
Concurrent Cache-Oblivious B-Trees
Michael A. Bender

Department of Computer Science
SUNY Stony Brook

Stony Brook, NY 11794-4400, USA
bender@cs.sunysb.edu

Jeremy T. Fineman
MIT CSAIL

The Stata Center, 32 Vassar Street
Cambridge, MA 02139, USA

jfineman@mit.edu
Seth Gilbert

MIT CSAIL
The Stata Center, 32 Vassar Street

Cambridge, MA 02139, USA
sethg@mit.edu

Bradley C. Kuszmaul
MIT CSAIL

The Stata Center, 32 Vassar Street
Cambridge, MA 02139, USA

bradley@mit.edu

ABSTRACT
This paper presents concurrent cache-oblivious (CO) B-trees. We
extend the cache-oblivious model to a parallel or distributed set-
ting and present three concurrent CO B-trees. Our first data struc-
ture is a concurrent lock-based exponential CO B-tree. This data
structure supports insertions and non-blocking searches/successor
queries. The second and third data structures are lock-based and
lock-free variations, respectively, on the packed-memory CO B-
tree. These data structures support range queries and deletions in
addition to the other operations. Each data structure achieves the
same serial performance as the original data structure on which it
is based. In a concurrent setting, we show that these data struc-
tures are linearizable, meaning that completed operations appear to
an outside viewer as though they occurred in some serialized or-
der. The lock-based data structures are also deadlock free, and the
lock-free data structure guarantees forward progress by at least one
process.

Categories and Subject Descriptors:D.1.3Programming Tech-
niquesConcurrent Programming—parallel programming;E.1Data
StructuresDistributed Data Structures; E.1Data StructuresTrees;
G.3Probability and Statistics Probabilistic algorithms;

General Terms: Algorithms, Theory.

Keywords: Cache-Oblivious B-tree, Concurrent B-tree, Non-
Blocking, Lock Free, Exponential Tree, Packed-Memory Array.

1. INTRODUCTION
For over three decades, the B-tree [5,14] has been the data struc-

ture of choice for maintaining searchable, ordered data on disk.
Traditional B-trees are effective in large part because they mini-
mize the number of disk blocks accessed during a search. Specif-
ically, for block sizeB, a B-tree containingN elements performs
O(logBN + 1) block transfers per operation. B-trees are designed

This research was supported in part by the Singapore-MIT
Alliance, MURI–AFOSR SA2796PO 1-0000243658, USAF–
AFRL #FA9550-04-1-0121, DARPA F33615-01-C-1896, and
NSF Grants ACI-0324974, CNS-0305606, EIA-0112849, CCR-
0208670, CCR-0121277, and CCR-9820879.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’05,July 18–20, 2005, Las Vegas, Nevada, USA.
Copyright 2005 ACM 1-58113-986-1/05/0007 ...$5.00.

to achieve good data locality at only one level of the memory hier-
archy and for one fixed block size.

In contrast, cache-oblivious (CO) B-trees attain near-optimal mem-
ory performance at all levels of the memory hierarchy and for all
block sizes (e.g., [7–9, 11, 13]). A CO B-tree performs a search
operation withO(logBN + 1) cache misses for all possible block
sizes simultaneously, and even when the block size is unknown. In
a complex memory hierarchy consisting of many levels of cache,
the tree minimizes the number of memory transfers between each
adjacent cache level. Thus CO B-trees perform near optimally in
theory, and in recent experiments have shown promise of outper-
forming traditional B-trees [12,19].

One shortcoming of previously described CO B-trees is that they
do not support concurrent access by different processes, whereas
typical applications, such as databases and file systems, need to
access and modify their data structures concurrently. This paper
describes three concurrent CO B-tree data structures, proves them
correct, and presents performance analysis for a few interesting
special cases. The rest of this introduction reviews CO B-trees and
explains the concurrency problem.

Cache oblivious B-trees
We first review the performance models used to analyze cache-
efficient data structures, and then review three variations on serial
cache-oblivious B-trees.

External-memory data structures, such as B-trees, are tradition-
ally analyzed in thedisk-access model (DAM)[1], in which internal
memory has sizeM and is divided into blocks of sizeB, and exter-
nal memory (disk) is arbitrarily large. Performance in the DAM
model is measured in terms of the number of block transfers. Thus
B-trees implement searches asymptotically optimally in the DAM
model.

Thecache-oblivious model[15,26] is like the DAM model in that
the objective is to minimize the number of data transfers between
two levels. Unlike the DAM model, however, the parametersB, the
block size, andM, the main-memory size, are unknown to the coder
or to the algorithm. If an algorithm performs a nearly optimal num-
ber of memory transfers in a two-level model with unknown param-
eters, then the algorithm also performs a nearly optimal number of
memory transfers on any unknown, multilevel memory hierarchy.

A CO B-tree [8] achieves nearly optimal locality of reference at
every level of the memory hierarchy. It optimizes simultaneously
for first- and second-level cache misses, page faults, TLB misses,
data prefetching, and locality in the disk subsystem. Although the
first CO B-tree is complicated [8], subsequent designs [10, 13, 19,
27] rival B-trees both in simplicity and performance [6, 10, 13, 19,

4

5 6

7

8 9

10

11 12

13

14 15

10 11 12 13 14 151 2 3 4 5 6 7 98

1

2
3

Figure 1: The van Emde Boas layout from [26]. A tree of heighth is cut
into subtrees at height nearh/2, so each subtree isΘ(

√
N) in size. This

example shows the layout of a tree with 8 leaves.

21,27]. Indeed, preliminary experiments have shown, surprisingly,
that CO B-trees can outperform traditional B-trees, sometimes by
factors of more than 2 [12,19].

There are two main approaches to implementingserial CO B-
trees. One approach is based on packed-memory arrays and the
other on exponential search trees. Both approaches employ a static
CO search tree [26] as a building block.

A static CO search tree contains a set ofN ordered elements in
a complete binary tree. It executes searches usingO(logB N + 1)
memory transfers. The elements are laid out in an array using the
van Emde Boas layout(see Figure 1). Each node in the binary tree
is assigned to a position in a length-N array. To perform the layout,
split the tree at roughly half its height to obtainΘ(

√
N) subtrees

each withΘ(
√

N) nodes. Each subtree is assigned to a contiguous
portion of the array, within which the subtree is recursively laid out.
The array is stored in memory or disk contiguously.

A static CO search tree executes searches inO(logBN+1) mem-
ory transfers [26]. To understand this bound, consider the decom-
position of the tree into subtrees of size between

√
B andB. The

depth of each subtree is at least lg
√

B, so any root-to-leaf path en-
counters at most lgN/ lg

√
B = 2logB N subtrees. Each of these

subtrees can cross at most one block boundary, leading to 4 logBN
memory transfers in the worst case. This analysis is not tight. In

particular, [6] proves a bound of
(

2+ 6√
B

)

logBN+O(1) expected

memory transfers, where the expectation is taken over the random
placement of the tree in memory.

The packed-memory array [8, 17] appeared in the earliest serial
dynamic CO B-tree [8] and subsequent simplifications [11,13]. The
packed-memory array stores the keys in order, subject to insertions
and deletions, and uses a static CO search tree to search the ar-
ray efficiently. The idea is to store all of the leaves of the tree
in order in a single large array. If all the elements were packed
into adjacent slots of the array with no spaces, then each insertion
would requireO(N) elements to be displaced, as in insertion sort.
The fix to this problem (known by every librarian) is to leave some
gaps in the array so that insertions and deletions require amortized
O(log2N/B+ logBN + 1) memory transfers. The amortized anal-
ysis allows that every once in a while the array can be cleaned up,
e.g., when space is running out.

