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Abstract

A memory model is some description of how memory behaves in a parallel computer sys-
tem. While there is consensus that sequential consistency [Lamport 1979] is the strongest
memory model, nobody seems to have tried to identify the weakest memory model.This
thesis concerns itself with precisely this problem.

We cannot hope to identify the weakest memory model unless we specify a minimal set
of properties we want it to obey. In this thesis, we identify five such properties: complete-
ness, monotonicity, constructibility, nondeterminism confinement, and classicality. Con-
structibility is especially interesting, because a nonconstructible model cannot be imple-
mented exactly, and hence every implementation necessarily supports a stronger model.
One nonconstructible model is, for example, dag consistency [Blumofe et al. 1996a].

We argue (with some caveats) that if one wants the five properties, then location con-
sistency is the weakest reasonable memory model. In location consistency,every memory
location is serialized, but different locations may be serialized independently. (Location
consistency is sometimes called coherence [Hennessy and Patterson 1996], andour loca-
tion consistency isnot the model with the same name proposed by Gao and Sarkar [1994].)

We obtain these results within a computation-centric theory of memory models, where
memory models are defined independently of scheduling issues and language semantics.
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Chapter 1

Introduction

All poets and writers who arein love with the superlative wantmore than they are capable of.
F. W. Nietzsche,Mixed opinions and maxims, n. 141

A memory model is some description of how memory behaves in a computer system. On
a sequential computer, the memory model is so natural and obvious that many people do
not even realize there is one: if you write some value to a memory location, you expect to
receive that value if you read that location afterwards. Moreover, by writing, you destroy
whatever value was already stored in the location. If you had a computer where writing to
a memory location does not destroy the previous value of the location, you would deem the
computer buggy and not use it—after all, how could you ever program such a machine?

The reason why the sequential memory model is so simple is that in a sequential computer
there is a clear notion ofbeforeandafter. The sequential computer executes instructions
in the order specified by its program, and, for every pair of instructions, one instruction
comes either before or after the other. In other words, instructions are totallyordered. A
computer architect may choose to design the machine so that it performs certain instructions
in parallel, yet, as long as the computer behaves as if it were sequential and obeys the
memory model, the programmer will never notice it.

As soon as we remove the restriction that instructions be totally ordered, weopen a huge
can of worms. It is no longer clear what occurs before what, and in fact, the very meaning
of “before” is nebulous. This situation is precisely what happens in a parallel computer. For
example, consider a machine with a single memory locationl and two processors (Figure 1-
1). Initially, l contains the value0. The two processors operate independently. The first
processor writes1 to l, and the second processor readsl and then writes2 to it. Call x the
value that the second processor receives when it reads. Nobody would argue thatx could
be 3, since no processor ever writes3 to l. In all likelihood, nobody would argue thatx
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Processor 1 Processor 2l  1 x ll  2
Figure 1-1: Simple example of program for two processors. The first processor writes the memory
locationl, and the second processor first reads and writes the location. Initially, l is 0.

could be2, either, since2 is written after the location is read. Yet, it is arguable thatx can
be either0 or 1.

The previous example illustrates two important points. First, we must live with the fact
that behavior of memory is not fully specified, and if you read a location, more than one
value may be legal. Second, we had better be precise in how we design and define the
memory model. If the memory model is not designed properly, strange things may happen
(for instance, a processor reads a value that nobody writes).

Unlike the sequential case, more than one sensible memory model for a parallel com-
puter exists, and more than one formalism exists to define them. We shall encountermany
memory models in the rest of the thesis.

Strong and weak memory models Certain memory models are more restrictive than
others, in the sense that they permit a subset of memory behaviors. We say that themodel
that allows a subset of the behaviors isstronger. Intuitively, a memory model in which you
can receive anything when you read a memory location is really weak, and probably com-
pletely useless (it is a kind of write-only memory). Accept for now this intuitive notion of
strength, even though it is inaccurate. (For example, according to our notion of “strong”, a
model where reads always return 0 would be really strong, since it has only one permissible
behavior.) A formal definition of “strong” is provided in Section 2.3.

Traditionally, people have agreed that the strongest reasonable memory model is the
sequential consistencymodel defined by Lamport [1979]. Curiously, researchers have
apparently not asked the question of whatthe weakestreasonable memory model is. This
thesis concerns itself with precisely this question. I argue thatlocation consistencyis
the weakest reasonable memory model. In location consistency every memorylocation is
serialized, but different locations may be serialized independently.

Why should we care at all about weak memory models, once we have sequential con-
sistency? Unfortunately, strong models have a price. It is generally believed [Hennessy
and Patterson 1996] that a sequential consistency model imposes major inefficiencies in
an implementation. Consequently, many researchers have tried to relax the requirements
of sequential consistency in exchange for better performance and ease of implementation.
For example,processor consistencyby Goodman [1989] is a model where every processor
can have an independent view of memory, andrelease consistencyby Gharachorloo et al.
[1990] is a model where the memory becomes consistent only when certain synchronizing
operations are performed. See [Adve and Gharachorloo 1995] for a good tutorial on this
subject. In this thesis, we try to establish limits to this process of “relaxation” of sequential
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consistency.

Properties of memory models We cannot hope to identify the weakest memory model
unless we specify the properties we want it to obey. The absolutely weakest memory model
allows memory to return arbitrary values, and is therefore completelyuseless. This is the
sense in which I am trying to identify the weakestreasonablememory model, not just the
weakestper se.

Capturing reasonableness is a tough problem. In this thesis I identify five properties that
every reasonable memory model should possess. The properties are discussed in detail in
Chapter 3. Three of them have a precise mathematical definition, and the other twoare
more subjective.

Completenesssays that a memory model must define at least one behavior, no matter
what the program does. The memory cannot say “oops, I don’t know” in response to
certain programs.

Monotonicity has to do with the partial order of instructions. Suppose that we have a
partially ordered instruction stream, and the model allows a certain behavior. Monotonicity
demands that the same behavior be still valid for a subset of the partial order.

Constructibility is a necessary condition for the existence of an online algorithm that
maintains a model. In real life, it often happens that an implementation of a model actually
maintains a stronger model. It may come as a surprise that, for some models, thissituation
is unavoidable. There exist models� that cannot be implemented exactly, and if one
wants�, then one must necessarily implement a model that is strictly stronger. In fact, we
prove that the weakest constructible model�� that is stronger than� exists and is unique.
We call�� the constructible versionof �. There is no point in adopting a model if we
must necessarily implement its constructible version; we should simply adopt the stronger
model.

Nondeterminism confinement, unlike the previous properties, is not formally defined,
and yet I regard this property as necessary. The basic idea is that the memory model should
allow the programmer to confine nondeterminism within certain regions of the program
(say, a subroutine). We shall clarify this concept in Chapter 3.

Classicalitysays that reading the memory should not alter its state, as opposed toquan-
tummemory models where observing the memory forces it to behave differently. We shall
discuss some curious quantum phenomena in Chapter 3.

The weakest reasonable memory model In the past, there have been at least two pro-
posals of very weak memory models. The first, proposed by Gao and Sarkar [1994], is a
model that they called “location consistency” and we shall call “GS-location consistency”.
The other model isdag consistency, which was introduced by the Cilk group of the MIT
Laboratory for Computer Science (including myself) [Blumofe et al. 1996b; Blumofe etal.
1996a]. In this thesis, we show that neither model obeys the five properties I regard as
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necessary. GS-location consistency does not confine nondeterminism, and dag consistency
is not constructible.

Discovering that dag consistency is not constructible was surprising, because dag consis-
tency has been quite a useful model in practice. Students and other users of the Cilksystem
[Blumofe et al. 1995] have written correct dag-consistent programswithout even knowing
they were using dag consistency. Dag consistency seems to capture a lot of the intuition
that Cilk programmers have about the shared memory. In the dag consistency papers, we
introduced the BACKER algorithm for maintaining dag consistency [Blumofe et al. 1996b].
(Another algorithm, DAGGER, appears in [Joerg 1996].) We investigated the performance
of BACKER both empirically and theoretically [Blumofe et al. 1996a]. Indeed, to the best
of my knowledge, BACKER is the only coherence algorithm for which there is any kind of
theoretical performance guarantee. The fact that dag consistency is not constructible in no
way implies that these results are wrong. Instead, it suggests that there is amodel stronger
than dag consistency for which these results are still valid. In other words,the BACKER

algorithm must do something more than what it was designed for.
In an attempt to better understand dag consistency, in this thesis we define a whole class

of dag-consistent models and study their properties. Roughly speaking, the situation of
these models is as follows. The weaker models have the same anomaly as GS-location
consistency. The stronger models are not constructible. One such model, called NN-dag
consistency, is the strongest model in the class. NN-dag consistency is not constructible, but
remarkably, this thesis proves that its constructible version is exactlylocation consistency.
Consequently, if you want to implement all the properties of NN-dag consistency, you
automatically get location consistency. The proof of this equivalence is a majorresult of
this thesis.

What should we conclude about the weakest reasonable memory model? GS-location
consistency and the dag-consistent models are faulty, in one way or another. If one wants all
the properties of NN-dag consistency, location consistency is implied in every implemen-
tation. Furthermore, as shown by Luchangco [1997], BACKER indeed maintains location
consistency, and all the results from [Blumofe et al. 1996b; Blumofe et al. 1996a] apply to
location consistency directly. This evidence provides a strong rationale for concluding that
location consistency is the weakest reasonable memory model.

There is one caveat to the previous argument. I know of another dag-consistent memory
model that is not constructible, and whose constructible version I have not been able to
identify. My understanding at this point is that this constructible version is indeed strictly
weaker than location consistency, and it obeys all the five properties. Unfortunately, I have
not been able to find a simple definition of this model; all I know is that it exists. We shall
discuss this situation in Section 4.6.

Computation-centric framework In order to talk about properties of memory models
and compare them, we introduce acomputation-centrictheory of memory models. We
start from acomputation, which is an abstract representation of a (parallel) instruction
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stream, and define memory models in terms of the computation alone. Roughly speaking,
a computation consists of all the actions that a program does in response to an input. For
example, the programa = b + c specifies the actions “readb”, “readc”, “compute the
sum” and “store the sum intoa”. Implicitly, the program also says that the sum cannot be
computed beforeb andc have been read, and it does not specify which read operation oc-
curs first. We consider the dependencies specified by a program as part of the computation.
In this thesis, I deliberately ignore the problem of how programs map into computations.
In general, this mapping can be very complex, depending on the program semantics and
on the memory model itself. Programs and languages disappear from the universe of this
thesis, and only the computation is left. The computation alone constitutes our starting
point.

In contrast, most of the literature about memory models defines them in processor-centric
terms [Lamport 1979; Dubois et al. 1986; Adve and Hill 1990; Goodman 1989; Hennessy
and Patterson 1996; Adve and Gharachorloo 1995]. These models define how a proces-
sor (not the computation) sees the memory. Consequently, a programmer that specifiesa
computation must also worry about how the computation is scheduled on many processors,
since memory semantics may change depending on the schedule. Computation-centric
models do not have this problem.

The computation-centric framework is not the ultimate way to define memory models. It
is true that we can ignore language semantics and scheduling, but for this very reason, there
are subtle effects that the framework does not capture. (See Section 2.1.3 for a discussion
of this topic.) Nevertheless, the computation-centric theory has proven to be sufficient to
derive all the results we have discussed so far.

Structure of this thesis The rest of the thesis is organized as follows. In Chapter 2 we
develop the foundations of the computation-centric framework. We define what a com-
putation and a memory model are, as well as what it means for one memory model to be
stronger than another. In the same chapter, we reinterpret sequential consistency, processor
consistency, and dag consistency within the computation-centric framework. Wealso give
a definition of location consistency. In Chapter 3, we discuss what properties a memory
model should have. We identify five such properties. As we said earlier, someare math-
ematically well defined, and others try to capture an intuitive notion of reasonableness.
In Chapter 4, we define the dag-consistent memory models and investigate their proper-
ties in details. We prove the constructibility results, and argue that location consistency is
the weakest reasonable memory model. Finally, in Chapter 5, we give some concluding
remarks.
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Chapter 2

Computation-centric memory models

In this chapter we develop the computation-centric theory of memory models. In this the-
ory, two concepts are especially important: the notion of acomputationand the notion of
anobserver function.

An execution of a program can be abstracted as acomputation, which is just a directed
acyclic graph whose concrete meaning is immaterial for our purposes. In Section2.1 we
define computations, and give some example of how real-world programs can be mapped
onto computations. I then explain that I believe computation-centric memory modelsare a
good idea, because with them, we can forget about the existence of processors, schedulers,
and languages, and because they allow us to discuss memory semantics in a simple abstract
way. In the rest of the thesis, I am concerned with how a computation, not a processor, sees
memory.

