,
thereby removing it as a contributor to work overhead. Thigtsgy of amortizing costs against
steal attempts permeates virtually every decision madeeigésign of the scheduler.

2.4 Example Cilk algorithms

In this section, we give example Cilk algorithms for matrixliiplication and sorting, and analyze
their work and critical-path length. The matrix multipliea algorithm multiplies twar x n ma-
trices using®(n3) work with critical-path lengtt® (1g n). The sorting algorithm sorts an array of
n elements using world(n 1g n) with a critical-path length 0®(lg3 n). The parallelism of these
algorithms is ampleR = ©(n3/1g®n) andP = ©(n/1g? n) respectively). Since Cilk executes a
program efficiently wheneveP < P, these algorithms are thus good candidates for portabte hig
performance. In this section, we focus on the theoreticalyais of these algorithms. We will see
in Section 2.7 that they also perform well in practice.

We start with thenatrixmul matrix multiplication algorithm from [27]. To multiply the x n
matrix A by similar matrix3, matrixmul divides each matrix into fout/2 x n/2 submatrices and

28

uses the identity

A A
Az A

Bi1 Bia
By1 B

AnBii An B
A91B11 A2 B2

A12B21 A12Ba
A2 By AzpBa

The idea ofmatrixmul is to recursively compute the 8 products of the submatri¢ed and B
in parallel, and then add the subproducts together in paifsrin the result using recursive matrix
addition. In the base case= 1, matrixmul computes the product directly.

Figure 2-4 shows Cilk code for an implementationmaftrixmul that multiplies two square
matricesA andB yielding the output matri®. The Cilk procedurematrixmul takes as arguments
pointers to the first block in each matrix as well as a variabtenoting the size of any row or
column of the matrices. Asatrixmul executes, values are stored iRt@s well as into a temporary
matrix tmp.

Both the work and the critical-path length festrixmul can be computed using recurrences.
The workT? () to multiply n x n» matrices satisfies the recurreritgn) = 817 (n/2)+0(n?), since
addition of two matrices can be done usiign?) computational work, and thugj (n) = O(n?).

To derive a recurrence for the critical-path leng@th(n), we observe that with an infinite number of
processors, only one of the 8 submultiplications is theldréck, because the 8 multiplications can
execute in parallel. Consequently, the critical-path terii (n) satisfiesIx,(n) = Too(n/2) +
©(lgn), because the parallel addition can be accomplished reelysiith a critical path of length
O(lgn). The solution to this recurrence T, (n) = O(Ig?n).

Algorithms exist for matrix multiplication with a shorteritical-path length. Specifically, two
n x m matrices can be multiplied usir(n?) work with a critical-path o0 (Ig) [98], which is
shorter thamatrixmul’s critical path. As we will see in Chapter 3, however, membigrarchy
considerations play a role in addition to work and criticattpin the design of portable high-
performance algorithms. In Chapter 3 we will prove thatrixmul uses the memory hierarchy
efficiently, and in fact we will argue thatatrixmul should be the preferred way to code even a
sequentiabrogram.

We now discuss the Cilksort parallel sorting algorithm, ethis a variant of ordinary mergesort.
Cilksort is inspired by [10]. Cilksort begins by dividing amray of elements into two halves, and
it sorts each half recursively in parallel. It then mergestihio sorted halves back together, but in
a divide-and-conquer approach rather than with the usuil seerge. Say that we wish to merge
sorted arraysd and B. Without loss of generality, assume thétis larger thanB. We begin by
dividing array A into two halves, lettingd; denote the lower half and, the upper. We then take
the middle element afl and use a binary search to discover where that element sfitinkd array

29

1 cilk void matrixmul(int n, float *A,

float *B,
float *R)
2 {
3 if (n == 1)
4 *R = %A * *B;
5 else {
6 float *A11,*A12,*%A21,*%A22,%B11,*B12,*B21,*B22;
7 float *A11B11,*xA11B12,*A21B11,*A21B12,
*A12B21,*A12B22,*xA22B21,*A22B22;

8 float tmp[n*n];

/* get pointers to input submatrices */
9 partition(n, A, &All, &A12, &A21, &A22);
10 partition(n, B, &B11l, &B12, &B21, &B22);

/* get pointers to result submatrices */
11 partition(n, R, &A11B11, &A11B12, &A21B11, &A21B12);
12 partition(n, tmp, &A12B21, &A12B22, &A22B21, &A22B22);

/* solve subproblems recursively */
13 spawn matrixmul(n/2, A11, B11l, A11B11);
14 spawn matrixmul(n/2, A11, B12, A11B12);
15 spawn matrixmul(n/2, A21, B12, A21B12);
16 spawn matrixmul(n/2, A21, B1l1l, A21B11);
17 spawn matrixmul(n/2, A12, B21, A12B21);
18 spawn matrixmul(n/2, A12, B22, A12B22);
19 spawn matrixmul(n/2, A22, B22, A22B22);
20 spawn matrixmul(n/2, A22, B21, A22B21);
21 sync;

/* add results together into R */
22 spawn matrixadd(n, tmp, R);
23 sync;
24 }
25 return;
26}

Figure 2-4: Cilk code for recursive matrix multiplication.

30

B. This search yields a division of arrdy into subarrays3; and B;. We then recursively merge
A; with By and A, with By in parallel and concatenate the results, which yields tisérei® fully
merged version oft andB.

To analyze work and critical path of Cilksort, we first anaythe merge procedure. Letbe
the total size of the two arrayd and B. The merge algorithm splits a problem of sizento
two problems of size:; andng, wheren; + ny = n andmax {ni,n2} < (3/4)n, and it uses
O(lgn) work for the binary search. The work recurrence is therefaie) = 71 (n1) + 11 (n2) +
O(lgn), whose solution i1 (n) = ©(n). The critical path recurrence is given . (n) =
Too(max {ni,n2}) + O(lgn), because the two subproblems can be solved in parallel byt th
must both wait for the binary search to complete. Consetyyethe critical path for merging is
Two(n) = O(lg n).

We now analyze Cilksort using the analysis of the merge phaee Cilksort splits a problem of
sizen into two subproblems of size/2, and merges the results. The work recurrencg (&) =
2T1(n/2) + ©(n), where®©(n) work derives from the merge procedure. Similarly, the caitpath
recurrence i€, (n) = Two(n/2) + O(lg? n), whereO(Ig? n) is the critical path of the merge step.
We conclude that Cilksort has wofk(n Ign) and critical patr® (1g> 7).

Cilksort is a simple algorithm that works well in practicé uses optimal work, and its critical
path is reasonably short. As we will see in Section 2.7, Gitkis only about 20% slower than
optimized sequential quicksort, and its parallelism is enibvan 1000 fon =4,100,000. Cilksort
thus qualifies as a portable high-performance parallelrdbgn. A drawback of Cilksort is that
it does not use the memory hierarchy optimally. In Chaptere3will discuss more complicated
sorting algorithms that are optimal in this sense.

2.5 Cilk’'s compilation strategy

This section describes how ouflk2c compiler generates C postsource from a Cilk program. As
dictated by the work-first principle, our compiler and salled are designed to reduce the work
overhead as much as possible. Our strategy is to generateldwes of each procedure—fast
clone and alowclone. The fast clone operates much as does the C elisioneadtle support for
parallelism. The slow clone has full support for paralleljsalong with its concomitant overhead.
In the rest of this section, we first describe the Cilk schiedualgorithm. Then, we describe how
the compiler translates the Cilk language constructs inttedor the fast and slow clones of each
procedure. Lastly, we describe how the runtime system lingsther the actions of the fast and
slow clones to produce a complete Cilk implementation. Wesay, somewhat informally, that in
Cilk the fast clone takes care of high-performance, sinceris with minimal overhead, while the
slow clone takes care of portability, since it allows pai&in to be exploited.

As in lazy task creation [112], in Cilk-5 each processor lézhlaworker) maintains aready

31

deque(doubly-ended queue) of ready procedures (technicalbcguture instances). Each deque
has two ends, headand atail, from which procedures can be added or removed. A workeabger
locally on the tail of its own deque, treating it much as Ctsaes call stack, pushing and popping
spawned activation frames. When a worker runs out of workedomes dhief and attempts to
steal a procedure another worker, calledvitdim. The thief steals the procedure from the head of
the victim’s deque, the opposite end from which the victimvggking.

When a procedure is spawned, the fast clone runs. Whendvief ateals a procedure, however,
the procedure is converted into a slow clone. The Cilk scleedyuarantees that the number of
steals is small when sufficient slackness exists, and thusxyect the fast clones to be executed
most of the time. Thus, the work-first principle reduces taimizing costs in the fast clone, which
contribute more heavily to work overhead. Minimizing cdstthe slow clone, although a desirable
goal, is less important, since these costs contribute leasilly to work overhead and more to
critical-path overhead.

We minimize the costs of the fast clone by exploiting theddtrce of the Cilk scheduler. Because
we convert a procedure to its slow clone when it is stolen, \&tain the invariant that a fast clone
has never been stolen. Furthermore, none of the desceralantast clone have been stolen either,
since the strategy of stealing from the heads of ready deguasantees that parents are stolen
before their children. As we will see, this simple fact allomany optimizations to be performed in
the fast clone.

We now describe how owrilk2c compiler generates postsource C code forfthie procedure
from Figure 2-1. An example of the postsource for the fagtelof£ib is given in Figure 2-5. The
generated C code has the same general structure as theo@,eliih a few additional statements.
In lines 4-5, aractivation frameis allocated forfib and initialized. The Cilk runtime system uses
activation frames to represent procedure instances. Wsatgiques similar to [72, 73], our inlined
allocator typically takes only a few cycles. The frame igidized in line 5 by storing a pointer to
a static structure, called a signature, descrilfibb.

The first spawn infib is translated into lines 12-18. In lines 12-13, the statehefftib
procedure is saved into the activation frame. The savee istelides the program counter, encoded
as an entry number, and all live, dirty variables. Then, theg is pushed on the runtime deque in
lines 14-1% Next, we call thefib routine as we would in C. Because thgawn Sstatement itself
compiles directly to its C elision, the postsource can ekpie optimization capabilities of the C
compiler, including its ability to pass arguments and neeeeturn values in registers rather than in
memory.

After £ib returns, lines 17-18 check to see whether the parent proeddis been stolen. If
it has, we return immediately with a dummy value. Since alihef ancestors have been stolen as

bIf the shared memory is not sequentially consistent, a mgrfemce must be inserted between lines 14 and 15 to
ensure that the surrounding writes are executed in the pooger.

32

int fib (int n)

1
2 {
3 fib_frame *f; frame pointer
4 f = alloc(sizeof (¥f)); allocate frame
5 f->sig = fib_sig; initialize frame
6 if (n<2) {
7 free(f, sizeof (xf)); free frame
8 return n;
9 }
10 else {
11 int x, y;
12 f->entry = 1; save PC
13 f->n = n; save live vars
14 *T = f; store frame pointer
15 push(); push frame
16 x = fib (n-1); do C call
17 if (pop(x) == FAILURE) pop frame
18 return 0; frame stolen
19 e second spawn
20 ; sync is free!
21 free(f, sizeof (xf)); free frame
22 return (x+y);
23 }
24}

Figure 2-5. The fast clone generated lyi1k2c for the £ib procedure from Figure 2-1. The code for
the second spawn is omitted. The functi@ldoc andfree are inlined calls to the runtime system'’s fast
memory allocator. The signatufeéb_sig contains a description of thib procedure, including a pointer to
the slow clone. Theush andpop calls are operations on the scheduling deque and are dedéniletail in
Section 2.6.

33

well, the C stack quickly unwinds and control is returnedhe tuntime system.The protocol to
check whether the parent procedure has been stolen is gbitile-s-we postpone discussion of its
implementation to Section 2.6. If the parent procedure lmideaen stolen, it continues to execute
at line 19, performing the second spawn, which is not shown.

In the fast clone, alkync statements compile to no-ops. Because a fast clone nevemlyas
children when it is executing, we know at compile time thatpakviously spawned procedures
have completed. Thus, no operations are required fgma statement, as it always succeeds. For
example, line 20 in Figure 2-5, the translation of thec statement is just the empty statement.
Finally, in lines 21-22f1ib deallocates the activation frame and returns the competadtrto its
parent procedure.

The slow clone is similar to the fast clone except that it pfes support for parallel execution.
When a procedure is stolen, control has been suspendeddretwe of the procedure’s threads,
that is, at a spawn or sync point. When the slow clone is reduineses goto statement to restore
the program counter, and then it restores local variable $tam the activation frame. Apawn
statement is translated in the slow clone just as in the fasec For async statementcilk2c
inserts a call to the runtime system, which checks to seehehdiie procedure has any spawned
children that have not returned. Although the parallel heelping in a slow clone is substantial, it
contributes little to work overhead, since slow clones arely executed.

The separation between fast clones and slow clones alsesalls to compile inlets and abort
statements efficiently in the fast clone. An inlet call colmpias efficiently as an ordinary spawn.
For example, the code for the inlet call from Figure 2-3 cdeysimilarly to the following Cilk
code:

tmp = spawn fib(n-1);

summer (tmp) ;

Implicit inlet calls, such ag += spawn fib(n-1), compile directly to their C elisions. Asbort
statement compiles to a no-op just asyac statement does, because while it is executing, a fast
clone has no children to abort.

The runtime system provides the glue between the fast amddtmes that makes the whole
system work. It includes protocols for stealing procedureturning values between processors,
executing inlets, aborting computation subtrees, andikiee IAll of the costs of these protocols
can be amortized against the critical path, so their overldeas not significantly affect the running
time when sufficient parallel slackness exists. The pomibtihe stealing protocol executed by the
worker contributes to work overhead, however, thereby avdimg a careful implementation. We
discuss this protocol in detail in Section 2.6.

"Theset jmp/longjmp facility of C could have been used as well, but our unwinditigtegy is simpler.

34

The work overhead of apawn in Cilk-5 is only a few reads and writes in the fast clone—
3 reads and 5 writes for theib example. We will experimentally quantify the work overhead
in Section 2.7. Some work overheads still remain in our imaletation, however, including the
allocation and freeing of activation frames, saving statf®te a spawn, pushing and popping of the
frame on the deque, and checking if a procedure has beem.stdlgortion of this work overhead
is due to the fact that Cilk-5 is duplicating the work the C qiler performs, but as Section 2.7
shows, this overhead is small. Although a production Cilknpder might be able eliminate this
unnecessary work, it would likely compromise portability.

In Cilk-4, the precursor to Cilk-5, we took the work-first peiple to the extreme. Cilk-4 per-
formed stack-based allocation of activation frames, stheework overhead of stack allocation is
smaller than the overhead of heap allocation. Because ¢t#utus stack” [113] semantics of the
Cilk stack® however, Cilk-4 had to manage the virtual-memory map on @acbessor explicitly,
as was done in [137]. The work overhead in Cilk-4 for framedtion was little more than that
of incrementing the stack pointer, but whenever the stadkt@ooverflowed a page, an expensive
user-level interrupt ensued, during which Cilk-4 would rifpdhe memory map. Unfortunately,
the operating-system mechanisms supporting these apesatiere too slow and unpredictable,
and the possibility of a page fault in critical sections ledcomplicated protocols. Even though
these overheads could be charged to the critical-path terpractice, they became so large that
the critical-path term contributed significantly to the ming time, thereby violating the assump-
tion of parallel slackness. A one-processor execution abgnam was indeed fast, but insufficient
slackness sometimes resulted in poor parallel performance

In Cilk-5, we simplified the allocation of activation framleg simply using a heap. In the com-
mon case, a frame is allocated by removing it from a frees@llocation is performed by inserting
the frame into the free list. No user-level management afi@lrmemory is required, except for the
initial setup of shared memory. Heap allocation contributely slightly more than stack allocation
to the work overhead, but it saves substantially on thecatipath term. On the downside, heap allo-
cation can potentially waste more memory than stack allmcatue to fragmentation. For a careful
analysis of the relative merits of stack and heap basedaditwcthat supports heap allocation, see
the paper by Appel and Shao [13]. For an equally careful aiatiiat supports stack allocation, see
[110].

Thus, although the work-first principle gives a general us@ading of where overheads should
be borne, our experience with Cilk-4 showed that large ehauigical-path overheads can tip the
scales to the point where the assumptions underlying timeipte no longer hold. We believe that
Cilk-5 work overhead is nearly as low as possible, given @mal @f generating portable C output

8Suppose a procedure A spawns two children B and C. The twdrehikan reference objects in A's activation frame,
but B and C do not see each other’s frame.

35

from our compile? Other researchers have been able to reduce overheads exernowever, at
the expense of portability. For example, lazy threads [®8dims efficiency at the expense of imple-
menting its own calling conventions, stack layouts, et¢héligh we could in principle incorporate
such machine-dependent techniques into our compiler, @létfat Cilk-5 strikes a good balance be-
tween performance and portability. We also feel that theeriiroverheads are sufficiently low that
other problems, notably minimizing overheads for data Byonization, deserve more attention.

2.6 Implementation of work-stealing

In this section, we describe Cilk-5's work-stealing medbham which is based on a Dijkstra-like
[46], shared-memory, mutual-exclusion protocol called tHHE” protocol. In accordance with
the work-first principle, this protocol has been designethiieimize work overhead. For example,
on a 167-megahertz UltraSPARC I, théb program with the THE protocol runs about 25% faster
than with hardware locking primitives. We first present aified version of the protocol. Then,
we discuss the actual implementation, which allows exoeptito be signaled with no additional
overhead.

Several straightforward mechanisms might be consideréagtement a work-stealing proto-
col. For example, a thief might interrupt a worker and demattdntion from this victim. This
strategy presents problems for two reasons. First, the amésiins for signaling interrupts are slow,
and although an interrupt would be borne on the critical pigharge cost could threaten the as-
sumption of parallel slackness. Second, the worker woutésgarily incur some overhead on the
work term to ensure that it could be safely interrupted initical section. As an alternative to
sending interrupts, thieves could post steal requestswankers could periodically poll for them.
Once again, however, a cost accrues to the work overheadtirtiné for polling. Techniques are
known that can limit the overhead of polling [50], but theyu&e the support of a sophisticated
compiler.

The work-first principle suggests that it is reasonable tbuibstantial effort into minimiz-
ing work overhead in the work-stealing protocol. Since &Gilks designed for shared-memory
machines, we chose to implement work-stealing througheshiaremory, rather than with message-
passing, as might otherwise be appropriate for a distribatemory implementation. In our im-
plementation, both victim and thief operate directly tighishared memory on the victim’s ready
deque. The crucial issue is how to resolve the race conditiaharises when a thief tries to steal
the same frame that its victim is attempting to pop. One sngallution is to add a lock to the
deque using relatively heavyweight hardware primitivke [Compare-And-Swap or Test-And-Set.
Whenever a thief or worker wishes to remove a frame from tlygiegit first grabs the lock. This

®Although the runtime system requires some effort to poriveen architectures, the compiler requires no changes
whatsoever for different platforms.

36

solution has the same fundamental problem as the interngipalling mechanisms just described,
however. Whenever a worker pops a frame, it pays the heagg fwrigrab a lock, which contributes
to work overhead.

Consequently, we adopted a solution that employs Dijkspredtocol for mutual exclusion [46],
which assumes only that reads and writes are atomic. Becaugeotocol uses three atomic shared
variablesT, H, andE, we call it theTHE protocol. The key idea is that actions by the worker on
the tail of the queue contribute to work overhead, whileamdiby thieves on the head of the queue
contribute only to critical-path overhead. Therefore,én@dance with the work-first principle, we
attempt to move costs from the worker to the thief. To art#teanong different thieves attempting to
steal from the same victim, we use a hardware lock, sincetigighead can be amortized against the
critical path. To resolve conflicts between a worker and the thief holding the lock, however, we
use a lightweight Dijkstra-like protocol which contribateninimally to work overhead. A worker
resorts to a heavyweight hardware lock only when it encoaraa actual conflict with a thief, in
which case we can charge the overhead that the victim inoutsetcritical path.

In the rest of this section, we describe the THE protocol iraidleWe first present a simplified
protocol that uses only two shared variabfesndH designating the tail and the head of the deque,
respectively. Later, we extend the protocol with a thirdialsle E that allows exceptions to be
signaled to a worker. The exception mechanism is used toeimgaht Cilk’sabort statement.
Interestingly, this extension does not introduce any amttid work overhead.

The pseudocode of the simplified THE protocol is shown in FEget6. Assume that shared
memory is sequentially consistent [96].The code assumes that the ready deque is implemented
as an array of frames. The head and tail of the deque are de&etimy two indice§ andH, which
are stored in shared memory and are visible to all proces$besindexT points to the first unused
element in the array, and points to the first frame on the deque. Indices grow from thedhe
towards the tail so that under normal conditions, we HaveH. Moreover, each deque has a lack
implemented with atomic hardware primitives or with OS gall

The worker uses the deque as a stack. (See Section 2.5.eBeafedwn, it pushes a frame onto
the tail of the deque. After apawn, it pops the frame, unless the frame has been stolen. A thief
attempts to steal the frame at the head of the deque. Onlyhéfeat the time may steal from the
deque, since a thief gralhsas its first action. As can be seen from the code, the workersaltout
notH, whereas the thief only incremertsand does not alter.

The only possible interaction between a thief and its viaitours when the thief is increment-
ing H while the victim is decrementing. Consequently, it is always safe for a worker to append
a new frame at the end of the deqga<h) without worrying about the actions of the thief. For a

10If the shared memory is not sequentially consistent, a meifesce must be inserted between lines 5 and 6 of the
worker/victim code and between lines 3 and 4 of the thief dcodmsure that these instructions are executed in the proper
order.

37

Worker/Victim Thief

1 push() { 1 steal() {
2 T++; 2 lock(L);
3 3 H++;
4 if (H>T) {
4 popO) { 5 H——;
5 T--; 6 unlock(L);
6 if (H>T) { 7 return FAILURE;
7 T++; 8 }
8 lock(L); 9 unlock(L);
9 T--; 10 return SUCCESS;
10 if (H>T) { 11 %
11 T++;
12 unlock(L);
13 return FAILURE;
14 }
15 unlock(L);
16 }
17 return SUCCESS;
18 %}

Figure 2-6. Pseudocode of a simplified version of the THE protocol. THigpart of the figure shows the
actions performed by the victim, and the right part showsatttens of the thief. None of the actions besides
reads and writes are assumed to be atomic. For example, can be implemented asip = T; tmp =
tmp - 1; T = tmp;.

pop operation, there are three cases, which are shown in Figudreli2 case (a), the thief and the
victim can both obtain a frame from the deque. In case (b)d#wie contains only one frame. If
the victim decrement$ without interference from thieves, it gets the frame. Samy, a thief can
steal the frame as long as its victim is not trying to obtairfiboth the thief and the victim try to
grab the frame, however, the protocol guarantees that sttdée@ of them discovers that> T. If
the thief discovers that > T, it restoredl to its original value and retreats. If the victim discovers
thatH > T, it restoredT to its original value and restarts the protocol after haéoguired.. With L
acquired, no thief can steal from this deque so the victimpzgnthe frame without interference (if
the frame is still there). Finally, in case (c) the deque ipsmif a thief tries to steal, it will always
fail. If the victim tries to pop, the attempt fails and contreturns to the Cilk runtime system. The
protocol cannot deadlock, because each process holds malpck at a time.

We now argue that the THE protocol contributes little to therkwoverhead. Pushing a frame
involves no overhead beyond updatifig In the common case where a worker can successfully
pop a frame, the pop protocol performs only 6 operations—gharg loads, 1 memory store, 1
decrement, 1 comparison, and 1 (predictable) conditiorexddn. Moreover, in the common case
where no thief operates on the deque, Bb#NdT can be cached exclusively by the worker. The
expensive operation of a worker grabbing the lackccurs only when a thief is simultaneously

38

1 Thief

4 l H H=T

6 T Victim

(@) (b) (©

Figure 2-7. The three cases of the ready deque in the simplified THE pobtécdark entry indicates the
presence of a frame at a certain position in the deque. Trebdrahthe tail are marked lyandH.

trying to steal the frame being popped. Since the numbereaf sttempts depends @R, not on
T1, the relatively heavy cost of a victim grabbingcan be considered as part of the critical-path
overhead:,, and does not influence the work overhead

We ran some experiments to determine the relative perfarenahthe THE protocol versus
the straightforward protocol in whicpop just locks the deque before accessing it. On a 200-
megahertz Pentium Pro running Linux aget 2.7.1, the THE protocol is only about 5% faster than
the locking protocol. This machine’s memory model requitet a memory fence instruction be
inserted between lines 5 and 6 of thep pseudocode. On this processor, the THE protocol spends
about half of its time in the memory fence. On a 167-megahgittaSPARC |, however, the THE
protocol is about 25% faster than the simple locking pratobothis case we tried to quantify the
performance impact of the memory fenaibar) instruction, too, but in all our experiments the
execution times of the code with and withauimbar are about the same.

In addition to this performance advantage, because iteceplbbcks with memory synchroniza-
tion, the THE protocol is more “nonblocking” than a straiginvard locking protocol. Conse-
quently, the THE protocol is less prone to problems thatasisen spin locks are used extensively.
For example, even if a worker is suspended by the operatstgrsyduring the execution gbp, the
infrequency of locking in the THE protocol means that a tifi usually complete a steal operation
on the worker’s deque. Recent work by Arora et al. [14] haswshihat a completely nonblocking
work-stealing scheduler can be implemented. Using thesasidLisiecki and Medina [101] have

39

Program Size T, To P T T /Ts Ts/Ts
fib 35 12.77 0.0005 25540 3.63 1.60 8.0 2.2
blockedmul 1024 29.9 0.0044 6730 1.05 4.3 7.0 6.6
notempmul 1024 29.7 0.015 1970 1.05 3.9 7.6 7.2
strassen 1024 20.2 0.58 35 1.01 3.54 5.7 5.6
*cilksort 4,100, 000 5.4 0.0049 1108 1.21 0.90 6.0 5.0
tqueens 22 150. 0.0015 96898 0.99 18.8 8.0 8.0
tknapsack 30 75.8 0.0014 54143 1.03 9.5 8.0 7.7
lu 2048 155.8 0.42 370 1.02 20.3 7.7 7.5
*cholesky BCSSTK32 | 1427. 3.4 420 1.25 208. 6.9 5.5
heat 4096 x 512 62.3 0.16 384 1.08 9.4 6.6 6.1
fft 2%0 4.3 0.0020 2145 0.93 0.77 5.6 6.0
barnes-hut 216 124. 0.15 853 1.02 16.5 7.5 7.4

Figure 2-8. The performance of example Cilk programs. Times are in sgsand are accurate to within
about 10%. The serial programs are C elisions of the Cilk ranmg, except for those programs that are
starred (*), where the parallel program implements a difféalgorithm than the serial program. Programs
labeled by a dagget) are nondeterministic, and thus, the running time on onegasor is not the same as
the work performed by the computation. For these progradmesyalue forT; indicates the actual work of the
computation on 8 processors, and not the running time on mu@gsor.

modified the Cilk-5 scheduler to make it completely nonbingk Their experience is that the THE
protocol greatly simplifies a nonblocking implementation.

The simplified THE protocol can be extended to support thesadigg of exceptions to a worker.
In Figure 2-6, the inde¥ plays two roles: it marks the head of the deque, and it markptint
that the worker cannot cross when it pops. These places iddghee need not be the same. In
the full THE protocol, we separate the two functionsHahto two variables:H, which now only
marks the head of the deque, ehdvhich marks the point that the victim cannot cross. Wheneve
E > T, some exceptional condition has occurred, which includedrame being stolen, but it can
also be used for other exceptions. For example, seltirg oo causes the worker to discover the
exception at its next pop. In the new protodoteplacedl in line 6 of the worker/victim. Moreover,
lines 7-15 of the worker/victim are replaced by a call toexeption handlerto determine the
type of exception (stolen frame or otherwise) and the prepéon to perform. The thief code is
also modified. Before trying to steal, the thief incrememtdf there is nothing to steal, the thief
restore<t to the original value. Otherwise, the thief steals fraftand incrementd. From the point
of view of a worker, the common case is the same as in the digtplprotocol: it compares two
pointers E andT rather tharH andT).

The exception mechanism is used to implem&strt. When a Cilk procedure executes an
abort instruction, the runtime system serially walks the tree aiistanding descendants of that
procedure. It marks the descendants as aborted and signalsoa exception on any processor
working on a descendant. At its nexdp, an aborted procedure will discover the exception, notice
that it has been aborted, and return immediately. It is deabk that a procedure could run for a

40

long time without executing gop and discovering that it has been aborted. We made the design
decision to accept the possibility of this unlikely sceaafiguring that more cycles were likely to

be lost in work overhead if we abandoned the THE protocol imeahanism that solves this minor
problem.

2.7 Benchmarks

In this section, we evaluate the performance of Cilk-5. Wansthat on 12 applications, the work
overheadc; is close to 1, which indicates that the Cilk-5 implementataxploits the work-first
principle effectively and achieves the goal of “scaling déwo 1 processor. We then present a
breakdown of Cilk's work overheagl on four machines. Finally, we present experiments showing
that Cilk applications “scale up” as well, and that the cédtipath overhead,, is reasonably small.
Our experiments show that Cilk delivers both high perforoeaand portability, at least on the SMP
machines targeted by the Cilk-5 implementation.

Figure 2-8 shows a table of performance measurements taket? fCilk programs on a Sun
Enterprise 5000 SMP with 8 167-megahertz UltraSPARC prmreseach with 512 kilobytes of L2
cache, 16 kilobytes each of L1 data and instruction caclesimg Solaris 2.5. We compiled our
programs withgcc 2.7.2 at optimization levet03. For a full description of these programs, see the
Cilk 5.1 manual [38]. The table shows the work of each CilkgueanT', the critical pathl,,, and
the two derived quantitie® andc;. The table also lists the running tinfg on 8 processors, and
the speedufi’; /T relative to the one-processor execution time, and spe@g((ps relative to the
serial execution time.

For the 12 programs, the parallelismis in most cases quite large relative to the number of
processors on a typical SMP. These measurements validagssumption of parallel slackness,
which implies that the work term dominates in Inequality4}2. For instance, oi024 x 1024
matricesnotempmul runs with a parallelism of 970—yielding adequate parallel slackness for up
to several hundred processors. For even larger machinesyaymally would not run such a small
problem. Fomotempmul, as well as the other 11 applications, the parallelism gneitls problem
size, and thus sufficient parallel slackness is likely t@egven for much larger machines, as long
as the problem sizes are scaled appropriately.

The work overhead; is only a few percent larger thahfor most programs, which shows
that, by faithfully implementing the work-first principl€ilk-5 does not introduce significant over-
heads when sequential programs are parallelized. The teasashere the work overhead is larger
(cilksort andcholesky) are due to the fact that we had to change the serial algotithobtain
a parallel algorithm, and thus the comparison is not agaivestC elision. For example, the serial
C algorithm for sorting is an in-place quicksort, but theghiat algorithmcilksort requires an
additional temporary array which adds overhead beyondvbehead of Cilk itself. Similarly, our

41

466 MHz

Alpha 21164
200 MHz
Pentium Pro
167 MHz O THE protocol
Ultra SPARC | O frame allocation
B state saving
195 MHz aC
MIPS R10000
0 1 2 3 4 5 6 7

overheads

Figure 2-9: Breakdown of overheads farib running on one processor on various architectures. The
overheads are normalized to the running time of the seridiside. The three overheads are for saving the
state of a procedure before a spawn, the allocation of dictivicames for procedures, and the THE protocol.
Absolute times are given for the per-spawn running time ef@helision.

parallel Cholesky factorization uses a quadtree reprasentof the sparse matrix, which induces
more work than the linked-list representation used in thials€ algorithm. Finally, the work over-
head forfib is large, becauseib does essentially no work besides spawning procedures., Thus
the overhead; = 3.63 for £ib gives a good estimate of the cost of a Gilkawn versus a tradi-
tional C function call. With such a small overhead for spawgione can understand why for most
of the other applications, which perform significant work éach spawn, the overhead of Cilk-5's
scheduling is barely noticeable compared to the 10% “naiseur measurements.

We now present a breakdown of Cilk’s serial overheauhto its components. Because schedul-
ing overheads are small for most programs, we perform ouysisawith thefib program from
Figure 2-1. This program is unusually sensitive to schedutiverheads, because it contains little
actual computation. We give a breakdown of the serial owathito three components: the over-
head of saving state before spawning, the overhead of siigcactivation frames, and the overhead
of the THE protocol.

Figure 2-9 shows the breakdown of Cilk's serial overhead£ffos on four machines. Our
methodology for obtaining these numbers is as follows. tFve take the serial @ib program
and time its execution. Then, we individually add in the cttl generates each of the overheads
and time the execution of the resulting program. We atteilihe additional time required by the
modified program to the scheduling code we added. In ordeetiyvour numbers, we timed the
fib code with all of the Cilk overheads added (the code shown guiréi 2-5), and compared the
resulting time to the sum of the individual overheads. Incalies, the two times differed by less
than 10%.

Overheads vary across architectures, but the overheadlois@ypically only a few times the
C running time on this spawn-intensive program. Overheads® Alpha machine are particularly

42

o
5
o
(]
(O]
o
U) -
©
(0]
N 0.1F .
= :
S : Experimental data -]
z [Model T} /P + T, 1
i ~ Work bound----- .
- Critical path bound- - - - - - i
0.01 1 1 Lol 1 1 L1 el 1 1 1 L1
0.01 0.1 1 10

Normalized Machine Size

Figure 2-10. Normalized speedup curve for Cilk-5. The horizontal axighis numbet” of processors and
the vertical axis is the speeddp/Tp, but each data point has been normalized by dividin@4{ . The
graph also shows the speedup predicted by the forffipla 77 /P + T

large, because its native C function calls are fast comptardkde other architectures. The state-
saving costs are small fdib, because all four architectures have write buffers thathede the
latency of the writes required.

We also attempted to measure the critical-path overligad We used the synthetiknary
benchmark [29] to synthesize computations artificiallyhwatwide range of work and critical-path
lengths. Figure 2-10 shows the outcome from many such erpets. The figure plots the measured
speedugl} /Tp for each run against the machine siZefor that run. In order to plot different
computations on the same graph, we normalized the machi@asd the speedup by dividing these
values by the parallelisn? = T} /T, as was done in [29]. For each run, the horizontal position of
the plotted datum is the inverse of the slacknBg#’, and thus, the normalized machine sizé.is
when the number of processors is equal to the parallelisra vé&tical position of the plotted datum
is (T} /Tp) /P = T /Tp, which measures the fraction of maximum obtainable speetisigan be
seen in the chart, for almost all runs of this benchmark, weepled?’» < T} /P + 1.0T. (One
exceptional data point satisfi§® ~ 71/P + 1.05T.) Thus, although the work-first principle
caused us to move overheads to the critical path, the abfliGilk applications to scale up was not
significantly compromised.

2.8 Related work

Mohr et al.[112] introduced lazy task creation in their implementataf the Mul-T language. Lazy
task creation is similar in many ways to our lazy scheduleghhiques. Mohet al. report a work

43

overhead of arounl when comparing with serial T, the Scheme dialect on which-Wig based.
Our research confirms the intuition behind their methodsstuoavs that work overheads of close to
1 are achievable.

The Cid language [118] is like Cilk in that it uses C as a basguage and has a simple pre-
processing compiler to convert parallel Cid constructs.t€d is designed to work in a distributed
memory environment, and so it employs latency-hiding mecmas which Cilk-5 could avoid.
Both Cilk and Cid recognize the attractiveness of basingrallehlanguage on C so as to leverage
C compiler technology for high-performance codes. Cilkfaithful extension of C, however, sup-
porting the simplifying notion of a C elision and allowinglkCto exploit the C compiler technology
more readily.

TAM [45] and Lazy Threads [68] also analyze many of the sansgtmead issues in a more gen-
eral, “nonstrict” language setting, where the individuatfprmances of a whole host of mechanisms
are required for applications to obtain good overall penfance. In contrast, Cilk’s multithreaded
language provides an execution model based on work andatttath length that allows us to fo-
cus our implementation efforts by using the work-first pifhes. Using this principle as a guide, we
have concentrated our optimizing effort on the common-gastocol code to develop an efficient
and portable implementation of the Cilk language.

2.9 Conclusion

Cilk is the superior programming tool
of choice for discriminating hackers.

(Directors of the ICFP’98 Programming Contest)

The Cilk system that we discussed in this chapter effegtiséhins portable high-performance
of parallel programs. Cilk achieves high performance bseani a provably efficient parallel sched-
uler and an implementation aimed at the systematic reducficommon-case overheads. Rather
than determining the common case experimentally, we dirilie work-first principle, which
guides the optimization effort of the system.

Cilk attains portability because of a clean language andgorithmic performance model that
predicts the execution time of a program in terms of work antical-path length. Both these
measures can be analyzed with well-known techniques fromertional algorithmic analysis, and
the critical-path length is really not more difficult to aymé than the work. In this way, we can
design algorithms for portability by choosing an algoritkvith the most appropriate work and/or
critical path.

44

The simplicity of the Cilk language contributes to portéabibecause a C user does not need to
learn too many linguistic constructs in order to write a flakgrogram. Like users of high-level
languages such as Multilisp [75], Mul-T [94], Id [119], pH1[Z], NESL [23], ZPL [34], and High
Performance Fortran [93, 80], a Cilk user is not expectedriteyprotocols. With message-passing
systems such as MPI [134] and PVM [62], on the contrary, anamogner must write protocols and
worry about deadlocks and buffer overflows. Cilk is a “sinig@guage. Although simplicity is
hard to quantify, a simple language such as Cilk reduceshigiérs to entry” to parallelism and
opens an evolutionary path to a world where most programseann indifferently on parallel and

sequential machines.

