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Abstract

A memory model is some description of how memory behaves in a parallel compster s
tem. While there is consensus that sequential consistency [Lamport 1979] isottngesir
memory model, nobody seems to have tried to identify the weakest memory nidutel.
thesis concerns itself with precisely this problem.

We cannot hope to identify the weakest memory model unless we specify a migimal s
of properties we want it to obey. In this thesis, we identify five such progertiemplete-
ness, monotonicity, constructibility, nondeterminism confinement, and clagsicaon-
structibility is especially interesting, because a nonconstructible modabtde imple-
mented exactly, and hence every implementation necessarily supportsgestmodel.
One nonconstructible model is, for example, dag consistency [Blumofe et al. 1996a].

We argue (with some caveats) that if one wants the five properties, therotocan-
sistency is the weakest reasonable memory model. In location consisgtgacymemory
location is serialized, but different locations may be serialized indepgliydgLocation
consistency is sometimes called coherence [Hennessy and Patterson 1996]; kowd-
tion consistency isotthe model with the same name proposed by Gao and Sarkar [1994].)

We obtain these results within a computation-centric theory of memory mode¢sew
memory models are defined independently of scheduling issues and language semantics.



Chapter 1

Introduction

All poets and writers who are
in love with the superlative want
more than they are capable of.

F. W. NietzscheMixed opinions and maxims. 141

A memory model is some description of how memory behaves in a computer system. On
a sequential computer, the memory model is so natural and obvious that many people do
not even realize there is one: if you write some value to a memory location xp&ctto
receive that value if you read that location afterwards. Moreover, ltyngr you destroy
whatever value was already stored in the location. If you had a computer whiargwo
a memory location does not destroy the previous value of the location, you would deem the
computer buggy and not use it—after all, how could you ever program such a machine?

The reason why the sequential memory model is so simple is that in a sequaemigalter
there is a clear notion dieforeandafter. The sequential computer executes instructions
in the order specified by its program, and, for every pair of instructions, one itistruc
comes either before or after the other. In other words, instructions are totddyed. A
computer architect may choose to design the machine so that it performa agestaictions
in parallel, yet, as long as the computer behaves as if it were sequential aysltbbe
memory model, the programmer will never notice it.

As soon as we remove the restriction that instructions be totally orderenjevea huge
can of worms. It is no longer clear what occurs before what, and in fact, tigenesining
of “before” is nebulous. This situation is precisely what happens in a paratligbater. For
example, consider a machine with a single memory locdtsor two processors (Figure 1-

1). Initially, [ contains the valu@. The two processors operate independently. The first
processor write$ to [, and the second processor readsd then writeg to it. Call x the
value that the second processor receives when it reads. Nobody would argue dloid
be 3, since no processor ever writggo /. In all likelihood, nobody would argue that
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Figure 1-1: Simple example of program for two processors. The first memewrites the memory
location/, and the second processor first reads and writes the locétitially, [ is 0.

could be2, either, since is written after the location is read. Yet, it is arguable thaan
be either0 or 1.

The previous example illustrates two important points. First, we must litke tive fact
that behavior of memory is not fully specified, and if you read a location, more than one
value may be legal. Second, we had better be precise in how we design and define the
memory model. If the memory model is not designed properly, strange things may happen
(for instance, a processor reads a value that nobody writes).

Unlike the sequential case, more than one sensible memory model for a pavailel ¢
puter exists, and more than one formalism exists to define them. We shall encoanier
memory models in the rest of the thesis.

Strong and weak memory models Certain memory models are more restrictive than
others, in the sense that they permit a subset of memory behaviors. We say thatiigle
that allows a subset of the behaviorsisgnger Intuitively, a memory model in which you
can receive anything when you read a memory location is really weak, andobyraioan-
pletely useless (it is a kind of write-only memory). Accept for now this imntaibotion of
strength, even though it is inaccurate. (For example, according to our notionaigsta
model where reads always return 0 would be really strong, since it has only onsgibieni
behavior.) A formal definition of “strong” is provided in Section 2.3.

Traditionally, people have agreed that the strongest reasonable memory mduel is t
sequential consistencynodel defined by Lamport [1979]. Curiously, researchers have
apparently not asked the question of witet weakesteasonable memory model is. This
thesis concerns itself with precisely this question. | argue linzdtion consistencyis
the weakest reasonable memory model. In location consistency every miecatign is
serialized, but different locations may be serialized independently.

Why should we care at all about weak memory models, once we have sequential con-
sistency? Unfortunately, strong models have a price. It is generally bel[elennessy
and Patterson 1996] that a sequential consistency model imposes major ine#fienci
an implementation. Consequently, many researchers have tried to melagquirements
of sequential consistency in exchange for better performance and ease of impkemnent
For exampleprocessor consistendyy Goodman [1989] is a model where every processor
can have an independent view of memory, aglédase consistendyy Gharachorloo et al.
[1990] is a model where the memory becomes consistent only when certain synchronizing
operations are performed. See [Adve and Gharachorloo 1995] for a good tutorial on this
subject. In this thesis, we try to establish limits to this processedésation” of sequential
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consistency.

Properties of memory models We cannot hope to identify the weakest memory model
unless we specify the properties we want it to obey. The absolutely weakesirsnenodel
allows memory to return arbitrary values, and is therefore complesaiess. This is the
sense in which | am trying to identify the weakesasonablenemory model, not just the
weakesper se

Capturing reasonableness is a tough problem. In this thesis | identify five pespddi
every reasonable memory model should possess. The properties are discussatlim de
Chapter 3. Three of them have a precise mathematical definition, and the otharetwo
more subjective.

Completenessays that a memory model must define at least one behavior, no matter
what the program does. The memory cannot say “oops, | don’t know” in response to
certain programs.

Monotonicity has to do with the partial order of instructions. Suppose that we have a
partially ordered instruction stream, and the model allows a certairvimehi&lonotonicity
demands that the same behavior be still valid for a subset of the partial order.

Constructibility is a necessary condition for the existence of an online algorithm that
maintains a model. In real life, it often happens that an implementation obehactually
maintains a stronger model. It may come as a surprise that, for some modedgpttion
is unavoidable. There exist models that cannot be implemented exactly, and if one
wantsA, then one must necessarily implement a model that is strictly strongectinde
prove that the weakest constructible modélthat is stronger thai exists and is unique.

We call A* the constructible versiorof A. There is no point in adopting a model if we
must necessarily implement its constructible version; we should simply du®ptronger
model.

Nondeterminism confinementunlike the previous properties, is not formally defined,
and yet | regard this property as necessary. The basic idea is that the meou®lsimould
allow the programmer to confine nondeterminism within certain regions of the program
(say, a subroutine). We shall clarify this concept in Chapter 3.

Classicalitysays that reading the memory should not alter its state, as oppogadrio
tummemory models where observing the memory forces it to behave differentlyhalle s
discuss some curious quantum phenomena in Chapter 3.

The weakest reasonable memory model In the past, there have been at least two pro-
posals of very weak memory models. The first, proposed by Gao and Sarkar [1994], is a
model that they called “location consistency” and we shall call “GS-looatbnsistency”.

The other model islag consistencywhich was introduced by the Cilk group of the MIT
Laboratory for Computer Science (including myself) [Blumofe et al. 1996b; Blumdaik et
1996a]. In this thesis, we show that neither model obeys the five properties | regard a



necessary. GS-location consistency does not confine nondeterminism, and dagroysist
is not constructible.

Discovering that dag consistency is not constructible was surprising, becajicerdas-
tency has been quite a useful model in practice. Students and other users of Hesteitk
[Blumofe et al. 1995] have written correct dag-consistent prograitiout even knowing
they were using dag consistency. Dag consistency seems to capture a lotrafittieni
that Cilk programmers have about the shared memory. In the dag consistency pagpers
introduced the BCKER algorithm for maintaining dag consistency [Blumofe et al. 1996D].
(Another algorithm, DGGER, appears in [Joerg 1996].) We investigated the performance
of BACKER both empirically and theoretically [Blumofe et al. 1996a]. Indeed, to the best
of my knowledge, BCKER is the only coherence algorithm for which there is any kind of
theoretical performance guarantee. The fact that dag consistency is not dipistinao
way implies that these results are wrong. Instead, it suggests that theredehstronger
than dag consistency for which these results are still valid. In other wiltd<BACKER
algorithm must do something more than what it was designed for.

In an attempt to better understand dag consistency, in this thesis we defirdeachass
of dag-consistent models and study their properties. Roughly speaking, the situation of
these models is as follows. The weaker models have the same anomaly asaG&al
consistency. The stronger models are not constructible. One such model, calédg\NN
consistency, is the strongest model in the class. NN-dag consistency is notcobig, but
remarkably, this thesis proves that its constructible version is exactiyion consistency.
Consequently, if you want to implement all the properties of NN-dag consistency, you
automatically get location consistency. The proof of this equivalence is a megjoit of
this thesis.

What should we conclude about the weakest reasonable memory model? GS-location
consistency and the dag-consistent models are faulty, in one way or another. Ifrdsalva
the properties of NN-dag consistency, location consistency is implied ny enplemen-
tation. Furthermore, as shown by Luchangco [199A¢cBER indeed maintains location
consistency, and all the results from [Blumofe et al. 1996b; Blumofe et al. 19963] tappl
location consistency directly. This evidence provides a strong rationale foluclmg that
location consistency is the weakest reasonable memory model.

There is one caveat to the previous argument. | know of another dag-consistent memory
model that is not constructible, and whose constructible version | have not beem able t
identify. My understanding at this point is that this constructible version is shd&ectly
weaker than location consistency, and it obeys all the five properties. Unftatyridave
not been able to find a simple definition of this model; all I know is that it exists skall
discuss this situation in Section 4.6.

Computation-centric framework In order to talk about properties of memory models
and compare them, we introducecamputation-centrictheory of memory models. We
start from acomputation which is an abstract representation of a (parallel) instruction



stream, and define memory models in terms of the computation alone. Roughly speaking,
a computation consists of all the actions that a program does in response to an input. For
example, the program = b + c specifies the actions “redd, “read c”, “compute the
sum” and “store the sum in@”. Implicitly, the program also says that the sum cannot be
computed beforé andc have been read, and it does not specify which read operation oc-
curs first. We consider the dependencies specified by a program as part of the camputati
In this thesis, | deliberately ignore the problem of how programs map into conymsati
In general, this mapping can be very complex, depending on the program semantics and
on the memory model itself. Programs and languages disappear from the universe of thi
thesis, and only the computation is left. The computation alone constitutes aimgstar
point.

In contrast, most of the literature about memory models defines them in processoc-
terms [Lamport 1979; Dubois et al. 1986; Adve and Hill 1990; Goodman 1989; Hennessy
and Patterson 1996; Adve and Gharachorloo 1995]. These models define how a proces-
sor (not the computation) sees the memory. Consequently, a programmer that specifies
computation must also worry about how the computation is scheduled on many processors
since memory semantics may change depending on the schedule. Computation-centric
models do not have this problem.

The computation-centric framework is not the ultimate way to define memory s\ddel
is true that we can ignore language semantics and scheduling, but for this very, thase
are subtle effects that the framework does not capture. (See Section 2.1.39oussthn
of this topic.) Nevertheless, the computation-centric theory has proven to fimesufto
derive all the results we have discussed so far.

Structure of this thesis The rest of the thesis is organized as follows. In Chapter 2 we
develop the foundations of the computation-centric framework. We define what a com-
putation and a memory model are, as well as what it means for one memory model to be
stronger than another. In the same chapter, we reinterpret sequential caysistecessor
consistency, and dag consistency within the computation-centric framewor&ls@/egive

a definition of location consistency. In Chapter 3, we discuss what propertiesname
model should have. We identify five such properties. As we said earlier, aoen@ath-
ematically well defined, and others try to capture an intuitive notion oforegtseness.

In Chapter 4, we define the dag-consistent memory models and investigate therr prope
ties in details. We prove the constructibility results, and argue thatitceonsistency is

the weakest reasonable memory model. Finally, in Chapter 5, we give somediogcl
remarks.



Chapter 2

Computation-centric memory models

In this chapter we develop the computation-centric theory of memory models slththi
ory, two concepts are especially important: the notion ocbmputationand the notion of
anobserver function

An execution of a program can be abstracted esmaputation which is just a directed
acyclic graph whose concrete meaning is immaterial for our purposes. In S2ctiave
define computations, and give some example of how real-world programs can be mapped
onto computations. | then explain that | believe computation-centric memory nmereéeds
good idea, because with them, we can forget about the existence of processorsgesshedul
and languages, and because they allow us to discuss memory semantics ireabstralct
way. In the rest of the thesis, | am concerned with how a computation, not a prgceEsss
memory.