In Section 2.2 we defineobserver functions. For any computation node and memory
location, an observer function points to some node that writes to that location. On one
side, observer functions are just a technical device that simplifies our notations and allows
us to ignore the concrete values of memory locations: we just say that reading a location
returns whatever the node specified by the observer function for that location writes. In
this way, we forget about read operations altogether. On the other side, observer functions
also give memory semantics to computation nodes thatdo not read or write to memory.
This property will turn out to be important in the rest of the discussion, when we discuss
nondeterminism in Section 3.4.

Since an observer function specifies the memory behavior uniquely, it follows thata
memory model is fully characterized by the set of observer functions it allows. In other
words, a memory modelis a set of observer functions. Modulo technicalities, this is the
way in which we define memory models in Section 2.3.

We next show how our framework can be applied to the definition of models that pre-
viously appeared in the literature, such as sequential consistency, dag consistency, and
processor consistency. We also definelocation consistency, a memory model that behaves
as if each memory location were serialized. Location consistency is themain focus of this
thesis, since I am proposing it as the weakest reasonable memory model.
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2.1 Computations

In this section, we define computations. We first state the definition (Definition1), and give
some examples (Section 2.1.1). We then define the memory operations that a computation
is allowed to perform (Section 2.1.2). Finally, I discuss the advantages and thelimits of the
computation-centric approach.

We start with the definition of a computation, and a few related notions.

Definition 1 A computationis a (finite) directed acyclic graph (dag) G = (V;E).
If there is a path of nonzero length in the dag from nodeu to nodev, we say thatu

precedesv, and we writeu � v. The notationu �G v is used whenever we need to be
precise about which dagG we are talking about. Observe that this definition of precedence
is strict: a node does not precede itself. Whenever we want a non strict definitionof
precedence, we explicitly use the notationu � v, meaning thatu � v or u = v. For
the rest of the thesis, remember that precedence is the only order relation thatis strict by
default. Everything else (e.g., set inclusion, relative strength of memory models, etc.) is
not strict.

2.1.1 What is a computation?

The reader might now wonder what Definition 1 has to do real computers that execute
real programs (or idealized computers, for example a Turing machine, executingidealized
programs).

In order to understand this notion of computation, imagine having a sequential computer
executing a program. To fix our ideas, let’s say that the computer executes a quicksort
program. Recall that quicksort is a divide-and-conquer algorithm that partitions an array
into two “halves” and calls itself recursively on each half.

The execution of the program generates a stream of instructions, which may be much
longer than the program itself. In the example, since quicksort is a recursive algorithm,
the same line of code can be instantiated (i.e., executed) many times during theexecution.
We say that each of these instantiations is a node of the computation. I remark again that
there is a node for everyinstantiationof an instruction, and not for every instruction in the
executable program. If an instruction is executed twice (for instance, because belongs to a
loop), we put two nodes in the computation.

Without too much effort, we can identify dependencies among computation nodes. In
the quicksort example, the partition of the input array must be performed before quicksort
recurses on the two halves. Therefore, we can say that the partitionprecedesthe recursive
calls. Can we also say that the first recursive call precedes the other?In this case, the com-
putation is in the eye of the beholder. You can either argue that the program is sequential
and therefore the second recursive call follows the first, or you can say thatthere is no log-
ical dependency, and that the first call is first only because programs are one-dimensional
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strings.1 It is up to you to decide what computation your program is performing. In either
case, when the recursion is completely unfolded, we end up with a set of nodes represent-
ing all the instructions that the machine executed, and a set of dependencies among those
nodes.

We now show another example of computation. Cilk [Blumofe et al. 1995] is a multi-
threaded language and runtime system. The execution of a Cilk program generates many
threadsthat obey certain control dependencies. The graph of threads and of their dependen-
cies is called amultithreaded computation. A multithreaded computation is a computation,
according to our definition. Unlike the previous example, however, in Cilk there isno
subjective interpretation of a computation, because Cilk provides keywords that specify
whether there is a dependence or not. More precisely, two threads depend on each other
unless the keywordspawn is used in the program. (In this sense, Cilk is a computation-
friendly version of the C language.)

A third case of computation can be identified in a machine withP processors and a
shared memory. Each processor executes its own program, and we assume thatthere are no
synchronization operations in the machine: processors can only communicate by reading
and writing into memory. We can construct a computation that models the behavior of
the machine. The computation nodes are the machine instructions. The edges are the
dependencies imposed by the program order. If instructionA comes after instructionB in
the program, then there is an edge fromB toA.

The situation becomes much more complicated if we allow the processors to perform ex-
plicit synchronization operations (such as barriers and/or mutual exclusion). In this case, it
is not clear what the computation is. Specifying the behavior of this system is a tough prob-
lem, and I am not trying to solve it in this thesis. We simply assume that the computation
is given.

2.1.2 Memory operations

In this section, we state precisely what a computation can do with the shared memory.
The only memory operations that we allow a computation to perform arereadandwrite.

We do not care about the other operations that the dag performs (e.g., additions, etc.), and
regard all these things as no-op. We do not allow a computation to perform synchroniz-
ing memory operations (for instance, atomic test-and-set or read-modify-write operations,

1For all “reasonable” programming languages. In fact, there exists a toy two-dimensional programming
language calledorthagonal (sic). Anorthagonal program is laid out on a grid, and theorthagonal
computer is a stack-based machine with a two dimensional program counter. The program counter can move
in four different directions, and the machine has special instructions toturn left, right, or backwards, as
well as to specify absolute directions. As you would imagine, looping constructs in this language arereally
elegant; you can literally see the loop on the grid.orthagonalwas written by Jeff Epler, and is part of the
Computer Retromuseum maintained by Eric S. Raymond atftp:://ftp.ccil.org/pub/retro/.
The author of the program does not care about being given credit: “In fact, don’t even bother keeping my
name on this. It’ll help free me from blame.”
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memory fences, and so on).

Rationale: The lack of synchronizing memory operations is indeed a key aspect of our
model. My point of view is that a computation already defines some synchronization,
in the form of edges. I want to be able to use that synchronization, and no more, for
defining memory semantics. The technicalities that allow usto accomplish this goal
are explained in Section 2.2.

Before continuing, we need a couple of technical assumptions.

Assumption 1 A computation node can perform at most one memory operation, that is, a
read or a write. If a node does not perform any memory operation, we say it performs a
no-op.

Rationale: By assuming that every node performs at most one memory operation,
we can unambiguously speak ofthememory operation performed by that node. The
assumption simplifies the notation, without loss of generality.

Assumption 2 Every computationG contains a specialinitial node initial(G) that writes
some initial value to all memory locations. The initial node is a predecessor of all nodes
in G.

Rationale: We must be able to specify a value received by a read operationeven
if there are no writes in the computation. One way to achieve this effect is to say
that the read receives the bottom value? (“undefined”). This solution would force us
to consider values, however, while our theory does not otherwise deal with memory
values.

It is not really important whether there is a set of initial nodes writing to all locations,
or just one node. In the latter case, as we assume here, the initial node is exempt from
Assumption 1.

The smallest computation is theempty computation" that consists of the initial node
alone.

Notation for memory operations We now introduce the notation for read and write op-
erations. First, we define memory.

Definition 2 A memoryM = flg is a set oflocations.

In this thesis I do not care about the set of values that a memory location can contain.
Moreover, memory is never explicitly mentioned in the definitions and theoremsthat fol-
low; it is a kind of parameter to the whole thesis. (Pretend there is a big “for any mem-
oryM” on the cover page of this thesis.)
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The notation for read and write operations is given in the form of aread predicateand a
write predicate.

R(l; u; x) �= “nodeu reads locationl and receives the valuex”

W(l; u; x) �= “nodeu writes the valuex to locationl”
Observe that, because of Assumption 1, for a given nodeu, the write predicate W(l; u; x)

can be true for at most one locationl and valuex.
Whenever the valuex is immaterial (that is, almost always in this thesis), we use an

abbreviated notation.

R(l; u) �= “nodeu reads locationl”
W(l; u) �= “nodeu writes to locationl”

2.1.3 Why computations?

Most of the literature defines memory semantics in processor-centric terms. Instead, I use
a computation-centric framework, because I think it is much simpler. In this section, I
describe why I think the processor-centric approach is too complicated. We alsopoint out
some of the limits of the computation-centric approach. (Simplicity does not come forfree,
unfortunately.)

Most memory models are processor-centric [Lamport 1979; Dubois et al. 1986; Adve
and Hill 1990; Goodman 1989; Hennessy and Patterson 1996; Adve and Gharachorloo
1995]. On the contrary, I believe that processor-centric memory models are too difficult
to reason about. They are too difficult even todefineproperly. Consider, for example, the
complicated definition of “performing a memory request” in [Gharachorloo et al. 1990]
quoting [Dubois et al. 1986; Scheurich and Dubois 1987].

A LOAD by Pi is consideredperformed with respect toPk at a point in time
when the issuing of a STORE to the same address byPk cannot affect the
value returned by the LOAD. A STORE byPi is consideredperformed with
respect toPk at a point in time when an issued LOAD to the same address byPk returns the value defined by this store (or a subsequent STORE to the same
location).

The problem with this definition is that the very notion of “subsequent” is what the memory
model is supposed to define. It is not clear at all whether “subsequent” means “issued by a
processor at a later point in time” or “served by a memory module at a later pointin time”.
In any case, there is a hidden assumption of some universal clock by which events can be
globally ordered.

As another example, Hennessy and Patterson [1996, Page 656] state the following nebu-
lous condition as part of their “definition” of coherence.

12



A read by a processor to locationX that follows a write by another processor
to X returns the written value if the read and write are sufficiently separated
and no other writes toX occur between the two accesses.

Even ignoring the semantics of “sufficiently separated”, I still have no ideaof the meaning
of “follows” and “occurs between”. Again, this is what the memory model was supposed
to tell us.

The problem with these definitions, in my eyes, is that an operational model of a machine
is needed in order to give meaning to the definition. The operational behavior of the ma-
chine, however, is precisely what the the definition is supposed to specify. Itcomes as no
surprise, if this is the case, that things quickly become very complicated.

On the contrary, Lamport’s definition of sequential consistency [Lamport 1979] is often
cited, with good reasons, for its clarity and precision:

[A system is sequentially consistent if] the result of any execution is the same
as if the operations of all the processors were executed in some sequential
order, and the operations of each individual processor appear in this sequence
in the order specified by its program.

Lamport’s criterion does not assume any global time. The system is sequentially consistent
if one can get the same result on one processor, in the way stated by the definition. Observe
that Lamport’s definition talks about processors only incidentally; the real point is that there
areP threads of control. It does not matter whether there areP , 2P or P=2 processors. In
this thesis, instead of extending Lamport’s model by giving more capabilities to processors,
we give more capabilities to the “threads of control”. We allow an arbitrary number of these
threads, and we allow arbitrary dependencies (not justP sequential chains).

There are two things that I do not like in processor-centric models. (The following crit-
icisms do not apply to Lamport’s definition.) First, some notion oftime is implicitly as-
sumed, so that it can be said whether one event happened before another. Programmers
do not have control over time, however, since a processor can employ a variable amount
of time to execute a certain operation. The second thing I do not like is that a compu-
tation executed within one processor has certain semantics, and a computation executed
by more than one processor hasdifferentsemantics. When I write a program, however, I
would rather ignore how many processors my program will run on. Consequently, I must
ignore how my program is mapped onto processors, since there is now way to know it if the
number of processors is not specified. In other words, I claim that a computation should
have memory semantics that do not depend on the schedule. Whether the computation runs
on one or more processors, and how it is mapped to processors are not things of which
programmers should be aware. (Programmers might want to deal with these issues for
performance reasons, but this is another story.)

Computation-centric memory models are a way to deal with these two issues,as will
become clear in the rest of the chapter.
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Processor 1 Processor 2x 1 x1  xy  1 y1  y
if x1 = 0 andy1 = 1 thenz  1

Figure 2-1: Example illustrating that the mapping of programs into computations depends on the
memory model. In the example, there are three memory locations,x, y, andz, and all three locations
are initially 0.

It should be remarked that the framework I propose is not the only alternative to processor-
centric models. Memory semantics can (and should) be incorporated into language seman-
tics (as in the�S-calculus by Arvind et al. [1996]). In this thesis I am completely ignoring
the fundamental issue of how a computation is generated by a program. I acknowledge
that this point of my theory is weak. The computation generated by a program indeed may
depend on memory semantics, and separation of the two issues is not justified. While ul-
timately a unified semantics of languages and memory is desirable, I believethat defining
the behavior of memory is already complicated enough by itself, that for now linguistic
issues should be kept orthogonal as much as possible.

