Concurrent Cache-Oblivious B-Trees

Michael A. Bender
Department of Computer Science
SUNY Stony Brook
Stony Brook, NY 11794-4400, USA

bender@cs.sunysb.edu

Seth Gilbert
MIT CSAIL
The Stata Center, 32 Vassar Street
Cambridge, MA 02139, USA

sethg@mit.edu

ABSTRACT

This paper presents concurrent cache-oblivious (CO) B-trees. We
extend the cache-oblivious model to a parallel or distributed set-
ting and present three concurrent CO B-trees. Ouir first data struc-
ture is a concurrent lock-based exponential CO B-tree. This data

structure supports insertions and non-blocking searches/successo(r),per&m_on withO B
§izes simultaneously, and even when the block size is unknown. In

B. @ complex memory hierarchy consisting of many levels of cache,

queries. The second and third data structures are lock-based an
lock-free variations, respectively, on the packed-memory CO

Jeremy T. Fineman
MIT CSAIL
The Stata Center, 32 Vassar Street
Cambridge, MA 02139, USA

jfineman@mit.edu

Bradley C. Kuszmaul
MIT CSAIL
The Stata Center, 32 Vassar Street
Cambridge, MA 02139, USA

bradley@mit.edu

to achieve good data locality at only one level of the memory hier-
archy and for one fixed block size.

In contrast, cache-oblivious (CO) B-trees attain near-optimal mem-
ory performance at all levels of the memory hierarchy and for all
block sizes (e.g., [7-9, 11, 13]). A CO B-tree performs a search
(logg N + 1) cache misses for all possible block

tree. These data structures support range queries and deletions iff'® ['é€ minimizes the number of memory transfers between each

addition to the other operations. Each data structure achieves t
same serial performance as the original data structure on which it
is based. In a concurrent setting, we show that these data struc

tures are linearizable, meaning that completed operations appear to

an outside viewer as though they occurred in some serialized or-

he2diacent cache level. Thus CO B-trees perform near optimally in

theory, and in recent experiments have shown promise of outper-
forming traditional B-trees [12, 19].

One shortcoming of previously described CO B-trees is that they
do not support concurrent access by different processesease

der. The lock-based data structures are also deadlock free, and théypical applications, such as databases and file systems, need to

lock-free data structure guarantees forward progress by at least o
process.

Categories and Subject DescriptorsD.1.3Programming Tech-
niquesConcurrent Programminggarallel programming.1Data
Structures Distributed Data Structures; Elata Structures Trees;
G.3Probability and Statistics Probabilistic algorithms;

General Terms: Algorithms, Theory.

Keywords: Cache-Oblivious B-tree, Concurrent B-tree, Non-
Blocking, Lock Free, Exponential Tree, Packed-Memory Array.

1. INTRODUCTION

For over three decades, the B-tree [5, 14] has been the data struc
ture of choice for maintaining searchable, ordered data on disk.
Traditional B-trees are effective in large part because they mini-

mize the number of disk blocks accessed during a search. Specif-

ically, for block sizeB, a B-tree containind\ elements performs
O(logg N + 1) block transfers per operation. B-trees are designed

This research was supported in part by the Singapore-MIT
Alliance, MURI-AFOSR SA2796PO 1-0000243658, USAF-
AFRL #FA9550-04-1-0121, DARPA F33615-01-C-1896, and
NSF Grants ACI-0324974, CNS-0305606, EIA-0112849, CCR-
0208670, CCR-0121277, and CCR-9820879.

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SPAA'05,July 18-20, 2005, Las Vegas, Nevada, USA.

Copyright 2005 ACM 1-58113-986-1/05/0007%5.00.

access and modify their data structures concurrently. This paper

describes three concurrent CO B-tree data structures, proves them
correct, and presents performance analysis for a few interesting

special cases. The rest of this introduction reviews CO B-trees and

explains the concurrency problem.

Cache oblivious B-trees

We first review the performance models used to analyze cache-
efficient data structures, and then review three variations on serial
cache-oblivious B-trees.

External-memory data structures, such as B-trees, are tradition-
ally analyzed in thelisk-access model (DAN1], in which internal
memory has siz& and is divided into blocks of sizB8, and exter-
nal memory (disk) is arbitrarily large. Performance in the DAM
model is measured in terms of the number of block transfers. Thus
B-trees implement searches asymptotically optimally in the DAM
model.

Thecache-oblivious modé§l5,26] is like the DAM model in that
the objective is to minimize the number of data transfers between
two levels. Unlike the DAM model, however, the parametrthe
block size, and/, the main-memory size, are unknown to the coder
or to the algorithm. If an algorithm performs a nearly optimal num-
ber of memory transfers in a two-level model with unknown param-
eters, then the algorithm also performs a nearly optimal number of
memory transfers on any unknown, multilevel memory hierarchy.

A CO B-tree [8] achieves nearly optimal locality of reference at
every level of the memory hierarchy. It optimizes simultaneously
for first- and second-level cache misses, page faults, TLB misses,
data prefetching, and locality in the disk subsystem. Although the
first CO B-tree is complicated [8], subsequent designs [10, 13,19,
27] rival B-trees both in simplicity and performance [6, 10, 13, 19,

weight balancd4, 8, 23, 25]. Typically, if a node contairld ele-
3 ments, then its parent node contains something kaglements.
2 Each node in the tree is laid out in memory using a van Emde Boas
4 7 1 1 layout, and the balancing scheme allows updates to the tree enough
O& O& O& & flexibility to maintain the efficient layout despite changes in the
5 8 110 1241 ! tree.
‘ The concurrency problem
Concurrency introduces a number of challenges. ®Waapproach
1 2 345 6l 7 8 9d/101119] 13141 would lock segments of the data structure during updates. For ex-
000000000 000 00¢ ample, in a traditional B-tree, each block is locked before being

updated. Unfortunately, in the CO model it is difficult to determine
the correct granularity at which to acquire locks because the block
size is unknown. Locking too small a region may result in dead-
lock; locking too large a region may result in poor concurrency.
Second, in most database and file-system applications, searches
are more common than inserts or deletes, so it is desirable that
o] o searches beon-blocking meaning that each search can continue to
21,27]. Indeed, preliminary experiments have shown, surprisingly, make progress, even if other operations are stalled. Our solutions
that CO B-trees can outperform traditional B-trees, sometimes by i, this paper do not require search operations to acquire locks.
factors of more than 2[12,19]. _ o Another problem arises with maintaining the “balance” of the
There are two main approaches to implemensegal CO B- data structure. Both main approaches to designing serial CO B-
trees. One approach is based on packed-memory arrays and thgees require careful weight balance of the trees to ensure efficient
other on exponential search trees. Both approaches employ a statigperations. With concurrent updates, the balance can be difficult to

Figure 1: The van Emde Boas layout from [26]. A tree of heifhis cut
into subtrees at height neby2, so each subtree ®(v/N) in size. This
example shows the layout of a tree with 8 leaves.