In Section 2.2 we definebserver functions For any computation node and memory
location, an observer function points to some node that writes to that location. On one
side, observer functions are just a technical device that simplifies our notatio@dlews
us to ignore the concrete values of memory locations: we just say that readingtiarioc
returns whatever the node specified by the observer function for that locatias.whit
this way, we forget about read operations altogether. On the other side, obs@cterrfs
also give memory semantics to computation nodesdbatotread or write to memory.
This property will turn out to be important in the rest of the discussion, when westisc
nondeterminism in Section 3.4.

Since an observer function specifies the memory behavior uniquely, it followsathat
memory model is fully characterized by the set of observer functions it alldw other
words, a memory modes$ a set of observer functions. Modulo technicalities, this is the
way in which we define memory models in Section 2.3.

We next show how our framework can be applied to the definition of models that pre-
viously appeared in the literature, such as sequential consistency, dagtensisnd
processor consistency. We also defimgation consistencya memory model that behaves
as if each memory location were serialized. Location consistency e focus of this
thesis, since | am proposing it as the weakest reasonable memory model.



2.1 Computations

In this section, we define computations. We first state the definition (Defirdijicand give
some examples (Section 2.1.1). We then define the memory operations that a computation
is allowed to perform (Section 2.1.2). Finally, | discuss the advantages ahiohitssof the
computation-centric approach.

We start with the definition of a computation, and a few related notions.

Definition 1 A computationis a (finite) directed acyclic graphdag G = (V, E).

If there is a path of nonzero length in the dag from nad® nodev, we say that:
precedes, and we writeu < v. The notationu < v is used whenever we need to be
precise about which dag we are talking about. Observe that this definition of precedence
is strict: a node does not precede itself. Whenever we want a non strict defioition
precedence, we explicitly use the notation< v, meaning thatt < v oru = v. For
the rest of the thesis, remember that precedence is the only order relaties stradt by
default. Everything else (e.g., set inclusion, relative strength of memorylsjate.) is
not strict.

2.1.1 Whatis a computation?

The reader might now wonder what Definition 1 has to do real computers that execute
real programs (or idealized computers, for example a Turing machine, execlgaliged
programs).

In order to understand this notion of computation, imagine having a sequential computer
executing a program. To fix our ideas, let's say that the computer executeskaagtiic
program. Recall that quicksort is a divide-and-conquer algorithm that partitionsan ar
into two “halves” and calls itself recursively on each half.

The execution of the program generates a stream of instructions, which may be much
longer than the program itself. In the example, since quicksort is a recurgivathin,
the same line of code can be instantiated (i.e., executed) many times durigthgion.

We say that each of these instantiations is a node of the computation. | remarktegai
there is a node for eveigstantiationof an instruction, and not for every instruction in the
executable program. If an instruction is executed twice (for instancapukedelongs to a
loop), we put two nodes in the computation.

Without too much effort, we can identify dependencies among computation nodes. In
the quicksort example, the partition of the input array must be performed before quicksor
recurses on the two halves. Therefore, we can say that the paprgoadeshe recursive
calls. Can we also say that the first recursive call precedes the dthim8 case, the com-
putation is in the eye of the beholder. You can either argue that the program is sdquentia
and therefore the second recursive call follows the first, or you can sathératis no log-
ical dependency, and that the first call is first only because programs are onesidinas



strings! It is up to you to decide what computation your program is performing. In either
case, when the recursion is completely unfolded, we end up with a set of nodesergpre

ing all the instructions that the machine executed, and a set of dependencies ameng thos
nodes.

We now show another example of computation. Cilk [Blumofe et al. 1995] is a multi-
threaded language and runtime system. The execution of a Cilk program genenayes ma
threadsthat obey certain control dependencies. The graph of threads and of their dependen-
cies is called anultithreaded computatiorA multithreaded computation is a computation,
according to our definition. Unlike the previous example, however, in Cilk ther®is
subjective interpretation of a computation, because Cilk provides keywordspibeitys
whether there is a dependence or not. More precisely, two threads depend on each other
unless the keyword pawn is used in the program. (In this sense, Cilk is a computation-
friendly version of the C language.)

A third case of computation can be identified in a machine vtiprocessors and a
shared memory. Each processor executes its own program, and we assuheréete no
synchronization operations in the machine: processors can only communicate by reading
and writing into memory. We can construct a computation that models the behavior of
the machine. The computation nodes are the machine instructions. The edges are the
dependencies imposed by the program order. If instructicomes after instructiof® in
the program, then there is an edge fréhto A.

The situation becomes much more complicated if we allow the processorsampex-
plicit synchronization operations (such as barriers and/or mutual exclusion)s lcese, it
is not clear what the computation is. Specifying the behavior of this system is a taalgh pr
lem, and | am not trying to solve it in this thesis. We simply assume thatdimpatation
is given.

2.1.2 Memory operations

In this section, we state precisely what a computation can do with thedshre@ory.

The only memory operations that we allow a computation to performeaeandwrite.
We do not care about the other operations that the dag performs (e.g., additions, etc.), and
regard all these things as no-op. We do not allow a computation to perform synchroniz-
ing memory operations (for instance, atomic test-and-set or read-modify-op#rations,

For all “reasonable” programming languages. In fact, there exists a toglitwensional programming
language calledr t hagonal (sic). Anort hagonal programis laid outon a grid, and tbet hagonal
computer is a stack-based machine with a two dimensional program coumégordgram counter can move
in four different directions, and the machine has special instructiotsrtoleft, right, or backwards, as
well as to specify absolute directions. As you would imagine, loopingstracts in this language areally
elegant; you can literally see the loop on the gadt hagonal was written by Jeff Epler, and is part of the
Computer Retromuseum maintained by Eric S. Raymonidtgt : //ftp. ccil . org/ pub/retro/.
The author of the program does not care about being given credit: “In fact, elen bother keeping my
name on this. It'll help free me from blame.”
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memory fences, and so on).

Rationale: The lack of synchronizing memory operations is indeed a kpget of our
model. My point of view is that a computation already defin@®s synchronization,
in the form of edges. | want to be able to use that synchrdoizaand no more, for
defining memory semantics. The technicalities that allotousccomplish this goal
are explained in Section 2.2.

Before continuing, we need a couple of technical assumptions.

Assumption 1 A computation node can perform at most one memory operation, that is, a
reador a write. If a node does not perform any memory operation, we say it performs a
no-op.

Rationale: By assuming that every node performs at most one memory tigpera
we can unambiguously speak thie memory operation performed by that node. The
assumption simplifies the notation, without loss of geriigral

Assumption 2 Every computatioid’ contains a speciahitial node initial (G) that writes
some initial value to all memory locations. The initial node is a predecessor of all nodes
inG.

Rationale: We must be able to specify a value received by a read operatien
if there are no writes in the computation. One way to achidig effect is to say
that the read receives the bottom valu€“undefined”). This solution would force us
to consider values, however, while our theory does not wtiserdeal with memory
values.

It is not really important whether there is a set of initiaties writing to all locations,
or just one node. In the latter case, as we assume here, tiikrinide is exempt from
Assumption 1.

The smallest computation is tlempty computatiore that consists of the initial node
alone.

Notation for memory operations We now introduce the notation for read and write op-
erations. First, we define memory.

Definition 2 AmemoryM = {[} is a set oflocations

In this thesis | do not care about the set of values that a memory location camconta
Moreover, memory is never explicitly mentioned in the definitions and theotieatgol-
low; it is a kind of parameter to the whole thesis. (Pretend there is a brgatly mem-
ory M” on the cover page of this thesis.)
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The notation for read and write operations is given in the formrefaal predicateand a
write predicate

“nodew reads locatior and receives the valug

e Il

“nodew writes the valuer to location!”

Observe that, because of Assumption 1, for a given notlee write predicate W\, u, x)
can be true for at most one locatiband valuer.

Whenever the value is immaterial (that is, almost always in this thesis), we use an
abbreviated notation.

“nodew reads location”

e e

“nodew writes to location”

2.1.3 Why computations?

Most of the literature defines memory semantics in processor-centris.témnstead, | use
a computation-centric framework, because | think it is much simpler. In gusa, |
describe why | think the processor-centric approach is too complicated. Wpatgmut
some of the limits of the computation-centric approach. (Simplicity does not corfreéor
unfortunately.)

Most memory models are processor-centric [Lamport 1979; Dubois et al. 1986; Adve
and Hill 1990; Goodman 1989; Hennessy and Patterson 1996; Adve and Gharachorloo
1995]. On the contrary, | believe that processor-centric memory models areffioaldi
to reason about. They are too difficult everdefineproperly. Consider, for example, the
complicated definition of “performing a memory request” in [Gharachorloo.e1$90]
guoting [Dubois et al. 1986; Scheurich and Dubois 1987].

A LOAD by P, is consideregerformed with respect té), at a point in time

when the issuing of a STORE to the same addres&bgannot affect the
value returned by the LOAD. A STORE kY, is consideregerformed with
respect taP; at a point in time when an issued LOAD to the same address by
Py, returns the value defined by this store (or a subsequent STORE to the same
location).

The problem with this definition is that the very notion of “subsequent” is what theanem
model is supposed to define. It is not clear at all whether “subsequent” meansl‘issae
processor at a later point in time” or “served by a memory module at a lateripdinte”.
In any case, there is a hidden assumption of some universal clock by whicls eaaribe
globally ordered.

As another example, Hennessy and Patterson [1996, Page 656] state the following nebu-
lous condition as part of their “definition” of coherence.
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A read by a processor to location that follows a write by another processor
to X returns the written value if the read and write are sufficiently sepdrat
and no other writes t& occur between the two accesses.

Even ignoring the semantics of “sufficiently separated”, | still have no adélae meaning
of “follows” and “occurs between”. Again, this is what the memory model was suppose
to tell us.

The problem with these definitions, in my eyes, is that an operational model oframaac
is needed in order to give meaning to the definition. The operational behavior of the ma-
chine, however, is precisely what the the definition is supposed to speatiymis as no
surprise, if this is the case, that things quickly become very complicated.

On the contrary, Lamport’s definition of sequential consistency [Lamport 1979]dn oft
cited, with good reasons, for its clarity and precision:

[A system is sequentially consistent if] the result of any execution isahees

as if the operations of all the processors were executed in some sequential
order, and the operations of each individual processor appear in this sequence
in the order specified by its program.

Lamport’s criterion does not assume any global time. The system is sequettiadistent
if one can get the same result on one processor, in the way stated by the definisenve
that Lamport’s definition talks about processors only incidentally; the real pohdisttere
are P threads of control. It does not matter whether therefgr2P or /2 processors. In
this thesis, instead of extending Lamport’s model by giving more capabilitiestegsors,
we give more capabilities to the “threads of control”. We allow an arlyitnamber of these
threads, and we allow arbitrary dependencies (notfusequential chains).

There are two things that | do not like in processor-centric models. (The fiokperit-
icisms do not apply to Lamport’s definition.) First, some notiortigfe is implicitly as-
sumed, so that it can be said whether one event happened before another. Programmers
do not have control over time, however, since a processor can employ a earmablnt
of time to execute a certain operation. The second thing | do not like is that puzom
tation executed within one processor has certain semantics, and a coorpesacuted
by more than one processor hdiferentsemantics. When | write a program, however, |
would rather ignore how many processors my program will run on. Consequently, | must
ignore how my program is mapped onto processors, since there is now way to kndwe it if t
number of processors is not specified. In other words, | claim that a computation should
have memory semantics that do not depend on the schedule. Whether the computation runs
on one or more processors, and how it is mapped to processors are not things of which
programmers should be aware. (Programmers might want to deal with these fissue
performance reasons, but this is another story.)

Computation-centric memory models are a way to deal with these two isssieg)l
become clear in the rest of the chapter.
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Processor 1 Processor 2
r+1 T4+ x
y<1 Y1y
if z; = 0andy, = 1 then
z+1

Figure 2-1. Example illustrating that the mapping of programs into catapons depends on the
memory model. In the example, there are three memory laotgtioy, andz, and all three locations
are initially 0.

It should be remarked that the framework | propose is not the only alternativedegsor-
centric models. Memory semantics can (and should) be incorporated into languosge se
tics (as in the\g-calculus by Arvind et al. [1996]). In this thesis | am completely ignoring
the fundamental issue of how a computation is generated by a program. | acknowledge
that this point of my theory is weak. The computation generated by a program indeed may
depend on memory semantics, and separation of the two issues is not justifidd.ul¥/hi
timately a unified semantics of languages and memory is desirable, | beievaefining
the behavior of memory is already complicated enough by itself, that for now linguist
issues should be kept orthogonal as much as possible.