An exponential search tree [2,3] can be used to transform a static
CO search tree into a dynamic CO B-tree [7, 27]. An exponential
search tree is similar in structure to a B-tree except that nodes vary
dramatically in size, there are onlyO(log logN) nodes on any root-
to-leaf path, and the rebalancing scheme (where nodes are split and
merged) is based on some weight-balance property, such asstrong

weight balance[4, 8, 23, 25]. Typically, if a node containsM ele-
ments, then its parent node contains something nearM2 elements.
Each node in the tree is laid out in memory using a van Emde Boas
layout, and the balancing scheme allows updates to the tree enough
flexibility to maintain the efficient layout despite changes in the
tree.

The concurrency problem
Concurrency introduces a number of challenges. A naı̈ve approach
would lock segments of the data structure during updates. For ex-
ample, in a traditional B-tree, each block is locked before being
updated. Unfortunately, in the CO model it is difficult to determine
the correct granularity at which to acquire locks because the block
size is unknown. Locking too small a region may result in dead-
lock; locking too large a region may result in poor concurrency.

Second, in most database and file-system applications, searches
are more common than inserts or deletes, so it is desirable that
searches benon-blocking, meaning that each search can continue to
make progress, even if other operations are stalled. Our solutions
in this paper do not require search operations to acquire locks.

Another problem arises with maintaining the “balance” of the
data structure. Both main approaches to designing serial CO B-
trees require careful weight balance of the trees to ensure efficient
operations. With concurrent updates, the balance can be difficult to
maintain. For example, the amortized analysis of a packed-memory
array allows a process to rewrite the data structure completely once
in a while. But if the rewrite acquires locks which prevent other
processors from accessing the data structure, then the average con-
currency drops: on average onlyO(1) processes can access the data
structure concurrently.

Finally, there is a significant asymmetry between reading and
writing the memory. We analyze our data structures under the con-
current read, exclusive write (CREW) model. Two processes can
read a location in memory concurrently, since two caches can si-
multaneously hold the same block in a read-only state. In fact, it
may be preferable if parts of the data structure, e.g., the root, are
accessed frequently and maintained in cache by all processes. On
the other hand, when multiple processes attempt to write to a block,
the memory accesses to the block are effectively serialized, and all
parallelism is lost.

We respond to these challenges by developing new serial data
structures that are more amenable to parallel accesses, and then
we apply concurrency techniques to develop our concurrent CO B-
trees.

Our results
This paper presents three concurrent CO B-tree data structures:
(1) an exponential CO B-tree (lock-based), (2) a packed-memory
CO B-tree (lock-based), and (3) a packed-memory CO B-tree (non-
blocking). We show that each data structure islinearizable, mean-
ing that each completed operation (and a subset of the incomplete
operations) can be assigned aserialization point; each operation
appears, from an external viewer’s perspective, as if it occurs ex-
actly at the serialization point (see, e.g., [16, 22]). We also show
that the lock-based data structures aredeadlock free, i.e., that some
operation always eventually completes. We show that the non-
blocking B-tree islock-free; that is, even if some processes fail,
some operation always completes. When only one process is ex-
ecuting, the trees gain all the performance advantages of optimal
cache-obliviousness; for example, they execute operations with the
same asymptotic performance as the non-concurrent versions and
behave well on a multi-level cache hierarchy without any explicit
coding for the cache parameters. When more than one process is

84 84 88 92 98-∞ 4 9 11 · · ·

· · ·

· · ·

2

84-∞ 22 ∞

∞-∞

∞

4 7 9 11 14 22 27 34 35 47 50 61 84 85 88 92 94 98

22 22 34 50

Figure 2: An exponential CO B-Tree. Nodes grow doubly exponentiallyin the height of the tree. The dark-gray keys of internal nodes point to the smallest
key in the corresponding subtree. Data is stored in the leaves. The light-gray keys of internal nodes indicate theright-key. Each node has aright-link pointer,
forming a linked list at each level in the tree.

executing, the B-trees still operate correctly and with little interfer-
ence between disparate operations.

Roadmap
The rest of this paper is organized as follows. Section 2 describes
our concurrent CO model. Section 3 presents a lock-based expo-
nential CO B-tree. Section 4 presents a lock-based packed-memory
CO B-tree, whereas Section 5 presents a lock-free packed-memory
CO B-tree. Section 6 concludes with a discussion of other ways to
build concurrent CO B-trees and of open problems.

2. THE CONCURRENT CO MODEL
In this section we describe the concurrent CO model, and then

discuss the concurrency mechanisms used throughout this paper.
The CO model, as introduced in [15,26], models a single level of

the memory hierarchy. The model consists of two components: the
main memory and a cache of sizeM. Both are divided into blocks
of sizeB. The values ofM andB are unknown to the algorithm,
hence the termcache oblivious.

In this paper we extend the model to a parallel (or distributed)
setting consisting ofP processors. We consider the case where
each processor has its own cache of sizeM/P. A block may reside
in multiple caches, in which case it is marked in each cache as
shared. A block that is markedexclusivecan reside in only a single
cache. A processor can perform write operations only on blocks for
which it has obtained exclusive access.

If multiple processors concurrently request shared access to a
block, the block is placed in each of the caches and marked shared.
If a processor requests exclusive access to a block, the block is
evicted from all other caches and is marked exclusive; all other
concurrent requests for shared or exclusive access fail. If a cache is
full, each successful request results in an old block being evicted;
we assume that the least recently used (LRU) block is evicted1.

Each request for a block costs one memory transfer, regardless of
whether the block is requested shared or exclusive and regardless
of whether the request is successful. There is no fairness guarantee
that a processor is eventually successful. A single read or write op-
eration may, in fact, be quite expensive, resulting in a large number
of unsuccessful block requests if there are many concurrent write
requests.

We make use of two different types of support for concurrency.
For much of the paper, we use locks to synchronize access to pieces
1The results in this paper hold for any reasonable replacement strat-
egy. Unlike in the original CO model, we do not assume an optimal
replacement strategy. One difficulty in the concurrent setting is that
it is unclear what “optimal” means because changes to the replace-
ment policy affect the scheduling of the program.

of memory. When considering non-blocking algorithms, we use
load-linked/store-conditional(LL/SC) operations. An LL opera-
tion reads the memory and sets a link bit. If any other operation
modifies the memory, the link bit is cleared. An SC operation
writes the memory only if the link bit is still set; otherwise the
memory remains unchanged. This approach avoids the well-known
ABA problem that arises withcompare and swap(CAS). There has
been much research showing how to implement LL/SC with CAS
and vice versa, implying that in some senses they are equivalent
(e.g., [18, 24]) and we believe it is not difficult to modify our con-
struction for the somewhat more common CAS operation.

3. EXPONENTIAL CO B-TREE
This section presents our first concurrent CO B-tree. We first

describe the data structure. We then prove correctness and give a
performance analysis. We conclude by discussing some interesting
aspects of this data structure.

