
Algorithms for Data-Race Detectionin Multithreaded ProgramsbyGuang-Ien ChengS.B., Computer Science and EngineeringMassachusetts Institute of Technology, 1997Submitted to the Department of Electrical Engineering and Computer Sciencein partial ful�llment of the requirements for the degree ofMaster of Engineering in Electrical Engineering and Computer Scienceat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYJune 1998c Guang-Ien Cheng, MCMXCVIII. All rights reserved.The author hereby grants to MIT permission to reproduce and distribute publiclypaper and electronic copies of this thesis document in whole or in part.
Author .Department of Electrical Engineering and Computer ScienceMay 22, 1998
Certi�ed by. .Charles E. LeisersonProfessor of Computer Science and Engineering
Accepted by .Arthur C. SmithChairman, Department Committee on Graduate Theses

Algorithms for Data-Race Detectionin Multithreaded ProgramsbyGuang-Ien ChengSubmitted to the Department of Electrical Engineering and Computer Scienceon May 22, 1998, in partial ful�llment of the requirements for the degree ofMaster of Engineering in Electrical Engineering and Computer ScienceAbstractIf two parallel threads access the same location and at least one of them performs a write,a race exists. The detection of races|a major problem in parallel debugging|is compli-cated by the presence of atomic critical sections. In programs without critical sections, theexistence of a race is usually a bug leading to nondeterministic behavior. In programs withcritical sections, however, accesses in parallel critical sections are not considered bugs, asthe programmer, in specifying the critical sections, presumably intends them to run in par-allel. Thus, a race detector should �nd \data races"|races between accesses not containedin atomic critical sections.We present algorithms for detecting data races in programs written in the Cilk multi-threaded language. These algorithms do not verify programs, but rather �nd data races inall schedulings of the computation generated when a program executes serially on a giveninput. We present two algorithms for programs in which atomicity is speci�ed using locks,and an algorithm for programs using a proposed \guard statement" language construct tospecify atomicity at a higher level than locks. We also extend each algorithm to handlecritical sections containing parallelism.We present the following algorithms, each characterized roughly in terms of the factorby which it slows down the computation being checked. In each case, memory usage isincreased by roughly the same factor, unless otherwise stated.� All-Sets. This algorithm checks programs with locks, with a slowdown factor of kL,where k is the maximum number of locks held simultaneously, and L is the maximumnumber of combinations of locks held during accesses to any particular location.� Brelly. This algorithm checks programs with locks, with a slowdown factor ofonly k. The gain in e�ciency comes at the cost of exibility and precision, sinceBrelly detects violations of a proposed locking discipline that precludes some race-free locking protocols as well as data races.� Review-Guards. This algorithm checks programs with guard statements, with aslowdown factor of lg k, where k is the maximum number of simultaneously guardedmemory blocks. Space usage is increased by a constant factor.The extensions ofAll-Sets and Brelly that handle critical sections containing parallelismrun a factor of k slower than the originals. The extension of Review-Guards achieves thesame performance as the original.Thesis supervisor: Charles E. LeisersonTitle: Professor of Computer Science and Engineering iii

AcknowledgmentsCharles Leiserson is the very best of advisors, and I am grateful to him for his gen-erous, patient, and wise guidance, always given in good humor. His sheer delight inthe science and art of computation is inspiring. I also thank him for letting me playwith his toys (especially the quacking duck) while discussing technical matters in hiso�ce.I am indebted to those with whom I have collaborated in much of the work pre-sented in this thesis: Mingdong Feng, Charles Leiserson, Keith Randall, and AndyStark. Each one has often impressed me with his diligence and acuity, and I countmyself fortunate to have worked closely with them.The Supercomputing Technologies Group at the MIT Lab for Computer Science(a.k.a. the Cilk group) has been a wonderfully stimulating and friendly environment.I thank the group members, both past and present, for their many tips and helpfuland enjoyable discussions. Many thanks to Aske Plaat, Matteo Frigo, Mingdong Feng,Don Dailey, Phil Lisiecki, Andy Stark, Ching Law and, especially, Keith Randall|whose willingness to happily delve into any odd question, at most any time, stillamazes me. I also thank Irena Sebeda for her administrative help, and for alwaysstocking a good choice of refreshments at her desk.I thank Anne Hunter of the EECS Department for her administrative assistancethroughout my time at MIT.I thank Victor Luchangco for providing me with invaluable feedback on severalchapters of this thesis. I also want to explicitly thank Charles Leiserson for solicitouslyreading draft after draft of my thesis.To Alice Wang, Lawrence Chang, and Nate Kushman: thanks for your companyduring many late nights chasing the thesis deadline together.A special thank you to Nora Chen, who with a thoughtful remark during a casuallunch in Killian Court helped me decide to stay at MIT for a Master of Engineeringdegree.The research in this thesis was supported in part by the Defense Advanced Re-search Projects Agency (DARPA) under Grants N00014-94-1-0985 and F30602-97-1-0270. The Xolas UltraSPARC SMP cluster, on which empirical work in thesis wasdone, was kindly donated by Sun Microsystems.Finally, I thank my mother for her loving a�ection, steadfast support, and prayers.My debt to her, and to my late father, is inexpressible.

iv

My naughty code has fallen sickWhile racing on location l.It's rather rude and nonatomic|A nondeterministic hell.Algorithms �nd the bug:\Write to l, line 97."Kiss the lemmas, give proofs a hug!Praise deterministic heaven!

v

Contents
1 Introduction: Race detection and atomicity 12 Background: Cilk and the Nondeterminator 93 Data-race detection in computations with locks 133.1 The All-Sets algorithm . 133.2 Locked critical sections containing parallelism 163.3 The All-Sets-Shared algorithm 234 Data-race detection with the umbrella locking discipline 294.1 The umbrella locking discipline . 304.2 The Brelly algorithm . 324.3 The Brelly-Shared algorithm . 384.4 Data-race detection heuristics for Brelly and Brelly-Shared . . . 415 Empirical comparison of All-Sets and Brelly 436 Data-race detection in computations with guard statements 476.1 The guard statement for providing structured atomicity 486.2 The need for detection algorithms speci�c to guard statements 516.3 The Review-Guards algorithm . 546.4 The Review-Guards-Shared algorithm 607 Conclusion 63Bibliography 69

vii

List of Figures1-1 A Cilk program using locks, with a data race 31-2 A Cilk program using guard statements, with two data races 42-1 The series-parallel parse tree for the Cilk program in Figure 1-1 . . . 103-1 The All-Sets algorithm . 153-2 A Cilk program with a critical section containing parallelism 173-3 The series-parallel parse tree for the Cilk program in Figure 3-2 . . . 193-4 The series-parallel parse tree of a generalized critical section 193-5 An example series-parallel parse tree containing locked P-nodes . . . 213-6 The All-Sets-Shared algorithm 254-1 Three umbrellas of accesses to a shared memory location 314-2 The Brelly algorithm . 334-3 An example execution of the Brelly algorithm 344-4 The Brelly-Shared algorithm . 395-1 Timings of All-Sets and Brelly on several programs and inputs . 446-1 Guard statement semantics compared with the semantics of locks . . 526-2 The Review-Guards algorithm: Enter-Guard and Exit-Guard 556-3 The Review-Guards algorithm: Write and Read 566-4 The Review-Guards-Shared algorithm 61

ix

Chapter 1Introduction: Race detection andatomicityWhen two parallel threads access the same shared memory location, and at leastone of them performs a write, a \determinacy race" exists: depending on how thetwo threads are scheduled, the accesses may occur in either order, possibly lead-ing to nondeterministic program behavior, which is usually a bug. Race bugs arecommon to parallel programming, and they are notoriously hard to eliminate, sincethe nondeterministic runtime e�ects of a race are hard to identify|and even harderto duplicate|through informal runtime testing. Debugging tools that help detectraces in parallel programs are therefore essential elements in any robust developmentenvironment for multithreaded programming.To be as broadly useful as possible, race detection tools must handle programsthat contain \atomicity," a common feature of multithreaded programs in a sharedmemory environment. Atomicity is the execution of parallel sections of code in amutually exclusive fashion: the sections of code, called \critical sections," executein any order but never interleave or operate simultaneously. The need for atomicityarises when a programmer intends that operations on the same memory locationsbe able to execute in parallel, in any order, as long as they do not interfere witheach other by overwriting each other's intermediate or �nal results. For example, ifa global counter is incremented in parallel by multiple threads and not printed outuntil after all the threads have �nished, the printed value of the counter will be thesame as long as the individual increment operations are atomic with respect to eachother.The presence of atomic operations in programs complicates the problem of racedetection, since a determinacy race between mutually exclusive accesses should notbe considered a potential bug. The programmer, in specifying that the operationsbe atomic, presumably intends that they run in parallel|atomicity has no meaningotherwise. To properly deal with atomicity, a race detection tool should only reportParts of this chapter are based on \Detecting data races in Cilk programs that use locks," apaper by the present author, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and AndrewF. Stark [3]. 1

\data races," which are determinacy races between nonatomic accesses. To eliminatea data race, a user might either prevent the accesses from running in parallel, or makethem mutually exclusive.This thesis presents algorithms for detecting data races in the computations of Cilkprograms containing atomicity. Cilk [4] is a multithreaded programming languagebased on C being developed at MIT's Lab for Computer Science. Linguistically, itadds to C [14] a \spawn" command, which creates subprocedures that execute inparallel, and a \sync" command, which forces a processor to wait for all spawnedsubprocedures to complete. We consider programs that use either of two mechanismsfor specifying atomicity in Cilk: mutual-exclusion locks, which are available in version5.1 of Cilk; and \guard statements," a new Cilk language construct proposed in thisthesis. Locks are global variables which can be \held" by at most one processorat a time. Processors \lock" (or \acquire") and \unlock" (or \release") these lockvariables in a mutually exclusive fashion: only one processor can hold a given lock at atime; any other processors trying to acquire a lock already held by another processormust wait until that processor releases the lock. Thus, atomicity can be provided byacquiring and releasing locks before and after critical sections. Figure 1-1 illustratesa data race in a Cilk program with locks.The guard statement we propose provides atomicity at a higher level than locks,by allowing a user to directly specify which memory locations should be \guarded"|i.e. accessed atomically|within critical sections of code delimited by the usual Cbraces. Figure 1-2 illustrates guard statements, as well as data races in the contextof guard statements.The following algorithms are presented in this thesis, with worst-case performancebounds given for a Cilk computation that runs serially in time T , uses V sharedmemory locations, and either holds at most k locks simultaneously or guards at mostk memory blocks simultaneously.All-Sets. This algorithm detects data races in Cilk programs which use locks foratomicity. It runs in O(LT (k + �(V; V))) time and O(kLV) space, where Lis the maximum number of combinations of locks held during accesses to anyparticular location, and � is Tarjan's functional inverse of Ackermann's function,an extremely slowly growing function that is for all practical purposes at most4. (Throughout this thesis, we use � to denote Tarjan's functional inverse ofAckermann's function.) All-Sets is the fastest known data-race detectionalgorithm, and seems to be practical when L is a small constant, which is thecase for programs in which a particular data structure is always accessed usinga particular lock or set of locks. There are programs, however, for which Lgrows with input size; for these programs All-Sets is less attractive and maybe impractical. (For an example of such a program, see our discussion of aparallel maximum-ow code in Chapter 5.)Brelly. This algorithm is meant for Cilk programs which use locks for atomicityand for which the performance of All-Sets is inadequate. It detects violationsof the \umbrella locking discipline," de�ned in this thesis, which precludes data2

int x; cilk void foo3() {Cilk_lockvar A, B; Cilk_lock(B);x++;cilk void foo1() { Cilk_unlock(B);Cilk_lock(A); }Cilk_lock(B);x += 5; cilk int main() {Cilk_unlock(B); Cilk_lock_init(A);Cilk_unlock(A); Cilk_lock_init(B);} x = 0;spawn foo1();cilk void foo2() { spawn foo2();Cilk_lock(A); spawn foo3();x -= 3; sync;Cilk_unlock(A); printf("%d", x);} }Figure 1-1: A Cilk program using locks, with a data race. The function Cilk lock()acquires a speci�ed lock, and Cilk unlock() releases a currently held lock. The proceduresfoo1, foo2, and foo3 run in parallel, resulting in parallel accesses to the shared variable x.The accesses in foo1 and foo2 are protected by lock A and hence do not form a data race.Likewise, the accesses in foo1 and foo3 are protected by lock B. The accesses in foo2 andfoo3 are not protected by a common lock, however, and therefore form a data race. Ifall accesses had been protected by the same lock, only the value 3 would be printed, nomatter how the computation is scheduled. Because of the data race, however, the valueof x printed by main might be 2, 3, or 6, depending on scheduling, since the x -= 3 andx++ statements in foo2 and foo3 are composed of multiple machine instructions that mayinterleave, possibly resulting in a lost update to x.races and also some complex, race-free locking protocols. Speci�cally, the um-brella discipline requires that within every parallel subcomputation, each sharedmemory location is protected by a unique lock. Threads that are in series mayuse di�erent locks for the same location (or possibly even none, if no parallelaccesses occur), but if two threads in series are both in parallel with a third andall access the same location, then all three threads must agree on a single lockfor that location. One feature of the umbrella discipline is that it allows sepa-rate program modules to be composed in series without global agreement on alock for each location. For example, an application may have three phases|aninitialization phase, a work phase, and a clean-up phase|which can be de-veloped independently without agreeing globally on the locks used to protectparticular locations. If a fourth module runs in parallel with all of these phasesand accesses the same memory locations, however, the umbrella discipline doesrequire that all phases agree on the lock for each shared location.The adoption of the umbrella discipline makes data-race detection easier,allowing Brelly to run in O(kT �(V; V)) time and O(kV) space|roughly afactor of L better than All-Sets. Since programs do not generally hold many3

int x, y; cilk void foo3() {guard(y) {cilk void foo1() { x++;guard(x; y) { y++;x += 5; }y += 5; }}} cilk int main() {x = y = 0;cilk void foo2() { spawn foo1();guard(x) { spawn foo2();x -= 3; spawn foo3();y -= 3; sync;} printf("%d %d", x, y);} }Figure 1-2: A Cilk program using guard statements, with two data races. Each guardstatement speci�es which shared variables to guard|e.g. guard(x, y) guards x and y|anda section of code during which the variables should be guarded|e.g. f x += 5; y += 5 g.Parallel accesses which access a shared location while it is guarded are atomic, so the accessesto x in foo1 and foo2, and the accesses to y in foo1 and foo3, do not form data races.The accesses to x and y in foo2 and foo3 do form data races against each other, however,since foo2 does not guard y and foo3 does not guard x. Because of these data races, theprogram may print any of 2, 3, or 6 for both x and y, as in the program in Figure 1-1.locks simultaneously|k is almost always a small constant|these bounds arenearly linear.If a program contains many nonrace violations of the umbrella discipline,debugging with Brelly may be impractical, since reports of data races may beburied under a deluge of reports of the nonrace violations. There exist, however,useful conservative heuristics that help Brelly determine whether a violationis indeed caused by a data race; in some cases, these heuristics drastically reducethe number of nonrace violations reported.Review-Guards. This algorithm detects data races in Cilk programs that useguard statements for atomicity. It runs in O(T (lg k+�(V; V))) time and O(V +k) space. We know of no previous data-race detection algorithms explicitlydesigned for language constructs similar to the guard statement we propose.The -Shared extensions. The basic versions of All-Sets, Brelly, and Review-Guards assume that critical regions do not contain parallelism. If criticalsections do not contain parallelism, all accesses within a single critical sectionare never in parallel and so cannot be involved in races with each other. Ifcritical sections do contain parallelism|as is necessary in some applications|the algorithms fail to detect data races between parallel accesses in the samecritical section. Fortunately, the algorithms can be extended to correctly check4