In conclusion, here is the situation as I see it. Processor-centric models are too complex.
Language-centric models must take into account the language semantics, which is already
a vast subject in itself, most of which has nothing to do with memory. Computation-centric
models are simple, and they provide the abstraction of language-centric models without the
linguistic issues. Computation-centric models can be used to understand abstract properties
of memory models, as we will see in Chapter 3. The computation-centric view is also
supported by Gao and Sarkar, who, in a recent paper [Gao and Sarkar 1997], use an end-
to-end argument to suggest that memory models should be defined in terms of a partial
order.

Limits of the computation-centric approach Despite the above discussion, I do not
want the reader to get the idea that computation-centric memory models are the ultimate
solution to all problems. The major strength of the computation-centric framework is that
it abstracts away from processors and linguistic issues. This is also itsmajor weakness,
because the computation may depend on the memory model itself.

Consider Figure 2-1. Suppose that the memory model dictates that writes issued by
Processor 1 be observed in the same order by Processor 2. In this case, the instructionz  1 is never executed, and is therefore not part of the computation. Suppose now that
Processor 2 can observe writes in a different order than they are issued. Inthis case, the
instructionz  1 might be executed. The point is that we cannot tella priori what the
computation is.

Of course, one can construct many examples like this. A particularly beautiful one was
shown to me by Bert Halstead [Halstead 1997]. I leave it (Figure 2-2) as a puzzle for the
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Processor 1 Processor 2
if y = 1 then if x = 1 thenx 1 y  1

Figure 2-2: A puzzle illustrating how memory and language semantics areintimately linked. The
two memory locationsx andy are initially 0, and there are two processors executing the program
shown in the figure. Canx andy both be1 at the end of the execution? How do you define a
memory model in such a way that this situation does not occur?

reader.

2.2 Observer functions

In this section we define the notion of anobserver function, which is the second key con-
cept in the computation-centric theory. We first motivate observer functions, then give the
definition, and finally explain what the definition means.

In trying to define memory semantics, I have two goals in mind. First, I want to ignore
memory values and instead specify where a given value comes from. In other words, our
answer to the question, “What does a certain read return?” is of the form, “It returns what
a certain node writes, it does not matter what” (where the focus is on the writer rather than
the value). Second, I want to specify the memory semantics of nodes that do not perform
any memory operation, because these nodes might represent some synchronization in the
computation. We have no explicit synchronization operations in our model, and therefore it
is important to be able to exploit the synchronization given by the dag for defining memory
semantics. These two goals are both accomplished by using anobserver function.

Definition 3 Let G = (V;E) be a computation. Anobserver functionis a function� :M� V 7! V such that, for all locationsl 2 M and all nodesu 2 V , we have that

3.1. W(l;�(l; u)) ;

3.2. u 6� �(l; u) .

The first property says that an observer function must point to a node that writes to
memory, that is,�(l; u) writes to l. The second property says that an observer function
cannot point to a successor node, that is,�(l; u) does not followu.

In order to understand why we require these two properties, we must first explainwhat
an observer function means. The main purpose of an observer function is to specifythe
semantics of read operations. Suppose nodeu reads locationl. Then, the read operation
returns whatever value is written tol by node�(l; u). We formalize this idea in the next
postulate.

15



Postulate 4 (Standard semantics of read operations)LetG be a computation, and let�
be an observer function forG. The read predicate satisfies this property: If R(l; u; x), then
W(l;�(l; u); x).

Postulate 4 says that if nodeu reads locationl, receiving the valuex, thenx is indeed the
value written tol by node�(l; u). The reader can now happily forget about reads, memory
values, and Postulate 4, since observer functions suffice for the rest of the thesis. We only
use Postulate 4 when arguing the equivalence between models that are expressed in terms
of observer functions and models that are not.

We can now justify the two properties in Definition 3. The first property says that an
observer function must point to a node that writes to memory. This constraint is necessary,
since otherwise the semantics of read operations would be ill defined. The second property
says that an observer function cannot point to a successor node, that is, a node cannot read
something written in the future. With current technology, this assumption carries no loss
of generality.

Empty computation We remark that the only observer function for the empty computa-
tion " is, trivially, �"(l; initial(")) = initial("), for all locationsl.
2.3 Memory models

In this section we define amemory modelas a set of pairs, each consisting of a computation
and an observer function defined over that computation. We then define what it means for
one model to be stronger than another.

Recall that an observer function completely defines the semantics of read operations.
Thus, a set of observer functions defines a memory semantics. We would like just to say:
“A memory model is a set of observer functions.” Unfortunately, an observer function is
defined only for one computation. In order to consider observer functions of many compu-
tations, we keep track of the computation by encapsulating both the observer function and
the computation in a pair. (We also require that the empty dag" and its observer function�" belong to all memory models in order to make boundary cases in proofs easier.)

Definition 5 (Memory model) A memory model� is a set� = f(G;�) : G is a computation and� is an observer function forGg [ (";�") :
Before we see some examples of memory models in Section 2.4, we first discuss briefly

what it means for one model to be stronger than another.

Definition 6 A memory model� is stronger than a model�0 if � � �0. A memory
model� is weakerthan a model�0 if �0 is stronger than�.
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Notice that we say that thesubsetis stronger, not the superset, because the subset enjoys
more properties. Consequently, the empty set is the strongest memory model, and the
set of all (dags, observer functions) is the weakest. (The empty set vacuouslyenjoys all
properties.) One model is not necessarily stronger or weaker than another; if thisis the
case, we say that the two models areincomparable. If two models are the same set, we
also say they areequivalent.

We remark that the usual set operations of union and intersection can be applied tomem-
ory models. In this way, new models can be constructed by combining old models. For
example, the intersection of two models is a model stronger than both. In this thesis, we do
not play with models in this way, with one important exception: we consider infinite unions
of memory models in Section 3.3 in order to define the constructible version of a model.

2.4 Example memory models

In this section, we give some examples of memory models. For now, we do not introduce
any new models that do not already appear in the literature. We start withsequential
consistency, which is usually agreed to be the strongest reasonable memory model. We
then considerlocation consistencyand dag consistency. Finally, for completeness, we
also suggest how other models could be defined, although they are not relevant to the later
results of this thesis.

2.4.1 Sequential consistency

Sequential consistency [Lamport 1979] is generally considered to be the strongest memory
model. It is not the strongest in an absolute sense, just the “strongest reasonable”. There
exist in principle stronger models, but they are too strong for practical use.2 We now give
a computation-centric definition of sequential consistency. The definition we give is equiv-
alent to Lamport’s definition (quoted in Section 2.1.3) for the case where the computation
consists ofP chains of nodes, but our new definition is more general in that it applies to all
computations.

Lamport’s criterion for sequential consistency says that one should look at the parallel
(processor-centric) execution of a program. If one can find asequentialexecution of the
parallel program that respects program order and gives the same results for allmemory
accesses, then the memory is sequentially consistent. There are, however, two distinct
issues in Lamport’s definition. The first one is clearly stated by Lamport: itmust be possible
to identify a global interleaving of the parallel program (the sequential execution). The

2For example, suppose the system behaves as if Processor 1 alone executes its program, then Processor 2
executes its own program, etc. This processor-centric memory model is stronger than sequential consistency,
but there seems to be no way to implement this model without using onlyone processor at a time, which
limits its interest.
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second issue is not explicitly addressed by Lamport’s definition: what is the the memory
semantics of a sequential program? In order to define sequential consistency within our
framework, we first need to address this problem.

A sequential program, in the processor-centric world, has a very natural memoryseman-
tics: reading a location returns the last value written to that location. The notion of “last
value” is well defined because the program is sequential. Consider now our computation-
centric framework. By superimposing a total order (topological sort) to a computation, the
notion of the last writer preceding a given node is well defined in our framework, too.(We
define the last writer and not the last value because our observer function framework frees
us from dealing with values.)

Definition 7 LetG = (V;E) be a computation, and letT be a topological sort ofG. The
last writeraccording toT is the functionLT :M�V 7! V such that, for all nodesw 2 V
and all locationsl 2 M, we have

1. W(l;LT (l; w));
2. LT (l; w) �T w;

3. for all nodesv 2 V such thatLT (l; w) �T v �T w, the predicate W(l; v) is false.

The interpretation of the last writer function is thatLT (l; w) is a nodeu that writes tol
and comes beforew in the given topological sortT , and no writes tol occur betweenu andw in the topological sort. Since we assume that the initial node writes to all locations, it
follows thatLT (l; w) is indeed well defined. Observe also that, if nodew writes tol, thenLT (l; w) = w.

The last writer function turns out to be an observer function, because of the way it is
constructed.

Lemma 8 LetG be a computation, and letT be a topological sort ofG. ThenLT is an
observer function.

Proof: The first property of Definition 3 is the same as the first property of Definition 7.
The second property of Definition 3 is true becauseT is a topological sort ofG, which
implies that ifLT (l; w) �T w, thenw 6�G LT (l; w).

Sequential consistency is therefore that model in which one can find a global topological
sort of the computation such that all reads return the last value written to the location being
read. Equivalently, a sequentially consistent observer function is a “last writer”.

Definition 9 Sequential consistencyis the memory model

SC= f(G;LT ) : T is a topological sort ofGg :
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2.4.2 Location consistency

Instead of insisting that there exist a single global order for all memory operations (as
in SC), we could allow a different topological sort for every location. We call location
consistencythe memory model that behaves in this way. In this section, we first give the
definition, and then explain why we call it “location consistency”. The naming issue is
intricate because I) location consistency is sometimes called “coherence”, and II) there
already exists a completely different memory model called “location consistency”.

Definition 10 Location consistencyis the memory model

LC = �(G;�) : �(l; u) = LT (l)(l; u) andT (l) is a topological sort ofG	 :
In words, here is what the definition means. An observer function is location consistent

if, for every locationl, one can find a topological sortT (l) of the dag, and the observer
function forl coincides with the last writer according toT (l).

Location consistency is the model I propose as the weakest reasonable memory model,
for reasons that will be clear after Section 4.5.

On the name “location consistency” We now proceed to the issue of names, which is a
tough one. I want to name this model “location consistency”, although the model has been
called “coherence”, and although “location consistency” is already the name of adifferent
model. The reader not interested in academic arguments can safely skip to the next section.

Researchers are usually careful in how they name their intellectual creatures. Names
are not just accidental properties of objects. Well-chosen names will help generations of
future students to create a mental framework in which to understand things. Anexample
of the bad things that happen when concepts are misnamed comes from the uncountable
number of books that have been written to clarify the confusion between Aristotle’s first
and second kind of substance. (See, for example, [Boethius 512]. The issue is now out of
fashion, which is another way to solve it.)

Unfortunately, it is not always possible to choose names that reflect both current and
future understanding. For example, the name “dynamic programming” was a reasonable
name when Bellman [1957] introduced it, but it makes little sense in our days. Inthis case,
posterior researchers, having a better understanding, have the duty to change the name
before it is too late. (For dynamic programming it is probably already too late.) For the
small piece of world that this thesis is concerned with, I will try to be a conscious researcher
and come up with good names, at the cost of overriding previous choices by other people.

Hennessy and Patterson [1996], when they discuss memory models, distinguish between
coherenceandconsistency. Coherence means that each location is serialized, while con-
sistency refers to additional constraints that are preserved across different locations. Co-
herence is usually assumed when memory models are defined in processor-centric terms.
On the other hand, “X-consistency” is the canonical form of the names of memory models
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(e.g., sequential consistency [Lamport 1979], processor consistency [Goodman 1989], re-
lease consistency [Gharachorloo et al. 1990], entry consistency [Bershad et al. 1993], scope
consistency [Iftode et al. 1996]).

I see no reason to use two separate names. “Coherence” is a legitimate memory model,
and should be calledX-consistency, for someX. Since its distinguishing feature is that
consistency occurs on a per-location basis, we call it location consistency.

The very name “location consistency” has been used by Gao and Sarkar [1994] to de-
scribe a memory model different from LC. It is our obligation to explain why we are
reusing the same name.

First, I believe that “location consistency” is misnamed for the model of Gaoand Sarkar.
As explicitly stated by the authors, their model does not require that a single location be
serialized. In other words, their model allows “location inconsistency”. Second, Gao and
Sarkar’s model appears to have anomalies that are undesirable for a programmer,and I
think it should not be adopted. (See Section 3.4.)

I want to point out that the above remarks do not alter the significance of the technical
content of [Gao and Sarkar 1994]. Indeed, that paper contains many ideas that I strongly
support. Gao and Sarkar are also looking for a very relaxed memory model, and define
the model in terms of a graph of dependencies (although with a processor-centric flavor).
Indeed, Gao and Sarkar’s model appears to be a kind of dag consistency, as we shall see in
the Section 2.4.3 below.