In conclusion, here is the situation as | see it. Processor-centric modetsoacomplex.
Language-centric models must take into account the language semantics, wivieady a
a vast subject in itself, most of which has nothing to do with memory. Computagntric
models are simple, and they provide the abstraction of language-centric moithelsttie
linguistic issues. Computation-centric models can be used to understandigirsipacties
of memory models, as we will see in Chapter 3. The computation-centric vielsas a
supported by Gao and Sarkar, who, in a recent paper [Gao and Sarkar 1997], use an end-
to-end argument to suggest that memory models should be defined in terms of a partial
order.

Limits of the computation-centric approach Despite the above discussion, | do not
want the reader to get the idea that computation-centric memory models areirtiageault
solution to all problems. The major strength of the computation-centric frankaw/dnat
it abstracts away from processors and linguistic issues. This is alsmajts weakness,
because the computation may depend on the memory model itself.

Consider Figure 2-1. Suppose that the memory model dictates that writes issued by
Processor 1 be observed in the same order by Processor 2. In this case, tlutionstr
z + 1 is never executed, and is therefore not part of the computation. Suppose now that
Processor 2 can observe writes in a different order than they are issuttds tase, the
instructionz < 1 might be executed. The point is that we cannot éefiriori what the
computation is.

Of course, one can construct many examples like this. A particularly belboié was
shown to me by Bert Halstead [Halstead 1997]. | leave it (Figure 2-2) aszepiaz the
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Processor 1| Processor 2
if y=1then| if z =1 then
T+ 1 y<+1

Figure 2-2: A puzzle illustrating how memory and language semanticsngiraately linked. The
two memory locations: andy are initially 0, and there are two processors executing the program
shown in the figure. Cam andy both bel at the end of the execution? How do you define a
memory model in such a way that this situation does not occur?

reader.

2.2 Observer functions

In this section we define the notion of abserver function which is the second key con-
cept in the computation-centric theory. We first motivate observer functioes,give the
definition, and finally explain what the definition means.

In trying to define memory semantics, | have two goals in mind. First, | waigriore
memory values and instead specify where a given value comes from. In aihes,vour
answer to the question, “What does a certain read return?” is of the fornetdlns what
a certain node writes, it does not matter what” (where the focus is on the vatiter than
the value). Second, | want to specify the memory semantics of nodes that do notrperfor
any memory operation, because these nodes might represent some synchronization in the
computation. We have no explicit synchronization operations in our model, and thetefore i
is important to be able to exploit the synchronization given by the dag for defining memory
semantics. These two goals are both accomplished by usiolgsamnver function

Definition 3 Let G = (V, E)) be a computation. Aobserver functionis a function® :
M x V — V such that, for all locationg € M and all nodes: € V', we have that

3.1 W1, (L, u)) ;

3.2.u £ Ol u).

The first property says that an observer function must point to a node that writes to
memory, that is®(/,u) writes tol. The second property says that an observer function
cannot point to a successor node, tha®id, «) does not followu.

In order to understand why we require these two properties, we must first exgiain
an observer function means. The main purpose of an observer function is to gpecify
semantics of read operations. Suppose nodeads locatiord. Then, the read operation
returns whatever value is written tdoy node®(/, v). We formalize this idea in the next
postulate.
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Postulate 4 (Standard semantics of read operationsl.et G be a computation, and |&k
be an observer function fa¥. The read predicate satisfies this property: [{ R, =), then
W(L, @(1, u), ).

Postulate 4 says that if nodeaeads location, receiving the value, thenz is indeed the
value written ta by node®(/, ). The reader can now happily forget about reads, memory
values, and Postulate 4, since observer functions suffice for the rest of the tvesonly
use Postulate 4 when arguing the equivalence between models that are expréssed |
of observer functions and models that are not.

We can now justify the two properties in Definition 3. The first property saysaha
observer function must point to a node that writes to memory. This constraintassaey,
since otherwise the semantics of read operations would be ill defined. The secomtyprope
says that an observer function cannot point to a successor node, that is, a node cannot read
something written in the future. With current technology, this assumptioresanp loss
of generality.

Empty computation We remark that the only observer function for the empty computa-
tion ¢ is, trivially, ®.(/, initial (<)) = initial (¢), for all locations.

2.3 Memory models

In this section we definermemory modeés a set of pairs, each consisting of a computation
and an observer function defined over that computation. We then define what it mmeans f
one model to be stronger than another.

Recall that an observer function completely defines the semantics of reaatiopgr
Thus, a set of observer functions defines a memory semantics. We would like fast: t
“A memory model is a set of observer functions.” Unfortunately, an observerifumist
defined only for one computation. In order to consider observer functions of many compu-
tations, we keep track of the computation by encapsulating both the observeofuaati
the computation in a pair. (We also require that the empty=dagd its observer function
®. belong to all memory models in order to make boundary cases in proofs easier.)

Definition 5 (Memory model) A memory modelA is a set
A = {(G, ®) : G is a computation an@ is an observer function fa&} U (¢, ®.) .

Before we see some examples of memory models in Section 2.4, we first dis@&ilys bri
what it means for one model to be stronger than another.

Definition 6 A memory model\ is strongerthan a modelA’ if A C A’. A memory
modelA is weakerthan a modelA’ if A’ is stronger thanA.

16



Notice that we say that trmubseis stronger, not the superset, because the subset enjoys
more properties. Consequently, the empty set is the strongest memory model, and the
set of all (dags, observer functions) is the weakest. (The empty set vaceojsys all
properties.) One model is not necessarily stronger or weaker than another;is thés
case, we say that the two models areomparable If two models are the same set, we
also say they arequivalent

We remark that the usual set operations of union and intersection can be apphiechto
ory models. In this way, new models can be constructed by combining old models. For
example, the intersection of two models is a model stronger than both. In this, tvesio
not play with models in this way, with one important exception: we consider infinitngni
of memory models in Section 3.3 in order to define the constructible version of a.model

2.4 Example memory models

In this section, we give some examples of memory models. For now, we do not introduce
any new models that do not already appear in the literature. We startsedghential
consistency which is usually agreed to be the strongest reasonable memory model. We
then considetocation consistencyand dag consistency Finally, for completeness, we

also suggest how other models could be defined, although they are not relevant tarthe late
results of this thesis.

2.4.1 Sequential consistency

Sequential consistency [Lamport 1979] is generally considered to be the strongestyme
model. It is not the strongest in an absolute sense, just the “strongest reasofidlales
exist in principle stronger models, but they are too strong for practical \ige.now give

a computation-centric definition of sequential consistency. The definition wespacgiiv-
alent to Lamport’s definition (quoted in Section 2.1.3) for the case where the coioputat
consists off chains of nodes, but our new definition is more general in that it applies to all
computations.

Lamport’s criterion for sequential consistency says that one should look at tHelpara
(processor-centric) execution of a program. If one can fiseéguentialexecution of the
parallel program that respects program order and gives the same resultsrfmnadiry
accesses, then the memory is sequentially consistent. There are, howevelistinct
issues in Lamport’s definition. The first one is clearly stated by Lamporiudt be possible
to identify a global interleaving of the parallel program (the sequential exegutiThe

2For example, suppose the system behaves as if Processor 1 alone exegubggam, then Processor 2
executes its own program, etc. This processor-centric memory modelrigstrthan sequential consistency,
but there seems to be no way to implement this model without usingam@yprocessor at a time, which
limits its interest.
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second issue is not explicitly addressed by Lamport’s definition: what is the tireome
semantics of a sequential program? In order to define sequential consistencyowithi
framework, we first need to address this problem.

A sequential program, in the processor-centric world, has a very natural mesmogn-
tics: reading a location returns the last value written to that locatidre niotion of “last
value” is well defined because the program is sequential. Consider now our computation-
centric framework. By superimposing a total order (topological sort) to a coniquitéte
notion of the last writer preceding a given node is well defined in our framework(\¢®.
define the last writer and not the last value because our observer function aafeses
us from dealing with values.)

Definition 7 LetG = (V, E)) be a computation, and It be a topological sort ofs. The
last writeraccording to7 is the functionCs : M x V +— V such that, for all nodes € V'
and all locationd € M, we have

1. W, Lr(l,w));
2. ,CT(Z,U)) =7 w,

3. forall nodesy € V such thatCr (I, w) <7 v =7 w, the predicate W, v) is false.

The interpretation of the last writer function is that(l, w) is a nodeu that writes tol
and comes before in the given topological soff, and no writes t@ occur between and
w in the topological sort. Since we assume that the initial node writes to alidosa it
follows thatL (I, w) is indeed well defined. Observe also that, if nederites to/, then
Lr(l,w) =w.

The last writer function turns out to be an observer function, because of the way it i
constructed.

Lemma 8 Let GG be a computation, and |éf be a topological sort ofy. ThenL+ is an
observer function.

Proof:  The first property of Definition 3 is the same as the first property of Definition 7.
The second property of Definition 3 is true beca(sés a topological sort o7, which
implies that ifC (1, w) <7 w, thenw £q L7 (I, w). n

Sequential consistency is therefore that model in which one can find a global topblogica
sort of the computation such that all reads return the last value writtéie toc¢ation being
read. Equivalently, a sequentially consistent observer function is a “lastiv

Definition 9 Sequential consistencig the memory model

SC= {(G, L) : T is atopological sort of7} .
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2.4.2 Location consistency

Instead of insisting that there exist a single global order for all memory opesafas

in SC), we could allow a different topological sort for every location. We ladation
consistencythe memory model that behaves in this way. In this section, we first give the
definition, and then explain why we call it “location consistency”. The namingeiss
intricate because 1) location consistency is sometimes called “cotegresnad 1) there
already exists a completely different memory model called “location stersty”.

Definition 10 Location consistencys the memory model
LC = {(G,®): ®(l,u) = L¢(l,u) andT () is a topological sort of7} .

In words, here is what the definition means. An observer function is locationstensi
if, for every locationl, one can find a topological sofi(/) of the dag, and the observer
function forl coincides with the last writer according T0(/).

Location consistency is the model | propose as the weakest reasonable memory model
for reasons that will be clear after Section 4.5.

On the name “location consistency” We now proceed to the issue of names, which is a
tough one. | want to name this model “location consistency”, although the model has been
called “coherence”, and although “location consistency” is already the nameifbéent
model. The reader not interested in academic arguments can safely siepext section.

Researchers are usually careful in how they name their intellectuatuces. Names
are not just accidental properties of objects. Well-chosen names will helpagiens of
future students to create a mental framework in which to understand thingexaknple
of the bad things that happen when concepts are misnamed comes from the uncountable
number of books that have been written to clarify the confusion between Aristitit
and second kind of substance. (See, for example, [Boethius 512]. The issue is now out of
fashion, which is another way to solve it.)

Unfortunately, it is not always possible to choose names that reflect both cunent a
future understanding. For example, the name “dynamic programming” was a reasonable
name when Bellman [1957] introduced it, but it makes little sense in our daysislnase,
posterior researchers, having a better understanding, have the duty to change the name
before it is too late. (For dynamic programming it is probably already too latex )tHe
small piece of world that this thesis is concerned with, | will try to be a cions researcher
and come up with good names, at the cost of overriding previous choices by other people.

Hennessy and Patterson [1996], when they discuss memory models, distinguisérbetwe
coherenceandconsistency Coherence means that each location is serialized, while con-
sistency refers to additional constraints that are preserved acrosediffocations. Co-
herence is usually assumed when memory models are defined in processarieemisi
On the other hand, X -consistency” is the canonical form of the names of memory models
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(e.g., sequential consistency [Lamport 1979], processor consistency [Goodman 1989], re-
lease consistency [Gharachorloo et al. 1990], entry consistency [BersHatidf13], scope
consistency [Iftode et al. 1996]).

| see no reason to use two separate names. “Coherence” is a legitinmateymaodel,
and should be called’-consistency, for som&’. Since its distinguishing feature is that
consistency occurs on a per-location basis, we call it location consistency.

The very name “location consistency” has been used by Gao and Sarkar [1994] to de-
scribe a memory model different from LC. It is our obligation to explain why we ar
reusing the same name.

First, | believe that “location consistency” is misnamed for the model of &abSarkar.

As explicitly stated by the authors, their model does not require that a singléolodet
serialized. In other words, their model allows “location inconsistencytofd, Gao and
Sarkar's model appears to have anomalies that are undesirable for a programedher,
think it should not be adopted. (See Section 3.4.)

| want to point out that the above remarks do not alter the significance of the technical
content of [Gao and Sarkar 1994]. Indeed, that paper contains many ideas that | strongly
support. Gao and Sarkar are also looking for a very relaxed memory model, and defi
the model in terms of a graph of dependencies (although with a processor-centniy. flav
Indeed, Gao and Sarkar’s model appears to be a kind of dag consistency, as weesinall s
the Section 2.4.3 below.