critical sections containing parallelism. The extended versions of All-Setsand Brelly, called All-Sets-Shared and Brelly-Shared, run a factorof k slower and use a factor of k more space than the original versions. Theextended version for guard statements, called Review-Guards-Shared, hasthe same asymptotic time and space bounds as Review-Guards. We knowof no previous data-race detection algorithms which allow for critical sectionscontaining parallelism.These algorithms are not source-based veri�ers; they do not ensure the detectionof all possible data races in all possible schedulings of a program run on all possibleinputs. Instead they check for data races that exist in all possible schedulings ofthe computation generated by the serial execution of a multithreaded program on agiven input. Furthermore, like most race detectors, the algorithms attempt to �nd, inthe terminology of Netzer and Miller [21], \apparent" data races|those that appearto occur in a computation according to the parallel control constructs|rather than\feasible" data races|those that can actually occur during program execution. Thedistinction arises because operations in critical sections may a�ect program controldepending on the way threads are scheduled. An apparent data race between twothreads in a given computation might be infeasible, because the computation itselfmay change if the threads are scheduled in a di�erent order. Since the problem of�nding feasible data races exactly is intractable [20], attention has naturally focusedon the easier (but still di�cult) problem of �nding apparent data races.Programs whose critical sections produce the same results independent of theirexecution order|i.e., programs with commutative critical sections|always produce,when running on a given input, a single computation in which an apparent race existsif and only if a feasible race exists [3]. On such \abelian" programs, the algorithms inthis thesis can be used to guarantee that a program always produces the same behavioron a given input, regardless of scheduling. On all programs, these algorithms can beused to help �nd races and ensure correct, deterministic behavior in parallel codesthat contain atomicity.Related workSince race detection is a major concern in parallel debugging, and locking is a commonform of providing atomicity, automatic data-race detection in programs with lockshas been studied extensively. Static race detectors [18] can sometimes determinewhether a program will ever produce a data race when run on all possible inputs.Checking every possible control-ow of an arbitrary program is intractable, however,so most race detectors are dynamic tools in which potential races are detected atruntime by executing the program on a given input. Some dynamic race detectorsperform a post-mortem analysis based on program execution traces [8, 12, 16, 19],while others perform an on-the-y analysis during program execution. On-the-ydebuggers directly instrument memory accesses via the compiler [6, 7, 9, 10, 15, 22],by binary rewriting [25], or by augmenting the machine's cache coherence protocol [17,23]. The algorithms presented in this thesis detect data races dynamically, and can5

be used to create either post-mortem or on-the-y debugging tools. (For convenience,we will describe them as on-the-y algorithms.)In previous work, Dinning and Schonberg's \lock-covers" algorithm [7] also detectsall data races in a computation. Our All-Sets algorithm improves the lock-coversalgorithm by generalizing the data structures and techniques from the original Non-determinator to produce better time and space bounds. Perkovic and Keleher [23]o�er an on-the-y race-detection algorithm that \piggybacks" on a cache-coherenceprotocol for lazy release consistency. Their approach is fast (about twice the serialwork, and the tool runs in parallel), but it only catches races that actually occurduring a parallel execution, not those that are logically present in the computation.Savage et al. [25] originally suggested that e�cient debugging tools can be devel-oped by requiring programs to obey a locking discipline. Their Eraser tool enforces asimple discipline in which any shared variable is protected by a single lock throughoutthe course of the program execution. Whenever a thread accesses a shared variable, itmust acquire the designated lock. This discipline precludes data races from occurring,and Eraser �nds violations of the discipline in O(kT) time and O(kV) space. (Thesebounds are for the serial work; Eraser actually runs in parallel.) Eraser only worksin a parallel environment containing several linear threads, however, with no nestedparallelism or thread joining as is permitted in Cilk. In addition, since Eraser doesnot understand the series/parallel relationships between threads, it does not fullyunderstand at what times a variable is actually shared. Speci�cally, it heuristicallyguesses when the \initialization phase" of a variable ends and the \sharing phase"begins, and thus it may miss some data races.In comparison, our Brelly algorithm performs nearly as e�ciently, is guaranteedto �nd all violations in a computation, and, importantly, supports a more exiblediscipline. The umbrella discipline allows separate program modules to be composedin series without global agreement on a lock for each location, as seen above in theimagined program with three phases, each of which can use locks independently ofthe others.Organization of this thesisChapter 2 provides a background on Cilk computations and SP-bags, the determi-nacy-race detection algorithm upon which the algorithms in this thesis are based. Italso discusses locks in Cilk.In Chapter 3, we present the All-Sets algorithm for detecting data races incomputations with locks. We also give a general model for computations with criticalsections containing parallelism, and present the -Shared extension of All-Sets forcorrectly handling such computations.In Chapter 4, we consider the umbrella locking discipline and algorithms for de-tecting violations of the discipline. After showing that All-Sets may be impracticalfor some programs, we de�ne the discipline itself. We then present the Brelly algo-rithm for detecting violations of the discipline and its -Shared extension for handlingcritical sections that contain parallelism. Finally, we describe several heuristics forconservatively determining whether a violation of the discipline is caused by a data6

race; these heuristics may increase Brelly's usefulness in practice.Chapter 5 presents an empirical comparison of the runtime performance of All-Sets and Brelly on several Cilk programs and input. While these results are highlypreliminary, we see that Brelly is, as predicted by our asymptotic bounds, fasterthan All-Sets for computations which hold many di�erent sets of locks duringaccesses to particular locations.In Chapter 6, we turn to the the problem of detecting data races in computationsthat use the proposed guard statement to specify atomicity. We �rst discuss thesyntax, semantics, and possible implementations of the guard statement. Then, aftershowing how the algorithms for locks presented in Chapters 3 and 4 can be modi�edfor guard statements but are not optimal, we present the e�cient Review-Guardsalgorithm its -Shared extension for handling critical sections containing parallelism.Chapter 7 summarizes the thesis, outlines further questions that arise from ourwork, and explores the dilemma of trying to debug parallel programs with algorithmsthat �nd apparent races instead of feasible ones.

7

8

Chapter 2Background: Cilk and theNondeterminatorThis chapter provides background for the rest of the thesis. Because of Cilk's sim-ple model of parallelism, computations of Cilk programs can be modeled as \series-parallel parse trees," which cleanly express the serial/parallel relationships betweenthreads. We presents this model, as well as two lemmas about the series/parallelrelationships between threads that will be useful for proving the correctness of ouralgorithms. We then discuss the Nondeterminator, an e�cient determinacy-race de-tection tool for Cilk programs. SP-bags, the algorithm used by the Nondeterminator,is the basis for the algorithms in this thesis. Finally, we discuss locks in Cilk andde�ne some basic locking terms that will be used when we present the algorithms deal-ing with locks in Chapters 3 and 4. Guard statements, the other form the atomicityconsidered in this thesis, are discussed in Chapter 6.Modeling Cilk computations as SP-treesCilk extends the C programming language with two parallel commands: spawn createsa parallel subprocedure and sync causes a procedure wait for any subprocedures ithas spawned to complete. In addition, normal C functions can be turned into Cilkprocedures with the cilk tag, enabling them to be spawned. Cilk code has normalC semantics when executed serially (i.e. on a single processor): spawns of Cilkprocedures behave like calls to normal C functions, with a depth-�rst execution offunction calls leading to a linear call stack.A Cilk computation is the execution of a Cilk program on a given input, sched-uled in a particular way. In this thesis, we will refer only to the computation ofa program executing serially on a given input. A thread is a maximal sequence ofinstructions not containing any parallel command. Threads may contain normal Cfunction calls, since all normal C code is executed serially, but not spawns of CilkThis chapter's discussion of Cilk computations and the SP-bags algorithm are based on [9],which contains a fuller treatment of the material only summarized here. The discussion of locks inCilk and the fake read lock is from [3]. 9

S

S

x=0
{}

printf("%d", x)
{}

{B}
x++

{A}
x-=3

P

P{A,B}
x+=5

Figure 2-1: The series-parallel parse tree (SP-tree) for the Cilk program in Figure 1-1,abbreviated to show only the accesses to shared location x. Each leaf is labeled with a codefragment that accesses x, with the set of locks held during that access shown above the codefragment.procedures, which execute in parallel. All procedure instances and threads in a com-putation have unique (numerical) IDs.The computation of a Cilk program on a given input can be viewed as a directedacyclic graph (dag) in which vertices are instructions and edges denote ordering con-straints imposed by control statements. A spawn statement generates a vertex without-degree 2, and a sync statement generates a vertex whose in-degree is 1 plus thenumber of subprocedures synchronizing at that point.The computation dag generated by a Cilk program can itself be represented asa binary series-parallel parse tree, as illustrated in Figure 2-1 for the programin Figure 1-1. In the parse tree of a Cilk computation, leaf nodes represent threads.Each internal node is either an S-node if the computation represented by its leftsubtree logically precedes the computation represented by its right subtree, or a P-node if its two subtrees' computations are logically in parallel. We use the term\logically" to mean with respect to the series-parallel control, not with respect to anyadditional synchronization through shared variables.A parse tree allows the series/parallel relationship between two threads e1 ande2 to be determined by examining their least common ancestor, which we denote bylca(e1; e2). If lca(e1; e2) is a P-node, the two threads are logically in parallel, whichwe denote by e1 k e2. If lca(e1; e2) is an S-node, the two threads are logically inseries, which we denote by e1 � e2, assuming that e1 precedes e2 in a left-to-rightdepth-�rst treewalk of the parse tree. The series relation � is transitive.It is sometimes possible to infer the series/parallel relationship between two threadsbased on the relation of the two threads to a common third thread. The followinglemmas, proved in [9], show how to do so in two important cases. They will be usedthroughout the proofs of correctness for the algorithms in this thesis.Lemma 2.1 Suppose that three threads e1, e2, and e3 execute in order in a serial,depth-�rst execution of a Cilk program. If e1 � e2 and e1 k e3, then e2 k e3.10

Lemma 2.2 (Pseudotransitivity of k) Suppose that three threads e1, e2, and e3execute in order in a serial, depth-�rst execution of a Cilk program. If e1 k e2 ande2 k e3, then e1 k e3.
The Nondeterminator and the SP-bags algorithmThe race-detection algorithms in this thesis are based on the the SP-bags algorithmused in the Nondeterminator tool [9], which e�ciently �nds determinacy races (as op-posed to data races) in Cilk programs. SP-bags is the fastest published determinacy-race detection algorithm that �nds a determinacy race in a computation if and onlyif one exists. The algorithm serves as a strong foundation from which to attack therelated, but more di�cult problem of data-race detection.The SP-bags algorithm executes a Cilk program on a given input in serial, depth-�rst order. This execution order mirrors that of normal C programs: every subcom-putation that is spawned executes completely before the procedure that spawnedit continues. While executing the program, SP-bags maintains an \SP-bags" datastructure based on Tarjan's nearly linear-time least-common-ancestors algorithm [27].The SP-bags data structure allows the algorithm to determine the series/parallel rela-tionship between the currently executing thread and any previously executed threadin O(�(V; V)) amortized time, where V is the size of shared memory. In addition,SP-bags maintains a \shadow space" where information about previous accesses toeach location is kept. This information is used during an access to check previousthreads that have accessed the same location for data races. Implementing the SP-bags algorithm involves modifying the Cilk compiler to instrument, according to logicof SP-bags, each memory access and parallel control statement For a Cilk programthat runs in T time serially and references V shared memory locations, the SP-bagsalgorithm runs in O(T �(V; V)) time and uses O(V) space.Each of the algorithms in this thesis uses the SP-bags data structure to determinethe series/parallel relationship between threads, and, like SP-bags, executes a Cilkprogram serially on a given input, in left-to-right depth-�rst order, with appropriaterace-detection logic being executed at each memory accesses and, in some case, at eachparallel control statement. In addition to spawn and sync, parallel control statementsinclude the return from a spawned Cilk procedure when it �nishes.Furthermore, like SP-bags, each of the algorithms in this thesis runs in a per-location manner. Some data structures are kept globally during the serial execution|e.g. the set of currently held locks|but much data is kept per-location, and indepen-dently across locations, in various shadow spaces of shared memory. Since our task isto detect data races, which occur on speci�c memory locations, it is useful to think ofthe algorithms as executing the same computation multiple times in sequence, with adi�erent location being checked for data races at each instance. In reality, of course,each algorithm runs a computation just once, with per-location information beingkept in the shadow spaces independently. 11

Locks in CilkRelease 5.1 of Cilk [4] provides the user with mutual-exclusion locks, including thecommand Cilk lock to acquire a speci�ed lock and Cilk unlock to release a cur-rently held lock. Any number of locks may be held simultaneously, and locks can beacquired and released however the user likes. We do assume for simplicity, however,that a lock is never released by a spawned child of the procedure which acquired itand that no locks are ever held when a Cilk procedure returns. For a given lock A, thesequence of instructions from a Cilk lock(A) to its corresponding Cilk unlock(A)is called a critical section , and we say that all accesses in the critical section areprotected by lock A. If a critical section does not contain parallelism, we say it is aserial critical section .The lock set of an access is the set of locks held when the access occurs. The lockset of several accesses is the intersection of their respective lock sets. In programswith serial critical sections, a data race can be de�ned in terms of lock sets as follows:if the lock set of two parallel accesses to the same location is empty, and at least oneof the accesses is a write, then a data race exists.To simplify the description and analysis of the race detection algorithms in Chap-ter 3umbrella, we will use a small trick to avoid the extra condition for a race that\at least one of the accesses is a write." The idea is to introduce a fake lock for readaccesses called the r-lock, which is implicitly acquired immediately before a readand released immediately afterwards. The fake lock behaves from the race detector'spoint of view just like a normal lock, but it is never actually acquired and released(as it does not exist). The use of r-lock simpli�es the description and analysis ofour race detection algorithms, because it allows us to state the condition for a datarace more succinctly: if the lock set of two parallel accesses to the same location isempty, then a data race exists. By this condition, a data race (correctly) does notexist for two read accesses, since their lock set contains the r-lock.

12

Chapter 3Data-race detection incomputations with locksIn this chapter, we consider the problem of precisely detecting data races in pro-grams that use locks to provide atomicity, presenting the All-Sets algorithm andan extension of it that handles critical sections containing parallelism. All-Sets isprecise: it detects a data race in a computation if and only if one exists. All-Sets isalso reasonably e�cient for many computations. On a Cilk program running seriallyin time T using V shared memory locations, All-Sets runs in O(LT (k + �(V; V)))time using O(kLV) space, where k is the maximum number of locks held simultane-ously and L is the maximum number of combinations of locks held during accessesto any particular location. For programs which always use the same lock or set oflocks to access particular locations, L is a small constant and All-Sets will likelybe practical. All-Sets-Shared, the extension of All-Sets for handling criticalsections containing parallelism, runs only a factor of k slower and uses only a factork more space than the original in the worst case.This chapter is organized as follows. Section 3.1 presents theAll-Sets algorithm,showing how it conceptually remembers every shared memory access during an exe-cution, but with at most one shadow space entry per distinct lock set per location.Then, in Section 3.2, we extend the SP-tree model of Cilk computations (see Chap-ter 2) to provide for critical sections containing parallelism. This extended SP-treemodel is the basis for the operation of All-Sets-Shared, presented in Section 3.3,as well as the -Shared version of the Brelly algorithm for detecting violations ofthe umbrella discipline, presented in Chapter 4.3.1 The All-Sets algorithmThe All-Sets algorithm �nds data races in Cilk computations that use locks, as-suming critical sections do not contain parallelism. In this section, we see how thealgorithm, while conceptually keeping track of every accesses to every location duringSection 3.1 is based on joint work published in [3]. 13

an execution, actually prunes redundant entries from the shadow space to ensure thatat most one entry per lock set per location is recorded. This logic leads directly to fac-tor of L in the performance bounds of All-Sets: on a Cilk program running seriallyon given input in time T using V space, All-Sets runs in O(LT (k+�(V; V))) timeusing O(kLV) space, where k is the maximum number of locks held simultaneouslyand L is the maximum number of combinations of locks held during accesses to anyparticular location. We prove the correctness of All-Sets and show these boundsat the end of this section.Like the e�cient SP-bags algorithm used by the original Nondeterminator (Chap-ter 2), upon which it is based, All-Sets executes a Cilk program on a particularinput in serial depth-�rst order. The All-Sets algorithm also uses the SP-bagsdata structure from SP-bags to determine the series/parallel relationship betweenthreads.Its shadow space lockers is more complex than the shadow space of SP-bags,however, because it keeps track of which locks were held by previous accesses tothe various locations. The entry lockers[l] stores a list of lockers: threads thataccess location l, each paired with the lock set that is held during the access. Ifhe;Hi 2 lockers[l], then location l is accessed by thread e while it holds the lockset H. As an example of what the shadow space lockers may contain, consider athread e that performs the following:Cilk lock(A);Cilk lock(B);Read(l)Cilk unlock(B);Cilk lock(C);Write(l)Cilk unlock(C);Cilk unlock(A);For this example, the list lockers[l] contains two lockers|he; fA; B;r-lockgi andhe; fA; Cgi.The All-Sets algorithm is shown in Figure 3-1. Intuitively, this algorithmrecords all lockers, but it is careful to prune redundant lockers, keeping at mostone locker per distinct lock set per location. Lines 1{3 check to see if a data racehas occurred and report any violations. Lines 4{11 then add the current locker tothe lockers shadow space and prune redundant lockers. While it is only necessaryto prune lockers with identical lock sets to achieve the stated performance bounds,All-Sets is also able, in some cases, to prune a locker if its lock set is a propersubset of another locker's lock set.When a location l is accessed outside any critical section, the lock set H containseither the empty set or the singleton r-lock set, depending on whether the accessis a write or a read, respectively. Thus, the original SP-bags algorithm, which �ndsdeterminacy races in Cilk programs without locks, can be considered a special caseof All-Sets in which the only two lock sets that appear in the lockers shadow spaceare the empty set and the singleton r-lock set.14