45

Chapter 3

Cache-oblivious algorithms

With Cilk, as discussed in Chapter 2, we can design “procedsivious” algorithms and write
programs that run efficiently on any number of processordiénrange of interest. Cilk tackles
the problem of portable high performance from the point efawvbf how to cope with parallelism.
In this chapter, we focus on a complementary aspect of gdertagh performance, namely, how
to deal portably with the memory hierarchy. In this chapter farget about parallelism, and we
deal with sequential algorithms only. We shall attempt aadranification of these two topics in
Chapter 4.

This chapter is about optimahche-obliviousalgorithms, in which no variables dependent on
hardware parameters, such as cache size and cache-lirib, lapgd to be tuned to achieve opti-
mality. In this way, these algorithms are by design efficiamdl portable across different imple-
mentations of the memory hierarchy. We study asymptoyiagitimal cache-oblivious algorithms
for rectangular matrix transpose and multiplication, F&fd sorting on computers with multiple
levels of caching. For a cache with siZeand cache-line length whereZ = Q(L?) the number
of cache misses for am x n matrix transpose i®(1 + mn/L). The number of cache misses for
either am-point FFT or the sorting of numbers i9(1 + (n/L)(1 + log, n)). A straightforward
generalization of theatrixmul algorithm from Section 2.4 yields &i(mnp)-work algorithm to
multiply anm x n. matrix by ann x p matrix that incurgd (1 + (mn + np +mp) /L +mnp/ L/ Z)
cache faults.

The cache-oblivious algorithms we study are all divide-aadquer. In Cilk, divide and con-
guer is useful because it generates parallelism recuysseelthat the critical path of divide-and-
conquer algorithms is typically some polylogarithmic ftion of the work. For cache-oblivious
algorithms, divide-and-conquer plays the complementaley of splitting the original problem into
smaller problems that eventually fit into cache. Once thélpro is small enough, it can be solved

This chapter represents joint work with Charles Leiserbstarald Prokop, and Sridhar Ramachandran. A preliminary
version appears in [56].

46

Main

memory
Cache
nA
CPU 2
(D)
v 5
work &
3 Q
Y cache misses
e)
lines
of lengthL

Figure 3-1. The ideal-cache model

with the optimal number of cache misses—those required&d tiee input and write the output.
Because of these two effects, divide and conquer is a polaefign technique for portable high-
performance programs.

This chapter is entirely theoretical, and it lays down a fiation for understanding cache-
oblivious algorithms. As it is customary in theoretical éstigations in computer science, we will
focus on asymptotic analysis and disregard constant facWhile imperfect, this kind of analysis
offers insights on the principles underlying cache-oblig algorithms, so that we can apply similar
ideas to other problems. We will apply this theory of cachévious algorithms in Chapter 6 in the
context of FFTW's “register-oblivious” scheduler of Faerrtransform algorithms.

Before discussing the notion of cache obliviousness moeeiggly, we first introduce the
(Z, L) ideal-cache modeto study the cache complexity of algorithms. This model, alhis
illustrated in Figure 3-1, consists of a computer with a texel memory hierarchy consisting of
an ideal (data) cache ¢f words and an arbitrarily large main memory. Because theabstre of
words in a computer is typically a small, fixed size (4 bytebyts, etc.), we shall assume that the
word size is constant; the particular constant does nottadigr asymptotic analyses. The cache is
partitioned intocache lines each consisting of consecutive words that are always moved together
between cache and main memory. Cache designers typicallly us1, banking on spatial locality
to amortize the overhead of moving the cache line. We shakigdly assume that the cachda$:

Z =Q(L?), (3.1)

which is usually true in practice.
The processor can only reference words that reside in theecdfcthe referenced word belongs
to a line already in cache,aache hitoccurs, and the word is delivered to the processor. Otherwis

47

acache misoccurs, and the line is fetched into the cache. The idealecedhlly associative[79,
Ch. 5]: cache lines can be stored anywhere in the cache. tablee is full, a cache line must be
evicted. The ideal cache uses the optimal off-line stratdggplacing the cache line whose next
access is farthest in the future [18], and thus it exploitsgeral locality perfectly.

An algorithm with an input of sizes is measured in the ideal-cache model in terms ofvibsk
complexity W (n)—its conventional running time in a RAM model [8]—and @ache complexity
Q(n; Z, L)—the number of cache misses it incurs as a function of theZiaad line lengthL of
the ideal cache. Whed and L are clear from context, we denote the cache complexity aglgim
Q(n) to ease notation. The “world% measure in this chapter is the same as the “wiikineasure
from Chapter 2; we are switching notation because in thiptelave have no notion of parallelism
that justifies the notatioff’ .

The ideal-cache model glosses over the fact that most rehksaare not fully associative, they
do not employ the optimal replacement strategy, and theys@msetimes write-through. Never-
theless, this model is a good approximation to many reakryst For example, the register set of
a processor can be seen as a fully associative cache cedtlyllan omniscient compiler. In the
same way, an operating system that swaps memory pages toatisimortize the overheads of full
associativity against the expensive 1/0, and the optin@heement strategy can be simulated using
a least-recently-used (LRU) poliéy(See [133] and Section 3.5.) Furthermore, if an algorithmsdo
not run well with an ideal cache, it won't run well with a ledsn-ideal cache either, and thus the
model can be helpful to prove lower bounds. In this chaptndver, we are interested in proving
upper bound results on the cache complexity, and we asswahthéhideal-cache assumptions hold.

We define an algorithm to beache awardf it contains parameters (set at either compile-time
or runtime) that can be tuned to optimize the cache compldait the particular cache size and
line length. Otherwise, the algorithm ésiche oblivious Historically, good performance has been
obtained using cache-aware algorithms, but we shall exdglvieral cache-oblivious algorithms that
are asymptotically as efficient as their cache-aware copentes.

To illustrate the notion of cache awareness, consider thblgm of multiplying twon x n
matricesA and B to produce thei x n productC. We assume that the three matrices are stored
in row-major order, as shown in Figure 3-2(a). We furthemass thatrn is “big,” i.e. n > L
in order to simplify the analysis. The conventional way toltiply matrices on a computer with
caches is to use lalockedalgorithm [69, p. 45]. The idea is to view each matfik as consisting
of (n/s) x (n/s) submatricesV;; (the blocks), each of which has sizex s, wheres is a tuning
parameter. The following algorithm implements this siggte

1A write-through cache transmits writes to the next level of the memory higmaimmediately [79].

2page replacement in current operating systems is corstréipn the low associativity of the L2 cache, however. If
the page coloringtechnique [106] is used, the operating system improves ¢hedor of the L2 cache, but it cannot
implement the LRU policy exactly.

48

BLOCK-MULT (A4, B,C,n)

1 fori< 1ton/s

2 do forj < lton/s

3 do for k< 1ton/s

4 do ORD-MULT (A, Bkj, Cij, s)

where QRD-MULT (A4, B, C, s) is a subroutine that computés<«+ C + AB ons x s matrices
using the ordinary)(s*) algorithm. (This algorithm assumes for simplicity teagvenly divides:,
but in practices andn need have no special relationship, which yields more caragd code in
the same spirit.)

Depending on the cache size of the machine on whicbd-MULT is run, the parameter
can be tuned to make the algorithm run fast, and thusd@&-MULT is a cache-aware algorithm.
To minimize the cache complexity, we choasgo that the three x s submatrices simultaneously
fit in cache. Ans x s submatrix is stored o®(s + s?/L) cache lines. From the tall-cache as-
sumption (3.1), we can see that= ©(v/Z). Thus, each of the calls to @-MULT runs with
at mostZ/L = ©(s?/L) cache misses needed to bring the three matrices into the.caabn-
sequently, the cache complexity of the entire algorithn®{d + n?/L + (n/VZ)*(Z/L)) =
O(1 + n?/L + n3/LVZ), since the algorithm has to read elements, which reside om?/L]
cache lines.

The same bound can be achieved using a simple cache-obligigorithm that requires no
tuning parameters such as thén BLoCK-MuULT. We present such an algorithm, which works
on general rectangular matrices, in Section 3.1. The pnublef computing a matrix transpose
and of performing an FFT also succumb to remarkably simgerdhms, which are described in
Section 3.2. Cache-oblivious sorting poses a more fornédeliiallenge. In Sections 3.3 and 3.4,
we present two sorting algorithms, one based on mergesorthanother on distribution sort, both
which are optimal.

The ideal-cache model makes the perhaps questionable pisarthat memory is managed
automatically by amptimal cache replacement strategy. Although the current trendcinitacture
does favor automatic caching over programmer-specifielmdavement, Section 3.5 addresses this
concern theoretically. We show that the assumptions ofrendtierarchical memory model in the
literature, in which memory movement is programmed exihjicare actually no weaker than ours.
Specifically, we prove (with only minor assumptions) thatimgl cache-oblivious algorithms in
the ideal-cache model are also optimal in the serial unifaremory hierarchy (SUMH) model
[11, 148]. Section 3.6 discusses related work, and Sectibof8rs some concluding remarks.

49

3.1 Matrix multiplication

This section describes an algorithm for multiplyingranx n by ann x p matrix cache-obliviously
using® (mnyp) work and incurring® (1 + (mn +np + mp) /L +mnp/L\/Z) cache misses. These
results require the tall-cache assumption (3.1) for medgrigtored with in a row-major layout for-
mat, but the assumption can be relaxed for certain otheutaydVe also discuss Strassen’s algo-
rithm [138] for multiplying» x n matrices, which use®(n'8 ") work® and incurs9(1 + n?/L +
n'87/L\/Z) cache misses.

To multiply am x n matrix A and an x p matrix B, the algorithm halves the largest of the three
dimensions and recurs according to one of the followingeluases:

A AB
(a) AB: ! B: !)
Ay AyB
(b) AB:(A A) Bi) _ A B+ AB
1 2 32 1P1 202 ,

(© AB=A(B By)= (4B AB,).

In case (a), we have: > max {n,p}. Matrix A is split horizontally, and both halves are multiplied
by matrix B. In case (b), we have > max {m,p}. Both matrices are split, and the two halves
are multiplied. In case (c), we haye> max {m,n}. Matrix B is split vertically, and each half
is multiplied by A. For square matrices, these three cases together arelequiwathe recursive
multiplication algorithm described in [26]. The base caseuns whernmn = n = p = 1, in which
case the two elements are multiplied and added into thet resiix.

It can be shown by induction that the work of this algorithn®ignnp), the same as the stan-
dard matrix multiplication algorithm. Although this stghitforward divide-and-conquer algorithm
contains no tuning parameters, it uses cache optimally. nadyae the cache complexity of the
algorithm, we assume that the three matrices are storedvimrajor order, as shown in Figure 3-
2(a). We further assume that any row in each of the matrices dot fit in1 cache line, that is,
min {m,n,p} > L. (We omit the analysis of the general case because it doesffleotany new
insight. See [125] for the complete proof.)

The following recurrence describes the cache complexity:

O((mn +np + mp)/L) if (mn+np+mp) < aZ,
2Q(m/2,1,p) + O(1)

2Q(m,n/2,p) + O(1) ifn>mandn >p,
2Q(m,n,p/2) + O(1) otherwise,

it m>nandm >p,

Q(m,n,p) < (3.2)

*We use the notatiolg to denotdog,,.

50

(a) 0t 2 3 dseT (b)
e

i

N S My
W NNEFEPE O OO0NO®

M
f\i\i
ARES &R
-

4641 4445 5657 6661
‘-‘ !-‘ : .O‘!

9
3
7
1 4 :
3 5 1 3283363748495253
3%9 5 e:r. 565 5455
9
3

Figure 3-2 Layout of al6 x 16 matrix in (a) row major, (b) column major,(c) 4 x 4-blocked, and(d)
bit-interleaved layouts.

where« is a constant chosen sufficiently small to allow the threergthices (and whatever small
number of temporary variables there may be) to fit in the caditee base case arises as soon as
all three matrices fit in cache. Using reasoning similar &t flor analyzing @p-MuLT within
BLocK-MuLT, the matrices are held &d((mn +np +mp)/L) cache lines, assuming a tall cache.
Thus, the only cache misses that occur during the remairfdérearecursion are th®((mn +

np + mp)/L) cache misses that occur when the matrices are brought miatthe. The recursive
case arises when the matrices do not fit in cache, in whichwasgay for the cache misses of
the recursive calls, which depend on the dimensions of thieicas, plusO(1) cache misses for
the overhead of manipulating submatrices. The solutiohitorecurrence i§)(m,n,p) = O(1 +
(mn + np +mp) /L +mnp/L/Z), which is the same as the cache complexity of the cache-aware
BLock-MuLT algorithm for square matrices. Intuitively, the cachehdblis divide-and-conquer
algorithm uses cache effectively because once a subprolitenmto the cache, no more cache
misses occur for smaller subproblems.

We require the tall-cache assumption (3.1) in this analgsisause the matrices are stored in
row-major order. Tall caches are also needed if matricestared in column-major order (Figure 3-
2(b)), but the assumption that = (L?) can be relaxed for certain other matrix layouts. The
s x s-blocked layout (Figure 3-2(c)), for some tuning parameteran be used to achieve the same

51

bounds with the weaker assumption that the cache holds sttdeae sufficiently large constant
number of lines. The cache-oblivious bit-interleaved lay@#igure 3-2(d)) has the same advantage
as the blocked layout, but no tuning parameter need be seg submatrices of siz@(v/L x /L)

are cache-obliviously stored on one cache line. The adgastaf bit-interleaved and related layouts
have been studied in [53] and [35, 36]. One of the practicsddirantages of bit-interleaved layouts
is that index calculations on today’s conventional micomgssors can be costly.

For square matrices, the cache complexitfn) = ©(1 + n?/L + n*/L\/Z) of the cache-
oblivious matrix multiplication algorithm matches the lembound by Hong and Kung [82]. This
lower bound holds for all algorithms that execute ®e:?) operations given by the definition of
matrix multiplication

n
Cij = Y Gikbrj -
k=1

No tight lower bounds for the general problem of matrix nplitiation are known. By using an

asymptotically faster algorithm, such as Strassen’s dlgor[138] or one of its variants [152],

both the work and cache complexity can be reduced. Indeeakssgin’s algorithm, which is cache
oblivious, can be shown to have cache complegity + n?/L + n'¢7/L\VZ).

3.2 Matrix transposition and FFT

This section describes a cache-oblivious algorithm fargpasing an x n matrix that use®)(mn)
work and incursO(1 + mn/L) cache misses, which is optimal. Using matrix transpositiera
subroutine, we convert a variant [150] of the “six-step'tfasurier transform (FFT) algorithm [17]
into an optimal cache-oblivious algorithm. This FFT algfom usesO(nlgn) work and incurs
O(1+ (n/L)(1+ logz;n)) cache misses.

The problem of matrix transposition is defined as followsve®ianm x n matrix stored in a
row-major layout, compute and stafe ' into ann x m matrix B also stored in a row-major layout.
The straightforward algorithm for transposition that eaygl doubly nested loops incu(mn)
cache misses on one of the matrices when>> Z, which is suboptimal.

Optimal work and cache complexities can be obtained witlvideliand-conquer strategy, how-
ever. Ifn > m, we partition

A= (A Ay), B= (Bl>.
By

Then, we recursively exeCuteRRNSPOSHE A1, By) and TRANSPOSKE Ay, By). If m > n, we divide
matrix A horizontally and matrix3 vertically and likewise perform two transpositions reouesy.

52

The next two lemmas provide upper and lower bounds on themeaince of this algorithm.

Lemma 1 The cache-oblivious matrix-transpose algorithm ué¥snn) work and incursO(1 +
mn/L) cache misses for am x n matrix.

Proof: We omit the proof that the algorithm uséXmn) work. For the cache analysis, let
Q(m,n) be the cache complexity of transposingrax n matrix. We assume that the matrices
are stored in row-major order, the column-major case haaisignilar analysis.

Let « be a constant sufficiently small such that two submatriceszefr x n andn x m, where
max {m,n} < aL, fit completely in the cache even if each row is stored in aediffit cache line.
Such a constant exists because of the tall-cache assumpiendistinguish the following three
cases.

Case I: max{m,n} < aL.

Both matrices fit inO(1) 4+ 2mn/L lines. If « is small enough, two matrices fit completely
in cache, and we only need to read and/or write each line amagder to complete the
transposition. Therefor@(m,n) = O(1 + mn/L).

Casell: m<alL <nORn < alL <m.

For this case, assume first that< «L. < n. The transposition algorithm divides the greater
dimensionn by 2 and performs divide and conquer. At some point in thergéon, n is in

the rangenL/2 < n < «L, and the whole problem fits in cache as in Case |. Because the
layout is row-major, at this point the input array hasows, m columns, and it is laid out

in contiguous locations, thus requiring at mextl + nm/L) cache misses to be read. The
output array consists ofmn elements inmn rows, where in the worst case every row lies on
a different cache line. Consequently, we incur at m@ét. + nm/L) misses for writing

the output array. SincelL > n > «L/2, the total cache complexity for this base case is
O(1+m).

These observations yield the recurrence

O(l+m) if n€laLl/2,al],
Q(m,n) < _
2Q(m,n/2) + O(1) otherwise,
whose solution i€)(m,n) = O(1 +mn/L).
The caser < aL < m is analogous.

Case lll: m,n > aL.

As in Case Il, at some point in the recursion betandm are in the rangénL/2, aL]. The
whole problem fits into cache and it can be solved with at mtst + n + mn/L) cache

53

misses.

The cache complexity thus satisfies the recurrence

O(m+n+mn/L) ifm,n € [aL/2,aL],
Q(m,n) << 2Q(m/2,n) + O(1) ifm>n,
2Q(m,n/2) + O(1) otherwise

whose solution i€)(m,n) = O(1 + mn/L).

Theorem 2 The cache-oblivious matrix-transpose algorithm is asyrigdlly optimal.

Proof: For anm x n matrix, the matrix-transposition algorithm must writeston distinct ele-
ments, which occupy at leagtwn/L| = (1 + mn/L) cache lines. [

As an example of application of the cache-oblivious trasgjmm algorithm, in the rest of this
section we describe and analyze a cache-oblivious algoritr computing the discrete Fourier
transform of a complex array of elements, whera is an exact power a. The basic algorithm
is the well-known “six-step” variant [17, 150] of the Cooldukey FFT algorithm [41]. Using
the cache-oblivious transposition algorithm, howevee BT becomes cache-oblivious, and its
performance matches the lower bound by Hong and Kung [82].

Recall that theliscrete Fourier transform (DFT)of an arrayX of n complex numbers is the
arrayY given by

n—1

Yiil = X[jlw,", (3.3)

J=0

wherew,, = 2™ ~1/" is a primitiventh root of unity, and) < i < n.

Many known algorithms evaluate Equation (3.3) in tiée: Ig n) for all integersn [48]. In this
section, however, we assume thds an exact power df, and compute Equation (3.3) according to
the Cooley-Tukey algorithm, which works recursively asdais. In the base case where= O(1),
we compute Equation (3.3) directly. Otherwise, for anydaeationn = nins of n, we have

no—1 ni—1
Yiig+iona] =Y || Y Xline + oo, | wy 92| w292 (3.4)
J2=0 J1=0

Observe that both the inner and the outer summation in Exuédi4) is a DFT. Operationally, the
computation specified by Equation (3.4) can be performedanypuitingn, transforms of size;

54

(the inner sum), multiplying the result by the factars’'’ (called thetwiddle factors[48]), and
finally computingn, transforms of sizei, (the outer sum).
We choose; to be2/'87/2] andn, to be2l!s™/2], The recursive step then operates as follows.

1. Pretend that input is a row-majar x ne matrix A. Transposed in place, i.e., use the
cache-oblivious algorithm to transpodeonto an auxiliary array3, and copyB back ontoA.
Notice that ifn; = 2n4, we can consider the matrix to be made up of records contatain
elements.

2. At this stage, the inner sum corresponds to a DFT ofitheows of the transposed matrix.
Compute these, DFT's of sizen, recursively. Observe that, because of the previous trans-
position, we are transforming a contiguous array of element

3. Multiply A by the twiddle factors, which can be computed on the fly withemtra cache
misses.

4. Transposel in place, so that the inputs to the next stage is arrangednitigtmus locations.
5. Computen; DFT's of the rows of the matrix, recursively.
6. Transposel in place, so as to produce the correct output order.

It can be proven by induction that the work complexity of tRIST algorithm isO(n lgn). We
now analyze its cache complexity. The algorithm always afgsron contiguous data, by construc-
tion. In order to simplify the analysis of the cache comlgexassume a tall cache, in which case
each transposition operation and the multiplication bytwiddle factors require at moét(1+n/L)
cache misses. Thus, the cache complexity satisfies theaeacer

) { O(1 +n/L), if n<aZ, 5)

Q(n) < :
n1Q(n2) +n2Q(n1) + O(1 +n/L) otherwise,

for a sufficiently small constant chosen such that a subproblem of siz# fits in cache. This
recurrence has solution

Q(n) =01+ (n/L) (1 +1logyn)) ,

which is asymptotically optimal for a Cooley-Tukey algbarit, matching the lower bound by Hong
and Kung [82] whem is an exact power di. As with matrix multiplication, no tight lower bounds
for cache complexity are known for the general problem of jgotimg the DFT.

This cache-oblivious FFT algorithm will be used in FFTW inapker 6. Even if the ideal-
cache model is not a precise description of L1 or L2 cachesrdbister set of a processor is a
good approximation to an ideal cache with= 1. Registers constitute the “cache,” the rest of

55

the memory hierarchy constitutes the “main memory,” andragiter can usually approximate the
optimal replacement policy when allocating registers bseat knows the full instruction sequence.
genfft uses this cache-oblivious FFT algorithm to produce poeté&btode that can be compiled
with the asymptotically optimal number of register spillsdependently of the size of the register
set.

A “radix-2” or any other “constant-radix” FFT algorithm wiabnot be asymptotically optimal.
These algorithms reduce a problem of sizeto n; subproblems of size/n,, for some constant
n1, While the optimal cache-oblivious algorithm produces acomstant number of subproblems.
To see why a constant-radix algorithm is nonoptimal, we céwesEquation (3.5) for the case where
ny is a constant. The resulting cache complexityl + (n/L) (1 + 1g(n/Z))) is asymptotically
suboptimal.

3.3 Funnelsort

Although cache oblivious, algorithms like the familiar tw@y merge sort and the Cilksort variant
from Section 2.4 are not asymptotically optimal with regpeccache misses. Like the constant-
radix FFT algorithm from Section 3.2, they divide a probleroia constant number of subproblems,
and their resulting cache complexity is suboptimal. Fhaay mergesort mentioned by Aggarwal
and Vitter [6] is optimal in terms of cache complexity, busitache aware. This section describes a
cache-oblivious sorting algorithm called “funnelsorthig algorithm has an asymptotically optimal
work complexityO(n lgn), as well as an optimal cache complexi®(1 + (n/L) (1 + log,; n)) if
the cache is tall.

Like Cilksort, funnelsort is a variant of mergesort. In arde sort a (contiguous) array of
elements, funnelsort performs the following two steps:

1. Split the input inta:!/3 contiguous arrays of size?/?, and sort these arrays recursively.
2. Merge then!/? sorted sequences using&*-merger, which is described below.

Funnelsort differs from mergesort in the way the merge djmeravorks. Merging is performed
by a device called &-merger, which inputsk sorted sequences and merges themk-#erger
operates by recursively merging sorted sequences thatitegemgressively longer as the algorithm
proceeds. Unlike mergesort, however;-merger stops working on a merging subproblem when
the merged output sequence becomes “long enough,” anduinessworking on another merging
subproblem.

Since this complicated flow of control makescanerger a bit tricky to describe, we explain
the operation of thé&-merger pictorially. Figure 3-3 shows a representation bfraerger, which
hask sorted sequences as inputs. Throughout its executiork-therger maintains the following
invariant.

56

Figure 3-3: lllustration of ak-merger. Ak-merger (dark in the figure) is built recursively outgk “left”
Vk-mergerdy, I, ... /5 aseries of buffers, and one “righy/k-mergerr.

Invariant The invocation of &-merger outputs the first®> elements of the sorted sequence ob-
tained by merging thé& input sequences.

A k-merger is built recursively out of/k-mergers in the following way. Thé inputs are
partitioned intoyv/k sets ofvk elements, and these sets form the input to ¥fie vk-mergers
li,l2,... 1/ inthe left part of the figure. The outputs of these mergersan@ected to the inputs
of vk buffers. Each buffer is a FIFO queue that can hale?/2 elements. Finally, the outputs of
the buffers are connected to thé inputs of they/k-mergerr in the right part of the figure. The
output of this final/k-merger becomes the output of the whbtenerger. The reader should notice
that the intermediate buffers are overdimensioned. In fsath buffer can hol@k3/2 elements,
which is twice the numbek?/2 of elements output by &%-merger. This additional buffer space
is necessary for the correct behavior of the algorithm, dseiexplained below. The base case of
the recursion is &-merger withk = 2, which produce#? = 8 elements whenever invoked.

A k-merger operates recursively. In order to outptielements, thé:-merger invokes: k3/2
times. Before each invocation, however, thenerger fills all buffers that are less than half full, i.e.,
all buffers that contain less thart/2? elements. In order to fill buffei, the algorithm invokes the
corresponding left mergéy once. Sincé; outputsk?®/2 elements, the buffer contains at le&st?
elements aftef; finishes.

It can be proven by induction that the work complexity of fatsort isO(n lgn), which is
optimal for comparison-based sorting algorithms [42]. He test of this section, we analyze the
cache complexity of funnelsort. The goal of the analysi®ishiiow that funnelsort on elements
requires at mosf)(n) cache misses, where

Q(n) =01+ (n/L) (1 +1logzn)) ,

57

provided thatZ = Q(L?).
In order to prove this result, we need three auxiliary lemniéae first lemma bounds the space
required by &-merger.
Lemma 3 A k-merger can be laid out i@ (k2) contiguous memory locations.
Proof: A k-merger require$) (k%) memory locations for the buffers, plus the space required by
the (v/k + 1) inferior v/k-mergers. The spac(k) thus satisfies the recurrence
S(k) < Vk+1)S(VE) +O(k?) ,

whose solution iS(k) = O(k?). n

In order to achieve the bound @p(n), it is important that the buffers in &merger be main-
tained as circular queues of size This requirement guarantees that we can manage the queue
cache-efficiently, in the sense stated by the next lemma.

Lemma 4 Performingr insert and remove operations on a circular queue cadsgstr/L) cache
misses if two cache lines are reserved for the buffer.

Proof: We reserve the two cache lines to the head and tail of thelairqueue. If a new cache
line is read during a insert operation, the néxt 1 insert operations do not cause a cache miss. Con-
sequentlyy insert operations incur at mosk(1 + /L) cache misses. The argument for removals
is similar. [

The next lemma bounds the number of cache migsgsncurred by a-merger.

Lemma 5 If Z = Q(L?), then ak-merger operates with at mogky (k) cache misses, where

Qu(k) =0 (k+k*/L + (k*log, k)/L) .

Proof: There are two cases: eithér< vaZ or k > vaZ, wherea is a sufficiently small
constant, as usual.

Case |: Assume firstthak < vVaZ.

By Lemma 3, the data structure associated with khmerger requires at mogd(k?) =
O(aZ) contiguous memory locations, and therefore it fits into egmtovided thaty is smalll
enough. Thé-merger hag input queues, from which it load3(k3) elements. Let; be the
number of elements extracted from thk input queue. Sincgé < vaZ andL = O(VZ),

58

there are at least/ L = (k) cache lines available for the input buffers. We assume ket t
optimal replacement policy reserves these cache linehéoinput buffers, so that Lemma 4
applies. This assumption is wlog: We show that this replas#molicy achieves the stated
bounds, and the optimal policy can only incur fewer cachesesis By Lemma 4, the total

number of cache misses for accessing the input queues is

k
Y 00 +r/L)=0(k+k/L).
i=1
Similarly by Lemma 4, the cache complexity of writing the puit queue is at mosP (1 +
k3/L). Finally, the algorithm incurs at mog?(1 + k2/L) cache misses for touching its
internal data structures. The total cache complexity isefioee Q\i(k) = O (k + k*/L),
completing the proof of the first case.

Case II: Assume now that > v aZ. In this second case, we prove by inductionkotihat when-
everk > vaZ, we have

Qui(k) < (ck®logz k)/L — A(k) , (3.6)

for some constant > 0, whereA(k) = k(1 + 2clog, k/L) = o(k?). This particular value
of A(k) will be justified later in the analysis.

The base case of the induction consists of valugssifich thatwZ)'/* < k < vaZ. (Itis
not sufficient to just considet = ©(v/Z), sincek can become as small &(Z'/*) in the
recursive calls.) The analysis of the first case appliesiyie Qi (k) = O (k + k*/L). Be-
causek? > VaZ = Q(L) andk = Q(1), the last term dominates, add\i(k) = O (k*/L)
holds. Consequently, a large enough value cén be found that satisfies Inequality (3.6).

For the inductive case, lét > vaZ. The k-merger invokes the/k-mergers recursively.
Since (aZ)'/* < vk < k, the inductive hypothesis can be used to bound the number
Q1 (VE) of cache misses incurred by the submergers. The “right” everig invoked exactly
k3/2 times. The total numbérof invocations of “left” mergers is bounded by k3/2+2v/k.

To see why, consider that every invocation of a left merges pt/? elements into some
buffer. Sincek? elements are output and the buffer spack# the bound < k3/2 + 2vk
follows.

Before invokingr, the algorithm must check every buffer to see whether it iptgrfOne such
check requires at mostk cache misses, since there af& buffers. This check is repeated
exactlyk®/% times, leading to at mo&# cache misses for all checks.

59

These considerations lead to the recurrence
Qui(k) < (28772 +2vE) Qu(VE) + K2

Application of the inductive hypothesis yields the desibedind Inequality (3.6), as follows:

Quk) < (2672 +2VE) Qu(VE) + &
< 2(K2 4+ VE) CWZ# — AWVE)| + K2
< (ckPlogy k) /L + k2 (1+ (clog, k)/L) — <2k3/2 + 2\/E) AWE) .

If A(k) = k(1 + (2clogy, k)/L) (for example) Inequality (3.6) follows.

Theorem 6 If Z = Q(L?), then funnelsort sorts elements with at mos?(n) cache misses, where
Q(n) =01+ (n/L) (1 +logzn)) .

Proof: If n < aZ for a small enough constant, then funnelsort’s datastructures fit into cache.
To see why, observe that funnelsort invokes only brmaerger at any time. The biggestmerger is
the top-level!/3-merger, which require@(n2/3) < O(n) space. The algorithm thus can operate
in O(1 + n/L) cache misses.

If N > aZ, we have the recurrence

Q(n) = n'*Qn*) + Qu(n'?).

By Lemma 5, we havé)y(n'/3) = O (n'/3 + n/L + nlog, n/L).

With the tall-cache hypothesig = Q(L?), we haven/L = Q(n'/3). Moreover, we also have
n'/3 = Q(1) andlgn = Q(lg Z). Consequently@yi(n'/?) = O ((nlog, n)/L) holds, and the
recurrence simplifies to

Q(n) =n'PQ(n**) + 0 ((nlogzn)/L) .
The result follows by induction on. [

This upper bound matches the lower bound stated by the nesitein, proving that funnelsort
is cache-optimal.

60

Theorem 7 The cache complexity of any sorting algorithm is
Q(n) =1+ (n/L) (1 +logzn)) .

Proof: Aggarwal and Vitter [6] show that there is ah((n/L) logZ/L('rL/Z)> bound on the
number of cache misses made by any sorting algorithm on tbeirof-core” memory model, a
bound that extends to the ideal-cache model. The theorerhecproved by applying the tall-cache
assumptionZ = Q(L?) and the trivial lower bounds @ (n) = (1) andQ(n) = Q(n/L). [

3.4 Distribution sort

In this section, we describe another cache-oblivious agtsorting algorithm based on distribu-
tion sort. Like the funnelsort algorithm from Section 3.8e tdistribution-sorting algorithm uses
O(nlgn) work to sortn elements, and it incur® (1 + (n/L) (1 + log, n)) cache misses if the
cache is tall. Unlike previous cache-efficient distriboteorting algorithms [4, 6, 120, 148, 150],
which use sampling or other techniques to find the partitigrélements before the distribution
step, our algorithm uses a “bucket splitting” technique dtest pivots incrementally during the
distribution.

Given an arrayA (stored in contiguous locations) of length the cache-oblivious distribution
sort performs sortgl as follows:

1. PartitionA into y/n contiguous subarrays of sizén. Recursively sort each subarray.

2. Distribute the sorted subarrays infdoucketsB;, ... , B, of sizeny,... ,n,, respectively,
such that

(@) max{z |z € B;} <min{z |z € Bjy}foralll <i <gq;

(b) n; <2y/nforalll <i<gq.
(See below for detalils.)
3. Recursively sort each bucket.
4. Copy the sorted buckets to arrdy

A stack-based memory allocator is used to exploit spatéality.

Distribution step The goal of Step 2 is to distribute the sorted subarraysl @fito ¢ buckets
By, By, ... ,B,. The algorithm maintains two invariants. First, each buiti@ds at mos/n
elements at any time, and any element in budBets smaller than any element in buckBi, ;.

61

Second, every bucket has an associated pivot. Initiallly one empty bucket exists whose pivot
is 0o.

The idea is to copy all elements from the subarrays into thekdis while maintaining the
invariants. We keep state information for each subarraybactet. The state of a subarray consists
of the indexnext of the next element to be read from the subarray and the buckaberbnum
where this element should be copied. By conventionym = oo if all elements in a subarray have
been copied. The state of a bucket consists of the pivot andumber of elements currently in the
bucket.

We would like to copy the element at positiaextof a subarray to buckdtnum If this element
is greater than the pivot of buckiehum we would incremenbnumuntil we find a bucket for which
the element is smaller than the pivot. Unfortunately, thisib strategy has poor caching behavior,
which calls for a more complicated procedure.

The distribution step is accomplished by the recursive gulace DSTRIBUTE(%, 7, m) which
distributes elements from thi¢h through(i + m — 1)th subarrays into buckets starting frafy.
Given the precondition that each subariay+ 1,... ,i +m — 1 has itsbhum > j, the execution
of DISTRIBUTE(%, j,) enforces the postcondition that subarrayist-1, ... ,i+m — 1 have their
bnum > j + m. Step 2 of the distribution sort invokes€XRIBUTE(1, 1, y/n). The following is a
recursive implementation of BTRIBUTE:

DISTRIBUTE(4, 7, m)

1 ifm=1

2 then COPYELEMS(, j)

3 else DISTRIBUTE(é, 7, m/2)

4 DISTRIBUTE(i + m/2, j,m/2)

5 DISTRIBUTE(4, j +m/2,m/2)

6 DISTRIBUTE(i +m/2,5 + m/2,m/2)

In the base case, the procedurer’¥ELEMS(i, j) copies all elements from subarraythat
belong to buckey. If bucket; has more tha,/n elements after the insertion, it can be split into
two buckets of size at leagtn. For the splitting operation, we use the deterministic medinding
algorithm [42, p. 189] followed by a partition. The medianeing algorithm use& (m) work and
incursO(1 + m/L) cache misses to find the median of an array of sizg(In our case, we have
m = 2y/n + 1.) In addition, when a bucket splits, all subarrays whbeamis greater than the
bnumof the split bucket must have thdinunis incremented. The analysis ofi&rRIBUTE is given
by the next two lemmas.

Lemma 8 The median of elements can be found cache-obliviously using) work and incur-
ring O(1 4+ n/L) cache misses.

62

Proof: See [42, p. 189] for the linear-time median finding algoritand the work analysis. The
cache complexity is given by the same recurrence as the vonlexity with a different base case.

O(1+m/L) if m<aZz,
Q(m) = { Q([m/5]) + Q(Tm/10 +6)
+O(1+m/L) otherwise,

whereq is a sufficiently small constant. The result follows. [

Lemma 9 The distribute step us&3(n) work, incursO(1 + n/L) cache misses, and uségn)
stack space to distribute elements.

Proof: In order to simplify the analysis of the work used bysDRIBUTE, assume that GPY-
ELEMS usesO(1) work for procedural overhead. We account for the work duepying elements
and splitting of buckets separately. The work aSDRIBUTE is described by the recurrence

T(c) =4T(c/2) + O(1) .

It follows thatT'(c) = O(c?), wherec = /n initially. The work due to copying elements is also
O(n).

The total number of bucket splits is at mggt. To see why, observe that there are at mgst
buckets at the end of the distribution step, since each budkeains at leasy/n elements. Each
split operation involveg)(y/n) work and so the net contribution to the work@®n). Thus, the
total work used by DSTRIBUTE is W (n) = O(T'(y/n)) + O(n) + O(n) = O(n).

For the cache analysis, we distinguish two casesolls a sufficiently small constant such that
the stack space used fits into cache.

Casel: n < aZ.

The input and the auxiliary space of si2gn) fit into cache using@ (1 + n/L) cache lines.
Consequently, the cache complexity(d$1l + n/L).

Casell: n > aZ.