2.4.3 Dag consistency

In the past, with other people from the MIT Laboratory for Computer science, I proposed
dag consistency[Blumofe et al. 1996b; Blumofe et al. 1996a] as a very relaxed memory
model for the Cilk [Blumofe et al. 1995] system of parallel computing. Indeed, we pub-
lished two different models, both called dag consistency. Unfortunately, bothturned out to
be “unreasonable”. We now discuss these two models. First, we give the two definitions,
and explain what they mean. Then, we restate both definitions in terms of computations
and observer functions.

The first definition of dag consistency appeared in Joerg’s thesis [Joerg 1996] and in
[Blumofe et al. 1996b].3

Definition 11 The shared memoryM of a multithreaded computationG = (V;E) is dag
consistentif the following two conditions hold.

11.1. Whenever any nodeu 2 V reads any locationl 2 M, it receives a valuex written
by some nodev 2 V such thatu 6� v.

3Modulo alpha-conversion. I changed the definition a little to make it consistent with our notations, and
to avoid introducing new notation.
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11.2. For any three nodesu; v; w 2 V , satisfyingu � v � w, if v writes some locationl 2 M andw readsl, thenw does not receive a value written byu.

The second definition of dag consistency appeared in [Blumofe et al. 1996a].4

Definition 12 The shared memoryM of a multithreaded computationG = (V;E) is dag
consistentif there exists a function� : M� V 7! V such that the following conditions
hold.

12.1. For all nodesu 2 V , the node�(l; u) writes tol.
12.2. If a nodeu writes tol, then we have�(l; u) = u.

12.3. If a nodeu readsl, it receives the value written by�(l; u).
12.4. For all nodesu 2 V , we have thatu 6� �(l; u).
12.5. For each tripleu, v, andw of nodes such thatu � v � w, if �(l; v) 6= u holds, then

we have�(l; w) 6= u.

We now explain what the two definitions mean, and why there are two definitions. (The
two definitions indeed define two different memory models. The second model is strictly
stronger than the first, as we shall see in Section 4.2).

Explanation of Definition 11 The first definition of dag consistency is trying to char-
acterize a sort of “per-node sequential consistency”. Sequential consistency demands a
single topological sort valid for all nodes and locations. Location consistency demands a
topological sort valid for all nodes, but each location can have a different topological sort.
Dag consistency, instead, allowseach nodeto “see” a different topological sort of the com-
putation. The only requirement of dag consistency, therefore, is that a nodew not see a
write by u if there is another write by a nodev that lies in the path fromu to w (sinceu
cannot otherwise be the last writer beforew in any topological sort of the computation).
This requirement is precisely what the definition mandates. Notice that Definition 11 is
computation-centric in that it gives semantics to a computation, but it does not useany
observer function.

Definition 11 is the model by Gao and Sarkar [1994] Albeit defined in different con-
texts, Definition 11 defines the same model as GS-location consistency. This model says
that a read operation can receive any element of a set of “most recent writes”. This set is
maintained during the execution. It is initially empty, and a write operationadded to the
set removes all predecessor writes, where “predecessor” is defined by certain synchroniz-
ing operations that the model allows. As it can be seen, the set of “most recent writes”

4Again, we adapted the definition to our notations, for consistency.
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contains precisely those elements that could be seen by a node according to Definition 11.
Historically, we did not realize this equivalence when we published [Blumofeet al. 1996b],
although we were aware of Gao and Sarkar’s work. The equivalence of Definition 11 and
GS-location consistency is also pointed out in [Gao and Sarkar 1997].

Unfortunately, there are certain anomalies in Definition 11, and thus in GS-location con-
sistency. We shall explain these anomalies in detail in Chapter 3. For now, we just say that
Definition 11 does not confine nondeterminism. Historically, we proposed Definition 12
[Blumofe et al. 1996a] to solve these anomalies.

Explanation of Definition 12 Unlike Definition 11, Definition 12 in not readily express-
ible in terms of the last writer function. It introduces an observer function explicitly, how-
ever. Properties 12.1 and 12.4 are indeed the defining properties of observer functions.
Property 12.3 corresponds to the semantics of reads (Postulate 4). The other two properties
of the observer function are specific to this form of dag consistency. Property 12.2 says that
the observer function of a node that writes must point to the node itself. Property 12.5 can
be understood in two different senses.

In the first sense, Property 12.5 is Property 11.2 applied to the observer function instead
of a read operation.

The other interpretation of Property 12.5 arises when we consider its contrapositive. We
now explore this interpretation. The explanation is a bit long, but it will be useful for
generalizing dag consistency to a wider class of models.

We first recall some notation from propositional logic. The symbol^ denotes the logical
and operator, and! denotes the logical implication. In order not to clutter the formulas
with many parentheses, we assume that= binds more strongly than̂, which in turn binds
more strongly than!. The expression�(l; w) = �(l; u) ^W(l; u) ! �(l; v) = �(l; u),
therefore, is the same as((�(l; w) = �(l; u)) ^ W(l; u)) ! (�(l; v) = �(l; u)). (This
formula appears in Definition 13 below.)

Consider now the contrapositive of Property 12.5, that is,

12.50. For each tripleu, v, andw of nodes such thatu � v � w, we have�(l; w) = u! �(l; v) = u :
We have just manipulated symbols formally, for now. The next step is to substitute the

condition “�(l; w) = u” with another condition of the form “�(l; w) = �(l; u)”. The
substitution arises as follows. We claim that�(l; w) = u () �(l; w) = �(l; u) ^W(l; u) :
To prove the claim, observe that if�(l; w) = u, then W(l; u), as stated by Property 12.1.
By Property 12.2, we also have�(l; u) = u, and the “)” follows. Conversely, if W(l; u),
again by Property 12.2, we have�(l; u) = u and the “(” follows, proving the claim.
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We now substitute the equivalence just proven into Property 12.50, yielding the equivalent
statement

12.500. For each tripleu, v, andw of nodes such thatu � v � w, we have�(l; w) = �(l; u) ^W(l; u)! �(l; v) = �(l; u) :
Therefore, we see that Property 12.5 is a form ofconvexityof the observer function: ifu � v � w and the observer function (forl) assumes the same value atu andw, it must

assume that value also atv. This particular definition of dag consistency does not demand
such convexity in all cases, but only whenu writes tol.

Why do we say that Property 12.5 is a “convexity” property? We say that a set of nodes
in a dag isconvexif, whenever two nodesu andw are in the set, andu � w, then any
nodev that is in a path fromu to w also belongs to the set. The definition is inspired by
the usual definition of convexity in geometry, where a set is convex if, whenever two point
are in the set the whole segment joining the two points is in the set. Property 12.5 says
that, for each location, the set of nodes where the observer function is constant is convex.
The terminology “convexity” is not that important for the purposes of this thesis, but the
concept is. Convexity is the characteristic property of dag consistency.

New definitions of dag consistency We now redefine dag consistency so that it matches
the technical definition of memory model (Definition 5). By the above discussion, wecan
reorganize Definition 12 in the following way.

Definition 13 WN-dag consistencyis the set WN= f(G;�)g, whereG = (V;E) is a
computation, and� is an observer function forG such that the following properties hold.

13.1. For alll 2 M and for allu 2 V , if W(l; u) then�(l; u) = u.

13.2. For all locationsl, and for each tripleu, v, andw of nodes such thatu � v � w,
we have �(l; w) = �(l; u) ^W(l; u)! �(l; v) = �(l; u) :

The logical implication in Property 13.2 means that if�(l; w) = �(l; u) and W(l; u), then�(l; v) = �(l; u).
The model is called WN because, of the nodesu andv in the definition, we require that

the first be a write (“W”), and we do not care about the second (“N” for “don’t care”). We
now define the model WW that requires that both nodes write. (In Section 4.1 we complete
the picture by considering all combinations of writes and “don’t care”.) We then arguethat
WW is equivalent to the model from Definition 11.

Definition 14 WW-dag consistencyis the set WW= f(G;�)g, whereG = (V;E) is a
computation, and� is an observer function forG such that the following properties hold.
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14.1. For alll 2 M and for allu 2 V , if W(l; u) then�(l; u) = u.

14.2. For all locationsl, and for each tripleu, v, andw of nodes such thatu � v � w,
we have that�(l; w) = �(l; u) ^W(l; u) ^W(l; v)! �(l; v) = �(l; u) :

Observe that the only difference between the definitions of WN and WW is the antecedent
“W(l; v)” that appears in Property 14.2 but not in Property 13.2.

Observe also that Property 14.2 makes little sense if read literally,because, if the three
antecedents are true, then Property 14.1 implies that the consequent is false! Indeed, if
both W(l; u) and W(l; v) hold, then the consequent�(l; v) = �(l; u) is equivalent to the
propositionv = u, which is false becauseu � v. The “right” way to interpret Property 14.2
is to consider the contrapositive. We stated the definition in this way to showthe similarity
with Definition 13.

Equivalence of Definition 14 and Definition 11. Definition 14 and Definition 11 are
equivalent for a simple reason, but it is difficult to state it formally. Thesimple reason is that
if we have a WW observer function, it satisfies the properties of Definition 11 automatically.
Conversely, if we have a shared memory satisfying Definition 11, we can build a WW
observer functions by first assigning a value of the observer function to nodes that read and
write memory, as imposed by the shared memory satisfying Definition 11, and then filling
in all the other nodes in an almost arbitrary way. The point is that neither Definition 11 nor
Definition 14 care about these nodes.

The formal difficulty lies in the fact that Definition 11 is expressed in terms of anexecu-
tion of a computation and not in terms of observer functions. Therefore, we must invoke
the standard semantics of reads (Postulate 4) to map observer functions into executions and
vice versa.

We now informally argue the equivalence of Definition 14 with Definition 11. More
precisely, we argue that a WW observer function, under the standard semantics of reads,
yields to an execution that satisfies Definition 11. Conversely, from an execution that satis-
fies Definition 11, we can build a WW observer function that, under the standard semantics
of reads, yields to the same execution. I apologize for the confusion, but I found no better
way to explain this.

We first state the contrapositive of Property 14.2, in order to show the similarity with
Definition 11.

14.20. For all locationsl, and for each tripleu, v, andw of nodes such thatu � v � w, we
have that �(l; v) 6= �(l; u) ^W(l; u) ^W(l; v)! �(l; w) 6= �(l; u) :

24



If the property is stated in this way, it becomes easy to argue that an observer function
satisfying Definition 14, if executed under the standard read semantics (Postulate 4), yields
an execution of the computation that satisfies Definition 11. Indeed, suppose we have an
observer function satisfying Definition 14. Then, Property 11.1 is satisfied by definition of
observer functions (Conditions 3.1 and 3.2). Moreover, Property 11.1 is satisfied because
of the semantics of read operations and 14.20.

Conversely, we now argue that, from an execution that satisfies Definition11, it is possi-
ble to build an observer function that satisfies Definition 14 and yields the same execution.
The observer function is built as follows. For any locationl and nodew, we have that� if w writes tol, let�(l; w) = w;� if w readsl, receiving a value written by nodeu, let�(l; w) = u;� otherwise, letu be any node that writes tol, such thatw 6� u, and such that no nodev satisfyingu � v � w writes tol. Such a node always exists, because the initial

node writes to all locations: just pick the last write on any path from the initial node
tow.

By construction, the function� yields an equivalent execution of the computation un-
der the standard read semantics. We must now verify that� is a WW observer function.
By construction,� is indeed an observer function, since we always set�(l; u) to a node
that writes tol and does not followu. Property 14.1 also holds by construction. As for
Property 14.20, suppose that�(l; v) 6= �(l; u), and that W(l; u) and W(l; v) hold. Then, by
construction and because of Definition 11, we have that�(l; w) 6= �(l; u).
2.4.4 Other models

The preceding discussion provided computation-centric definitions of sequential, location,
and dag consistency. These three models are further developed and investigated in the
following chapters. For completeness, we now suggest how to give computation-centric
definitions of processor consistency and other models from the literature. These models
are presented here, but not further discussed in the rest of the thesis.

The following definition ofprocessor consistencyappeared in [Goodman 1989].

A multiprocessor is said to beprocessor consistentif the result of any execu-
tion is the same as if the operations of each individual processor appear in the
sequential order specified by its program.

The first thing to notice is that the definition is very ambiguous. It seems to me that there
are at least two legal interpretations of the word “appear”. In the first interpretation, “ap-
pear” means “appear to a processor”. In other words, each processor has its ownidea about
the order of memory accesses performed by the system, but each processor can have a dif-
ferent idea. In the second interpretation, “appear” means “appear to a memoryoperation”.
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In other words, each operation is free to have its own idea about the rest of the system.
We shall use the first interpretation, which seems to be endorsed by the rest of Goodman’s
paper.