2.4.3 Dag consistency

In the past, with other people from the MIT Laboratory for Computer science, | prdpose
dag consistencyBlumofe et al. 1996b; Blumofe et al. 1996a] as a very relaxed memory
model for the Cilk [Blumofe et al. 1995] system of parallel computing. Indeed, we pub-
lished two different models, both called dag consistency. Unfortunatelytbwtad out to
be “unreasonable”. We now discuss these two models. First, we give the twdidefini
and explain what they mean. Then, we restate both definitions in terms of corapstati
and observer functions.

The first definition of dag consistency appeared in Joerg’s thesis [Joerg 1996] and in
[Blumofe et al. 1996bf.

Definition 11 The shared memonyt of a multithreaded computatiod = (V, E) is dag
consistentf the following two conditions hold.

11.1. Whenever any nodec V' reads any locatioh € M, it receives a value written
by some node € V such thatu £ v.

3Modulo alpha-conversion. | changed the definition a little to make isisdent with our notations, and
to avoid introducing new notation.
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11.2. For any three nodes v, w € V, satisfyingu < v < w, if v writes some location
[ € M andw readsl, thenw does not receive a value written by

The second definition of dag consistency appeared in [Blumofe et al. 1996a].

Definition 12 The shared memonyt of a multithreaded computatiod = (V, E) is dag
consistentf there exists a functio® : M x V — V such that the following conditions
hold.

12.1. For all nodes: € V, the noded(l, u) writes tol.

12.2. If a node: writes tol, then we have(l, u) = u.

12.3. If anode: readsi, it receives the value written by(l, u).
12.4. For all nodes: € V, we have that. A ®(,u).

12.5. For each triples, v, andw of nodes such that < v < w, if ®(I,v) # u holds, then
we haved(l, w) # u.

We now explain what the two definitions mean, and why there are two definitions. (The
two definitions indeed define two different memory models. The second modekidystri
stronger than the first, as we shall see in Section 4.2).

Explanation of Definition 11 The first definition of dag consistency is trying to char-
acterize a sort of “per-node sequential consistency”. Sequential consistenandiem
single topological sort valid for all nodes and locations. Location consistencyriinaa
topological sort valid for all nodes, but each location can have a different topalayrt.
Dag consistency, instead, alloeach nodéo “see” a different topological sort of the com-
putation. The only requirement of dag consistency, therefore, is that aunowe see a
write by u if there is another write by a nodethat lies in the path from to w (sinceu
cannot otherwise be the last writer befasen any topological sort of the computation).
This requirement is precisely what the definition mandates. Notice that Dafirdil is
computation-centric in that it gives semantics to a computation, but it does nainyse
observer function.

Definition 11 is the model by Gao and Sarkar [1994] Albeit defined in different con-
texts, Definition 11 defines the same model as GS-location consistency. Thissagsle
that a read operation can receive any element of a set of “most recées’wiThis set is
maintained during the execution. It is initially empty, and a write operaditaed to the
set removes all predecessor writes, where “predecessor” is definedtédiy agynchroniz-
ing operations that the model allows. As it can be seen, the set of “most reqed”w

4Again, we adapted the definition to our notations, for consistency.
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contains precisely those elements that could be seen by a node according toddefihiti
Historically, we did not realize this equivalence when we published [Blurabéé 1996b],
although we were aware of Gao and Sarkar’s work. The equivalence of Definitiaomd11 a
GS-location consistency is also pointed out in [Gao and Sarkar 1997].

Unfortunately, there are certain anomalies in Definition 11, and thus iroG&ibn con-
sistency. We shall explain these anomalies in detail in Chapter 3. For reoistsay that
Definition 11 does not confine nondeterminism. Historically, we proposed Definition 12
[Blumofe et al. 19964a] to solve these anomalies.

Explanation of Definition 12 Unlike Definition 11, Definition 12 in not readily express-

ible in terms of the last writer function. It introduces an observer function@ip) how-

ever. Properties 12.1 and 12.4 are indeed the defining properties of observer functions.
Property 12.3 corresponds to the semantics of reads (Postulate 4). The other twbogsoper

of the observer function are specific to this form of dag consistency. Propertyal2. st

the observer function of a node that writes must point to the node itself. Property H2.5 ca
be understood in two different senses.

In the first sense, Property 12.5 is Property 11.2 applied to the observer functesdins
of a read operation.

The other interpretation of Property 12.5 arises when we consider its contre@ogie
now explore this interpretation. The explanation is a bit long, but it will be useful for
generalizing dag consistency to a wider class of models.

We first recall some notation from propositional logic. The symbdEnotes the logical
and operator, and- denotes the logical implication. In order not to clutter the formulas
with many parentheses, we assume th&inds more strongly than, which in turn binds
more strongly thar-. The expressio®(/, w) = ®(I,u) AW(l,u) — ®(l,v) = ®(I,u),
therefore, is the same 482 (I, w) = ®(l,u)) A W(l,u)) — (®(l,v) = ®(l,u)). (This
formula appears in Definition 13 below.)

Consider now the contrapositive of Property 12.5, that is,

12.58. For each triple:, v, andw of nodes such that < v < w, we have

O(l,w) =u— ®(l,v) =u.

We have just manipulated symbols formally, for now. The next step is to subdtieit
condition “®(/,w) = w«” with another condition of the form®(l,w) = ®(l,u)". The
substitution arises as follows. We claim that

O(l,w) =u = O(l,w) = P(l,u) NW(l,u) .

To prove the claim, observe thatdf(/, w) = u, then W, u), as stated by Property 12.1.
By Property 12.2, we also hav&(/, u) = u, and the =" follows. Conversely, if W, u),
again by Property 12.2, we ha¥é/, u) = u and the “=" follows, proving the claim.
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We now substitute the equivalence just proven into Property,32ebding the equivalent
statement

12.8'. For each triples, v, andw of nodes such that < v < w, we have

O(l,w) = D(l,u) AW(l,u) = @(l,v) = (I, u) .

Therefore, we see that Property 12.5 is a forncafvexityof the observer function: if
u < v < w and the observer function (féy assumes the same valueuadndw, it must
assume that value alsoat This particular definition of dag consistency does not demand
such convexity in all cases, but only whenvrites tol.

Why do we say that Property 12.5 is a “convexity” property? We say that a set of nodes
in a dag isconvexif, whenever two nodes andw are in the set, and < w, then any
nodew that is in a path fromu to w also belongs to the set. The definition is inspired by
the usual definition of convexity in geometry, where a set is convex if, whem&egoint
are in the set the whole segment joining the two points is in the set. Property ¥8.5 sa
that, for each location, the set of nodes where the observer function is constames.c
The terminology “convexity” is not that important for the purposes of this thesis, but the
concept is. Convexity is the characteristic property of dag consistency.

New definitions of dag consistency We now redefine dag consistency so that it matches
the technical definition of memory model (Definition 5). By the above discussiocawe
reorganize Definition 12 in the following way.

Definition 13 WN-dag consistencys the set WN= {(G,®)}, whereG = (V,E) is a
computation, and is an observer function fa& such that the following properties hold.

13.1. Foralll e M and forallu € V, if W(l, u) then®(l, u) = w.

13.2. For all locationd, and for each tripleu, v, andw of nodes such that < v < w,
we have
O(l,w) =Pl u) A\W(l,u) = ®(l,v) = P(l,u) .

The logical implication in Property 13.2 means tha®if, w) = ®(I, ) and W, u), then
O(l,v) = O(I, u).

The model is called WN because, of the nodemndv in the definition, we require that
the first be a write (“W”), and we do not care about the second (“N” for “don’t qaNd/e
now define the model WW that requires that both nodes write. (In Section 4.1 we cemplet
the picture by considering all combinations of writes and “don’t care”.) We then dngiie
WW is equivalent to the model from Definition 11.

Definition 14 WW-dag consistencys the set WW= {(G, @)}, whereG = (V, E) is a
computation, an@ is an observer function fa such that the following properties hold.
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14.1. Foralll e M and forallu € V, if W(l, u) then®(l, u) = w.

14.2. For all locationd, and for each tripleu, v, andw of nodes such that < v < w,
we have that

O(l,w) = D1, u) AW, u) AW, v) — P(L,v) = P(1,u) .

Observe that the only difference between the definitions of WN and WW is the detdce
“W(l,v)” that appears in Property 14.2 but not in Property 13.2.

Observe also that Property 14.2 makes little sense if read litepgbguse, if the three
antecedents are true, then Property 14.1 implies that the consequent is falsed, liide
both W(Z, ) and W/, v) hold, then the conseque(/, v) = ®(l,u) is equivalent to the
propositionv = u, which is false because < v. The “right” way to interpret Property 14.2
is to consider the contrapositive. We stated the definition in this way to gresimilarity
with Definition 13.

Equivalence of Definition 14 and Definition 11. Definition 14 and Definition 11 are
equivalent for a simple reason, but it is difficult to state it formally. $imeple reason is that
if we have a WW observer function, it satisfies the properties of Definition Idhzatically.
Conversely, if we have a shared memory satisfying Definition 11, we cdd &uivw
observer functions by first assigning a value of the observer function to nodes thahca
write memory, as imposed by the shared memory satisfying Definition 11, andithey

in all the other nodes in an almost arbitrary way. The point is that neither DBefirdil nor
Definition 14 care about these nodes.

The formal difficulty lies in the fact that Definition 11 is expressed im®&of anexecu-
tion of a computation and not in terms of observer functions. Therefore, we must invoke
the standard semantics of reads (Postulate 4) to map observer functionserutaxs and
vice versa.

We now informally argue the equivalence of Definition 14 with Definition 11. More
precisely, we argue that a WW observer function, under the standard semantesisf r
yields to an execution that satisfies Definition 11. Conversely, from acution that satis-
fies Definition 11, we can build a WW observer function that, under the standash§em
of reads, yields to the same execution. | apologize for the confusion, but | found no better
way to explain this.

We first state the contrapositive of Property 14.2, in order to show the sityilaith
Definition 11.

14.2. For all locationd, and for each triple, v, andw of nodes such that < v < w, we
have that

O(l,v) # P(l,u) AW(l,u) AW(l,v) = (1, w) # (1, u) .
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If the property is stated in this way, it becomes easy to argue that an eb$enction
satisfying Definition 14, if executed under the standard read semanticsi@®est), yields
an execution of the computation that satisfies Definition 11. Indeed, suppose wenhave a
observer function satisfying Definition 14. Then, Property 11.1 is satisfied by titsfiioif
observer functions (Conditions 3.1 and 3.2). Moreover, Property 11.1 is satisfied dbecaus
of the semantics of read operations and 14.2

Conversely, we now argue that, from an execution that satisfies Defiitiahis possi-
ble to build an observer function that satisfies Definition 14 and yields the saatution.
The observer function is built as follows. For any locati@nd nodev, we have that

e if wwrites tol, let®(l, w) = w;
e if w readd, receiving a value written by node let ®(/, w) = u;

e otherwise, letu be any node that writes {o such thatv £ «, and such that no node
v satisfyingu < v < w writes tol. Such a node always exists, because the initial
node writes to all locations: just pick the last write on any path from tha&lmbde
tow.

By construction, the functio® yields an equivalent execution of the computation un-
der the standard read semantics. We must now verify®hata WW observer function.
By construction® is indeed an observer function, since we alwaysigét«) to a node
that writes tol and does not follow:. Property 14.1 also holds by construction. As for
Property 14.2 suppose thab(l, v) # (I, u), and that WI, ) and W, v) hold. Then, by
construction and because of Definition 11, we have d#t{atw) # ®(1, u).

2.4.4 Other models

The preceding discussion provided computation-centric definitions of sequentiéibhpca
and dag consistency. These three models are further developed and investigike
following chapters. For completeness, we now suggest how to give computatioit-cent
definitions of processor consistency and other models from the literature. Thesk mode
are presented here, but not further discussed in the rest of the thesis.

The following definition ofprocessor consisten@ppeared in [Goodman 1989].

A multiprocessor is said to bgrocessor consisteiitthe result of any execu-
tion is the same as if the operations of each individual processor appear in the
sequential order specified by its program.

The first thing to notice is that the definition is very ambiguous. It seems thatditere
are at least two legal interpretations of the word “appear”. In the firstpnétation, “ap-
pear” means “appear to a processor”. In other words, each processor hasidieawhout
the order of memory accesses performed by the system, but each processaecadifia
ferent idea. In the second interpretation, “appear” means “appear to a mepegtion”.
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In other words, each operation is free to have its own idea about the rest ofstieens
We shall use the first interpretation, which seems to be endorsed by the restadrin@n’s
paper.