Let R(c,m) denote the cache misses incurred by an invocationiefRIBUTE(a, b, ¢) that
copiesm elements from subarrays to buckets. We again account fapliting of buckets
separately. We first prove that satisfies the following recurrence:

O(L+m/L) if c<al,

3.7
> 1<ica B(c/2,m;) otherwise, 3.7)

R(¢,m) < {

63

where) ., , m; = m.

First, consider the base casel «L. An invocation of DSTRIBUTE(a, b, ¢) operates with:
subarrays andbuckets. Since there aff L) cache lines, the cache can hold all the auxiliary
storage involved and the currently accessed element in aodrray and bucket. In this

case there ar&(L + m/L) cache misses. The initial access to each subarray and bucket

causes)(c) = O(L) cache misses. The cache complexity of copyingrthelements from
contiguous to contiguous locations(&1+m/L). This completes the proof of the base case.
The recursive case, wher> «L, follows immediately from the algorithm. The solution for
Equation (3.7) isk(c,m) = O(L + ¢*/L +m/L).

We still need to account for the cache misses caused by thiengpbf buckets. Each split
causes)(1 + +/n/L) cache misses due to median finding (Lemma 8) and partitiasfingn
contiguous elements. An addition@(1+ +/n/L) misses are incurred by restoring the cache.
As proven in the work analysis, there are at mgst split operations.

By adding R(1/n, n) to the split complexity, we conclude that the total cache glexity of
the distribution step i®)(L +n/L + \/n(1 +/n/L)) = O(n/L).

Theorem 10 Distribution sort use€)(n lgn) work and incursO(1 + (n/L) (1 + log, n)) cache
misses to sort elements.

Proof: The work done by the algorithm is given by
q
W(n) = vaW(vn) + Y W(n;) + O(n)

1=1

where eachn; < 2/n and)_ n; = n. The solution to this recurrence i€ (n) = O(nlgn).
The space complexity of the algorithm is given by

S(n) < 8(2vn) +0(n)

where theO(n) term comes from Step 2. The solution to this recurrencg(ig = O(n).
The cache complexity of distribution sort is described byy/currence

O(1+n/L) ifn<aZ,
Qn) <4 VnQ(Vn)+ XL, Q(n;) otherwise,
+0(1+n/L)

64

wherec« is a sufficiently small constant such that the stack space i@ sorting problem of size
aZ, including the input array, fits completely in cache. Theebeasen < «Z arises when both
the input arrayA and the contiguous stack space of sie) = O(n) fitin O(1 + n/L) cache
lines of the cache. In this case, the algorithm inau($ + »/L) cache misses to touch all involved
memory locations once. In the case whare- «Z, the recursive calls in Steps 1 and 3 cause
Q(vn) + Y, Q(n;) cache misses and(1 + n/L) is the cache complexity of Steps 2 and 4, as
shown by Lemma 9. The theorem now follows by solving the nemae. [

3.5 Other cache models

In this section we show that cache-oblivious algorithmsgiex] in the two-level ideal-cache model
can be efficiently ported to other cache models. We show thatithms whose complexity bounds
satisfy a simple regularity condition (including all aligbms heretofore presented) can be ported
to less-ideal caches incorporating least-recently-us&UJY or first-in, first-out (FIFO) replace-
ment policies [79, p. 378]. We argue that optimal cachevahlis algorithms are also optimal for
multilevel caches. Finally, we present simulation respits/ing that optimal cache-oblivious algo-
rithms satisfying the regularity condition are also opfiifiia expectation) in the previously studied
SUMH [11, 148] and HMM [4] models. Thus, all the algorithmiesults in this chapter apply to
these models, matching the best bounds previously achieved

3.5.1 Two-level models

Many researchers, such as [6, 82, 149], employ two-levelalscglmilar to the ideal-cache model,
but without an automatic replacement strategy. In theseetspdiata must be moved explicitly
between the the primary and secondary levels “by hand.” Weel@ cache complexity bound
Q(n; Z, L) to beregular if

Q(n; Z,L) = O(Q(n; 22, L)) . (3.8)

We now show that optimal algorithms in the ideal-cache madielse cache complexity bounds are
regular can be ported to these models to run using optimat ewad incurring an optimal expected
number of cache misses.

The first lemma shows that the optimal and omniscient repiecg strategy used by an ideal
cache can be simulated efficiently by the LRU and FIFO rephecd strategies.

Lemma 11 Consider an algorithm that causég*(n; Z, L) cache misses on a problem of size
using a(Z, L) ideal cache. Then, the same algorithm inc@&:; Z, L) < 2Q*(n; Z/2, L) cache
misses on &7, L) cache that uses either LRU or FIFO replacement.

65

Proof: Sleator and Tarjan [133] have shown that the cache misseg@n/g cache using LRU
replacement i$Z/(Z — Z* + 1))-competitive with optimal replacement or(&*, L) ideal if both
caches start with an empty cache. It follows that the numbermisses on 47, L) LRU-cache is

at most twice the number of misses o(%/2, L) ideal-cache. The same argument holds for FIFO
caches. [

Corollary 12 For algorithms with regular cache complexity bounds, thgnagtotic number of
cache misses is the same for LRU, FIFO, and optimal replaneme

Proof: Follows directly from Lemma 11 and the regularity conditiBquation (3.8). [

Since previous two-level models do not support automagitacement, to port a cache-oblivious
algorithms to them, we implement a LRU (or FIFO) replacenstrategy in software.

Lemma 13 A (Z, L) LRU-cache (or FIFO-cache) can be maintained usin@) primary memory
locations such that every access to a cache line in primamnamg takesD(1) expected time.

Proof: Given the address of the memory location to be accessed,ena2ugniversal hash func-
tion [114, p. 216] to maintain a hash table of cache linesgmem the primary memory. Th&/L
entries in the hash table point to linked lists in a heap of w@ncontainingZ/L records corre-
sponding to the cache lines. TReuniversal hash function guarantees that the expectedosiae
chain isO(1). All records in the heap are organized as a doubly linkedrighe LRU order (or
singly linked for FIFO). Thus, the LRU (FIFO) replacementipp can be implemented i (1)
expected time usin@(Z/L) records ofO(L) words each. [

Theorem 14 An optimal cache-oblivious algorithm with a regular cact@mplexity bound can be
implemented optimally in expectation in two-level modétk explicit memory management.

Proof: Follows from Corollary 12 and Lemma 13. [

Consequently, our cache-oblivious algorithms for matridtiplication, matrix transpose, FFT,
and sorting are optimal in two-level models.

3.5.2 Multilevel ideal caches

We now show that optimal cache-oblivious algorithms alsdgoe optimally in computers with
multiple levels of ideal caches. Moreover, Theorem 14 aldein multilevel models with explicit
memory management.

The{((Z1,L1),(Z2, L2),...,(Z.,L,)) ideal-cache modetonsists of an arbitrarily large
main memory and a hierarchy efcaches, each of which is managed by an optimal replacement

66

strategy. The model assumes that the caches satisfinthesion property[79, p. 723], which
says that for = 1,2,... ,r — 1, the values stored in cacliere also stored in caclie+ 1. The
performance of an algorithm running on an input of sizés measured by its work complexity
W (n) and its cache complexiti&3;(n; Z;, L;) for each level = 1,2,... ,r.

Theorem 15 An optimal cache-oblivious algorithm in the ideal-cachedgldncurs an asymptoti-
cally optimal number of cache misses on each level of a rwdtiicache with optimal replacement.

Proof: The theorem follows directly from the definition of cacheigiblusness and the optimality
of the algorithm in the two-level ideal-cache model. [

Theorem 16 An optimal cache-oblivious algorithm with a regular caot@mplexity bound incurs
an asymptotically optimal humber of cache misses on eadh tda multilevel cache with LRU,
FIFO, or optimal replacement.

Proof: Follows from Corollary 12 and Theorem 16. [

3.5.3 The SUMH model

In 1990 Alpern et al. [11] presented the uniform memory higmg model (UMH), a parameterized
model for a memory hierarchy. In the UMH ;) model, for integer constants, p > 1, the size
of theith memory level isZ; = ap® and the line length id; = p*. A transfer of one!-length
line between the caches on leveind] + 1 takesp'/b(l) time. The bandwidth functioh(l) must
be nonincreasing and the processor accesses the cachesbhilexonstant time per access. An
algorithm given for the UMH model must include a scheduld,tbaen for a particular set of input
variables, tells exactly when each block is moved along Wwhbicthe buses between caches. Work
and cache misses are folded into one cost me&aB(rg. Alpern et al. prove that an algorithm
that performs the optimal number of 1/O’s at all levels of thierarchy does not necessarily run in
optimal time in the UMH model, since scheduling bottleneca occur when all buses are active.
In the more restrictive SUMH model [148], however, only omnis s active at a time. Consequently,
we can prove that optimal cache-oblivious algorithms runptimal expected time in the SUMH
model.

Lemma 17 A cache-oblivious algorithm witi/ (n) work andQ(n; Z, L) cache misses on(&, L)-
ideal cache can be executed in the SUMH,;) model in expected time

T(n) = O(W(n) + 3 55 Qs 0(%), 1)
1=1

67

whereZ; = ap®, L; = p', and Z, is big enough to hold all elements used during the execution o
the algorithm.

Proof: Use the memory at thith level as a cache of siz& = «p?* with line lengthL; = p* and
manage it with software LRU described in Lemma 13. Ftielevel is the main memory, which is
direct mapped and not organized by the software LRU mecimaren LRU-cache of siz&(Z;)

can be simulated by thah level, since it has siz&;. Thus, the number of cache misses at level
iis 2Q(n;0(Z;), L;), and each takes' /b(i) time. Since only one memory movement happens at
any point in time, and there arf@(W (n)) accesses to levél, the lemma follows by summing the
individual costs. [

Lemma 18 Consider a cache-oblivious algorithm whose work on a pnoblef sizen is lower-
bounded by *(n) and whose cache complexity is lower-boundediyn; Z, L) on an (Z, L)
ideal-cache. Then, no matter how data movement is imple@dentSUMH, ,), the time taken
on a problem of size is at least

r 3

T(n) = (W (n) + 3 b‘()z.)
=1

Q" (n,0(2,), L)) ,

whereZ; = ap?, L; = p' and Z, is big enough to hold all elements used during the execution o
the algorithm.

Proof: The optimal scheduling of the data movements does not nealetpthe inclusion prop-
erty, and thus the number @h-level cache misses is at least as large as for an idea¢ cdtize
2321 Z;i = 0(%;). SinceQ*(n, Z, L) lower-bounds the cache misses on a cache of%jz least
Q*(n,0(Z;), L;) data movements occur at levekach of which takeg’ /b(i) time. Since only one
movement can occur at a time, the total cost is the maximurheoiviork and the sum of the costs
at all the levels, which is within a factor @fof their sum. [

Theorem 19 A cache-oblivious algorithm that is optimal in the ideakba model and whose
cache-complexity is regular can be executed optimal erpetane in the SUMH, ;) model.

Proof: The theorem follows directly from regularity and Lemmas hd 48. [

3.6 Related work

In this section, we discuss the origin of the notion of cachhlviousness. We also give an overview
of other hierarchical memory models.

68

Our research group at MIT noticed as far back as 1994 thatleland-conquer matrix mul-
tiplication was a cache-optimal algorithm that requiredtmaing, but we did not adopt the term
“cache-oblivious” until 1997. This matrix-multiplicatioalgorithm, as well as a cache-oblivious
algorithm for LU-decomposition without pivoting, evenliyaappeared in [26]. Shortly after leav-
ing our research group, Toledo [143] independently prop@seache-oblivious algorithm for LU-
decomposition, but with pivoting. For x n matrices, Toledo’s algorithm usé¥(n3) work and
incurs ©(1 + n?/L + n®/Lv/Z) cache misses. My own FFTW Fourier transform library em-
ploys a register-allocation and scheduling algorithm iregpby the cache-oblivious FFT algorithm.
The general idea that divide-and-conquer enhances mermoaity has been known for a long
time [132].

Previous theoretical work on understanding hierarchicahmries and the I/O-complexity of al-
gorithms has been studied in cache-aware models lackingtamatic replacement strategy. Hong
and Kung [82] use the red-blue pebble game to prove lowerdson the I/O-complexity of ma-
trix multiplication, FFT, and other problems. The red-bhebble game models temporal locality
using two levels of memory. The model was extended by Savizf# for deeper memory hierar-
chies. Aggarwal and Vitter [6] introduced spatial localiyd investigated a two-level memory in
which a block ofP contiguous items can be transferred in one step. They @utdight bounds for
matrix multiplication, FFT, sorting, and other problemsheThierarchical memory model (HMM)
by Aggarwal et al. [4] treats memory as a linear array, whbeedost of an access to element at
location z is given by a cost functiorf (). The BT model [5] extends HMM to support block
transfers. The UMH model by Alpern et al. [11] is a multilewebdel that allows 1/O at different
levels to proceed in parallel. Vitter and Shriver introdpesallelism, and they give algorithms for
matrix multiplication, FFT, sorting, and other problemsbioth a two-level model [149] and sev-
eral parallel hierarchical memory models [150]. Vitter T14rovides a comprehensive survey of
external-memory algorithms.

3.7 Conclusion

In this chapter, we discussed the notion of cache-obliviess, and we presented optimal cache-
oblivious algorithms for rectangular matrix transpose andtiplication, FFT, and sorting. Cache-
oblivious algorithms are inherently portable, becausg thepend on no tuning parameters, and
optimal cache-oblivious algorithms enable portabilitypefformance across systems with diverse
memory hierarchies. We learned that divide and conquer ida glgorithms that are good from
both Cilk’s perspective, because they have short critiedgh,pand from the point of view of the
memory hierarchy, because they achieve the optimal cacheplesity.

Far from answering all questions in portable high perforogahowever, this chapter open more
problems than | am capable of solving. Intuitively, | woukpect the cache complexity of cache-

69

aware algorithms to be inherently lower than the complesitgache-oblivious algorithms, but the
results of this chapter contradict this intuition. Do omiincache-oblivious algorithms exist for all
problems, or can we find a problem for which cache-aware igos are inherently better? This
problem is open for future research.

A second set of questions arises when we try to run a caclidenld algorithm in parallel, for
example using Cilk. Running these algorithms in parallelildg@roduce a formidable combination
of portability and high performance, because the resuftimgiram would be high-performance and
yet insensitive to both the number of processors and the mehierarchy. Unfortunately, things
are not so easy. The analysis Cilk scheduler offers no paence guarantees if Cilk threads are
delayed by cache misses, and conversely, the analysis loé-@dativious algorithm offer no cache-
complexity guarantees in a Cilk environment where the sgleeanoves threads across the parallel
machine. The problem of combining Cilk with cache-oblidaaigorithms is not completely open,
however, and we shall discuss a possible solution in Chdpter

The ideal-cache model is not an adequate model of writatfir@aches. In many modern pro-
cessor, the L1 cache verite-through, i.e., it transmits written values to the L2 cache immedyate
With write-through caches, we can no longer argue that orm@lsiem fits into cache no further
misses are incurred, since the cache incurs a “miss” at evety operation. We currently do not
know how to account for write-through caches in our theorgaathe-oblivious algorithms.

70

Chapter 4

Portable parallel memory

In this chapter we attempt to marry Cilk with cache-obliscaigorithms. In Cilk, we can write
high-performance programs that run efficiently with vagyotegrees of parallelism. The theory of
cache-oblivious algorithms allows us to design fast atbors that are insensitive to the parameters
of the memory hierarchy. What happens when we code the aaahésus algorithms in Cilk and
run them on a parallel machine? Specifically, consider theviing two questions.

1. Canwe preserve Cilk’s performance guarantees and itsieal@fficiency if we augment the
Cilk scheduler with a cache? The Cilk theory of Section 2.8doot mention caches at all.
The execution-time upper bound from [25] does not hold ingiressence of caches, because
the proof does not account for the time spent in servicinpeanisses.

2. Is the cache complexity preserved when a program is exgéatparallel? For example, if
work is moved from one processor to another, the contentseofitst cache are unavailable
to the destination processor, and communication betwesmesds necessary for the correct

execution of the program.

The answer to these two questions seems to depend crugiaiheanemory model that we use.
A memory modelis a specification of how memory behaves in a computer sysfensee why a
good memory model is important, imagine executing a Cillgpam on a network of workstations
in which each processor operates within its own memory aratteapt is ever made to synchronize
the memory contents. Such a system would be very fast, sindestations do not communicate at
all, but most likely useless since processors cannot sdeather’s results. On the other extreme,
the sequential consistencynodel [96] dictates that the whole memory of the machine belaa a
single black box, so that every processor sees the samedairgmory events (reads and writes).
Sequential consistency appears at first sight to be the ideatory model, because it preserves

This chapter represents joint work with Bobby Blumofe, Gliwerg, and Charles Leiserson, and Keith Randall. A
preliminary version appears in [27, 26].

71

the black-box abstraction of a single memory, but unfortieliyasequential consistency has a price.
It is generally believed [79] that sequential consistemapases major inefficiencies in an imple-
mentation. (See [81] for the opposite view, however.) Cqusatly, many researchers have tried
to relax the requirements of sequential consistency inaxgé for better performance and ease of
implementation. For exampl@rocessor consistency’0] is a model where every processor can
have an independent view of memory, aetkase consistencip4] is a model where the memory
becomes consistent only when certain synchronizing dpesatire performed. See [1] for a good
tutorial on this subject.

In this chapter, we focus on a memory model caltezhtion consistency Location consistency
is relevant to portable high performance because it is thmemgmodel maintained by tHRACKER
coherence algorithm, and a combination @fd&ER and Cilk executes a cache-oblivious Cilk pro-
gram maintaining both the performance guarantees of Citktha program’s cache complexity.
Specifically, we prove that a Cilk program with wdik, critical pathT,,, and cache-complexity
Q(Z, L) runs onP processors in expected time

Tp =O((Ty + pQ(Z, L))/ P + nZTs/L)

wherey, is the cost of transferring one cache line between main mem@od the cache. To my
knowledge, the combination of Cilk arBACKER is the only shared-memory programming system
algorithm with any sort of performance guarantee. While BacKER coherence algorithm is
simplistic and does not attempt optimizations, it has begriémented in the Cilk-3 runtime system
with encouraging empirical results [27].

To illustrate the concepts behind location consistencysicter again theatrixmul program
from Section 2.4. Like any Cilk multithreaded computati@8], the parallel instruction stream of
matrixmul can be viewed as a “spawn tree” of procedures broken intceatdil acyclic graph, or
dag of “threads.” Thespawn treds exactly analogous to a traditional call tree. When a pitooe,
such asatrixmul performs a spawn, the spawned procedure becomes a chile pifdbedure that
performed the spawn. Each procedure is brokesshye statements into nonblocking sequences of
instructions, callethreads and the threads of the computation are organized into agjmgsenting
the partial execution order defined by the program. Figuleilllsstrates the structure of the dag
for matrixmul. Each vertex corresponds to a thread of the computationthenddges define the
partial execution order. The syncs in lines 21 and 23 brealptbceduranatrixmul into three
threadsu, v, andw, which correspond respectively to the partitioning andwspag of subproblems
My, My, ..., M7 inlines 2-20, the spawning of the additiénin line 22, and the return in line 25.

!Location consistency is often called coherence in theditee [79]. It isnot the model with the same name intro-
duced by Gao and Sarkar [61]. See [54] for a justification f términology.

72

Figure 4-1. Dag generated by the execution of the matrix multiplicafiomgram in Figure 2-4. Some edges
have been omitted for clarity.

Location-consistent shared memory is a natural consigtenclel to support a shared-memory
program such asatrixmul. Certainly, sequential consistency [96] can guaranteedhectness of
the program, but a closer look at the precedence relati@ndiy the dag reveals that a much weaker
consistency model suffices. Specifically, the 8 recursigpBwned childred/y, M, ... , M7 need
not have the same view of shared memory, because the poftgraged memory that each writes
is neither read nor written by the others. On the other hamel,parallel addition otmp into R
by the computatior requiresS to have a view in which all of the writes to shared memory by
My, My, ..., M7 have completed.

The intuition behind location consistency is that each nmynhacation sees values that are
consistent with some serial execution order of the dag vbodifferent locations may see different
serial orders. Thus, the writes performed by a thread arelsgés successors, but threads that are
incomparable in the dag may or may not see each other’s whitestrixmul, the computatiort
sees the writes af/y, M1, . .. , M7, because all the threads®fre successors éfly, My, ... , My,
but since the\/; are incomparable, they cannot depend on seeing each othrs. WWe shall define
location consistency precisely in Section 4.2.

All threads of a multithreaded computation should have s&t®a single, shared virtual address
space, and in order to support such a shared-memory almtract a computer with physically
distributed memory, the runtime scheduler must be coupligal aicoherence algorithm. For our
BACKER coherence algorithm, we assume that each processor’'s m@&wivided into two regions,
each containing lines of shared-memory objects. One rdgiaacheof size Z, partitioned into
Z/L lines of lengthL containing locations that have been recently accessed diyptiocessor.
The rest of each processors’ memory is maintainedragia memoryof locations that have been
allocated in the virtual address space. Each allocatedidimssigned to the main memory of a
processor chosen by hashing the cache line’s virtual asldhe®rder for a processor to operate on
a location, the location must be resident in the processaiche; otherwise, a cache miss occurs,
and BACKER must “fetch” the correct cache line from main memory intod¢hehe. We assume that
when a cache miss occurs, no progress can be made on the etimpduring the time it takes to
service the miss, and the miss time may vary due to congestiooncurrent accesses to the main
memory. Like in the ideal-cache model of Chapter 3, we shialher assume that lines in the cache

73

are maintained using the LRU (least-recently-used) [88is&c. In addition to servicing cache
misses, BCKER must “reconcile” cache lines between the processor cacitethe main memory
so that the semantics of the execution obey the assumptidosation consistency.

The remainder of this chapter is organized as follows. 8Secetil combines the Cilk perfor-
mance model and the ideal-cache model, and states therparfoe of B.CKER precisely. Sec-
tion 4.2 gives a precise definition of location consistenay describes the B.KER coherence al-
gorithm. Section 4.3 analyzes the execution time of fullics{25] multithreaded algorithms when
the execution is scheduled by the randomized work-stealifgduler and location consistency is
maintained by the BCKER coherence algorithm. Section 4.4 analyzes the space esgemts of
parallel divide-and-conquer algorithms. Finally, Secté5 offers some comparisons with other
consistency models.

4.1 Performance model and summary of results

This section defines performance measures for locatiosistemt Cilk programs, and states the
main results of this chapter formally. We define tbh&al work T, (Z, L) as the serial execution time
on a machine with &7, L) cache, and we clarify the meaning of critical-path lengtipriograms
that use shared memory. We state bounds on the executioatidheache misses of fully strict [25]
programs executed by Cilk in conjunction with thed&ER coherence algorithm. We state bounds
on the space requirements of parallel divide-and-congigerithms. As an example of application,
we apply these results to the cache-oblivious Cilk programrixmul.

In order to model the performance of multithreaded algorghthat use location-consistent
shared memory, it is important to observe that running timdisvary as a function of the cache
size Z and of the line sizd., and consequently we must introduce measures that acomutiti$
dependence. Consider(d, L) cache, which containd = Z/L lines of sizeL. We call quantity
H the cache height Let i, be the time to service a cache miss in the serial executioneXxam-
ple, » might be proportional to the line size but here we do not assume any specific relationship
betweery, and L.

Consider again the multithreaded computation (such asrtbémoFigure 4-1) that results when
a given multithreaded algorithm is used to solve a given lprab We shall define a new work
measure, the “total work,” that accounts for the cost of eatlisses in the serial execution of the
computation, as follows. We associate a weight with eactnuaoson of the dag. Each instruction
that generates a cache miss in the one-processor executlothes standard, depth-first serial ex-
ecution order has weight + 1, and all other instructions have weight Thetotal work, denoted
T, (Z, L), is the total weight of all instructions in the dag, whichmesponds to the serial execution
time if cache misses takeunits of time to be serviced. We shall continue toflgdenote the num-
ber of instructions in the dag, but for clarity, we shall ref@T; as thecomputational work (The

74

computational workl'; corresponds to the serial execution time if all cache mitses zero time
to be serviced.) To relate these measures, we defingetied cache complexitydenoted(Z, L),

to be the number of cache misses taken in the serial exedtianis, the number of instructions
with weight x + 1). This measure is the same as the cache complexity of Chaptéhus, we
haveT,(Z,L) = Ty + pQ(Z, L). The total work therefore translates both the work and tlohea
complexity of Chapter 3 into units of execution time. Thididigion is useful because from the
point of view of the Cilk scheduler it does not matter whettiweads spend time in computational
work or in waiting for cache misses.

The quantityl’ (Z, L) is an unusual measure. Unlig, it depends on the serial execution order
of the computation. The quantit; (Z, L) further differs from? in that7%(Z, L)/ P is not a lower
bound on the execution time f@® processors. It is possible to construct a computation gunta
P subcomputations that run da separate processors in which each processor repeateélysasc
H different cache lines in sequence. Consequently, With.) caches, no processor ever misses,
except to warm up the cache at the start of the computatiame Hin the same computation serially
with a cache of heighH (or any size less thaH P), however, the necessary multiplexing among
tasks can cause numerous cache misses. Consequentlyisfopmhputation, the execution time
with P processors is much less than(Z, L)/ P. In this dissertation, we shall forgo the possibility
of abtaining such superlinear speedup on computationseddswe shall simply attempt to obtain
linear speedup.

Critical-path length can likewise be split into two notiongVe define thdotal critical-path
length, denotedl’,,(Z, L), to be the maximum over all directed paths in the computatidag, of
the time, including cache misses, to execute along the patndingle processor with af¥, L)
cache. Theomputational critical-path lengthl’y, is the same, but where misses cost zero time.
Both T, andT,(Z, L) are lower bounds on execution time. Although,(Z, L) is the stronger
lower bound, it appears difficult to compute and analyze,arcdupper-bound results will be char-
acterized in terms df’,,, which we shall continue to refer to simply as the criticatiplength.

The main result of this chapter is the analysis of the exenutime of “fully strict” multi-
threaded algorithms that use location consistent sharedamye A multithreaded computation is
fully strict [25] if every dependency edge goes from a procedure to eitiself or its parent pro-
cedure. All Cilk-5 computations are fully strict, becaus€ilk procedure can return a value only
to its parent, but not to its other ancestors. (This condtiaienforced by the call/return semantics
of Cilk.) Consequently, the analysis applies to all Cilkgnams. The multithreaded algorithm is
executed on a parallel computer with processors, each with (&, L) cache, and a cache miss
that encounters no congestion is serviced.innits of time. The execution is scheduled by the
Cilk work-stealing scheduler and location consistency &@ntained by the BCKER coherence al-
gorithm. In addition, we assume that accesses to shared marm® distributed uniformly and
independently over the main memory—often a plausible aptiom since BCKER hashes cache

75

lines to the main memory. The following theorem bounds thralfe execution time.

Theorem 20 Consider any fully strict multithreaded computation exeduon P processors, each
with an LRU cache of heightf, using the Cilk work-stealing scheduler in conjunctionhatihe
BACKER coherence algorithm. Let be the service time for a cache miss that encounters no con-
gestion, and assume that accesses to the main memory aremaauod independent. Suppose the
computation hag’; computational work@(Z, L) serial cache misse}(Z, L) = Ty + uQ(Z, L)

total work, andZ’, critical-path length. Then for any > 0, the execution time i©(7'(Z,L)/P +
pwHT + pnPlg P+ pnH 1g(1/¢)) with probability at leastl — . Moreover, the expected execution
time isO(T1(Z,L)/P + pHTy).

Proof: See Section 4.3.]

This theorem enables us to design high-performance perprbgrams by designing algorithms
with optimal work, critical path, and cache complexity. hetcases where we cannot optimize all
three quantities simultaneously, Theorem 20 gives a modeVestigate the tradeoffs. For example,
the critical path ofnatrixmul is ©(lg?n). We could write a matrix multiplication program with
critical path©(lgn) by spawning a separate thread to compute each element ofithet @rray,
where each thread spawns a divide-and-conquer additions agporithm would have ® (n?)
cache complexity, however, whilgatrixmul’s complexity is©(n?)/(LV/Z). For large values
of n, Theorem 20 predicts thattrixmul is faster.

Theorem 20 is not as strong a result as we would like to progealse accesses to the main
memory are not necessarily independent. For example,dbmeay concurrently access the same
cache lines by algorithm design. We can artificially solvis firoblem by insisting, as does the
EREW-PRAM model, that the algorithm performs exclusiveeases only. More seriously, how-
ever, congestion delay in accessing the main memory care ¢eascomputation to be scheduled
differently than if there were no congestion, thereby ppsh@ausing more congestion to occur. It
may be possible to prove our bounds for a hashed main memdrgutimaking this independence
assumption, but we do not know how at this time. The probleth imidependence does not seem
to be serious in practice, and indeed, given the randomiagare of our scheduler, it is hard to
conceive of how an adversary can actually take advantageedatk of independence implied by
hashing to slow the execution. Although our results are nf@og we are actually analyzing the
effects of congestion, and thus our results are much strahga if we had assumed, for example,
that accesses to the main memory independently sufferdPsdistributed delays.

In this chapter, we also analyze the number of cache miss¢®dtiour during algorithm exe-
cution. This is the parallel analogue of the cache compleXgain, execution is scheduled with
the Cilk work-stealing scheduler and location consistéaapaintained by the BCKER coherence
algorithm, and we assume that accesses to main memory ai@maand independent. A bound on

76

the number of cache misses is stated by the next corollary.

Corollary 21 Consider any fully strict multithreaded computation exedwnP processors, each
with an LRU cache of heightf, using the Cilk work-stealing scheduler in conjunctionhatihe
BACKER coherence algorithm. Assume that accesses to the main meamnemandom and indepen-
dent. Suppose the computation [ia&7, L) serial cache misses arid,, critical-path length. Then
for anye > 0, the number of cache misses is at mQ$¥, L) + O(H PT,, + HPlg(1/¢)) with
probability at leastl — . Moreover, the expected number of cache misses is at @(d&tL) +
O(HPTy).

Proof: See Section 4.3.]

For example, the total number of cache misses incurrathlbyixmul when multiplyingn x n
matrices using® processors i®)(1 +n?/L+n3/(LVZ) + HPlg? n), assuming that the indepen-
dence assumption for the main memory holds.

Space utilization of Cilk programs is relevant to portabighhperformance, too. If a program
exhausts memory when run in parallel, it is not portable nden&iow fast it is. In this chapter, we
analyze the space requirements of “simple” multithreadgdrigthms that use location-consistent
shared memory. We assume that the computation is schedyladstheduler, such as the work-
stealing algorithm, that maintains the “busy-leaves” grop[25, 30]. For a given simple multi-
threaded algorithm, le%; denote the space required by the standard, depth-first ergieution of
the algorithm to solve a given problem. In previous work,Btfe has shown that the space used by
a P-processor execution is at mdstP in the worst case [25, 30]. We improve this characterization
of the space requirements, and we provide a much stronger bppnd on the space requirements
of “regular” divide-and-conquer multithreaded algorithnm which each thread divides a problem
of sizen into a subproblems, each of size/b for some constants > 1 andb > 1, and then it
recursively spawns child threads to solve each subproblem.

Theorem 22 Consider any regular divide-and-conquer multithreadedagithm executed o
processors using a busy-leaves scheduler. Suppose thattle@ad, when spawned to solve a
problem of size:, allocatess(n) space, and if is larger than some constant, then the thread di-
vides the problem inta subproblems each of sizg/b for some constants > 1 andb > 1. Then,
the total amountSp(n) of space taken by the algorithm in the worst case when sobvippblem

of sizen can be determined as follovés:

1. If s(n) = ©(Igk n) for some constarit > 0, thenSp(n) = O(P g (n/P)).

20ther cases exist besides those given here.

77

2. If s(n) = O(n'°&2=¢) for some constanté > 0, thenSp(n) = O(Ps(n/P'/ 18)), if,
in addition, s(n) satisfies the regularity conditiom; s(n/b) < s(n) < avyas(n/b) for some
constantsy; > 1 andy; < 1.

3. If s(n) = O(n'& %), thenSp(n) = O(s(n)Ig P).

4. If s(n) = Q(n'8 ¢*+€) for some constant > 0, thenSp(n) = O(s(n)), if, in addition, s(n)
satisfies the regularity condition thatn) > ays(n/b) for some constanf > 1.

Proof: See Section 4.4.]

For example, Theorem 22 appliesntatrixmul with a = 8, b = 2, ands(n) = O(n?). From
Case 2, we see that multiplyingx n matrices onP processors uses on@(n2P1/3) space, which
is tighter than the&) (n? P) result obtained by directly applying tk P bound.

4.2 Location consistency and the BCKER coherence algorithm

In this section we give a precise definition of location cetesicy, and we describe theaBKER
[27] coherence algorithm for maintaining this memory modebcation consistency is a relaxed
consistency model for distributed shared memory, and #e<R algorithm can maintain location
consistency for multithreaded computations that execuata @arallel computer with physically
distributed memory. In this chapter we give a simplified dééin of location consistency. Chapter 5
offers an equivalent definition (Definition 48) in the morenf@l computation-centrictheory of
memory models.

Shared memory consists of a setloationsthat instructions can read and write. When an
instruction performs a read of a location, it receives soaiae; but the particular value it receives
depends upon the consistency model. As its name suggesasiolo consistency is defined sepa-
rately for each location in shared memory.

Definition 23 Let C be the dag of a multithreaded computation. The shared memhorgf the
computationC' is location consistentf for all locations! there exists a topological soff of C' such
that every read operation on locatidrreturns the value of the last write to locatiéroccurring in
T;.

In previous work [27, 26], we presentedg consistencya memory model strictly weaker than
location consistency. Afterwards, | showed anomalies & dbfinition of dag consistency, and
| argued that location consistency is the weakest reasermmakimory model [54]. In Chapter 5,
we will use the “computation-centric” theoretical framealwdo understand the differences among
location consistency, dag consistency, and other memodetao

78

We now describe the &KER coherence algorithm from [27], in which versions of shared-
memory locations can reside simultaneously in any of thegssor caches and the main memory.
Each processor’s cache contains locations recently usédebthreads that have executed on that
processor, and the main memory provides default globahgéofor each location. In order for a
thread executing on the processor to read or write a locatieriocation must be in the processor’s
cache. Each location in the cache hatirty bit to record whether the location has been modified
since it was brought into the cache.

BACKER uses three basic operations to manipulate shared-memaatidos: fetch, reconcile,
and flush. Afetch copies an location from the main memory to a processor cactierearks the
cached location as clean. r&concile copies a dirty location from a processor cache to the main
memory and marks the cached location as clean. Finaflush removes a clean location from a
processor cache.

The BACKER coherence algorithm operates as follows. When the usermad@ms a read or
write operation on a location, the operation is performedatiy on a cached copy of the location.
If the location is not in the cache, it is fetched from the maiemory before the operation is
performed. If the operation is a write, the dirty bit of thedbion is set. To make space in the cache
for a new location, a clean location can be removed by fluskiingm the cache. To remove a dirty
location, BACKER first reconciles and then flushes it.

Besides performing these basic operations in responsectaesds and writes, A&AKER per-
forms additional reconciles and flushes to enforce locat@rsistency. For each edge— v in the
computation dag, if nodes andv are executed on different processors, sandq, then BACKER
cause9 to reconcile all its cached locations after executirigut before enabling, and it causes
to reconcile and flush its entire cache before executingote that if¢’s cache is flushed for some
other reason aftey has reconciled its cache but beferexecutesy (perhaps because of another
interprocessor dag edge), it need not be flushed again befeceitingy.

The following theorem by Luchangco states thatdRER is correct.

Theorem 24 If the shared memony1 of a multithreaded computation is maintained usBRLKER,
then M is location consistent.

Proof: See [104]. [

4.3 Analysis of execution time

In this section, we bound the execution time of fully strialtithreaded computations when the
parallel execution is scheduled by a work-stealing sclezdarid location consistency is maintained
by the BACKER algorithm, under the assumption that accesses to the maimomgere random and

79

independent. For a given fully strict multithreaded altori, let7»(Z, L) denote the time taken
by the algorithm to solve a given problem on a parallel cormaputith P processors, each with
an LRU (Z, L)-cache, when the execution is scheduled by the Cilk sched@ulnjunction with
the BACKER coherence algorithm. In this section, we show that if ac®$s main memory are
random and independent, then the expected vali& 6%, L) is O(11(Z,L)/P + uHT,,), where

H = Z/Lis the height of the cachg,denotes the minimum time to transfer a cache line, Bgds

the critical-path length of the computation. In additiore lmound the number of cache misses. The
exposition of the proofs in this section makes heavy usexfli®and techniques from [25, 30].

In the following analysis, we consider the fully strict nitiiteaded computation that results
when a given fully strict multithreaded algorithm is exesmlito solve a given input problem. We as-
sume that the computation is executed by a work-stealingdadar in conjunction with the BCKER
coherence algorithm on a parallel computer witthomogeneous processors. The main memory
is distributed across the processors by hashing, with eaxdegsor managing a proportional share
of the locations which are grouped into cache lines of dizdn addition to main memory, each
processor has a cache Hflines that is maintained using the LRU replacement hearidtfe as-
sume that a minimum qf time steps are required to transfer a cache line. When cautedre
transferred between processors, congestion may occurestiaation processor, in which case we
assume that the transfers are serviced at the destinatilfr@ (first-in, first-out) order.