In order to translate the definition into computation-centric terms, we must first identify
a notion of “processor” in a computation. One possibility is to postulate that a “processor”
is a maximal connected component of the graph consisting of the computation minus the
initial node. This postulate is justified if we imagine the computation as composedof P
chains of instructions, each one representing the instruction stream of one processor. TheP chains are not connected (except for the initial node). Processor consistency says that,
for each processor, there exists an order of memory operations observed by that processor.
We now translate the definition in computation-centric terms.

Definition 15 Processor consistencyis the memory model

PC = f(G;�) : �(l; u) = LT (C)(l; u), u 2 C,C is a maximal connected component ofG� initial(G),
andT (C) is a topological sort ofGg :

We observe a common theme in previous definitions. In sequential consistency there is
a single topological sort of the computation. In processor consistency there is a topolog-
ical sort per component (“processor”). In location consistency there is a topological sort
per location. And, in dag consistency (Definition 11) there is a topological sort per node
(although the definition is not stated in that way).

Observe also that PCper sedoes not imply location consistency. Consider, for example,
two processors, and one memory location. The first processor writes 1 to the location and
then reads it. The second processor writes 2 to the location and then reads it.Processor
consistency allows the first processor to receive 2, and the second processor to receive 1.
This situation cannot happen in location consistency. On the other hand, the assumptionof
location consistency/coherence is often implicit in all memory models [Adveand Ghara-
chorloo 1995] (except for the model in Gao and Sarkar [1994] and dag consistency). But,
by their definitions alone, PC and LC are incomparable.

Some memory models (likeweak ordering) [Dubois et al. 1986; Adve and Hill 1990]
distinguish between ordinary and synchronizing memory accesses. For completeness, we
now briefly sketch how to extend our model to account for this case. First, the two kinds
of memory operations must be distinguished. Then, we could define synchronized versions
of, say, location consistency, along the lines that follow. We demand that there exist a
topological sortT of all synchronizing operations. Instead of allowing each location to be
serialized according to an arbitrary topological sort of the computation, we constrain the
topological sort to be consistent withT . Of course, many other variations are possible,
and we did not investigate the whole spectrum of memory models. The point is that our
framework seems to be powerful enough to encompass many (and maybe all) interesting
memory models.
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2.5 Summary

In this chapter, we set up the computation-centric theory of memory models. The important
concepts arecomputations(Definition 1) andobserver functions(Definition 3), which lead
to the definition of a memory model (Definition 5).

We gave examples of computations in Section 2.1.1, and discussed the relative merits of
computation-centric and processor-centric frameworks in Section 2.1.3.

Finally, we showed how to express sequential, location, dag, and processor consistency
within the computation-centric theory. These models are analyzed in Chapter 3, where we
introduce five properties of memory models and argue whether each model enjoys them.

The theory of dag consistency is further developed in Chapter 4, where we define a class
of models similar to WW and WN-dag consistency, and understand their propertiesand
mutual relationships.

It is my hope that with this very skeletal model I have constructedthe reader will perceive some simple unifying principles of the �eld|principles which might otherwise be obscured by the enormously in-tricate interplay of phenomena at many di�erent levels. What issacri�ced is, of course, strict accuracy; what is gained is, I hope, alittle insight.
D. R. Hofstadter,Gödel, Escher, Bach: an Eternal Golden Braid, page 505
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Chapter 3

Properties of memory models

In this chapter we discuss five properties of memory models. I argue that a model isnot
“reasonable” unless it obeys all five properties. The first three properties areformally
specified. The other two are not well defined and have a more psychological flavor.

A model iscompleteif it allows at least one observer function for each computation.
A model ismonotonicif an observer function is still in the model after some dag edges

are removed.
A model is constructible if it is always possible to extend an observer function to a

“bigger” dag.
A model confines nondeterminismif, whenever there is a join node that follows all

nondeterministic memory accesses, the successors of the join node do not observe any
nondeterministic behavior. (See Section 3.4 for a definition of nondeterminism.)

A model isclassical(as opposed to “quantum”) if reads behave like no-ops (i.e., succes-
sor nodes have no way to deduce that a read operation is performed by a predecessor).

Recall that in Chapter 2 we defined the memory models SC, LC, WW, WN, and PC.
Table 3.1 summarizes the properties enjoyed by these models. From the table, we can see
that WW and WN consistency are “unreasonable”, since they lack some property.

In the rest of the chapter, we define and discuss the five properties, trying also to show
which conditions should be met in order for a property to be true.

3.1 Completeness

A memory model that defines observer functions only for certain computations would be
pretty useless. (Imagine having a memory system that, fed with a computation,says “I
cannot do this”.) We say that a model iscompleteif it defines an observer function for every
computation. Completeness is thus a necessary property of all useful memory models.

Definition 16 A memory model� is completeif, for any computationG, there exists an
observer function� such that(G;�) 2 �.
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model complete monotonic constructible confines nondet. classical
SC X X X X X
LC X X X X X

WW X X X no X
WN X X no X X
PC X X X ?? X

Table 3.1: Summary of the properties enjoyed by the memory models defined in Chapter 2. A
check markX means that the model has the property. The first three columnsrefer to properties
for which there is a mathematical definition. The last two columns refer to properties that are not
precisely defined, and that I believe are desirable from a programmer’s perspective. Consequently, a
check mark in these columns means “I believe the model has theproperty”. A “no” means, however,
that the model definitely does not have the property. A “??” means that my intuition of the property
fails to apply to the model, and thus I don’t know how the modelbehaves.

A model weaker than a complete model is also complete.

Theorem 17 Let� and�0 be two memory models. If� is complete and� � �0, then�0
is also complete.

Proof: Since� is complete, then for any computationG, there exists an observer func-
tion� such that(G;�) 2 � � �0, proving that�0 is also complete.

For the proof that all the models in Table 3.1 are complete, we argue that sequential
consistency is complete, and that all those models are weaker than sequentialconsistency.
The proofs are not very interesting, and the reader can skip the rest of this section with no
harm.

Lemma 18 SC is complete.

Proof: LetG be a computation. We know that there exists a topological sortT of G. By
definition,(G;LT ) 2 SC.

Lemma 19 The memory models LC, WW, WN, and PC are weaker than SC, that is, the
four inclusions SC� LC, SC�WW, SC�WN, and SC� PC hold.

Proof: The inclusions SC� LC and SC� PC are immediate from the definitions of the
models, since if there exists a global topological sort, then there also exists atopological
sort for each location and for each connected component.

Proof that SC� WN: Let (G;�) 2 SC and� = LT for some topological sortT . We
want to prove that� obeys Definition 13. By definition ofLT , Property 13.1 holds. We
now prove Property 13.2. Suppose, by contradiction, that there exists a tripleu, v, andw
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of nodes such thatu � v � w, and that�(l; w) = �(l; u) holds, but�(l; v) 6= �(l; u).
The relation�(l; v) 6= �(l; u) implies thatLT (l; v) is some nodex on the path fromu to v.
Consequently,x writes tol, andx lies betweenu andw in T , whenceLT (l; u) cannot be
the same asLT (l; w). This contradiction proves the property.

Proof that SC�WW: The proof is the same as the proof that SC�WN.

We can now conclude that all the above models are complete.

Theorem 20 The memory models SC, LC, PC, WN, and WW are complete.

Proof: Since SC is complete (Lemma 18) and SC is stronger than every model in the
statement (Lemma 19), the theorem follows from Theorem 17.

3.2 Monotonicity

We now definemonotonicity. Suppose we remove some edges from a computation. Then,
it becomes possible to execute the dag in more ways than it was possible before. Yet, all
valid executions of the original dag should still be valid, as should be all valid observer
functions. Monotonicity says that a valid observer function is still valid after we remove
edges from a dag.

Definition 21 A memory model� is monotonicif, for all ((V;E);�) 2 �, we have that((V;E 0);�) 2 � for anyE 0 � E.

We now informally argue that the memory models SC, LC, PC, WN, and WW are mono-
tonic. (A formal proof would be tedious and not say anything new.) For the models defined
in terms of the last writer (that is, SC, LC, and PC) observe that a topological sort of a com-
putation is still a topological sort after some edges are removed from the computation. In
other words, removing edges can only grow the set of topological sorts, and thus of observer
functions. For WN and WW, observe that the implications in Properties 13.2 and 14.2 can
become vacuously true when edges are removed, but can never become false if they were
true before the removal.

3.3 Constructibility

In this section we defineconstructibility, which says that if we have a dag and an observer
function in some model, it is always possible to extend the observer function to a “bigger”
dag. Constructibility tries to capture the idea that a memory model can be implemented
exactly, i.e., without implementing a stronger model. Remarkably, not all memorymodels
are constructible. We show that for an arbitrary memory model, however, there is a natural
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way to define a unique constructible version of it. Finally, we give necessary and sufficient
conditions for the constructibility of monotonic memory models.

We now explore the basic idea behind constructibility. Suppose that, instead of being
specified completely at the beginning of an execution, a computation is revealedonline
by an adversary.1 Suppose also that a consistency algorithm exists that maintains a given
memory model online. In a sense, the consistency algorithm is just building an observer
function while the computation is being revealed. Suppose that, at some point in time,
an observer function exists for the part of computation known so far, but when a new
computation node is revealed by the adversary, the observer function cannot be extended
to the new node. In this case, the consistency algorithm is “stuck”. It should have chosen a
different observer function in the past, but that would have required some knowledgeof the
future behavior of the adversary. Constructibility prohibits this situation from occurring.
A valid observer function in a constructible model can always be extended to a bigger dag
when new dag nodes are revealed.

Suppose now that we have a nonconstructible model, and an online consistency algorithm
that supports the model. The algorithm cannot run the risk of producing an observer func-
tion that cannot be extended when new nodes are revealed, because it does not know what
the adversary does. Therefore, the algorithm can produce only a strict subset of theob-
server functions allowed by the model—that is, it must maintain a strictlystronger model.
Consequently, computer architects and programmers should not adopt a nonconstructible
memory model; they should just adopt the stronger model.

The formal definition of constructibility depends on the notion of a “prefix” of a dag.

Definition 22 A dagG0 is aprefix of a dagG if, for all nodesu andv, we have that(u �G v) ^ (v 2 G0) =) u �G0 v :
In other words, a dagG0 is a prefix of another dagG if, whenever a node is inG0, all the
predecessors of the node are also inG0:

We also need to introduce a new notation. If� is an observer function for a computa-
tionG, andG0 is a subgraph ofG, we say that�0 = �jG0 is therestrictionof � toG0 if �0
is an observer function forG0 and coincides withG over its domain. We also say that� is
anextensionof �0 toG.

We now define constructibility.

Definition 23 A memory model� is constructibleif the following property holds: for any
computationG and for any prefixG0 ofG, if (G0;�0) 2 �, then there exists an extension�
of�0 toG such that(G;�) 2 �.

Definition 23 says that if the memory model allows an observer function for a prefix, then
the function must be extensible to the entire dag.

1Such is indeed the case with multithreaded languages, such as Cilk [Blumofe1995; Joerg 1996], where
the adversary corresponds to the programmer.
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A simple (almost trivial) consequence of constructibility is given by the next theorem.

Theorem 24 A constructible memory model is complete.

Proof: Immediate from the fact that the empty computation is a prefix of all computations
and, together with its unique observer function, belongs to every memory model.

The rest of this section addresses three topics. We first show that, for any memory model
(whether constructible or not), a well-definedconstructible versionof the model exists.
We then give necessary and sufficient conditions for the constructibility of complete and
monotonic memory models. Finally, we use these conditions to prove the constructibility
of SC, LC, and PC. We state that WW is constructible and that WN is not, but the proofs
are delayed until Section 4.4, where a wider class of dag-consistent models is defined and
their properties analyzed.

3.3.1 Constructible version of a model

In this section, we prove that the weakest constructible model�� stronger than a given
model� exists and is unique. We call�� theconstructible versionof �.

We start by proving that the union of constructible models is constructible, and then
define the constructible version as an infinite union of constructible models.

Lemma 25 LetS be a (possibly infinite) set of constructible memory models. Then
S�2S �

is constructible.

Proof: Let G be a computation, and letG0 be a prefix ofG. We want to prove that, if(G0;�0) 2 S�2S �, then there exists an extension� of the observer function�0 such that(G;�) 2 S�2S �.
If (G0;�0) 2 S�2S �, then(G0;�0) 2 � for some� 2 S. Since� is constructible, there

exists an observer function� for G such that(G;�) 2 � and�jG0 � �0. Consequently,(G;�) 2 S�2S �, proving that
S�2S � is constructible.