CO search tree [26] as a building block. _ maintain. For example, the amortized analysis of a packed-memory
A static CO search tree contains a sefobrdered elements in 5rray allows a process to rewrite the data structure completely once
a complete binary tree. It executes searches uSifigggN + 1) in a while. But if the rewrite acquires locks which prevent other

memory transfers. The elements are laid out in an array using the processors from accessing the data structure, then the average con-

van Emde Boas layogsee Figure 1). Each node in the binary tree cyrrency drops: on average orfdy1) processes can access the data
is assigned to a position in a lengtharray. To perform the layout, structure concurrently.

split the tree at roughly half its height to obte®(+/N) subtrees Finally, there is a significant asymmetry between reading and
each with©(v/N) nodes. Each subtree is assigned to a contiguous yiting the memory. We analyze our data structures under the con-
portion of the array, within which the subtree is recursively laid out. - cyrrent read, exclusive write (CREW) model. Two processes can

The array is stored in memory or disk contiguously. read a location in memory concurrently, since two caches can si-
A static CO search tree executes search€Xiogg N + 1) mem- multaneously hold the same block in a read-only state. In fact, it

ory transfers [26]. To understand this bound, consider the decom-may e preferable if parts of the data structure, e.g., the root, are

position of the tree into subtrees of size betwed andB. The accessed frequently and maintained in cache by all processes. On

depth of each subtree is at least/B, so any root-to-leaf path en- e other hand, when multiple processes attempt to write to a block,
counters at most iy/1gv/B = 2loggN subtrees. Each of these the memory accesses to the block are effectively serialized, and all
subtrees can cross at most one block boundary, leading tg Alog parallelism is lost.

memory transfers in the worst case. This analysis is not tight. In "~ \ye respond to these challenges by developing new serial data
particular, [6] proves a bound <€12+ %) logg N+ O(1) expected structures that are more amenable to parallel accesses, and then

memory transfers, where the expectation is taken over the randomWe apply concurrency techniques to develop our concurrent CO B-
placement of the tree in memory. trees.
The packed-memory array [8,17] appeared in the earliest serial
dynamic CO B-tree [8] and subsequent simplifications [11,13]. The Our results
packed-memory array stores the keys in order, subject to insertionsThis paper presents three concurrent CO B-tree data structures:
and deletions, and uses a static CO search tree to search the aitl) an exponential CO B-tree (lock-based), (2) a packed-memory
ray efficiently. The idea is to store all of the leaves of the tree CO B-tree (lock-based), and (3) a packed-memory CO B-tree (non-
in order in a single large array. If all the elements were packed blocking). We show that each data structurériearizable mean-
into adjacent slots of the array with no spaces, then each insertioning that each completed operation (and a subset of the incomplete
would requireO(N) elements to be displaced, as in insertion sort. operations) can be assignederialization poinf each operation
The fix to this problem (known by every librarian) is to leave some appears, from an external viewer’s perspective, as if it occws ex
gaps in the array so that insertions and deletions require amortizedactly at the serialization point (see, e.g., [16, 22]). We also show
O(log?N/B+logg N + 1) memory transfers. The amortized anal- that the lock-based data structures éeadlock fregi.e., that some
ysis allows that every once in a while the array can be cleaned up, operation always eventually completes. We show that the non-
e.g., when space is running out. blocking B-tree islock-freg that is, even if some processes fail,
An exponential search tree [2,3] can be used to transform a staticsome operation always completes. When only one process is ex-
CO search tree into a dynamic CO B-tree [7,27]. An exponential ecuting, the trees gain all the performance advantages of optimal
search tree is similar in structure to a B-tree except that nodes varycache-obliviousness; for example, they execute operations with the
dramatically in size, there are on®(loglogN) nodes on any root- same asymptotic performance as the non-concurrent versions and
to-leaf path, and the rebalancing scheme (where nodes are split andehave well on a multi-level cache hierarchy without any explicit
merged) is based on some weight-balance property, susinoes coding for the cache parameters. When more than one process is

Figure 2: An exponential CO B-Tree. Nodes grow doubly exponentiglthe height of the tree. The dark-gray keys of internal rsqoi@nt to the smallest
key in the corresponding subtree. Data is stored in the teaMee light-gray keys of internal nodes indicate tigit-key. Each node hasrght-link pointer,
forming a linked list at each level in the tree.

executing, the B-trees still operate correctly and with little interfer- of memory. When considering non-blocking algorithms, we use

ence between disparate operations. load-linked/store-conditionalLL/SC) operations. An LL opera-
tion reads the memory and sets a link bit. If any other operation
Roadmap modifies the memory, the link bit is cleared. An SC operation

The rest of this paper is organized as follows. Section 2 describeswrites the memory only if the link bit is still set; otherwise the

our concurrent CO model. Section 3 presents a lock-based expo-memory remains unchanged. This approach avoids the well-known

nential CO B-tree. Section 4 presents a lock-based packed-memoryABA problem that arises withompare and swafCAS). There has

CO B-tree, whereas Section 5 presents a lock-free packed-memorybeen much research showing how to implement LL/SC with CAS

CO B-tree. Section 6 concludes with a discussion of other ways to and vice versa, implying that in some senses they are equivalent

build concurrent CO B-trees and of open problems. (e.g., [18, 24]) and we believe it is not difficult to modify our con-
struction for the somewhat more common CAS operation.

2. THE CONCURRENT CO MODEL
In this section we describe the concurrent CO model, and then 3. EXPONENTIAL CO B-TREE

discuss the concurrency mechanisms used throughout this paper. ~ This section presents our first concurrent CO B-tree. We first
The CO model, as introduced in [15,26], models a single level of describe the data structure. We then prove correctness and give a
the memory hierarchy. The model consists of two components: the performance analysis. We conclude by discussing some interesting
main memory and a cache of sike Both are divided into blocks ~ aspects of this data structure.
of sizeB. The values oM andB are unknown to the algorithm, o
hence the ternsache oblivious Data structure description
In this paper we extend the model to a parallel (or distributed) The data structure uses a strongly weight-balanced exponential tree [2,
setting consisting oP processors. We consider the case where 3,7,27] to support searches and insertions. Each node in the tree
each processor has its own cache of 8iz&°. A block may reside contains child pointers and a pointer to the node’s right sibling
in multiple caches, in which case it is marked in each cache as (right-link) (see Figure 2). A node maintains the set of keys that
shared A block that is markee@xclusivecan reside in only asingle partition its children and the keyight-key) of the minimum ele-
cache. A processor can perform write operations only on blocks for ment in theright-link’s subtree.
which it has obtained exclusive access. We now describe the protocol for searches and insertions. The
If multiple processors concurrently request shared access to atree is parameterized by a constanfor 1 < o < 2, which affects
block, the block is placed in each of the caches and marked sharedthe height of the tree. We say that a leaf has height 0, and a node
If a processor requests exclusive access to a block, the block ishas height one more than its children.
evicted from all other caches and is marked exclusive; all other To searchfor a keyk, we begin at the root of the tree and fol-
concurrent requests for shared or exclusive access fail. Iffeedac low child pointers or sibling pointers until we reach the leaf con-
full, each successful request results in an old block being evicted; taining the target element. At each intermediate node we exam-
we assume that the least recently used (LRU) block is evicted ine right-key. If right-keyis smaller thark, then we follow the
Each request for a block costs one memory transfer, regardless ofright-link pointer. Otherwise, we proceed to the appropriate child.
whether the block is requested shared or exclusive and regardles$n reaching a leaf, the search continues to folt@ft-link point-
of whether the request is successful. There is no fairness guaranteers until eitherk is found, in which case the search returns the
that a processor is eventually successful. A single read or write op- value, or a key larger thak is found, in which case the search
eration may, in fact, be quite expensive, resulting in a large number fails. We acquire no locks during the search.
of unsuccessful block requests if there are many concurrent write To insertkey K, we first search for the leaf whereshould be
requests. inserted, acquire a lock on the leaf, perform the insertion at the leaf,
We make use of two different types of support for concurrency. and release the lock. Next we determine whether thexkstyould
For much of the paper, we use locks to synchronize access to piecede promotedor whether the insertion is complete. We promote the