The work-stealing scheduler assumed in our analysis is tirg-stealing scheduler from [25,
30], but with a small technical modification. Between sustdssteals, we wish to guarantee that a
processor performs at leaftline transfers (fetches or reconciles) so that it does matl $bo often.
Consequently, whenever a processor runs out of work, ifdtiwd performedd line transfers since
its last successful steal, the modified work-stealing saleedoerforms enough additional “idle”
transfers until it has transferred lines. At that point, it can steal again. Similarly, we reguihat
each processor perform one idle transfer after each unssfatesteal request to ensure that steal
requests do not happen too often.

Our analysis of execution time is organized as follows. tFinge prove a lemma describing
how the BACKER algorithm adds cache misses to a parallel execution. Themhtain a bound
on the number of “rounds” that a parallel execution contalBach round contains a fixed amount
of scheduler overhead, so bounding the number of roundsdsotive total amount of scheduler
overhead. To complete the analysis, we use an accountingnarg to add up the total execution
time.

Before embarking on the analysis, however, we first defineeslefpful terminology. Atask
is the fundamental building block of a computation and ikegita local instruction (one that does
not access shared memory) or a shared-memory operationtaskds a local instruction or ref-
erences a location in the local cache, it takes 1 step to exe€therwise, the task is referencing
an location not in the local cache, and a line transfer o¢daking at leasj: steps to execute. A

80

synchronizationtask is a task in the dag that forcead&ER to perform a cache flush in order to
maintain location consistency. Remember that for eachigrdeessor edge — v in the dag, a
cache flush is required by the processor executispmetime after: executes but before exe-
cutes. A synchronization task is thus a tadkaving an incoming interprocessor edge» v in the
dag, wherev executes on a processor that has not flushed its cachewsinas executed. Aub-
computationis the computation that one processor performs from the itirabtains work to the
time it goes idle or enables a synchronization task. Werdjsish two kinds of subcomputations:
primary subcomputations start when a processor obtains work frandom steal request, asdc-
ondary subcomputations start when a processor starts executingdrsynchronization task. We
distinguish three kinds of line transfers. Atrinsic transfer is a transfer that would occur during
a 1-processor depth-first execution of the computation. r€heiningextrinsic line transfers are
divided into two types. Adrimary transfer is any extrinsic transfer that occurs during a arinsub-
computation. Likewise, aecondantransfer is any extrinsic transfer that occurs during aseéary
subcomputation. We use these terms to refer to cache missedlla

Lemma 25 Each primary transfer during an execution can be associatid a currently running
primary subcomputation such that each primary subcompartetas at mos8H associated pri-
mary transfers. Similarly, each secondary transfer duramgexecution can be associated with a
currently running secondary subcomputation such that eadondary subcomputation has at most
3 H associated secondary transfers.

Proof: For this proof, we use a fact shown in [27] that executing asuoiputation starting with

an arbitrary cache can only inclif more cache misses than the same block of code incurred in the
serial execution. This fact follows from the observatioatth subcomputation is executed in the
same depth-first order as it would have been executed in tia egecution, and the fact that the
cache replacement strategy is LRU.

We associate each primary transfer with a running primabgemputation as follows. During
a steal, we associate the (at moAt)reconciles done by the victim with the stealing subcompu-
tation. In addition, the stolen subcomputation has at nibsixtrinsic cache misses, because the
stolen subcomputation is executed in the same order as fitersyputation executes in the serial
order. At the end of the subcomputation, at mislines need be reconciled, and these reconciles
may be extrinsic transfers. In total, at m8¢{ primary transfers are associated with any primary
subcomputation.

A similar argument holds for secondary transfers. Eachrstany subcomputation must per-
form at mostH reconciles to flush the cache at the start of the subcompntalihe subcomputation
then has at modil extrinsic cache misses during its execution, becauseduess in the same order
as it executes in the serial order. Finally, at mAstines need to be reconciled at the end of the
subcomputation. [

81

We now bound the amount of scheduler overhead by countingidingber of rounds in an
execution.

Lemma 26 If each line transfer (fetch or reconcile) in the executienserviced by a processor
chosen independently at random, and each processor queugarnsfer requests in FIFO order,
then, for anye > 0, with probability at leastl — ¢, the total number of steal requests and primary
transfers is at mos(H PT, + HPlg(1/e)).

Proof: To begin, we shall assume that each access to the main meakes/dne step regardless
of the congestion. We shall describe how to handle congeatithe end of the proof.

First, we wish to bound the overhead of scheduling, thathis,additional work that the one-
processor execution would not need to perform. We definevantas either the sending of a steal
request or the sending of a primary line-transfer requesbrder to bound the number of events,
we divide the execution into rounds. Round 1 starts at tirap tand ends at the first time step at
which at leasR7H P events have occurred. Round 2 starts one time step afted rbeompletes
and ends when it contains at le@%tH P events, and so on. We shall show that with probability at
leastl — e, an execution contains only(75, + 1g(1/¢)) rounds.

To bound the number of rounds, we shall use a delay-sequeggmant. We define a modified
dagg’ exactly as in [30]. (The dag’ is for the purposes of analysis only and has no effect on the
computation.) The critical-path length 6f is at mos2T,,,. We define a task with no unexecuted
predecessors i’ to becritical, and it is by construction one of the first two tasks to be stflem
the processor on which it resides. Given a task that is atititthe beginning of a round, we wish
to show that it is executed by the start of the next round wathstant probability. This fact will
enable us to show that progress is likely to be made on anygbathin each round.

We now show that at leadtP steal requests are initiated during the f28#H P events of a
round. If at leastP of the 22H P events are steal requests, then we are done. If not, them ther
are at least8H P primary transfers. By Lemma 25, we know that at mp&tP of these transfers
are associated with subcomputations running at the sténeabund, leaving5H P for steals that
start in this round. Since at mosH primary transfers can be associated with any steal, at3dast
steals must have occurred. At mdstof these steals were requested in previous rounds, so there
must be at leastP steal requests in this round.

We now argue that any task that is critical at the beginning ofund has a probability of at
leastl/2 of being executed by the end of the round. Since there arastllE steal requests during
the first22 H P events, the probability is at least2 that any task that is critical at the beginning of
a round is the target of a steal request [30, Lemma 10], ifribisexecuted locally by the processor
on which it resides. Any task takes at m8gtH + 1 < 4;.H time to execute, since we are ignoring
the effects of congestion for the moment. Since thed4&EP events of a round take at leagi H
time to execute, if a task is stolen in the first part of the chunis done by the end of the round.

82

We want to show that with probability at leakt- ¢, the total number of rounds 9(7 +
lg(1/¢)). Consider a possible delay sequence. Recall from [30] thalay sequence of sizR is
a maximal patiJ in the augmented dag’ of length at moseT,, along with a partitioril of R
which represents the number of rounds during which eachattie path inG’ is critical. We now
show that the probability of a large delay sequence is tiny.

Whenever a task on the pathis critical at the beginning of a round, it has a probabilifyab
least1/2 of being executed during the round, because it is likely tohieetarget of one of théP
steals in the first part of the round. Furthermore, this podity is independent of the success of
critical tasks in previous rounds, because victims are emasdependently at random. Thus, the

probability is at mos{(1/2)%~2T= that a particular delay sequence with size> 2T, actually

R+2Tw
2T

probability that any delay sequence of seccurs is at most

i R+2T5\ (1 R—2Tx
2T 2

2T (e(R T 2Too)>2T°° (1 >R2T°°

2T e 2
o (fe(R+2Ty) Ao (1N
= 2T 2)

which can be made less tharby choosingR = 147, + lg(1/¢). Therefore, there are at most

occurs in an execution. There are at m@$t= () delay sequences of siZ@. Thus, the

IN

O(Tx + 1g(1/€)) rounds with probability at least — e. In each round, there are at mastd P
events, so there are at mastH P71, + H P lg(1/¢)) steal requests and primary transfers in total.

Now, let us consider what happens when congestion occure atain memory. We still have at
most3H transfers per task, but these transfers may take more3jlhAntime to complete because
of congestion. We define the following indicator random ahlés to keep track of the conges-
tion. Letz,;, be the indicator random variable that tells whether ta'skith transfer request is
delayed by a transfer request from procegsoihe probability is at most/P that one of these
indicator variables is 1. Furthermore, we shall argue they tare nonpositively correlated, that is,
Pr {xuip =1 ‘/\u,i,p, Tylitp = 1} < 1/P, as long as none of th@./, ') requests execute at the
same time as theu, i) request. That they are nonpositively correlated followsnfilan examination
of the queuing behavior at the main memory. If a reqyest’) is delayed by a request from pro-
cessop’ (thatis,z,+,y = 1), then once th¢u’, i) request has been serviced, procegéerrequest
has also been serviced, because we have FIFO queuing dietraequests. Consequently,s
next request, if any, goes to a new, random processor whefu ftierequest occurs. Thus, a long
delay for requestu’,i’) cannot adversely affect the delay for requiesti). Finally, we also have
Pr {xuip =1 ‘ /\p,;ép Tyip = 1 } < 1/P, because the requests from the other processors besides
are distributed at random.

83

The execution timeX of the transfer requests for a pathin G’ can be written as¥ <
> e OpH + p 37, wuip). Rearranging, we havel < 10pHTo + 1), Tuip, because
has length at mostT,,,. This sum is just the sum df0H PT,, indicator random variables, each
with expectation at modt/ P. Since the tasks in U do not execute concurrently, thg;, are non-
positively correlated, and thus, their sum can be boundid) u®mbinatorial technigues. The sum
is greater tharx only if somez-size subset of thes®)H PT, variables are all, which happens
with probability:

10H PT, 1\?
wfgead 5 () (2
uLp
< 10eHPT-* [1\?
- z P
< <1OeHTOO>Z.
z

This probability can be made less théry2)? by choosingz > 20eHT.,,. Therefore, we have
X > (10 + 20e)uH Ty, with probability at most(1/2)* ~10#HT= Since there are at mo8ft,,
tasks on the critical path, at maxf,, + X/uH rounds can be overlapped by the long execution of
line transfers of these critical tasks. Therefore, the @bdlty of a delay sequence of siZeis at
most(1/2)%-9(T=) Consequently, we can apply the same argument as for ustitremsfers, with
slightly different constants, to show that with probapikit leastl — ¢, there are) (T, + 1g(1/¢))
rounds, and heno®(H PT, + HPlg(1/e)) events, during the execution. [

We now bound the running time of a computation.

Theorem 20 Consider any fully strict multithreaded computation exeduon P processors, each
with an LRU(Z, L)-cache of heigh#/, using the Cilk work-stealing scheduler in conjunctionhwit
the BACKER coherence algorithm. Let be the service time for a cache miss that encounters no
congestion, and assume that accesses to the main memoand@n and independent. Suppose the
computation hag’; computational work@(Z, L) serial cache misse}(Z, L) = T1 + uQ(Z, L)

total work, andZ’, critical-path length. Then for any > 0, the execution time i©(7'(Z,L)/P +
pwHT + pPlg P+ pnH1g(1/¢)) with probability at leastl — . Moreover, the expected execution
time isO(T1(Z,L)/P + pHTy).

Proof: As in [30], we shall use an accounting argument to bound thaing time. During the
execution, at each time step, each processor puts a pieiteeofisto one of 5 buckets according to
its activity at that time step. Specifically, a processosupiece of silver in the bucket labeled:

» WORK, if the processor executes a task;

» STEAL, if the processor sends a steal request;

84

» STEAL WAIT, if the processor waits for a response to a steal request;
» XFER, if the processor sends a line-transfer request; and
» XFERWAIT, if the processor walits for a line transfer to complete.

When the execution completes, we add up the pieces of silveadh bucket and divide by to get
the running time.

We now bound the amount of money in each of the buckets at teokthe computation
by using the fact, from Lemma 26, that with probability atdea — ¢, there areO(H PT,, +
HPIlg(1/€)) events:

WoRK. The WORK bucket contains exactly; pieces of silver, because there are exatily
tasks in the computation.

STEAL . We know that there art®@(H PT,+H P 1g(1/€')) steal requests, so there &€H PT,,+
HPIlg(1/€¢')) pieces of silver in the SEAL bucket.

STEAL WAIT. We use the analysis of thecycling game([30, Lemma 5]) to bound the num-
ber of pieces of silver in the ALWAIT bucket. The recycling game says thatNf requests
are distributed randomly t& processors for service, with at madtrequests outstanding simulta-
neously, the total time waiting for the requests to compiet@(N + Plg P + Plg(1/€')) with
probability at leastl — ¢/. Since steal requests obey the assumptions of the recyghngg,
if there areO(HPTx, + HPlg(1/€)) steals, then the total time waiting for steal requests is
O(HPTw + PlgP + HPIlg(1/€')) with probability at leastt — ¢/. We must add to this total
an extraO(uH PT, + nHPlg(1/€¢')) pieces of silver because the processors initiating a sseces
ful steal must also wait for the cache of the victim to be reided, and we know that there are
O(HPT + HPIlg(1/€)) such reconciles. Finally, we must adH PTo, + pnHP1g(1/€))
pieces of silver because each steal request might also Ipateuidle steps associated with it.
Thus, with probability at least — ¢/, we have a total 0O (uHPTy, + Plg P + pHPlg(1/€))
pieces of silver in the 8&ALWAIT bucket.

XFER. We know that there ar®(Q(Z, L) + HPT., + HPlg(1/€')) transfers during the
execution: a fetch and a reconcile for each intrinsic mi¥d{ PT, + HP 1g(1/€')) primary trans-
fers from Lemma 26, an@(H PT, + HP 1g(1/€')) secondary transfers. We have this bound on
secondary transfers, because each secondary subcompwat be paired with a unique primary
subcomputation. We construct this pairing as follows. mhesynchronization task we examine
each interprocessor edge enteringeach of these edges corresponds to some childsahread
in the spawn tree, because the computation is fully stri¢leAst one of these children (calkit)
is not finished executing at the time of the last cache flush’®yprocessor, since is a synchro-
nization task. We now show that there must be a random stedd tiread just aftetv is spawned.

If not, thenw is completed before’s thread continues executing after the spawn. There must be

85

a random steal somewhere between wizeis spawned and whemnis executed, however, because
v andw execute on different processors. On the last such randah gte processor executing
must flush its cache, but this cannot happen becausestill executing when the last flush of the
cache occurs. Thus, there must be a random steal justafespawned. We pair the secondary
subcomputation that starts at taskvith the primary subcomputation that starts with the random
steal afterw is spawned. By construction, each primary subcomputati@alh most one secondary
subcomputation paired with it, and since each primary suipedation does at leadf extrinsic
transfers and each secondary subcomputation does aBiastirinsic transfers, there are at most
O(HPT + HP1g(1/€')) secondary transfers. Since each transfer takéme, the number of
pieces of silver in the XER bucket isO(uQ(Z, L) + pHPTy, + pHP1g(1/€')).

XFERWAIT . To bound the pieces of silver in theFKRWAIT bucket, we use the recycling game
as we did for the 8EALWAIT bucket. The recycling game shows that there @feQ(Z, L) +
pHPT,, +puPlg P+ pHPg(1/€')) pieces of silver in the XERWAIT bucket with probability at
leastl — ¢'.

With probability at leasti — 3¢/, the sum of all the pieces of silver in all the bucketdjs+
O(uQ(Z,L) + unHPT + pPlg P+ pnHPIg(1/€')). Dividing by P, we obtain a running time of
Tp <O((Ty + uQ(Z,L))/P + nHTy + plg P + pnH 1g(1/€')) with probability at least — 3¢'.
Using the identityT’ (Z, L) = T1 + pQ(Z, L) and substituting = 3¢’ yields the desired high-
probability bound. The expected bound follows similarly. [

To conclude this section, we now bound the number of cachsasis

Corollary 21 Consider any fully strict multithreaded computation exedwnP’ processors, each
with an LRU(Z, L)-cache of heigh#l, using the Cilk work-stealing scheduler in conjunctionhwit
the BACKER coherence algorithm. Assume that accesses to the main memorandom and in-
dependent. Suppose the computation®@&g, L) serial cache misses arid,, critical-path length.
Then for anye > 0, the number of cache misses is at mQ$Z, L) + O(H PT,, + HPlg(1/e))
with probability at leasti — e. Moreover, the expected number of cache misses is at@{astL) +
O(HPTy).

Proof: Inthe parallel execution, we have one miss for each intimsss, plus an extr@(H PT,+
HPIlg(1/e)) primary and secondary misses. The expected bound followitasiy. [

4.4 Analysis of space utilization

This section provides upper bounds on the memory requirenadriregular” divide-and-conquer
multithreaded algorithms when the parallel execution teedaled by a “busy-leaves” scheduler,

86

such as the work-stealing scheduler used by Cilkbuay-leavescheduler is a scheduler with the
property that at all times during the execution, if a thread ho living children, then that thread
has a processor working on it. The work-stealing schedsler busy-leaves scheduler [25, 30].
In aregular divide-and-conquer multithreaded algorithneach thread, when spawned to solve a
problem of sizen, operates as follows. f is larger than some given constant, the thread divides
the problem inta: subproblems, each of size/b for some constants > 1 andb > 1, and then it
recursively spawns child threads to solve each subprobWimen allq of the children have com-
pleted, the thread merges their results, and then retumthelbase case, whenis smaller than
the specified constant, the thread directly solves the pmopand then returns. We shall proceed
through a series of lemmas that provide an exact charaatienzof the space used by “simple”
multithreaded algorithms when executed by a busy-leavesdsder. Asimple multithreaded algo-
rithm is a fully strict multithreaded algorithm in which each tadés control consists of allocating
memory, spawning children, waiting for the children to cdetg, deallocating memory, and return-
ing, in that order. We shall then specialize this charazation to provide space bounds for regular
divide-and-conquer algorithms.

Previous work [25, 30] has shown that a busy-leaves schedateefficiently execute a fully
strict multithreaded algorithm oR processors using ho more space tifatimes the space required
to execute the algorithm on a single processor. Specifidaltya given fully strict multithreaded
algorithm, if S; denotes the space used by the algorithm to solve a givengonoblth the standard,
depth-first, serial execution order, then for any numberf processors, a busy leaves scheduler uses
at mostPS; space. The basic idea in the proof of this bound is that a eeses scheduler never
allows more thanP leaves in the spawn tree of the resulting computation toubegliat one time.

If we look at any path in the spawn tree from the root to a leafaad up all the space allocated on
that path, the largest such value we can obtaif isThe bound then follows, because each of the
at mostP leaves living at any time is responsible for at m8sspace, for a total oPS; space. For
many algorithms, however, the bouith; is an overestimate of the true space, because space near
the root of the spawn tree may be counted multiple times. itngiction, we tighten this bound for

the case of regular divide-and-conquer algorithms. We btaconsidering the more general case

of simple multithreaded algorithms.

We first introduce some terminology. Consider any simpletithuéaded algorithm and input
problem, and lef” be the spawn tree of the simple multithreaded computatiatrésults when the
given algorithm is executed to solve the given problem. Adte any nonempty set of the leaves
of 7. A node (thread), € T is coveredby A if lies on the path from some leaf iuto the root
of 7. Thecoverof A, denotedC(A), is the set of nodes covered Ry Since all nodes on the path
from any node irC(A) to the root are covered, it follows th@{A) is connected and forms a subtree

87

of 7. If each node: allocatesf (u) memory, then the space used bys defined as

SN =Y flu).
u€eC(A)
The following lemma shows how the notion of a cover can be wsezharacterize the space
required by a simple multithreaded algorithm when execbied busy leaves scheduler.

Lemma 27 Let7T be the spawn tree of a simple multithreaded computation]etryd«) denote the
memory allocated by node € 7. For any humbelP of processors, if the computation is executed
using a busy-leaves scheduler, then the total amount ofatka memory at any time during the
execution is at most *, which we define by the identity

S* = max S(A),
Al<P

with the maximum taken over all set0f leaves off” of size at mosP.

Proof: Consider any given time during the execution, andAlelenote the set of leaves living
at that time, which by the busy-leaves property has caritjnat mostP. The total amount of
allocated memory is the sum of the memory allocated by theekem A plus the memory allocated
by all their ancestors. Since both leaves and ancestoradt@(A) and|A| < P holds, the lemma
follows. [

The next few definitions will help us characterize the sutetofC(A) whenA maximizes the
space used. Lét be the spawn tree of a simple multithreaded computation|edrfd«) denote the
memory allocated by node € T, where we shall henceforth make the technical assumptiatn th
f(u) = 0 holds ifu is a leaf andf (u) > 0 holds ifu is an internal node. When necessary, we can
extend the spawn tree with a new level of leaves in order td theetechnical assumption. Define
the serial-space functionS(u) inductively on the nodes of as follows:

S(u) 0 if u is a leaf,
u) = .
f(u) + max {S(v) : vis achild ofu} otherwise

The serial-space function assumes a strictly increasiggesee of values on the path from any leaf
to the root. Moreover, for each nodec T, there exists a leaf such thatlif is the unique simple
path fromu to that leaf, then we hav€(u) = >, . f(v). We shall denote that leaf (or an arbitrary
such leaf, if more than one exists) Byu). Thewu-induced dominatorof a setA of leaves ofT is

88

Figure 4-2: An illustration of the definition of a dominator set. For tiiee shown, lef be given by the
labels at the left of the nodes, and fet= { F, H}. Then, the serial spacgis given by the labels at the right
of the nodesC(A) = {A, B,C, D, F, H} (the dark nodes), antt (A, G) = {C, D}. The space required by
AisS(A) = 12.

defined by

D(A,u) = {ve&T :3weC(A)suchthatw is a child
of v andS(w) < S(u) < S(v)}.

The next lemma shows that every induced dominatak f indeed a “dominator” of\.

Lemma 28 Let 7 be the spawn tree of a simple multithreaded computation rapessing more
than one node, and let be a nonempty set of leaves®f Then, for any internal node € T,
removal ofD (A, u) from T disconnects each leaf it from the root of7 .

Proof: Letr be the root of/", and consider the pafii from any leafl € A tor. We shall show
that some node on the path belong@téA, u). Sinceu is not a leaf ands is strictly increasing on
the nodes of the patli, we must have = S(I) < S(u) < S(r). Letw be the node lying ol that
maximizesS(w) such thatS(w) < S(u) holds, and lev be its parent. We havé(w) < S(u) <
S(v) andw € C(A), because all nodes lying dhbelong toC(A), which implies that € D (A, u)
holds. m

The next lemma shows that whenever we have a\sef leaves that maximizes space, every
internal nodeu not covered by\ induces a dominator that is at least as largd as

89

Lemma 29 Let 7 be the spawn tree of a simple multithreaded computation rapessing more
than one node, and for any integér > 1, let A be a set of leaves such thét(A) = S* holds.
Then, for all internal nodes ¢ C(A), we haveD (A, u)| > |Al.

Proof: Suppose, for the purpose of contradiction, ffatA, u)| < |A| holds. Lemma 28 implies
that each leaf i\ is a descendant of some nodeTn(A,«). Consequently, by the pigeonhole
principle, there must exist a nodec D (A, u) that is ancestor of at least two leavesAin By the
definition of induced dominator, a chitd € C(A) of v must exist such thaf(w) < S(u) holds.

We shall now show that a new st of leaves can be constructed such that we h&aya’) >
S (A), thus contradicting the assumption that the functforachieves its maximum value ah.
Sincew is covered by\, the subtree rooted at must contain a ledfe A. DefineA’ = A — {I} U
{A(u)}. Adding \(u) to A causes the value &f (A) to increase by at least(«), and the removal of
[causes the path froirto some descendant of (possiblyw itself) to be removed, thus decreasing
the value ofS (A) by at mostS(w). Therefore, we hav® (A') > S (A) — S(w) + S(u) > S (A),
sinceS(w) < S(u) holds.]

We now restrict our attention to regular divide-and-conqomultithreaded algorithms. In a
regular divide-and-conquer multithreaded algorithmhdaacead, when spawned to solve a problem
of sizen, allocates an amount of spasén) for some functions of n. The following lemma
characterizes the structure of the worst-case space usatiesfclass of algorithms.

Lemma 30 Let7 be the spawn tree of a regular divide-and-conquer multades algorithm en-
compassing more than one node, and for any intdger 1, let A be a set of leaves such that
S (A) = S* holds. ThenC(A) contains every node at every level of the tree \idtbr fewer nodes.

Proof: If 7 has fewer tha” leaves, ther\ consists of all the leaves gf and the lemma follows
trivially. Thus, we assume thdt has at leasP’ leaves, and we haja| = P.

Suppose now, for the sake of contradiction, that there idde n@t a level of the tree witl® or
fewer nodes such that ¢ C(A) holds. Since all nodes at the same level of the spawn treeasdio
the same amount of space, the BgtA, u) consists of all covered nodes at the same leve, &l
of which have the same serial spagg@:). Lemma 29 then says that there are at ldastodes at
the same level ag that are covered by. This fact contradicts our assumption that the treefas
or fewer nodes at the same levelas |

We are now ready to prove Theorem 22 from Section 4.1, whiemite the worst-case space
used by a regular divide-and-conquer multithreaded alyoriwhen it is scheduled using a busy-
leaves scheduler.

Theorem 22 Consider any regular divide-and-conquer multithreadedoaithm executed o
processors using a busy-leaves scheduler. Suppose thattle@ad, when spawned to solve a

90

problem of size:, allocatess(n) space, and if is larger than some constant, then the thread di-
vides the problem inta subproblems each of sizg/b for some constants > 1 andb > 1. Then,
the total amountSp(n) of space taken by the algorithm in the worst case when sobvippblem

of sizen can be determined as follows:

1. If s(n) = ©(IgF n) for some constarit > 0, thenSp(n) = O(P1g*(n/P)).

2. If s(n) = O(n'°&2=¢) for some constanté > 0, thenSp(n) = O(Ps(n/P'/ 18 2)), if,
in addition, s(n) satisfies the regularity conditiofy s(n/b) < s(n) < ayas(n/b) for some
constantsy; > 1 andy; < 1.

3. If s(n) = O(n'& %), thenSp(n) = O(s(n)Ig P).

4. If s(n) = Q(n'& <) for some constant > 0, thenSp(n) = O(s(n)), if, in addition, s(n)
satisfies the regularity condition thafn) > ays(n/b) for some constanf > 1.

Proof: Consider the spawn treg of the multithreaded computation that results when the-algo
rithm is used to solve a given input problem of size The spawn tred is a perfectly balanced
a-ary tree. A node: at levelk in the tree allocates spagdu) = s(n/b¥). From Lemma 27 we
know that the maximum space usage is bounded bywhich we defined as the maximum value
of the space functio¥ (A) over all sets\ of leaves of the spawn tree having size at m@st

In order to bound the maximum value 6f(A), we shall appeal to Lemma 30 which charac-
terizes the sed at which this maximum occurs. Lemma 30 states that for this\séhe setC(A)
contains every node in the firsiog, P | levels of the spawn tree. Thus, we have

[log, P|—1
Sp(n) < > d's(n/b') + O(PSy(n/P 18). (4.1)

i=0
To determine which term in Equation (4.1) dominates, we reuatuateS; (n), which satisfies
the recurrence
S1(n) = S1(n/b) + s(n) ,
because with serial execution the depth-first disciplinewa each of the: subproblems to reuse
the same space. The solution to this recurrence [42, Set#gis
 Si(n) = O(Ig" 1 n), if s(n) = ©(Ig" n) for some constarnt > 0, and

+ Si(n) = O(s(n)), if 5(n) =

(n¢) for some constant > 0 and in addition satisfies the
regularity condition that(n) > ~ys(n/b) for some constani > 1.

30ther cases exist besides those given here.

91

The theorem follows by evaluating Equation (4.1) for eachhef cases. We only sketch the
essential ideas in the algebraic manipulations. For Casesl 2, the serial space dominates, and
we simply substitute appropriate values for the serial spat Cases 3 and 4, the space at the top
of the spawn tree dominates. In Case 3, the total space aleasttof the spawn tree is the same.
In Case 4, the space at each level of the spawn tree decresm@®tgically, and thus, the space
allocated by the root dominates the entire tree. [

4.5 Related work

Like Cilk’s location consistency, most distributed shameeimories (DSM’s) employ a relaxed con-
sistency model in order to realize performance gains, blikeifocation consistency, most dis-
tributed shared memories take a low-level view of parallgigpams and cannot give analytical
performance bounds. Relaxed shared-memory consistendglsnare motivated by the fact that
sequential consistency [96] and various forms of processosistency [70] are too expensive to
implement in a distributed setting. (Even modern “symnaetniultiprocessors” do not typically
implement sequential consistency.) Relaxed models, ssittcation consistency [60] and various
forms of release consistency [3, 47, 64], ensure consigt@gawarying degrees) only when explicit
synchronization operations occur, such as the acquisitiorlease of a lock. Causal memory [7]
ensures consistency only to the extent that if a progessads a value written by another process
B, then all subsequent operations #ymust appear to occur after the write By Most DSM’s im-
plement one of these relaxed consistency models [33, 87,39, though some implement a fixed
collection of consistency models [20], while others meilietplement a collection of mechanisms
on top of which users write their own DSM consistency posd@7, 128]. All of these consistency
models and the DSM'’s that implement these models take adwel-liew of a parallel program as
a collection of cooperating processes.

In contrast, location consistency takes the high-levelngéa parallel program as a dag, and this
dag exactly defines the memory consistency required by thgram. (This perspective is elabo-
rated in Chapter 5.) Like some of these other DSM’s, locatimmsistency allows synchronization to
affect only the synchronizing processors and does notmregujlobal broadcast to update or inval-
idate data. Unlike these other DSM'’s, however, locatiorsgiancy requires no extra bookkeeping
overhead to keep track of which processors might be involvexdsynchronization operation, be-
cause this information is encoded explicitly in the dag. 8yeraging this high-level knowledge, the
BACKER algorithm in conjunction with the work-stealing scheduteable to execute multithreaded
algorithms with the performance bounds shown here. The BEAZrallel language [109] and the
Myrias parallel computer [19] define a high-level relaxeahgistency model much like location
consistency, but we do not know of any efficient implemeantatf either of these systems. After

92

an extensive literature search, we are aware of no otheibdittd shared memory with analytical
performance bounds for any nontrivial algorithms.

4.6 Conclusion

Location consistency gives a framework that unifies thegoerdnce guarantees of Cilk and cache-
oblivious algorithms. Using the B2KER coherence algorithm and the analytical bounds of Theo-
rem 20, we can design portable algorithms that cope with pathllelism and memory hierarchies
efficiently.

For portability across both parallelism and memory hidrag, the central problem is the iden-
tification of the “right” memory model and of an appropriatgherence protocol, but many current
shared-memory designs are inadequate in this respect.x&mpde, | recently helped Don Dailey
to tune the Cilkchess chess program for the forthcoming dvonlampionship. Cilkchess will be
running on a 256-processor SGI Origin 2000, thanks to themsity of NASA and SGI. This is
an experimental machine installed at NASA Ames ResearcheGemd it is not available commer-
cially. During the development of Cilkchess, the perforaenf the program suddenly dropped by
a factor of about 100 after introducing a minor change. Thoblem turned out to be caused by
a shared memory location: Every processor was writing t® [thgation at the same time. More
annoyingly, we observed similar cases of performance degjm because dhlse sharing, in
which processors were writing in parallel to different ltboas that happened to be allocated on
the same cache line. It is very hard to program for portgbdit such a system. For Cilkchess,
however, portability is fundamental, because the progadeveloped on many platforms ranging
from Linux laptops to supercomputers like the Origin 200QorAgramming system built on top of
Cilk and BACKER would have guaranteed performance and no such bad surprises

| do not expect the results in this chapter to be the ultimathriique for portability across
parallelism and memory hierarchiesa®ER is a simple protocol that might perform unnecessary
communication; it is likely that more efficient protocolsnche devised for which we can still
preserve the performance guarantees. Location congjsierioo weak for certain applications,
although it is sufficient in surprisingly many cases. Fosthapplications, Cilk-5 provides a stronger
memory model through mutual-exclusion locks, but theskd@re a sort of afterthought and they
break all performance guarantees.

Our work to date leaves open several analytical questioyearding the performance of mul-
tithreaded algorithms that use location consistent shareshory. We would like to improve the
analysis of execution time to directly account for the cdstache misses when lines are hashed to
main memory instead of assuming that accesses to main méeéaqppgar” to be independent and
random as assumed here.

93

Chapter 5

A theory of memory models

In Chapter 4, we identified location consistency as the mgmmdel that allowed us to preserve
Cilk's performance guarantees in the presence of hiergatimemory. This chapter elaborates
on the idea of defining memory models based onlycomputationssuch as the multithreaded
computations generated by Cilk. This idea was implicit iraSter 4, where it was just ancillary to
the performance analysis, and now now we develop its imidics.

A memory model specifies the values that may be returned bhyémeory of a computer system
in response to instructions issued by a program. In thistehawe develop @omputation-centric
theory of memory models in which we can reason about memory modaisaaitly. We define
formally what a memory model is, and we investigate the iogtions ofconstructibility, an ab-
stract property which is necessary for a model to be maialdénexactly by an online algorithm.
The computation-centric theory is based on the two concafpéscomputationand anobserver
function.

The computation-centric theory is not directly concernéthwhe topic of this dissertation,
which is portable high performance. Historically, howewvdtis theory played a crucial role in
convincing me that location consistency is the “right” meynmodel of Cilk [54], as opposed to
the “dag consistency” memory model that we used in [27, 26hclude the computation-centric
theory in this dissertation because it introduces concepish as constructibility, that | think will
be important to other researchers who want to improve upcatitin consistency andA8 KER.

Most existing memory models [47, 3, 70, 64, 90, 20, 84] areesged in terms gfrocessors
acting onmemory We call these memory modgtsocessor-centricthe memory model specifies
what happens when a processor performs some action on memagntrast, the philosophy of
the computation-centric theory is to separate the logiepeddencies among instructions (the com-
putation) from the way instructions are mapped to procesébe schedule). For example, in a
multithreaded program, the programmer specifies seveeaiugion threads and certain dependen-

This chapter represents joint work with Victor Luchangcopr&liminary version appears in [57].

94

cies among the threads, and expects the behavior of thegonoigr be specified independently of
which processor happens to execute a particular thread p@ation-centric memory models focus
on the computation alone, and not on the schedule. Whilertbeepsor-centric description has the
advantage of modeling real hardware closely, our approb@ivsaus to define formal properties of

memory models that are independent of any implementation.

A computationis an abstraction of a parallel instruction stream. The attatjpn specifies
machine instructions and dependencies among them. A catigputioes not model a parallel pro-
gram, but rather the way a program unfolds in a particulaceten. (A program may unfold in
different ways because of input values and nondetermingtirandom choices.) We model the
result of this unfolding process by a directed acyclic grafiose nodes represent instances of in-
structions in the execution. For example, a computatioridcbe generated using a multithreaded
language with fork/join parallelism (such as Cilk). Congtigns are by no means limited to model-
ing multithreaded programs, however. In this chapter, game that the computation is given, and
defer the important problem of determining which compotadia given program generates. We
can view computations as providing a meansgdost mortenmanalysis, to verify whether a system
meets a specification by checking its behavior after it hasHad executing.

To specify memory semantics, we use the notion oblserver functionfor a computation.
Informally, for each node of the computation (i.e., an ins&@of an instruction) that reads a value
from the memory, the observer function specifies the nodenthate the value that the read opera-
tion receives. Computation-centric memory models are définy specifying a set of valid observer
functions for each computation. A memory implements a mgmurdel if, for every computation,
it always generates an observer function belonging to theeio

Within the computation-centric theory, we define a propemycallconstructibility. Informally,

a nonconstructible memory model cannot be implementedigx{ac an online algorithm; any on-
line implementation of a honconstructible memory must @ina strictly stronger constructible
model. We find constructibility interesting because it nsalitie sense to adopt a memory model if
any implementation of it must maintain a stronger model. rportant result of this chapter is that
such a stronger model is unique. We prove that for any memoxeta\, the class of constructible
memory models stronger thak has a unique weakest element, which we calldbestructible
versionA* of A.

We discuss two approaches for specifying memory modelsiwithis theory. In the first ap-
proach, a memory model is defined in terms of topologicalssoftthe computation. Using this
approach, we generalize the definition sefquential consistencj96], and redefine théocation
consistencymodel from Chapter 4,in which every location is serialized independently of otloe
cations. In the second approach, a memory model is definethpysing certain constraints on the

!Location consistency is often called coherence in theditee [79]. It isnot the model with the same name intro-
duced by Gao and Sarkar [61]. See [54] for a justification f términology.

95

value that the observer function can assume on paths in thputation dag. Using this approach,
we explore the class afag-consistentmemory models, a generalization of tHag consistency
of [27, 26, 85]. Such models do not even require that a sirgglation be serialized, and are thus
strictly weaker than the other class of models. Nonethglgefound an interesting link between
location consistency, dag consistency and construdyibilihe strongest variant of dag consistency
(calledNN-dag consistencyis not constructible, and is strictly weaker than locatimmsistency.
Its constructible version, however, turns out to be the saroéel as location consistency.

We believe that the advantages of the computation-cemaimdwork transcend the particular
results mentioned so far. First, we believe that reasoriogiecomputations is easier than reasoning
about processors. Second, the framework is completelydipramd thus we can make rigorous
proofs of the correctness of a memory. Third, our approdolwalus to generalize familiar memory
models, such as sequential consistency. Most of the siitypti€ our theory comes from ignoring
the fundamental issue of how programs generate compusatitinis simplification does not come
without cost, however. The computation generated by a prognay depend on the values received
from the memory, which in turn depend on the computationemains important to account for
this circularity within a unified theory. We believe, howewhat the problem of memory semantics
alone is sufficiently difficult that it is better to isolaterittially.