Theorem 26 For any memory model�, there exists a unique memory model�� such that

26.1. �� � �;

26.2. �� is constructible;

26.3. for any constructible model�0 such that�0 � �, we have�0 � ��.
Proof: Let �� be the union of all constructible models�0 such that�0 � �. Then�� satisfies Condition 26.1. Also,�� satisfies Condition 26.2, because of Lemma 25.
Condition 26.3 is satisfied by construction of��.
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To show uniqueness, suppose that there exists another model�0 satisfying the three prop-
erties. Then�0 � ��, because of Condition 26.3, and�� � �0, again because of Condi-
tion 26.3 applied to�0. Therefore, we have�� = �0.

We now define what we mean by the constructible version of a model.

Definition 27 For any memory model�, the unique�� that satisfies all the conditions of
Theorem 26 is called theconstructible versionof�.

The constructible version�� of a model� is therefore the weakest constructible model
that is stronger than�. Observe that�� = � if and only if� is constructible.

Giving a simple expression for the constructible version of a memory model can be very
hard in general. For example, I have not been able to characterize the constructible version
of WN other than by means of Definition 27. In Chapter 4 we define a related model called
NN, and in Section 4.5 we prove that location consistency is the constructible version
of NN.

3.3.2 Conditions for constructibility

In this section, we establish necessary and sufficient conditions for memory models to be
constructible.

Recall our intuition of constructibility as the property that allows us to extenda valid
observer function to a bigger dag. One might try to extend the observer function one node
at the time (including of course all the incoming edges), and hope to prove constructibility
in this way. While fundamentally correct, this intuition suffers from two problems. First,
the memory model may not be complete, and there may be no valid observer function for
the intermediate dags. Second, the order in which nodes and edges are inserted may make
a difference, in the sense that one order of insertion may lead to an extension, while another
order might not. Neither of these difficulties arises if the memory model is complete and
monotonic, however.

We start by defining the concept of anaugmented dag.

Definition 28 LetG = (V;E) be a dag, and letO be a memory operation (either a write to
locationl, a read from locationl, or a no-op). Theaugmented dagofG, denoted augO(G),
is a dagG0 = (V 0; E 0), whereV 0 = V [ ffinal(G)g ;E 0 = E [ f(u; final(G)) : u 2 V g ;
and final(G) 62 V is a new node that performs the memory operationO.

The augmented dag, therefore, consists of the original dag plus a new node which is a
successor of every node in the original dag.
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In the next theorem, we give necessary and sufficient conditions for the constructibility
of monotonic memory models.

Theorem 29 A monotonic memory model� is constructible if and only if for all(G;�) 2� and for all memory operationsO, there exists an observer function�0 such that we have(augO(G);�0) 2 � and�0jG � �.

Proof: The “)” part is obvious, sinceG is a prefix ofaugO(G).
For the “(” direction we must prove that, in the given hypotheses, ifG is a prefix ofG0

and(G;�) 2 �, then(G0;�0) 2 � for some extension�0 of �.
We first state without proof an important property of prefixes of a finite dag. IfG is a

prefix ofG0, then there exists a sequence of dagsG1; G2; : : : ; Gk such thatGi is a prefix ofGi+1, the graphGi+1 has the same nodes asGi plus one new node, and the sequence starts
with G1 = G, and ends withGk = G0.

The proof of the theorem uses induction on the lengthk of such a sequence. The base casek = 1 is obvious. Now, suppose inductively that there exists�k such that(Gk;�k) 2 �,
and letO be the memory operation performed by the node inGk+1 that does not belong
toGk. By assumption, there exists an observer function�0k such that(augO(Gk);�0k) 2 �.
Let (V 0k; E 0k) = augO(Gk) and(Vk+1; Ek+1) = Gk+1. Then, up to isomorphisms, we haveVk+1 = V 0k andEk+1 � E 0k. By monotonicity of�, we have(Gk+1;�0k) 2 �, completing
the inductive step.

One interpretation of Theorem 29 is particularly significant. Consider an execution of a
computation. At any point in time some prefix of the dag has been executed. If at alltimes
it is possible to define a “final” state of the memory (given by the observer function on the
final node of the augmented dag), then the memory model is constructible.

3.3.3 Constructibility of example models

We now prove the constructibility of SC, LC, and PC. Theorem 29 is used in the proof. We
also know that WW is constructible and WN is not constructible, but we delay the proof
until Section 4.4, where we discuss a whole class of dag-consistent models.

Theorem 30 SC, LC, and PC are constructible memory models.

Proof: We just give the proof for LC, since the proof for the other models is similar. The
proof uses Theorem 29. Since LC is monotonic, we just need to prove that it is possible to
extend any observer function to the final node.

Let (G;�) 2 LC. Therefore, for all locationsl there exists a topological sortT (l) of
the dagG such that for all nodesu, we have�(l; u) = LT (l)(l; u). Now, for any memory
operationO, consider the augmented dagaugO(G), and letT 0 be the following total order
of augO(G): all the nodes of inG in the order specified byT (l), followed byfinal(G).
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It is immediate thatT 0 is a topological sort ofaugO(G). Then, the function� defined by�0(l; u) = LT 0(l; u) is a valid LC observer function onaugO(G), and it coincides with�
onG. The theorem follows by applying Theorem 29.

3.4 Nondeterminism confinement

In this section and in Section 3.5 we discuss two more “properties” of memory models. Un-
like completeness, constructibility, and monotonicity, these two propertiesare by no means
well defined. Instead, they try to capture my intuition of reasonableness. In this section we
address memory models that confine nondeterminism, or, more precisely, memory models
thatdo notconfine nondeterminism. Specifically, WW-dag consistency is one such model.

A computation isnondeterministicwhen there exist two incomparable nodes that either
write to the same location, or one of which writes and the other reads the same location.
We also say that these memory accessesconflict. This notion of nondeterminism captures
the idea that there are some conflicting memory accesses and the conflict is not resolved
by the computation. It is worth pointing out that the conflict might indeed be resolvedby
the memory modelin some funny way. For example, the memory model might say that all
nodes with a prime number of outgoing edges win when conflicting with other nodes, and
thus the execution of the computation can be deterministic even if the computationis not.
For our purposes, these subtleties can be ignored.

I want to discuss the case where part of a computation is nondeterministic, but therest
is deterministic, and I want to argue that the deterministic part should behavedeterministi-
cally. This requirement, however, is too strong in general (after all, every node is determin-
istic, if considered in itself), but there is one case where it makes sense. The specific case I
have in mind is when there is a “join” nodeu, and every node in the computation is either
a predecessor or a successor ofu. Suppose that the part of computation composed by the
successors ofu is deterministic, and the part composed by the predecessors is not. I want
to argue that the deterministic part should behave deterministically. WW-dag consistency
does not obey this requirement.

Consider the computation in Figure 3-1, and suppose the computation is executed under
a WW-dag consistent memory model. One possible outcome of the computation is thatl1 = 1 andl2 = 0. We now argue that this behavior is undesirable. The above computation
may be representative of the following pseudo-Cilk program:
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l 1
l 0 l1  l l2  l

Figure 3-1: A computation used to show that WW does not confine nondeterminism. The com-
putation consists of two nodes (on the left) that write to location l, and of two other nodes that
readl.

spawn (write 0.0 to A);

spawn (write 1.0 to A);
sync;

if (A != 0.0) {
/* A can now be == 0.0 ! */

B = 1.0 / A;
}

My point is that one cannot write meaningful nondeterministic programs in such a model,
since a single pair of incomparable writes makes the rest of the program nondeterministic,
and the system is permitted to never resolve the concurrent writes in a wayor the other.
As a programmer, I believe that, at any node, all predecessors should be regardedas “past”
and ignored thereafter, for reasons of abstraction and modularity, at the veryleast. For
example, you might want to call a subroutine, and wait for the result. You certainly do not
want to know how the subroutine works internally in order to call it. If nondeterminism
is not confined inside the subroutine, you must be aware that nondeterminism can escape
from it. This behavior seems unreasonable, because it breaks the abstraction boundary.
WW does not confine nondeterminism. Since GS-location consistency is the same model
as WW-dag consistency (as we argued in Section 2.4.3), it has the same problem.

The other models we discussed so far do indeed confine nondeterminism. For example,
Figure 3-1 does not apply WN-dag consistency. We now argue that WN confines nonde-
terminism. Historically, this was the reason why WN was introduced in thefirst place. The
main idea is that every node is forced to have a viewpoint on memory, given by the observer
function. This viewpoint influences all the successors and hides past nondeterminism from
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their sight. In the example in Figure 3-1, the middle node is forced to “choose” between
one of the preceding writes, and the last node must be consistent with that choice because
of the “convexity” Property 13.2.

Sequential consistency and location consistency arguably confine nondeterminism, be-
cause every node has a clear idea of whether a write happened or not, and successors must
see the same order of writes.

Finally, my intuition fails to see whether processor consistency confines nondeterminism
or not. The main problem is that processor consistency is naturally defined only when the
computation consists ofP chains of instructions. In this case, there is no notion of join
points that resolve nondeterminism, and the property holds vacuously.

3.5 Classical and “quantum” models

In this section we discuss a strange behavior of memory models that treat read operations
in a way different from no-ops.

Historically, the following definition was proposed to confine nondeterminism in WW-
dag consistency. The definition is expressed using the same wording as Definition 11.

Definition 31 The shared memoryM of a multithreaded computationG = (V;E) is dag
consistentif the following three conditions hold.

1. Whenever any nodeu 2 V reads any locationl 2 M, it receives a valuex written
by some nodev 2 V such thatv writesx to l andu 6� v.

2. For any three nodesu; v; w 2 V , satisfyingu � v � w, if v writes some locationl 2 M andw readsl, then the value received byw is not written byu.

3. For any three nodesu; v; w 2 V , satisfyingu � v � w, if v reads some locationl 2 M, receiving a value written byu, and moreoverw reads l, then the value
received byw is not written byu.

Definition 31, however, never appeared in the literature, and Definition 12 (WN-dag
consistency) was used instead. We now discuss what is wrong with Definition 31.

Observe that Definition 31 contains a condition of the form “and nodew readsa loca-
tion”. This phrasing is dangerous, because reading a location can possibly influence the
memory semantics. Consider, for example, the computation in Figure 3-2. Suppose that
the computation is as shown in the figure, with the middle node being a no-op. In this
case, a possible outcome of the computation is thatl1 = 1 andl2 = 0 (if Definition 31 is
used as memory model). Now, suppose that the middle nodereadslocationl. Then, all
executions must satisfy the propertyl1 = l2. The system implementing the memory model,
therefore, exhibits a behavior of this kind: If the middle node does nothing, the value ofl
is indeterminate when the node is executed. If the middle nodeobservesl, then suddenly
the location becomes determinate.
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l 1
l 0

l1  l
l2  l

Figure 3-2: A computation used to show “quantum” effects in Definition 31. See the text for an
explanation. The middle node may either do nothing, or read locationl. If the read occurs, then
Definition 31 confines nondeterminism, otherwise it does not.

Like the case where nondeterminism is not confined, I regard this sort of behavior as
undesirable for a programmer. The observer function ensures that it is always possible to
speak about the “value of a location at a node”, no matter what operation the node performs
on memory (including a no-op). The point of this section is that one should be careful in the
treatment of reads and no-ops. The technical machinery introduced by observer functions
is a way to give proper memory semantics to no-ops.

None of the models considered in Chapter 2 exhibits quantum effects, as can be seen
by inspecting the definitions, where reads and no-ops are always treated in the same way.
These model are, therefore, “classical”.

3.6 Summary

In this chapter we defined five properties that every reasonable memory model should obey:
completeness, monotonicity, constructibility, nondeterminism confinement, and classical-
ity.

The first two are almost trivial and not very important (in the sense that you would not
even call “memory model” something that does not obey them).

The discovery of constructibility is a major contribution of this thesis, and the conse-
quences of non constructibility are discussed in detail in Chapter 4.

Whether the other two properties are necessary can be matter of discussion. I think they
are (would you buy a quantum computer?). Other people can disagree, but, at the very
least, this thesis has the merit of showing these properties explicitly.
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Chapter 4

The weakest memory models

In this chapter we tackle the problem of identifying the weakest reasonable memory model.
In order to follow the exposition, it will be helpful to look at the diagram in Figure 4-1,
which depicts all the memory models discussed in this chapter.

We have already seen that WW-dag consistency is unreasonable, because it does not
confine nondeterminism. Yet, dag consistency has been useful as a memory model for
Cilk. After we (the Cilk authors) discovered this problem of WW, we proposed WNas a
better memory model for Cilk. In this chapter, we show that WN is not good either, because
it is not constructible.

This chapter will show how to fix dag consistency so that it obeys the five properties
discussed in Chapter 3.

In the same spirit of WW and WN, in this chapter we define a whole class of dag-
consistent memory models, including NW- and NN-dag consistency, which complement
the definitions of WW and WN. The strongest form of dag consistency is NN.