Access(l) in thread e with lock set H1 for each he0; H 0i 2 lockers[l]2 do if e0 k e and H 0 \H = fg3 then declare a data race4 redundant false5 for each he0; H 0i 2 lockers[l]6 do if e0 � e and H 0 � H7 then lockers[l] lockers[l]� fhe0; H 0ig8 if e0 k e and H 0 � H9 then redundant true10 if redundant = false11 then lockers[l] lockers[l] [fhe;HigFigure 3-1: The All-Sets algorithm. The operations for the spawn, sync, and returnactions that maintain the SP-bags data structure are unchanged from the SP-bags algo-rithm on whichAll-Sets is based. Additionally, the Cilk lock and Cilk unlock functionsmust be instrumented to appropriately add and remove locks from H, the set of currentlyheld locks.We now prove that All-Sets correctly �nds data races.Theorem 3.1 Consider a Cilk program with locks and serial critical sections. TheAll-Sets algorithm detects a data race in the computation of this program runningserially on a given input if and only if a data race exists in the computation.Proof: ()) To prove that any race reported by the All-Sets algorithm really existsin the computation, observe that every locker added to lockers[l] in line 11 consistsof a thread and the lock set held by that thread when it accesses l. The algorithmdeclares a race when it detects in line 2 that the lock set of two parallel accesses (bythe current thread e and one from lockers[l]) is empty, which is exactly the conditionrequired for a data race.(() Assuming a data race exists in a computation, we shall show that a data raceis reported. If a data race exists, then we can choose two threads e1 and e2 such thate1 is the last thread before e2 in the serial execution which has a data race with e2. Ifwe let H1 and H2 be the lock sets held by e1 and e2 respectively, then we have e1 k e2and H1 \H2 = fg by de�nition of a data race.We �rst show that immediately after e1 executes, lockers[l] contains some threade3 that races with e2. If he1; H1i is added to lockers[l] in line 11, then e1 is such an e3.Otherwise, the redundant ag must have been set in line 9, so there must exist alocker he3; H3i 2 lockers[l] with e3 k e1 and H3 � H1. Thus, by pseudotransitivityof k (Lemma 2.2), we have e3 k e2. Moreover, since H3 � H1 and H1 \H2 = fg, wehave H3 \H2 = fg, and therefore e3, which belongs to lockers[l], races with e2.To complete the proof, we now show that the locker he3; H3i is not removed fromlockers[l] between the times that e1 and e2 are executed. Suppose to the contrary15

that he4; H4i is a locker that causes he3; H3i to be removed from lockers[l] in line 7.Then, we must have e3 � e4 and H3 � H4, and by Lemma 2.1, we have e4 k e2.Moreover, since H3 � H4 and H3 \ H2 = fg, we have H4 \ H2 = fg, contradictingthe choice of e1 as the last thread before e2 to race with e2.Therefore, thread e3, which races with e2, still belongs to lockers[l] when e2 exe-cutes, and so lines 1{3 report a race.We now show the performance bounds for All-Sets.Theorem 3.2 Consider a Cilk program|one with locks and serial critical sections|that, on a given input, executes serially in time T , references V shared memorylocations, and holds at most k locks simultaneously. The All-Sets algorithm checksthis computation for data races in O(LT (k+�(V; V))) time and O(kLV) space, whereL is the maximum of the number of distinct lock sets used to access any particularlocation.Proof: First, observe that, for some location l, no two lockers in lockers[l] for havethe same lock set, because the logic in lines 4{11 ensures that if H = H 0, then lockerhe;Hi either replaces he0; H 0i (line 7) or is considered redundant (line 9). Thus, thereare at most L lockers in the list lockers[l]. Each lock set takes O(k) space, so the spaceneeded for lockers is O(kLV). The length of the list lockers[l] at the time of an accessdetermines the number of series/parallel relationships that are tested during thataccess. In the worst case, we need to perform 2L such tests and 2L set operations peraccess (line 2 and lines 6 and 8). Each series/parallel test takes amortized O(�(V; V))time, and each set operation takes O(k) time (lock sets can be stored in sorted order).Therefore, the All-Sets algorithm runs in O(LT (k + �(V; V))) time, since T is anupper bound on the number of accesses.The bounds proven in Theorem 3.2 show that the performance of All-Sets isdirectly proportional to the value of L for a program running on a particular input. If aprogram uses many distinct lock sets to access each memory location, and especiallyif the number locks sets to access individual locations grows with input size, theperformance of All-Sets may be inadequate, as we will see in Chapter 5. For manyprograms, however, both L and k are small constants|e.g. if each data structure isalways accessed with a single lock or lock set|and so the bounds for All-Sets aregood. In these cases, empirical performance is also good, as we also see in Chapter 5.3.2 Locked critical sections containing parallelismIn this section, we extend the SP-tree model of Cilk computations to provide for pro-grams with locked critical sections containing parallelism. This extended model is thebasis of the detection algorithms which correctly handle critical sections containingparallelism: All-Sets-Shared in Section 3.3 and Brelly-Shared in Section 4.3.(Some of the concepts introduced here are borrowed in Section 6.4, which presentsthe -Shared extension of the Review-Guards algorithm for detecting data races16

int x, y; cilk int main() {Cilk_lockvar A, B; Cilk_lock_init(A);Cilk_lock_init(B);cilk void increment() { x = y = 0;x++; Cilk_lock(A);Cilk_lock(B); spawn increment();y++; spawn increment();Cilk_unlock(B); sync;} Cilk_unlock(A);printf("%d %d", x, y);}Figure 3-2: A Cilk program with a critical section containing parallelism. The criticalsection protected by lock A in main spawns two instances of increment, the accesses inwhich are not protected against each other by lock A.in programs using \guard statements" rather than locks for atomicity.) After seeingwhy our de�nition of data races based on the simple SP-tree model is faulty whencritical sections contain parallelism, we explain the model itself, and �nally show howto use it to rede�ne the notion of a data race to provide for programs with criticalsections containing parallelism.Under the assumption that critical sections contain only serial code, two parallelaccesses are mutually exclusive, and therefore not in a data race, if they hold a com-mon lock, since the accesses, being in parallel, are protected by separate \instances" ofthe lock|i.e. the common lock is held during the accesses due to separate Cilk lockstatements in the computation. The All-Sets algorithm, which assumes no paral-lelism within critical sections, takes advantage of this fact in its basic logic: it neverdeclares a data races between accesses that hold a lock in common. If critical sectionscan contain parallelism, however, this logic is faulty, since two parallel accesses withinthe same locked critical section may hold the same instance of a common lock|i.e.they share the same instance of that lock|and so the lock does not protect theaccesses against each other. Indeed, any parallel accesses within the same criticalsection share the instance of the lock that protects the critical section.For example, consider the Cilk program in Figure 3-2. This program acquireslock A, spawns two instances of the increment procedure, syncs, and then releaseslock A. The accesses to the shared variable x in the two instances of increment forma data race, even though lock A is held during both accesses. Lock A does not protectthe accesses against each other, since they share the same instance of A|the oneacquired in main. For the same reason, lock A does not protect the accesses to y inincrement against each other, but no data race exists between these accesses sincethey are protected against each other by lock B, which is acquired separately by eachinstance of increment.How can we formally model critical sections that contain parallelism and specify17

data races in this model? We �rst need to specify what parallelism is allowed withincritical sections. Intuitively, we would like the easy-to-understand serial semanticsof any critical section to hold when run in parallel: if a lock is held during someaccess in the serial execution, it should be held during that access in any parallelexecution. Fortunately, ensuring these semantics requires only one rule to be followed:all parallel procedures spawned within a critical section (i.e. those spawned while alock is held) must complete before the end of the critical section. Linguistically, thismeans there must be a sync between the �nal spawn and the Cilk unlock statementin the execution of a critical section, if the section contains any spawns at all. Withoutthis sync after the last spawn in a critical section, the Cilk unlock statement thatends the section would be logically in parallel with at least one of the spawns inthe critical section (perhaps all of them), meaning that the lock might be releasedbefore these spawns �nish and therefore would not protect them against other parallelthreads holding the same lock. With the sync, however, all the spawned procedures(together with all the serial operations) in the critical section are guaranteed to beexecuted while the section's lock is held. Thus, we require a sync at the end of criticalsections.1There is no analogous need for a spawn to be followed by a sync before the nextCilk lock statement, even though a spawn followed by a Cilk lock without anintervening sync would result in the spawned procedure being logically in parallelwith the lock acquisition. Since the Cilk lock may be scheduled after the timethe spawned procedure runs, we must assume that the spawned procedure is notprotected by the lock, which, as desired, corresponds to the intuitive serial semanticsof the code.To model a computation with critical sections containing parallelism using SP-trees, we de�ne a locked P-node to be a P-node corresponding to either the �rstspawn in a critical section or the �rst spawn after a sync within a critical section, whichis immediately preceded, in the depth-�rst left-to-right treewalk, by the acquisitionof one or more locks and immediately succeeded by the release of these locks. Theselocks are said to be held across the P-node, as are any locks acquired at any timebefore and released at any time after the depth-�rst traversal of a P-node's subtree.Any parallel accesses in an SP-tree that are descendents of a particular locked P-nodeare not protected against each other by any lock held across the P-node, since theyshare the same instance of the lock. Figure 3-3 shows the SP-tree, a with a lockedP-node, for the program in Figure 3-2.Is this notion of locked P-nodes su�cient to model all critical sections containingparallelism? In general, any critical section in a Cilk program can be modeled atruntime as a sequence of zero or more \sync blocks" followed by a �nal thread;1In fact, we suggest that the semantics of Cilk unlock be extended to include an implicit sync.The extra sync would cause no overhead when no spawns are outstanding at the execution of aCilk unlock statement, since syncs in serial code are ignored by the Cilk compiler. If Cilk unlockdoes not include an implicit sync, then violations of the sync-before-unlock rule can be easily detectedduring a depth-�rst serial execution: keep a global ag that is set at each sync and Cilk lockstatement, cleared at each spawn, and veri�ed to be to set at each Cilk unlock statement.18

S

S

x=y=0
{}

printf("%d %d", x, y)
{}

S

{A,B}
y++

{A}
x++

S

{A,B}
y++

{A}
x++

PA

Figure 3-3: The SP-tree for the Cilk program in Figure 3-2. Each leaf is labeled a codefragment that accesses either x or y, the two shared memory variables in the program, withthe lock set for that access shown above the code fragment. The P-node representing the�rst spawn of increment (the only P-node in the tree) is locked by A, indicated by thelabeled arc over it. This arc represents the fact that a single instance of lock A is held acrossall the accesses in the subtree rooted by the P-node, so that these accesses are not protectedagainst each other by A, despite the fact that A is a member of each of their lock sets.
A

S

S

e1 P

F
S

e
P

F
e

A

S

S

e2
P

F
S

e
P

F
e

...

...

. . .

A

S

S

ei P

F
S

e
P

F
e

...

e'

Figure 3-4: The SP-tree, with locked P-nodes, representing the generalized form of acritical section protected by lock A. Although the lock is held across this entire tree, theP-nodes corresponding to the �rst spawns in each sync block are shown as locked P-nodes,as if separate instance of A were held across them. Also, the �rst threads of each syncblock, e1; e2; : : : ; ei, and the thread e0 at the end of the critical section| none of whichare descendents of a locked P-node|are considered to hold their own instances of A (notshown). 19

each sync block consists of a one or more spawns interleaved with serial code and isterminated by a sync. In other words, a critical section during execution has the formCilk lock(A);e1; spawn F ; e; spawn F ; e; : : : ; spawn F ; e; sync;e2; spawn F ; e; spawn F ; e; : : : ; spawn F ; e; sync;...ei; spawn F ; e; spawn F ; e; : : : ; spawn F ; e; sync;e0;Cilk unlock(A);where each of e1; e2; : : : ; ei is the thread at the beginning of a sync block, each e isa (possibly empty) thread, each F is a Cilk procedure, and e0 is the �nal (possiblyempty) thread after the last sync block before the end of the critical section. (Notethat the threads in a critical section may acquire or release other locks, as the criticalsection may contain or overlap other critical sections.) Because a single critical sec-tion may contain several sync blocks, it might appear that locked P-nodes, which areexplicitly de�ned to correspond to locks held across only a single sync block, are in-su�cient to model all critical sections with parallelism. Locked P-nodes are su�cient,however, since a series of sync blocks are, by de�nition, logically in series, and there-fore contain no races among them. From the point of view of race detection, a seriesof several sync blocks all surrounded by a single lock/unlock pair is equivalent to aseries of the same sync blocks, each individually surrounded by the same lock/unlockpair. Furthermore, it is also equivalent to consider the threads e1; e2; : : : ; ei at thebeginnings of sync blocks, and the thread e0 at the end of a critical section, to beprotected by their own instances of the same lock, since they too are logically in serieswith the rest of the sync blocks. Figure 3-4 shows the SP-tree, with locked P-nodes,for the generalized form of a critical section shown above. Notice that the threadse1; e2; : : : ; ei and e0, and the sync blocks themselves, are all logically in series witheach other, and that any parallel threads within the critical section are descendentsof the same locked P-node.The problem of detecting data races in computations with critical sections thatmay contain parallelism reduces, then, to the problem of �nding data races in anSP-tree which may include locked P-nodes. But what comprises a data race in suchan SP-tree? Before answering this question, it will be useful to de�ne several furthernotions. The lock-sharing depth of any node in an SP-tree (internal or leaf) is thenumber of locked P-nodes among its ancestors, including itself. The depth-i lockset of an access is the set of locks held during the access minus the locks which areheld across the access's ancestor P-nodes with lock-sharing depth less than or equalto i. Note that the depth-0 lock set for any access is the set of all currently held locks.See Figure 3-5 for an illustration of lock-sharing depth and depth-based lock sets.A precise formulation of a data race in an SP-tree with locked P-nodes can be givenbased on depth-based lock sets and the following notion of depth-based cousinhood: ifthe the lock-sharing depth of the least-common ancestor of two accesses in an SP-treeis i, the accesses are depth-i cousins. Furthermore, if the depth-i lock sets of theaccesses have no locks in common, then they form a data race.20

P

S

e1
A B e2

H0={B}

PP

e3
C e4

H0={C,B,A}
H1={C,B}
H2={C}

P

e5
B C e6

PP

A

B

H0={B,A}
H1={B}
H2={}

H0={B,A}
H1={B}

H0={C,A}
H1={C}

H0={A}

Figure 3-5: An SP-tree containing locked P-nodes. Each leaf represents a thread thataccesses some shared location l. Locked P-nodes are marked with bold arcs above them,annotated with the lock acquired just before and after the traversal of their subtrees. Forease of identifying where any particular lock is acquired and released, locks acquired at thebeginning and released at the end of a single thread, and thus protecting a serial criticalsection, are shown in a similar way: a thin arc, annotated with the lock, appears abovethread, as with e1. Under each thread are the depth-based lock sets of the thread's memoryaccess, with H0 being the depth-0 lock set, H1 being the depth-1 lock set, and so on, up thethe lock-sharing depth of the access. For example, the access in e4 is at lock-sharing depth2, since there are two locked P-nodes among its ancestors, the one at depth 1 locked by aand the one at depth 2 locked by b. For this access, the depth-0 lock sets includes all locksheld (fa;bg), while these locks are successively subtracted, �rst a at depth 1 and then bat depth 2, to form the depth-1 and depth-2 lock sets. The lock sets for the access in e3,which is also at lock-sharing depth 2, are the same as those for the access in e4, except thatlock c is additionally included in every lock set, since c does not lock a P-node at all, butrather protects a serial critical section in e3
21