The rest of this chapter is organized as follows. In Secti@nBe present the basic computation-
centric theory axiomatically. In Section 5.2, we define ¢aribility, prove the uniqueness of
the constructible version, and establish necessary affidisnf conditions for constructibility to
hold. In Section 5.3, we discuss models based on a topolagpca and give computation-centric
definitions of sequential consistency [96] and locationsistency. In Section 5.4, we define the
class of dag-consistent memory models and investigatesthians among them. In Section 5.5,
we prove that location consistency is the constructiblsieerof NN-dag consistency. Finally, we
situate our work in the context of related research in Sed&i6.

5.1 Computation-centric memory models

In this section, we define the basic concepts of the compuntagntric theory of memory models.
The main definitions are those ofc@mputation (Definition 31), anobserver function(Defini-
tion 32), and amemory modelDefinition 33). We also define two straightforward propestof
memory models calledompletenesandmonotonicity.

We start with a formal definition of memory. liemoryis characterized by a sgtof locations
a setO of abstract instructions (such as read and write), and afseatloesthat can be stored at
each location. In the rest of the chapter, we abstract avagdtual data, and consider a memory to
be characterized bg and©, using values only for concrete examples.

For a setO of abstract instructions, we formally define a computatisiiciiows.

96

Definition 31 A computationC' = (G, op) is a pair of a finite directed acyclic graph (dag) =
(V, E) and a functionop V — O.

For a computatior’, we use¢, Ve, Ec andop, to indicate its various components. The smallest
computation is thempty computatiore, which has an empty dag. Intuitively, each nade V
represents an instance of the instructapiz), and each edge indicates a dependency between its
endpoints.

The way a computation is generated from an actual executpertds on the language used
to write the program. For example, consider a program writtea language with fork/join paral-
lelism. The execution of the program can be viewed as a sgievhtions on memory that obey the
dependencies imposed by the fork/join constructs. Thegsstihow the computation is expressed
and scheduled are extremely important, but in this chapterconsider the computation as fixed
and givena priori. The Cilk system demonstrates one way to address the satggubblem.

In this chapter, we consider only read-write memories. Wetereads and writes to locatién
by R(l) andW (1) respectively. For the rest of the chapter, the set of inStras is assumed to be
O={R(l):1e L}U{W(l):l e L}U{N}, whereN denotes any instruction that does not access
the memory (a “no-op”).

We now define some terminology for dags and computationselietis a path from node to
nodew in the dagg, we say that, precedes in G, and we writeu <g v. We may omit the dag
and writeu < v when it is clear from context. We often need to indicate sfriecedence, in which
case we write; < v. A relaxation of a dagg = (V, E) is any dag(V, E’) such thatt’ C E. A
prefix of G is any subgraplg’ = (V', E') of G such that if(u,v) € E andv € V', thenu € V' and
(u,v) € E'.

A topological sortI" of G = (V, E) is a total order oV consistent with the precedence relation,
i.e., u 3¢ v implies thatu precedes in T'. The precedence relation of the topological sort is
denoted withu <7 v. We represent topological sorts as sequences, and dengi&(6y the set
of all topological sorts of a dag. Note that for any’ C V, if G’ is the subgraph of induced
by V' andG" is the subgraph induced By — V', andT” andT"” are topological sorts of’ and
G" respectively, then the concatenationiéfandT” is a topological sort ofj if and only if for all
u € V'andv € V — V', we havev £g u.

For a computatiolC = (G, op), if G’ is a subgraph off andop is the restriction obp to ¢’,
thenC’ = (G', op) is asubcomputationof C'. We also callop’ the restriction of op to C’, and
denote it byop|cr, i.e.,op|cr (u) = op(u) for all u € Vr. We abuse notation by using the same
terminology for computations as for dags. For exam@leis aprefix of C if G is a prefix ofG¢
andop., = opg|cr. Similarly, 7S(C) = TS(G¢). In addition,C is anextensionof C' by o € O if
C'is a prefix ofC, Vi = Vior U {u} for someu ¢ Vior andop(u) = o. Note that ifC” is a prefix
of C with |V¢| = |Ver| 4+ 1 thenC is an extension of”’ by op.(u), whereu € Vi — V.

97

We imagine a computation as being executed in some way by rom®i@ processors, subject
to the dependency constraints specified by the dag, and weovdefine precisely the semantics of
the read and write operations. For this purpose, ratherdpacifying the meaning of read and write
operations directly, we introduce a technical device dadleobserver function For every node:
in the computation and for every locatibrthe value of the observer functien= ® ([, v) is another
node that writes té. The idea is that “observes” the write performed hy, so that ifu readd, it
receives the value written hy. The observer function can assume the special valuiedicating
that no write has been observed, in which case a read operatieives an undefined value. Note
that L is not a value stored at a location, but an element of the rahte observer function similar
to a node of the computation. For notational convenienceextend the precedence relation so that
1 < u for every nodeu of any computation, and we also includeas a node in the domain of
observer functions.

Definition 32 Anobserver functiorfor a computatiorC' is a function® : LxVaJ{ L} — VeU{L}
satisfying the following properties for dlle £ andu € Vo U{L}:

32.1. If®(l,u) = v # L then op.(v) = W(I).
32.2. u £ B(l,u).
32.3. Ifu # L and o, (u) = W(I) then®(l,u) = u.

Informally, every observed node must be a write (part 32ahy] a node cannot precede the
node it observes (part 32.2). Furthermore, every write robserve itself (part 32.3). Note that
Condition 32.2 impliesb(l, L) = L for all I € £. The empty computation has a unique observer
function, which we denote b$..

The observer function allows us to abstract away from mematyes, and to give memory
semantics even to nodes that do not perform memory opesatimnother words, our formalism
may distinguish two observer functions that produce theesaxecution. We choose this formalism
because it allows a computation node to denote some formnahsgnization, which affects the
memory semantics even if the node does not access the memory.

A memory modelA is a set of pairs of computations and observer functiondudirg the
empty computation and its observer functfoas stated formally by the next definition.

Definition 33 A memory models a setA such that
{(e,®:)} C A C{(C,®) : ®is an observer function fot’ }

The next definition is used to compare memory models.

2This is a technical requirement to simplify boundary cases.

98

Definition 34 A modelA is strongerthan a modelA’ if A C A’. We also say thaf\’ is weaker
thanA.

Notice that the subset, not the superset, is said to be strobgcause the subset allows fewer
memory behaviors.

A memory model may provide an observer function only for samputations. It is natural
to restrict ourselves to those models that define at leasbloserver function for each computation.
We call such models complete. Formally, a memory masled completeif, for every computation
C, there exists an observer functidnsuch thatf C, ®) € A.

From the definitions of weaker and complete, it follows that enodel weaker than some com-
plete model is also complete. FormallyAfis complete and\’ O A, thenA' is also complete.

Another natural property for memory models to satisfy id tlaxations of a computation
should not invalidate observer functions for the originanputation. We call this property mono-
tonicity.

Definition 35 A memory moded\ is monotonicif for all (C,®) € A, we also havéC’, ®) € A,
for all relaxationsC"’ of C.

Monotonicity is a technical property that simplifies camtairoofs (for example, see Theo-
rem 42), and we regard it as a natural requirement for anystmgble” memory model.

5.2 Constructibility

In this section, we define a key property of memory models Wetcall constructibility. Con-
structibility says that if we have a computation and an olesefiunction in some model, it is always
possible to extend the observer function to a “bigger” cotation. Not all memory models are
constructible. However, there is a natural way to define guatonstructible versiorof a noncon-
structible memory model. At the end of the section, we give@essary and sufficient condition for
the constructibility of monotonic memory models.

The motivation behind constructibility is the following.ufpose that, instead of being given
completely at the beginning of an execution, a computatiorevealed one node at a time by an
adversary Suppose also that there is an algorithm that maintains a givamory model online.
Intuitively, the algorithm constructs an observer functas the computation is revealed. Suppose
there is some observer function for the part of the compmnatvealed so far, but when the adver-
sary reveals the next node, there is no way to assign a valtihéd satisfies the memory model. In
this case, the consistency algorithm is “stuck”. It shoudslenchosen a different observer function
in the past, but that would have required some knowledgeefuture. Constructibility says that

3This is the case with multithreaded languages such as Cilk.

99

this situation cannot happen:dfis a valid observer function in a constructible model, theare is
always a way to extend to a “bigger” computation as it is revealed.

Definition 36 A memory moded is constructibleif the following property holds: for all computa-
tions C” and for all prefixe” of C’, if (C, ®) € A then there exists an observer functi®hfor C’
such that(C’, ®') € A and the restriction o’ to C'is @, i.e.,®'|c = P.

Completeness follows immediately from constructibilgince the empty computation is a pre-
fix of all computations and, together with its uniqgue obsefuaction, belongs to every memory
model.

Not all memory models are constructible; we shall discussesponconstructible memory mod-
els in Section 5.4. However, a nonconstructible mafietan be strengthened in an essentially
unique way until it becomes constructible. More precistig, set of constructible models stronger
than A contains a unique weakest eleméit, which we call theconstructible versiorof A. To
prove this statement, we first prove that the union of consbie models is constructible.

Lemma 37 Let S be a (possibly infinite) set of constructible memory mod@lsen|J, s A is
constructible.

Proof: LetC’ be acomputation and be a prefix ofC’. We must prove that, {fC, ®) € Jacs A,
then an extensio®’ of the observer functio® exists such thatC’, ®') € (J5 s A.

If (C,®) € Uacs A then(C,®) € A for someA € S. SinceA is constructible, there exists
an observer functio®' for C’ such thatC’, ®') € A and®'|c = @'. Thus,(C’,®') € Upacs A,
as required. [

We now define the constructible version of a modegland prove that it is the weakest con-
structible model stronger thah.

Definition 38 Theconstructible versiomrA* of a memory modeA is the union of all constructible
models stronger thar.

Theorem 39 For any memory model,
39.1. A* C A;
39.2. A*is constructible;
39.3. for any constructible mod&l’ such thatA’ C A, we haveA’ C A*,

Proof: A* satisfies Conditions 39.1 and 39.3 by construction, and @ond39.2 because of
Lemma 37. |

100

In two theorems, we establish conditions that guarantestagrtibility. Theorem 40 gives a
sufficient condition for the constructibility of general mery models. For monotonic memory
models, the condition is simpler (Theorem 42).

Theorem 40 A memory modeA is constructible if for any{C, ®) € A, o € O, and extensior®’
of C by o, there exists an observer functidr for C’ such that(C’, ®') € A and® = ¥’|¢.

Proof: We must prove that i€’ is a prefix of C’ and (C, ®) € A, then there exists an observer
function ®’ for C’ such thatC’, @) € A and®’|c = ®.

Since(C is a prefix of C’, there exists a sequence of computatihsCy, ... ,Cy such that
Cy = C, Cr = C', and(; is an extension of’;_; by someo; € O foralli = 1,... ,k, where
k=|Ver| = Vel

The proof of the theorem is by induction @ The base caske = 0 is trivial sinceC’ = C.
Now, suppose inductively that there exigbg ; such that(Cy_,®, 1) € A. SinceC’ is an
extension ofCy_; by o, the theorem hypothesis implies that an observer funabioaxists such
that (C’', ®') € A, as required to complete the inductive step. n

For monotonic memory models, we do not need to check evegnsixin of a computation to
prove constructibility, but rather only a small class ofrthevhich we call theaugmented compu-
tations An augmented computation is an extension by one “new” natiere the “new” node is a
successor of all “old” nodes.

Definition 41 LetC be a computation and € O be any operation. Thaugmented computation
of C by o, denoted aug(C), is the computatio®’ such that

VC’ = VC U {flnaI(C’)}
Ecr = EcU{(v,final(C)):v e Vo}

opcr (v) = {

op-(v) forve Ve
0 for v = final(C)

where finalC') ¢ V¢ is a new node.

The final theorem of this section states that if a monotonioorg model can extend the ob-
server function for any computation to its augmented comtpris, then the memory model is
constructible.

Theorem 42 A monotonic memory mod4l is constructible if and only if for al(C, ®) € A and
o € O, there exists an observer functidn such that(aug,(C), ®’) € A and®'|c = ©.

Proof: The “=" part is obvious, sinc€ is a prefix ofaug,(C).

101

For the “=" direction, suppos¢C, ®) € A ando € O. By hypothesis, there exis@s such that
(aug,(C), @) € A. For any extensiod" of C by o, note thatC’ is a relaxation ofug,(C). Since
A is monotonic, we also hay&’, ®') € A. Thus, by Theorem 4Q\ is constructible. [

One interpretation of Theorem 42 is the following. Considerexecution of a computation.
At any point in time some prefix of the computation will haveeheexecuted. If at all times it is
possible to define a “final” state of the memory (given by theevber function on the final node of
the augmented computation) then the memory model is cariktiel

5.3 Models based on topological sorts

In this section, we define two well known memory models in ®whtopological sorts of a com-
putation. The first model isequential consistenc{f6]. The second model is sometimes called
coherencein the literature [61, 79]; we call itocation consistency Both models are complete,
monotonic and constructible. Because we define these mosielg computations, our definitions
generalize traditional processor-centric ones withogtiiing explicit synchronization operations.

It is convenient to state both definitions in terms of the t'lasiter preceding a given node”,
which is well defined if we superimpose a total order on a cdatjan, producing a topological
sort.

Definition 43 LetC be a computation, and@ € 75(C) be a topological sort of’. Thelast writer
function according toI" is Wy : LxVdJ{ L} — VeU{ L} such thatforall € £andu € VoU{L}:

43.1. IfWr(l,u) = v # L then op-(v) = W(I).
43.2. Wr(l,u) <1 u.
43.3. Wr(l,u) <7 v 2ru = ops(v) # W (l)forallv € V.

We now prove two straightforward facts about last writerctions. The first states that Defini-
tion 43 is well defined. The second states that iis the last writer preceding a nodg then it is
also the last writer preceding any node betweesndw.

Theorem 44 For any topological sorfl’, there exists a unique last writer function accordingdlto

Proof: Itis sufficient to show that for anyjc £ andu € V¢, there is a unique € VoU{L} such
thatWy (1, u) = v satisfies the three conditions in the definition/®f .

Suppose that andv’ both satisfy these conditions. SinZkeis a topological sort, we assume
without loss of generality that <7 v'. If ' = 1 thenv = L. Otherwise, using’ = Wr(l, u)
in Conditions 43.1 and 43.2p.(v') = W(l) andv’ <y w. Thus, usingg = Wy (l,u) in Condi-
tion 43.3, we get 47 v'. In either casey = v’ as required. [

102

Theorem 45 For any computatiorC, if Wr is the last writer function according t@' for some
T € TS(C) then for allu,v € Vo andl € £ such thabVy (I, u) <7 v < u, we haveVy (1, v) =
Wr(l,u).

Proof: Letw = Wy (l,u). Because of Theorem 44, it is sufficient to prove thasatisfies the
three conditions foMVy (I, v). It satisfies Condition 43.2 by hypothesis, and it satisfiesd
tion 43.1 since it is the last writer preceding Finally, note that any’ such thatw <7 v' <7 v
also satisfieav <y v =<y wu, so by Condition 43.3 applied to, op.(v') # W(l). Thus,
Wr(l,v) = w=Wr(l,u). [

We use the last writer function for defining memory modelsicihis possible because the the
last writer function is an observer function, as stated enrtaxt theorem.

Theorem 46 Let C' be a computation, and’ € 7S(C) be a topological sort o€. The last writer
functionWy is an observer function faf'.

Proof: Condition 43.1 is the same as Condition 32.1 and Conditia2 &implied by Condi-
tion 43.2. Finally, note that the contrapositive of Corwiiti43.3 withv = u # L is opq(u) =
W(l) == Wr(l,u) 47 uw. Using Condition 43.2, this simplifies top,(u) = W () =
Wr(l,u) = u, thus proving Condition 32.3. [

We define sequential consistency using last writer funstion

Definition 47 Sequential consistencig the memory model
SC={(C,Wr): T €TS(C)}

This definition captures the spirit of Lamport’s original deb [96], that there exists a global
total order of events observed by all nodes. However, unlizmport’s definition, it does not
restrict dependencies to be sequences of operations apeawdssor, nor does it depend on how
the computation is mapped onto processors.

Sequential consistency requires that the topological lwthe same for all locations. By al-
lowing a different topological sort for each location, wdide a memory model that is often called
coherencg61, 79]. We believe that a more appropriate name for thisehigdocation consistency
even though the same name is used in [61] for a different mgmodel?

Definition 48 Location consistencys the memory model

LC={(C,®) :VI3T; € TS(C) Vu, ®(l,u) =Wr,(l,u)}

4See [54] for a discussion of this terminology.

103

Location consistency requires that all writes to the samation behavas if they were serial-
ized. This need not be the case in the actual implementationexample, the BCKER algorithm
from [27, 26] maintains location consistency, even thoughay keep several incoherent copies of
the same location. In Section 5.5, we prove that locatiorsistency is the constructible version of
a model we call NN-dag consistency.

It follows immediately from the definitions that SC is stremghan LC. In fact, this relation is
strict as long as there is more than one location.

Both SC and LC are complete memory models, because an ob&arggon can be constructed
for any computation by sorting the dag and using the lasewfitnction. We now prove that they
are also monotonic and constructible.

Theorem 49 SC and LC are monotonic and constructible memory models.

Proof: The monotonicity of both follows immediately from the defion since7S(C) C 7S(C")
for all relaxationsC”’ of C.

For constructibility, we give only the proof for SC; the pfdor LC is similar. Since SC is
monotonic, we only need to prove that it is possible to ex@mgobserver function for a computa-
tion to its augmented computation, and then apply Theorem 42

If (C,®) e SC then, by definition of SGp = W, for some topological soff’ € 7S(C). For
eacho € O, consider the augmented computataurg,(C), and letI” be the following total order
of the nodes otwug,(C): all the nodes ot in T' order, followed byfinal(C). It is immediate that
T" is a topological sort oaug,(C). Thus,Wy is a valid SC observer function faug,(C'), and
Wi | = Wr = @. The conclusion follows by application of Theorem 42. [

5.4 Dag-consistent memory models

In this section, we consider the classdzg-consisteninemory models, which are not based on
topological sorts of the computation. Rather, dag-coestanodels impose conditions on the value
that the observer function can assume on paths in the cotiggut&Ve focus on four “interesting”
dag-consistent memory models, and investigate their rrgleions.

In the dag-consistent models the observer function obegstaation of the following form:
If a node lies on a path between two other nodes, and the arskemwction assumes the value
at the two end nodes, and the three nodes satisfy certaitica@diconditions, then the observer
function also assumes the valuat the middle node. The various dag consistency modelg diffe
the additional conditions they impose on the nodes.

104

Definition 50 Let Q be a predicate onC x V x V x V, whereV is the set of all nodes of a
computation. Thé)-dag consistencynemory model is the set of all paif€’, ®) such that® is an
observer function fo€’ and the following condition holds:

50.1. Foralllocationd € £ and nodes:, v, w € VoU{ L} suchthat, < v < wandQ(l, u, v, w),
we haved(l,u) = ¢(l,w) = @(I,v) = ®(l,u).

Definition 50 is a generalization of the two definitions of dapsistency that the Cilk group of
MIT (including myself) proposed in the past [27, 26]. Vanyithe predicat&) in Condition 50.1
yields different memory models. Note that strengtherjhgeakens the memory model.

In the rest of the chapter, we consider four specific predgatiN, NW, WN and WW, and the
dag consistency models they define. These predicates depehd onw, but only on whether
andv write to[. The rationale behind the names is that “W” stands for “Wriged “N” stands for
“do not care”. For example, WN means that the first node is tevamd we do not care about the
second. Formally,

NN(/, u, v, w) = true

NW(I, u, v, w) = “ops(v) = W(I)"
WN(l, u, v, w) = “ops(u) = W(I)"
WW(l, u, v, w) = NW(l, u, v, w) A WN(I, u, v, w)

We use NN as a shorthand for NN-dag consistency, and signflarMVN, NW and WW.

The relations among NN, WN, NW, WW, LC and SC are shown in Fadohl. WW is the
original dag consistency model defined in [27, 85]. WN is thaei called dag consistency in [26],
strengthened to avoid anomalies such as the one illustiat&gure 5-2. NN is the strongest
dag-consistent memory model (as proven in Theorem 51 belSwnhmetry suggests that we also
consider NW.

Theorem 51 NN C ()-dag consistency for any predicaig

Proof: The proof is immediate from the definition: an observer fiorcsatisfying Condition 50.1
with Q(I, u, v, w) = true will satisfy Condition 50.1 for any other predicaie [

The rest of the chapter is mostly concerned with the proohefrelations shown in Figure 5-
1. We have already observed in Section 5.3 that SC is strittynger than LC. In the rest of
this section, we give informal proofs of the relations amadimg dag-consistent models. Proving
relations between the dag-consistent models and the mioaleésl on topological sorts, however, is
more involved, and we postpone the proof that CAIN and that LC= NN* until Section 5.5.

That NN C NW C WW and NNC WN C WW follows immediately from the definitions of
these models. To see that these inclusions are strict ahiMiiaZz NW and NW Z WN, consider

105

SC=SC stronger

WN* / NN \ NW*
WN NW

WW = Ww*

weaker

Figure 5-1: The relations among (some) dag-consistent models. A btrhig indicates that the model at
the lower end of the line is strictly weaker than the modethatitpper end. For example, LC is strictly weaker
than SC. Itis known that LC WN* and that LCC NW*, but we do not know whether these inclusions are
strict. This situation is indicated with a dashed line.

the computation/observer function pairs shown in Figur@sahd 5-3. These examples illustrate
operations on a single memory location, which is implicttisleasy to verify that the first pair is
in WW and NW but not WN and NN, and the second is in WW and WN buatNMy and NN. We
could also show that NN NW N'WN and WW 2 NW U WN, using similar examples.

To see that NN is not constructible, k€t be the computation in Figure 5-4, af@, ®) be the
computation/observer function pair to the left of the daslhee. It is easy to verify thaC' is a
prefix of C" and that(C, ®) € NN. However, unlesg’ writes to the memory location, there is no
way to extend® to C’ without violating NN-dag consistency. Formally, there & such that
(C',®") € NN and®'| = @. Informally, suppose that we use an algorithm that claims.fgport
NN-dag consistency. The adversary reveals the computétioand our algorithm produces the
observer functiord, which satisfies NN-dag consistency. Then the adversagatethe new node
F. The algorithm is “stuck”; it cannot assign a value to theesiber function forF’ that satisfies
NN-dag consistency.

The same example shows that WN is not constructible, and itasiome can be used to show
that NW is not constructible. WW is constructible, althougk do not prove this fact in this
dissertation.

Historically, we investigated the various dag-consisimoidels after discovering the problem
with WN illustrated in Figure 5-4. Our attempts to find a “lettdefinition of dag consistency
led us to the notion of constructibility. As Figure 5-1 showmong the four models only WW is
constructible. A full discussion of these models (inclygpancriticism of WW) can be found in [54].

106

Figure 5-22 An example of a computation/observer function pair in WW &y but not WN or NN.
The computation has four noded, B, C' and D (the name of the node is shown inside the node). The
memory consists of a single location, which is implicit. Bvaode performs a read or a write operation on
the location, and this is indicated above the node. For el@fip(0) means that the node writes a O to the
location, andR(1) means that it reads a 1. The value of the observer functioisfdayed below each node.
For example, the value of the function for no@eis A, which accounts for the fact that nodéreads the
value written by nodel.

=

0

B W(1) R(0)

o B

=

(0)

©

Figure 5-3. An example of a computation/observer function pair in WW s but not NW or NN. The
conventions used in this figure are explained in Figure 5-2.

Figure 5-4: An example demonstrating the nonconstructibility of NN.eTdonventions used in this figure
are explained in Figure 5-2. A new nodéhas been revealed by the adversary after the left part of the
computation has been executed. It is not possible to assigiiua to the observer function for node
satisfying NN-dag consistency.

107

At this stage of our research, little is known about YWéhd NW, which would be alternative ways
of defining dag consistency.

5.5 Dag consistency and location consistency

In this section, we investigate the relation between NN-clagsistency and location consistency.
We show that location consistency is strictly stronger thiayndag-consistent model, and moreover,
that it is the constructible version of NN-dag consisteney, LC = NN*.

We begin by proving that LC is strictly stronger than NN, whimplies that NN is no stronger
than LC, since LC is constructible.

Theorem 52 LC C NN.

Proof: We first prove that LCC NN. Let (C,®) € LC. We want to prove thatC,®) € NN.
For each locatiom, we argue as follows: By the definition of LC, there exigts 7S(C') such that
Wr(l,u) = ®(l,u) forallu € V.

Suppose that < v < w and®(l,u) = ®(I,w). ThenWy(l,w) = Wp(l,u) <y u <p v <p
w. So by Theorem 48V (1,v) = Wy(l,u). Thus®(l,v) = ®(l,) as required.

To complete the proof, we only need to note that£QNN since LC is constructible and NN is
not.]

From Theorems 51 and 52, it immediately follows that LC iscyr stronger than any dag-
consistent memory model. And since LC is complete, it foddvom that all dag-consistent models
are complete.

Finally, we prove that the constructible version of NN-dagsistency is exactly location con-
sistency.

Theorem 53 LC = NN*.

Proof: We first prove that NN D LC, and then that NNC LC. By Theorem 52, LGZ NN, and
by Theorem 49, LC is constructible. Therefore, by Condi®@n3, we have that NND LC. That
NN* C LC is implied by the claim that follows.
Claim: For any nonnegative integér suppos€C, ®) € NN* and|V| = k. Then for eachi € L,
there existd” € 7S(C) such tha® (I, u) = Wy (l,u), forallu € V.
Proof of claim: The proof is by strong induction olr The claim is trivially true ifk = 0, since
C = eand® = &, in this case.

If £ > 0, assume inductively that the claim is true for all compuwtagi with fewer tharkt: nodes.
We prove it is true folC'. Since NN is constructible, Theorem 42 implies that there existsuch
that (augy (C), ') € NN* and®'|c = ®. There are two cases: eith@f(/,final(C)) = L or not.

108

If ®'(1,final(C)) = L then, by the definition of NN®(/,u) = L for all u € V¢ sinceL <
u < final(C). Thus, by Condition 32.3)p(u) # W () for all u € V. Thus, for anyl’ € TS(C),
Wr(l,u) = L forall u € V¢, as required.

Otherwise, letw = ®'(l,final(C')) € V¢, let C' be the subcomputation @' induced by
{u € Vo : ®(l,u) # w}, and letC” be the subcomputation 6f induced by{u € Vi : ®(l,u) = w}.
That is,C’ consists of nodes that do not obsewveandC” consists of nodes that obserwve

Sincew ¢ V¢, we have|Vr| < k, so by the inductive hypothesis, a topological sbfte
TS(C') exists such thad (1, u) = Wy (I, u) for all uw € V. LetT” be any topological sort af”
that begins withw; such a topological sort exists becausg w for all v € Vo by Condition 32.2.
Sincew is the only node of2” that writes ta, Wy (I, v) = w holds for allv € V. LetT be the
concatenation of” and7T"”. If we can prove thaf is a legitimate topological sort af, then the
claim is proven, sinc&V; = ® by construction off".

To prove thatl’ € TS(C), we only need to show that £ « for all u € Vo andv € V.
This property holds, because otherwise: u < final(C'), and by the NN-dag consistency property,
®'(l,u) = ®'(I,v) = w must hold sinced’(l,final(C)) = ®'(l,v) = w. But this conclusion
contradicts the assumption thate V. [

5.6 Discussion

This chapter presents a computation-centric formal fraonkWor defining and understanding mem-
ory models. The idea that the partial order induced by a pragshould be the basis for defining
memory semantics, as opposed to the sequential order nigtiehs within one processor, already
appears in the work by Gao and Sarkar on their version ofitmtabnsistency [61]. Motivated by
the experience with dag consistency [27, 26, 85], we coralyletbstract away from a program, and
assume the partial order (the “computation”) as our stguioint. Post mortenmanalysis has been
used by [65] to verify (after the fact) that a given executi®sequentially consistent.

The need for formal frameworks for memory models has beearbjebther researchers. Gib-
bons, Merrit, and Gharachorloo [67] use the I/O automataghoflLynch and Tuttle [105] to give
a formal specification of release consistency [64]. LaterkW}66] extends the framework to non-
blocking memories. The main concern of these papers is tosexthe architectural assumptions
that are implicit in previous literature on relaxed memomdels. In this chapter, rather than focus-
ing on the correctness of specific implementations of a mgmmdel, we are more interested in
the formal properties of models, such as constructibility.

A different formal approach has been taken by the proporaditee Ag calculus [16], which is
an extension of th calculus with synchronization and side-effects. Rgecalculus gives a unified
semantics of languagand memory which is based on a set of rewriting rules. Prelinyings

109

descriptions of sequential consistency [96] and locatmmsistency (in the sense of Definition 48)
exist [15].

Finally, many papers on memory models, starting with theisahpaper on sequential consis-
tency [96], have been written from an hardware viewpointhwait a strict formal framework. The
reader is referred to [79] and [2] for good tutorials andHartreferences on the subject. Gharachor-
loo [63] also distinguishesystem-centric modelsvhich expose the programmer to the details of
how a system may reorder operations, prmjrammer-centric modelsvhich require the program-
mer to provide program-level information about the intehdehavior of shared-memory operations
but then allow the programmer to reason as if the memory waeentially consistent. Both types
of models, however, are processor-centric by our definitiimce programs are still assumed to be
sequential pieces of code running concurrently on seveoakbssors.

Historically, the abstract theory described in this chaptese from concrete problems in the
context of research on dag consistency, a memory model éo€itk multithreaded language for
parallel computing [28, 25, 85]. Dag consistency was dgesoto capture formally the minimal
guarantees that users of Cilk expected from the memory. #tfaanulated to forbid particular
behaviors considered undesirable when programming in Jitks point of view can be thought
of as looking for the weakest “reasonable” memory model.e({54] for a full discussion of this
theme.) Dag consistency was also attractive because itiigaimaed by the BCKER algorithm used
by Cilk, which has provably good performance [26].

Variants of dag consistency were developed to forbid “ard@sia or undesirable memory be-
haviors, as they were discovered. The papers [27] and [26]tgio different definitions of dag con-
sistency, which we call WW and WN. We were surprised to discaliat WN is not constructible,
and we tried both to find a “better” definition of dag consisterand to capture the exact semantics
of BACKER. Both problems have been solved. This chapter presentseaantass complete picture
of the various dag-consistent models and their mutualiogigliips. In another paper, Luchangco
[104] proves that BCKER supports location consistency. Consequently, the alguoiit analysis of
[26] and the experimental results from [27] apply to locatamnsistency with no change.

There are many possible directions in which this researolbezextended. One obvious open
problem is finding a simple characterization of N\whd WN*. It would also be useful to inves-
tigate whether any algorithm can be found that is more efftdiean BACKER that implements a
weaker memory model than LC. Another direction is to fornilather consistency models in
the computation-centric framework. Some models, suchlaage consistency [64], require com-
putations to be augmented with locks, and how to do this is #iemaf active research. Finally,
as mentioned previously, it is important to develop an irgtgl theory of memory and language
semantics.

110

Chapter 6

FFTW

In previous chapters, we studied theoretical techniqueslésigning algorithms oblivious to the
degree of parallelism and to the parameters of the cachd-wReld computer systems, however,
are never completely described by any theory. For examplepievious discussion did not take
into account details such as the structure of the procesgeline, branch predictors, the limited
associativity of caches, compiler transformations, andrsd\Ve do not possess any accurate theory
that predicts the behavior of the details of real-world pssors and compilers. Because of this
lack of theoretical understanding, we cannot design higfigpmance algorithms that are oblivi-
ous to the processor architecture in the same way as cadikimad algorithms are insensitive to
the parameters of the cache. Nevertheless, in this chagestwdy how to obtain portable high
performance despite the intricacies of real systems.

To attain portable high performance in the face of diversg@ssor architectures, we adopt
a “closed-loop,” end-to-end approach. We do not attempt edehperformance, but instead we
allow a program to adapt itself to the processor architecautomatically. An example of such a
self-optimizing program is thEFTW library that | have developed with Steven G. Johnson. FFTW
(the Fastest Fourier Transform in the W a library of fast C routines for computing the discrete
Fourier transform (DFT) in one or more dimensions, of botd emd complex data, and of arbitrary
input size. This chapter describes the mechanisms that RFSE#/to optimize itself and thenfft
special-purpose compiler that generated 95% of the FFTW.cod

The discrete Fourier transform (DFT) is arguably one of tlestimportant computational prob-
lems, and it pervades most branches of science and engigd, 48]. For many practical ap-
plications it is important to have an implementation of thETDthat is as fast as possible. In the
past, speed was the direct consequence of clever algorf®hthat minimized the number of
arithmetic operations. On present-day general-purposeopriocessors, however, the performance
of a program is mostly determined by complicated interactiof the code with the processor ar-
chitecture, and by the structure of the memory. Designimgé&formance under these conditions

111

requires an intimate knowledge of the computer architectund considerable effort. For example,
[95] documents a case where adding a “no-op” instructiongioogram doubles its speed because
of a particular implementation of branch prediction.

The FFTW system copes with varying processor architectymdnans of a self-optimizing ap-
proach, where the program itself adapts the computatiohaalétails of the hardware. We have
compared many C and Fortran implementations of the DFT oarakwmachines, and our exper-
iments show that FFTW typically yields significantly betmgrformance than all other publicly
available DFT software. More interestingly, while retaipicomplete portability, FFTW is com-
petitive with or faster than proprietary codes such as SBaiformance Library and IBM's ESSL
library that are highly tuned for a single machine.

The mechanics of self-optimization is the following. In RFTthe computation of the trans-
form is accomplished by aexecutorthat consists of highly optimized, composable blocks of C
code calleccodelets A codelet is a specialized piece of code that computes panedaransform.
For example, a codelet might compute a Fourier transform fofeml size. The combination of
codelets called by the executor is specified by a data steucalled gplan. The plan is determined
at runtime, before the computation begins, bylanner which uses a dynamic programming algo-
rithm [42, chapter 16] to find a fast composition of codeld@ise planner tries to minimize the actual
execution time, and not the number of floating point openatisince, as we shall see in Section 6.3,
there is little correlation between these two performaneasuares. Consequently, the planner mea-
sures the run time of many plans and selects the fasteste kutihent FFTW implementation, plans
can also be saved to disk and used at a later time.

The speed of the executor depends crucially on the efficiehtiye codelets, but writing and
optimizing them is a tedious and error-prone process. Wedbis problem in FFTW by means
of metaprogramming Rather than being written by hand, FFTW's codelets are rgéee automat-
ically by a special-purpose compiler callgenfft. Written in the Objective Caml dialect of the
functional language ML [99genfft is a sophisticated program that first produces a repregamtat
of the codelet in the form of a data-flow graph, and then “of#®’ the codelet. In this optimiza-
tion phasegenfft applies well-known transformations such as constantrigldand some DFT
specific tricks (see Section 6.4.) Metaprogramming is a pfulveechnique for high-performance
portability. First, a large space of codelets is essentinkélf-optimizing machinery to be effec-
tive. genfft produces many thousands of lines of optimized code—corbfeama speed to what
the best programmers could write by hand—within minutes.084, it is easy to experiment with
several algorithms and optimization strategies by changimy a handful lines ogenfft’s code
and regenerating the whole FFTW system. This experimentgtiocess quickly converges to a
high-performance implementation.

FFTW’s internal sophistication is not visible to the usewever. The user interacts with FFTW
only through the planner and the executor. (See Figure gehjft is not used after compile time,

112

fftw_plan plan;
COMPLEX A[n], B[n];

/* plan the computation */
plan = fftw_create_plan(n);

/* execute the plan */
fftw(plan, A);

/* the plan can be reused for
other inputs of size N */
fftw(plan, B);

Figure 6-1. Simplified example of FFTW'’s use for complex one-dimensitrzmsform. The user must first
create a plan, which can be then used at will. The same us#égerpapplies to multidimensional transforms
and to transforms of real data.

nor does the user need to know Objective Caml or have a OlgeCaml compilet. FFTW provides
a function that creates a plan for a transform of a specifieel sind once the plan has been created
it can be used as many times as needed.

The FFTW library (currently at version 2.1.2) is free softevavailable at the FFTW Web pade.
FFTW is not a toy system, but a production-quality librargttburrently enjoys several thousand
users and a few commercial customers. FFTW performs onesmatiidimensional transforms,
both of real and complex data, and it is not restricted to tirgizes that are powers @ The
distribution also contains parallel versions for Cilk-B€<Chapter 2), Posix threads, and MPI1 [134].

While conceptually simple, the current FFTW system is cacapdd by the need of computing
one- and multidimensional Fourier transforms of both ca@xr@nd real data. The same pattern of
planning and execution applies to all four modes of opemnatioFFTW: complex one-dimensional,
complex multidimensional, real one-dimensional, and mealtidimensional transforms. For sim-
plicity, most of our discussion in this chapter focuses or-dimensional Fourier transforms of
complex data. In Section 6.8, we will see how FFTW uses sinideas for the other kinds of
transforms.