Of the four models, only WW dag consistency turns out to be constructible. Recall now
that, even if a model is not constructible, we can always look at its constructible version,
which has all the properties of the model and moreover is constructible. Remarkably, in this
chapter we prove that NN� = LC. In other words, if you want to implement the strongest
form of dag consistency, you cannot avoid implementing location consistency.

What about WN� and NW�? I know very little about them. NW does not confine non-
determinism, and it is likely that NW� has the same problem. WN� seems to obey all the
properties described in Chapter 3, but I could not find any simple way to define it, other
than by means of the definition of constructible version.

The rest of this chapter is organized as follows. We first define the class of dag-consistent
memory models, and identify WW, WN, NW, NN among them. (WW and WN are the
models that we defined in Section 2.4.3.) We then show that these four models are dis-
tinct, and prove that NN is the strongest dag-consistent model. We then determinethe
constructibility properties of these four models, and prove the equivalence of NN� and LC.
We finally comment about what this discussion can tell us about the weakest reasonable
memory model.
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weaker

stronger

WN� NN

WW = WW�
NW�

WN NW

LC = NN�SC= SC�

Figure 4-1: Summary of the relations among the memory models discussed in this chapter. A line
means that the model at the lower end of the line is strictly weaker than the model at the upper end.
For example, LC is strictly weaker than SC. We do not know where exactly WN� and NW� lie in
the diagram.
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4.1 Dag-consistent memory models

In Section 2.4.3 we introduced two memory models: WW and WN. We remarked that
these models are equivalent to the two dag consistency models of [Joerg 1996; Blumofe
et al. 1996b] and [Blumofe et al. 1996b], respectively. We also observed that the definitions
of WW and WN are very similar. We now define a class ofdag-consistent memory models
whose definition is similar to WW and WN, and complete the selection of W’s andN’s by
defining the two models NW and NN.

Recall the definitions of WW (Definition 14) and WN (Definition 13). Of the two prop-
erties required by each definition, the first one is the same for both models. The second
property is different, but it can abstracted as follows. LetQ(l; u; v; w) a predicate on nodes
and locations, and consider the following version of the property:

For all locationsl, and for each tripleu, v, andw of nodes such thatu � v � w,
we have that�(l; w) = �(l; u) ^Q(l; u; v; w)! �(l; v) = �(l; u) :

If we letQ(l; u; v; w) � W(l; u), we get WN. In the same way, if we letQ(l; u; v; w) �
W(l; u) ^W(l; v), we get WW. In other words, we get different forms of dag consistency
by varying the predicateQ.

In an analogous fashion, we can define aQ-dag consistency model for any predicateQ
we might think of.

Definition 32 LetQ : M� V � V � V 7! ftrue; falseg. Q-dag consistencyis the set
DC(Q) = f(G;�)g, whereG = (V;E) is a computation, and� is an observer function
for G such that the following properties hold:

32.1. For alll 2 M and for allu 2 V , if W(l; u) then�(l; u) = u.

32.2. For all locationsl, and for each tripleu, v, andw of nodes such thatu � v � w,
we have that�(l; w) = �(l; u) ^Q(l; u; v; w)! �(l; v) = �(l; u) : (4.1)

By varyingQ, we get the whole class ofdag-consistent memory models. They all obey
a convexity condition (Property 32.2) similar to the defining property of WW and WN
(Property 14.2 and Property 13.2). The rest of this chapter is concerned with four particular
dag-consistent models: WW, WN, NW, and NN. They are defined as follows.

Definition 33 The memory models WW, WN, NW, and NN are defined as follows.

WW
�= DC(W(l; u) ^W(l; v))
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WN
�= DC(W(l; u))

NW
�= DC(W(l; v))

NN
�= DC(true)

Rationale: We are interested in NN because it is the strongest dag-consistent memory
model. (See Section 4.2.) We introduced WW and WN in Section 2.4.3, remarking
that they are equivalent to the two dag-consistent models that, with Blumofeet. al,
I published in the past. I consider NW for completeness and symmetry reasons, al-
though we do not fully understand what the definition really means and whether this
memory model has any benefit.

Monotonicity of dag-consistent models We now argue informally that all dag-consistent
models are monotonic. Consider a computation and a dag-consistent observer function.
Removing edges of the computation cannot create new paths in the dag. Consequently, if
Property 32.2 was true before the removal for any three nodesu, v andw, it is still true
after the edges are removed.

4.2 Relationships among dag-consistent models

We now analyze the mutual relationships among the four models we just defined. In sum-
mary, NN is the strongest model, WW is the weakest, and all the models are distinct.
Moreover, NN in stronger thanQ-dag consistency, for any predicateQ. (Stronger is taken
here in the technical sense of Definition 6, i.e., stronger or equal.)

Theorem 34 The following inclusions hold among the NN-, NW-, WN- and WW-dag con-
sistency models:

34.1. NN( NW

34.2. NW( WW

34.3. NN( WN

34.4. WN( WW

34.5. WN6� NW

34.6. NW6�WN

Proof: The four inclusions in Relations (34.1)-(34.4) are immediate from the definitions.
We must now prove that the inclusions are strict, and also prove Relations (34.5)and (34.6).
We shall exhibit two pairs of computation/observer function. The first pair belongs to WW
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Figure 4-2: (a) Example of computation/observer function belonging toWW and NW, but not to
WN or NN. (b) Example of computation/observer function belonging to WW and WN, but not to
NW or NN. Each of the two dags in the figure have four nodes,A, B, C andD (the name of the
node is shown inside the node). The memory consists of only one location, which is understood.
Every node performs a read or a write operation on the location (for example,W0 means that the
node writes a0 to the location, andR1 means that it reads a1). The value of the observer function
is displayed below each node. For example, in part (a), the value of the function for nodeC is A,
which accounts for the fact that nodeC reads the value written by nodeA.
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and NW, but not to the other two models; the second belongs to WW and WN, but not to
the other two models. These two counterexamples therefore suffice to prove the theorem.

For the counterexamples, it is enough to consider a single memory locationl, which will
henceforth be left unspecified. Figure 4-2 shows two dags. The first belongs to WW and
NW, but not to WN or NN, as it is easily verified. In the same way, the reader can verify
that the second example in Figure 4-2 belongs to WW and WN, but not to NW or NN.

Incidentally, NN( NW \ WN and WW) NW [WN, as can be shown by suitable
counterexamples.

The model NN is indeed the strongest dag-consistent model, in an absolute sense, as
stated by the following theorem.

Theorem 35 For all predicatesQ, we have that

NN� Q-dag consistency:
Proof: The proof is immediate from the definition. An observer function satisfying Prop-
erty 32.2 withQ(u; v; w; l) = true also satisfies Property 32.2 for any other predicateQ.

4.3 Dag consistency vs. location consistency

In this section we investigate the relation between the dag-consistent models and location
consistency. It turns out that location consistency is strictly stronger than NN-dag consis-
tency. Since NN-dag consistency is the strongest dag-consistent model, locationconsis-
tency is also stronger than all the dag-consistent models.

We now prove that location consistency is strictly stronger than NN-dag consistency. We
split the proof into two parts. We first prove that LC� NN, and then that LC6= NN.

Theorem 36 Location consistency is stronger than NN-dag consistency, that is, LC� NN.

Proof: Let (G;�) 2 LC. We want to prove that(G;�) 2 NN. For all locationsl, we
argue as follows. Suppose, by contradiction, that(G;�) 62 NN, and therefore there exist
three nodesu, v andw that violate Property 32.2. In other words, suppose thatu � v � w,
and�(l; u) = �(l; w), but�(l; v) 6= �(l; w).

Since(G;�) 2 LC, there exists a topological sortT (l) of the dagG such that�(l; x) =LT (l)(l; x) for all nodesx. Therefore, we have thatLT (l)(l; u) 6= LT (l)(l; v), which implies
thatLT (l)(l; v) is some nodex on the path fromu to v. Consequently,x writes tol, andx lies betweenu andw in T (l), whenceLT (l)(l; u) cannot be the same asLT (l)(l; w). This
contradiction proves the theorem.

As a corollary, LC is also stronger than all the other dag consistency models.
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Figure 4-3: Example of computation/observer function belonging to NN but not to LC. An expla-
nation of the conventions used in the figure appears in the caption of Figure 4-2.

Corollary 37 The following relations hold:

LC � NW

LC � WN

LC � WW

Proof: The corollary follows immediately from Theorem 36 and Theorem 34.

Corollary 38 NN, NW, WN and WW are complete memory models.

Proof: The corollary follows from completeness of LC, Theorem 36, Corollary 37 and
Theorem 17.

In order to prove that location consistency is strictly stronger than NN-dagconsistency
we shall present a counterexample in the same style as Theorem 34.

Theorem 39 LC 6= NN.

Proof: Figure 4-3 shows a pair(G;�) that belongs to NN, as can be verified. As in the
proof of Theorem 34, there is a single memory locationl, which is understood.

We shall now prove that the pair shown in the figure does not belong to LC. Suppose by
contradiction that there exists a topological sortT of G such that�(l; u) = LT (l; u) for
all nodesu. Then�(l; C) = D implies thatB �T D. Since alsoD �T E, andD writes,
we have that�(l; E) 6= B. Thus, the pair in the figure does not belong to NN, proving the
theorem.

We can now conclude that location consistency is strictly stronger than NN-dagconsis-
tency.
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Corollary 40 LC( NN.

Proof: The proof follows immediately from Theorem 36 and Theorem 39.

4.4 Constructibility of dag-consistent models

Nothing can be said, in general, about the constructibility of dag-consistent models.Some
are constructible, some are not. We have, however, results for the four models we are
concerned with. In this section, we prove that NN, WN, and NW are not constructible, and
that WW is constructible.

Theorem 41 The memory models NN, WN, and NW are not constructible.

Proof: We first prove that NN is not constructible. The same proof also applies to WN.
Consider Figure 4-4. The dag on the left of the dashed line is a prefix of the whole

dag, and a valid NN observer function� is shown below the nodes. There is one memory
locationl, which is understood.

We now prove that it is not possible to NN-extend the observer function to nodeF . There
are three writes in the computation. It cannot be that�(l; F ) = A, because�(l; B) 6= A. It
cannot be that�(l; F ) = B, because�(l; C) 6= B. Finally, it cannot be that�(l; F ) = D,
either, because�(l; E) 6= D.

We now prove that NW is not constructible. The proof is similar to the proof for NN, but
we need a different computation, shown in Figure 4-5. As before, the reader can verify that
the figure shows a valid NW observer function, but there is no way to extend it to the new
nodeF .

Theorem 42 The memory model WW is constructible.

Proof: Recall that WW is monotonic (see Section 4.1). Therefore, by Theorem 29, it is
sufficient to show that for all(G;�) 2 WW and for all memory operationsO, there exists
an observer function�0 such that we have(augO(G);�0) 2WW and�0jG � �.

Let (G;�) 2 WW, and letO be any memory operation. LetG0 = augO(G), and�0 be
an extension of� toG0. The extended observer function�0 is completely specified, except
for the final nodefinal(G). Let T be a topological sort ofG0. We complete the definition
of �0 as follows: �0(l; final(G)) = LT (l; final(G)) :

It is immediate that�0 is an observer function. We now prove that(G0;�0) 2WW.
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Figure 4-4: Computation used in Theorem 41. There is one memory location, which is understood.
The name of a node is shown inside the node. The dag on the left of the dashed line is a prefix of
the whole dag, and a valid NN observer function for the prefix is shown below the nodes.

We first prove that Property 1 of Definition 14 is satisfied. Ifu 2 G, then�0(l; u) =�(l; u) and the property is true because� obeys the definition of WW. Moreover, by
construction, if W(l; final(G)) then�0(l; final(G)) = final(G), thus verifyng the property.

We now prove Property 2 of Definition 14. Consider any triple ofu, v, andw such thatu � v � w, and moreover we have W(l; u) and W(l; v). If w 2 G, we have that�0 verifies
the property, because� does. Otherwise, we have thatw = final(G). Because of the
definition of last writer and the assumption that W(l; u) holds and that W(l; v) holds, we
never have that�(l; w) = �(l; u), and therefore the property holds trivially. This concludes
the proof of the theorem.

4.5 LC is the constructible version of NN

In this section we prove that NN� is equivalent to LC. This is a major result of this thesis,
and it implies that, whenever you want to implement NN, you must also implementLC.
From a practical point of view, NN and LC are thus the same model.

Our strategy is to prove that NN� is both weaker and stronger than LC, wherefore they
are the same set. The difficult part is to prove that NN� � LC.