. keyk in the leaf to height 1 with probability/2. When promoting
1The results in this paper hold for any reasonable replacement strat- : j e
egy. Unlike in the original CO model, we do not assume an optimal K, we reacquire the lock and split the leatontainingk. Nodeu
replacement strategy. One difficulty in the concurrent setting is that k€eps all of the keys less than and the new leaf acquires all of
itis unclear what “optimal” means because changes to the replace-the keys greater than or equalko We then release the lock and
ment policy affect the scheduling of the program. insert the promoted key into the parent ofi. More generally, if

a) [22]34] 5q 4 b) |22 34 59 84 o)

EERPERRED SEXY

Figure 3: An example of an insert of the key 25 into an exponential COr&eT a) gives the original state of the tree. b) shows thdthegwstructure if 25 is
not promoted. c) gives the resulting structure if 25 is promiatee level.

@ execution there exists a total ordering of the operations with the
o= following properties: (1) the ordering is consistent with the desired
@ e insert/search semantics, and (2) if one operation completes before
another begins, then the first operation precedes the second in the
(22 ()| |9 (1) ordering. Linearizability follows due to a straightforward extension

¢ ¢ ¢ ¢ of Lemmas 13.10 and 13.16 in [22].

| 22 | 3 | s0 | \

Theorem 1. The exponential CO B-Tree guarantees linearizable
‘ insertions and searches and is deadlock-free.

Proof. In order to show that an appropriate total ordering of the
I @ I@ @ I operations exists, we need to show that if an operation completes,
22|| 34/ 50 . . o . -
all later operations are consistent with it. If an insert operation
finishes inserting a key at level 0, or a search finds a keyat
Figure 4: The modified van Emde Boas layout of a node in the exponential Ievgl 0, ther) any later search also finds key '
CO B-Tree. This figure shows the layout of the node given asabieof (a) First, notice that at every level of the tree, the keys are stored in
in Figure 3 order. That is, if the largest key in nodeis K, then the smallest

key in nodeu.right-link is larger thark. This fact follows from
the two ways in which a node is modified. First, a node may be

we insert a key into a nodeu’ of heighth, we promotex from split, say at key. In this case, the split operation, protected by a
heighth to heighth+ 1 with probability /2%, which means we lock, preserves this invariant, movirgand all larger elements into
reacquire the lock, splitf, release the lock, and insectinto the a new node that can be reachedright-link. Second, a kex may

parent ofu’. Figure 3 gives an example of an insert and promotion. be inserted into a node. In this case, the node is locked during the
In order for nodes to be searched efficiently, the keys in a node insertion, and some of the elements in the vector half of the node
are laid out using anodified van Emde Boas layost that a node move one position to the right to make room kor

of sizek can be traversed wit®(logg k + 1) memory transfers. This ordering of keys implies that if key is in the leaf node of

An example of the modified layout is depicted in Figure 4. The the tree when a search begins, then throughout the search, a leaf
node is divided into two pieces: a siZéd] array filled from the containing key is reachable by the search. The search begins at
left holding all the keys in a node, and a complétd]-leaf static the root, and every leaf is reachable from the root. We proceed by

CO search tree used to efficiently search for an array slot.i-fine induction: at each step of the search, a child pointer is chosen with
leaf of the search tree points to théh array slot. In particular, a ~ aminimum key no greater than The only interesting case is when
leaf containingk in the search tree points toin the array. This the child node is concurrently split. Even in this case, however, the
approach is reminiscent of [10] and reappears in Section 4. The child node always contains a key no greater tkasince ever when
static CO search tree consists of keys laid out in a van Emde Boasa node is split it always maintains its minimal key. We conclude
layout [26]. This layout consumes (roughly) the firgt32of the thatk is still reachable.
memory used by a node. The final3lof the memory contains the Finally, deadlock-freedom follows immediately, since each pro-
keys stored in order as a vector. A search within a node ends at thecess holds only one lock at a time[]
location of the key in the vector. o

When we rewrite a node (either because the key is inserted into Cache-oblivious performance

the node or because the node is split), we update the modified vanyse first consider the cost of individual operations when the data
Emde Boas layout as follows. First we rewrite the vector of keys gsiycture is accessed sequentially. We then analyze the concur-
(the right half of the node), proceeding from largest to smallest. rent performance for the special case when search and insert op-

Then we update the van Emde Boas layout in the left half. This grations are performed uniformly at random. In both cases, we use
layout ensures that we can perform concurrent searches evlen wh e cache-oblivious cost model, counting only cache misses.

the node is being updated. If an insert is performed when the vector

of keys is already full, we allocate a new node of twice the size. Theorem 2. Assume that operations occur sequentially. A search

c in an N-node tree takes(@gg N + log, Ig B) block transfers, with
orrectness high probability; an insert takes @ogg N + log,, Ig B) block trans-

We first argue that the data structure is correct, even under con-fers in expectation.

current operations. The most common way of showing that an al-

gorithm implements a linearizable object is to show that in every Proof. First, notice that if a tree contairté keys, then with high

probability every node in the tree has height less thag ligty +
2The hyperceilingof x, denoted]x]|, is defined to be Boox] je., O(1). Specifically, the prcc)bability that any key is promoted to
the smallest power of 2 greater than height log, IgN +cis O(n~"+1).

@ (19

(L) (L) @ (29

C @

(2 (78 (L) (L)

O L 0 L @ 6 e 6 &6 @ 6 ¢ 0w O O

1.9 \11.17] 18.23 26.35

39.41 s2.k8 e1ler 7slem.aca 1 ‘

,,,,, Lo __L_____

Figure 5: A packed-memory CO B-Tree consists of a static cache-obis/gearch tree used to index into the one-way packed-memasy &ach leaf in the
tree points to @®(IgN)-sized region of the array. The active region of the arrayuidired with a solid border. The active region of the arraptains gaps
allowing for insertions, and the array can grow to the righslrink from the left.

Also notice that ifuis a node of height, then the number of keys
inuis O(Zah) in expectation and)(2°‘h IgN) with high probability.
Forh = Q(log,IglgN), that is, when the expected node size is at
leastQ(IgN), the number of keys i®(2°‘h) with high probability.