Data structure description
The data structure uses a strongly weight-balanced exponential tree [2,
3, 7, 27] to support searches and insertions. Each node in the tree
contains child pointers and a pointer to the node’s right sibling
(right-link) (see Figure 2). A node maintains the set of keys that
partition its children and the key (right-key) of the minimum ele-
ment in theright-link’s subtree.

We now describe the protocol for searches and insertions. The
tree is parameterized by a constantα, for 1< α < 2, which affects
the height of the tree. We say that a leaf has height 0, and a node
has height one more than its children.

To searchfor a keyκ, we begin at the root of the tree and fol-
low child pointers or sibling pointers until we reach the leaf con-
taining the target element. At each intermediate node we exam-
ine right-key. If right-key is smaller thanκ, then we follow the
right-link pointer. Otherwise, we proceed to the appropriate child.
On reaching a leaf, the search continues to followright-link point-
ers until eitherκ is found, in which case the search returns the
value, or a key larger thanκ is found, in which case the search
fails. We acquire no locks during the search.

To insert key κ, we first search for the leaf whereκ should be
inserted, acquire a lock on the leaf, perform the insertion at the leaf,
and release the lock. Next we determine whether the keyκ should
bepromotedor whether the insertion is complete. We promote the
keyκ in the leaf to height 1 with probability 1/2. When promoting
κ, we reacquire the lock and split the leafu containingκ. Nodeu
keeps all of the keys less thanκ, and the new leaf acquires all of
the keys greater than or equal toκ. We then release the lock and
insert the promoted keyκ into the parent ofu. More generally, if

a)

61

34 50 84

22 27 34 35 47 50

22 b)

61

34 50 84

22 25 27 34 35 47 50

22 c)

61

25 34 50 84

22 25 27 34 35 47 50

22

Figure 3: An example of an insert of the key 25 into an exponential CO B-Tree. a) gives the original state of the tree. b) shows the resulting structure if 25 is
not promoted. c) gives the resulting structure if 25 is promoted one level.

22

34

3422

50

50

22 34 505034223450

34 50

⊥

⊥

⊥ ⊥

Figure 4: The modified van Emde Boas layout of a node in the exponential
CO B-Tree. This figure shows the layout of the node given as theroot of (a)
in Figure 3

we insert a keyκ into a nodeu′ of heighth, we promoteκ from
heighth to heighth+ 1 with probability 1/2αh

, which means we
reacquire the lock, splitu′, release the lock, and insertκ into the
parent ofu′. Figure 3 gives an example of an insert and promotion.

In order for nodes to be searched efficiently, the keys in a node
are laid out using amodified van Emde Boas layoutso that a node
of size k can be traversed withΘ(logB k+ 1) memory transfers.
An example of the modified layout is depicted in Figure 4. The
node is divided into two pieces: a size-⌈⌈k⌉⌉ array2 filled from the
left holding all the keys in a node, and a complete⌈⌈k⌉⌉-leaf static
CO search tree used to efficiently search for an array slot. Thei-th
leaf of the search tree points to thei-th array slot. In particular, a
leaf containingκ in the search tree points toκ in the array. This
approach is reminiscent of [10] and reappears in Section 4. The
static CO search tree consists of keys laid out in a van Emde Boas
layout [26]. This layout consumes (roughly) the first 2/3 of the
memory used by a node. The final 1/3 of the memory contains the
keys stored in order as a vector. A search within a node ends at the
location of the key in the vector.

When we rewrite a node (either because the key is inserted into
the node or because the node is split), we update the modified van
Emde Boas layout as follows. First we rewrite the vector of keys
(the right half of the node), proceeding from largest to smallest.
Then we update the van Emde Boas layout in the left half. This
layout ensures that we can perform concurrent searches even while
the node is being updated. If an insert is performed when the vector
of keys is already full, we allocate a new node of twice the size.

Correctness
We first argue that the data structure is correct, even under con-
current operations. The most common way of showing that an al-
gorithm implements a linearizable object is to show that in every

2Thehyperceilingof x, denoted⌈⌈x⌉⌉, is defined to be 2⌈logx⌉, i.e.,
the smallest power of 2 greater thanx.

execution there exists a total ordering of the operations with the
following properties: (1) the ordering is consistent with the desired
insert/search semantics, and (2) if one operation completes before
another begins, then the first operation precedes the second in the
ordering. Linearizability follows due to a straightforward extension
of Lemmas 13.10 and 13.16 in [22].

Theorem 1. The exponential CO B-Tree guarantees linearizable
insertions and searches and is deadlock-free.

Proof. In order to show that an appropriate total ordering of the
operations exists, we need to show that if an operation completes,
all later operations are consistent with it. If an insert operation
finishes inserting a keyκ at level 0, or a search finds a keyκ at
level 0, then any later search also finds keyκ.

First, notice that at every level of the tree, the keys are stored in
order. That is, if the largest key in nodeu is κ, then the smallest
key in nodeu.right-link is larger thanκ. This fact follows from
the two ways in which a node is modified. First, a node may be
split, say at keyκ. In this case, the split operation, protected by a
lock, preserves this invariant, movingκ and all larger elements into
a new node that can be reached byright-link. Second, a keyκ may
be inserted into a node. In this case, the node is locked during the
insertion, and some of the elements in the vector half of the node
move one position to the right to make room forκ.

This ordering of keys implies that if keyκ is in the leaf node of
the tree when a search begins, then throughout the search, a leaf
containing keyκ is reachable by the search. The search begins at
the root, and every leaf is reachable from the root. We proceed by
induction: at each step of the search, a child pointer is chosen with
a minimum key no greater thanκ. The only interesting case is when
the child node is concurrently split. Even in this case, however, the
child node always contains a key no greater thanκ, since ever when
a node is split it always maintains its minimal key. We conclude
thatκ is still reachable.

Finally, deadlock-freedom follows immediately, since each pro-
cess holds only one lock at a time.

Cache-oblivious performance
We first consider the cost of individual operations when the data
structure is accessed sequentially. We then analyze the concur-
rent performance for the special case when search and insert op-
erations are performed uniformly at random. In both cases, we use
the cache-oblivious cost model, counting only cache misses.

Theorem 2. Assume that operations occur sequentially. A search
in an N-node tree takes O(logBN+ logα lgB) block transfers, with
high probability; an insert takes O(logBN+ logα lgB) block trans-
fers in expectation.

Proof. First, notice that if a tree containsN keys, then with high
probability every node in the tree has height less than logα lgN +
O(1). Specifically, the probability that any key is promoted to
height logα lgN+c is O(n−αc+1).

1 9

99...1241...9 11..17 18...23 26...35 39...41 52...58 61...67 75...92

11 26 52 75

1

18 61

99

39

1 11 18 26 39 52 61 75 99

6

⊥

⊥

⊥

⊥

⊥ ⊥

⊥

⊥

⊥⊥⊥

⊥

⊥

Figure 5: A packed-memory CO B-Tree consists of a static cache-oblivious search tree used to index into the one-way packed-memory array. Each leaf in the
tree points to aΘ(lgN)-sized region of the array. The active region of the array is outlined with a solid border. The active region of the array contains gaps
allowing for insertions, and the array can grow to the right or shrink from the left.

Also notice that ifu is a node of heighth, then the number of keys
in u is O(2αh

) in expectation andO(2αh
lgN) with high probability.

For h = Ω(logα lg lgN), that is, when the expected node size is at

leastΩ(lgN), the number of keys isO(2αh
) with high probability.