In order to translate the definition into computation-centric terms, we nrastdentify
a notion of “processor” in a computation. One possibility is to postulate that a “pgsoce
is a maximal connected component of the graph consisting of the computation minus the
initial node. This postulate is justified if we imagine the computation as compufsEd
chains of instructions, each one representing the instruction stream of one proddss
P chains are not connected (except for the initial node). Processor consistenclyatays t
for each processor, there exists an order of memory operations observed by teasproc
We now translate the definition in computation-centric terms.

Definition 15 Processor consistendg the memory model

PC = {(G,®): ®(l,u) = Lr)(l,u),ueC,
C is a maximal connected componentdf- initial (G),
and7 (C) is a topological sort of7} .

We observe a common theme in previous definitions. In sequential consistencysthere i
a single topological sort of the computation. In processor consistency there is a topolog-
ical sort per component (“processor”). In location consistency there is a topalcgid
per location. And, in dag consistency (Definition 11) there is a topological sort per node
(although the definition is not stated in that way).

Observe also that P@er sedoes not imply location consistency. Consider, for example,
two processors, and one memory location. The first processor writes 1 to thiericaad
then reads it. The second processor writes 2 to the location and then reRdsciessor
consistency allows the first processor to receive 2, and the second proces=meive 1.

This situation cannot happen in location consistency. On the other hand, the asswhption
location consistency/coherence is often implicit in all memory models [AsheGhara-
chorloo 1995] (except for the model in Gao and Sarkar [1994] and dag consistency). But,
by their definitions alone, PC and LC are incomparable.

Some memory models (likeeak ordering [Dubois et al. 1986; Adve and Hill 1990]
distinguish between ordinary and synchronizing memory accesses. For competemes
now briefly sketch how to extend our model to account for this case. First, th&ihas
of memory operations must be distinguished. Then, we could define synchronized versions
of, say, location consistency, along the lines that follow. We demand that &xest a
topological sort/” of all synchronizing operations. Instead of allowing each location to be
serialized according to an arbitrary topological sort of the computation, wdraonghe
topological sort to be consistent with. Of course, many other variations are possible,
and we did not investigate the whole spectrum of memory models. The point is that our
framework seems to be powerful enough to encompass many (and maybe albtingere
memory models.
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2.5 Summary

In this chapter, we set up the computation-centric theory of memory models. Ppoetant
concepts areomputationgDefinition 1) andobserver functionéDefinition 3), which lead
to the definition of a memory model (Definition 5).

We gave examples of computations in Section 2.1.1, and discussed the relatigeomeri
computation-centric and processor-centric frameworks in Section 2.1.3.

Finally, we showed how to express sequential, location, dag, and processotarmysis
within the computation-centric theory. These models are analyzed in Chapteef we
introduce five properties of memory models and argue whether each model enjoys them.

The theory of dag consistency is further developed in Chapter 4, where we defiiss a cla
of models similar to WW and WN-dag consistency, and understand their propeamties
mutual relationships.

It is my hope that with this very skeletal model | have constructed
the reader will perceive some simple unifying principles of the field—
principles which might otherwise be obscured by the enormously in-
tricate interplay of phenomena at many different levels. What is
sacrificed is, of course, strict accuracy, what is gained is, | hope, a
little insight.

D. R. HofstadterGodel, Escher, Bach: an Eternal Golden Brajghge 505

27



Chapter 3

Properties of memory models

In this chapter we discuss five properties of memory models. | argue that a maoael is
“reasonable” unless it obeys all five properties. The first three propertie®rnally
specified. The other two are not well defined and have a more psychological flavor.

A model iscompletef it allows at least one observer function for each computation.

A model ismonotonicif an observer function is still in the model after some dag edges
are removed.

A model is constructibleif it is always possible to extend an observer function to a
“bigger” dag.

A model confines nondeterminismf, whenever there is a join node that follows all
nondeterministic memory accesses, the successors of the join node do not obgerve an
nondeterministic behavior. (See Section 3.4 for a definition of nondeterminism.)

A model isclassical(as opposed to “quantum?”) if reads behave like no-ops (i.e., succes-
sor nodes have no way to deduce that a read operation is performed by a predecessor).

Recall that in Chapter 2 we defined the memory models SC, LC, WW, WN, and PC.
Table 3.1 summarizes the properties enjoyed by these models. From the tabée sexc
that WW and WN consistency are “unreasonable”, since they lack some property.

In the rest of the chapter, we define and discuss the five properties, trying altow
which conditions should be met in order for a property to be true.

3.1 Completeness

A memory model that defines observer functions only for certain computations would be
pretty useless. (Imagine having a memory system that, fed with a computseiys,'l
cannot do this”.) We say that a modetmsmpletef it defines an observer function for every
computation. Completeness is thus a necessary property of all useful memory.models

Definition 16 A memory model\ is completeif, for any computatiorz, there exists an
observer functio® such tha G, ®) € A.
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model| complete| monotonic| constructible| confines nondet. classical
SC v v v v v
LC v v v v v
WW v v v no v
WN v v no v v
PC v v v ?? v

Table 3.1 Summary of the properties enjoyed by the memory models akfm€hapter 2. A
check markv" means that the model has the property. The first three colueiesto properties
for which there is a mathematical definition. The last twauomhs refer to properties that are not
precisely defined, and that | believe are desirable from graromer’s perspective. Consequently, a
check mark in these columns means “| believe the model hgetperty”. A “no” means, however,
that the model definitely does not have the property. A “??amnsghat my intuition of the property
fails to apply to the model, and thus | don’t know how the mdakhaves.

A model weaker than a complete model is also complete.

Theorem 17 Let A and A’ be two memory models. & is complete and\ C A’, thenA’
is also complete.

Proof: SinceA is complete, then for any computatioi) there exists an observer func-
tion ® such tha{G, ®) € A C A’, proving thatA’ is also complete. n

For the proof that all the models in Table 3.1 are complete, we argue that sequential
consistency is complete, and that all those models are weaker than sequergiatency.
The proofs are not very interesting, and the reader can skip the rest of thisseith no
harm.

Lemma 18 SC is complete.

Proof: LetG be a computation. We know that there exists a topologicalBaftG. By
definition, (G, L) € SC. =

Lemma 19 The memory models LC, WW, WN, and PC are weaker than SC, that is, the
four inclusions SCGC LC, SCC WW, SCC WN, and SCC PC hold.

Proof: The inclusions SCC LC and SCC PC are immediate from the definitions of the
models, since if there exists a global topological sort, then there also exmslagical
sort for each location and for each connected component.

Proof that SCC WN: Let (G, ®) € SC and® = L for some topological sorT. We
want to prove thatb obeys Definition 13. By definition of -, Property 13.1 holds. We
now prove Property 13.2. Suppose, by contradiction, that there exists autrigl@ndw
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of nodes such that < v < w, and thatd(l, w) = ®(I,u) holds, but®(l,v) # ®(l,u).
The relation®(l, v) # ®(l, ) implies that+ (I, v) is some node on the path from: to v.
Consequentlyy writes to/, andz lies between: andw in 7, whencelr(l, ) cannot be
the same a£(/, w). This contradiction proves the property.

Proof that SCC WW: The proof is the same as the proof that SGVN. n

We can now conclude that all the above models are complete.
Theorem 20 The memory models SC, LC, PC, WN, and WW are complete.

Proof: Since SC is complete (Lemma 18) and SC is stronger than every model in the
statement (Lemma 19), the theorem follows from Theorem 17. n

3.2 Monotonicity

We now definanonotonicity Suppose we remove some edges from a computation. Then,
it becomes possible to execute the dag in more ways than it was possible befgrall Y
valid executions of the original dag should still be valid, as should be all validrees
functions. Monotonicity says that a valid observer function is still valiérafte remove
edges from a dag.

Definition 21 A memory modeA is monotonicif, for all ((V, E), ®) € A, we have that
((V,E"),®) € AforanyE' C E.

We now informally argue that the memory models SC, LC, PC, WN, and WW are mono-
tonic. (A formal proof would be tedious and not say anything new.) For the models defined
in terms of the last writer (that is, SC, LC, and PC) observe that a topallagpct of a com-
putation is still a topological sort after some edges are removed from the catiputin
other words, removing edges can only grow the set of topological sorts, and thus of observe
functions. For WN and WW, observe that the implications in Properties 13.2 and 14.2 can
become vacuously true when edges are removed, but can never become falsevérihe
true before the removal.

3.3 Constructibility

In this section we defineonstructibility, which says that if we have a dag and an observer
function in some model, it is always possible to extend the observer functiorbigget”
dag. Constructibility tries to capture the idea that a memory model can benrepted
exactly, i.e., without implementing a stronger model. Remarkably, not all memodgls

are constructible. We show that for an arbitrary memory model, howeveg, iha natural
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way to define a unique constructible version of it. Finally, we give necessargu#ficient
conditions for the constructibility of monotonic memory models.

We now explore the basic idea behind constructibility. Suppose that, instead of being
specified completely at the beginning of an execution, a computation is revadiad
by an adversary.Suppose also that a consistency algorithm exists that maintains a given
memory model online. In a sense, the consistency algorithm is just building arvebser
function while the computation is being revealed. Suppose that, at some point in time
an observer function exists for the part of computation known so far, but when a new
computation node is revealed by the adversary, the observer function cannot be @xtende
to the new node. In this case, the consistency algorithm is “stuck”. It should hagert a
different observer function in the past, but that would have required some knovadétige
future behavior of the adversary. Constructibility prohibits this situation froouwmng.

A valid observer function in a constructible model can always be extended to a dage
when new dag nodes are revealed.

Suppose now that we have a nonconstructible model, and an online consistency algorithm
that supports the model. The algorithm cannot run the risk of producing an observer func-
tion that cannot be extended when new nodes are revealed, because it does not know what
the adversary does. Therefore, the algorithm can produce only a strict subsetobf the
server functions allowed by the model—that is, it must maintain a stisttbnger model.
Consequently, computer architects and programmers should not adopt a nonconstructible
memory model; they should just adopt the stronger model.

The formal definition of constructibility depends on the notion of a “prefix” of a dag.

Definition 22 A dagG’ is aprefix of a dagd if, for all nodesu andv, we have that
(u<gV)AN(veEG) = u=<euv.

In other words, a dag’ is a prefix of another da§ if, whenever a node is i6’, all the
predecessors of the node are als&rin

We also need to introduce a new notation®lfs an observer function for a computa-
tion G, andG’ is a subgraph of7, we say thatt’ = ®|s is therestrictionof ® to G’ if ¢’
is an observer function fak’ and coincides witltz over its domain. We also say thatis
anextensionof &' to G.

We now define constructibility.

Definition 23 A memory modeA is constructibleif the following property holds: for any
computation and for any prefixG’ of G, if (G', ') € A, then there exists an extensién
of &' to G such thafG, @) € A.

Definition 23 says that if the memory model allows an observer function for aptieéin
the function must be extensible to the entire dag.

1Such is indeed the case with multithreaded languages, such as Cilk [Blu@@fe Joerg 1996], where
the adversary corresponds to the programmer.
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A simple (almost trivial) consequence of constructibility is given by the nexdrtéra.
Theorem 24 A constructible memory model is complete.

Proof: Immediate from the fact that the empty computation is a prefix of all computations
and, together with its unique observer function, belongs to every memory model. =

The rest of this section addresses three topics. We first show that, foreangnymodel
(whether constructible or not), a well-definednstructible versionof the model exists.
We then give necessary and sufficient conditions for the constructibility of coengie
monotonic memory models. Finally, we use these conditions to prove the constityctibil
of SC, LC, and PC. We state that WW is constructible and that WN is not, but dloéspr
are delayed until Section 4.4, where a wider class of dag-consistent models isl defthe
their properties analyzed.

3.3.1 Constructible version of a model

In this section, we prove that the weakest constructible madestronger than a given
modelA exists and is unique. We call* the constructible versiorof A.

We start by proving that the union of constructible models is constructible, and then
define the constructible version as an infinite union of constructible models.

Lemma 25 LetS be a (possibly infinite) set of constructible memory models. Then A
is constructible.

Proof: Let G be a computation, and €’ be a prefix ofG. We want to prove that, if
(G", @) € Uaes A, then there exists an extensidrof the observer functio®’ such that

(G, @) € Upes A

If (G',®") € Upes Asthen(G, @) € AforsomeA € S. SinceA is constructible, there
exists an observer functioh for G such thaf{ G, ®) € A and®|s = @'. Consequently,
(G, ®) € Upes A, proving that J, s A is constructible. C

Theorem 26 For any memory model, there exists a unique memory modelsuch that
26.1. A* C A;
26.2. A* is constructible;

26.3. for any constructible mod&l’ such thatA’ C A, we haveA’ C A*.