We now calculate the cost of a search operation. Searching a
node of heighh, laid out in the modified van Emde Boas layout, for
the correct child pointer take®(logg(2") + logg IgN + 1) mem.-
ory transfers, with high probability. For nodes with expected size
atleastQ(IgN), the cost isO(IogB(Zo‘h) + 1) with high probability.

We sum the costs for all levels, ranging frorms 0 to log, IgN +¢
(with high probability):
log, IgN+c logy lglgN

G(% logg(2") + %

The right term sums t®(logg N). For the left term, we consider

logglg N> .

difficult to analyze since it depends significantly on the underlying
parallelism of the algorithm using the data structure. For example,
if a large number of processes all try to modify a single key, then
the operations are inherently serialized, and there is no possible
parallelism. As a result, for most concurrent B-tree constructions
(and in fact, most concurrent data structures), little is stated about
their performance. We analyze the “optimally parallel,” case where
each search and insertion operation targets a randomly chosen key,
and show that the data structure still yields good performance.

Theorem 3. Assume that all processors are synchronous. If there
are O(N%/9~1/polylogN) search and insert operations performed
uniformly at random in an N-node tree, then the expected cost for
an operation is Qlogg N +log, IgN) block transfers.

Proof (sketch).Notice that in the absence of concurrent insert op-
erations, each search operation tak&®gg N + log, IgB) block

two cases, depending on whether or not the size of the node is attransfers. If an insert operation delays a search, we charge #tat co

leastB. For all levels where the nodes are of size at |&she
cost is dominated by the root node (or possibly a node just below
the root). For nodes of size less thathe block transfer cost is at
most 2. Therefore, with high probability, the total cost of a search
is O(alogg N + logy Ig B).

We next calculate the cost of an insert operation. Consider the
expected cost of inserting a key at heighof the tree. Recall
that we promote a key from levél— 1 to levelh with probability
2-a"t Thus, the probability of promoting a given key to height
is 2-(a"-1)/(0=1) The cost of inserting a key into a node at height
h, given that the key reaches heidhtis the cost of rebuilding the
entire node, which i§)(1+2°‘h IgN/B) with high probability.

Therefore, the expected cost at heighs the probability that
the insertion reaches heighttimes the cost of rewriting a node
at heighth. The expected cost is therefa@2-¢ (@"~1 ogN/B),
where 0< ¢’ < 1 depends on the value af The summation across
all logy IgN +O(1) levels, then, i9(IgN/B) < O(logg N). Hence
the total expected cost of an insert is the cost of searching for the
right place to do the insertion plus the cost of doing the insertion.
That is, the cost i©(logg N +log, IgB). [

Notice that if there are a large number of concurrent search oper-

to the insert operation.

An insert operation has four costs: finding the insert point, ac-
quiring the lock, performing the insertion, and delaying other oper-
ations. As in the case of searches, finding the appropriate insertion
point costsO(logg N + log, IgB) plus any delays caused by other
insert operations. Again, this delay is charged to the operation caus-
ing the delay.

The cost of performing the insertion itself is equivalent to the
sequential case@(logg N + logy Ig B) block transfers.

It remains to calculate the effects of concurrency: the cost of ac-
quiring the lock and the cost of delaying other operations. Consider
the expected cost incurred by a delaying one particular concurrent
operation at some levél There are three components to the cost:
(1) the probability that the insert reaches lelig(2) the probabil-
ity that the insert modifies the same node, and (3) the actual cost
incurred by delaying the concurrent operation.

First, as in Theorem 2, an insert operation reaches levath
probability 2-(@"-1)/(a=1)

Next, an insert chooses the same node at levath probability
2(a"*-1)/(a=1) /N, since the expected number of nodes at lével
is the number of elements promoted to lelwvel 1. This probability
can vary by at most a log factor, with high probability, which is

ations, but no insert operations, each search operation incurs a coseénough for the proof.

of O(logg N +log, g B), the same as in the sequential case.
If there are many concurrent searches and insertions, the perfor-
mance may deteriorate. The performance of concurrent B-trees is

Finally, we consider the real cost of delaying any one operation
at levelh. The expected size of a node at levein the tree is

O(Zc‘h). Therefore the concurrent operation can be delayed by at

most O(2"h) in expecation, which is the cost of performing one elementinsertion and deletion (see Figure 5). The array consists of

memory transfer for each element in the node. Notice that this three segments: the leftmost and rightmost segments contain extra

worst-case analysis makes no use of the cache: in the case of a&mpty space, and the middle segment, ahtve region contains

search operation, the block may be repeatedly transferred back andhe N elements and some gaps between elements. On an insertion,

forth between the search operation and the insert operation. More-the active region may grow to the right; on a deletion, the active re-

over, the search may have to read the entire node since the contentgion may shrink from the left. If the active region grows or shrinks

of the node are changing during the search. The size of the nodetoo much, then we reallocate the array.

also bounds how long the insert may need to wait to acquire the We maintain a near-constant “density” in the active region by

lock. rebalancingregions of the array—that is, evenly spreading out el-
We now sum over the possible heights in the tree. Consider ements within a region—on insertions or deletions. In the one-

hmax= 10gy lgN +log, (o — 1) — 1, which is the point at whichthe ~ way packed-memory structure, the rebalances ensure that elements

second term (i.e., the probability that the insert occurs at the samemove only in one direction: to the right (see Lemma 4).

node) reaches 1. Multiplying the three terms results in an expected Thedensityof a subarray is the number of filled array positions

cost of 22“h/N. In the worst case, whete= hpay, this expression divided by the size of the subarray. Consider a subarray ofksize

is equal toN2~2/9; for smallerh, the cost decreases. Since there Withi = [Igk]. The size of a subarray determinesifsper-bound

are at mosN?/~1 concurrent operations, the expected cost per density thresholdr;, and itslower-bound density threshald;. For

level isO(1). Summing over all levels: hyaxleads to an expected ~ all i andj, pi <piv1, Tj > Tji1, andpi <1j. _ _

cost ofO(logy IgN). The density thresholds follow an arithmetic progression defined
Next consider the case whelie> hmax. Notice that the second @S follows. Let 0< pmin < Pmax < Tmin < Tmax= 1 be arbitrary

term never exceeds one. The first and third terms decrease geoCONStants. Led = Tmax— Tmin @nd% = Pmax— pmin- Then, define

metrically IikeO(l/Z“h), since the tree is unlikely to exceed height density thresholds andp; to be
hmax SO again the sum is bounded by the tdrea hyay, as before. o i—1 5 dor — Do
The polylog in the theorem arises since there can @(&gN)- T = Tmax— —1 0 andpi = Prmin +-

lgm
factor variation in the size and number of nodes at a level, with high or all i with -
probability. [oralliwithl1<i<Igm.

For example, suppose that= 16, and we fix the threshold
Tmin = 1/2. There are |Ig16= 4 density thresholds; = Tmax T2,
13, andT4 = Tmin- The thresholds increase linearly with = 1,
T2 =5/6,13 =4/6, andty = 1/2. Similarly, if we fiX pmin = p1 =
1/8 andpmax= pa = 1/4, thenp, = 4/24=1/6 andpz = 5/24.

i—-1
Igm—167

Notice that in a concurrent setting, the expected cd3tlisgg N+
logy IgN), instead ofO(logg N + log,, IgB) in the sequential case.
The additional cost is incurred when two operations interfere.