We now calculate the cost of a search operation. Searching a
node of heighth, laid out in the modified van Emde Boas layout, for
the correct child pointer takesO(logB(2αh

)+ logB lgN + 1) mem-
ory transfers, with high probability. For nodes with expected size
at leastΩ(lgN), the cost isO(logB(2αh

)+1) with high probability.
We sum the costs for all levels, ranging fromi = 0 to logα lgN+c
(with high probability):

Θ

(

logα lgN+c

∑
0

logB(2αh
)+

logα lg lgN

∑
0

logB lgN

)

.

The right term sums toO(logBN). For the left term, we consider
two cases, depending on whether or not the size of the node is at
leastB. For all levels where the nodes are of size at leastB, the
cost is dominated by the root node (or possibly a node just below
the root). For nodes of size less thanB, the block transfer cost is at
most 2. Therefore, with high probability, the total cost of a search
is O(αc logBN+ logα lgB).

We next calculate the cost of an insert operation. Consider the
expected cost of inserting a key at heighth of the tree. Recall
that we promote a key from levelh−1 to levelh with probability
2−αh−1

. Thus, the probability of promoting a given key to heighth
is 2−(αh−1)/(α−1). The cost of inserting a key into a node at height
h, given that the key reaches heighth, is the cost of rebuilding the
entire node, which isO(1+2αh

lgN/B) with high probability.
Therefore, the expected cost at heighth is the probability that

the insertion reaches heighth times the cost of rewriting a node
at heighth. The expected cost is thereforeO(2−c′(αh−1) logN/B),
where 0< c′ < 1 depends on the value ofα. The summation across
all logα lgN+O(1) levels, then, isO(lgN/B) ≤ O(logBN). Hence
the total expected cost of an insert is the cost of searching for the
right place to do the insertion plus the cost of doing the insertion.
That is, the cost isO(logBN+ logα lgB).

Notice that if there are a large number of concurrent search oper-
ations, but no insert operations, each search operation incurs a cost
of O(logBN+ logα lgB), the same as in the sequential case.

If there are many concurrent searches and insertions, the perfor-
mance may deteriorate. The performance of concurrent B-trees is

difficult to analyze since it depends significantly on the underlying
parallelism of the algorithm using the data structure. For example,
if a large number of processes all try to modify a single key, then
the operations are inherently serialized, and there is no possible
parallelism. As a result, for most concurrent B-tree constructions
(and in fact, most concurrent data structures), little is stated about
their performance. We analyze the “optimally parallel,” case where
each search and insertion operation targets a randomly chosen key,
and show that the data structure still yields good performance.

Theorem 3. Assume that all processors are synchronous. If there
are O(N2/α−1/polylogN) search and insert operations performed
uniformly at random in an N-node tree, then the expected cost for
an operation is O(logBN+ logα lgN) block transfers.

Proof (sketch).Notice that in the absence of concurrent insert op-
erations, each search operation takesO(logBN + logα lgB) block
transfers. If an insert operation delays a search, we charge that cost
to the insert operation.

An insert operation has four costs: finding the insert point, ac-
quiring the lock, performing the insertion, and delaying other oper-
ations. As in the case of searches, finding the appropriate insertion
point costsO(logB N + logα lgB) plus any delays caused by other
insert operations. Again, this delay is charged to the operation caus-
ing the delay.

The cost of performing the insertion itself is equivalent to the
sequential case:O(logBN+ logα lgB) block transfers.

It remains to calculate the effects of concurrency: the cost of ac-
quiring the lock and the cost of delaying other operations. Consider
the expected cost incurred by a delaying one particular concurrent
operation at some levelh. There are three components to the cost:
(1) the probability that the insert reaches levelh, (2) the probabil-
ity that the insert modifies the same node, and (3) the actual cost
incurred by delaying the concurrent operation.

First, as in Theorem 2, an insert operation reaches levelh with
probability 2−(αh−1)/(α−1).

Next, an insert chooses the same node at levelh with probability
2(αh+1−1)/(α−1)/N, since the expected number of nodes at levelh
is the number of elements promoted to levelh+1. This probability
can vary by at most a log factor, with high probability, which is
enough for the proof.

Finally, we consider the real cost of delaying any one operation
at level h. The expected size of a node at levelh in the tree is
O(2αh

). Therefore the concurrent operation can be delayed by at

most O(2αh
) in expecation, which is the cost of performing one

memory transfer for each element in the node. Notice that this
worst-case analysis makes no use of the cache: in the case of a
search operation, the block may be repeatedly transferred back and
forth between the search operation and the insert operation. More-
over, the search may have to read the entire node since the contents
of the node are changing during the search. The size of the node
also bounds how long the insert may need to wait to acquire the
lock.

We now sum over the possible heights in the tree. Considerh≤
hmax= logα lgN+ logα(α−1)−1, which is the point at which the
second term (i.e., the probability that the insert occurs at the same
node) reaches 1. Multiplying the three terms results in an expected
cost of 22αh

/N. In the worst case, whereh = hmax, this expression
is equal toN1−2/α; for smallerh, the cost decreases. Since there
are at mostN2/α−1 concurrent operations, the expected cost per
level isO(1). Summing over all levels≤ hmax leads to an expected
cost ofO(logα lgN).

Next consider the case whereh ≥ hmax. Notice that the second
term never exceeds one. The first and third terms decrease geo-
metrically likeO(1/2αh

), since the tree is unlikely to exceed height
hmax, so again the sum is bounded by the termh = hmax, as before.

The polylog in the theorem arises since there can be anO(logN)-
factor variation in the size and number of nodes at a level, with high
probability.

Notice that in a concurrent setting, the expected cost isO(logB N+
logα lgN), instead ofO(logB N + logα lgB) in the sequential case.
The additional cost is incurred when two operations interfere.

Discussion
One interesting aspect of this data structure is parameterizing of
the tree byα. By skewing the tree wider (rather than deeper), we
reduce the concurrency at the root, thus improving the overall per-
formance. Whenα is closer to 1, the concurrent performance is
better; whenα is closer to 2, the sequential performance is better.

A second aspect to note is that the data structure requires rel-
atively minimal memory management, since it does not support
delete operations. The only case in which memory must be deallo-
cated (or wasted) is when a node in the exponential tree grows too
big (before splitting), and a new contiguous block of memory must
be allocated for the node.

4. PACKED-MEMORY CO B-TREE
In this section we present our second concurrent, cache-oblivious

B-tree. It supports insertions, deletions, searches, and range queries
using lock-based concurrency control. We first describe the lock-
based data structure. We then prove the data structure correct and
analyze its serial performance.

Data structure description
Here we describe the lock-based packed-memory CO B-Tree. We
present a lock-free version of this data structure in Section 5. Our
data structure is based on the cache-oblivious B-tree presented in [11]
and consists of a static cache-oblivious search tree [26] that is used
to index a packed-memory data structure. Instead of using the
packed-memory array from [8], we introduce a new “one-way packed-
memory structure,” which is more amenable to concurrent opera-
tions. Each leaf in the static tree points to aΘ(logN)-size region in
the packed-memory array.