For example, consider Figure 3-5. The parallel accesses in e1 and e3 are depth-0cousins, since their least-common ancestor is the P-node at the root of the entire tree,which is not locked. The intersection of their depth-0 lock sets contains lock a, whichindeed protects them against each other, since e1 is protected by its own instance ofa and e3 by the instance of a that locks the right child of the root. The access ine1 is likewise a depth-0 cousin of the accesses in e4, e5, and e6, and is also protectedagainst them by lock a. The same holds for the relationship between the access in e2and the ones in e3, e4, and e5, except that in these cases the accesses are protectedagainst each other by lock b, di�erent instance of which are held across e3 and e4 (theone locking lca(e3, e4)) and e5 (its own instance). No lock protects the accesses ine2 and e6 from each other, indicated by the empty intersection of their depth-0 locksets.Now, consider the depth-1 cousins in the tree. The access in e4 is a depth-1 cousinsof the accesses in e5 and e6, since their least-common ancestor is the right child of theroot, and there is one locked P-node (the ancestor itself) along the path from thatancestor to the root. The access in e5 is protected against the one in e4 by b (which isin the respective depth-1 lock sets), since, as we saw above, they are performed underdi�erent instances of the lock. No lock protects the accesses in e4 and e6 againsteach other, and the intersection of their depth-1 lock sets is accordingly empty. Theaccesses in e5 and e6 are also depth-1 cousins that are unprotected against each other,as seen by their depth-1 lock sets.Finally, consider the two depth-2 cousins in the tree: e3 and e4. The accesses inthese threads, despite both being performed while both locks a and b are held, arenot protected against each other, since they hold no unshared lock in common, asindicated by the empty intersection of their depth-2 lock sets.The following theorem and corollary show that our formulation of data races basedon depth-based cousinhood and lock sets is correct.Theorem 3.3 Suppose e1 and e2 are depth-i cousins that access a shared locationin parallel, and let h be a lock that is held by both accesses. The accesses share thesame instance of h if and only if h is not in in the intersection of their depth-i locksets.Proof: ()) Suppose the accesses share the same instance of h. Then they mustboth be descendents some P-node ph locked by h. Let p be the deepest locked P-nodeof which both e1 and e2 are descendents. By the de�nition of cousinhood, the lock-sharing depth of p is i, and so, by de�nition of depth-based lock sets and the factthat ph must be equal to or an ancestor of p, neither of the accesses' depth-i lock setscontains h.(() Suppose h is not in the intersection of the accesses' depth-i lock sets. Assumewithout loss of generality that h is not in the depth-i lock set of e1. By de�nitionof depth-based lock sets, we know that h is held across some P-node p among e1'sancestors of lock-sharing depth i or less. Since e1 and e2 are depth-i cousins, e2 isalso a descendent of p. Thus, they share the same instance of h, namely, the one thatis held across p.22

Corollary 3.4 Two parallel accesses that are depth-i cousins form a data race if andonly if the intersection of their depth-i lock sets is empty.3.3 The All-Sets-Shared algorithmNow that we have a model for Cilk computations with critical sections that containparallelism, and further know how to recognize a data race in this model, we canextend All-Sets to handle such computations correctly. In this section we describeAll-Sets-Shared, an extension of All-Sets based on this model. We show thatit correctly detects data races in such computations, and prove that it runs a factorof k slower and uses a factor of k more space than the original All-Sets algorithm.The operation of All-Sets-Shared, which is conceptually based on the executionof multiple instances of the original All-Sets at various lock-sharing depths duringeach access, also provides a model for the operation of Brelly-Shared, discussedin Section 4.3.The logic of the All-Sets-Shared algorithm is based on Corollary 3.4: at eachshared memory access, for i = 0; 1; : : : ; D where D is the lock-sharing depth of theaccess, compare the access's depth-i lock set with the depth-i lock sets of its previouslyexecuted depth-i cousins, declaring a race whenever the intersection of two lock setsis empty. To do this, All-Sets-Shared in essence runs one instance of All-Setsfor each depth of cousinhood at each memory access, keeping a separate set of lockersfor each depth. For an intuition of how this might work, again consider Figure 3-5,and imagine that All-Sets were run on the entire tree, using depth-0 lock sets; onthe subtree rooted by the right child of the root, using depth-1 lock sets; and on thesubtree rooted by lca(e3, e4), using depth-2 lock sets. Rather nice how all data raceswould be found correctly, isn't it?The All-Sets-Shared algorithmmaintains a global variableD, the lock-sharingdepth of the current access, and global lock sets H (i) for i = 0; 1; : : : ; D, whereH (i) is the current access's depth-i lock set. To help maintain D, the algorithmalso tags each entry in the Cilk procedure call stack with a sync-depth �eld, whichrecords the number of subprocedures associated with locked P-nodes, spawned fromthe procedure, that have yet to be synchronized. There is a dynamic global arraypstack , indexed pstack (1); pstack (2); : : : ; pstack (D), containing a stack of the IDs ofthe locked P-nodes which are the ancestors of the current access, from oldest to mostrecent. (The ID of the Cilk procedure instance associated with a locked P-node servesnicely as the node's ID.)For each shared memory location l, All-Sets-Shared keeps a list of depth-0lockers in lockers(0)[l], a list of depth-1 lockers in lockers(1)[l], a list of depth-2 lockersin lockers(2)[l], and so on, up to the lock-sharing depth of the most-recent accessto l, which is stored in lockers-depth[l]. Analogously to All-Sets, each locker inlockers(i)[l] is a pair he;Hi, where e is the ID of a thread which accesses l at a lock-sharing depth greater than or equal to i, and H is the depth-i lock set held during theaccess. Finally, there is a P-node ID pid [lockers(i)[l]] associated with each lockers(i)[l]23

for i = 1; 2; : : : ; lockers-depth[l], indicating the depth-i locked P-node among theancestors of the last access to l. (There is no need for a pid at depth 0 since a lockedP-node is never at lock-sharing depth 0.)The logic for All-Sets-Shared is shown in Figure 3-6, including the actionsfor locking and unlocking; spawns, syncs, and returns; and memory accesses. (As inall the algorithms for computations with locks, All-Sets-Shared uses the r-locktrick to avoid distinguishing between reads and writes.) The algorithm maintainsD, the current lock-sharing depth, in lines 2{3 of Spawn, where D is incrementedwhenever a spawn occurs while a lock is held; and in lines 1{2 of Sync, where Dis decremented by sync-depth[F], which in essence is the number of locked P-nodeswhose subtrees are being completed at the sync. The current depth-based lock sets,H (0) through H (D), are updated in Lock and Unlock, which simply add or removea lock from each lock set; and in line 4 of Spawn, which adds a new empty lock setH (D) whenever D is incremented. The stack of locked P-nodes among the ancestors ofthe current access is maintained by line 5 of Spawn. (For simplicity, we do not showobsolete entries of pstack (i)|those with index i greater than the current D|beingcleared.)With D and the depth-based lock sets properly maintained, the algorithm per-forms two phases during each access to a shared memory location l, shown inAccess.First, in lines 1{4, it deletes the lists of lockers for the location whose pid 's are nolonger in pstack , as these lockers are no longer relevant because the computation hasreached a di�erent part of the SP-tree (line 3)2; and it updates the pid 's of each ofl's lists of lockers to be equal to the ID of the P-node stored in pstack at the samedepth (line 4), so that future accesses can tell whether these lockers are relevant tothem. To help with this �rst phase, lockers-depth is updated at each access in line 5.The second phase of Access(l), in lines 6{17, executes the logic of All-Setsfor each lock-sharing depth of the access (0 through D), checking the access againstpreviously recorded lockers and updating the lists of lockers appropriately. Noticethat lines 7{17 exactly duplicate the code of All-Sets (Figure 3-1), except that thelock sets and lockers considered at each iteration are for a speci�c lock-sharing depth.Our proof of the correctness of All-Sets-Shared assumes that the global vari-ables D and pstack , and the pid 's of the lists of lockers and lockers-depth for eachlocation, are maintained correctly according to the following lemma, itself statedwithout proof.Lemma 3.5 During an access to a location l in All-Sets-Shared, the access'slock-sharing depth is recorded in D, and the IDs of the locked P-nodes among theaccess's ancestors in the SP-tree are recorded, oldest to most recent, in pstack (1),pstack (2), . . . , pstack (D). Also, at the start of Access(l), the lock-sharing depth ofthe most-recently executed access to l is recorded in lockers-depth[l], and the IDs of2As shown in Figure 3-6, the algorithm deletes only those lists of lockers which are at or belowthe current depth D; any deeper lists of lockers are ignored because the iteration in line 6 only goesto D. If the execution ever reaches a deeper access, the left-over lists of lockers are deleted then.Of course, the lists of lockers deeper than D could be deleted up front at every access: it makes nodi�erence whether they are deleted now or later.24

Spawn procedure F 0 from procedure F1 if H (D) 6= fg2 then D D + 13 sync-depth[F] sync-depth[F] + 14 H (D) fg5 pstack (D) F 06 update SP-bags data structure according tothe Spawn logic in SP-bagsSync in procedure F1 D D � sync-depth[F]2 sync-depth[F] 03 update SP-bags data structure according tothe Sync logic in SP-bagsReturn from procedure F 0 to procedure F1 update SP-bags data structure according tothe Return logic in SP-bags

Lock(a)1 for i 0 to D2 do H (i) H (i) [aUnlock(a)1 for i 0 to D2 do H (i) H (i) � a

Access(l) in thread e1 for i 1 to D2 do if i > lockers-depth[l] or pstack (i) 6= pid [lockers(i)[l]]3 then lockers(i)[l] fg4 pid [lockers(i)[l]] pstack (i)5 lockers-depth[l] D6 for i 0 to D7 do for each he0; H 0i 2 lockers(i)[l]8 do if e0 k e and H 0 \ H (i) = fg9 then declare a data race10 redundant false11 for each he0; H 0i 2 lockers(i)[l]12 do if e0 � e and H 0 � H (i)13 then lockers(i)[l] lockers(i)[l]� fhe0; H 0ig14 if e0 k e and H 0 � H (i)15 then redundant true16 if redundant = false17 then lockers(i)[l] lockers(i)[l] [nhe;H (i)ioFigure 3-6: The All-Sets-Shared algorithm for detecting data races in Cilk computa-tions with critical sections containing parallelism. Lock and Unlock are executed whenacquiring and releasing locks; Spawn, Sync, and Return at parallel control statements;and Access when reading or writing a shared memory location. 25

the locked P-nodes among that last access's ancestors are recorded, oldest to mostrecent, in pid [lockers(0)[l]]; pid [lockers(1)[l]]; : : : ; pid [lockers(lockers-depth [l])[l]].We now show that All-Sets-Shared correctly detects data races in Cilk com-putations with critical sections that may contain parallelism.3Theorem 3.6 Consider a Cilk program with locks and critical sections containingperallelism, restricted as described in Section 3.2. The All-Sets-Shared algorithmdetects a data race in the computation of this program running serially on a giveninput if and only if a data race exists in the computation.Proof: ()) Suppose All-Sets-Shared declares a race between the current threade2 and a previous thread e1; we show that a race between these threads indeed exists.Let d be the value of the iteration variable i in Access (line 6 at the time of the racedeclaration. Thus, we know that e2 is at a lock-sharing depth of at least d. Sinceevery locker added to lockers(i) in line 17 consists of a thread and the depth-i lockset held by that thread, from line 8 we know that the lock-sharing depth of e1 is alsoat least d and that the intersection of the depth-d lock sets of e1 and e2 is empty.We now consider the depth at which e1 and e2 are cousins. If they are depth-dcousins, then they form a data race, since their the intersection of their depth-d locksets is empty. If they are depth-j cousins for some j > d, then they also form a datarace, since, with j > d, their depth-j lock sets are subsets of their depth-d lock setsand so do not have any locks in common. It now su�ces to show that the accessescannot be depth-j cousins for any j < d. Suppose for contradiction that e1 and e2are depth-j cousins for some j < d, and let p1 and p2 be the depth-d locked P-nodeamong the ancestors of e1 and e2, respectively. Then p1 6= p2, since otherwise e1 ande2 would be depth-k cousins for some k � d. As no nodes in an SP-tree at the samelock-sharing depth can be descendents of one another, p1 and p2 root non-overlappingsubtrees. Consider what happens to lockers(d)[l] in lines 2{3 at the �rst access to lafter the subtree rooted by p1 �nishes, which must occur either before or in threade2, since e2 accesses l, happens after e1, and is not a descendent of p1. Either theaccess is at lock-sharing depth less than d, or its depth-d locked P-node ancestor,stored in pstack (d), is a P-node other than p1, stored in pid [lockers(d)[l]]: in bothcases, lockers(d)[l] is cleared in line 3. Thus, by the time e2 runs, the locker with e1is not in lockers(d)[l]; this contradicts our premise that a race between e1 and e2 hadbeen declared, implying that the cousinhood between e1 and e2 is at least as deep atd and so form a data race, as shown above.(() Assuming a data race exists in a computation, we show that a data race isreported. Choose two threads e1 and e2 such that e1 is the last thread before e2 in3We give direct proofs of the correctness and performance bounds of All-Sets-Shared|theyare not overly complicated|even though it is possible to provide more succinct and modular proofsbased on the correctness and bounds of All-Sets (Theorems 3.1 and 3.2). For an idea of how thismight be done, see the proofs for Brelly-Shared (Corollary 4.7 and Theorem 4.8) in Section 4.3,which are based on the proofs for Brelly.26

the serial execution which has a data race with e2. Suppose these two threads aredepth-d cousins, which means they are both at lock-sharing depth at least d, and letH (d)1 and H (d)2 be their depth-d locks sets, respectively. Since e1 and e2 form a datarace, we know H (d)1 \ H (d)2 = fg.We �rst show that immediately after e1 executes, lockers(d)[l] contains some threade3 that races with e2. If he1;H (d)1 i is added to lockers(d)[l] in line 17, then e1 is suchan e3. Otherwise, the redundant ag must have been set in line 15, so there mustexist a locker he3;H (d)3 i 2 lockers(d)[l] with e3 k e1 and H (d)3 � H (d)1 . Thus, bypseudotransitivity (Lemma 2.2), we have e3 k e2. Moreover, since H (d)3 � H (d)1 andH (d)1 \ H (d)2 = fg, we have H (d)3 \ H (d)2 = fg, and therefore e3, which belongs tolockers(d)[l], races with e2.To complete the proof, we now show that the locker he3;H (d)3 i is not removed fromlockers(d)[l] between the times that e3 and e2 are executed. A locker can be removedin either line 13 or line 3. Suppose for contradiction that he4;H (d)4 i is a locker thatcauses he3;H (d)3 i to be removed from lockers(d)[l] in line 13. Then, we must havee3 � e4 and H (d)3 � H (d)4 , and by Lemma 2.1, we have e4 k e2. Moreover, sinceH (d)3 � H (d)4 and H (d)3 \H (d)2 = fg, we have H (d)4 \H (d)2 = fg, contradicting the choiceof e1 as the last thread before e2 to race with e2.Suppose for contradiction that some access between e3 and e2 causes lockers(d)[l]to be cleared in line 3. This means the computation has left the subtree rooted bye3's depth-d locked P-node ancestor, and therefore also the subtree rooted by e1'sdepth-d locked P-node ancestor, as e1 executed before or is equal to e3. Hence, e1and e2 cannot be depth-d cousins, a contradicting the de�nition of d.Therefore, thread e3, which races with e2, still belongs to lockers[l] when e2 exe-cutes, and so lines 7{9 report a race.The following theorem shows that All-Sets-Shared runs a factor of k slower,and uses a factor of k more space, than All-Sets, where k is the maximum numberof simultaneously held locks.Theorem 3.7 Consider a Cilk program with locks and critical sections containingparallelism, restricted as described above, that, on a given input, executes serially intime T , references V shared memory locations, uses a total of n locks, and holds atmost k locks simultaneously. The All-Sets-Shared algorithm checks this compu-tation for data races in O(kLT (k+�(V; V))) time and O(k2LV) space, where L is themaximum of the number of distinct lock sets used to access any particular location.Proof: We �rst prove bound on space. Space usage is dominated by the lists oflockers recorded for each location. Observe that no two lockers in lockers(i)[l] for agiven depth i and location l have the same lock set, because the logic in lines 11{15 ensures that if H (=)i H 0, then locker he;H (i)i either replaces he0; H 0i (line 13) oris considered redundant (line 15). Thus, there are at most L lockers in the listlockers(i)[l] for a given i. The maximum lock-sharing depth of any access is at mostk, so there are at most k lists of lockers, and so the total number of lockers for a27

single location is at most kL. Each lock set takes at most O(k) space, so the lockersfor a single location take at most O(k2L) space, for a total space of O(k2LV).We now prove the bound on running time. Since each each lock set contains atmost k locks and the maximum value of D is at most k, each instance of Lockand Unlock run in O(k2) time. Apart from the SP-Bags logic, each instanceof Spawn and Sync runs in O(1) time. In Access, lines 1{4 runs in O(k) time,and, in each of the at most k iterations of lines 6{17, the algorithm performs atmost 2L series/parallel tests (line 8 and lines 12 and 14) and 2L set operations(lines 8, 12, and 14), since the there are at most L lockers in each lockers(i). Eachseries/parallel test takes amortized O(�(V; V)) time, and each set operation takesO(k) time. Therefore, theAll-Sets-Shared algorithm runs in O(kLT (k+�(V; V)))time.