Discussion Search. To search for a key, search down the static binary tree as
One interesting aspect of this data structure is parameterizing of normal, without any locks. When the search reaches the array, scan
the tree bya. By skewing the tree wider (rather than deeper), we right until finding the appropriate array slot. Since the search pro-
reduce the concurrency at the root, thus improving the overall per- ceeds without locks, we need to perform an ABA test (key, value,
formance. Wheru is closer to 1, the concurrent performance is key) to make sure the element did not move during the read.
better; wheru is closer to 2, the sequential performance is better.
A second aspect to note is that the data structure requires re
atively minimal memory management, since it does not support
delete operations. The only case in which memory must be deallo-
cated (or wasted) is when a node in the exponential tree grows too
big (before splitting), and a new contiguous block of memory must
be allocated for the node.

I_Insertion and deletion. To insert a new element with key K,
first perform a search to find and then lock tBdogN)-sized leaf
where keyk should be inserted. Next, scan the leaf from left to
right to find the actual slas for key K. (Slots— 1 should contain
the largest key smaller than) If the scan advances into the next
O(logN)-size region (due to a concurrent operation), acquire a lock
on the next tree leaf, give up the lock on the current, and continue.
If the slotsis free, placey in the available slot. Otherwise, we
4. PACKED-MEMORY CO B-TREE must rebalancea section of the packed-memory array. Explore
In this section we present our second concurrent, cache-obliviousright fromsin the array, acquiring locks on regions along the way,
B-tree. It supports insertions, deletions, searches, and rangegjuer until finding the smallest regioof any sizehat is not too dense. A

using lock-based concurrency control. We first describe the lock- region of sizek, with [Igk] =i, is not “too dense” when the den-
based data structure. We then prove the data structure correct angity is no greater tham. We then rebalance the elements evenly
analyze its serial performance. within the window by moving elements to the right, starting with
o the rightmost element and working to the left. We move the ele-
Data structure description ments such that no suffix of the rebalanced region has density ex-

Here we describe the lock-based packed-memory CO B-Tree. Weceeding the threshotd.® Finally, we release the locks. Unlike the
present a lock-free version of this data structure in Section 5. Our Packed-memory array from [8] rebalance windows do not have to
data structure is based on the cache-oblivious B-tree presented in [11fve Sizes that are powers of 2. Figure 6 gives an example of an
and consists of a static cache-oblivious search tree [26] that is usedNSert into the one-way packed-memory array.
to index a packed-memory data structure. Instead of using the Deletions are analogous to insertions, except that when an ele-
packed-memory array from [8], we introduce a new “one-way pdek Ment is deleted, we always perform a rebalance. A deletion-trig-
memory structure,” which is more amenable to concurrent opera- 9€red rebalance explores right until finding the first slot preceding
tions. Each leaf in the static tree points t®dogN)-size regionin @n occupied slot, then explorésft until finding a region that is
the packed-memory array. _ _ S3Thus, every prefix of the region not including the last slot has
The one-way packed-memory structure maint&irelements in density at least the threshotd In particular, a prefix of sizk has
order in an array of sizen= O(N) (with ma power of 2) subject to [kti] elements.

a) move elements in only one direction. This lemma directly implies
3] | [8]1d25 [4 | ‘ [8b [9 that searches return the correct elements.
d>t=1 = d<13=2/3 Lemma 4. The one-way rebalance moves elements only to the
right. That is, the rebalance operation maintains the property that
b) the key at a given memory location is nonincreasing.

Proof. Consider a rebalance regiorranging from array slotsy
tosp. Leti = [lg(s,—s1+1)]. Then the elements inare spread
Figure 6: An insertion of the key 10 into the above packed-memory array evenly to a density of;.

of sizem= 16 and thresholdnax= 1 andtmin = 1/2. The new element 10 Assume for the sake of contradiction that an elementritoves
should go in the slot containing 12, so we explore right dintding a region left during the rebalance. Without loss of generality,dgbe the

that is not too dense, including the new item to insert. Ungdloring past a slot of the leftmost element that moves left. Consider the region
region of size 2 (indicated by the small rounded rectangle)y the density ' ranai / ; iy

: " ging froms; to s, — 1. Letd’ be the density of region’.
d exceeds the corresponding threshold= 1. When exploring between a Since spreading the%lements evenlyrimoves an element into

region of size between 3 and 4, indicated by the medium rouretzengle,) haved’ H . I ined i h
the density is 1 which exceeds the corresponding threghetds/6. When ', we haved” < T;. However, since’ Is contained irr, we have

exploring regions of size between 5 and 8, we use the thrésget 2/3.)= ﬂg(#z__ s1)] for somej <i. Thus,Tj > 1 > d’, generating a
The exploration stops at the sixth slot as there are 4 elertiantsding the contradiction as the rebalance region wouldbe

new element 10) to place in 6 slots, giving a dendity 4/6 = 2/3 =13. (b) The proof is similar for deletion-triggered rebalancegl

gives the state of the array after the insert and rebalancee @e rebalance

region is established, we begin at the right and move elemerfts aight Theorem 5. The packed-memory CO B-Tree is deadlock-free and
as possible without exceeding the appropriate thresha@d = 2/3). guarantees linearizable insertions, deletions, and searches.

Proof. The deadlock-free proof follows directly from the fact that
“dense enough.” This exploration proceeds without locks. Once When an operation holds more than one lock, it always acquires
the region is established, we acquire locks on the region from left these locks from left toright. =~~~
to right. As with the insertion-triggered rebalance, we then spread Next, we look at the claim of linearizability. The array of the
elements evenly starting with the rightmost element and working Packed-memory CO B-Tree is similar to a single node in the ex-
left. Finally, we release all the locks. ponential CO B-Tree, except the array is slightly more compli-
Once the insert/delete or rebalance is complete, we update thecated. The important property about updates to the array is given
keys in the static search tree. For each node in the subtree defined? Lémma 4. Thus, we can use a similar proof to Theorem(I.
by the updated region, if the key at a node in the tree is too small, .
we lock the node, write the key, and release the lock. This strategy Cache-Oblivious Performance
ensures that concurrent searches are not blocked. We next analyze the cost of sequential operations in the packed-
memory CO B-Tree in terms of block transfers. We first bound the
cost of the static-search-tree update and of resizing the array. We
then apply an accounting argument to conclude that the packed-
memory CO B-Tree achieves the same serial costs as in [8, 10, 13].
First, we bound the cost of the static tree update.

Resizing the array. When the right boundary of the active region
hits the array boundary, or the active region becomes too small, we
resizethe array, copying the elements into a new array, spreading
the elements evenly. The “ideal” density of the active region is
(Tmin— Pmax)/2. If the old array hadl elements, the new array has

size Hcﬁﬂ , for a constant. The active region starts at Lemma 6. Assume that operations occur sequentially. If a range

the left portion of the new array. of k memory locations are modified during an update in the packed-
We use a randomized strategy that allows the resizing to run Mmemory array, then updating the search tree coste@y N+k/B+

quickly and concurrently. The resize proceeds in three phases: (1)1) memory transfers.