Lemma 43 NN� � LC.
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Figure 4-5: Computation used in Theorem 41 for proving that NW is not constructible. There is
one memory location, which is understood. The name of a node is shown inside the node. The dag
on the left of the dashed line is a prefix of the whole dag, and a valid NW observer function for the
prefix is shown below the nodes.

Proof: Let (G;�) 2 NN�. We want to prove that(G;�) 2 LC.
Consider a single memory locationl. We claim that there exists a topological sortT (l)

of the dag such that� coincides with the last writer functionLT (l). If the claim is true, then
the theorem follows immediately. We then prove the claim by induction on the number of
nodes inG.

The base case of the empty dag holds trivially.
Suppose the claim is true for all dags with less thank nodes. We now prove it holds for

all dags withk nodes.
Since(G;�) 2 NN� and NN� is constructible, we know that there exists an observer

function�0 such that(augno-op(G);�0) 2 NN�. Letw = �0(l; final(G)) be the value of
the observer function on the final node ofG, and letG0 be the subdag ofG consisting of
all nodesu where�(l; u) 6= w. We partitionG into three parts:G0, the single nodew, and
whatever remains (let’s call itH). The dagG0 does not containw and therefore has strictly
less thank nodes. Then, by inductive hypothesis, there exists a topological sortT 0 of G0
such that�jG0 coincides with the “last writer” functionLT 0.

Let T (l) be the following total order onG: all the nodes inT 0 in that order, followed
by w, followed by any topological sort ofH. By construction,� coincides with the “last
writer” functionLT (l).

If we can show thatT (l) is a legitimate topological sort ofG, then the claim is proven
and the lemma follows.
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To prove thatT (l) is a legitimate topological sort ofG, we reason as follows.

1. No node inH precedesw.

This property holds because, for allu 2 H, u 6� �(l; u) = w, as stated by Condi-
tion 3.2 of Definition 3.

2. The vertexw does not precede any node inG0.
To see why, suppose by contradiction that there exists a nodeu 2 G0 such thatw � u.
Thenw � u � final(G). Since�0(l; w) = w = �0(l; final(G)), the definition of NN�
implies that�0(l; u) = w, and thusu 62 G0. This contradiction proves thatT (l) is a
total order onG.

Lemma 44 LC� NN�.
Proof: Theorem 36 proves that LC� NN. Moreover, LC is constructible, as stated by
Theorem 30. Therefore, by Condition 26.1 of Theorem 26, we have that LC� NN�.

In summary, we have the desired equivalence of NN� and LC.

Theorem 45 LC = NN�.
Proof: Immediate from Lemmas 43 and 44.

The exact characterization of WN� and NW� is, however, an open problem. With ref-
erence to Figure 4-1, all we know is that they do not lie in the path between NN and LC
(unless they coincide with LC). The previous statement follows from the fact that WN� and
NW� are both constructible, and LC is the weakest constructible model stronger than NN.

4.6 The weakest reasonable memory model

It is now time to draw some conclusion after so many pages of definitions and theorems.
Figure 4-1 will again be helpful for visualizing the rest of the discussion.

We have a few candidates for the weakest reasonable memory models, but most of them
are inadequate for one reason or another. Let’s recapitulate what we know about them,
starting from bottom up.

WW is the original dag-consistent model [Blumofe et al. 1996b; Joerg 1996]. We argued
in Section 3.4 that WW does not confine nondeterminism.

WN is the dag-consistent model of [Blumofe et al. 1996a]. We proved in Section 4.4 that
it is not constructible.
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NW is a strange model. I introduced it because of symmetry reasons, but I do not know
what it means. Moreover, the same example used in Section 3.4 against WW also proves
that NW does not confine nondeterminism. We also know it is not constructible. In a sense,
this model combines the worst aspects of WW and WN, and I see no reason to adopt it.

NN is a “nice” model. Its definition is very symmetric: it imposes the “convexity” con-
dition (Property 32.2) to all computation nodes, without exclusion. It is the strongest dag-
consistent model. It is not constructible, but its constructible version has a simple form,
that is, location consistency.

In a sense, NN isthedag consistent model. The original intuition of dag consistency was
that some nodes (specifically, the writes) in a path should enjoy some sort of convexity. NN
just says thatall nodes should have this property.

We also know something about the constructible versions. We proved in Section 4.5
that NN� = LC. LC obeys all the five properties (Table 3.1), and consequently we should
regard it as a reasonable model. Unfortunately, I know very little about NW� and WN�.
Since NW does not confine nondeterminism, I suspect that NW� has the same problem,
although I do not know how to prove it. I do not see how constructibility could possibly
imply the confinement of nondeterminism in this case. Unfortunately, since this property
of nondeterminism confinement is not defined precisely, and NW� is not known explicitly,
it is very hard to argue formally in one way or another.

I do not know WN� explicitly, either. Again, since WNdoesconfine nondeterminism, I
expect WN� to do the same, although I do not know how to prove it.

In conclusion, we have: LC is definitely OK, WN� is probably OK, NW� is probably
unreasonable.

Given my experience in investigating these memory models, I think it is safe to say that
WN� is a highly artificial model, whose explicit characterization is cumbersome. I actually
have a tentative definition of WN�, that runs, more or less, as follows. For every locationl
there exists a topological sortT (l) such that, for every nodeu, there exists a topologi-
cal sortT (u) such that I) the observer function is the last writer according toT (u), and
II) T (u) is consistent withT (l) with respect to all predecessors ofu (i.e., the predecessors
of u appear in the same order in both topological sorts).1 I tried some examples, and the
previous definition seems right, but I do not know how to prove that it is. If the defini-
tion is right, I would certainly discard WN� because it is too complex (contrast it with the
simplicity of LC).

At the semantics level, we have therefore evidence that LC is the weakestreasonable
model, albeit with the caveats about WN�. No matter how we argue at the semantics level,
however, the question of the weakest reasonable memory model will eventuallybe resolved
by implementation issues. Results on this side also suggest that location consistency is the
model of choice.

1I have the feeling thateveryconstructible model must be definable in terms of topological sorts andlast
writers, but this statement is rather mystical at this point.
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The BACKER coherence algorithm has been proven fast both analytically [Blumofe et al.
1996a] and empirically [Blumofe et al. 1996b]. Indeed, BACKER is theonly coherence
algorithm for which there is any kind of performance guarantee. We now know, thanks to
Luchangco [1997], that BACKER maintains location consistency. Indeed, since BACKER is
defined as operating on every location independently of other locations, it cannot support
more than location consistency, and therefore location consistency seems tobe the exact
semantics of BACKER. Given this situation and our results about constructibility, I conclude
that there is no reason to relax LC.

4.7 Summary

This chapter is a discussion and an explanation of Figure 4-1. We investigated theproperties
of the weak models shown in the figure, and proved that the relations among the models
are as shown in the figure. In particular, we proved that NN� = LC.

Most of the models are unreasonable for some reason. We argued that only LC and WN�
are possible candidates for the weakest reasonable memory model, and that WN� should
be discarded too, because of its complexity. Analytical and experimental results that were
proved by myself and other people in the past also prove that LC can be maintainedusing
simple and efficient algorithms.

We next consider the degrees of the angels in their hierarchies andorders, for it was said above that the superior angels illumine theinferior angels, and not conversely.Under this head there are eight points of inquiry: (1) Whetherall the angels belong to one hierarchy? (2) Whether in one hierarchythere is only one order? (3) Whether in one order there are manyangels? (4) Whether the distinction of hierarchies and orders isnatural? (5) The names and properties of each order. (6) Thecomparison of orders to one another. (7) Whether the orders willoutlast the Day of Judgment? (8) Whether men are taken up intoangelic orders?
Thomas Aquinas,Summa Theologica, Question CVIII
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Chapter 5

Conclusion

The motivation of this thesis is best expressed in a well-reasoned position paper by Gao
and Sarkar [1997]. Gao and Sarkar argue that it is essential to adopt an end-to-end view
of memory consistency that must be understood at all levels of software and hardware.
They say that this goal is possible with a memory consistency model based on partial order
execution semantics. I agree wholeheartedly with their viewpoint. In fact, at this point
it seems so natural to me that I would have given the computation-centric/partial order
framework as an obvious axiom, if my advisor had not forced me to explain to others what
I was talking about.

Indeed, this thesis already provides some answers to the questions that are raised in
Gao and Sarkar’s paper. They say that the primary open question is to identify a“sound
but simple specification of memory consistency models based on partial order execution
semantics.” I believe that the framework developed in Chapter 2 is a good solution to this
problem (although not perfect). Observer functions, while very simple, have proven to
be a useful device for defining memory models and understand their properties. Gao and
Sarkar think that it is important to do research in the “design and implementation of (more)
scalable cache consistency protocols for shared-memory multiprocessor”. The previous
work on the BACKER algorithm [Blumofe et al. 1996b; Blumofe et al. 1996b] already
resulted into a scalable cache consistency protocol, which is alsoprovably efficient.

Nonetheless, many open research questions still remain in this area. I will now try to
formulate the issues I think are most interesting.

On the idea that weaker is simpler I have the feeling that it is not really possible to
implement anything less than location consistency. For example, BACKER keeps multiple
incoherent copies of objects, and yet it supports location consistency. I have studiedthe
protocol for GS-location consistency by Merali [Merali 1996]. It is an efficient protocol
that, among other things, is supposed to prove that GS-location consistency is a good idea,
because it can be implemented efficiently. I suspect that the protocol actually supports
location consistency, however. Although I do not have a formal proof, I could not find a
single instance in which the protocol violates NN-dag consistency. If the protocol supports
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NN-dag consistency, it must also support location consistency, because of my results on
constructibility.

While developing BACKER, our group at MIT thought that dag consistency was a good
model, in part because BACKER supports it efficiently. In the same way, Gao and Sarkar
argue that GS-location consistency is a good model because they can support it efficiently.
In both cases, the argument is bogus: you have to make sure that your consistency protocol
does not actually implement a stronger model. Otherwise, adopt the stronger model. Nei-
ther BACKER nor, for what I can see, the consistency protocol by Merali supports as weak
a model as for what it was designed. Luchangco has shown that BACKER actually supports
LC. It would be nice to know for sure what Merali’s algorithm exactly does.

Location consistency imposes extremely weak conditions, and I suspect you have towork
hard if you want something weaker. In other words, I think that supporting anything weaker
than location consistency actually requires amore expensiveprotocol. Here is an argument
by which it might actually be possible to prove this counterintuitive statement. Location
consistency is maintained by BACKER with one bit of state per cache location (the dirty
bit), plus knowledge of whether a location is in the cache or not. When you read a value,
you either read the cache or main memory, i.e., you have two choices. Suppose you want
a weaker model (i.e, more choices) than location consistency. Then you must keep more
bits of state to keep track of the various choices that are available, resulting in a more
expensive protocol. I also suspect that every system composed of a home location and
caches, where the caches only communicate with the home location, must support at least
location consistency.

I would really like to know of a consistency protocol that is good for anything and which
provablydoes notmaintain location consistency.

On WN-dag consistency I do not know any simple definition of WN�. I suspect that
every definition of WN� in “closed form” is messy. This open problem demands a more
intensive theoretical study.

On the reasonableness of location consistencyThe five properties that we regarded as
necessary for reasonableness may not be sufficient. Many reasonable algorithmsexist that
cannot be programmed with location consistency alone (for example, a parallel hash table).
My current intuition is that location consistency is the right default, and that special cases
should be treated specially with stronger rules. I do not know what the stronger rules are,
however, and, more importantly, how to implement them efficiently.

On constructibility Constructibility is a necessary condition for the existence of an on-
line consistency algorithm maintaining a memory model exactly, but it is probablynot
sufficient. It would be nice to identify what the conditions are under which an exact con-
sistency algorithm for a memory model exists.
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On release consistency I have discussed with Leiserson, Müller, and Randall [1997] the
possibility of defining a sort of “release consistency” within the computation-centric frame-
work. The basic idea is to augment the computation model with locks, whose purpose is
to introduce new edges in the dag. We then apply the existing LC model to the resulting
dag. This model does not correspond exactly to the release consistency model from [Ghara-
chorloo et al. 1990], because it specifies semantics for ill-formed programs, while release
consistency does not. Nonetheless, this approach to release consistency yields to the first
definition of release consistency that I could understand.

One important consequence of providing semantics for ill-formed programs is that mem-
ory operations performed outside the critical regions are given meaningful semantics, which
appears to be desirable in certain applications. For example, suppose a program iscreating
a certain data structure, and then it inserts a pointer to it in a shared queue, which is arbi-
trated by means of a lock. As soon as a computation node unlocks the queue, the pointer
and the data structure become visible to the next node that acquires the lock. I am opti-
mistic that further research on this area will clarify the tradeoffs between these stronger
semantics and the efficiency of an implementation.
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