The one-way packed-memory structure maintainsN elements in
order in an array of sizem= Θ(N) (with ma power of 2) subject to

element insertion and deletion (see Figure 5). The array consists of
three segments: the leftmost and rightmost segments contain extra
empty space, and the middle segment, theactive region, contains
theN elements and some gaps between elements. On an insertion,
the active region may grow to the right; on a deletion, the active re-
gion may shrink from the left. If the active region grows or shrinks
too much, then we reallocate the array.

We maintain a near-constant “density” in the active region by
rebalancingregions of the array—that is, evenly spreading out el-
ements within a region—on insertions or deletions. In the one-
way packed-memory structure, the rebalances ensure that elements
move only in one direction: to the right (see Lemma 4).

Thedensityof a subarray is the number of filled array positions
divided by the size of the subarray. Consider a subarray of sizek
with i = ⌈lgk⌉. The size of a subarray determines itsupper-bound
density threshold, τi , and itslower-bound density threshold, ρi . For
all i and j, ρi < ρi+1, τ j > τ j+1, andρi < τ j .

The density thresholds follow an arithmetic progression defined
as follows. Let 0< ρmin < ρmax < τmin < τmax = 1 be arbitrary
constants. Letδ = τmax− τmin andδ′ = ρmax−ρmin. Then, define
density thresholdsτi andρi to be

τi = τmax−
i−1

lgm−1
δ , andρi = ρmin+

i−1
lgm−1

δ′ ,

for all i with 1≤ i ≤ lgm.
For example, suppose thatm = 16, and we fix the threshold

τmin = 1/2. There are lg16= 4 density thresholdsτ1 = τmax, τ2,
τ3, andτ4 = τmin. The thresholds increase linearly withτ1 = 1,
τ2 = 5/6, τ3 = 4/6, andτ4 = 1/2. Similarly, if we fixρmin = ρ1 =
1/8 andρmax= ρ4 = 1/4, thenρ2 = 4/24= 1/6 andρ3 = 5/24.

Search. To search for a keyκ, search down the static binary tree as
normal, without any locks. When the search reaches the array, scan
right until finding the appropriate array slot. Since the search pro-
ceeds without locks, we need to perform an ABA test (key, value,
key) to make sure the element did not move during the read.

Insertion and deletion. To insert a new elementy with key κ,
first perform a search to find and then lock theΘ(logN)-sized leaf
where keyκ should be inserted. Next, scan the leaf from left to
right to find the actual slots for key κ. (Slot s−1 should contain
the largest key smaller thanκ.) If the scan advances into the next
Θ(logN)-size region (due to a concurrent operation), acquire a lock
on the next tree leaf, give up the lock on the current, and continue.

If the slots is free, placey in the available slot. Otherwise, we
must rebalancea section of the packed-memory array. Explore
right from s in the array, acquiring locks on regions along the way,
until finding the smallest regionof any sizethat is not too dense. A
region of sizek, with ⌈lgk⌉ = i, is not “too dense” when the den-
sity is no greater thanτi . We then rebalance the elements evenly
within the window by moving elements to the right, starting with
the rightmost element and working to the left. We move the ele-
ments such that no suffix of the rebalanced region has density ex-
ceeding the thresholdτi .3 Finally, we release the locks. Unlike the
packed-memory array from [8] rebalance windows do not have to
have sizes that are powers of 2. Figure 6 gives an example of an
insert into the one-way packed-memory array.

Deletions are analogous to insertions, except that when an ele-
ment is deleted, we always perform a rebalance. A deletion-trig-
gered rebalance explores right until finding the first slot preceding
an occupied slot, then exploresleft until finding a region that is

3Thus, every prefix of the region not including the last slot has
density at least the thresholdτi . In particular, a prefix of sizek has
⌈kτi⌉ elements.

a)

d > τ1 = 1
d > τ2 = 5/6

d ≤ τ3 = 2/3

3 8 12 25 48 89 93

b)
488 10 25 89 93123

Figure 6: An insertion of the key 10 into the above packed-memory array
of sizem= 16 and thresholdsτmax= 1 andτmin = 1/2. The new element 10
should go in the slot containing 12, so we explore right untilfinding a region
that is not too dense, including the new item to insert. Untilexploring past a
region of size 2 (indicated by the small rounded rectangle in (a)), the density
d exceeds the corresponding thresholdτ1 = 1. When exploring between a
region of size between 3 and 4, indicated by the medium roundedrectangle,
the density is 1 which exceeds the corresponding thresholdτ2 = 5/6. When
exploring regions of size between 5 and 8, we use the threshold τ3 = 2/3.
The exploration stops at the sixth slot as there are 4 elements(including the
new element 10) to place in 6 slots, giving a densityd = 4/6= 2/3= τ3. (b)
gives the state of the array after the insert and rebalance. Once the rebalance
region is established, we begin at the right and move elements as far right
as possible without exceeding the appropriate threshold (i.e.,τ3 = 2/3).

“dense enough.” This exploration proceeds without locks. Once
the region is established, we acquire locks on the region from left
to right. As with the insertion-triggered rebalance, we then spread
elements evenly starting with the rightmost element and working
left. Finally, we release all the locks.

Once the insert/delete or rebalance is complete, we update the
keys in the static search tree. For each node in the subtree defined
by the updated region, if the key at a node in the tree is too small,
we lock the node, write the key, and release the lock. This strategy
ensures that concurrent searches are not blocked.

Resizing the array. When the right boundary of the active region
hits the array boundary, or the active region becomes too small, we
resizethe array, copying the elements into a new array, spreading
the elements evenly. The “ideal” density of the active region is
(τmin−ρmax)/2. If the old array hasN elements, the new array has

size
⌈⌈

c N
(τmin−ρmax)/2

⌉⌉

, for a constantc. The active region starts at

the left portion of the new array.
We use a randomized strategy that allows the resizing to run

quickly and concurrently. The resize proceeds in three phases: (1)
We randomly choose leaves of sizeΘ(logN) and count the ele-
ments in the leaf. We lock the node, write the count in the node,
and release the lock. If the sibling has been counted, we write the
sum in the parent and proceed up the tree. When the root node is
counted, the first phase ends. (2) We allocate a new array based on
the count in the root. Note that the count in any node is exact—the
randomization in the first phase randomizes only the order in which
nodes are counted. (3) We randomly walk down the original tree to
find a leaf, keeping a count of the number of elements to the left of
this leaf. Then, we copy theΘ(logN) elements in the leaf to their
correct location in the new array (spreading the elements evenly).
For phases (1) and (3), we mark nodes to ensure that leaves are not
counted or copied multiple times and to discover when the phases
complete.

Correctness
We show that our data structure is correct under concurrent oper-
ations: the data structure guarantees linearizable operations and is
deadlock-free.

The first lemma shows that the one-way rebalance does in fact

move elements in only one direction. This lemma directly implies
that searches return the correct elements.

Lemma 4. The one-way rebalance moves elements only to the
right. That is, the rebalance operation maintains the property that
the key at a given memory location is nonincreasing.

Proof. Consider a rebalance regionr ranging from array slotss1
to s2. Let i = ⌈lg(s2−s1 +1)⌉. Then the elements inr are spread
evenly to a density ofτi .

Assume for the sake of contradiction that an element inr moves
left during the rebalance. Without loss of generality, lets′2 be the
slot of the leftmost element that moves left. Consider the region
r ′ ranging froms1 to s′2 − 1. Let d′ be the density of regionr ′.
Since spreading the elements evenly inr moves an element into
r ′, we haved′ < τi . However, sincer ′ is contained inr, we have
j =
⌈

lg(s′2−s1)
⌉

for some j ≤ i. Thus,τ j ≥ τi ≥ d′, generating a
contradiction as the rebalance region would ber ′.