We randomly choose leaves of sig&logN) and count the ele- proof. We can think of subtrees of the search tree as corresponding
ments in the leaf. We lock th_e _node, write the count in the pode, to ranges in the packed memory array. Updating the tree requires
and release the lock. If the sibling has been counted, we write the ,4ating every node in a set of subtrees that constitute the range of
sum in the parent and proceed up the tree. When the root node iy memory locations. The combined number of tree nodes in these

counted, the first phase ends. (2) We allocate a new array based ony htrees is less thatk2out it remains to be shown that these nodes
the count in the root. Note that the count in any node is exact—the gt in O(k/B + 1) blocks. Consider all the subtreddy, ..., T;}

randomization in the first phase randomizes only the order in which ;4 update from left to right. Then there exists iasuch that the
nodes are count_ed. (3) We randomly walk down the original tree to ¢ hiree rooted aparen(T;) contains the subtreek, ..., T;, and

find a leaf, keeping a count of the number of elements to the left of paren(Ti.1) containsT.,1,...,T;. Thus, the tree nodes to update
this leaf. Then, we copy th®(logN) elements in the leaf to their 5re contained in two subtrees, with total size at mdst Al of
correct location in the new array (spreading the elements evenly). ihase subtrees. therefore. are laid oubilk/B + 1) blocks.

For phases (1) and (3), we mark nodes to ensure that leaves are not aqgitionally, some nodes, not in these subtrees, along the path
counted or copied multiple times and to discover when the phases;q the root must be updated. We note that we only update nodes
complete. with a right child that changes. Thus, we update only a single path

Correctness to the root, which requires at maS{logg N + 1) blocks. []

We show that our data structure is correct under concurrent oper- The insertion cost includes not only the cost of rebalancing the

ations: the data structure guarantees linearizable operations and isrray and updating the static tree, but also the cost of resizing the

deadlock-free. array. The following lemma implies that the array is not resized
The first lemma shows that the one-way rebalance does in factvery frequently.

Lemma 7. Consider a packed-memory array of size m. Then there
must beQ(m) insertions or deletions before the array is resized.

Proof. Consider a resizing triggered by an insertion. We use an ac-
counting argument to prove the lemma. We give 1 dollar to each
filled slot in the array at the time of the last resizing. Whenever an
item is inserted into some slot, we give that slot 1 dollar. When- Proof. This proof is similar to the one in [20] that analyzes the cost
ever an item is deleted, we leave the dollar in the slot. Whenever of rebalance regions extending only one direction (but in which
we rebalance a region of the array, we move 1 dollar with each elements can move in both directions). This argument uses the ac-

The following theorem states that we achieve the desired serial
performance.

Theorem 9. Assume that operations occur sequentially. The amor-
tized cost of insertions and deletions igl@g N +1g°N/B + 1).

item moved. All excess dollars (i.e., associated with items the have counting method, placin@(Ig?m/B) dollars in an array slot on an

been removed) are moved to the first slot of the rebalanced region.

Clearly every nonempty slot has at least 1 dollar associated with it.
Let d = (Tmin — Pmax)/2—the density to which the array is re-
sized. Then we claim that any prefix of the array, starting at the left

boundary (slot 0) and ending at a stgpreceding the right bound-
ary of the active region, contains at leastdollars. This invariant
is clearly true at the time of the last resizing. It also trivially holds

across insertions or deletions that do not trigger rebalances. It re-

mains to be shown that the invariant holds across rebalances.

Consider an insertion-triggered rebalance that ranges from slot

s1 to s. The invariant is trivially unaffected for any slstwith

S< $1 0rs> s since no money moves into or out of the rebalanced
region. It remains to show that the invariant holds for a shefith

51 < s< s. By assumption, we have at ledst — 1)d preceding
slots;. The rebalance algorithm guarantees that the density of ev-
ery prefix of the rebalanced region is at leagf,. Thus the array
contains at leagts; — 1)d + (S— 1+ 1)Tmin > sd dollars by slots.

insertion/deletion. In particula@®(Ilgm/B) dollars are associated
with each of Ign accounts, corresponding tortgdensity thresh-
olds. Whenever a region of sike> Igmis rebalancel] the region
containsQ(k/B) dollars in an appropriate account with which to
pay for the rebalance. Our scenario is different because regiens ar
not necessarily powers of 2, and our resizing algorithm is different.
Whereas [20] uses an accounting argument that charges retsmlance
against the left half of the region of sike we charge against the
left subregion of sizg[K]| /2.

Moreover, we incur a cost for updating the static tree on top of
the packed-memory data structure during a rebalance. Since we
have®(k/B) potential saved up at the time of a rebalance of size
k, and a tree update cosiglogg N+ k/B+ 1) (from Lemma 6) we
can afford the tree update.

Finally, given that there must l2(N) insertions between resiz-
ings (see Lemma 7), and a resizings cd3tdl(logg N + 1)) (see
Lemma 8), we conclude that the cost of resizing the array is amor-

For completeness, we also need to consider a deletion-triggeredtized toO(logg N + 1) per insertion. [

rebalance that ranges from skat to s,. Consider a slos with
s1 < s< . The rebalance algorithm again guarantees that the
density of every suffix of the rebalanced region is at npagi < d.
Thus, since the invariant holds at stetbefore the rebalance, and
all extra dollars are moved to slsf, we have that the invariant
holds for all slots after the rebalance.

Now we just apply the invariant to complete the proof. When an

5. LOCK-FREE CO B-TREE

We now show how to transform the lock-based data structure
in Section 4 into a non-blocking, lock-free CO B-tree. Instead of
using locks, we use load-linked/store-conditional (LL/SC) opera-
tions. For the sake of clarity, we will assume that keys and values

insertion triggers a rebalance, the active region includes the entire@re each a single word, and can be read and written by a single

array. Thus, the array contains at leasd dollars. At the last
resizing, there wered/c dollars, where botle > 1 and 0O<d < 1
are constants. Thus, there must have fe@n) insertions.

The proof for deletion-triggered resizings is similat]

Now we bound the cost of resizing. The main idea is B&X)
random choices is enough to co@®N/IgN) leaves.

Lemma 8. Assume that operations occur sequentially. Consider

LL/SC operation; the data structure is easily extensible to multi-
word keys and values.

Data structure description

Recall that locks are used only in updating the packed-memory
array; the static search tree is already non-blocking. Instead of
acquiring locks before modifying the packed-memory array, we
show how to use four basic non-blocking primitives to update the

a packed-memory CO B-Tree containing N elements. Then the cosdata structure: (1)nove which moves an element atomically from

of resizing the packed-memory array i$NFlogg N + 1)) memory
transfers.

Proof. There are®(m/Igm) leaves. We make onl(m) random
leaf selections, with high probability, before selecting every leaf in
phases (1) and (3). In phase (3), finding a leaf follows a root-to-
leaf path in the tree with a cost @f(loggm+ 1). The total cost of
selecting all the leaves is, therefo@m(logg m+1)).

Copying or counting @(lgm)-sized region (corresponding to
a tree leaf) of the old array také&3(lgm/B+ 1) block transfers.