28

Chapter 4Data-race detection with theumbrella locking disciplineThe All-Sets algorithm from Chapter 3 seems to be practical for programs inwhich L|the maximum number of combinations of locks held during accesses toany particular location|is a small constant. Such programs are common, since of-ten a particular data structure is consistently accessed using the same lock or set oflocks. When L is is not a small constant, however, All-Sets may be impractical.In this chapter, we see how the problem of data-race detection can be simpli�ed bythe adoption of the \umbrella locking discipline," and we present the Brelly andBrelly-Shared algorithms for detecting violations of the discipline. Brelly de-tects violations of the discipline in O(kT �(V; V)) time using O(kV) space on a Cilkprogram that runs serially on a given input in time T , uses V shared memory loca-tions, and holds at most k locks simultaneously. Brelly-Shared, an extension ofBrelly which handles programs with critical sections containing parallelism, runsonly a factor of k slower and uses only a factor of k more space.These improvements in performance come at the cost of exibility and precision,since the umbrella discipline precludes some race-free locking protocols as well asdata races. Speci�cally, it requires that within every parallel subcomputation, eachlocation is protected by a unique lock. While the umbrella discipline is more ex-ible than similar locking disciplines proposed in the context of race detection, it ismore restrictive than All-Sets, which may be considered to enforce an ideal lockingdiscipline that only disallows data races.This chapter is organized as follows. Section 4.1 de�nes and discusses the umbrellalocking discipline. Section 4.2 presents the Brelly algorithm for detecting violationsof the umbrella discipline, and Section 4.3 presents Brelly-Shared, an extensionof Brelly which correctly handles critical sections containing parallelism. Finally,Section 4.4 presents several heuristics that conservatively try to determine when aviolation of the umbrella discipline is in fact caused by a data race. Such heuristicsseem to be important in the practical use of Brelly and Brelly-Shared for data-race detection.Sections 4.1 and 4.2 are based largely on joint work published in [3]. 29

4.1 The umbrella locking disciplineIn this section, we introduce and discuss the \umbrella locking discipline," violationsof which are detected by the Brelly and Brelly-Shared algorithms (Sections 4.2and 4.3, respectively). The umbrella discipline requires that within each parallelsubcomputation, all accesses to any particular location are protected by a single lock;parallel subcomputations in series with each other may use di�erent locks to protectthe same location. By detecting violations of this discipline rather than data racesdirectly, we gain e�ciency at the cost of precision and exibility, since the disciplineprecludes some race-free locking protocols as well as data races.Most programs do not use many di�erent combinations of locks to access thesame locations. Typically, there is a lock associated with each element of a shareddata structure which is used to protect parallel accesses to that element against eachother. Or there are a �xed number of global locks, which are used in a regular way tomake parallel subcomputations atomic with each other. In these cases, the L in theperformance bounds shown for All-Sets in Theorem 3.2 will be a small constantand the algorithm will run with roughly a constant factor slowdown, and roughly aconstant factor blowup in space, as compared to the running time and space usageof the serial computation. There are some programs, however, which use many locksets while accessing the same locations|i.e. L is not a small constant|and for whichAll-Sets may be unacceptably ine�cient. For example, consider a graph algorithmthat performs operations on arbitrary graph edges in parallel: at each edge operation,the algorithm acquires the locks associated with the nodes at both the head and tailof the edge and updates the two nodes. In the worst case, a node of degree d will beaccessed with d di�erent lock sets; in a dense graph, L will be linear with the sizeof the graph. (See Chapter 5 for empirical results indicating that the e�ciency ofAll-Sets indeed varies directly with L, with performance slowing down signi�cantlyas L grows with input size.)How can we make race detection more e�cient when L is not a small constant?The Brelly algorithm presented in the next section runs in O(kT �(V; V)) time anduses O(kV) space, for a Cilk computation that runs serially in T time, uses V space,and holds at most k locks simultaneously. These bounds are a factor of L betterthan those for All-Sets, and depend only on k, which is almost never more than2 or 3. The improvement in performance come at a cost, however. Rather thandetecting data races directly, Brelly only detects violations of a locking disciplinethat precludes data races, and also some other race-date locking protocols. We nowde�ne this discipline, called the \umbrella locking discipline."The umbrella locking discipline requires all accesses to any particular locationwithin a given parallel subcomputation to be protected by a single lock. Subcompu-tations in series may each use a di�erent lock, or even none, if no parallel accessesto the location occur within the subcomputation. This discipline can be de�ned pre-cisely in terms of the parse tree of a Cilk computation. An umbrella of accesses toa location l is a subtree rooted at a P-node containing accesses to l in both its leftand right subtrees, as is illustrated in Figure 4-1. Umbrellas are always consideredwith respect to accesses to a single location l.30

P

P P

S

P

S

P

Figure 4-1: Three umbrellas of accesses to a location l. In this parse tree, each shadedleaf represents a thread that accesses l. Each umbrella of accesses to l is enclosed by adashed line.The umbrella locking discipline requires that, in every umbrella of accesses toa location l be \protected," that is, there be some lock that protects all the accesses inthe umbrella against each other. In other words, within each umbrella of accesses toa location l, all threads must agree on at least one lock to protect their accesses to l.Under the assumption that critical sections do not contain parallelism, the notion ofprotected umbrellas can be formally de�ned as followed: an umbrella of accesses to l isprotected if the lock set of these accesses is nonempty, and unprotected otherwise.(Recall from Chapter 2 that the lock set of several accesses is the intersection of theirrespective individual lock sets.) Since instances of a lock are never shared by parallelaccesses, any lock held by all the accesses in an umbrella will protect them againsteach other.If critical sections can contain parallelism, the de�nition of a protected umbrellaneeds to be re�ned to allow for the possibility that a lock held by all accesses in anumbrella may not protect the umbrella, since the same instance of the lock may beshared by some or all of the accesses. Speci�cally, we say that an umbrella of accessesto l is protected if the lock set of these accesses contains some lock that is not heldacross any pair of parallel accesses to l in the umbrella, and unprotected otherwise.Equivalently, we can say that an umbrella is protected if the lock set of its accessescontains some lock that is not held across the entire umbrella, and it does not containan unprotected umbrella; it is unprotected otherwise.The next theorem implies that adherence to the umbrella discipline precludes dataraces from occurring.Theorem 4.1 A Cilk computation with a data race violates the umbrella discipline.Proof: Any two accesses involved in a data race must have a P-node p as their leastcommon ancestor in the parse tree, because they operate in parallel. If the lock setsof the two accesses are disjoint, then p roots an unprotected umbrella. Otherwise,any locks held in common by the accesses must be shared by them, i.e. held acrossp, and so p roots an unprotected umbrella. 31

8iuThe umbrella discipline can also be violated by unusual, but data-race free,locking protocols. For instance, suppose that a location is protected by three locksand that every thread always acquires two of the three locks before accessing thelocation. No single lock protects the location, but every pair of such accesses ismutually exclusive. The All-Sets algorithm properly certi�es this bizarre exampleas race-free, whereas Brelly detects a discipline violation. In return for disallowingthis and other unusual locking protocols (which may or may not be as silly), Brellychecks programs asymptotically much faster than All-Sets.How might the umbrella discipline be used in practice? First, a programmer maychoose to adopt the umbrella discipline as a good programming practice, and writecode accordingly. Then data races can be detected using the Brelly (or Brelly-Shared) algorithm. Even umbrella violations not resulting from races would beconsidered breaches of programming practice and should be �xed. Alternatively,a programmer can use the Brelly algorithm to detect violations of the disciplinewithout trying to follow it a priori, and then manually determine whether violationsare caused by data races, ignoring those that are not.4.2 The Brelly algorithmWe now present the Brelly algorithm for detection violations of the umbrella dis-cipline in Cilk computations with locks and serial critical sections. On a programrunning serially on a given input in time T using V shared memory locations, Brellydetects umbrella discipline violations inO(kT �(V; V)) time usingO(kV) space, wherek is the maximum number of locks held simultaneously. After describing the algorithmand giving an example of its execution, we show that it correctly detects umbrelladiscipline violations and prove these performance bounds.Like All-Sets, the Brelly algorithm extends the SP-bags algorithm used inthe original Nondeterminator and uses the r-lock fake lock for read accesses (seeChapter 2). Figure 4-2 gives pseudocode for Brelly. Like the SP-bags algorithm,Brelly executes the program on a given input in serial depth-�rst order, maintain-ing the SP-bags data structure so that the series/parallel relationship between thecurrently executing thread and any previously executed thread can be determinedquickly in O(�(V; V)) time. Like the All-Sets algorithm, Brelly also maintains aset H of currently held locks. In addition, Brelly maintains two shadow spaces ofshared memory: accessor [l], which stores for each location l a thread that performedan access to that location; and locks[l], which stores the lock set of that access. (Ex-actly which thread is stored in accessor [l] is explained below.) Each entry in theaccessor space is initialized to the initial thread (which logically precedes all threadsin the computation), and each entry in the locks space is initialized to the empty set.Unlike the All-Sets algorithm, Brelly keeps only a single lock set, rather thana list of lock sets, for each shared memory location. For a location l, each lock inlocks[l] potentially belongs to the lock set of the largest umbrella of accesses to l thatincludes the current thread. The Brelly algorithm tags each lock h 2 locks[l] withtwo pieces of information: a thread nonlocker [h] and a ag alive[h]. Each of these tags32

Access(l) in thread e with lock set H1 if accessor [l] � e2 then � serial accesslocks[l] H, leaving nonlocker [h] with its oldnonlocker if it was already in locks[l] butsetting nonlocker [h] accessor [l] otherwise3 for each lock h 2 locks[l]4 do alive[h] true5 accessor [l] e6 else � parallel access7 for each lock h 2 locks[l]�H8 do if alive[h] = true9 then alive[h] false10 nonlocker [h] e11 for each lock h 2 locks[l] \H12 do if alive[h] = true and nonlocker [h] k e13 then alive[h] false14 if no locks in locks[l] are alive (or locks[l] = fg)15 then report violation on l involvinge and accessor [l]16 for each lock h 2 H \ locks[l]17 do report access to l without hby nonlocker [h]Figure 4-2: The Brelly algorithm. While executing a Cilk program in serial depth-�rstorder, at each access to a shared memory location l, the code shown is executed. Not shownare the updates to H, the set of currently held set of locks, which occur whenever locks areacquired or released. To determine whether the currently executing thread is in series orparallel with previously executed threads, Brelly uses the SP-bags data structure from [9].is associated with the entry of a lock in locks[l] for some location l; no tag is associatedwith a lock globally, across all locations. The thread nonlocker [h] is a nonlocker ofl with respect to lock h, that is, a thread which accesses l without holding h. The agalive[h] indicates whether h should still be considered to potentially belong to thelock set of the umbrella. To allow reports of violations to specify which threads areinvolved, the algorithm kills a lock h by setting alive[h] false when it determinesthat h does not belong to the lock set of the umbrella, rather than simply removingit from locks[l].Whenever Brelly encounters an access by a thread e to a location l, it checks fora violation with previous accesses to l, updating the shadow spaces appropriately forthe bene�t of future accesses. The way any particular access to l is handled dependson whether it is logically in series or in parallel with the thread in accessor [l] at thetime. If accessor [l] � e, we say the access is a serial access, and the algorithm33

S

P

{A,B} S

{A} {A,B}

P

S

{} P

{A,B} {B}
e1

e2 e3 e5 e6

e4

{B}
e7

thread accessor [l] locks [l] access typeinitial e0 f ge1 e1 fa(e0);b(e0)g seriale2 e1 fa(e0);b(e2)g parallele3 e1 fa(e0);b(e2)g parallele4 e4 f g seriale5 e5 fa(e4);b(e4)g seriale6 e5 fa(e6);b(e4)g parallele7 e5 fa(e6);b(e4)g parallelFigure 4-3: An example execution of the Brelly algorithm. We restrict our attentionto the algorithm's operation on a single location l. In the parse tree, each leaf representsan access to l and is labeled with the thread that performs the access (e.g. e1) and the lockset of that access (e.g. fa;bg). Umbrellas are enclosed by dashed lines. The table displaysthe values of accessor [l] and locks [l] after each thread's access. The nonlocker for each lockis given in parentheses after the lock, and killed locks are underlined. The \access type"column indicates whether the access is a parallel or serial access.performs lines 2{5, setting locks[l] H and accessor [l] e, as well as updatingnonlocker [h] and alive[h] appropriately for each h 2 H. If accessor [l] k e, we say theaccess is a parallel access, and the algorithm performs lines 6{17, killing the locks inlocks[l] that do not belong to the current lock set H (lines 7{10) or whose nonlockersare in parallel with the current thread (lines 11{13). If Brelly discovers in line 14that there are no locks left alive in locks[l] after a parallel access, it has discovered anunprotected umbrella, and it reports a discipline violation in lines 15{17.When reporting a violation, Brelly speci�es the location l, the current threade, and the thread accessor [l]. It may be that e and accessor [l] hold locks in common,in which case the algorithm uses the nonlocker information in lines 16{17 to reportthreads which accessed l without each of these locks.Figure 4-3 illustrates how Brelly works. The umbrella containing threads e1,e2, and e3 is protected by lock a but not by lock b, which is reected in locks[l] afterthread e3 executes. The umbrella containing e5 and e6 is protected by b but notby a, which is reected in locks[l] after thread e6 executes. During the execution ofthread e6, lock a is killed and nonlocker [a] is set to e6, according to the logic in lines 7{34