Proof: Let A* be the union of all constructible models such thatA’ C A. Then
A* satisfies Condition 26.1. Alsa)* satisfies Condition 26.2, because of Lemma 25.
Condition 26.3 is satisfied by constructionAf.
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To show uniqueness, suppose that there exists another mbskisfying the three prop-
erties. Them\’ C A*, because of Condition 26.3, and C A’, again because of Condi-
tion 26.3 applied ta\’. Therefore, we hava* = A'. ]

We now define what we mean by the constructible version of a model.

Definition 27 For any memory model, the uniqueA* that satisfies all the conditions of
Theorem 26 is called theonstructible versiorof A.

The constructible versioa* of a modelA is therefore the weakest constructible model
that is stronger thax. Observe that\* = A if and only if A is constructible.

Giving a simple expression for the constructible version of a memory model carype v
hard in general. For example, | have not been able to characterize the cobktnarision
of WN other than by means of Definition 27. In Chapter 4 we define a related mockl call
NN, and in Section 4.5 we prove that location consistency is the construcepd&m
of NN.

3.3.2 Conditions for constructibility

In this section, we establish necessary and sufficient conditions for menuatglsito be
constructible.

Recall our intuition of constructibility as the property that allows us to exendlid
observer function to a bigger dag. One might try to extend the observer function one node
at the time (including of course all the incoming edges), and hope to prove constityctibi
in this way. While fundamentally correct, this intuition suffers from twolgems. First,
the memory model may not be complete, and there may be no valid observer function for
the intermediate dags. Second, the order in which nodes and edges are insertegkeay m
a difference, in the sense that one order of insertion may lead to an extensieramother
order might not. Neither of these difficulties arises if the memory model is catanpihd
monotonic, however.

We start by defining the concept of angmented dag

Definition 28 LetG = (V, E) be a dag, and le® be a memory operation (either a write to
locationl, a read from locatior, or a no-op). The@ugmented da@f GG, denoted aug(G),
isadagG’' = (V', E'), where

Vi = vulfina(G)} ,
E' = EU{(ufina(G)):ueV},

and finalG) ¢ V is a new node that performs the memory operatibn

The augmented dag, therefore, consists of the original dag plus a new node which is a
successor of every node in the original dag.
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In the next theorem, we give necessary and sufficient conditions for the constityctibi
of monotonic memory models.

Theorem 29 A monotonic memory modal is constructible if and only if for allG, @) €
A and for all memory operation®@, there exists an observer functid such that we have
(aug,(G), @) € A and®’'|; = .

Proof: The “=" part is obvious, sincé& is a prefix ofaug, (G).

For the “<=" direction we must prove that, in the given hypotheseg; i§ a prefix ofG’
and(G, ®) € A, then(G’, @) € A for some extensio@’ of ®.

We first state without proof an important property of prefixes of a finite dags i a
prefix of G’, then there exists a sequence of d&gsGo, . . ., G, such thaty; is a prefix of
G,.1, the graph’; . ; has the same nodes@splus one new node, and the sequence starts
with G; = @, and ends witlty;, = G'.

The proof of the theorem uses induction on the lerigthsuch a sequence. The base case
k = 1 is obvious. Now, suppose inductively that there exidstsuch that G, ®x) € A,
and letO be the memory operation performed by the nodé/jn; that does not belong
to G.. By assumption, there exists an observer funciigrsuch thataug, (Gy), @}) € A.

Let (V/, E}) = aug,(Gx) and(Vi41, Ex+1) = Gg41. Then, up to isomorphisms, we have
Vit1 = V) andEy,, C E}. By monotonicity ofA, we have(G1,, ) € A, completing
the inductive step. n

One interpretation of Theorem 29 is particularly significant. Consider aruggecof a
computation. At any point in time some prefix of the dag has been executed. Ifiatesl
it is possible to define a “final” state of the memory (given by the observer fumoti the
final node of the augmented dag), then the memory model is constructible.

3.3.3 Constructibility of example models

We now prove the constructibility of SC, LC, and PC. Theorem 29 is used in the &of
also know that WW is constructible and WN is not constructible, but we delay the proof
until Section 4.4, where we discuss a whole class of dag-consistent models.

Theorem 30 SC, LC, and PC are constructible memory models.

Proof: We just give the proof for LC, since the proof for the other models is similar. The
proof uses Theorem 29. Since LC is monotonic, we just need to prove that it is possible t
extend any observer function to the final node.

Let (G,®) € LC. Therefore, for all location$ there exists a topological sdft(/) of
the dagG' such that for all nodes, we haved(l,u) = Lr)(l,u). Now, for any memory
operation?, consider the augmented dagg, (G), and let7” be the following total order
of aug,(G): all the nodes of i in the order specified by (/), followed byfinal(G).
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It is immediate tha” is a topological sort odug,(G). Then, the functior defined by
®'(l,u) = Ly (l,u) is a valid LC observer function oaug,(G), and it coincides withp
onG. The theorem follows by applying Theorem 29. ]

3.4 Nondeterminism confinement

In this section and in Section 3.5 we discuss two more “properties” of memodgls. Un-
like completeness, constructibility, and monotonicity, these two propentgelsy no means
well defined. Instead, they try to capture my intuition of reasonablenessslgdbiion we
address memory models that confine nondeterminism, or, more precisely, memotg mode
thatdo notconfine nondeterminism. Specifically, WW-dag consistency is one such model.
A computation ismondeterministicwhen there exist two incomparable nodes that either
write to the same location, or one of which writes and the other reads the saatierioc
We also say that these memory accessaslict. This notion of nondeterminism captures
the idea that there are some conflicting memory accesses and the conflictesaloed
by the computatianit is worth pointing out that the conflict might indeed be resoltgd
the memory modeh some funny way. For example, the memory model might say that all
nodes with a prime number of outgoing edges win when conflicting with other nodes, and
thus the execution of the computation can be deterministic even if the compusation
For our purposes, these subtleties can be ignored.
| want to discuss the case where part of a computation is nondeterministic, vasthe
is deterministic, and | want to argue that the deterministic part should belesaeministi-
cally. This requirement, however, is too strong in general (afternahyenode is determin-
istic, if considered in itself), but there is one case where it makesesd he specific case |
have in mind is when there is a “join” node and every node in the computation is either
a predecessor or a successor.0fSuppose that the part of computation composed by the
successors af is deterministic, and the part composed by the predecessors is not. | want
to argue that the deterministic part should behave deterministically. Wy\talasistency
does not obey this requirement.
Consider the computation in Figure 3-1, and suppose the computation is executed under
a WW-dag consistent memory model. One possible outcome of the computation is that
[y = 1 and/, = 0. We now argue that this behavior is undesirable. The above computation
may be representative of the following pseudo-Cilk program:
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Figure 3-1. A computation used to show that WW does not confine nondetésmi The com-
putation consists of two nodes (on the left) that write tcataan /, and of two other nodes that
read!.

spawn (wite 0.0 to A);
spawn (wite 1.0 to A);
sync;

if (A!=0.0) {
/* A can now be == 0.0 ! */
B=1.0/ A

}

My point is that one cannot write meaningful nondeterministic programs in such a model,
since a single pair of incomparable writes makes the rest of the program nonadéetéani
and the system is permitted to never resolve the concurrent writes in anthg other.

As a programmer, | believe that, at any node, all predecessors should be rezmfdast”

and ignored thereafter, for reasons of abstraction and modularity, at thdeasty For
example, you might want to call a subroutine, and wait for the result. You certdinhot

want to know how the subroutine works internally in order to call it. If nondetermminis

is not confined inside the subroutine, you must be aware that nondeterminism can escape
from it. This behavior seems unreasonable, because it breaks the abstraction houndary
WW does not confine nondeterminism. Since GS-location consistency is the same model
as WW-dag consistency (as we argued in Section 2.4.3), it has the same problem.

The other models we discussed so far do indeed confine nondeterminism. For example,
Figure 3-1 does not apply WN-dag consistency. We now argue that WN confines nonde-
terminism. Historically, this was the reason why WN was introduced itfitsiegplace. The
main idea is that every node is forced to have a viewpoint on memory, given by theebs
function. This viewpoint influences all the successors and hides past nondetermansm fr
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their sight. In the example in Figure 3-1, the middle node is forced to “choose” betwee
one of the preceding writes, and the last node must be consistent with that choieeebeca
of the “convexity” Property 13.2.

Sequential consistency and location consistency arguably confine nondeterminism, be-
cause every node has a clear idea of whether a write happened or not, and sucagstsors m
see the same order of writes.

Finally, my intuition fails to see whether processor consistency confines nomaeitan
or not. The main problem is that processor consistency is naturally defined only nhen t
computation consists @ chains of instructions. In this case, there is no notion of join
points that resolve nondeterminism, and the property holds vacuously.

3.5 Classical and “quantum” models

In this section we discuss a strange behavior of memory models that treat reatiooyse
in a way different from no-ops.

Historically, the following definition was proposed to confine nondeterminism W-W
dag consistency. The definition is expressed using the same wording as Definition 11.

Definition 31 The shared memonyt of a multithreaded computatiod = (V, E) is dag
consistentf the following three conditions hold.

1. Whenever any node € V reads any locatiort € M, it receives a value written
by some node € V' such thaw writesz to/ andu 4 v.

2. For any three nodes, v, w € V, satisfyingu < v < w, if v writes some location
[ € M andw readsl, then the value received lyis not written byu.

3. For any three nodes, v, w € V, satisfyingu < v < w, if v reads some location
[ € M, receiving a value written by, and moreovens reads/, then the value
received byw is not written byu.

Definition 31, however, never appeared in the literature, and Definition 1R-@4§
consistency) was used instead. We now discuss what is wrong with Definition 31.

Observe that Definition 31 contains a condition of the form “and nodeadsa loca-
tion”. This phrasing is dangerous, because reading a location can possibly influence the
memory semantics. Consider, for example, the computation in Figure 3-2. Suppose that
the computation is as shown in the figure, with the middle node being a no-op. In this
case, a possible outcome of the computation istthat 1 and/, = 0 (if Definition 31 is
used as memory model). Now, suppose that the middle reafislocation/. Then, all
executions must satisfy the propeity= /. The system implementing the memory model,
therefore, exhibits a behavior of this kind: If the middle node does nothing, the value of
is indeterminate when the node is executed. If the middle mbderved, then suddenly
the location becomes determinate.
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Figure 3-22 A computation used to show “quantum” effects in Definition Fee the text for an

explanation. The middle node may either do nothing, or readtion!. If the read occurs, then
Definition 31 confines nondeterminism, otherwise it does not

Like the case where nondeterminism is not confined, | regard this sort of behavior as
undesirable for a programmer. The observer function ensures that it is alwaylsl@tssi
speak about the “value of a location at a node”, no matter what operation the node gerform
on memory (including a no-op). The point of this section is that one should be careful in the
treatment of reads and no-ops. The technical machinery introduced by observerfsincti
IS a way to give proper memory semantics to no-ops.

None of the models considered in Chapter 2 exhibits quantum effects, as can be seen
by inspecting the definitions, where reads and no-ops are always treated in ghevagm
These model are, therefore, “classical”.

3.6 Summary

In this chapter we defined five properties that every reasonable memory model sheyi
completeness, monotonicity, constructibility, nondeterminism confinement, assiaal-
ity.

The first two are almost trivial and not very important (in the sense that youdwatl
even call “memory model” something that does not obey them).

The discovery of constructibility is a major contribution of this thesis, dreldonse-
guences of non constructibility are discussed in detail in Chapter 4.

Whether the other two properties are necessary can be matter of discushioh.théy
are (would you buy a quantum computer?). Other people can disagree, but, at the very
least, this thesis has the merit of showing these properties explicitly.
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Chapter 4

The weakest memory models

In this chapter we tackle the problem of identifying the weakest reasonable merodel.
In order to follow the exposition, it will be helpful to look at the diagram in Figurg, 4-
which depicts all the memory models discussed in this chapter.

We have already seen that WW-dag consistency is unreasonable, because it does not
confine nondeterminism. Yet, dag consistency has been useful as a memory model for
Cilk. After we (the Cilk authors) discovered this problem of WW, we proposed &M
better memory model for Cilk. In this chapter, we show that WN is not good eitheaiuise
it is not constructible.

This chapter will show how to fix dag consistency so that it obeys the five propertie
discussed in Chapter 3.