The proof is similar for deletion-triggered rebalances.

Theorem 5. The packed-memory CO B-Tree is deadlock-free and
guarantees linearizable insertions, deletions, and searches.

Proof. The deadlock-free proof follows directly from the fact that
when an operation holds more than one lock, it always acquires
these locks from left to right.

Next, we look at the claim of linearizability. The array of the
packed-memory CO B-Tree is similar to a single node in the ex-
ponential CO B-Tree, except the array is slightly more compli-
cated. The important property about updates to the array is given
in Lemma 4. Thus, we can use a similar proof to Theorem 1.

Cache-Oblivious Performance
We next analyze the cost of sequential operations in the packed-
memory CO B-Tree in terms of block transfers. We first bound the
cost of the static-search-tree update and of resizing the array. We
then apply an accounting argument to conclude that the packed-
memory CO B-Tree achieves the same serial costs as in [8,10,13].

First, we bound the cost of the static tree update.

Lemma 6. Assume that operations occur sequentially. If a range
of k memory locations are modified during an update in the packed-
memory array, then updating the search tree costs O(logB N+k/B+
1) memory transfers.

Proof. We can think of subtrees of the search tree as corresponding
to ranges in the packed memory array. Updating the tree requires
updating every node in a set of subtrees that constitute the range of
k memory locations. The combined number of tree nodes in these
subtrees is less than 2k, but it remains to be shown that these nodes
fit in O(k/B+ 1) blocks. Consider all the subtrees{T1, . . . ,Tr}
to update from left to right. Then there exists ani such that the
subtree rooted atparent(Ti) contains the subtreesT1, . . . ,Ti , and
parent(Ti+1) containsTi+1, . . . ,Tr . Thus, the tree nodes to update
are contained in two subtrees, with total size at most 4k. All of
these subtrees, therefore, are laid out inO(k/B+1) blocks.

Additionally, some nodes, not in these subtrees, along the path
to the root must be updated. We note that we only update nodes
with a right child that changes. Thus, we update only a single path
to the root, which requires at mostO(logB N+1) blocks.

The insertion cost includes not only the cost of rebalancing the
array and updating the static tree, but also the cost of resizing the
array. The following lemma implies that the array is not resized
very frequently.

Lemma 7. Consider a packed-memory array of size m. Then there
must beΩ(m) insertions or deletions before the array is resized.

Proof. Consider a resizing triggered by an insertion. We use an ac-
counting argument to prove the lemma. We give 1 dollar to each
filled slot in the array at the time of the last resizing. Whenever an
item is inserted into some slot, we give that slot 1 dollar. When-
ever an item is deleted, we leave the dollar in the slot. Whenever
we rebalance a region of the array, we move 1 dollar with each
item moved. All excess dollars (i.e., associated with items the have
been removed) are moved to the first slot of the rebalanced region.
Clearly every nonempty slot has at least 1 dollar associated with it.

Let d = (τmin− ρmax)/2—the density to which the array is re-
sized. Then we claim that any prefix of the array, starting at the left
boundary (slot 0) and ending at a slots preceding the right bound-
ary of the active region, contains at leastsd dollars. This invariant
is clearly true at the time of the last resizing. It also trivially holds
across insertions or deletions that do not trigger rebalances. It re-
mains to be shown that the invariant holds across rebalances.

Consider an insertion-triggered rebalance that ranges from slot
s1 to s2. The invariant is trivially unaffected for any slots with
s< s1 or s≥ s2 since no money moves into or out of the rebalanced
region. It remains to show that the invariant holds for a slots with
s1 ≤ s< s2. By assumption, we have at least(s1−1)d preceding
slot s1. The rebalance algorithm guarantees that the density of ev-
ery prefix of the rebalanced region is at leastτmin. Thus the array
contains at least(s1−1)d+(s−s1 +1)τmin ≥ sddollars by slots.

For completeness, we also need to consider a deletion-triggered
rebalance that ranges from slots1 to s2. Consider a slots with
s1 ≤ s < s2. The rebalance algorithm again guarantees that the
density of every suffix of the rebalanced region is at mostρmax< d.
Thus, since the invariant holds at slots2 before the rebalance, and
all extra dollars are moved to slots1, we have that the invariant
holds for all slots after the rebalance.

Now we just apply the invariant to complete the proof. When an
insertion triggers a rebalance, the active region includes the entire
array. Thus, the array contains at leastmd dollars. At the last
resizing, there weremd/c dollars, where bothc > 1 and 0< d < 1
are constants. Thus, there must have beenΩ(m) insertions.

The proof for deletion-triggered resizings is similar.

Now we bound the cost of resizing. The main idea is thatΘ(N)
random choices is enough to countΘ(N/ lgN) leaves.

Lemma 8. Assume that operations occur sequentially. Consider
a packed-memory CO B-Tree containing N elements. Then the cost
of resizing the packed-memory array is O(N(logBN+1)) memory
transfers.

Proof. There areΘ(m/ lgm) leaves. We make onlyO(m) random
leaf selections, with high probability, before selecting every leaf in
phases (1) and (3). In phase (3), finding a leaf follows a root-to-
leaf path in the tree with a cost ofO(logBm+1). The total cost of
selecting all the leaves is, therefore,O(m(logB m+1)).

Copying or counting aΘ(lgm)-sized region (corresponding to
a tree leaf) of the old array takesΘ(lgm/B+ 1) block transfers.
Since each leaf is counted and copied once in phases (1) and (3),
respectively, the total cost of counting and copying the elements is
Θ((m/ lgm)(lgm/B+1)) = O(m(logBm+1)).

Copying a lgm sized region from the old array to the new array
takesΘ(lgm/B) block transfers (since the array is kept near a con-
stant density), for a total cost ofO(m/B) across the entire resize.

Updating the tree for the new array costsO(logBm′+1) for each
element copied wherem′ is the size of the new array, for a total of
O(m(logB m′ +1)) block transfers.

Sincemandm′ areΘ(N), the lemma follows.

The following theorem states that we achieve the desired serial
performance.

Theorem 9. Assume that operations occur sequentially. The amor-
tized cost of insertions and deletions is O(logB N+ lg2N/B+1).

Proof. This proof is similar to the one in [20] that analyzes the cost
of rebalance regions extending only one direction (but in which
elements can move in both directions). This argument uses the ac-
counting method, placingΘ(lg2 m/B) dollars in an array slot on an
insertion/deletion. In particular,Θ(lgm/B) dollars are associated
with each of lgm accounts, corresponding to lgm density thresh-
olds. Whenever a region of sizek > lgm is rebalanced4, the region
containsΩ(k/B) dollars in an appropriate account with which to
pay for the rebalance. Our scenario is different because regions are
not necessarily powers of 2, and our resizing algorithm is different.
Whereas [20] uses an accounting argument that charges rebalances
against the left half of the region of sizek, we charge against the
left subregion of size⌈⌈k⌉⌉/2.

Moreover, we incur a cost for updating the static tree on top of
the packed-memory data structure during a rebalance. Since we
haveΘ(k/B) potential saved up at the time of a rebalance of size
k, and a tree update costsO(logB N+k/B+1) (from Lemma 6) we
can afford the tree update.