10. When e7 executes, b remains as the only lock alive in locks[l] and nonlocker [b]is e4 (due to line 2 during e5's execution). Since e4 k e7, lines 11{13 kill b, leaving nolocks alive in locks[l], properly reecting the fact that no lock protects the umbrellacontaining threads e4 through e7. Consequently, the test in line 14 causes Brelly todeclare a violation at this point.The following two lemmas are helpful in proving the correctness of Brelly.Lemma 4.2 Suppose a thread e performs a serial access to location l during anexecution of Brelly. Then all previously executed accesses to l logically precede ein the computation.Proof: By transitivity of the � relation, all serial accesses to l that execute beforee logically precede e. We must also show the same for all parallel accesses to l thatare executed before e. Consider a thread e0 that performs a parallel access to l beforee executes, and let e00 k e0 be the thread stored in accessor [l] when e0 executes itsparallel access. Since e00 is a serial access to l that executes before e, we have e00 � e.Consequently, we must have e0 � e, because if e0 k e, by pseudotransitivity we wouldhave e00 k e, a contradiction.Lemma 4.3 The Brelly algorithm maintains the invariant that for any location land lock h 2 locks[l], the thread nonlocker [h] is either the initial thread or a threadthat accessed l without holding h.Proof: There are two cases in which nonlocker [h] is updated. The �rst is in line 10,which sets nonlocker [h] e. This update only occurs when the current thread e doesnot hold lock h (line 7). The second case is when nonlocker [h] is set to accessor [l]in line 2. If this update occurs during the �rst access to l in the program, thenaccessor [l] will be the initial thread. Otherwise, locks[l] will be the set of locks heldduring an access to l in accessor [l], since locks[l] and accessor [l] are always updatedtogether to the current lock set H and current thread e, respectively, during a serialaccess (lines 2{5). Thus, if h 62 locks[l], which is the case if nonlocker [h] is being setto accessor [l] in line 2, then accessor [l] did not hold lock h during its access to l.We now show that Brelly correctly detects violations of the umbrella discipline.Theorem 4.4 Consider a Cilk program with locks and serial critical sections. TheBrelly algorithm detects a violation of the umbrella discipline in a computation ofthis program running serially on a given input if and only if a violation exists.Proof: We �rst show that Brelly only detects actual violations of the discipline,and then we argue that no violations are missed. In this proof, we denote by locks�[l]the set of locks in locks[l] that have true alive ags.()) Suppose that Brelly detects a violation caused by a thread e, and lete0 = accessor [l] when e executes. Since we have e0 k e, it follows that p = lca(e0; e)roots an umbrella of accesses to l, because p is a P-node and it has an access to l35

in both subtrees. We shall argue that the lock set U of the umbrella rooted at p isempty. Since Brelly only reports violations when locks�[l] = fg, it su�ces to showthat U � locks�[l] at all times after e0 executes.Since e0 is a serial access, lines 2{5 cause locks�[l] to be the lock set of e0. Atthis point, we know that U � locks�[l], because U can only contain locks held byevery access in p's subtree. Suppose that a lock h is killed (and thus removed fromlocks�[l]), either in line 9 or line 13, when some thread e0 executes a parallel accessbetween the times that e0 and e execute. We shall show that in both cases h 62 U ,and so U � locks�[l] is maintained.In the �rst case, if thread e0 kills h in line 9, it does not hold h, and thus h 62 U .In the second case, we shall show that w, the thread stored in nonlocker [h] whenh is killed, is a descendant of p, which implies that h 62 U , because by Lemma 4.3,w accesses l without the lock h. Assume for the purpose of contradiction that w isnot a descendant of p. Then, we have lca(w; e0) = lca(w; e0), which implies thatw k e0, because w k e0. Now, consider whether nonlocker [h] was set to w in line 10or in line 2 (not counting when nonlocker [h] is left with its old value in line 2). Ifline 10 sets nonlocker [h] w, then w must execute before e0, since otherwise, wwould be a parallel access, and lock h would have been killed in line 9 by w before e0executes. By Lemma 4.2, we therefore have the contradiction that w � e0. If line 2sets nonlocker [h] w, then w performs a serial access, which must be prior to themost recent serial access by e0. By Lemma 4.2, we once again obtain the contradictionthat w � e0.(() We now show that if a violation of the umbrella discipline exists, then Brellydetects a violation. If a violation exists, then there must be an unprotected umbrellaof accesses to a location l. Of these unprotected umbrellas, let T be a maximal onein the sense that T is not a subtree of another umbrella of accesses to l, and let p bethe P-node that roots T . The proof focuses on the values of accessor [l] and locks[l]just after p's left subtree executes.We �rst show that at this point, accessor [l] is a left-descendant of p. Assumefor the purpose of contradiction that accessor [l] is not a left-descendant of p (and istherefore not a descendant of p at all), and let p0 = lca(accessor [l]; p). We knowthat p0 must be a P-node, since otherwise accessor [l] would have been overwritten inline 5 by the �rst access in p's left subtree. But then p0 roots an umbrella which is aproper superset of T , contradicting the maximality of T .Since accessor [l] belongs to p's left subtree, no access in p's right subtree overwriteslocks[l], as they are all logically in parallel with accessor [l]. Therefore, the accessesin p's right subtree may only kill locks in locks[l]. It su�ces to show that by the timeall accesses in p's right subtree execute, all locks in locks[l] (if any) have been killed,thus causing a race to be declared. Let h be some lock in locks�[l] just after the leftsubtree of p completes.Since T is unprotected, an access to l unprotected by h must exist in at least oneof p's two subtrees. If some access to l is not protected by h in p's right subtree,then h is killed in line 9. Otherwise, let eleft be the most-recently executed threadin p's left subtree that performs an access to l not protected by h. Let e0 be thethread in accessor [l] just after eleft executes, and let eright be the �rst access to l in36

the right subtree of p. We now show that in each of the following cases, we havenonlocker [h] k eright when eright executes, and thus h is killed in line 13.Case 1: Thread eleft is a serial access. Just after eleft executes, we have h 62 locks[l](by the choice of eleft) and accessor [l] = eleft . Therefore, when h is later placedin locks[l] in line 2, nonlocker [h] is set to eleft . Thus, we have nonlocker [h] =eleft k eright .Case 2: Thread eleft is a parallel access and h 2 locks[l] just before eleft executes. Justafter e0 executes, we have h 2 locks[l] and alive[h] = true, since h 2 locks[l]when eleft executes and all accesses to l between e0 and eleft are parallel and donot place locks into locks[l]. By pseudotransitivity (Lemma 2.2), e0 k eleft andeleft k eright implies e0 k eright . Note that e0 must be a descendant of p, since ifit were not, T would be not be a maximal umbrella of accesses to l. Let e00 bethe most recently executed thread before or equal to eleft that kills h. In doingso, e00 sets nonlocker [h] e00 in line 10. Now, since both e0 and eleft belong top's left subtree and e00 follows e0 in the execution order and comes before or isequal to eleft , it must be that e00 also belongs to p's left subtree. Consequently,we have nonlocker [h] = e00 k eright .Case 3: Thread eleft is a parallel access and h 62 locks[l] just before eleft executes.When h is later added to locks[l], its nonlocker [h] is set to e0. As above, bypseudotransitivity, e0 k eleft and eleft k eright implies nonlocker [h] = e0 k eright .In each of these cases, nonlocker [h] k eright still holds when eright executes, sinceeleft , by assumption, is the most recent thread to access l without h in p's left subtree.Thus, h is killed in line 13 when eright executes.We now show the performance bounds for Brelly.Theorem 4.5 On a Cilk program with locks and critical sections without paral-lelism, which on a given input executes serially in time T , uses V shared memorylocations, and holds at most k locks simultaneously, the Brelly algorithm runs inO(kT �(V; V)) time and O(kV) space.Proof: The total space is dominated by the locks shadow space. For any location l,the Brelly algorithm stores at most k locks in locks[l] at any time, since locks areplaced in locks[l] only in line 2 and jHj � k. Hence, the total space is O(kV).Each loop in Figure 4-2 takes O(k) time if lock sets are kept in sorted order,excluding the checking of nonlocker [h] k e in line 12, which dominates the asymptoticrunning time of the algorithm. The total number of times nonlocker [h] k e is checkedover the course of the program is at most kT , requiring O(kT �(V; V)) time. 37

4.3 The Brelly-Shared algorithmIn this section we present Brelly-Shared, an extension of Brelly which correctlyhandles programs with critical sections that contain parallelism|as speci�ed in Sec-tion 3.2. After describing how the algorithm works, we prove its correctness andperformance bounds, which are a factor of k larger than those for Brelly in bothtime and space. Rather then directly proving the Brelly-Shared detects disciplineviolations, we show that it essentially simulates the original Brelly algorithm ateach lock-sharing depth at each access, and that it does so correctly. This proof is anexample of a general approach to extending data-race detection algorithms based onthe SP-tree model to handle critical sections containing parallelism.The basic approach of Brelly-Shared mirrors that of All-Sets-Shared: justas All-Sets-Shared simultaneously runs an instance of the original All-Sets foreach depth of cousinhood at each access, comparing only locks sets and lockers ofthe same lock-sharing depth, so Brelly-Shared simultaneously runs an instance ofthe original Brelly for each depth at each access. In Brelly, for each location l,there is a single accessor [l] variable, which holds the last serial access to l; and asingle locks[l] variable, which holds the locks that may protect the largest umbrellaincluding the current thread. In Brelly-Shared, there are several instance of bothof these variables, indexed by lock-sharing depth i: accessor (i)[l] holds the last serialaccess among the depth-i cousins of the current thread, and locks(i)[l] keeps the lockswhich may protect the largest umbrella among these depth-i cousins. Consider theSP-tree in Figure 3-5 for intuition: imagine the originalBrelly running on the entiretree using depth-0 lock sets, then on the subtree rooted by the root's right child usingdepth-1 lock sets, and �nally on the subtree rooted by lca(e3, e4) using depth-2 locksets.Besides the multiple accessor and locks variables for each location, Brelly-Shared maintains the following global variables as in All-Sets-Shared: D, thecurrent lock-sharing depth; H (i) for 0 � i � D, the current depth-based lock sets; andpstack (i) for 1 � i � D, the IDs of the locked P-nodes among the current thread'sancestors. For each location l, the algorithm keeps the lock-sharing depth of thelast access to l in locks-depth[l], and IDs of the locked P-nodes among that access'sancestors, oldest to most recent, in pid (i)[l] for 1 � i � locks-depth[l].The logic for accesses in Brelly-Shared is shown in Figure 4-4; the logic foracquiring and releasing locks, and for parallel control commands, is the same asin All-Sets-Shared (Figure 3-6). In Access, lines 1{5 updates the accessor andlocks variables according to the locked P-node ancestors of the current access, clearinglocks(i)[l] and setting accessor (i)[l] to the ID of the initial thread (which logically pre-cedes all other threads) if the subtree rooted by the locked P-node recorded in pid (i)[l]has already completely executed. Lines 7{24 then execute the original Brelly logicat each depth, comparing against accessor (i)[l] and intersecting the current depth-ilock set into locks(i)[l] at each iteration.Instead of directly proving that Brelly-Shared detects umbrella discipline vio-lations, we show that Brelly-Shared correctly performs the original Brelly logicfor each subtree rooted by a locked P-node, using the lock sets appropriate to that38

Access(l) in thread e1 for i 1 to D2 do if pstack (i) 6= pid (i)[l] or i > locks-depth[l]3 then locks(i)[l] fg4 accessor (i)[l] ID of initial thread5 pid (i)[l] pstack (i)6 locks-depth[l] D7 for i 0 to D8 do if accessor (i)[l] � e9 then � serial accesslocks(i)[l] H, leaving nonlocker [h] with its oldnonlocker if it was already in locks(i)[l] butsetting nonlocker [h] accessor (i)[l] otherwise10 for each lock h 2 locks(i)[l]11 do alive[h] true12 accessor (i)[l] e13 else � parallel access14 for each lock h 2 locks(i)[l]�H15 do if alive[h] = true16 then alive[h] false17 nonlocker [h] e18 for each lock h 2 locks(i)[l] \H19 do if alive[h] = true and nonlocker [h] k e20 then alive[h] false21 if no locks in locks(i)[l] are alive (or locks(i)[l] = fg)22 then report violation on l involvinge and accessor (i)[l]23 for each lock h 2 H \ locks(i)[l]24 do report access to l without hby nonlocker [h]Figure 4-4: The Brelly-Shared algorithm. While executing a Cilk program in serialdepth-�rst order, at each access to a shared memory location l, the code shown is executed.The logic for Lock and Unlock, and for Spawn, Sync, and Return, is the same as thatin All-Sets-Shared (Figure 3-6).
39

subtree. Recall that the global data structures of the algorithm are correctly main-tained as described (Lemma 3.5).Theorem 4.6 Let p be a depth-d locked P-node in the SP-tree of a Cilk computationwith any parallelism within crtical sections restricted as described in Section 3.2.The Brelly-Shared algorithm, when run on this computation, executes the logicof Brelly on the subtree rooted by p as if the subtree represented a self-containedcomputation, using the depth-d lock sets of the accesses in the subtree.Proof: Pick an arbitrary location l and consider Brelly-Shared's actions concern-ing l during the execution of p's subtree. If there are no accesses to l in p's subtree,then the algorithm does nothing, just as Brelly would do nothing in a tree with noaccesses to l. Now suppose there are accesses to l in the subtree, and let e be the�rst such access in the serial depth-�rst execution. Consider what happens in thelines 1{5 of Access(l) during e, in the iteration when i = d. Since this is the �rstaccess to l in p's subtree, the P-node recorded in pid (d), if locks-depth[l] is not lessthan D, will not be p, and so locks(d)[l] will be set to fg, accessor (i)[l] to the ID ofthe initial thread, and pid (d)[l] to p. Note that locks(d)[l] and accessor (d)[l] have beeninitialized as they would have been in the beginning of Brelly, were it run on thesubtree rooted by p. Now, pid (d)[l] will not be set to another value, and so locks(d)[l]and accessor (d)[l] will not be reset, until the execution �nishes all the thread in p'ssubtree; in the meantime, Brelly-Shared will update locks(d)[l] and accessor (d)[l]exactly according to the logic of Brelly (lines 8{24 are exactly analogous to thecode for Access(l) in Brelly), except using depth-d lock sets at each access. Thus,the theorem holds.Corollary 4.7 The Brelly-Shared algorithm detects a violation of the umbrelladiscipline in a computation of a Cilk program with locks running serially on a giveninput if and only if a violation exists.The following theorem shows that Brelly-Shared runs a factor of k slower, anduses a factor of k more space than Brelly, where k is the maximum number of locksheld simultaneously.Theorem 4.8 On a Cilk program which on a given input executes serially in time T ,uses V shared memory locations, and holds at most k locks simultaneously, theBrelly-Shared algorithm runs in O(k2T �(V; V)) time and O(k2V) space.Proof: Since the lock-sharing depth of any access is at most k, the algorithm keepsat most k times the number of locks and accessor entries per location, and iterates atmost k times through lines 7{24 at each access, performing at most k times as manyseries/parallel checks as Brelly. Thus, the bounds follow from the bounds shownfor Brelly (Theorem 4.5).40

4.4 Data-race detection heuristics for Brelly andBrelly-SharedA user may adopt the umbrella discipline as a good programming practice and thenuse Brelly or Brelly-Shared to �nd violations of the discipline, which are alwaysconsidered undesirable. However, some users may be concerned primarily with dataraces outright. In this section we outline several heuristics to improve the usefulness ofBrelly's output, by causing it to report straightforward data races and hide non-raceviolations|i.e. unprotected umbrellas which do not contain data races|wheneverpossible. These heuristics are conservative: they never hide violations that are causedby data races unless a related data race has already been reported. For simplicity,we discuss the heuristics in the context of Brelly; they extend in the natural wayto Brelly-Shared.Before considering the heuristics themselves, recall howBrelly reports violations.As given in Figure 4-2, it reports violations by specifying the memory location, thecurrent access, the accessor access, and the nonlocker access of each lock that washeld during both the the current access and the accessor . In identifying an access, theoriginal string of code that was the source of that access can be printed: the �lename,line number, and the variable name used in the code. The nonlocker accesses showthe user why the locks held by both the current access and the one in accessor donot protect the umbrella rooted at their least common ancestor. Unfortunately, it isnot always easy or possible to determine from such a report where the data race is,or whether there is a data race at all, which is why we would like to conservativelyreport a violations as being between exactly two accesses|a straightforward datarace|whenever possible.Suppose Brelly detects a methodology violation during an access to location lin thread e which holds the lock set H: accessor [l] k e and there are no alive locks inlocks[l]. The following heuristics can be used:1. Report a data race between e and accessor [l] ifH\locks[l] = fg. This is alreadythe logic of lines 15{17 in Figure 4-2, since in such a case only two threads willbe involved in the violation, clearly indicating a data race.2. If there is exactly one lock c in H and c 2 locks[l], report a data race between cand nonlocker [c] if nonlocker [c] k e; otherwise ignore the violation as an um-brella violation without any data race. This heuristic is only correct if Brellyis slightly modi�ed: line 10 should set nonlocker [c] e only if e is in serieswith the existing nonlocker [c]. This logic ensures that the nonlocker of eachlock in locks[l] is the \most-parallel" access to l without that lock, that is, thenonlocker which any future thread will be logically in parallel with if it is inparallel with any such nonlocker.3. If a data race has been reported since the most recent serial access (i.e. sinceaccessor [l] was last updated), hide the violation unless there is a data race be-tween e and accessor [l] (determined with heuristics 1 and 2). Although this41

heuristic might hide data races, this seems acceptable since a data race in thesame umbrella has already been discovered and reported. This heuristic re-quires a per-location \data-race detected" ag to be set whenever a data raceis detected and reset at serial accesses.4. If a data race has already been reported between the source code strings thatcaused the accesses in e and accessor [l] (regardless of whether it was the samememory location), hide the violation. In general, hide the violation if a datarace between the source code strings of any pair of accesses involved, includingthe relevant nonlockers, has already been reported. This requires keeping trackof the races reported, which can be done e�ciently with a hash table.5. If heuristics 1, 2, and 4 do not apply, hide the violation if a violation involvingthe same set of accesses (including the nonlockers) has already been reported.This can be done with a hash table, as in heuristic 4. A more aggressive ande�cient version of this heuristic, which may cause data races to be nonconserva-tively hidden by previous false violations, is to hide the violation if any violationwith the same \endpoints" |i.e. the current thread and accessor|has beenreported.6. Summarize violations at the end, leaving out violations that can be been hiddenbased on data races found subsequently (a la heuristic 4). Also, while summa-rizing, violations can be sorted by source code string as an aid to the user whentracking down bugs.Some highly preliminary testing has been done with these heuristics. On a partic-ular computation (Chapter 5's maxflow running on a typical input), Brelly, withno heuristics, reported 65 violations. With heuristics 1-4 and the aggressive, non-conservative version of heuristic 5 enabled, Brelly reported 25 straightforward dataraces and 6 unprotected umbrellas. Of the unprotected umbrellas, the 2 that containdata races would have been correctly hidden by heuristic 6 (since the data races weresubsequently reported separately) and the other 4 are easily checked manually by theuser.To give a sense of how many of these apparent data races and violations areinfeasible, we note that there is only one a single bug related to data races in maxflow:one line of code, which wrote to shared memory, was mistakenly put just after theend of a crtical section instead of within it. This bug leads to a handful of feasibledata races, since the unprotected write in the misplaced line races with several otheraccesses. The large majority of the data races and umbrella discipline violationsreported in this example are, however, infeasible. They result from the practice ofmemory publishing (a linked-list work queue is used extensively in maxflow), whichis discussed in the conclusion (Chapter 7).
42