The rest of this chapter is organized as follows. Sectiorpfesents some background material
on Fourier transforms. Section 6.2 presents experimemtia that demonstrate FFTW'’s speed.
Section 6.3 outlines the runtime structure of FFTW, coimgjsbf the executor and the planner.
The remaining sections are dedicatedgtmfft. Section 6.4 presenigenfft at a high-level.

In this sensegenfft resembles “Wittgenstein’s ladder”:

My propositions are elucidatory in this way: he who underdsame finally recognizes them as sense-
less, when he has climbed out through them, on them, over.tlldenmust so to speak throw away the
ladder, after he has climbed up onit.) He must surmount thegeositions; then he sees the world rightly.

(Approximate translation of [154, Proposition 6.54].)
2http://theory.lcs.mit.edu/ " fftw

113

Section 6.5 describes what a codelet looks like wgenfft constructs it. Section 6.6 describes
how genfft optimizes a codelet. Section 6.7 describes the cacheimiivscheduler thgfenfft
uses to minimize the number of transfers between memoryegisters. Section 6.8 discusses the
implementation of real and multidimensional transform®ct®n 6.9 discusses some pragmatic
aspects of FFTW, such agnfft’s running time and memory requirements, the interaction of
genfft’s output with C compilers, and the testing methodology fRETW uses. Section 6.10
overviews related work on automatic generation of DFT pmotg.

6.1 Background

In this section we review some background material aboutliterete Fourier transform (DFT). We
give the definition of the DFT, and reference the most comgnaaéd algorithms for computing it.
See [48] for a more complete discussion.

Let X be an array ol complex numbers. The (one-dimensional, complex, forwdishrete
Fourier transform of X is the arrayYy” given by

Y] =) X[jlw, 7, (6.1)

wherew,, = e2™V~1/" is a primitiven-th root of unity, and) < i < n. In caseX is a real vector,
the transforn” has thehermitian symmetry

whereY *[i] is the complex conjugate &f*[7].
The backward DFT flips the sign at the exponent af,, and it is defined in the following

equation.
n—1 3
Y[i] = X[jlw . 6.2)
§=0

The backward transform is the “scaled inverse” of the fodAaFT, in the sense that computing the
backward transform of the forward transform yields the ioagarray multiplied byn.
If n.can be factored inta = nins, Equation (6.1) can be rewritten as follows. Liet jino+ja,

114

and: = i + i9n1. We then have,

Yiy +i9n1] = (6.3)
na—1 [[ni—1
Yo DD Xlima +jeden T | w2 | wper
jo=0 | \ j1=0
This formula yields th&Cooley-Tukey fast Fourier transfornalgorithm (FFT) [41]. The algorithm
computesn, transforms of sizew; (the inner sum), it multiplies the result by the so-caltedddle
factorswy, “/2, and finally it computes,; transforms of sizes, (the outer sum).

If ged(n1,n2) = 1, theprime factoralgorithm can be applied, which avoids the multiplications
by the twiddle factors at the expense of a more involved cdatjmn of indices. (See [121, page
619].) If n is a multiple of4, thesplit-radix algorithm [48] can save some operations with respect
to Cooley-Tukey. Ifn is prime, it is possible to usRader’s algorithm[126], which converts the
transform into a circular convolution of size — 1. The circular convolution can be computed
recursively using two Fourier transforms, or by means ofaal technique due to Winograd [153]
(FFTW does not employ Winograd’s technique yet, howeverjheDalgorithms are known for
prime sizes, and this is still the subject of active reseasee [144] for a recent compendium on the
topic. Any algorithm for the forward DFT can be readily adapto compute the backward DFT, the
difference being that certain complex constants becomgigate. For the purposes of this chapter,
we do not distinguish between forward and backward transfand we simply refer to both as the
“complex DFT".

In the case when the input is purely real, the transform carobgputed with roughly half the
number of operations of the complex case, and the hermitiub requires half the storage of a
complex array of the same size. In general, keeping tradkeofiermitian symmetry throughout the
recursion is nontrivial, however. This bookkeeping is tie&ly easy for the split-radix algorithm,
and it becomes particularly nasty for the prime factor aredRlader algorithms. The topic is dis-
cussed in detail in [136]. In the real transform case, it bee®important to distinguish the forward
transform, which takes a real input and produces an hemotidgput, from the backward transform,
whose input is hermitian and whose output is real, requisidgfferent algorithm. We refer to these
cases as the “real to complex” and “complex to real” DFT, eetipely.

The definition of DFT can be generalized to multidimensidanglt arrays. Informally, a mul-
tidimensional transform corresponds to transforming thmui along each dimension. The precise
order in which dimensions are transformed does not mattardimplex transforms, but it becomes
important for the real case, where one has to worry abouttwhialf” array to compute in order to
exploit the hermitian symmetry. We discuss these detaieiction 6.8.

In the DFT literature, unlike in most of Computer Sciencds itustomary to report the exact
number of arithmetic operations performed by the variogerithms, instead of their asymptotic

115

complexity. Indeed, the time complexity of all DFT algonik of interest iSO(n logn), and a
detailed count of the exact number of operation is usualpbti (which by no means implies that
the analysis is easy to carry out). Itis no problem for me lio¥othis convention in this dissertation,
becausgenfft produces the exact arithmetic complexity of a codelet.

In the literature, the term FFT (“fast Fourier transform8nibtes either the Cooley-Tukey algo-
rithm or anyO(n log n) algorithm for the DFT, depending on the author. In this disg®n, FFT
denotes any)(n log n) algorithm.

6.2 Performance results

This section present the result of benchmarking FFTW agamasy freely-available and a few
proprietary codes. From the results of the benchmark, FFp@éars to be the fastest portable
FFT implementation for most transform sizes. Indeed, itfgpmance is competitive with that of
the vendor-optimized Sun Performance and ESSL librarieherUltraSPARC and the RS/6000,
respectively.

Steven G. Johnson and | have benchmarked FFTW against dbotliér FFT programs written
in the past 30 years (starting with Singleton’s program [1@&2ten in 1969), and we have collected
performance results for one-, two-, and three-dimensittaasforms on 10 different machines. Be-
cause of lack of space, we cannot include all these perfarenanmbers here, but this selection
of data should be sufficient to convince you that FFTW is ba#t ind portable. We show per-
formance results from three machines: an IBM RS/6000 MoBdl @20-MHz POWER?2), a Sun
HPC 5000 (167MHz UltraSPARC-I), and a DEC AlphaServer 4U®Y{MHz Alpha EV56). For
each machine, we show performance results of both complkxeah one-dimensional transforms
in double precision. We show results for both the case whearerput size is a power of 2, and
for certain commonly used nonpowers of 2. (See Figures e 6-13). For space reasons, for
each machine we only show the performance of the 10 progrhatekecute fastest on average.
Only 5 programs were available that compute real DFT’s of sianpower of 2, and the figures
show all of them. The full collection of data, including mdimensional transforms, can be found
at the FFTW web sité.

The performance results are given as a graph of the speed thtisform in MFLOPS versus
array size. “MFLOPS” is a more-or-less arbitrary measurpasformance, which can be thought
of as the normalized inverse of execution time. For complarsforms, the MFLOPS count is
computed by postulating the number of floating-point openatto bé 5nlgn, wheren is the
size of the input array. This is the operation count of thaxr@dCooley-Tukey FFT algorithm

*http://theory.lcs.mit.edu/ fftw
“Recall that we use the notatitgz 2 log, .

116

Bergland | A radix-8 C FFT, translated by Dr. Richard L. Lachance fromoatfan program
by G. D. Bergland and M. T. Dolan. Works only for powers of 2datoes not
include a true inverse transform. The original source cafobed in [39].
Bernstein | A 1D C FFT @jbfft 0.60) by D. J. Bernstein (1997), optimized specifically for
the Pentium angdcc. Itis limited to transforms whose sizes are powers of 2 from
210 1024. This code is not strictly comparable to the reshefiirograms since it
produces out-of-order results.
Bloodworth | C FFT by Carey E. Bloodworth (1998), including real-compiensforms and
fast Hartley transforms. Works only for powers of 2.
Crandall | C real-complex FFT by R. E. Crandall, developed as a part oEesbhne-prime
search program. Only works for powers of 2 and its output isearmuted order
See also [43].
CWP | A prime-factor FFT implementation by D. Hale in a C numeridadary from the
Colorado School of Mines.
*DXML | FFT from the Digital Extended Math Library, optimized foetAlpha.
*ESSL | IBM’s ESSL library for the RS/6000.
FFTPACK | Fortran 1D FFT library by P. N. Swarztrauber [139].
Green | Code by John Green (v2.0, 1998). Only works for powers of 2.
GSL | C FFT routines from the GNU Scientific Library (GSL) versior88. The FFT
code was written by Brian Gough (1996).
Krukar | 1D C FFT by R. H. Krukar.
Monnier | C FFT by Yves Monnier (1995).
Ooura | C and Fortran FFTs by Takuya Ooura (1996). They only work izgssthat are|
powers of 2. Includes real-complex and 2d transforms.
RMayer | C FFT by Ron Mayer (1993). Computes the DFT via the Hartleydfarm. Only
works for powers of 2.
SCIPORT | Fortran FFT's from the SCIPORT package, a portable implaatem of Cray’s
SCILIB library. These routines were developed at Generattkc, probably by
Scott H. Lamson. Only works for powers of 2, and includes-oeathplex routines
This code is an implementation of the Stockham auto-sort&gadrithm.
Singleton | Mixed-radix, multidimensional, Fortran FFT by R. C. Sintgle [132].
Sorensen| Fortran split-radix DIF FFT by H. V. Sorensen (1987). Inasdeal-complex
transforms, and only works for powers of 2 [135].
*SUNPERF | Sun Performance Library (UltraSPARC version 5.0)
Temperton | Fortran FFT in one and three dimensions by C. Temperton [142]

Table 6.1 Description of the programs benchmarked. All codes aremgdig@available except for the entries
marked with an asterisk, which are proprietary codes opgohfor particular machines.

117

—— FFTW
—e— Bernstein
-<-- ESSL

—+— Green

- 9% - Ooura (F)
—— Ooura (C)
—4&— FFTPACK

- o - FFTPACK (f2c)
—&— Krukar
-0 - Bergland

140

120—

100—

80—

MFLOPS

[N 0w O N S 0 © N ¥ 0 © N <
Nﬁ.wﬁm%(\lmHNQOﬁmw@ml\v
— N 10 O O O d M ImN~ILWm O

— N < 0 © N 10 I

- M © M ©

-

Transform size

Figure 6-22 Comparison of complex FFTs for powers of 2 on RS/6000 Modél 820-MHz POWER?2).
Compiled withcc -03 -qarch=pwrx -qtune=pwrx andf77 -03 -qarch=pwr2 -qtune=pwr2. AIX
3.2, IBM’s x1c C compiler anck1£90 Fortran compiler.

118

120

100— /"

MFLOPS

FFTW

CWP

ESSL
FFTPACK
FFTPACK (f2c)
GSL

Singleton
Singleton (f2c)
Temperton
Temperton (f2c)

Transform size

Figure 6-3: Comparison of complex FFTs for nonpowers of 2 on RS/6000 MG®BI (120-MHz

POWER?2). See Figure 6-2 for the compiler flags.

(see [40, page 23] and [102, page 45]). For real transforraqagtulate that the transform requires

2.5n 1g n floating-point operations. Most FFT implementations (idthg FFTW) use algorithms

with lower arithmetic complexity, and consequently the MRS count is not an accurate measure

of the processor performance. Although it is imprecises MFLOPS metric allows our numbers

to be compared with other results in the literature [139§ normalizes execution time so that we

can display the results for different transform sizes orstimae graph. All numbers refer to double

precision transforms (64-bit IEEE floating point). Tablé& @escribes all FFT implementations for

which we are showing performance results. Some codes inghehimark are written in C, and

others in Fortran; for some Fortran programs, we ran botlotiggnal code and a C translation

produced by the fre¢2c software [51].

Figures 6-2 through 6-5 refer to the IBM RS/6000 Model 3BT hiae. For powers of 2 (Fig-
ure 6-2), the strongest contenders are FFTW, IBM’s ESSlafihrand a program by John Green.

FFTW is typically faster than ESSL, and it is faster than @igeode except for the range 512—

4096. We shall see other cases where Green’s program sespBB3W speed. The reason is

119

FFTW

Green

Ooura (F)
Ooura (C)
FFTPACK
Crandall
Bloodworth
GSL

Singleton
Singleton (f2c)

120

100—

MFLOPS

Transform size

Figure 6-4: Comparison of real FFTs for powers of 2 on RS/6000 Model 3B20¢{MHz POWER?2). See
Figure 6-2 for the compiler flags.

that FFTW computes the transform out of place, i.e., withgasgte input and output array, while
Green’s code computes the transform in place, and therEféf&V uses twice as much memory as
Green’s program. For out-of-cache transforms, FFTW usag memory bandwidth than Green’s
code. FFTW works out of place because no convenient in-plaggithm exists that works for gen-
eraln. Itis possible to implement a general in-place Fouriergfamm algorithm, but a complicated
permutation is required to produce the proper output or@eeen’s program avoids this problem
because it works only for powers of 2, where the permutataluces to a simple bit-reversal. The
program by Singleton [132] works in-place for many values obut it imposes seemingly inexpli-
cable restrictions that derive from the implementationhaf transposition. For example,sifhas
more than one square-free factor, the program requireghbgiroduct of the square-free factors
be at most 210. Like the out-of-place library FFTPACK [13BETW opted for a consistent user
interface to user’'s programs, even at the expense of pesftzen

Figure 6-3 shows complex transforms for nonpowers of 2. kesé sizes, a remarkable pro-
gram is the one labelled “CWP”, which sometimes surpassespbed of FFTW. The performance

120

of CWP might not be directly comparable with that of other emdbecause CWP is actually
solving a different problem. Unlike all other programs wied; CWP uses a prime-factor algo-
rithm [140, 141] instead of the Cooley-Tukey FFT. The prifaetor algorithm works only when
the sizen of the transform can be factored into relatively prime ietsg(and therefore CWP does
not work for powers of 2), but when it works, the prime-facagorithm uses fewer operations than
Cooley-Tukey. (FFTW currently does not implement the prilaeor algorithm at the executor
level, although codelets do.) The CWP program only compaitegnsform of size, whenn is the
product of mutually prime factors from the s, 3,4,5,7,8,9,11,13,16}. You should be aware
that some sizes displayed in the figure do not obey this céistri (for example]1960 = 23 - 5 - 72),

in which case we ran CWP on a problem of the smallest acceptit# larger than the given size
(like 1980 = 22 .32 .5 . 11). This is the normamodus operandof the CWP library. A DFT of
sizen cannot simply be computed by padding the input with zeroscamoputing a DFT of larger
size, however. It is possible to embedded a DFT into a DFT rgklasize, using for example the
“chirp” transform [121], but this embedding is nontriviand in any case, CWP does not perform
any embedding. We included CWP in the benchmark becausestioteresting algorithms, and
because it might be a viable choice in applications wherecanechoose the transform size.

Figure 6-4 shows results for real-to-complex transformsiné power of 2. Our previous re-
marks about Green’s code apply here too. Figure 6-5 showshbeark results for nonpowers of
2 real-to-complex transforms. We only had five codes avialédy this benchmark, since this kind
of transform is particularly messy to program and only a fanidhplementations exist. (Luckily
for us, in FFTWgenf£ft produced all messy code automatically.)

The next set of figures (6-6 through 6-9) refer to a Sun HPC 5@&¢hine (167MHz UltraSPARC-
). For powers of 2 (Figure 6-6), FFTW succumbs to Sun’s Rerémce Library in 4 cases out of
18, and it is slower than Green’s program in 6 cases. For negsoof 2 (Figure 6-7), the fastest
codes are FFTW, Sun'’s performance library, and CWP, whefd\F&ominates for small sizes and
the three codes are more or less in the same range for largsr §ior real transforms, in the powers
of 2 case (Figure 6-8) FFTW dominates everywhere except ftat& points, and for other sizes
(Figure 6-9) it is by far the fastest available code.

The third set of figures (6-10 through 6-13) refer to a DEC Alparver 4100 (467-MHz Alpha
EV56). For powers of 2, complex data (Figure 6-10), we seénhavier similar to the IBM machine.
FFTW is faster than all other codes for medium-sized transfo but for large problems Green’s
program has again the advantage of a smaller memory fobtpidn nonpowers of 2, complex data
(Figure 6-11), CWP the fastest code for many big transfortogt+ecall that CWP is computing
transforms of a different size which favors the algorithratt6WP uses. For real transforms (Fig-
ures 6-12 and 6-13) we see the familiar behavior where FFTiMmlates in-cache transforms, but
its performance drops below Green'’s for some big problems.

These figures show that for large transforms, FFTW is sonestipenalized because it is out-

121

1
FFTW

FFTPACK
Singleton
Singleton (f2c)
GSL

MFLOPS

362880

Transform size

Figure 6-5. Comparison of real FFTs for nonpowers of 2 on RS/6000 Moddl BR0-MHz POWER?2).
See Figure 6-2 for the compiler flags.

122

300

250—

200—

150—

MFLOPS

100—

50—

FFTW
Green
Bernstein
SUNPERF
Ooura (F)
Ooura (C)
Sorensen
Krukar
Singleton
GSL

N 0 O© N T 0 © N ¥ 0 ©
A N 10D O O O d M I~ LY

— N < 0 ©

— M O

Transform size

Figure 6-6. Comparison of complex FFTs for powers of 2 on a Sun HPC 5000Nt& UltraSPARC-
[). Compiled withcc -native -fast -x05 -dalign -xarch=v9 andf77 -fast -native -dalign

-libmil -x05 -xarch=v9. SunOS 5.7, Sun WorkShop Compilers version 5.0.

123

250

200—

150—

MFLOPS

100—

FFTW
CWP
SUNPERF
GSL
Temperton
FFTPACK
Singleton
FFTPACK (f2c)
Singleton (f2c)
Monnier

Transform size

Figure 6-7: Comparison of complex FFTs for nonpowers of 2 on a Sun HPC $D8DMHz UltraSPARC-

). See Figure 6-6 for the compiler flags.

124

—— FFTW
—+— Green
300 —— Ooura (C)
- 9% - Ooura (F)
250— @ - GSL
---e- . Bloodworth
200 === = C_randall
—H— Singleton
4 —a— FFTPACK
% 150— - 3 - Singleton (f2c)
=
100—
50—
0_

Transform size

Figure 6-8 Comparison of real FFTs for powers of 2 on a Sun HPC 5000 (167 MkraSPARC-I). See
Figure 6-6 for the compiler flags.

125

180]

—a— FFTW
160— @ GSL
140—] —4a— FFTPACK
—H— Singleton
120— - 3 - Singleton (f2c)

100—

MFLOPS

4725
10368
27000

Transform size

Figure 6-9: Comparison of real FFTs for nonpowers of 2 on a Sun HPC 5000MH& UltraSPARC-I).
See Figure 6-6 for the compiler flags.

of-place, a design choice dictated by our desire to buildreege DFT library with a uniform user
interface. For in-cache transforms, however, FFTW excekxfacting near-peak performance
for in-cache transforms, showing that FFTW copes effelstiveth the intricacies of processor
architectures as well or better than the best hand-tuneelscod

The results of a particular benchmark run were never eptisdroducible. Usually, the differ-
ences between runs of the same binary program were 5% obléssnall changes in the benchmark
could produce much larger variations in performance, whicived to be very sensitive to the align-
ment of code and data in memory. We were able to produce charfigg to 30% in the benchmark
results by playing with the data alignment (e.g. by addinglbintegers to the array sizes), or by
changing the order in which different FFT routines were didkn the benchmark program. The
numbers reported are not tweaked in any way, of course. Tit@ugaFFT routines were linked in
alphabetical order, and no special array alignment/paddias implemented.

126

6.3 FFTW'’s runtime structure

This section describes FFTW's runtime structure, whichoimprised of theexecutor—the part of
FFTW that actually computes the transform—and ptenner, which implements FFTW's self-
optimization capabilities. The planner uses a dynamic gammgning algorithm and runtime mea-
surements to produce a fast composition of codelets. Atil@&the section, we show that FFTW'’s
planner is instrumental to attain portable high perforneasince it can improve performance by a
factor of 60% over a naive scheme that attempts to minimigenttmber of floating-point opera-
tions.

We start by describing the executor. The current releasd-®f¥ employs several executors,
for the various cases of complex, real-to-complex, and ¢exAjp-real transforms, and for multiple
dimensions. Here, we confine our discussion to the execatardmplex one-dimensional trans-
forms, which implements the Cooley-Tukey FFT algorithm][#k transforms of composite size,
and either Rader’s algorithm or the definition Equation) ot transforms of prime size.

With reference to Equation (6.3), the Cooley-Tukey aldonitcenters around factoring the
size N of the transform inton = nyno. The algorithm recursively computes transforms of
sizeny, multiplies the results by certain constants traditionaklled twiddle factors and finally
computesn; transforms of sizews. The executor consists of a C function that implements the al
gorithm just outlined, and of a library abdeletghat implement special cases of the Cooley-Tukey
algorithm. Specifically, codelets come in two flavakormal codelets compute the DFT of a fixed
size, and are used as the base case for the recur$isinldle codelets are like normal codelets,
but in addition they multiply their input by the twiddle facs. Twiddle codelets are used for the
internal levels of the recursion. The current FFTW releas#ains codelets for all the integers up
to 16 and all the powers o2 up to 64, covering a wide spectrum of practical applications. Users
who need transforms of special sizes (d8Y,can configure the executor for their needs by running
genfft to produce specialized codelets.

The executor takes as input the array to be transformed,lsmdjglan, which is a data structure
that specifies the factorization afas well as which codelets should be used. For example, here is
a high-level description of a possible plan for a transfofrfengthn = 128:

DIVIDE-AND-CONQUER(128, 4)
DIVIDE-AND-CONQUER(32, 8)
SOLVE (4)

In response to this plan, the executor initially computésnsforms of siz&2 recursively, and
then it uses the twiddle codelet of sizdo combine the results of the subproblems. In the same
way, the problems of siz& are divided inta8 problems of sizet, which are solved directly using
a normal codelet (as specified by the last line of the plan)aedhen combined using a sige-
twiddle codelet.

127

600

500—

400—

300—

MFLOPS

200—

100—

FFTW
Green
Bernstein
DXML
Ooura (F)
Ooura (C)
FFTPACK
Bergland
GSL
Singleton

Transform size

32768

Figure 6-10. Comparison of complex FFTs for powers of 2 on a DEC AlphaSe4t€0 (467-MHz Al-
pha EV56). Compiled witltc -newc -w0 -05 -ansi_alias -ansi_ args -fp._reorder -tune host
-arch host -stdl and £f77 -w0 -05 -ansi_alias —ansi_args -fp_reorder -tune host -arch

host -stdl. OSF1 V4.0, DEC C V5.6, DIGITAL Fortran 77 V5.1.

128

—m— FFTW

-\ - CWP
600 X —4&— FFTPACK
\
;o @ GSL
\
500— o - <~ - DXML
—4— Temperton
- - - FFTPACK (f2c
400— W (f2c)
- 4- - Temperton (f2c)
\
2 —HB— Monnier
% 300— —H— Singleton
=
200—
100—
R S 1 O A O 1
o O
SN S883338Y838380% 8
4 4 < O N~ 0O 1O N
- N N~ © ©
— ™
Transform size
Figure 6-11 Comparison of complex FFTs for nonpowers of 2 on a DEC AlpnaSet100 (467-MHz
Alpha EV56). See Figure 6-10 for the compiler flags.

129

600

500—

400—

300—

MFLOPS

200—

100—

FFTW

Green

Ooura (F)
Ooura (C)
FFTPACK
Crandall
Singleton
SCIPORT
Bloodworth
Singleton (f2c)

Transform size

Figure 6-12 Comparison of real FFTs for powers of 2 on a DEC AlphaServ@04#67-MHz Alpha

EV56). See Figure 6-10 for the compiler flags.

130

400]
FFTW
350— FFTPACK
Singleton
300— Singleton (f2c)
GSL
250—
%)
ol
O 200
LL
=
150—
100—
50—
0

Transform size

Figure 6-13 Comparison of real FFTs for nonpowers of 2 on a DEC AlphaSet¥80 (467-MHz Alpha
EV56). See Figure 6-10 for the compiler flags.

131

The executor works by explicit recursion, in contrast with traditional loop-based implemen-
tations [121, page 608]. This explicitly recursive implartagion was motivated by considerations
analogous to those discusses in Chapter 3: Divide and corggeod for the memory hierarchy. As
we saw in Chapter 3, as soon as a subproblem fits into the caaligrther cache misses are needed
in order to solve that subproblem. Most FFT implementatiosischmarked in Section 6.2 are loop
based, and the benchmark results should convince you thidedind conquer does not introduce
any unacceptable overhead. A precise evaluation of thévwelamerits of divide and conquer and
loops would require the complete reimplementation of FFWanner and executor using loops,
and the generation of a different set of codelets, and | havget performed this comparison.

Although we discussed an optimal cache-oblivious optinkdl Blgorithm in Section 3.2, FFTW's
executor does not implement it. Recall that the cache-hig/algorithm works only for power-of-2
sizes, while FFTW is a general-purpose system that compatesforms of arbitrary size. Although
the cache-oblivious algorithm can be generalized, thergdination involves a transposition that is
tough to perform in the general case without using additiom@mory. | am investigating ways of
implementing this algorithm efficiently, if only for powers 2, since as we saw in Section 6.2,
performance drops significantly as soon as the transform dogfit into cache.

How does one construct a good plan? FFTW's strategyrsgtasurethe execution time of many
plans and to select the best. This simple idea is one of tls®nsaof FFTW's high performance and
portability. If a codelet happens to be fast on a given magHhor whatever reason, FFTW uses it.
If the codelet is slow, FFTW does not use it. If the selectibnanlelets involves tradeoffs, the best
tradeoff is found automatically.

Ideally, FFTW’splanner should try all possible plans. This approach, however, igpractical
due to the combinatorial explosion of the number of planstead, the planner uses a dynamic-
programming algorithm [42, chapter 16] to prune the seapdtres. In order to use dynamic-
programming, FFTW assumegptimal substructure if an optimal plan for a size: is known,
this plan is still optimal when size is used as a subproblem of a larger transform. This assump-
tion is in principle false because of the different statethefcache and of the processor pipeline in
the two cases. In practice, we tried both approaches andrtimifying hypothesis yielded good
results, but the dynamic-programming algorithm runs muasefr.

In order to demonstrate the importance of the planner, asagdhe difficulty of predicting
the optimal plan, in Figure 6-14 we show the speed of varidgassgp(measured and reported as in
Section 6.2) as a function of the number of floating point apens (flops) required by each plan. In
this graph we can observe two important phenomena. Fifféreit compositions of the codelets
result in a wide range of performance, and it is importantitoose the right combination. Second,
the total number of flops is an inadequate predictor of thewgi@n time, at least for the relatively
small variations in the flops that obtain for a givenAs the figure shows, the fastest plan is about
60% faster than the one with the fewest operations.

132

o]

% 80_: best: O

L 70 o

> 3

< 60 g 8

£ & O

T 50 O @)

o] o worst: O

o 40

n]

30 - T T T T T T T
I I I I I I

o o o o o o o o
o o o o o o o o
o o o o o o o o
o o (@} o o o o o
(o) o I AN ™ < [To] O
N~ [c0] [c0} [ce} [ce} [e0] [ce} (¢}
- — —l —l — - —l —

Floating Point Operations

Figure 6-14 Speeds vs. flops of various plans considered by the planner 032768. The “MFLOPS”
unit of speed is described in Section 6.2. Notice that thiegaplan is not the one that performs the fewest op-
erations. The machine is a Sun HPC 5000 (167MHz UltraSPAREFTW was compiled witltc -native
-fast -x05 -dalign. SunOS 5.5.1, Sun WorkShop Compilers version 4.2. (Notietileecompiler is not
the same as the one used in Figure 6-6. This test was perfavittedn older compiler.)

We have found that the optimal plan depends heavily on thegssmr, the memory architecture,
and the compiler. For example, for double-precision complnsformsy = 1024 is factored into
1024 = 8 - 8 - 16 on an UltraSPARC and intb024 = 32 - 32 on an Alpha. We currently have no
theory that predicts the optimal plan, other than some kariules of the form “codelekX seems
to work best on machin&.”

6.4 The FFTW codelet generator

In this and in the following three sections, we focus ourrdite ongenfft, the special-purpose
compiler that generated 95% of FFTW'’s cogenf ft shows the importance afietaprogramming
in portable high-performance programs: instead of wrilimgg sequences of optimized code by
hand, it is easier to write a compiler that generates theris Sdttion gives a high-level description
of genfft and it explains how it is instrumental to achieve perforneaportability, and correctness.
Codelets form the computational kernel of FFTW, but writihgm by hand would be a long and
error-prone process. Instead, FFTW'’s codelets are prodageoomatically by thé-FTW codelet
generator unimaginatively callegenfft, which is an unusual special-purpose compiler. While a
normal compiler accepts C code (say) and outputs numpetisft inputs the single integet (the
size of the transform) and outputs C codgenfft contains optimizations that are advantageous
for DFT programs but not appropriate for a general compédead conversely, it does not contain
optimizations that are not required for the DFT programeiarates (for example loop unrolling).
It also contains optimizations thate appropriate both for a general-purpose compiler and for DFT

133

programs, such as recursion unrolling, but that currentpslens unfortunately do not implement.

As we have seen in Section 6.3, codelets come in two flavorsnadcand twiddle. A normal
codelet is just a fragment of C code that computes a Fouaestorm of a fixed size (say, 16, or
19). For simplicity, we only focus on the generation of normmadelets, which compute Fourier
transforms of a fixed size. Twiddle codelets are obtainedduirg a multiplication stage to the
inputs of a normal codelet.

genfft’s strategy is to express an FFT algorithm at a high level, tangutomate all messy
optimization details. As a consequence of this stratgeyf £t operates in four phases.

1. In thedag creationphase,genfft produces a directed acyclic graph (dag) of the codelet,
according to some well-known algorithm for the DFT, suchhasé from [48]. The generator
contains many such algorithms and it applies the most apiptep The algorithms used in
this phase are almost literal translations of mathemaf@ahulas such as Equation (6.1),
without any optimization attempt.

2. In the simplifier, genfft applies local rewriting rules to each node of the dag, in 1orde
to simplify it. This phase performs well-known algebraiartsformations and common-
subexpression elimination, but it also performs otherdf@mnations that are specific to the
DFT. For example, it turns out that if all floating point comsts are made positive, the
generated code runs faster. (See Section 6.6.) Anotheriamdransformation isetwork
transposition which derives from the theory of linear networks [44]. Maover, besides
noticing common subexpressions, the simplifier also attergpcreate them. The simplifier
is written in monadic style [151]. Using a monagknfft deals with the dag as if it were a
tree, which simplifies the implementation considerably.

3. In thescheduler genfft produces a cache-oblivious topological sort of the dag ¢aed-
ule”), using the algorithm from Section 3.2. For transforofisize 2¥, this schedule imple-
ments the cache-oblivious algorithm from Section 3.2, dnsalefore it provably minimizes
the asymptotic number of register spills, regardless of hmamy registers the target machine
has. For transforms of other sizes the scheduling strategy ionger provably good, but it
still works well in practice. The scheduler depends heawilythe topological structure of
DFT dags, and it would not be appropriate in a general-parjgospiler.

4. Finally, the schedule is unparsed to C. (It would be easyrémluce FORTRAN or other
languages by changing the unparser.) The unparser is @itieus and uninteresting, except
for one subtlety discussed in Section 6.9.

Although the creation phase uses algorithms that have bemmrkfor several years, the output
of genfft is at times completely unexpected. For example, for a coxtpd@sform of sizer = 13,
the generator employs an algorithm due to Rader, in the faeagmted by Tolimieri and others

134

[144]. In its most sophisticated variant, this algorithmifpens 172 real (floating-point) additions
and 90 real multiplications. (See [103, Table VIII].) Thengeated code in FFTW for the same
algorithm, however, contains 176 real additions and onlyed8 multiplications.genfft’s output
appears not to have been known befoemd it is among the best algorithms for this problem along
with the algorithm from [131], which requires 188 additicarsd 40 multiplications. For reference
purposes, Table 6.2 shows the operation counts of the DFjrgumes produced bygenfft.

The generator specializes the dag automatically for the wagre the input data are real, which
occurs frequently in applications. This specializatiomatrivial, and in the past the design of
an efficient real DFT algorithm required a serious effort tivas well worth a publication [136].
genfft, however, automatically derives real DFT programs fromdbmplex algorithms, and the
resulting programs have the same arithmetic complexityhaset discussed by [136, Table §I].
The generator also produces real variants of the Radesitdon mentioned above, which to my
knowledge do not appear anywhere in the literature.

genfft shows the important role ofietaprogrammingn portable high-performance programs.
The philosophy ogenfft is to separate the logic of an algorithm from its implemeatat The
user specifies an algorithm at a high level (the “prograntij] also how he or she wants the code
to be implemented (the “metaprogram”). Because of thicsire, we achieve the following goals:

» Performanceis the main goal of the FFTW project, and it could not have baemeved
without genfft. For example, the codelet that performs a DFT of size 64 id usetinely
by FFTW on the Alpha processor. As shown in Figure 6-10, thietet is about 50% faster
than any other code on that machine. The codelet consistbaft 2400 lines of code,
including 912 additions and 248 multiplications. Writingch a program by hand would be a
formidable task for any programmer. At least for the DFT peah these long sequences of
straight-line code seem to be necessary in order to takedutintage of large CPU register
sets and the scheduling capabilities of C compilers.

« Portability of FFTW's performance across diverse processor archigesxtis possible only
because ogenfft, because FFTW's self-optimizing machinery requires aelapace of
codelets in order to select the fast ones. Moreogenfft enables portability to future
systems. When next-generation microprocessors will bdada with larger register sets
and higher internal parallelism, even longer code sequendk be needed to exploit the
new hardware fully. Withgenf£ft, it will be sufficient to ask the generator to produce larger
codelets.

®In previous work [55], | erroneously claimed thainfft's algorithm has the lowest known additive complexity for
a DFT of size 13. | later discovered that in fact, the algonifinom [103] uses 4 fewer additions thgenf£ft’s algorithm,
although it requires 22 more multiplications.

®In fact, genfft saves a few operations in certain cases, sueh=asl5.

135

Complex | Real to complexy Complex to real
size | adds muls| adds muls | adds muls

2 4 0 2 0 2 0
3 12 4 4 2 4 2
4 16 0 6 0 6 2
5 32 12 | 12 6 12 7
6 36 8 14 4 14 4
7 60 36 | 24 18 24 19
8 52 4 20 2 20 6
9 80 40 | 38 26 32 18
10 | 84 24 | 34 12 34 14
11 | 140 100| 60 50 60 51
12 | 96 16 | 38 8 38 10
13 | 176 68 | 76 34 76 35
14 | 148 72 | 62 36 62 38
15 | 156 56 | 64 25 64 31
16 | 144 24 | 58 12 58 18

17 | 296 116 | 116 58 116 63
18 | 196 80 | 102 60 82 36
19 | 428 228 | 276 174 272 175
20 | 208 48 | 86 24 86 30
21 | 264 136 | 112 63 112 71
22 | 324 200 | 142 100 142 102
23 | 692 484 | 284 244 284 247
24 | 252 44 | 104 20 104 30
25 | 352 184 | 204 140 152 98
26 | 404 136 | 178 68 178 70
27 | 380 220 | 237 169 164 102
28 | 352 144 150 72 150 78
29 | 760 396 | 300 202 300 207
30 | 372 112 | 162 56 158 52
31 | 804 340 | 320 162 322 167
32 | 372 84 | 156 42 156 54
64 | 912 248 | 394 124 394 146
128 | 2164 660 | 956 330 956 374

Table 6.2 Operation counts for complex, real-to-complex, and comydereal Fourier transform programs
generated bgenfft.

136

 Achieving correctnesshas been surprisingly easy. The DFT algorithmgénfft are en-
coded straightforwardly using a high-level language. Tingplfication phase transforms
this high-level algorithm into optimized code by applyirmple algebraic rules that are easy
to verify. In the rare cases during development when thergémrecontained a bug, the output
was completely incorrect, making the bug manifest.

» Rapid turnaroundvas essential to achieve the performance goals. Begauseét separates
the specificationof a DFT algorithm from itsmplementationone can quickly experiment
with optimizations and determine their effect experiménta-or example, the minus-sign
propagation trick that we will describe in Section 6.6 cobilimplemented in only a few
lines of code and tested within minutes.

» The generator is effective because it can agplyblem-specificcode improvements. For
example, the scheduler is effective only for DFT dags, amebitld perform poorly for other
computations. Moreover, the simplifier performs certaipliavements that depend on the
DFT being a linear transformation.

* Finally, genfft derived somenew algorithmsas in the example = 13 discussed above.
While this dissertation does not focus on these algoritpersse they are of independent
theoretical and practical interest.

In the next three sections, we describe the operatigenfft. Section 6.5 shows hogenfft
creates a dag for a codelet. Section 6.6 describes gwvift simplifies the dag. Section 6.7
describegenfft’s cache-oblivious scheduler.

6.5 Creation of the expression dag

This section describes hogenfft creates an expression dag by evaluating a DFT algorithm sym-
bolically. Consistently with the metaprogramming philpeg of separating the algorithm with the
implementation, ingenfft we express DFT algorithms at a high level, almost “straigtitad the
DSP book,” without worrying about optimization. This sectifirst describes the data type that
encodes a codelet dag. Then, we show how the Cooley-Tukeyithly (Equation (6.3)) translates
verbatim into Caml code.