Finally, given that there must beΩ(N) insertions between resiz-
ings (see Lemma 7), and a resizings costsO(N(logBN + 1)) (see
Lemma 8), we conclude that the cost of resizing the array is amor-
tized toO(logB N+1) per insertion.

5. LOCK-FREE CO B-TREE
We now show how to transform the lock-based data structure

in Section 4 into a non-blocking, lock-free CO B-tree. Instead of
using locks, we use load-linked/store-conditional (LL/SC) opera-
tions. For the sake of clarity, we will assume that keys and values
are each a single word, and can be read and written by a single
LL/SC operation; the data structure is easily extensible to multi-
word keys and values.

Data structure description
Recall that locks are used only in updating the packed-memory
array; the static search tree is already non-blocking. Instead of
acquiring locks before modifying the packed-memory array, we
show how to use four basic non-blocking primitives to update the
data structure: (1)move, which moves an element atomically from
one slot in the packed-memory array to another, (2)cell-insertion,
which inserts a new key/value pair into a given cell in the packed-
memory array, (3)cell-deletion, which deletes an existing key/value
pair from a cell in the packed-memory array, and (4)read, which
returns the key and value of a given cell in the packed-memory ar-
ray. Each of these primitives is non-blocking, and may fail when
other operations interrupt it. For example, a move operation may
fail if a cell-insertion is simultaneously performing an insertion at
the target.

Markers. Each cell in the array is augmented with amarkerwhich
indicates whether an ongoing operation is attempting to modify the
cell. The marker contains all the information necessary to complete
the operation. For example, a move marker indicates the source
and the destination of the move. Any processor that is perform-
ing an operation and discovers a marked cell helps to complete the
operation indicated by the marker. For example, consider a move

4We can trivially pay for any small rebalances with the cost of in-
serting the new element.

operation that is attempting to move an element from cell 14 to cell
15, while concurrently a cell-insert is attempting insert an element
at cell 15. First, the cell-insert updates the marker at cell 15. Then,
the move attempts to update the marker, and discovers the con-
current insertion. The move operation then performs the insertion,
before proceeding with the move. In this way, the move can even-
tually complete, even if the processor performing the cell-insert has
failed, or been swapped out of memory.

The primitive operations which modify the data structure (i.e.,
move, cell-insert, and cell-delete) are all initiated by marking an
appropriate cell. Once a cell has been marked, any processor can
complete the operation by simply processing the marker. In order
to begin a move operation, the source of the move is updated. For a
cell-delete operation, the cell containing the element to be deleted is
marked. A cell-insert operation marks the cell immediatelypreced-
ing the cell where the new element is being inserted. A requirement
of a cell-insert is that this preceding cell not be empty. By marking
the preceding cell, we prevent a concurrent move operation from
moving an element “over” an ongoing cell-insertion. For example,
if a cell-insert is happening at cell 15, we must prevent the element
from cell 14 (or any smaller cell) from being moved to cell 16 (or
any larger cell); otherwise, the new element might not be ordered
correctly.

We believe that it is possible to implement a lock-free packed-
memory CO B-Tree using compare-and-swap, instead of LL/SC,
by adding version tags to the markers.

Implementing the nonblocking primitives. For a move opera-
tion, once the source has been successfully marked, an LL opera-
tion is performed on the following items: (1) the marker, (2) the
source key, (3) the source value, (4) the destination key, and (5) the
destination value. Then, an SC is performed on the marker, rewrit-
ing the marker. This technique ensures that no concurrent process
has modified the marker in an attempt to help complete the move.
The move then completes by using SC to update the keys and val-
ues at the destination, and then at the source. If an SC fails during
this final stage, it is ignored; some concurrent process has already
helped to complete the move. Finally, the marker is cleared.

For a cell-insert, once the preceding cell has been marked, the in-
sert performs a LL on the marker, and then on the keys and values
at the new cell. If the key is already in the tree, then an error is re-
turned. If the cell is not empty, an error is returned. The insert then
rewrites the marker with an SC, ensuring that it has not changed in
the interim. Finally, the key and value are updated, and the marker
is cleared. A cell-delete is essentially identical to a cell-insert.

Finally, a read operation simply examines a cell, helps out if the
cell is marked, and returns the appropriate values.

Insertions and deletions. An insertion proceeds as before, first
using the static search tree to find and mark the appropriate cell
in the array, that is, the cell containing the largest key in the tree
that is less than or equal to the key being inserted. Once the cell is
marked, a cell-insert begins. If the insertion succeeds, the element
is successfully inserted. If the cell-insertion fails, however, then
either the cell is not empty or a move caused interference. In this
case, we need to rebalance the array.

A rebalance begins by exploring to the right, as before. In this
case, however, it remembers which cells were filled and which were
empty. It performs a load-link (LL) operation on each non-empty
cell; each of these marked cells may need to be moved, and the
move is initiated by performing an SC on the marker. In this way,
the rebalance operation can detect when the array has changed dur-
ing the rebalance.

When an appropriately sparse region is found, the operation can

calculate the appropriate spacing of the elements in the array, as
before. The rebalance then proceeds from right to left using move
operations to spread elements evenly. (Elements are only moved
from left to right, as before.) If any move fails, then the rebalance
restarts. In particular, a move may fail if any of the markers has
changed since they were initially linked during the scanning phase
of the rebalance. If at any time during the rebalance, we otherwise
detect that the array has changed, then the rebalance restarts.

Deletions are similar to insertions. We first search for the item
to be deleted, and then perform a cell-deletion. Finally, we scan
to the right until discovering a non-empty cell, and then perform a
rebalance. Unlike the rebalance on insertions, however, this opera-
tion scans to the left, looking for a dense region (as is described in
Section 4).

All other data structure operations proceed as before; after the ar-
ray has been updated using the non-blocking primitives, the search
tree is updated to reflect the changes. When resizing the array, load-
link/store-conditional is used to atomically write the count of a leaf,
instead of a lock.

Correctness
Theorem 10. The packed-memory CO B-Tree guarantees linear-
izable search, insert, and delete operations.

Proof. If a key is in the data structure and the data structure remains
in sorted order, then a search will find it: the static tree is updated
after the packed-memory array, and elements are only moved to the
right in the packed-memory array; it is therefore easy to see that a
search always exits the static tree to the left of the key in question.

The key property, then, is that the elements in the array remain
in sorted order. If they always remain in sorted order, then a search
will correctly find any previously inserted element or any element
returned by a prior search and it fail to find a previously deleted
element, as is required.

In order to show that elements remain in order, we examine how
elements are inserted. An important invariant is that if a cell is
marked for a cell-insert, then the cell contains the largest key that
is less than or equal to the key being inserted. Initially, on acquiring
a marker, this invariant is ensured by the correctness of the search
which locates the insertion cell, and the use of LL/SC to acquire
the marker atomically.

Throughout the insertion, this invariant is maintained by the way
in which a rebalance moves elements. In particular, a rebalance
never moves an element from one side of a marked cell to another.
In particular, whenever a rebalance moves an element, all the inter-
vening cells are empty. This property is checked while the rebal-
ance scans to the right, determining the region to rebalance and si-
multaneously performing a load-link (LL) on each non-empty cell
in the region. The only way this property of a rebalance can be
violated is if an element is inserted or moved between when the re-
gion is scanned and the rebalance moves an element. In this case,
however, the SC which acquires the move marker fails.