In the same spirit of WW and WN, in this chapter we define a whole class of dag-
consistent memory models, including NW- and NN-dag consistency, which compieme
the definitions of WW and WN. The strongest form of dag consistency is NN.

Of the four models, only WW dag consistency turns out to be constructible. Recall now
that, even if a model is not constructible, we can always look at its constieie®rsion,
which has all the properties of the model and moreover is constructible. Resharkahis
chapter we prove that NN= LC. In other words, if you want to implement the strongest
form of dag consistency, you cannot avoid implementing location consistency.

What about WN and NW? | know very little about them. NW does not confine non-
determinism, and it is likely that NWhas the same problem. WiNeems to obey all the
properties described in Chapter 3, but | could not find any simple way to defindet;, ot
than by means of the definition of constructible version.

The rest of this chapter is organized as follows. We first define the class cbaagstent
memory models, and identify WW, WN, NW, NN among them. (WW and WN are the
models that we defined in Section 2.4.3.) We then show that these four models are dis-
tinct, and prove that NN is the strongest dag-consistent model. We then detdihmine
constructibility properties of these four models, and prove the equivalence oahtNLC.

We finally comment about what this discussion can tell us about the weakest fglasona
memory model.
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SC= SC stronger

N*
NW*

N
NW
Figure 4-1: Summary of the relations among the memory models discussbésichapter. A line

means that the model at the lower end of the line is strictlgkee than the model at the upper end.
For example, LC is strictly weaker than SC. We do not know wheactly WN and NW lie in

the diagram.

LC =

\,

WN*

é/z\

weaker
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4.1 Dag-consistent memory models

In Section 2.4.3 we introduced two memory models: WW and WN. We remarked that
these models are equivalent to the two dag consistency models of [Joerg 1996; Blumofe
etal. 1996b] and [Blumofe et al. 1996b], respectively. We also observed thatfiiiioles

of WW and WN are very similar. We now define a classlaf-consistent memory models
whose definition is similar to WW and WN, and complete the selection of WI\dsdy
defining the two models NW and NN.

Recall the definitions of WW (Definition 14) and WN (Definition 13). Of the two prop-
erties required by each definition, the first one is the same for both models. ddwedse
property is different, but it can abstracted as follows. Qét, u, v, w) a predicate on nodes
and locations, and consider the following version of the property:

For all locationd, and for each triple, v, andw of nodes such that < v < w,
we have that

O(l,w) =0(l,u) AN QL u,v,w) = ®(l,v) = ®(l,u) .

If we let Q(l, u, v, w) = W(l,u), we get WN. In the same way, if we I&X(, u, v, w) =
W(l,u) A W(I,v), we get WW. In other words, we get different forms of dag consistency
by varying the predicat®.

In an analogous fashion, we can defin@-@lag consistency model for any predicéle
we might think of.

Definition 32 Let@ : M x V x V x V > {true, false}. ()-dag consistencys the set
DC(Q) = {(G, ®)}, whereG = (V, E) is a computation, an@ is an observer function
for G such that the following properties hold:

32.1. Foralll e Mandforallu € V, if W(l, u) then®(l, u) = u.

32.2. For all locationd, and for each triplex, v, andw of nodes such that < v < w,
we have that

O(l,w) =0l u) ANQ(l,u,v,w) = ®(l,v) = ®(l,u) . 4.1)

By varying ), we get the whole class dfag-consistent memory model$hey all obey
a convexity condition (Property 32.2) similar to the defining property of WW and WN
(Property 14.2 and Property 13.2). The rest of this chapter is concerned with foau|zarti
dag-consistent models: WW, WN, NW, and NN. They are defined as follows.

Definition 33 The memory models WW, WN, NW, and NN are defined as follows.

WW 2 DC(W(I, u) A W(L, v))
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WN 2 DCW({,u))
NW £ DC(W(,v))
NN 2 DC(true)

Rationale: We are interested in NN because it is the strongest dagstensimemory
model. (See Section 4.2.) We introduced WW and WN in Sectidr82remarking
that they are equivalent to the two dag-consistent models tith Blumofeet. al

| published in the past. | consider NW for completeness amansgtry reasons, al-
though we do not fully understand what the definition reallyams and whether this
memory model has any benefit.

Monotonicity of dag-consistent models We now argue informally that all dag-consistent
models are monotonic. Consider a computation and a dag-consistent observer function.
Removing edges of the computation cannot create new paths in the dag. Consequently, if
Property 32.2 was true before the removal for any three nadesandw, it is still true

after the edges are removed.

4.2 Relationships among dag-consistent models

We now analyze the mutual relationships among the four models we just defined. In sum-
mary, NN is the strongest model, WW is the weakest, and all the models drectdis
Moreover, NN in stronger thafd-dag consistency, for any predicdpe (Stronger is taken

here in the technical sense of Definition 6, i.e., stronger or equal.)

Theorem 34 The following inclusions hold among the NN-, NW-, WN- and WW-dag con-
sistency models:

34.1. NNC NW
34.2. NWC WW
34.3. NNC WN
34.4. WNC WW
34.5. WNZ NW

34.6. NWZ WN

Proof: The four inclusions in Relations (34.1)-(34.4) are immediate from the definitions.
We must now prove that the inclusions are strict, and also prove Relations#84d.634.6).
We shall exhibit two pairs of computation/observer function. The first pair belongd¥o W
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Figure 4-2. (a) Example of computation/observer function belongingvi&/ and NW, but not to
WN or NN. (b) Example of computation/observer function lbgjimg to WW and WN, but not to
NW or NN. Each of the two dags in the figure have four nodésB, C and D (the name of the
node is shown inside the node). The memory consists of orgylaration, which is understood.
Every node performs a read or a write operation on the lacdfmr example W 0 means that the
node writes & to the location, and?1 means that it readsig. The value of the observer function
is displayed below each node. For example, in part (a), theevat the function for nod€’ is A,
which accounts for the fact that nodéreads the value written by node
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and NW, but not to the other two models; the second belongs to WW and WN, but not to
the other two models. These two counterexamples therefore suffice to protednern.

For the counterexamples, it is enough to consider a single memory lo¢atwbrch will
henceforth be left unspecified. Figure 4-2 shows two dags. The first belongs to WW and
NW, but not to WN or NN, as it is easily verified. In the same way, the neade verify
that the second example in Figure 4-2 belongs to WW and WN, but not to NW or MNa\.

Incidentally, NN C NW N WN and WW 2> NW U WN, as can be shown by suitable
counterexamples.

The model NN is indeed the strongest dag-consistent model, in an absolute sense, as
stated by the following theorem.

Theorem 35 For all predicates), we have that
NN C @-dag consistency

Proof: The proofis immediate from the definition. An observer function satisfying Prop-
erty 32.2 withQ(u, v, w,l) = true also satisfies Property 32.2 for any other predicate

4.3 Dag consistency vs. location consistency

In this section we investigate the relation between the dag-consistentsvadilocation
consistency. It turns out that location consistency is strictly stronger tiNaddg) consis-
tency. Since NN-dag consistency is the strongest dag-consistent model, laaaigs-
tency is also stronger than all the dag-consistent models.

We now prove that location consistency is strictly stronger than NN-dagstensy. \We
split the proof into two parts. We first prove that KCNN, and then that LG NN.

Theorem 36 Location consistency is stronger than NN-dag consistency, that is; INDI.

Proof: Let (G,®) € LC. We want to prove thatGG, ®) € NN. For all locationd, we
argue as follows. Suppose, by contradiction, tttat®) ¢ NN, and therefore there exist
three nodes, v andw that violate Property 32.2. In other words, supposethaty < w,
and®(l,u) = ¢(l,w), but®(l,v) # ®(I, w).

Since(G, @) € LC, there exists a topological sofi(/) of the dagG such that(l, z) =
L7 (L, z) for all nodesr. Therefore, we have thaly ) (1, u) # Ly (l,v), which implies
that Lr;(/,v) is some node: on the path fromu to v. Consequentlyy writes to/, and
x lies between, andw in 7 (1), whencelr) (I, u) cannot be the same &s-;(/, w). This
contradiction proves the theorem. [

As a corollary, LC is also stronger than all the other dag consistency models.
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Figure 4-3: Example of computation/observer function belonging to Nitrimot to LC. An expla-
nation of the conventions used in the figure appears in thigocepf Figure 4-2.

Corollary 37 The following relations hold:

LC C NW
LC C WN
LC C WW

Proof: The corollary follows immediately from Theorem 36 and Theorem 34. =

Corollary 38 NN, NW, WN and WW are complete memory models.

Proof: The corollary follows from completeness of LC, Theorem 36, Corollary 37 and
Theorem 17. m

In order to prove that location consistency is strictly stronger than NNedagistency
we shall present a counterexample in the same style as Theorem 34.

Theorem 39 LC # NN.

Proof:  Figure 4-3 shows a pa{z, @) that belongs to NN, as can be verified. As in the
proof of Theorem 34, there is a single memory locatiomhich is understood.

We shall now prove that the pair shown in the figure does not belong to LC. Suppose by
contradiction that there exists a topological sprof G such that®(l,u) = L7(I,u) for
all nodesu. Then®(l,C') = D implies thatB <+ D. Since alsaD < E, andD writes,
we have that(/, E') # B. Thus, the pair in the figure does not belong to NN, proving the
theorem. ]

We can now conclude that location consistency is strictly stronger than NNatesis-
tency.
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Corollary 40 LC C NN.

Proof: The proof follows immediately from Theorem 36 and Theorem 39. [

4.4 Constructibility of dag-consistent models

Nothing can be said, in general, about the constructibility of dag-consistent m8dete
are constructible, some are not. We have, however, results for the four moelesew
concerned with. In this section, we prove that NN, WN, and NW are not constieicind
that WW is constructible.

Theorem 41 The memory models NN, WN, and NW are not constructible.

Proof: We first prove that NN is not constructible. The same proof also applies to WN.

Consider Figure 4-4. The dag on the left of the dashed line is a prefix of the whole
dag, and a valid NN observer functidnis shown below the nodes. There is one memory
location/, which is understood.

We now prove that it is not possible to NN-extend the observer function to Aodéere
are three writes in the computation. It cannot be thdt /') = A, becaus@(/, B) # A. It
cannot be tha®(l, F') = B, becauseb(l, C') # B. Finally, it cannot be tha®(l, F') = D,
either, becaus@(/, E) # D.

We now prove that NW is not constructible. The proof is similar to the proof for NN, b
we need a different computation, shown in Figure 4-5. As before, the readerrifgiritvet
the figure shows a valid NW observer function, but there is no way to extendhié toew
noder..

Theorem 42 The memory model WW is constructible.

Proof: Recall that WW is monotonic (see Section 4.1). Therefore, by Theorem 29, it is
sufficient to show that for allG, ®) € WW and for all memory operation, there exists
an observer functio®’ such that we havéaug,(G), ') € WW and®'|; = ©.

Let (G, ®) € WW, and letO be any memory operation. L&' = aug,(G), and®’ be
an extension ob to G'. The extended observer functidis completely specified, except
for the final noddinal(G). Let 7 be a topological sort ofs’. We complete the definition
of ¢’ as follows:

(I, final(G)) = L+ (I, final(G)) .

It is immediate tha®’ is an observer function. We now prove théat, &) € WW.
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Figure 4-4: Computation used in Theorem 41. There is one memory logatibith is understood.
The name of a node is shown inside the node. The dag on the ke dashed line is a prefix of
the whole dag, and a valid NN observer function for the prefighiown below the nodes.

We first prove that Property 1 of Definition 14 is satisfied.ulE G, then®'(l,u) =
®(l,u) and the property is true becauseobeys the definition of WW. Moreover, by
construction, if W/, final(G)) then®'(l, final(G)) = final(G), thus verifyng the property.

We now prove Property 2 of Definition 14. Consider any triple.pf, andw such that
u < v < w, and moreover we have Wu) and W, v). If w € G, we have tha®’ verifies
the property, becausé does. Otherwise, we have that = final(G). Because of the
definition of last writer and the assumption that\W.) holds and that W, v) holds, we
never have thab(/, w) = ®(l, u), and therefore the property holds trivially. This concludes
the proof of the theorem. n

4.5 LCisthe constructible version of NN

In this section we prove that NNs equivalent to LC. This is a major result of this thesis,
and it implies that, whenever you want to implement NN, you must also impleb@nt
From a practical point of view, NN and LC are thus the same model.

Our strategy is to prove that NNs both weaker and stronger than LC, wherefore they
are the same set. The difficult part is to prove that'NINLC.