We start by defining th@aode data type, which encodes an arithmetic expression dag. Each
dag node represents an operator, and the node’s childressegp the operands. This is the same
representation as the one generally used in compilers [QidBe5.2]. A node in the dag can have
more than one “parent”, in which case the node representsienon subexpression. The Objective
Caml definition ofnode is given in Figure 6-15, and it is straightforward. A node ither a real
number (encoded by the abstract data tyjaeber . number), a load of an input variable, a store of

137

type node =
| Num of Number.number
| Load of Variable.variable
| Store of Variable.variable * node
| Plus of node list
| Times of node * node
| Uminus of node

Figure 6-15 Objective Caml code that defines thede data type, which encodes an expression dag.

an expression into an output node, the sum of the childreesydtie product of two nodes, or the
sign negation of a node. For example, the expresgienb, wherea andb are input variables, is
represented bylus [Load a; Uminus (Load b)].

The structurélumber maintains floating-point constants with arbitrarily higregision. FFTW
currently computes all constants with 50 decimal digits wdcjsion, so that a user can use the
qguadruple precision floating-point unit on a processor agthe UltraSPARCNumber is imple-
mented on top of Objective Caml’s arbitrary-precisionagaéils. If you wish, this is an extreme form
of portability: If machines with 100-digits floating-poiatcuracy ever become available, FFTW is
ready to run on them. The structufariable encodes the input/output nodes of the dag, and the
temporary variables of the generated C code. For the puspafdlis dissertation, variables can be
considered an abstract data type that is never used eiplicit

Thenode data type encodes expressions over real numbers, sincengihé€foutput contains
only real expressions. For creating the expression dageotdidelet, however, it is convenient
to express the algorithms in terms of complex numbers. Thergéor contains a structure called
Complex, which implements complex expressions on top ofitiée data type, in a straightforward
way.” The typeComplex .expr (not shown) is essentially a pair abdes.

We now describe the functiaff tgen, which creates a dag for a DFT of size In the current
implementationf ftgen uses one of the following algorithms.

A split-radix algorithm [48], ifn is a multiple of4. Otherwise,

» A prime factor algorithm (as described in [121, page 618]); factors intonin,, where
n; # 1 andged(ny, ny) = 1. Otherwise,

* The Cooley-Tukey FFT algorithm (Equation (6.3))riffactors intonins, wheren; # 1.
Otherwise,

"One subtlety is that a complex multiplication by a constat be implemented with either 4 real multiplications
and 2 real additions, or 3 real multiplications and 3 realitimits [92, Exercise 4.6.4-41]. The current generator uses
the former algorithm, since the operation count of the dageiserally dominated by additions. On most CPUs, it is
advantageous to move work from the floating-point addereahiltiplier.

138

let rec cooley_tukey nl n2 input sign =
let tmpl j2 = fftgen nl
(fun j1 -> input (j1 * n2 + j2)) sign in
let tmp2 il j2 =
exp n (sign * il * j2) @ tmpl j2 il in
let tmp3 il = fftgen n2 (tmp2 il) sign
in
(fun i -> tmp3 (i mod n1) (i / nl))

Figure 6-16. Fragment of the FFTW codelet generator that implements thele@-Tukey FFT algo-
rithm. The infix operator* computes the complex product. The functip n k computes the constant

exp(2rky/—1/n).

* (n is a prime number) Rader’s algorithm for transforms of prierwgth [126] ifn = 5 or
n > 13. Otherwise,

 Direct application of the definition of DFT (Equation (6)1)
We now look at the operation d@ff tgen more closely. The function has type

fftgen : int -> (int -> Complex.expr) ->

int -> (int -> Complex.expr)

The first argument tdftgen is the sizen of the transform. The second argument is a function
input with typeint -> Complex.expr. The application(input i) returns a complex expres-
sion that contains the-th input. The third argumentign is eitherl or —1, and it determines the
direction of the transform.

Depending on the size of the requested transforniftgen dispatches one of the algorithms
mentioned above. We now discuss hgenfft implements the Cooley-Tukey FFT algorithm. The
implementation of the other algorithms proceeds alonglairtines.

Objective Caml code that implements the Cooley-Tukey @gaorcan be found in Figure 6-16.
In order to understand the code, recall Equation (6.3). €hisation translates almost verbatim
into Objective Caml. With reference to Figure 6-16, the timt applicationtmpl j2 computes
the inner sum of Equation (6.3) for a given valuejof and it returns a function of;. (tmp1
is curried overi;, and therefore; does not appear explicitly in the definition.) NeXtmpl j2
i1) is multiplied by the twiddle factors, yieldingmp2, that is, the expression in square braces in
Equation (6.3). Nexttmp3 computes the outer summation, which is itself a DFT of size(Again,
tmp3 is a function ofi; andiy, curried overi,.) In order to obtain theé-th element of the output of
the transform, the indekis finally mapped int@; andi, and (tmp3 i1 i2) is returned.

Observe that the code in Figure 6-16 does not actually paréory computation. Instead, it
builds a symbolic expression dag that specifies the conmipatafThe other DFT algorithms are
implemented in a similar fashion.

139

At the top level, the generator invokéstgen with the sizen and the directiorsign specified
by the user. Thenput function is set tcfun i -> Complex.load (Variable.input i), i.e.,

a function that loads théth input variable. Recall now thatftgen returns a functioroutput,
where(output i) is a complex expression that computesitiie element of the output array. The
top level builds a list o8tore expressions that sto@utput i) into thei-th output variable, for
all 0 < i < n. This list of Stores is the codelet dag that forms the input of subsequent plodises
the generator.

We conclude this section with a some remarks. Accordingeadtscription given in this sec-
tion, fftgen contains no special support for the case where the inpuals Téis statement is not
completely true. In the actual implementatiddit gen maintains certain symmetries explicitly. For
example, if the input is real, then the output is known to hlagamitian symmetry. These addi-
tional constraints do not change the final output, but theedpup the generation process, since
they avoid computing and simplifying the same expressidngwFor the same reason, the actual
implementation memoizes expressions suchmgs i2 il in Figure 6-16, so that they are only
computed once. These performance improvements were iampdor a user of FFTW who needed
a hard-coded transform of size 101, and had not obtained samesrafter the generator had run for
three days. (See Section 6.9 for more details on the runimmgdf genfft.)

At this stage, the generated dag contains many redundamtutations, such as multiplications
by 1 or 0, additions of0, and so forth.fftgen makes no attempt to eliminate these redundancies.
Figure 6-17 shows a possible C translation of a codelet ddgsastage of the generation process.

6.6 The simplifier

In this section, we presemenfft’s simplifier, which transforms code such as the one in Fig-
ure 6-17 into simpler code. This section is divided into tvaote. We first discuss how the simpli-
fier transforms the dag by applying algebraic transfornmaticommon-subexpression elimination,
minus-sign propagation and network transposition. Thaendiscuss the actual implementation of
the simplifier. Monads [151] form a convenient structuringaimanism for the code of the simplifier.

6.6.1 What the simplifier does

We begin by illustrating the improvements applied by thedifier to a codelet dag. The simpli-
fier traverses the dag bottom-up, and it applies a seriescaf Improvements to every node. For
explanation purposes, these improvements can be subdlivittethree categories: algebraic trans-
formations, common-subexpression elimination, and Dpgesic improvements. Since the first
two kinds are well-known [9], | just discuss them briefly. Wen consider the third kind in more
detail.

140

tmpl = REAL (input[0]);

tmp5 = REAL (input[0]);

tmp6 = IMAG(input[0]);

tmp2 = IMAG(input[0]);

tmp3 = REAL(input[1]);

tmp7 = REAL (input[1]);

tmp8 = IMAG(input[1]);

tmp4 = IMAG(input[1]);

REAL (output [0]) = ((1 * tmpl) - (0 * tmp2))
+ ((1 * tmp3) - (0 * tmp4));

IMAG (output [0]) = ((1 * tmp2) + (0 * tmpl))
+ ((1 * tmp4) + (0 * tmp3));

REAL (output[1]) = ((1 * tmp5) - (0 * tmp6))
+ ((-1 * tmp7) - (0 * tmp8));

IMAG (output[1]) = ((1 * tmp6) + (O * tmpb))
+ ((-1 * tmp8) + (0 * tmp7));

Figure 6-17: C translation of a dag for a complex DFT of size 2, as generatefiftgen. Variable
declarations have been omitted from the figure. The codegmimany common subexpression (etgp1
andtmp5), and redundant multiplications liyor 1.

Algebraic transformationgeduce the arithmetic complexity of the dag. Like a tradiéilocom-
piler, the simplifier performs constant folding, and it slifies multiplications byo, 1, or —1, and
additions of0. Moreover, the simplifier applies the distributive propesystematically. Expres-
sions of the formkz + ky are transformed inté(z + y). In the same way, expressions of the form
kyx + kox are transformed intQk; + k2). In general, these two transformations have the potential
of destroying common subexpressions, and they might isertf@ operation count. This does not
appear to be the case for all DFT dags | have studied, althbdgimot fully understand the reason
for this phenomenon.

Common-subexpression eliminatids also applied systematically. Not only does the simplifier
eliminate common subexpressions, it also attempts toereat ones. For example, it is common
for a DFT dag (especially in the case of real input) to conitaithz — y andy — = as subexpressions,
for somez andy. The simplifier converts both expressions to eithery and—(z —y), or —(y — z)
andy — z, depending on which expression is encountered first duheglag traversal.

The simplifier applies two kinds dDFT-specific improvements First, all numeric constants
are made positive, possibly propagating a minus sign ta otbées of the dag. This curious trans-
formation is effective because constants generally appgaairsk and—k in a DFT dag. To my
knowledge, every C compiler would store bétAnd—£ in the program text, and it would load both
constants into a register at runtime. Making all constapstipe reduces the number of loads of
constants by a factor of two, and this transformation algreds up the generated codelets by 10-
15% on most machines. This transformation has the additaffect of converting subexpressions

141

w
N
w
N

Figure 6-18 lllustration of “network” transposition. Each graph defiran algorithm for computing a linear
function. These graphs are calligear networks and they can be interpreted as follows. Data are flowing
in the network, from input nodes to output nodes. An edgeipligds data by some constant (possilb)yand
each node is understood to compute the sum of all incomingsedg this example, the network on the left
computes = 5x+3y andt = 2z+4y. The network on the rightis the “transposed” form of the firstwork,
obtained by reversing all edges. The new network compugelidar function: = 5s + 2t andy = 3s + 4t.

In general, if a network computes= My for some matrix\/, the transposed network computes M7 z.
(See [44] for a proof.) These linear networks are similantoriot the same as expression dags normally used
in compilers and ingenfft, because in the latter case the nodes and not the edgesnpedorputation. A
network can be easily transformed into an expression dagever. The converse is not true in general, but
it is true for DFT dags where all multiplications are by camgs.

into a canonical form, which helps common-subexpressionimdhtion.

The second DFT-specific improvement is not local to nodes jisimstead applied to the whole
dag. The transformation is based on the fact that a dag camgputinear function can be “reversed”
yielding atransposeddag [44]. This transposition process is well-known in thgnai Processing
literature [121, page 309], and it operates a shown in Figuld. It turns out that in certain
cases the transposed dag exposes some simplificationgsdhaitgpresent in the original dag. (An
example will be shown later.) Accordingly, the simplifierfoems three passes over the dag. It first
simplifies the original dag yielding a dag&;. Then, it simplifies the transposed d&@g yielding
a dagG?. Finally, it simplifiesG, (the transposed dag ¢fY) yielding a dagGs. (Although one
might imagine iterating this process, three passes seera sufficient in all cases.) Figure 6-19
shows the savings in arithmetic complexity that derive froetwork transposition for codelets of
various sizes. As it can be seen in the figure, transposidorreduce the number of multiplications,
but it does not reduce the number of additions.

Figure 6-20 shows a simple case where transposition is lo@ieflThe network in the figure
computesc = 4 - (2a + 3b). It is not safe to simplify this expression to= 8a + 12b, since
this transformation destroys the common subexpres@emrsd3b. (The transformation destroys 1
operation and 2 common subexpressions, which might inergsesoperation count by 1.) Indeed,
the whole point of most FFT algorithms is to create commoregpkessions. When the network
is transposed, however, it compuies= 2 - 4c andb = 3 - 4¢. These transposed expressi@as
be safely transformed int@ = 8c andb = 12¢ because each transformation saves 1 operation and

142

adds muls adds muls
size (nottransposed) (transposed)
complex to complex
5 32 16 32 12
10 84 32 84 24
13 176 88 176 68
15 156 68 156 56
real to complex

5 12 8 12 6
10 34 16 34 12
13 76 44 76 34

15 64 31 64 25
complex to real

5 12 9 12 7

9 32 20 32 18
10 34 18 34 14
12 38 14 38 10
13 76 43 76 35
15 64 37 64 31

16 58 22 58 18
32 156 62 156 54
64 394 166 394 146
128 956 414 956 374

Figure 6-19 Summary of the benefits of network transposition. The tabtevs the number of additions
and multiplications for codelets of various size, with anithaut network transposition. Sizes for which the
transposition has no effect are not reported in this table.

destroys 1 common subexpression. Consequently, the @mpecaunt cannot increase. In a sense,
transposition provides a simple and elegant way to deteathmtag nodes have more than one
parent, which would be difficult to detect when the dag is efaversed.

6.6.2 Implementation of the simplifier

The simplifier is written in monadic style [151]. The monadfpans two important functions: it
allows the simplifier to treat the expression dag as if it wveetieee, which makes the implementation
considerably easier, and it performs common-subexpmresdimination. We now discuss these two
topics.

Treating dags as trees.Recall that the goal of the simplifier is to simplify an exmies dag.
The simplifier, however, is written as if it were simplifyiran expressioriree The map from
trees to dags is accomplished by memoization, which is pedd implicitly by a monad. The
monad maintains a table of all previously simplified dag spdéong with their simplified versions.
Whenever a node is visited for the second time, the monacdhsethe value in the table.

143

Figure 6-20: A linear network where which network transposition expas@se optimization possibilities.
See the text for an explanation.

In order to fully understand this section, you really shdugdamiliar with monads [151]. In any
case, here is a very brief summary on monads. The idea of adiwesigle program is to convert
all expressions of the form

let x = a in (b x)
into something that looks like
a >>= fun x -> returnM (b x)

The code should be read “cdl] and then name the resutand return(b x).” The advantage of
this transformation is that the meanings of “then” (the imfperator>>=) and “return” (the function
returnM) can be defined so that they perform all sorts of interestitiyiies, such as carrying
state around, perform I/O, act nondeterministically, &id¢he specific case of the FFTW simplifier,
>>= is defined so as to keep track of a few tables used for memaoigzaindreturnM performs
common-subexpression elimination.

The core of the simplifier is the functicaigsimpM, as shown in Figure 6-2lalgsimpM dis-
patches on the argumeni{of typenode), and it calls a simplifier function for the appropriate case
If the node has subnodes, the subnodes are simplified finsexample, supposeis aTimes node.
Since alimes node has two subnodesandb, the functionalgsimpM first calls itself recursively on
a, yieldinga', and then om, yieldingb'. Then,algsimpM passes control to the functi@t imesM.

If botha' andb' are constantstimesM computes the product directly. In the same weyimesM
takes care of the case where eithérorb' is0 or 1, and so on. The code ferimesM is shown in
Figure 6-22.

Common-subexpression elimination (CSE)s performed behind the scenes by the monadic
operatorreturnM. The CSE algorithm is essentially the classical bottom-apstruction from [9,
page 592]. The monad maintains a table of all nodes produasalgcthe traversal of the dag. Each
time a new node is constructed and returnegturnM checks whether the node appears elsewhere
in the dag. If so, the new node is discarded amdurnM returns the old node. (Two nodes are

144

let rec algsimpM x =
memoizing
(function
Num a -> snumM a
| Plus a ->
mapM algsimpM a >>= splusM
| Times (a, b) ->
algsimpM a >>= fun a' —>
algsimpM b >>= fun b' ->
stimesM (a', b')
| Uminus a —->
algsimpM a >>= suminusM
| Store (v, a) ->
algsimpM a >>= fun a' ->
returnM (Store (v, a'))
| x => returnM x)

Figure 6-21 The top-level simplifier functiomlgsimpM, written in monadic style. See the text for an
explanation.

considered the same if they compute equivalent expressieos examplega + b is the same as
b+a.)

The simplifierinterleavescommon-subexpression elimination with algebraic tramsédions.
To see why interleaving is important, consider for exampke dxpressiom — o', wherea anda’
are distinct nodes of the dag that compute the same subeigre£SE rewrites the expression to
a — a, which is then simplified t®. This pattern occurs frequently in DFT dags.

The idea of using memoization for graph traversal is very blat monadic style provides a
particularly clean and modular implementation that issdahe memoization details. For example,
the operatop>= in Figures 6-21 and 6-22 performs one step of common-subsgjan elimination
every time it is evaluated, it guarantees tgefft is not simplifying the same node twice, and so
on. When writing the simplifier, however, we need not be camea with this bookkeeping, and we
can concentrate on the algebraic transformations that e twamplement.

6.7 The scheduler

In this section we discuss thgnfft “cache-oblivious” scheduler, which produces a topologica
sort of the dag attempting to minimize register spills. Fansforms whose size is a powerf
genfft produces the cache-oblivious algorithm of Section 3.2 ctvis asymptotically optimal in
terms of register usage even though the schedule is indepeatithe number of registers.

Even after simplification, a codelet dag of a large transftyqically contains hundreds or even

145

let rec stimesM = function

| (Uminus a, b) => (¥ —a * b ==> -(a * b) *)
stimesM (a, b) >>= suminusM
| (a, Uminus b) —> (¥ a * -b ==> -(a * b) *)

stimesM (a, b) >>= suminusM
| (Num a, Num b) -> (* multiply two numbers *)
snumM (Number.mul a b)
| (Num a, Times (Num b, c)) ->
snumM (Number.mul a b) >>= fun x —>
stimesM (x, c)
| (Num a, b) when Number.is_zero a ->
snumM Number.zero (x 0 x b ==>0 %)
| (Num a, b) when Number.is_one a —->

returnM b (1 b ==>Db %)
| (Num a, b) when Number.is_mone a —>
suminusM b (x -1 * b ==> -b *)
| (a, (Num _ as b')) -> stimesM (b', a)

| (a, b) -> returnM (Times (a, b))

Figure 6-22 Code for the functiorstimesM, which simplifies the product of two expressions. The com-
ments (delimited with(x *)) briefly discuss the various simplifications. Even if it optes on a dag, this is
exactly the code one would write to simplify a tree.

thousands of nodes, and there is no way to execute it fullimvihe register set of any existing
processor. The scheduler attempts to reorder the dag irasuak that register allocators commonly
used in compilers [115, Section 16] can minimize the numbeggister spills. Note that the FFTW
codelet generator does not addressitiséruction schedulingroblem; that is, the maximization of
pipeline usage is left to the C compiler.

Figure 6-23 illustrates the scheduling problem. Suppose@egsor has 5 registers, and consider
a “column major” execution order that first executes all roitethe shaded box (say, top-down),
and then proceeds to the next column of nodes. Since theléamdues to propagate from column
to column, and the machine has 5 registers, at least 11 eegistust be spilled if this strategy is
adopted. A different strategy would be to execute all opamatin the grey nodes before executing
any other node. These operations can be performed fullyrwitiyisters once the input nodes have
been loaded. It is clear that different schedules lead feréifit behaviors with respect to register
spills.

The problem of minimizing register spills is analogous te firoblem of minimizing cache
misses that we discusses in Chapter 3. The register set otagsor is a good approximation of an
ideal cache with line siz& = 1: Each memory location can be “cached” into any register (wbe
the register set is fully associative), and since a compfifmws the whole sequence of memory
accesses in advance, it can implement the optimal replatestrategy by Belady [18]. (Although

146

Figure 6-23 lllustration of the scheduling problem. The butterfly grappresents an abstraction of the

data flow of the fast Fourier transform algorithm on 16 inpyta practice, the graph is more complicated

because data are complex, and the real and imaginary penaébin nontrivial ways.) The shaded nodes and
the shaded box denote two execution orders that are exglairibe text.

this optimal strategy has been known for more than 30 yeasa,compilers might not employ it.
See Section 6.9 for an example.)

To understand the operationggnfft’s scheduler, we now reexamine the cache-oblivious FFT
algorithm from Section 3.2 in terms of the FFT dag like the imrigigure 6-23. Assume for now that
n is a power of 2, because the cache-oblivious FFT algorithiy works in this case. The cache-
oblivious algorithm partitions a problem of sizeinto \/n problems of size/n. This partition is
equivalent to cutting the dag with a “vertical” line that p@ons the dag into two halves of (roughly)
equal size. (See Figure 6-24.) In the same wayfft produces a schedule where every node in
the first half is executed before any node in the second ha€hmbalf consists of/n connected
components, whicgenfft schedules recursively in the same way in some arbitraryrorde

Thegenfft scheduler uses this recursive partitioning techniqueréorsforms of all sizes, not
just powers of 2, although in general this partitioning i$ p@vably cache-optimal, a lower bound
on the cache complexity being unknown. Given any dag, theddkr cuts the dag roughly into
two halves. “Half a dag” is not well defined, however, exceptthe power of 2 case, and therefore
the genfft scheduler uses a simple heuristic (described below) to aterthe two halves for the
general case. The cut induces a set of connected compohahtre scheduled recursively. The
scheduler guarantees that all components in the first h#lffeoflag (the one containing the inputs)
are executed before the second half is scheduled.

Finally, we discuss the heuristic used to cut the dag intotialees. The heuristic consists of

147

Figure 6-24 lllustration of the recursive partitioning operated by ghefft cache-oblivious scheduler.
Like Figure 6-23, this figure shows the data flow dag of a FFT ®&fpbints. By cutting the dag in the
“middle”, as determined by the dashed lines, we prody@é = 4 connected components on each side of
the cut. These components are shown in the figure with diffesteades of gray.

“burning the candle at both ends”. Initially, the scheduselors the input nodes red, the output
nodes blue, and all other nodes black. After this initiapstbe scheduler alternates between a red
and a blue coloring phase. In a red phase, any node whosecpsstes are all red becomes red.
In a blue phase, all nodes whose successors are blue arectloie. This alternation continues
while black nodes exist. When coloring is done, red node®s tbe first “half” of the dag, and blue
nodes the second. Whenis a power of 2, the FFT dag has a regular structure like theshoen

in Figure 6-24, and this process has the effect of cuttingddgein the middle with a vertical line,
yielding the desired optimal cache-oblivious behavior.

6.8 Real and multidimensional transforms

In this section, we discuss the implementation of real anttidimensional transforms in FFTW.
Like complex transforms, the real transform code uses “afirmnd “twiddle” codelets, and it
employs its own planner and executor. The multidimensicnde currently is built on top of one-
dimensional transforms, that is, FFTW does not use muledsional codelets.

Real one-dimensional transforms. FFTW computes real transforms using a planner and an ex-
ecutor similar to those of complex transforms. The execctiorently implements a real variant of
the Cooley-Tukey algorithm. Transforms of prime size ameantly computed using Equation (6.1),
and not by Rader’s algorithm. Real input data occur frequéntapplications, and a specialized

148

real DFT code is important because the transform of a realasran array with hermitian sym-
metry. Because of this symmetry, half of the output arrayedundant and need not be computed
and stored. Real transforms introduce two complicationsidver. First, hermitian arrays must be
stored in such a way that the Cooley-Tukey recursion can eeutad without performing compli-
cated permutations. Second, the inverse transform canmyeidoe computed by conjugation of
certain constants, because the input to the inverse tramséoa hermitian array (as opposed to a
real array) and the output is real (as opposed to hermitian).

FFTW stores a hermitian array|[0...n — 1] into areal array'[0 . .. » — 1] using the following
halfcomplexstorage layout. For all integefssuch that) < i < |n/2]|, we haveY [i] = Re(X[d]).
For all integers; such that) < i < |n/2], we haveY[n — i] := Im(X[i]). In other words, if
r; = Re(X[j]) andi; = Im(X[j]), the arrayY” has the form:

T0,71,725- -+ s T [n/2] ¥ (n—1)/2]>- -+ 222,01 -

This layout is a generalization of the layout presented 86]1 The name “halfcomplex” appears
in the GNU Scientific Library (GSL)[59], which uses this laydor powers-of-2 transforms. This
storage scheme is useful becaugehalfcomplex arrays, each containing a transform of size
can be combined in place to produce a transform of size, just like in the complex case. This
property is not true of layouts like the one used in FFTPACBIL which stores a hermitian array
by interleaving real and imaginary parts as follows.

Hence, the FFTW forward real executor is recursive and itains two kinds of codeletseal-
to-halfcomplex codelets form the leaves of the recursion. Their input ise agray, and their
output is the DFT of the input in halfcomplex ordéprward halfcomplexcodelets combine small
transforms (in halfcomplex order) to produce a larger fiams. Similarly, the backward real ex-
ecutor usedalfcomplex-to-realcodelets at the leaves of the recursion, badkward halfcomplex
codelets in the intermediate stages. A backward halfcomgdelelet splits a large halfcomplex
array into smaller arrays, that are then transformed ra@lys

Multidimensional transforms. Multidimensional transforms are currently implementedtom
of one-dimensional transforms. For example, a two-dinwvadi DFT of an array is computed by
transforming all rows and then all columns (or vice versalieatively, and more in the spirit of
the rest of the FFTW system, we could use multidimensionaélats. For example, in the 2D case,
we could employ two-dimensional codelets to “tile” the grr&Vhile it would be easy to modify
genfft to produce the required codelets, this approach leads ta@osson in code size that is
currently unacceptable, and the performance gains do peaao justify the effort. This tradeoff
will probably change once computers have so much memorgtuslet size is not a problem. One
drawback of the current implementation is that it is ineffitifor small transforms. For example,

149

on most processors it would be much faster to computexal transform with a special codelet.

6.9 Pragmatic aspects of FFTW

This section discusses briefly the running time and the mgmeguirements ogenfft, some
problems that arise in the interaction of genfft scheduler with C compilers, and FFTW's testing
methodology.

Resource requirements. The FFTW codelet generator is not optimized for speed, sinsan-
tended to be run only once. Indeed, users of FFTW can dowrdodidtribution of generated C
code and never rugenfft at all. Nevertheless, the resources needegdmfft are quite modest.
Generation of C code for a transform of size 64 (the biggest us FFTW) takes about 75 seconds
on a 200MHz Pentium Pro running Linux 2.2 and the native-aamapiler of Objective Caml 2.01.
genfft needs less than 3 MB of memory to complete the generationréBudting codelet contains
912 additions, 248 multiplications. On the same machirewthole FFTW system can be regener-
ated in about 15 minutes. The system contains about 55,089 dif code in 120 files, consisting of
various kinds of codelets for forward, backward, real to ptaw, and complex to real transforms.
The sizes of these transforms in the standard FFTW disiiviriclude all integers up to 16 and all
powers of 2 up to 64.

A few FFTW users needed fast hard-coded transforms of un@omsizes (such as 19 and 23),
and they were able to run the generator to produce a systérethito their needs. The biggest
program generated so far was for a complex transform of €izevihich required slightly less than
two hours of CPU time on the Pentium Pro machine, and about R@Mnemory. Again, a user
had a special need for such a transform, which would be fahiédto code by hand. In order to
achieve this running time, | was forced to replace a linkstlinplementation of associative tables
by hashing, and to avoid generating “obvious” common sulesgions more than once when the
dag is created. The naive generator was somewhat more gleégahad not produced an answer
after three days.

Interaction with C compilers. The long sequences of straight-line code producegeayf £t can
push C compilers (in particular, register allocators) tirthimits. The combined effect gfenfft
and of the C compiler can lead to performance problems. Thaafimg discussion presents two
particular cases that | found particularly surprising, @mahot intended to blame any particular
compiler or vendor.

The optimizer of theegcs-1.1.1 compiler performs an instruction scheduling pass, folldwe
by register allocation, followed by another instructiorheduling pass. On some architectures,
including the SPARC and PowerPC processesgss employs the so-called “Haifa scheduler”,

150

void foo(void)

void foo(void) {
{ {
double a; double a;
double b; .. lifetime of a ..
}
. lifetime of a .. {
. lifetime of b .. double b;
} .. lifetime of b ..
}
}

Figure 6-25 Two possible declarations of local variables in C. On thediefe, variables are declared in the
topmost lexical scope. On the right side, variables areadedlin a private lexical scope that encompasses
the lifetime of the variable.

which usually produces better code than the noregals/gcc scheduler. The first pass of the
Haifa scheduler, however, has the unfortunate effect dfojgag genfft’s schedule (computed as
explained in Section 6.7). lagcs, the first instruction scheduling pass can be disabled wiigh t
option -fno-schedule-insns, and on a 167-MHz UltraSPARC |, the compiled code is between
50% and 100% faster and about half the size when this optioeed. Inspection of the assembly
code produced bygcs reveals that the difference consists entirely of regigtédissand reloads.

Digital's C compiler for Alpha (DEC C V5.6-071 on Digital UXIV4.0 (Rev. 878)) seems to
be particularly sensitive to the way local variables ardated. For example, Figure 6-25 illustrates
two ways to declare temporary variables in a C program. laatisthem the “left” and the “right”
style. genfft can be programmed to produce code in either way, and for nemspiters | have
tried there is no appreciable performance difference batvibe two styles. Digital's C compiler,
however, appears to produce better code with the right étiyéeright side of Figure 6-25). For a
transform of size 64, for example, and compiler flagswc -w0 -05 -ansi_alias -ansi.args
-fp_reorder -tune host -stdl, a 467MHz Alpha achieves about 450 MFLOPS with the left
style, and 600 MFLOPS with the right style. (Different sizead to similar results.) | could not
determine the exact source of this difference.

Testing FFTW. FFTW uses different plans on each platform, and some cadatetnot used at
all on the machines available to me. How do we ensure that FiST®drrect? FFTW uses the
self-testingalgorithm by Funda Ergiin [49], a randomized test that gutaes that a given program
computes the DFT for an overwhelmingly large fraction ofgalksible inputs. The self-tester does
not require any other DFT program to be available. In the, pestchecked FFTW against the pro-
gram by Singleton [132], assuming that any bug in the progsauld have been found in the thirty
years passed since the program was written. Unfortunatéile Singleton’s routine is correct, one

151

of the FORTRAN compilers we used was not. Besides, Singefmogram does not work for all
input sizes, while FFTW does, and thus we could not test FFUIMY. fin contrast, Erglin’s tester
is fast, easy to code, and it works for all sizes. Computerrgtecians have developed many test-
ing techniques that possess similar advantages, but tagketthese techniques seem to be mostly
unknown to practitioners. | definitely recommend that arggpammer become familiar with this
beautiful topic; see [24] for a gentle introduction.

6.10 Related work

Other systems exist with self-optimization capabilitiB$liPAC [22] generates automatically-tuned
matrix-multiplication kernels by generating many C pragsaand selecting the fastest. In most
cases, PHIPAC is able to beat hand-optimized BLAS routifésPAC predates FFTW [21], but |
became acquainted with it only after the publication of [@2]July 1997, after the release of FFTW-
1.0 in March 1997. PhiPAC and FFTW focus on complementaneaspof self-optimization.
PHIPAC automatically optimizes the multiplication kerselvhich correspond to FFTW'’s codelets,
while FFTW optimizes compositions of codelets, or plansl ianelies ongenfft to produce good
codelets. Consequently, FFTW's self-optimization ocatrsuntime, while PHIPAC operates at
installation time and it is not needed after the kernels hmBeen generated. Because of the mathe-
matical richness of the Fourier transform, FFTW employsphsticated compiler that focuses on
algebraic transformations and on cache-oblivious sclivgluDn the other hand, PHIPAC uses the
standard matrix multiplication algorithm, and it is conued with scheduling it appropriately for
a processor’s pipeline. Both approaches are legitimateeffedtive techniques for portable high
performance, and | expect FFTW to evolve to produce cod&ésed to a single machine, in the
same spirit of PHIPAC.

The Linux kernel included in Redhat 6.0 incorporates mamgines that compute checksums
in the RAID disk drivers. At boot time, the kernel measures #éxecution time of the various
subroutines and uses the fastest.

Researchers have been generating FFT programs for atdeay/tyears, possibly to avoid the
tedium of getting all the implementation details right byndaTo my knowledge, the first generator
of FFT programs was FOURGEN, written by J. A. Maruhn [108]wés written in PL/I and it
generated FORTRAR FOURGEN is limited to transforms of si2¥.

Perez and Takaoka [123] present a generator of Pascal predgnaplementing a prime factor

8Maruhn argues that PL/I is more suited than FORTRAN to thisgmm-generation task, and has the following
curious remark:

One peculiar difficulty is that some FORTRAN systems prodarceutput format for floating-point num-
bers without the exponent delimiter “E”, and this makes tlilggal in FORTRAN statements.

152

FFT algorithm. This program is limited to complex transfsrof sizen, wheren must be factorable
into mutually prime factors in the s¢®, 3,4,5,7,8,9,16}.

Johnsof and Burrus [86] applied dynamic programming to the autoordeisign of DFT mod-
ules. Selesnick and Burrus [131] used a program to generAfid B subroutines for DFT'’s of
certain prime sizes. In many cases, these subroutines @rgeit known in terms of arithmetic
complexity.

The EXTENT system by Gupta and others [74] generates FORTR#d¢ in response to an
input expressed in tensor productlanguage. Using the tensor product abstraction one can ex-
press concisely a variety of algorithms that includes th& BRd matrix multiplication (including
Strassen’s algorithm).

Another program callegenfft generating Haskell FFT subroutines is part ofabéib bench-
mark for Haskell [122]. Unlike my program, thigenfft is limited to transforms of siz&*. The
program imofib is not documented at all, but apparently it can be traced twafk7].

Veldhuizen [146] used a template metaprograms techniqugeterateC++ programs. The
technique exploits the template facility 6+ to force theC++ compiler to perform computations
at compile time.

All these code generators are restricted to complex tramsfoand the FFT algorithm is known
a priori. To my knowledge, the FFTW generator is the only one thatyed real algorithms, and
in fact, which carderivereal algorithms by specializing a complex algorithm. Alsy; generator
is the only one that addressed the problem of schedulingrtigraam efficiently.

6.11 Conclusion

Current computer systems are so complex that their behavionpredictable. lronically, while
performance is the very reason for this complexity, peakoperance is almost impossible to at-
tain because of lack of predictability. Only time will tellhether we will regret having designed
machines so complex. In the meanwhile, in this chapter wevetidhat a software system that is
aware of its own performance can achieve high performantterwituning. For the case of FFTW,
a special-purpose compiler is a necessary component ofssself-optimizing system, because we
need a sufficiently large space of algorithmic variationba@ble to pick the most effective.

From another point of view, this chapter presented a realenapplication of domain-specific
compilers and of advanced programming techniques, suchoasds. In this respect, the FFTW
experience has been very successful: the current reled3&'2F.2 is being downloaded by more
than 100 people every week, and a few users have been mdttedarn ML after their experience
with FFTW. In the rest of this concluding section, | offer smideas about future work and possible

Unrelated to Steven G. Johnson, the other author of FFTW.

153

developments of the FFTW system.

The currenigenfft program is somewhat specialized to computing linear fonsti using al-
gorithms whose control structure is independent of thetinpuen with this restriction, the field of
applicability ofgenfft is potentially huge. For example, signal processing FIRIERdilters fall
into this category, as well as other kinds of transforms lisehage processing (for example, the
discrete cosine transform used in JPEG). | am confidenthleaethniques described in this chapter
will prove valuable in this sort of application.

Recently, | modifiedgenfft to generate crystallographic Fourier transforms [12].his par-
ticular application, the input consists of 2D or 3D data wi#iitain symmetries. For example, the
input data set might be invariant with respect to rotatioh8degrees, and it is desirable to have
a special-purpose FFT algorithm that does not execute deshircomputations. Preliminary in-
vestigation shows thafenfft is able to exploit most symmetries. | am currently workingtois
problem.

In its present formgenfft is somewhat unsatisfactory because it intermixes progiamand
metaprogramming. At the programming level, one specifies-& Bigorithm, as in Figure 6-16.
At the metaprogramming level, one specifies how the progtaould be simplified and scheduled.
In the current implementation, the two levels are confusggkther in a single binary program. It
would be nice to build a general-purpose “metacompilert thearly separates programming from
metaprogramming and allows other problems to be addressedimilar fashion.

154

Chapter 7

Conclusion

[T]here ain’'t nothing more to write about, and |
am rotten glad of it, because if I'd a knowed what
a trouble it was to make a book | wouldn’t

a tackled it and aint't agoing to no more.

(Huckleberry Finn)

In this concluding chapter, we look at some ideas for futunekywand we finally summarize the
main ideas of this thesis.

7.1 Future work

Portable high-performance 1/0. The topic of portable high-performance disk I/O was not ad-
dressed at all in this document. We can identify two genersgarch topics in this area, roughly
inspired by cache-oblivious algorithms and Cilk. The firgpit is to design “disk-geometry-
oblivious” data structures for single (i.e., not paralléi}ks. The second topic is to extend the
Cilk model with provably efficient parallel 1/O.