As a result, elements are always inserted in order, and rebalances
never move elements out of order. Combined with the fact that
searches terminate correctly, we have the main result.

Theorem 11. The packed-memory CO B-Tree is a lock-free data
structure.

Proof (sketch).We need to show that if there is at least one on-
going operation, then eventually some operation completes. An
operation can only be delayed by pausing to help a concurrent op-
eration, or by working on a rebalance. If an operation is delayed by
helping an insertion or deletion to complete, then some operation
has completed, as desired.

Therefore the key requirement is to show that rebalances cannot
prevent operations from making progress. If a rebalance is forced
to restart because of a successful insertion or deletion, then some
other operation has completed.

A rebalance may also restart because of interference by a con-
current rebalance. In this case, however, since elements are moved
only to the right, when the rebalance restarts it has (strictly) less
work to do than in the aborted rebalance. In particular, the concur-
rent rebalance that forced a restart must have moved at least one
of the items in the region to the right, thus reducing the amount of
rabalancing necessary. Since every time a rebalance restarts it has
less work to do, eventually the rebalance completes.

6. CONCLUSIONS AND FUTURE WORK
This paper explores a range of issues for making cache-oblivious

search structures concurrent. We consider both locking and lock-
free solutions. Each of these approaches has practical and theoret-
ical merits, and we make no judgement about which approach is
best. A third approach, which we do not consider here, is to use
transactional memory to support concurrency. This approach may
lead to simpler coding and several new data-locality issues.

Like many previous concurrency studies, this paper analyzes uni-
formly random insertions. This analysis does not reveal all the
design principles that went into our data structures. In particu-
lar, in the exponential trees, the parameterα tunes the tradeoff be-
tween low-concurrency and high-concurrency performance of the
tree. Whenα is larger, serial operations in the tree are faster; when
α is smaller, the tree supports increased concurrency and reduced
contention. Moreover, the randomized nature of the tree reduces
contention at high levels in the tree, by temporally spacing out up-
dates, even when insertions are adversarial.

This paper focuses on correctness issues more than performance
issues. In particular, in order to get performance guarantees, there
are different insertion patterns (such as adversarial), different pro-
cess models (such as different speeds and changing speeds), and
different models of memory (such as queuing on memory locations
for both reads and writes). Some techniques from the design of
overlay networks may to carry over to these models.

A natural extension of the one-way packed-memory structure
from Section 4 is to implement the structure as circular array. Using
the circular array may lead to less memory allocation. While a cir-
cular implementation is straightforward for the serial and locking
cases, it is more complex in the lock-free setting.

Acknowledgments
The authors gratefully acknowledge Maurice Herlihy, Victor Lu-
changco, and Mark Moir for suggesting this problem.

7. REFERENCES
[1] A. Aggarwal, J. S. Vitter. The input/output complexity ofsorting and

related problems.Commun. ACM, 31(9):1116–1127, 1988.
[2] A. Andersson. Faster deterministic sorting and searching in linear

space. InFOCS’96, pp. 135–141, 1996.
[3] A. Andersson, M. Thorup. Tight(er) worst-case bounds ondynamic

searching and priority queues. InSTOC’2000, pp. 335–342, 2000.
[4] L. Arge, J. S. Vitter. Optimal dynamic interval management inexternal

memory. InFOCS’96, pp. 560–569, 1996.
[5] R. Bayer, E. M. McCreight. Organization and maintenance of large

ordered indexes.Acta Informatica, 1(3):173–189, 1972.
[6] M. A. Bender, G. S. Brodal, R. Fagerberg, D. Ge, S. He, H. Hu,

J. Iacono, A. Ĺopez-Ortiz. The cost of cache-oblivious searching. In
FOCS’2003, pp. 271–282, 2003.

[7] M. A. Bender, R. Cole, R. Raman. Exponential structures for efficient
cache-oblivious algorithms. InICALP’2002, pp. 195–207, 2002.

[8] M. A. Bender, E. Demaine, M. Farach-Colton. Cache-oblivious B-
trees. InFOCS’2000, pp. 399–409, 2000.

[9] M. A. Bender, E. Demaine, M. Farach-Colton. Cache-oblivious B-
trees.SIAM J. Comput., 2005. To appear.

[10] M. A. Bender, Z. Duan, J. Iacono, J. Wu. A locality-preserving cache-
oblivious dynamic dictionary. InSODA 2002, pp. 29–38, 2002.

[11] M. A. Bender, Z. Duan, J. Iacono, J. Wu. A locality-preserving cache-
oblivious dynamic dictionary.J. of Alg., 3(2):115–136, 2004.

[12] M. A. Bender, M. Farach-Colton, B. C. Kuszmaul, J. Sukha.Cache-
oblivious b-trees for optimizing disk performance. Manuscript., 2005.

[13] G. S. Brodal, R. Fagerberg, R. Jacob. Cache oblivious search trees via
binary trees of small height. InSODA 2002, pp. 39–48, 2002.

[14] D. Comer. The ubiquitous B-Tree.Computing Surveys, 11:121–137,
1979.

[15] M. Frigo, C. E. Leiserson, H. Prokop, S. Ramachandran. Cache-
oblivious algorithms. InFOCS’99, pp. 285–297, 1999.

[16] M. P. Herlihy, J. M. Wing. Linearizability: A correctness condition
for concurrent objects.ACM Trans. Prog. Lang. Syst., 12(3):463–492,
1990.

[17] A. Itai, A. G. Konheim, M. Rodeh. A sparse table implementation of
priority queues. In S. Even, O. Kariv, editors,ICALP’81, vol. 115 of
LNCS, pp. 417–431, 1981.

[18] P. Jayanti. A complete and constant time wait-free implementation of
CAS from LL/SC and vice versa. InDISC’98, vol. 1499 ofLNCS,
1998.

[19] Z. Kasheff. Cache-oblivious dynamic search trees. MS thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA, 2004.

[20] I. Katriel. Implicit data structures based on local reorganizations. MS
thesis, Technion – Isreal Inst. of Tech., Haifa, 2002.

[21] R. E. Ladner, R. Fortna, B.-H. Nguyen. A comparison of cache aware
and cache oblivious static search trees using program instrumentation.
In Experimental Algorithmics: From Algorithm Design to Robust and
Efficient Software, vol. 2547 ofLNCS, pp. 78–92, 2002.

[22] N. Lynch.Distributed Algorithms. Morgan Kaufmann, 1996.
[23] K. Mehlhorn.Data Structures and Algorithms 1: Sorting and Search-

ing, theorem 5, pp. 198–199. Springer-Verlag, 1984.
[24] M. M. Michael. Practical lock-free and wait-free ll/sc/vl implementa-

tions using 64-bit cas. InDISC 2004, vol. 3274 ofLNCS, 2004.
[25] J. I. Munro, T. Papadakis, R. Sedgewick. Deterministic skip lists. In

SODA’92, pp. 367–375, 1992.
[26] H. Prokop. Cache-oblivious algorithms. MS thesis, Massachusetts In-

stitute of Technology, Cambridge, MA, 1999.
[27] N. Rahman, R. Cole, R. Raman. Optimised predecessor data struc-

tures for internal memory. InProc. of the 5th Intnl. Workshop on Al-
gorithm Engineering, vol. 2141 ofLNCS, pp. 67–78, 2001.