Since each leaf is counted and copied once in phases (1) and (3)

respectively, the total cost of counting and copying the elements is
O((m/lgm)(lgm/B+1)) = O(m(logg m+1)).

Copying a Ign sized region from the old array to the new array
takesO©(lgm/B) block transfers (since the array is kept near a con-
stant density), for a total cost @f(m/B) across the entire resize.

Updating the tree for the new array coftdogg ' + 1) for each
element copied whene is the size of the new array, for a total of
O(m(logg M + 1)) block transfers.

Sincemandn' are®(N), the lemma follows. [

one slot in the packed-memory array to anothercéll-insertion
which inserts a new key/value pair into a given cell in the packed-
memory array, (3yell-deletion which deletes an existing key/value
pair from a cell in the packed-memory array, and @gd which
returns the key and value of a given cell in the packed-memory ar-
ray. Each of these primitives is non-blocking, and may fail when
other operations interrupt it. For example, a move operation may
fail if a cell-insertion is simultaneously performing an insertion at
the target.

Markers. Each cell in the array is augmented wittarkerwhich
indicates whether an ongoing operation is attempting to modify the
cell. The marker contains all the information necessary to complete
the operation. For example, a move marker indicates the source
and the destination of the move. Any processor that is perform-
ing an operation and discovers a marked cell helps to complete the
operation indicated by the marker. For example, consider a move

4We can trivially pay for any small rebalances with the cost of in-
serting the new element.

operation that is attempting to move an element from cell 14 to cell calculate the appropriate spacing of the elements in the array, as
15, while concurrently a cell-insert is attempting insert an element before. The rebalance then proceeds from right to left using move
at cell 15. First, the cell-insert updates the marker at cell 15. Then, operations to spread elements evenly. (Elements are only moved
the move attempts to update the marker, and discovers the con-from left to right, as before.) If any move fails, then the rebalance
current insertion. The move operation then performs the insertion, restarts. In particular, a move may fail if any of the markers has
before proceeding with the move. In this way, the move can even- changed since they were initially linked during the scanning phase
tually complete, even if the processor performing the cell-insert has of the rebalance. If at any time during the rebalance, we otherwise
failed, or been swapped out of memory. detect that the array has changed, then the rebalance restarts.

The primitive operations which modify the data structure (i.e., Deletions are similar to insertions. We first search for the item
move, cell-insert, and cell-delete) are all initiated by marking an to be deleted, and then perform a cell-deletion. Finally, we scan
appropriate cell. Once a cell has been marked, any processor cario the right until discovering a non-empty cell, and then perform a
complete the operation by simply processing the marker. In order rebalance. Unlike the rebalance on insertions, however, this opera-
to begin a move operation, the source of the move is updated. For ation scans to the left, looking for a dense region (as is described in
cell-delete operation, the cell containing the element to be deleted isSection 4).
marked. A cell-insert operation marks the cell immediapebced- All other data structure operations proceed as before; after the ar-
ing the cell where the new element is being inserted. A requirement ray has been updated using the non-blocking primitives, the search
of a cell-insert is that this preceding cell not be empty. By marking tree is updated to reflect the changes. When resizing the array, load-
the preceding cell, we prevent a concurrent move operation from link/store-conditional is used to atomically write the count of a leaf,
moving an element “over” an ongoing cell-insertion. For example, instead of a lock.
if a cell-insert is happening at cell 15, we must prevent the element
from cell 14 (or any smaller cell) from being moved to cell 16 (or COITectness
any larger cell); otherwise, the new element might not be ordered Theorem 10. The packed-memory CO B-Tree guarantees linear-
correctly. izable search, insert, and delete operations.

We believe that it is possible to implement a lock-free packed-
memory CO B-Tree using compare-and-swap, instead of LL/SC,
by adding version tags to the markers.

Proof. If akey is in the data structure and the data structure remains
in sorted order, then a search will find it: the static tree is updated
after the packed-memory array, and elements are only moved to the
Implementing the nonblocking primitives. For a move opera- right in the packe.d-memory.array; it is therefore easy t.o see that a
tion, once the source has been successfully marked, an LL Opera_search always exits the sta_tlc tree to the left of t_he key in questlor_L
tion is performed on the following items: (1) the marker, (2) the The key property, then, is that the elements in the array remain
source key, (3) the source value, (4) the destination key, and (5) theln_sorted orde_r. If they always remain in sorted order, then a search
destination value. Then, an SC is performed on the marker, rewrit- Will correctly find any previously inserted element or any element
ing the marker. This technique ensures that no concurrent procesd€turned by a prior search and it fail to find a previously deleted
has modified the marker in an attempt to help complete the move. €lément, as is required. o _
The move then completes by using SC to update the keys and val- [N order to show that elements remain in order, we examine how
ues at the destination, and then at the source. If an SC fails during€/éments are inserted. An important invariant is that if a cell is
this final stage, it is ignored; some concurrent process has alreadymarked for a cell-insert, then the cell contains the largest key that
helped to complete the move. Finally, the marker is cleared. is less than or gqua! to the key being inserted. Initially, on acquiring
For a cell-insert, once the preceding cell has been marked, the in-2 marker, this mva_rlant is ensured by the correctness of the segrch
sert performs a LL on the marker, and then on the keys and valuesWhich locates thfe insertion cell, and the use of LL/SC to acquire
at the new cell. If the key is already in the tree, then an error is re- the marker atomically. S o
turned. If the cell is not empty, an error is returned. The insertthen Throughout the insertion, this invariant is maintained by the way
rewrites the marker with an SC, ensuring that it has not changed in " Which a rebalance moves elements. In particular, a rebalance
the interim. Finally, the key and value are updated, and the marker N€Ver moves an element from one side of a marked cell to another.

is cleared. A cell-delete is essentially identical to a cell-insert. In particular, whenever a rebalance moves an element, all the inter-
Finally, a read operation simply examines a cell, helps out if the Vening cells are empty. This property is checked while the rebal-
cell is marked, and returns the appropriate values. ance scans to the right, determining the region to rebalance and si-

multaneously performing a load-link (LL) on each non-empty cell
Insertions and deletions. An insertion proceeds as before, first in the region. The only way this property of a rebalance can be
using the static search tree to find and mark the appropriate cellviolated is if an element is inserted or moved between when the re-
in the array, that is, the cell containing the largest key in the tree gion is scanned and the rebalance moves an element. In this case,
that is less than or equal to the key being inserted. Once the cell ishowever, the SC which acquires the move marker fails.
marked, a cell-insert begins. If the insertion succeeds, the element As aresult, elements are always inserted in order, and rebalances
is successfully inserted. If the cell-insertion fails, however, then never move elements out of order. Combined with the fact that
either the cell is not empty or a move caused interference. In this searches terminate correctly, we have the main resalt.
case, we need to rebalance the array.

A rebalance begins by exploring to the right, as before.
case, however, it remembers which cells were filled and which were
empty. It performs a load-link (LL) operation on each non-empty Proof (sketch).We need to show that if there is at least one on-
cell; each of these marked cells may need to be moved, and thegoing operation, then eventually some operation completes. An
move is initiated by performing an SC on the marker. In this way, operation can only be delayed by pausing to help a concurrent op-
the rebalance operation can detect when the array has changed dueration, or by working on a rebalance. If an operation is delayed by
ing the rebalance. helping an insertion or deletion to complete, then some operation

When an appropriately sparse region is found, the operation canhas completed, as desired.