Disk access time depends on the geometrical and mechanigarties of disks. Current disks
are partitioned intaylinders and cylinders are divided inteectors Data within the same sector
can be accessed quickly with one operation. Accesses wilteirsame cylinder are slower than
accesses within a sector, but faster than accesses to anyglinder. In this latter case, the speed
of intra-cylinder accesses depends on the physical disthatween the old and the new cylinder.
With current technology, the number of sectors per cyliridarot constant, since cylinders in the
outer part of the disk comprise a larger area and thus caminmrst sectors.

It should be possible to design “cache-oblivious” datacitmes to store data on a disk. Suppose
for example that we want to store a binary search tree on a Hiskdisk “cache line” (the unit of

155

transfer between disk and memory, usually callgughgeor a block) containsL elements, it is a
good idea to group subtrees of heiggt., as explained in [91], so that a treeroklements can be
searched ifog; n page accesses. This disk-aware layout depends bnt it is possible to devise
a “disk-oblivious” tree layout by cutting the tree at ley&ln)/2 and storing the resulting(,/n)
subtrees in a recursive fashion. This “disk-oblivious"dayhas the same asymptotic I/O complexity
as the disk-aware one. | conjecture that this layout is isitiea to the variable number of sectors
per cylinder; if true, this conjecture would show a nice adage of cache-oblivious algorithms
over cache-aware ones. The ideal-cache theory does not thedetra-cylinder physical distance,
however. Is there a “disk-oblivious” way to store a binagetion disk so as to minimize the total
execution time of the search, no matter what the paramefdiealisk are? Indeed, the whole
topic of cache- and disk-oblivious data structures has aenhbnvestigated yet, and | would expect
such an investigation to yield useful algorithms and progreng paradigms. For example, can we
design a cache/disk-oblivious B-tree?

Concerning parallel 1/0O, it would be nice to extend the Cijktem with 1/O in a way that pre-
serves Cilk's performance guarantees. Since files can lsetasgmulate shared memory, | expect
the solution to this problem to depend on the consistencyeinibcit we use for files. Location
consistency and other traditional memory models seem inade for the case of files, however.
For example, the “parallel append” file operation appeatmetaseful. In a parallel append, a file is
opened and two parallel threads are spawned to append ddig file. The output is the same as
if the C elision of the Cilk program had been executed, rdgasdof how many processors execute
the parallel program. How to implement parallel append gmasg the performance of the Cilk
scheduler is an open problem.

Extensions to Cilk. The Cilk system needs to be extended to support other kinsignahroniza-
tion, such as producer-consumer relationships and mukgaiston. Currently, the Cilk-5 imple-
mentation of locks is an afterthought that invalidates main@ilk’s performance guarantees. Even
worse, there is no linguistic support for locks in Cilk (themdleterminator will detect data races in
programs that use locks [37], however). How to incorporaigyeo-use and efficient synchroniza-
tion in a general-purpose programming language is a toughlgmn that nobody has fully solved
yet. If you find a solution, submit it immediately to the Java #erl authors before the World-Wide
Web collapses because of incorrect protocols.

From the point of view of the Cilk implementation, Cilk needsrk in two directions. First,
Cilk for SMP’s should be made easily available to the genpudllic. Although every version of
Cilk has been publicly released, and although Cilk-5 istivedty bug-free and robust, the system
is still a research prototype. Cilk is mature enough to bexartproduct,” and it is time to write a
production-quality system, which should be distributethviiinux and other operating systems so
that many people can use it. Second, Cilk needs to be implaemn distributed-memory systems

156

such as networks of workstations. An implementation wagtevriby Keith Randall [127] for Unix
systems, but this implementation is still preliminary. Trhain problem is the implementation of
shared memory, usingA&KER or its variants described in [127]. Keith’s implementatigses the
Unix user-level virtual-memory system, but this solutisrtéo slow. It seems necessary to imple-
ment BACKER in the Unix kernel, where it can use the virtual-memory antivoek subsystems
without too many overheads. Fortunately, the Linux kerealurrently robust and mature enough
that such an implementation is feasible and will probablefieient.

Extensions to FFTW. The current FFTW system covers most of the spectrum of pedaises of
Fourier transforms, but it would be nice to extend it to cotepelated transforms, such as the dis-
crete cosine transform (DCT) and maybe the Hartley trans{@1]. Currently,genfft is capable
of generating DCT programs, but the planner/executor machihas not been implemented.

We should implement a planner for multidimensional tramsfoand an executor that uses mul-
tidimensional codelets. | expect performance improvesattleast for small transforms (say,
4 x 4 x 4 or 8 x 8), which can be unrolled as straight-line code. Bhe 8 DCT is especially
important because it is used in the JPEG image compressindasd.

Open problems in cache-obliviousness. The limits of cache obliviousness need to be investi-
gated. In particular, it is unknown whether the cache corifyleof cache-aware algorithms is
inherently lower than the complexity of cache-obliviougaithms. It would be nice to find a
separation between the two classes, as well as a simulasuit that shows how to make any
cache-aware algorithm cache-oblivious with minimal isein its cache complexity.

Compiler research. The work of this dissertation inspires two lines of reseanctompilers.

First, because divide and conquer is such an important iggoiin portable high-performance
programs, we should investigate compiler techniques tolur@cursion, in the same way as current
compilers unroll loops.

Second, the FFTW system shows the importance of metapraogiregrfor high performance,
whether it be portable or not. For example, the fastest coda DFT of size 64 on an Alpha
processor is one of FFTW’s codelets, which consists of aBd00 lines of code. It would have
been very hard to write this code by hand. We should invetidiee general idea ofraetacompilery
which allows a programmer to write both a program and a metapm as done igenfft. The
programmer should be allowed to express algorithms at a lbigh, and specify how he or she
wants the program to be compiled. | do not expect such a sy&tdra generally applicable, but
genfft shows that even if the metacompiler works for only one probliis still worth the effort.

157

7.2 Summary

In this dissertation we explored techniques to write faggpms whose high-performance is portable
in the face of parallelism, memory hierarchy, and divergegssor architectures.

To write high-performance parallel programs, we developedCilk-5 language and system.
Cilk provides simple yet powerful constructs for expregsparallelism in an application. Cilk
programs run on one processor as efficiently as equivalepieséial programs, and they scale up
on multiple processors. Cilk's compilation and runtimextggies, which are inspired by the “work-
first principle,” are effective for writing portable higregformance parallel programs.

Cache-oblivious algorithms provide performance and pditaacross platforms with different
cache sizes. They are oblivious to the parameters of the mydmerarchy, and yet they use multiple
levels of caches asymptotically optimally. In this disagdn, we discussed cache-oblivious algo-
rithms for matrix transpose and multiplication, FFT, andigsg that are asymptotically as good as
previously known cache-aware algorithms, and provablingdtfor those problems whose optimal
cache complexity is known.

The location consistency memory model and threcBER coherence algorithm are one way
to achieve portability in high-performance parallel systewith a memory hierarchy. In this dis-
sertation, we proved good asymptotic performance bound€ilk programs that uses location
consistency.

Finally, the FFTW library adapts itself to the hardware, &rdkals automatically with some of
the intricacies of processor architectures. While FFTWsdoa require machine-specific perfor-
mance tuning, its performance is comparable with or beti@n todes that were tuned for specific
machines.

158

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

S. ADVE AND K. GHARACHORLOO, Shared memory consistency models: A tutorfaich.
Rep. 9512, Rice University, Sept. 1995http://www-ece.rice.edu/ece/faculty/
Adve/publications/models_tutorial.ps.

S. V. ADVE AND K. GHARACHORLOO, Shared memory consistency models: A tutorial
IEEE Computer, (1996), pp. 66—76.

S. V. ADVE AND M. D. HiLL, Weak ordering - new definitigrin Proceedings of the 17th
Annual International Symposium on Computer Architect@eattle, Washington, May 1990,
pp. 2-14.

A. AGGARWAL, B. ALPERN, A. K. CHANDRA, AND M. SNIR, A model for hierarchical
memoryin Proceedings of the 19th Annual ACM Symposium on Theo@afputing, May
1987, pp. 305-314.

A. AGGARWAL, A. K. CHANDRA, AND M. SNIR, Hierarchical memory with block transfer
in 28th Annual Symposium on Foundations of Computer Sciehags Angeles, California,
12-14 Oct. 1987, IEEE, pp. 204-216.

A. AGGARWAL AND J. S. MTTER, The input/output complexity of sorting and related prob-
lems Communications of the ACM, 31 (1988), pp. 1116-1127.

M. AHAMAD, P. W. HUTTO, AND R. JOHN, Implementing and programming causal dis-
tributed shared memoyyn Proceedings of the 11th International Conference otribiged
Computing systems, Arlington, Texas, May 1991, pp. 274-281

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer
Algorithms Addison-Wesley Publishing Company, 1974.

A. V. AHO, R. &THI, AND J. D. ULLMAN, Compilers, principles, techniques, and tqols
Addison-Wesley, Mar. 1986.

[10] S. G. AKL AND N. SANTORO, Optimal parallel merging and sorting without memory con-

flicts, IEEE Transactions on Computers, C-36 (1987).

[11] B. ALPERN, L. CARTER, AND E. FEIG, Uniform memory hierarchiesn Proceedings of the

31st Annual IEEE Symposium on Foundations of Computer $eie@®ct. 1990, pp. 600—
608.

[12] M. AN, J. W. CoOLEY, AND R. TOLIMIERI, Factorization method for crystallographic

Fourier transforms Advances in Applied Mathematics, 11 (1990), pp. 358-371.

159

[13] A. W. APPEL AND Z. SHAO, Empirical and analytic study of stack versus heap cost for
languages with closuredournal of Functional Programming, 6 (1996), pp. 47—74.

[14] N. S. ARORA, R. D. BLUMOFE, AND C. G. RAXTON, Thread scheduling for multipro-
grammed multiprocessarg Proceedings of the Tenth Annual ACM Symposium on Pdralle
Algorithms and Architectures (SPAA), Puerto Vallarta, Ntex June 1998.

[15] ARVIND, Personal communicatio@an. 1998.

[16] ARVIND, J. W. MAESSEN R. S. NKHIL, AND J. Sroy, Lambda-S: an implicitly parallel
lambda-calculus with letrec, synchronization and sidea$ tech. rep., MIT Laboratory for
Computer Science, Nov 1996. Computation Structures Groem®1393, also available at
http://www.csg.lcs.mit.edu:8001/pubs/csgmemo.html.

[17] D. H. BAILEY, FFTs in external or hierarchical memagryournal of Supercomputing, 4
(1990), pp. 23-35.

[18] L. A. BELADY, A study of replacement algorithms for virtual storage cotemi IBM Sys-
tems Journal, 5 (1966), pp. 78-101.

[19] M. BELTRAMETTI, K. BOBEY, AND J. R. Z0RBAS, The control mechanism for the Myrias
parallel computer systen€omputer Architecture News, 16 (1988), pp. 21-30.

[20] B. N. BERSHAD, M. J. ZEKAUSKAS, AND W. A. SAWDON, The Midway distributed shared
memory systenin Digest of Papers from the Thirty-Eighth IEEE Computecisty Interna-
tional Conference (Spring COMPCON), San Francisco, Qaliéo Feb. 1993, pp. 528-537.

[21] J. BILMES, K. ASANOVIC, J. DEMMEL, D. LAM, AND C. CHIN, PHIPAC: A portable,
high-performance, ANSI C coding methodology and its appbta to matrix multiply LA-
PACK working note 111, University of Tennessee, 1996.

[22] J. BILMES, K. ASANOVIC, C. WHYE CHIN, AND J. DEMMEL, Optimizing matrix multiply
using PHIPAC: a portable, high-performance, ANSI C codirgthmdology in Proceedings
of International Conference on Supercomputing, ViennatAa, July 1997.

[23] G. E. BLELLOCH, Programming parallel algorithmsCommunications of the ACM, 39
(1996), pp. 85-97.

[24] M. BLuM AND H. WASSERMAN, Reflections on the pentium hudEEE Transactions on
Computers, 45 (1996), pp. 385-393.

[25] R. D. BLuMOFE, Executing Multithreaded Programs EfficientlghD thesis, Department
of Electrical Engineering and Computer Science, Massattaignstitute of Technology,
September 1995.

[26] R. D. BLuMmoOFE, M. FriIGO, C. F. DERG, C. E. LEISERSON AND K. H. RANDALL,
An analysis of dag-consistent distributed shared-memtggrghms in Proceedings of the
Eighth Annual ACM Symposium on Parallel Algorithms and Atebtures (SPAA), Padua,
Italy, June 1996, pp. 297-308.

[27] R. D. BLuMmoFE, M. FriGO, C. F. DERG, C. E. LEISERSON AND K. H. RANDALL,
Dag-consistent distributed shared memaryProceedings of the 10th International Parallel
Processing Symposium, Honolulu, Hawaii, Apr. 1996.

160

[28] R. D. BLUMOFE, C. F. DERG, B. C. KuszmauL, C. E. LEISERSON K. H. RANDALL,
AND Y. ZHou, Cilk: An efficient multithreaded runtime systeim Proceedings of the Fifth
ACM SIGPLAN Symposium on Principles and Practice of Par&i®gramming (PPoPP),
Santa Barbara, California, July 1995, pp. 207-216.

[29] ——, Cilk: An efficient multithreaded runtime systedournal of Parallel and Distributed
Computing, 37 (1996), pp. 55-69.

[30] R. D. BLUMOFE AND C. E. LEISERSON Scheduling multithreaded computations by work
stealing in Proceedings of the 35th Annual Symposium on FoundatidrSomputer Sci-
ence, Santa Fe, New Mexico, Nov. 1994, pp. 356—-368.

[31] R. N. BRACEWELL, The Hartley TransformOxford Press, 1986.

[32] R. P. BRENT, The parallel evaluation of general arithmetic expressialmirnal of the ACM,
21 (1974), pp. 201-206.

[33] J. B. CARTER, J. K. BENNETT, AND W. ZWAENEPOEL Implementation and performance
of Munin, in Proceedings of the Thirteenth ACM Symposium on OpegaBgstems Princi-
ples, Pacific Grove, California, Oct. 1991, pp. 152-164.

[34] B. L. CHAMBERLAIN, S.-E. (Hol, E. C. LEwis, C. LIN, L. SNYDER, AND W. D.
WEATHERSBY, The case for high level parallel programmin in zpEEE Computational
Science and Engineering, 5 (1998), pp. 76-86.

[35] S. CHATTERJEE V. V. JAIN, A. R. LEBECK, AND S. MUNDHRA, Nonlinear array layouts
for hierarchical memory systemm Proceedings of the ACM International Conference on
Supercomputing, Rhodes, Greece, June 1999.

[36] S. CHATTERJEE, A. R. LEBECK, P. K. FATNALA , AND M. THOTTETHODI, Recursive ar-
ray layouts and fast parallel matrix multiplicatiorin Proceedings of the Eleventh ACM
SIGPLAN Symposium on Parallel Algorithms and Architectyréune 1999.

[37] G.-l. CHENG, M. FENG, C. E. LEISERSON K. H. RANDALL, AND A. F. STARK, Detect-
ing data races in Cilk programs that use lo¢cks Proceedings of the Tenth Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA)erto Vallarta, Mexico, June
1998.

[38] Cilk-5.2 Reference Manuall998. Available on the Internet fromttp://theory.1lcs.
mit.edu/"cilk.

[39] D. CoMMITTEE, ed.,Programs for Digital Signal ProcessindEEE Press, 1979.

[40] J. W. CoOLEY, P. A. W. LEwis, AND P. D. WELCH, The Fast Fourier Transform algorithm
and its applicationsIBM Research, (1967).

[41] J. W. CoOoLEY AND J. W. TUKEY, An algorithm for the machine computation of the complex
Fourier series Mathematics of Computation, 19 (1965), pp. 297-301.

[42] T. H. CORMEN, C. E. LEISERSON AND R. L. RIVEST, Introduction to AlgorithmsThe
MIT Press, Cambridge, Massachusetts, 1990.

[43] R. E. ORANDALL AND B. FAGIN, Discrete weighted transforms and large-integer arith-
metig Math. Comp., (1994), pp. 305-324.

161

[44] R. E. OROCHIERE ANDA.. V. OPPENHEIM, Analysis of linear digital network$roceedings
of the IEEE, 63 (1975), pp. 581-595.

[45] D. E. CULLER, A. SAH, K. E. SCHAUSER, T. VON EICKEN, AND J. WAWRZYNEK, Fine-
grain parallelism with minimal hardware support: A compieontrolled threaded abstract
machine in Proceedings of the Fourth International Conference othitectural Support
for Programming Languages and Operating Systems, Santa, @alifornia, Apr. 1991,
pp. 164-175.

[46] E. W. DIUKSTRA, Solution of a problem in concurrent programming conttGommunica-
tions of the ACM, 8 (1965), p. 569.

[47] M. DuBoIs, C. SCHEURICH, AND F. A. BRIGGS, Memory access buffering in multiproces-
sors in Proceedings of the 13th Annual International Symposimn@omputer Architecture,
June 1986, pp. 434-442.

[48] P. DUHAMEL AND M. VETTERLI, Fast Fourier transforms: a tutorial review and a state of
the art Signal Processing, 19 (1990), pp. 259-299.

[49] F. ERGUN, Testing multivariate linear functions: Overcoming the gextor bottleneckin
Proceedings of the Twenty-Seventh Annual ACM Symposiunheriitheory of Computing,
Las Vegas, Nevada, jun 1995, pp. 407-416.

[50] M. FEELEY, Polling efficiently on stock hardwaréen Proceedings of the 1993 ACM SIG-
PLAN Conference on Functional Programming and Computehifgcture, Copenhagen,
Denmark, June 1993, pp. 179-187.

[51] S. I. FELDMAN, D. M. GAY, M. W. MAIMONE, AND N. L. SCHRYER, A Fortran to C
converter Tech. Rep. 149, AT&T Bell Laboratories, 1995.

[52] M. FENG AND C. E. LEISERSON Efficient detection of determinacy races in Cilk programs
Theory Comput. Systems, 32 (1999), pp. 301-326.

[53] J. D. RRENS AND D. S. WISE, Auto-blocking matrix-multiplication or tracking blas3 pe
formance from source codén Proceedings of the Sixth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, Las Vely&sJune 1997, pp. 206-216.

[54] M. FRrRIGO, The weakest reasonable memory mopbltster’s thesis, Massachusetts Institute
of Technology, 1998.

[55] ——, A fast Fourier transform compilein Proceedings of the ACM SIGPLAN’99 Confer-
ence on Programming Language Design and ImplementatioRIjPAtlanta, Georgia, May
1999.

[56] M. FRIGO, C. E. LEISERSON H. PROKOR AND S. RAMACHANDRAN, Cache-oblivious
algorithms Submitted for publication.

[57] M. FRIGO AND V. LUCHANGCO, Computation-centric memory models Proceedings
of the Tenth Annual ACM Symposium on Parallel Algorithms akidhitectures (SPAA),
Puerto Vallarta, Mexico, June 1998.

[58] M. FRIGO, K. H. RANDALL, AND C. E. LEISERSON The implementation of the Cilk-5 mul-
tithreaded languagen Proceedings of the ACM SIGPLAN '98 Conference on Prograng
Language Design and Implementation (PLDI), Montreal, @andune 1998.

162

[59] M. GALAssI, J. DavIES, J. THEILER, B. GOUGH, R. PRIEDHORSKY, G. UNGMAN, AND
M. BooTH, GNU Scientific Library—Reference Manuap99.

[60] G. R. GAO AND V. SARKAR, Location consistency: Stepping beyond the barriers of mem-
ory coherence and serializabilityTech. Rep. 78, McGill University, School of Computer
Science, Advanced Compilers, Architectures, and Par8stems (ACAPS) Laboratory,
Dec. 1993. Revised December 31, 1994. Availabletat: //ftp-acaps.cs.mcgill. ca.

[61] ——, Location consistency: Stepping beyond memory coherenciehan Proceedings of
the 1995 International Conference on Parallel Proces€lognomowoc, Wisconsin, August
1995, pp. 73-76.

[62] A. GEIST, A. BEGUELIN, J. DONGARRA, W. JANG, R. MANCHEK, AND V. SUNDERAM,
PVM: Parallel Virtual Machine The MIT Press, Cambridge, Massachusetts, 1994.

[63] K. GHARACHORLOO, Memory Consistency Models for Shared-Memory Multipromesss
PhD thesis, Department of Electrical Engineering, Stahtdmiversity, Dec. 1995.

[64] K. GHARACHORLOO, D. LENOSKI, J. LAUDON, P. GBBONS, A. GUPTA, AND J. HEN-
NESSY, Memory consistency and event ordering in scalable sharediony multiprocessors
in Proceedings of the 17th Annual International Symposianftomputer Architecture, Seat-
tle, Washington, June 1990, pp. 15-26.

[65] P. B. GBBONS AND E. KORACH, On testing cache-coherent shared memgiie#roceed-
ings of the Sixth Annual ACM Symposium on Parallel Algorithrand Architectures, Cape
May, NJ, 1994, pp. 177-188.

[66] P.B.GBBONS AND M. MERRITT, Specifying nonblocking shared memoriesProceedings
of the Fourth Annual ACM Symposium on Parallel Algorithmsdafirchitectures, 1992,
pp. 306-315.

[67] P. B. GBBONS, M. MERRITT, AND K. GHARACHORLOO, Proving sequential consistency
of high-performance shared memorigsProceedings of the Third Annual ACM Symposium
on Parallel Algorithms and Architectures, 1991, pp. 293-30

[68] S. C. GOLDSTEIN, K. E. SCHAUSER, AND D. E. CULLER, Lazy threads: Implementing a
fast parallel call Journal of Parallel and Distributed Computing, 37 (199$),5—20.

[69] G. H. GoLuB AND C. F.vAN LOAN, Matrix ComputationsJohns Hopkins University Press,
1989.

[70] J. R. GbobMAN, Cache consistency and sequential consistefiegh. Rep. 61, IEEE Scal-
able Coherent Interface (SCI) Working Group, Mar. 1989.

[71] R. L. GRAHAM, Bounds on multiprocessing timing anomali€&AM Journal on Applied
Mathematics, 17 (1969), pp. 416—429.

[72] D. GRUNWALD, Heaps o’ stacks: Time and space efficient threads withouiatipg system
support Tech. Rep. CU-CS-750-94, University of Colorado, Nov.4.99

[73] D. GRUNWALD AND R. NEVES, Whole-program optimization for time and space efficient
threads in Proceedings of the Seventh International Conferencérchitectural Support
for Programming Languages and Operating Systems (ASPLC®pridge, Massachusetts,
Oct. 1996, pp. 50-59.

163

[74] S. K. S. GQUPTA, C. HUANG, P. SADAYAPPAN, AND R. W. JOHNSON, A framework for
generating distributed-memory parallel programs for taecursive algorithmsJournal of
Parallel and Distributed Computing, 34 (1996), pp. 137-153

[75] R. H. HALSTEAD, JR., Implementation of Multilisp: Lisp on a multiprocessan Confer-
ence Record of the 1984 ACM Symposium on Lisp and Functionagi@dmming, Austin,
Texas, August 1984, pp. 9-17.

[76] ——, Multilisp: A language for concurrent symbolic computatiohCM Transactions on
Programming Languages and Systems, 7 (1985), pp. 501-538.

[77] P. H. HARTEL AND W. G. VREE, Arrays in a lazy functional language—a case study: the
fast Fourier transformin Arrays, functional languages, and parallel systemsAROE),
G. Hains and L. M. R. Mullin, eds., June 1992, pp. 52—66.

[78] E. A. HAUCK AND B. A. DENT, Burroughs’ B6500/B7500 stack mechanjdPnoceedings
of the AFIPS Spring Joint Computer Conference, (1968), gp—251.

[79] J. L. HENNESSY ANDD. A. PATTERSON, Computer Architecture: a Quantitative Approach
Morgan Kaufmann, San Francisco, CA, second ed., 1996.

[80] HIGH PERFORMANCEFORTRAN FORUM, High performance Fortran language specification
v. 2.Q Jan. 1997.

[81] M. D. HiLL, Multiprocessors should support simple memory consist@natiocols IEEE
Computer, 31 (1998).

[82] J.-W. HONG AND H. T. KUNG, I/O complexity: the red-blue pebbling ganie Proceedings
of the Thirteenth Annual ACM Symposium on Theory of CompgtitMilwaukee, 1981,
pp. 326—333.

[83] IBM AND MOTOROLA, PowerPC 604e user’'s manual

[84] L. IFTODE, J. P. 3NGH, AND K. LI, Scope consistency: A bridge between release con-
sistency and entry consistendp Proceedings of the Eighth Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA), Paduayltdune 1996, pp. 277-287.

[85] C. F. DERG, The Cilk System for Parallel Multithreaded ComputifgD thesis, Department
of Electrical Engineering and Computer Science, Massattaigstitute of Technology, Jan.
1996.

[86] H. W. JOHNSON ANDC. S. BURRUS, The design of optimal DFT algorithms using dynamic
programming IEEE Transactions on Acoustics, Speech and Signal Priogesl (1983),
pp. 378-387.

[87] K. L. JOHNSON, M. F. KAASHOEK, AND D. A. WALLACH, CRL: High-performance all-
software distributed shared memoip Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, Copper Mountain Resorpr@db, Dec. 1995, pp. 213-228.

[88] E. G. C. R. AND P. J. ENNING, Operating Systems ThegRrentice-Hall, Inc., Englewood
Cliffs, NJ, 1973.

164

[89] P. KELEHER, A. L. Cox, S. DWARKADAS, AND W. ZWAENEPOEL, TreadMarks: Dis-
tributed shared memory on standard workstations and opeyatysteman USENIX Winter
1994 Conference Proceedings, San Francisco, Califorama, 1994, pp. 115-132.

[90] P. KELEHER, A. L. Cox, AND W. ZWAENEPOEL, Lazy release consistency for software
distributed shared memaorin Proceedings of the 19th Annual International Symposiim
Computer Architecture, May 1992.

[91] D. E. KNUTH, Sorting and Searchingol. 3 of The Art of Computer Programming, Addison-
Wesley, second ed., 1973.

[92] ——, Seminumerical Algorithmssol. 2 of The Art of Computer Programming, Addison-
Wesley, 3rd ed., 1998.

[93] C. H. KOELBEL, D. B. LOVEMAN, R. S. SHREIBER, J. QUY L. STEELE, AND M. E.
ZOSEL The High Performance Fortran Handbaokhe MIT Press, 1994.

[94] D. A. KRANZ, R. H. HALSTEAD, JR., AND E. MOHR, Mul-T: A high-performance parallel
Lisp, in Proceedings of the SIGPLAN '89 Conference on Programgnhianguage Design
and Implementation, Portland, Oregon, June 1989, pp. 81-90

[95] N. A. KusHMAN, Performance nonmonotonicities: A case study of the UItASP proces-
sor, Master’s thesis, MIT Department of Electrical Enginegrand Computer Science, June
1998.

[96] L. LAMPORT, How to make a multiprocessor computer that correctly execuatultiprocess
programs IEEE Transactions on Computers, C-28 (1979), pp. 690—691.

[97] J. R. LARUS, B. RICHARDS, AND G. VISWANATHAN, LCM: Memory system support for
parallel language implementatioin Proceedings of the Sixth International Conference on
Architectural Support for Programming Languages and Qpey&ystems, San Jose, Cali-
fornia, Oct. 1994, pp. 208-218.

[98] F. T. LEiGHTON, Introduction to Parallel Algorithms and Architectures: rays - Trees-
HypercubesMorgan Kaufmann Publishers, San Mateo, California, 1992.

[99] X. LEROY, The Objective Caml system release 2108titut National de Recherche en Infor-
matique at Automatique (INRIA), August 1998.

[100] E. C. LEwis, C. LIN, AND L. SNYDER, The implementation and evaluation of fusion and
contraction in array languagesn Proceedings of the ACM SIGPLAN '98 Conference on
Programming Language Design and Implementation, jun 11998,0-59.

[101] P. Lisieckl AND A. MEDINA. Personal communication, 1998.

[102] C. V. LoaN, Computational Frameworks for the Fast Fourier Transfoi®AM, Philadel-
phia, 1992.

[103] C. Lu, J. W. GOOLEY, AND R. ToLIMIERI, FFT algorithms for prime transform sizes and
their implementations on VAX, IBM3090VF, and IBM RS/60B&E Transactions on Signal
Processing, 41 (1993), pp. 638-647.

165

[104] V. LUCHANGCO, Precedence-based memory model€leventh International Workshop on
Distributed Algorithms, no. 1320 in Lecture Notes in Cormgsubcience, Springer-Verlag,
1997, pp. 215-229.

[105] N. LYNCH AND M. TUTTLE, Hierarchical correctness proofs for distributed algomitls
in 6th Annual ACM Symposium on Principles of Distributed Qumuation, August 1987,
pp. 137-151.

[106] W. L. LYNCH, B. K. BRAY, AND M. J. FLYNN, The effect of page allocation on cachéas
MICRO-25 Conference Proceedings, dec 1992, pp. 222-225.

[107] C. MARLOWE, The Tragical History of Doctor Faustu4604. A-Text.

[108] J. A. MARUHN, FOURGEN: a fast Fourier transform program generat@omputer Physics
Communications, 12 (1976), pp. 147-162.

[109] P. MEHROTRA AND J. V. ROSENDALE, The BLAZE language: A parallel language for
scientific programmingParallel Computing, 5 (1987), pp. 339-361.

[110] J. S. MLLER AND G. J. RozAs, Garbage collection is fast, but a stack is fastéech. Rep.
Memo 1462, MIT Atrtificial Intelligence Laboratory, Cambge, MA, 1994.

[111] R. C. MILLER, A type-checking preprocessor for Cilk 2, a multithreadedfiguage Mas-
ter's thesis, Department of Electrical Engineering and @oter Science, Massachusetts
Institute of Technology, May 1995.

[112] E. MOHR, D. A. KRANZ, AND R. H. HALSTEAD, JR., Lazy task creation: A technique
for increasing the granularity of parallel program$EEE Transactions on Parallel and Dis-
tributed Systems, 2 (1991), pp. 264-280.

[113] J. Moses The function of FUNCTION in LISP or why the FUNARG problemusthde
called the envronment problefiech. Rep. memo Al-199, MIT Artificial Intelligence Labo-
ratory, June 1970.

[114] R. MOTWANI AND P. RAGHAVAN, Randomized Algorithm<Cambridge University Press,
1995.

[115] S. S. MucHNICcK, Advanced Compiler Design Implementatidfiorgan Kaufmann, 1997.

[116] T. NGO, L. SNYDER, AND B. CHAMBERLAIN, Portable performance of data parallel lan-
guagesin Proceesings of the SC’97: High Performance Networkimg) @omputing, 1997.

[117] R. NIKHIL, ARVIND, J. HiCKS, S. ADITYA, L. AUGUSTSSON J. MAESSEN AND
Y. ZHou, pH language reference manual, version,ITéch. Rep. CSG-Memo-369, MIT
Computation Structures Group, Jan. 1995.

[118] R. S. NKHIL, Parallel Symbolic Computing in Cjdn Proc. Wkshp. on Parallel Symbolic
Computing, Beaune, France, Springer-Verlag LNCS 10680l62ct1995, pp. 217-242.

[119] R. S. NKHIL AND ARVIND, Id: a language with implicit parallelisjmin A Comparative
Study of Parallel Programming Languages: The Salishanl&ra) J. Feo, ed., Elsevier
Science Publishers, 1990.

166

[120] M. H. NODINE AND J. S. MTTER, Deterministic distribution sort in shared and distributed
memory multiprocessarin Proceedings of the Fifth Symposium on Parallel Algarighand
Architectures, Velen, Germany, 1993, pp. 120-129.

[121] A. V. OPPENHEIM AND R. W. SCHAFER, Discrete-time Signal Processingrentice-Hall,
Englewood Cliffs, NJ 07632, 1989.

[122] W. PARTAIN, Thenofib benchmark suite of Haskell programs Functional Programming,
J. Launchbury and P. M. Sansom, eds., Springer Verlag, 1#92,95-202.

[123] F. FEREZ AND T. TAKAOKA , A prime factor FFT algorithm implementation using a program
generation techniqgue EEE Transactions on Acoustics, Speech and Signal Proges3b
(1987), pp. 1221-1223.

[124] Proceedings of the ACM SIGPLAN 99 conference on programrtanguage design and
implementation (PLDI)May 1999.

[125] H. ProkoP, Cache-oblivious algorithmaVaster’s thesis, Massachusetts Institute of Tech-
nology, June 1999.

[126] C. M. RADER, Discrete Fourier transforms when the number of data samplpeme Proc.
of the IEEE, 56 (1968), pp. 1107-1108.

[127] K. H. RANDALL, Cilk: Efficient Multithreaded Computind’hD thesis, Massachusetts Insti-
tute of Technology, 1998.

[128] S. K. REINHARDT, J. R. LARUS, AND D. A. WooD, Tempest and Typhoon: User-level
shared memoryin Proceedings of the 21st Annual International SymposiimComputer
Architecture, Chicago, lllinois, Apr. 1994, pp. 325-336.

[129] J. E. SwAGE, Extending the Hong-Kung model to memory hierarchiesComputing and
Combinatorics, D.-Z. Du and M. Li, eds., vol. 959 of Lecturetdk in Computer Science,
Springer Verlag, 1995, pp. 270-281.

[130] D. J. SALES AND M. S. LAM, The design and evaluation of a shared object system for
distributed memory machingis Proceedings of the First Symposium on Operating Systems
Design and Implementation, Monterey, California, Nov.49%p. 101-114.

[131] I. SELESNICK AND C. S. BURRUS, Automatic generation of prime length FFT programs
IEEE Transactions on Signal Processing, (1996), pp. 14-24.

[132] R. C. SNGLETON, An algorithm for computing the mixed radix fast Fourier tsform IEEE
Transactions on Audio and Electroacoustics, AU-17 (1969)93—-103.

[133] D. D. S.EATOR AND R. E. TARJAN, Amortized efficiency of list update and paging rules
Communications of the ACM, 28 (1985), pp. 202—208.

[134] M. SNIR, S. OrT1O, S. HUSSLEDERMAN, D. WALKER, AND J. DONGARRA, MPI: The
Complete Referenc#MIT Press, 1995.

[135] H. V. SORENSEN M. T. HEIDEMAN, AND C. S. BURRUS On computing the split-radix
FFT, IEEE Transactions on Acoustics, Speech and Signal Plioggs®! (1986), pp. 152—
156.

167

[136] H. V. SORENSEN D. L. JONES, M. T. HEIDEMAN, AND C. S. BURRUS Real-valued fast
Fourier transform algorithmslEEE Transactions on Acoustics, Speech, and Signal Pyeces
ing, ASSP-35 (1987), pp. 849-863.

[137] P. STENSTROM, VLSI support for a cactus stack oriented memory organimatioProceed-
ings of the Twenty-First Annual Hawaii International Corgfiece on System Sciences, vol-
ume 1, Jan. 1988, pp. 211-220.

[138] V. STRASSEN Gaussian elimination is not optimaNumerische Mathematik, 14 (1969),
pp. 354-356.

[139] P. N. SNVARZTRAUBER, Vectorizing the FFTsParallel Computations, (1982), pp. 51-83.
G. Rodrigue ed.

[140] C. TEMPERTON Implementation of a self-sorting in-place prime factor Fagorithm, Jour-
nal of Computational Physics, 58 (1985), pp. 283-299.

[141] ——, A new set of minimum-add smallrotated DFT modulesJournal of Computational
Physics, 75 (1988), pp. 190-198.

[142] ——, A generalized prime factor FFT algorithm for amy = 2P345", SIAM Journal on
Scientific and Statistical Computing, 13 (1992), pp. 67®-68

[143] S. TOLEDO, Locality of reference id.U decomposition with partial pivotindgsIAM Journal
on Matrix Analysis and Applications, 18 (1997), pp. 1065810

[144] R. TOLIMIERI, M. AN, AND C. Lu, Algorithms for Discrete Fourier Transform and Convo-
lution, Springer Verlag, 1997.

[145] L. G. VALIANT, A bridging model for parallel computatigr€ommunications of the ACM,
33 (1990), pp. 103-111.

[146] T. VELDHUIZEN, Using C++ template metaprogram&++ Report, 7 (1995), pp. 36-43.
Reprinted in C++ Gems, ed. Stanley Lippman.

[147] J. S. MTTER, External memory algorithms and data structyresExternal Memory Algo-
rithms and Visualization, J. Abello and J. S. Vitter, eddMBCS Series in Discrete Math-
ematics and Theoretical Computer Science, American Madheah Society Press, Provi-
dence, RI, 1999.

[148] J. S. MTTER AND M. H. NODINE, Large-scale sorting in uniform memory hierarchies
Journal of Parallel and Distributed Computing, 17 (1999),07-114.

[149] J. S. MTTER AND E. A. M. SHRIVER, Algorithms for parallel memory I: Two-level memo-
ries, Algorithmica, 12 (1994), pp. 110-147.

[150] ——, Algorithms for parallel memory II: Hierarchical multilevYenemories Algorithmica,
12 (1994), pp. 148-169.

[151] P. WADLER, How to declare an imperatiyédCM Computing Surveys, 29 (1997), pp. 240—
263.

[152] S. WINOGRAD, On the algebraic complexity of functign&ctes du Congres International
des Mathématiciens, 3 (1970), pp. 283-288.

168

[153] ——, On computing the discrete Fourier transforathematics of Computation, 32 (1978),
pp. 175-199.

[154] L. WITTGENSTEIN, Tractatus logico-philosophicufoutledge and Kegan Paul Ltd, London,
1922,

169