Chapter 5Empirical comparison of All-Setsand BrellyIn this section, we compare the empirical performance of All-Sets and Brelly ona number of programs and inputs, based on preliminary tests with four Cilk programsthat use locks and several inputs. These initial �ndings strongly indicate that ourperformance bounds for the algorithms are at least roughly reliable. Speci�cally,we see that L, the factor by which Brelly's performance bounds are better thanAll-Sets's, is predictive: if a program always accesses a particular location withthe same lock (so L is a small constant), All-Sets performs as fast as Brelly;when the number of lock sets per location grows with input size (so L grows withinput size), Brelly signi�cantly outperforms All-Sets. In addition, we see thatthe factor by which Brelly slows down the original program's computation is aconstant independent of input size, whereas the factor by which All-Sets slowsdown a program can grow with input size. Finally, we give an initial indication ofhow many nonrace umbrella violations Brelly typically reports.Our tests were done using the Nondeterminator-2, a new version of the Nonde-terminator (see Chapter 2) currently under development. The implementations ofAll-Sets and Brelly are not optimized, and so better performance than what wereport here is likely to be possible.According to Theorem 3.2, the factor by which All-Sets slows down a programcompared to its original running time is roughly O(kL), where L is the maximumnumber of distinct lock sets used by the program when accessing any particular loca-tion, and k is the maximum number of locks held by a thread at one time. Accordingto Theorem 4.5, the slowdown factor for Brelly is about O(k). In order to compareour experimental results with the theoretical bounds, we characterize our four testprograms in terms of the parameters k and L, not counting the implicit fake r-lockused by the detection algorithms:maxflow: A maximum-ow code based on Goldberg's push-relabel method [11].Each vertex in the graph contains a lock. Parallel threads perform simpleThis chapter is based on joint work published in [3]. 43

parameters time (sec.) slowdownprogram input k L original All-Sets Brelly All-Sets Brellymaxflow sparse 1K 2 32 0.05 30 3 590 66sparse 4K 2 64 0.2 484 14 2421 68dense 256 2 256 0.2 263 15 1315 78dense 512 2 512 2.0 7578 136 3789 68n-body 1K 1 1 0.6 47 47 79 782K 1 1 1.6 122 119 76 74bucket 100K 1 1 0.3 22 22 74 73rad iteration 1 2 65 1.2 109 45 91 37iteration 2 2 94 1.0 179 45 179 45iteration 5 2 168 2.8 773 94 276 33iteration 13 2 528 9.1 13123 559 1442 61Figure 5-1: Timings of our implementations on a variety of programs and inputs. Theinput parameters are given as sparse/dense and number of vertices for maxflow, numberof bodies for n-body, number of elements for bucket, and iteration number for rad. Theparameter L is the maximum number of distinct lock sets used while accessing any particularlocation, and k is the maximum number of locks held simultaneously. Running times for theoriginal optimized code, for All-Sets, and for Brelly are given, as well as the slowdownsof All-Sets and Brelly as compared to the original running time.operations asynchronously on graph edges and vertices. To operate on a vertexu, a thread acquires u's lock, and to operate on an edge (u; v), the threadacquires both u's lock and v's lock (making sure not to introduce a deadlock).Thus, for this application, the maximum number of locks held by a thread isk = 2, and L is at most the maximum degree of any vertex.n-body: An n-body gravity simulation using the Barnes-Hut algorithm [1]. In onephase of the program, parallel threads race to build various parts of an \octtree"data structure. Each part is protected by an associated lock, and the �rst threadto acquire that lock builds that part of the structure. As the program neverholds more than one lock at a time, we have k = L = 1.bucket: A bucket sort [5, Section 9.4]. Parallel threads acquire the lock associatedwith a bucket before adding elements to it. This algorithm is analogous to thetypical way a hash table is accessed in parallel. For this program, we havek = L = 1.rad: A 3-dimensional radiosity renderer running on a \maze" scene. The original75-source-�le C code was developed in Belgium by Bekaert et. al. [2]. We usedCilk to parallelize its scene geometry calculations. Each surface in the scenehas its own lock, as does each \patch" of the surface. In order to lock a patch,the surface lock must also be acquired, so that k = 2, and L is the maximumnumber of patches per surface, which increases at each iteration as the renderingis re�ned.44

Figure 5-1 shows the results of our experiments on the test codes. These resultsindicate that the performance of All-Sets is indeed dependent on the parameter L.Essentially no performance di�erence exists between All-Sets and Brelly whenL = 1, but All-Sets gets progressively worse as L increases due to larger inputs,while the slowdown factor of Brelly is constant, independent of L and input size.On all of our test programs, Brelly runs fast enough to be useful as a debuggingtool. In some cases, All-Sets is as fast, but in other cases, the overhead of All-Sets is too extreme (iteration 13 of rad takes over 3.5 hours) to allow interactivedebugging.1Although we have not done formal testing, it appears that the number of nonraceumbrella violations reported by Brelly can be signi�cant, even overwhelming, insome cases. These violations are typically infeasible, being caused by the commonpractice of memory publishing (see discussion in Chapter 7). For an example onesuch case, see the discussion of maxflow at the end of Section 4.4. Programs thatdo not publish memory seem to naturally obey the umbrella discipline much morereadily, with no major cause of discipline violations.

1For a production debugging tool, the implementations of these and the other algorithms in thisthesis would need to be highly optimized, since they instrument every access to shared memory. Weexpect that one key optimization is to handle reads and writes separately with code speci�c to eachcase and without the convenience of a fake read lock. Is it be possible to implement the algorithmse�ciently enough to be general purpose, comparable to SP-bags in e�ciency when no locks areused? 45

46

Chapter 6Data-race detection incomputations with guardstatementsIn this chapter, we discuss data-race detection in programs that use a proposed \guardstatement" language construct, instead of locks, for atomicity. The guard statementallows users to specify atomicity at a higher level than with locks, and with built-instructure. Happily, because of the more restrictive semantics of guard statements,detecting data races in programs with guard statements is easier than detecting dataraces in those with locks. We present the Review-Guards algorithm, which, on aCilk program that runs serially on a given input in time T , uses V shared memorylocations, and guards at most k memory blocks simultaneously, detects data races inO(T (lg k + �(V; V))) time using O(V + k) space. The Review-Guards-Sharedalgorithm, an extension of Review-Guards which correctly handles critical sectionscontaining parallelism, achieves the same asymptotic performance bounds.Our discussion of the guard statement is not intended to be de�nitive: the properway to provide structure atomicity is left as an open question. The guard statementproposed in this chapter does, however, touch on several key design choices andprovides a basis for the Review-Guards algorithms, which show that data races canbe detected e�ciently in programs with a reasonable form of higher-level structuredatomicity.This chapter is organized as follows. In Section 6.1, we propose a syntax andsemantics for the guard statement, with consideration of how the new language con-struct might be implemented at runtime. In Section 6.2, we compare the guardstatement with locks, showing that, although the data-race detection algorithms forlocks can be modi�ed to work with guard statements, new algorithms speci�c toguard statements can give better performance. Accordingly, we present the Review-Guards and Review-Guards-Shared algorithms in Sections 6.3 and 6.4, respec-tively.The proposed guard statement and implementation ideas in Section 6.1 were developed jointlywith Charles E. Leiserson, Mingdong Feng, and other members of the Cilk group at MIT. 47

6.1 The guard statement for providing structuredatomicityIn this section, we propose a \guard statement" language construct for providingstructured atomicity. We �rst explain some of the disadvantages of locks, motivatingthe need for a way to specify atomicity at a higher level. We then specify andsyntax and semantics of the guard statement, showing how it might be implementedat runtime. In order to achieve an e�cient implementation, we then rede�ne guardstatements to include \same-start semantics": parallel access are mutually atomiconly if they are guarded using memory blocks with the same start address. We arguethat these semantics can be implemented e�ciently. Finally, we discuss the limitationson expressibility imposed by guard statements with these restricted semantics.Using locks to provide atomicity has two major disadvantages. First, locks requireusers to allocate lock variables explicitly in their code, which can be a nuisanceand possibly a serious hit on memory usage, as, for example, in the case of a largearray with a lock associated with each element. Second, and more importantly, theexibility of locks, which can be acquired and released according to whatever protocol(or lack of protocol) a user chooses to follow, can easily lead to convoluted or incorrectcode. For instance, deadlock, in which a program comes to a standstill because eachthread waits for another thread to release a lock in a circular dependency, is a commonproblem.These problems with locks are not insurmountable: deadlock, for one, can beavoided by the standard discipline of always acquiring locks in a �xed global order.Nonetheless, some languages limit the exibility of locks|for instance, by allowingat most one lock to be held at a time. Other languages hide locks from the useraltogether and provide atomicity with higher-level language constructs. Java, forinstance, does not provide explicit locks but allows methods of an object class to bedenoted as \synchronized"; such methods, if invoked in parallel for a single object,operate atomically with respect to each other. Java also provides a separate languageconstruct, with the syntaxsynchronized(object) f statements gthat implicitly acquires the lock associated with object (all Java objects have hiddenlocks associated with them), executes the code in statements, and then releases thelock. These Java language features for atomicity allow users to ignore the details oflocks and reason about atomicity at a higher level.The current version of Cilk, version 5.1, supports atomicity exclusively throughlocks. An alternative mechanism for atomicity, which we propose here, is a guardstatement language construct which allows the user to indicate that a block a codeshould be executed atomically on a speci�c range of memory. Consider the followingsyntax: guard(block1; block2; : : :) f statements gBetween the curly braces, statements is arbitrary Cilk code that does not contain48

another guard statement; this code is to be executed normally, except that accessesto the speci�ed memory blocks will be guarded. The one or more memory blocks tobe guarded are speci�ed in a semicolon-delimited list between the parentheses justafter the guard keyword, where each block i is either the memory associated with avariable, speci�ed by the variable name; or an arbitrary array of memory, speci�edby a pointer and size, separated by a comma. For example, if x is a storage variable(of type int, float, struct, etc.) and p1 and p2 are pointers, the guard statementguard(x; p1, 20; p2, n+1) f : : : ghas the semantics: \Within this body of code, make accesses to x, the 20 arrayelements beginning at location p1, and the n+1 array elements beginning at p2 atomicwith respect to other parallel accesses to these locations which are also guarded."1With guard statements, atomicity is well structured and does not requires theuser to allocate extra data structures. Furthermore, as the syntax disallows nestedguard statements, the runtime system can easily prevent deadlock by automaticallyacquiring any hidden locks it needs in a �xed global order. We therefore include in thespeci�cation of the guard statement the following guarantee, which an implementationmust ensure: a program with guard statements but without locks will never deadlock.2The guard statement does require more language support than locks, both in thecompiler, which must handle the new syntax, and at runtime. To implement atomic-ity, the runtime system needs to allocate, acquire, and release locks behind the scenes,based on the user's guard statements. We suggest that the runtime system allocate a�xed number of hidden lock variables, and then translate each memory location whichneeds to be guarded into one of these locks using a hash function. When executing aguard statement, the locks associated (through the hash function) with each guardedmemory location are acquired before, and released after, the execution of the codewithin the guard statement.The glaring problem with this straightforward implementation is that guardingarrays of memory, such as in the example above (p1, 20 and p2, n+1), is unaccept-ably ine�cient, since one lock per element is acquired. (Acquiring a lock is typicallyan expensive operation, taking over a dozen cycles on a Sun UltraSPARC 1 usingthe compare-and-swap instruction, for instance.) There might be an e�cient way of\locking" an entire block of memory without having to lock each byte individually.An interval-tree-like data structure in which intervals can be quickly added, deleted,and searched in parallel would be helpful, and possibly fast enough: the runtime sys-tem could maintain the currently guarded blocks of memory as intervals in the data1The sizes of variable and array elements are determined by variable and pointer types, as usualin C. Also, to be consistent with C blocks, the open and close braces surrounding statements areoptional when guarding a single statement.2The prohibition against nested guard statements may seem overly restrictive: why not allowthe user to nest guard statements if he is willing to do without the guarantee of deadlock-freedom?Because with guard statements, the order in which (hidden) locks are acquired is not in the user'scontrol, and therefore a user cannot implement application-speci�c deadlock-prevention protocols,as is possible with explicit locks. 49

structure and, when executing a guard statement, check for already guarded memoryblocks that overlap with the to-be-guarded memory blocks in the structure, waitingfor them to be removed before executing the body of the guard statement. In anycase, we know of no such data structure.How then should the runtime system implement guard statements? Our solutionis to modify the semantics of the guard statement. Speci�cally, we specify same-start semantics: memory accesses are atomic with each other if they are withinguard statements, the locations accessed are in memory blocks speci�ed in the guardstatements, and these blocks of memory have the same start addresses for each lo-cation. For example, parallel threads which guard and access memory addresses 1through 10, 1 through 5, and the single byte at address 1, are atomic with each other;threads which guard and access addresses 1 through 10, 2 through 9, and the sin-gle byte at address 5, are not. With these more limited guard-statement semantics,the runtime system need only acquire the lock associated with the �rst byte of eachguarded memory block, meaning that only one lock per guarded block, rather perguarded location, is acquired. For convenience, we say that the guard address of aguarded memory access is the start address of the guarded memory block that con-tains the accessed location, and that the access is protected by the start address.The Review-Guards and Review-Guard-Shared algorithms detect data racesaccording to these semantics.3There is another potential problem with using a hash function to associate memorylocations with lock variables: since the number of available locks is presumably muchsmaller than the size of shared memory, multiple memory locations hash to the samelock, possibly resulting in guard statements which protect unrelated blocks of memorybeing forced to be atomic with each other. For example, suppose one guard statementprotects location l1 and another protects a di�erent location l2, and that l1 and l2 hashto the same hidden lock. These two guard statements are atomic with each other,as they use the same lock, which, while not incorrect, may degrade performance,since the guard statements are forced to wait for each other to �nish if they runsimultaneously. Fortunately, the sharing of locks by di�erent memory locations canbe solved by allocating a su�ciently large number of hidden locks. The maximumnumber of simultaneously guarded blocks of memory during a parallel execution, andtherefore the maximum number of simultaneously held lock variables, is small: it is3Limiting the semantics of the guard statements is equivalent to adopting a \guarding discipline,"analogous to a locking discipline, except that in this case the motivation for the discipline is to makeruntime implementation more e�cient, rather than to simplify race detection or avoid deadlock. Wemight stipulate that a program not guard, in parallel, overlapping blocks of memory with di�erentstart addresses, and then have the race detection algorithms report violations of this discipline aswell as data races under the original guard semantics. Unlike with umbrella semantics, however,violations of such a guarding discipline would always be data races, since the runtime system, underthe same-start semantics, in fact only locks the �rst byte of each guarded block.Note that adoption of the same-start semantics leads to an awkward situation in a typical im-plementation: the sizes of guarded memory blocks are ignored during runtime. The sizes remainin the syntax of the guard statement, however, since they may be used by the memory-consistencyalgorithm in a distributed system, as suggested below in Section 6.2.50