In this Theorem 11. The packed-memory CO B-Tree is a lock-free data
structure.

Therefore the key requirement is to show that rebalances cannot/. REFERENCES _ _
prevent operations from making progress. If a rebalance is forced [11 A- Aggarwal, J. S. Vitter. The input/output complexity sérting and

to restart because of a successful insertion or deletion, then some related problemsCommun. ACM31(9):11;6—1127| 1988:. .
other operation has completed. [2] A. Andersson. Faster deterministic sorting and searchinlinear

. space. IFFOCS'96 pp. 135-141, 1996.
A rebalance may alsp restart because qf interference by a con- [3] A. Andersson, M. Thorup. Tight(er) worst-case boundsdgnamic
current rebalance. In this case, however, since elements are moved ~ searching and priority queues. STOC'2000pp. 335-342, 2000.

only to the right, when the rebalance restarts it has (strictly) less [4] L. Arge, J. S. Vitter. Optimal dynamic interval managemereiternal

work to do than in the aborted rebalance. In particular, the concur- memory. INFOCS'96 pp. 560-569, 1996.
rent rebalance that forced a restart must have moved at least one[5] R. Bayer, E. M. McCreight. Organization and maintenantéame
of the items in the region to the right, thus reducing the amount of ordered indexesActa Informatica 1(3):173-189, 1972.

rabalancing necessary. Since every time a rebalance restarts it hasl®] M- A. Bender, G. S. Brodal, R. Fagerberg, D. Ge, S. He, H, Hu

J. lacono, A. lopez-Ortiz. The cost of cache-oblivious searching. In
less work to do, eventually the rebalance completés. FOCS'2003 pp. 271282, 2003,

[7] M. A. Bender, R. Cole, R. Raman. Exponential structureeficient

cache-oblivious algorithms. RCALP’2002 pp. 195-207, 2002.
6. CONCLUSIONS AND FUTURE WORK [8] M. A. Bender, E. Demaine, M. Farach-Colton. Cache-oblig B-

This paper explores a range of issues for making cache-oblivious trees. INFOCS'2000 pp. 399-409, 2000.
search structures concurrent. We consider both locking and lock- [9] M. A. Bender, E. Demaine, M. Farach-Colton. Cache-oblis B-
free solutions. Each of these approaches has practical and theoret- trees.SIAM J. Compuf.2005. To appear.
ical merits, and we make no judgement about which approach is [10] M. A. Bender, Z. Duan, J. lacono, J. Wu. A locality-preseg cache-
best. A third approach, which we do not consider here, is to use _ Oblivious dynamic dictionary. ISODA 2002pp. 29-38, 2002.
transactional memory to support concurrency. This approach may[11] M- A. Bender, Z. Duan, J. lacono, J. Wu. A locality-prasag cache-
lead to simpler coding and several new data-locality issues. oblivious dynamic dictionary. of Alg, 3(2):115-136, 2004,

. [12] M. A. Bender, M. Farach-Colton, B. C. Kuszmaul, J. Suk@iache-
Like many previous concurrency studies, this paper analyzes uni- oblivious b-trees for optimizing disk performance. Manustcri2005.

formly random insertions. This analysis does not reveal all the [13] G.S. Brodal, R. Fagerberg, R. Jacob. Cache oblivioaeetrees via

design principles that went into our data structures. In particu- binary trees of small height. IBODA 2002pp. 39-48, 2002.
lar, in the exponential trees, the parametdunes the tradeoff be- [14] D. Comer. The ubiquitous B-Tre€omputing Surveysl1:121-137,
tween low-concurrency and high-concurrency performance of the 1979.

tree. Wher is larger, serial operations in the tree are faster; when [15] M. Frigo, C. E. Leiserson, H. Prokop, S. Ramachandrarch€a
o is smaller, the tree supports increased concurrency and reduced Oblivious algorithms. IFFOCS'99 pp. 285-297, 1999. N
contention. Moreover, the randomized nature of the tree reduces!18] M. P. Herlihy, J. M. Wing. Linearizability: A correctiss condition
contention at high levels in the tree, by temporally spacing out up- flogrgcgncurrent Objects\CM Trans. Prog. Lang. Sys1.2(3):463-492,
dates, even when insertions are adversarial. [17] A. Itai, A. G. Konheim, M. Rodeh. A sparse table implemeiotaof
This paper focuses on correctness issues more than performance priority queues. In S. Even, O. Kariv, editoiSALP’81, vol. 115 of
issues. In particular, in order to get performance guarantees, there LNCS pp. 417-431, 1981.
are different insertion patterns (such as adversarial), different pr [18] P. Jayanti. A complete and constant time wait-free impleatem of
cess models (such as different speeds and changing speeds), and CAS from LL/SC and vice versa. IDISC'98 vol. 1499 of LNCS
different models of memory (such as queuing on memory locations 1998. N _ ,
for both reads and writes). Some techniques from the design of [19] Z. Kasheff. Cache-oblivious dynamic search trees. MSity Mas-
overlay networks may to carry over to these models. SaCh”fsettS 'ns.t'.tme of Technology, Cambridge, MA, .200.4 '
A natural extension of the one-way packed-memory structure [20] 1. Katriel. Implicit data structures based on local igamizations. MS

. . . . ; thesis, Technion — Isreal Inst. of Tech., Haifa, 2002.
from Section 4 is to implement the structure as circular array. Using 21] R. E. Ladner, R. Fortna, B.-H. Nguyen. A comparison offesaware

the circular array may lead to less memory allocation. While a cir- and cache oblivious static search trees using progranuinsttation.
cular implementation is straightforward for the serial and locking In Experimental Algorithmics: From Algorithm Design to Robaisd
cases, it is more complex in the lock-free setting. Efficient Softwargvol. 2547 ofLNCS pp. 78-92, 2002.

[22] N. Lynch.Distributed AlgorithmsMorgan Kaufmann, 1996.
[23] K. Mehlhorn.Data Structures and Algorithms 1: Sorting and Search-
ACknOW|edgmentS ing, theorem 5, pp. 198-199. Springer-Verlag, 1984.
[24] M. M. Michael. Practical lock-free and wait-free ll/stimplementa-
tions using 64-bit cas. IDISC 2004 vol. 3274 ofLNCS 2004.
J. I. Munro, T. Papadakis, R. Sedgewick. Determiniskip dists. In
SODA'92 pp. 367-375, 1992.
[26] H. Prokop. Cache-oblivious algorithms. MS thesis, Massisetts In-
stitute of Technology, Cambridge, MA, 1999.
[27] N. Rahman, R. Cole, R. Raman. Optimised predecessor data st
tures for internal memory. IRroc. of the 5th Intnl. Workshop on Al-
gorithm Engineeringvol. 2141 ofLNCS pp. 67-78, 2001.

The authors gratefully acknowledge Maurice Herlihy, Victor Lu-
changco, and Mark Moir for suggesting this problem. [25]