Lemma 43 NN* C LC.
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Figure 4-5: Computation used in Theorem 41 for proving that NW is not toietible. There is
one memory location, which is understood. The name of a rodldwn inside the node. The dag
on the left of the dashed line is a prefix of the whole dag, analid WW observer function for the
prefix is shown below the nodes.

Proof: Let (G, ®) € NN*. We want to prove thatG, @) € LC.

Consider a single memory locatiénWe claim that there exists a topological sértl)
of the dag such thak coincides with the last writer functiofi;(;). If the claim is true, then
the theorem follows immediately. We then prove the claim by induction on the nushbe
nodes inG.

The base case of the empty dag holds trivially.

Suppose the claim is true for all dags with less tharodes. We now prove it holds for
all dags withk nodes.

Since (G, ®) € NN* and NN is constructible, we know that there exists an observer
function®’ such thataughg-og ), @) € NN*. Letw = ¢'(l, final(¢)) be the value of
the observer function on the final node®f and letG’ be the subdag afr consisting of
all nodesu where®(l, u) # w. We partitionG into three partsG’, the single nodev, and
whatever remains (let’s call /). The dag&’ does not contaiw and therefore has strictly
less thank nodes. Then, by inductive hypothesis, there exists a topological saft G’
such that?|.+ coincides with the “last writer” functio 7.

Let 7 ({) be the following total order of:: all the nodes iri/” in that order, followed
by w, followed by any topological sort aff. By construction® coincides with the “last
writer” function L ;).

If we can show tha¥ (/) is a legitimate topological sort @, then the claim is proven
and the lemma follows.
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To prove that7 ({) is a legitimate topological sort @¥, we reason as follows.

1. No node inH precedesu.

This property holds because, for alle H, u £ ®(l,u) = w, as stated by Condi-
tion 3.2 of Definition 3.

2. The vertexwv does not precede any nodeGfi

To see why, suppose by contradiction that there exists am@d€’ such thatv < w.
Thenw < u < final(G). Sinced’ (I, w) = w = ®'(/, final(G)), the definition of NN
implies that®’(l/, u) = w, and thus: ¢ G'. This contradiction proves th&t(/) is a
total order onG.

Lemma 44 LC C NN*.

Proof: Theorem 36 proves that LC NN. Moreover, LC is constructible, as stated by
Theorem 30. Therefore, by Condition 26.1 of Theorem 26, we have that NBI*. [

In summary, we have the desired equivalence of ldhid LC.
Theorem 45 LC = NN,
Proof: Immediate from Lemmas 43 and 44. ]

The exact characterization of WNind NW is, however, an open problem. With ref-
erence to Figure 4-1, all we know is that they do not lie in the path between NN@nd L
(unless they coincide with LC). The previous statement follows from theliatWN* and
NW* are both constructible, and LC is the weakest constructible model strongerkhan N

4.6 The weakest reasonable memory model

It is now time to draw some conclusion after so many pages of definitions and rieeore
Figure 4-1 will again be helpful for visualizing the rest of the discussion.

We have a few candidates for the weakest reasonable memory models, but rhest of t
are inadequate for one reason or another. Let's recapitulate what we know about them,
starting from bottom up.

WW is the original dag-consistent model [Blumofe et al. 1996b; Joerg 1996]. We argued
in Section 3.4 that WW does not confine nondeterminism.

WN is the dag-consistent model of [Blumofe et al. 1996a]. We proved in Section 4.4 tha
it is not constructible.
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NW is a strange model. | introduced it because of symmetry reasons, but | do not know
what it means. Moreover, the same example used in Section 3.4 against Wyfalss
that NW does not confine nondeterminism. We also know it is not constructible. In g sense
this model combines the worst aspects of WW and WN, and | see no reason to adopt it.

NN is a “nice” model. Its definition is very symmetric: it imposes the “cexity” con-
dition (Property 32.2) to all computation nodes, without exclusion. It is the strongest dag-
consistent model. It is not constructible, but its constructible version hasesiorm,
that is, location consistency.

In a sense, NN ithedag consistent model. The original intuition of dag consistency was
that some nodes (specifically, the writes) in a path should enjoy some sorvekagnNN
just says thaall nodes should have this property.

We also know something about the constructible versions. We proved in Section 4.5
that NN* = LC. LC obeys all the five properties (Table 3.1), and consequently we should
regard it as a reasonable model. Unfortunately, | know very little about Bivd WN'.

Since NW does not confine nondeterminism, | suspect that IR&$ the same problem,
although | do not know how to prove it. | do not see how constructibility could possibly
imply the confinement of nondeterminism in this case. Unfortunately, since thisrprope
of nondeterminism confinement is not defined precisely, and Wot known explicitly,

it is very hard to argue formally in one way or another.

I do not know WN' explicitly, either. Again, since WNloesconfine nondeterminism, |
expect WN to do the same, although | do not know how to prove it.

In conclusion, we have: LC is definitely OK, WNs probably OK, NW is probably
unreasonable.

Given my experience in investigating these memory models, | think itféstessay that
WN* is a highly artificial model, whose explicit characterization is cumbersometually
have a tentative definition of Wi\that runs, more or less, as follows. For every location
there exists a topological soft(/) such that, for every node, there exists a topologi-
cal sort7 (u) such that I) the observer function is the last writer according ta), and
I1) 7 (u) is consistent withy (1) with respect to all predecessorswofi.e., the predecessors
of u appear in the same order in both topological sdrtkjried some examples, and the
previous definition seems right, but | do not know how to prove that it is. If the defini-
tion is right, | would certainly discard WNbecause it is too complex (contrast it with the
simplicity of LC).

At the semantics level, we have therefore evidence that LC is the weaassinable
model, albeit with the caveats about WNNo matter how we argue at the semantics level,
however, the question of the weakest reasonable memory model will everteaéigolved
by implementation issues. Results on this side also suggest that locatiostenaogiis the
model of choice.

1 have the feeling thagveryconstructible model must be definable in terms of topological sortsaastd
writers, but this statement is rather mystical at this point.
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The BACKER coherence algorithm has been proven fast both analytically [Blumofe et al.
1996a] and empirically [Blumofe et al. 1996b]. Indeedyd&ER is the only coherence
algorithm for which there is any kind of performance guarantee. We now know, thanks to
Luchangco [1997], that BCKER maintains location consistency. Indeed, sine€BER is
defined as operating on every location independently of other locations, it cannot support
more than location consistency, and therefore location consistency sebdmshe exact
semantics of BCKER. Given this situation and our results about constructibility, | conclude
that there is no reason to relax LC.

4.7 Summary

This chapter is a discussion and an explanation of Figure 4-1. We investigafedpleeties
of the weak models shown in the figure, and proved that the relations among the models
are as shown in the figure. In particular, we proved that NN_C.

Most of the models are unreasonable for some reason. We argued that only LC &nd WN
are possible candidates for the weakest reasonable memory model, and thahuVid
be discarded too, because of its complexity. Analytical and experimentalsrésatitwere
proved by myself and other people in the past also prove that LC can be mainiaingd
simple and efficient algorithms.

We next consider the degrees of the angels in their hierarchies and
orders, for it was said above that the superior angels illumine the
inferior angels, and not conversely.

Under this head there are eight points of inquiry: (1) Whether
all the angels belong to one hierarchy? (2) Whether in one hierarchy
there is only one order? (3) Whether in one order there are many
angels? (4) Whether the distinction of hierarchies and orders is
natural? (5) The names and properties of each order. (6) The
comparison of orders to one another. (7) Whether the orders will
outlast the Day of Judgment? (8) Whether men are taken up into
angelic orders?

Thomas AquinasSumma Theologic&uestion CVIlII
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Chapter 5

Conclusion

The motivation of this thesis is best expressed in a well-reasoned posipien pa Gao
and Sarkar [1997]. Gao and Sarkar argue that it is essential to adopt an end-texend vi
of memory consistency that must be understood at all levels of software and hardwa
They say that this goal is possible with a memory consistency model based @ qaler
execution semantics. | agree wholeheartedly with their viewpoint. In &adhis point
it seems so natural to me that | would have given the computation-centrialpader
framework as an obvious axiom, if my advisor had not forced me to explain to otherts w
| was talking about.

Indeed, this thesis already provides some answers to the questions that edeimais
Gao and Sarkar’s paper. They say that the primary open question is to idetdyrad
but simple specification of memory consistency models based on partial oe=rtiex
semantics.” | believe that the framework developed in Chapter 2 is a goodbsdioithis
problem (although not perfect). Observer functions, while very simple, havesipriav
be a useful device for defining memory models and understand their properties. Gao and
Sarkar think that it is important to do research in the “design and impletn@amtz (more)
scalable cache consistency protocols for shared-memory multiprocessor”. évieugr
work on the B\CKER algorithm [Blumofe et al. 1996b; Blumofe et al. 1996b] already
resulted into a scalable cache consistency protocol, which igatsably efficient

Nonetheless, many open research questions still remain in this ared.nbw try to
formulate the issues | think are most interesting.

On the idea that weaker is simpler | have the feeling that it is not really possible to
implement anything less than location consistency. For examplekBr keeps multiple
incoherent copies of objects, and yet it supports location consistency. | have shelied
protocol for GS-location consistency by Merali [Merali 1996]. It is an effitiprotocol

that, among other things, is supposed to prove that GS-location consistency is demod i
because it can be implemented efficiently. | suspect that the protocol sictualborts
location consistency, however. Although | do not have a formal proof, | could not find a
single instance in which the protocol violates NN-dag consistency. If the protogpbsts
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NN-dag consistency, it must also support location consistency, because ofutig i@n
constructibility.

While developing BCKER, our group at MIT thought that dag consistency was a good
model, in part becauseABKER supports it efficiently. In the same way, Gao and Sarkar
argue that GS-location consistency is a good model because they can supporerttsffici
In both cases, the argument is bogus: you have to make sure that your consistency protocol
does not actually implement a stronger model. Otherwise, adopt the stronger madel. Ne
ther BACKER nor, for what | can see, the consistency protocol by Merali supports as weak
a model as for what it was designed. Luchangco has shown fatiBR actually supports
LC. It would be nice to know for sure what Merali’s algorithm exactly does.

Location consistency imposes extremely weak conditions, and | suspect you asoré to
hard if you want something weaker. In other words, | think that supporting anythingewea
than location consistency actually requirasare expensivprotocol. Here is an argument
by which it might actually be possible to prove this counterintuitive statememtation
consistency is maintained byABKER with one bit of state per cache location (the dirty
bit), plus knowledge of whether a location is in the cache or not. When you read a value,
you either read the cache or main memory, i.e., you have two choices. Suppose you want
a weaker model (i.e, more choices) than location consistency. Then you mpsnkee
bits of state to keep track of the various choices that are availabld@fingsin a more
expensive protocol. | also suspect that every system composed of a home location and
caches, where the caches only communicate with the home location, must supest at le
location consistency.

I would really like to know of a consistency protocol that is good for anything and which
provablydoes nomaintain location consistency.

On WN-dag consistency | do not know any simple definition of WN | suspect that
every definition of WN in “closed form” is messy. This open problem demands a more
intensive theoretical study.

On the reasonableness of location consistencyThe five properties that we regarded as
necessary for reasonableness may not be sufficient. Many reasonable algeritrttsat
cannot be programmed with location consistency alone (for example, a parati¢abées.
My current intuition is that location consistency is the right default, and thetial cases
should be treated specially with stronger rules. | do not know what the strongsranale
however, and, more importantly, how to implement them efficiently.

On constructibility  Constructibility is a necessary condition for the existence of an on-
line consistency algorithm maintaining a memory model exactly, but it is probadtly
sufficient. It would be nice to identify what the conditions are under which an exact ¢
sistency algorithm for a memory model exists.
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On release consistency | have discussed with Leiserson, Muller, and Randall [1997] the
possibility of defining a sort of “release consistency” within the computatiorFicdrame-

work. The basic idea is to augment the computation model with locks, whose purpose is
to introduce new edges in the dag. We then apply the existing LC model to the resulting
dag. This model does not correspond exactly to the release consistency model froaz [Gha
chorloo et al. 1990], because it specifies semantics for ill-formed prograhig, ielease
consistency does not. Nonetheless, this approach to release consistencyoytietdfrist
definition of release consistency that | could understand.

One important consequence of providing semantics for ill-formed programs is that me
ory operations performed outside the critical regions are given meaningful Sesparitich
appears to be desirable in certain applications. For example, suppose a progieeting
a certain data structure, and then it inserts a pointer to it in a shared, quuh is arbi-
trated by means of a lock. As soon as a computation node unlocks the queue, the pointer
and the data structure become visible to the next node that acquires the lock. | am opti-
mistic that further research on this area will clarify the tradeoffisvben these stronger
semantics and the efficiency of an implementation.
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