at most kP , where k is the maximum number of simultaneously guarded memoryblocks in a serial execution, and P is the number of processors. Thus, if the numberof available locks is N , then the probability that any given memory location willbe translated by a hash function that appears uniformly random into a lock that iscurrently being used for a di�erent memory location is less than kP=N . If k � 4and P � 256|usually safe assumptions|then, with 100 KB of hidden locks, we havekP=N � 1=100, which should be small enough to make delay caused by accidentallyshared locks negligible.How severe a limitation, algorithmically, are same-start semantics for guard state-ments? Programs often access identical memory blocks in parallel, sometimes evenperforming identical operations on them: for example, global counters which areupdated in parallel; nodes of a graph which are operated on atomically by variousprocedures; and slots of a parallel hash table. In such cases, same-start semanticsare natural and su�cient. Sometimes, however, a program may access parts of aglobal data structure in one thread, and the entire data structure in another, parallelthread. For example, consider a table which is updated one entry at a time, or sortedall at once: the update and sort operations, if occurring in parallel, access overlap-ping memory locations which do not necessarily have the same start address, andso the same-start semantics are insu�cient. The original semantics of guard state-ments, which do not require overlapping memory blocks guarded in parallel to havethe same start addresses, are needed for these table operations. The straightforwardimplementation of those semantics mentioned above, in which one lock per guardedlocation is acquired, would likely be unacceptably slow, however. It seems that, apartfrom a fast implementation of the original guard semantics, guard statements mayare not a good choice for programming these parallel table operations.One should note that even with locks, the correct solution is not clear: if a programusing locks acquires a lock associated with the entire table each time it updates anentry, then the updates would not execute simultaneously. If, on the other hand, theprogram acquires every entry's lock before sorting the table, it would have the same,rather serious, performance hit as the straightforward implementation of the originalguard semantics. Locks are, of course, more exible, giving the user the choice of howto provide atomicity for any given problem; guard statements, by design, limit thepossibilities in the interests of simplicity.6.2 The need for detection algorithms speci�c toguard statementsDo we need data-race detection algorithms speci�c to guard statements? Can we usethe algorithms for programs with locks, perhaps with minor changes, to detect dataraces in programs with guard statements? In this section, we show that although thealgorithms for locks can be made to work with guard statements, they are not optimal.Thus, a need exists for detection algorithms speci�c to guard statements, such asReview-Guards and Review-Guards-Shared, which we present in Sections 6.351

cilk void guard_swap(int *q1, cilk void lock_swap(int *q1,int *q2) { int *q2) {int temp; int temp;guard(*q1) { Cilk_lock(A);temp = *q1; temp = *q1;*q1 = *q2; *q1 = *q2;*q2 = temp; *q2 = temp;} Cilk_unlock(A);} }Figure 6-1: The functions guard swap and lock swap ostensibly do the same thing:atomically swap the integers pointed to by the parameters q1 and q2. (The variable A is aglobal lock, whose declaration and initialization is not shown.) In fact, however, guard swaponly guards accesses to *q1, whereas lock swap correctly protects the entire swap operationwith a lock. Changing guard(*q1) to guard(*q1; *q2) in guard swap would make itcorrectly atomic.and 6.4, respectively.The translation of guarded memory blocks to locks by the runtime system mayseem to imply that the locking algorithms for programs with locks presented in Chap-ters 3 and 4 can be used directly for race detection, leaving no need for new algorithms.One might even think the guard statement to be merely a mechanism for hiding orrestricting the syntax of locks, with the same underlying semantics. For example,consider the guard swap and lock swap functions shown in Figure 6-1, which swap apair of integer locations, the �rst using a guard statement and the second with a lock.Parallel threads running lock swap will be correctly atomic with each other due tothe global lock swap lockvar. Wouldn't parallel threads executing guard lock alsobe atomic with each other, since the runtime system acquires the lock associated with*q1 before swapping the values?The answer is no. Recall that the semantics state that only the accesses to thespeci�cally guarded memory blocks are atomic, meaning that the guarded swap oper-ation in guard swap is not atomic with itself since *q2 is not speci�cally guarded. Ina distributed system with software-simulated shared memory (e.g. Distributed Cilk[24, Chapter 8]), these semantics might be implemented strictly, with the memorysystem ensuring consistency between parallel threads during their execution, by per-forming expensive memory update operations between the distributed memories, onlyfor speci�cally guarded memory blocks. In such a system, the value of *q2, which isnot guarded, might not be updated between parallel threads executing guard swap,leading to incorrect behavior. The memory semantics of user locks is stronger, re-quiring all modi�ed locations within a critical section to be updated between parallelthreads, so lock swap is atomic and correct.4 It is true that on a hardware shared-4The use of locks typically requires at least release consistency [13, p. 716], in which memory52

memory machine, the implementation we have suggested for guard statements wouldlikely result in an atomic guard swap as well, since a fast memory barrier can beused to update all memory after critical sections, but this would be an accident ofthe implementation, not an implication of the guard statement semantics. Guardstatements are indeed more than syntactic sugar; they are not merely hiding theacquisition and release of locks associated with certain memory blocks.Detecting data races in a program that uses guard statements for atomicity isnot, then, immediately reducible to the problem of detecting data races in programswith locks. Still, the problem is not wholly di�erent: data races can be found inthe same general way, with accesses protected by guard addresses instead of lockvariables. The key distinctive feature is that atomicity is explicitly associated withspeci�c memory locations. In the case of locks, an algorithm can �nd out whichlocks protect any particular access by referring to the single, globally maintainedset of currently held locks. In the case of guard statements, there is no analogousglobal lock set: an algorithm must keep track of whether each location is guarded ornot, and by which address, individually. Our algorithms for detecting data races inprograms with locks|All-Sets and Brelly (Sections 3.1 and 4.2, respectively)|can be modi�ed to work for programs using guard statements by using an extrashadow space H[l] to keep track of which lock (i.e. guard address) protects eachlocation l instead of a global lock set H, used for accesses to all locations. Instead ofupdating H at each lock and unlock, the algorithms update the appropriate locationsof H[l] when entering and exiting guard statements, and use the appropriate H[l]instead of a global H when executing its logic at a memory access.While these modi�ed algorithms are convenient, giving us tools for checking pro-grams with guard statements with little extra e�ort, they are not optimal. Considerthe bounds for All-Sets: O(LT (k+�(V; V))) time and O(kLV) space on a compu-tation that runs serially in time T , uses V shared memory locations, holds at most klocks simultaneously, and holds at most L di�erent lock sets during accesses to anyparticular location. With guard statements, there is at most one guard address at atime per location, so k = 1, leaving us with a time bound of O(LT �(V; V)) and spacebound of O(LV), where L is in this context the maximum number of guard addressesused to protect any particular location. These bounds are reasonable, especially ifwe might expect L to be small for most programs, but they can be improved, aswe will see with Review-Guards below. Now consider the bounds for Brelly:O(kT �(V; V)) time and O(kV) space. With k = 1 in programs with guard state-ments, these bounds become O(T �(V; V)) and O(V)|almost linear. Unfortunately,Brelly has the disadvantage of reporting violations of the umbrella discipline insteadof data races directly.We would like to have an algorithm for detecting data races in programs usingguard statements that runs in nearly linear time and always reports only data races.In fact, Brelly, modi�ed as described above, is almost such an algorithm. If lockssets always contain at most a single lock, Brelly always reports violations that areunambiguously due to data races (see lines 15{17 of the Brelly code in Figure 4-2).updates are made visible to other processors upon the release of a lock. 53

And, when modi�ed for guard statements, locks sets in Brelly would contain atmost a single lock (i.e. guard address) if not for the use of the fake read lock, whichincreases the maximum size of locks sets to two, enough to cause nonrace umbrellaviolations.The solution is to check programs according to logic of the Brelly modi�edfor guard statements, but without the convenience of the fake read lock. Reads andwrites must be handled separately, with explicit logic to ignore reads that \race" withother reads. The remaining sections of this chapter present the details of an algorithmalong these lines, called Review-Guards, and an extension of the algorithm, calledReview-Guards-Shared, that correctly handles guard statements which containparallelism.6.3 The Review-Guards algorithmThe Review-Guards algorithm �nds data races in Cilk programs with guard state-ments that never contain parallelism. In this section, we describe the algorithm andthen prove that it acheives O(T (lgk+�(V; V))) time and O(V + k) space bounds ona program that, on a given input, runs serially in time T using V space, with at mostk simultaneously guarded memory blocks.During the serial depth-�rst execution of a program on a speci�c input, theReview-Guards algorithm maintains the set of currently guarded memory blocksin the global variable current-blocks, which can be implemented as a red-black tree[5, Chapter 14] indexed by the start addresses of the memory blocks, allowing mem-ory blocks to be inserted and deleted e�ciently. To record information about pastmemory accesses, the algorithm maintains the following shadow space informationfor each shared memory location l: writer [l] and writer-guard [l], the thread ID andguard address (or nil), respectively, of the last \serial write" to l; and reader [l] andreader-guard [l], the thread ID and guard address (or nil), respectively, of the last\serial read" from l. Serial writes and reads, and parallel writes and reads,are analogous to Brelly's serial and parallel accesses: they are logically in series orin parallel with the previous writer [l] or reader [l], respectively. These shadow spacesare initialized to nil or the ID of the initial thread (which logically precedes all otherthreads) as appropriate. In addition, both writer-guard [l] and reader-guard [l] aretagged, when not nil, with a nonguarder �eld indicating the thread ID of an accessto l (writes for writer-guard [l] and reads for reader-guard [l]) which is unguarded orguarded by a di�erent address|these nonguarders are analogous to Brelly's non-lockers. Each of these tags is associated with the guard address stored at a particularlocation; no tag is associated with a guard address globally, across all locations.Besides maintaining, according to the SP-bags algorithm (Chapter 2), an SP-bags data structure for determining the series-parallel relationship between the cur-rent thread and any previously executed thread, Review-Guards updates current-blocks appropriately whenever entering or exiting a guard statement (see Figure 6-2),and checks for data races and updates the other shadow spaces at every shared mem-ory access (see Figure 6-3). At the begining of each memory access, the algorithm54

Enter-Guard with memory blocks p1[n1]; p2[n2]; : : :1 for each memory block pi[ni]2 do insert pi[ni] into current-blocksExit-Guard with memory blocks p1[n1]; p2[n2]; : : :1 for each memory block pi[ni]2 do delete pi[ni] from current-blocksFigure 6-2: The Review-Guards algorithm. Pseudocode for entering and exiting aguard statement. Note that all memory blocks, whether storage variables or pointers toarrays, can be considered a pointer pi followed by the number of bytes ni, indicating thesize of the block. The global data structure current-blocks keeps track of the currentlyguarded memory blocks.determines the guard address (if any) of the memory location being accessed by look-ing in current-blocks for a memory block containing the location (lines 1{3 of Readand Write).Review-Guards's logic forRead andWrite is closely based on Brelly's logicfor Access, with writes checked against previous reads and writes and reads checkedagainst previous writes, rather than generic accesses checked against all previousaccesses. In lines 4{10 of Write, a write is checked against previous writes; inlines 17{21, a write is checked against previous reads. In lines 4{8 of Read, a readis checked against previous writes. For the bene�t of future accesses, serial reads andwrites update reader [l] and reader-guard [l], and writer [l] and writer-guard [l], alongwith the nonguarder tags, in lines 12{17 of Read and lines 11{16 of Write. Noticethe absence of alive ags, which are not needed because an access races either withreader [l], writer [l], or a nonguarder, and so previous guard addresses that have beenoverwritten (or \killed," in Brelly's terminology) are irrelevant.Review-Guards does make one addition to the basic logic ofBrelly: in lines 7{8 of Write and lines 10{11 of Read, the algorithm overwrites the nonguarder ofwriter-guard [l] or reader-guard [l] with the current guard address if the current accessis logically in series with the the existing nonguarder. Doing so ensures that thenonguarder will be the one logically in parallel with the most future threads.5We now show that Review-Guards is correct, using an approach that is, notsurprisingly, similar to the one used for Brelly in Section 4.2. The following lemmais analogous to Lemma 4.2 and follows from analogous reasoning.Lemma 6.1 Suppose a thread e reads (or writes) some location l during an executionof Review-Guards. Then all previously executed reads (or writes) of l logicallyprecede e in the computation.5The reasoning here is the same as in heuristic 2 for Brelly in Section 4.4. 55

Write(l) in thread e1 if there exists a memory block in current-blocks containing l2 then current-guard the start address of the block3 else current-guard nil4 if writer [l] k e5 then if writer-guard [l] = nil or writer-guard [l] 6= current-guard6 then report race between writer [l] and e7 if writer-guard [l] 6= nil and nonguarder [writer-guard [l]] � e8 then nonguarder [writer-guard [l]] e9 elseif nonguarder [writer-guard [l]] k e10 then report race between nonguarder [writer-guard [l]] and current write11 else if current-guard = nil12 then writer-guard [l] nil13 elseif current-guard 6= writer-guard [l]14 then writer-guard [l] current-guard15 nonguarder [writer-guard [l]] writer [l]16 writer [l] e17 if reader [l] k e18 then if reader-guard [l] = nil or reader-guard [l] 6= current-guard19 then report race between reader [l] and current write20 elseif nonguarder [reader-guard [l]] k e21 then report race between nonguarder [reader-guard [l]] and current writeRead(l) in thread e1 if there exists a memory block in current-blocks containing l2 then current-guard the start address of the block3 else current-guard nil4 if writer [l] k e5 then if writer-guard [l] = nil or writer-guard [l] 6= current-guard6 then report race between writer [l] and current read7 elseif nonguarder [writer-guard [l]] k e8 then report race between nonguarder [writer-guard [l]] and current read9 if reader [l] k e10 then if reader-guard [l] 6= nil and reader-guard [l] 6= current-guardand nonguarder [reader-guard [l]] � e11 then nonguarder [reader-guard [l]] e12 else if current-guard = nil13 then reader-guard [l] nil14 elseif current-guard 6= reader-guard [l]15 then reader-guard [l] current-guard16 nonguarder [reader-guard [l]] reader [l]17 reader [l] eFigure 6-3: The Review-Guards algorithm. Pseudocode for accessing shared memorylocations.56

Throughout the proofs of the following lemma and theorem we use the fact thatat all times the value in reader-guard [l] (writer-guard [l]) corresponds to the accessrecorded in reader[l] (writer [l])|i.e. it is the guard address of that access or nilif the access was unguarded. This correspondence holds because reader-guard [l] andreader [l] (writer-guard [l] and writer [l]) are always updated together in lines 12{17 ofRead (lines 11{16 of Write). We also rely on the fact that, during any access to l,current-guard [l] is the guard address of l, or nil if none; this is ensured by the logicof Enter-Guard and Exit-Guard.Lemma 6.2 Suppose reader-guard [l] 6= nil at some point during the execution ofReview-Guards, and let e be the most recent thread performing a serial read from lwithout being protected by the guard address in reader-guard [l], or the initial threadif no such serial read exists. Then nonguarder [reader-guard [l]] is either e or a threadafter e in the serial execution in series with it. The analogous statement holds forwriter-guard [l] and nonguarder [writer-guard [l]].Proof: Fix a moment in the execution and let e be as de�ned in the lemma. We �rstshow that nonguarder [reader-guard [l]] is set to e at some point and then it is alwaysupdated, if at all, to a thread after it in the serial execution in series with it. All linenumbers refer to Read(l).Let e0 be the �rst serial read after e in the serial execution; such a serial read existsbecause reader-guard [l] 6= nil and reader-guard [l] is only set to a guard addressduring a serial read in line 15. Since e is the most recent serial read from l notprotected by reader-guard [l], e0 is protected by reader-guard [l] and therefore updatednonguarder [reader-guard [l]] to the previous reader [l], namely e, in line 16. (Recallthat reader [l] is initialized to the ID of the initial thread.)Now consider, in order of the serial execution, each thread e00 that updates non-guarder [reader-guard [l]] after e0, if any such thread exists. Now e00 must be a parallelread, since every serial read from l after e is protected by reader-guard [l], causingthe test in line 14 to fail and preventing line 16 to be run. Thus, nonguarder [reader-guard [l]] is updated by e00 to e00 (the most recent thread at the time) after the al-gorithm checks that e00 is in series with the previous value of nonguarder [reader-guard [l]] (lines 10{11). By transitivity of �, we know the whatever thread ends upin nonguarder [reader-guard [l]], if not e, runs after e and is in series with it.The analogous statement about writer-guard [l] and nonguarder [writer-guard [l]]follows from analogous reasoning.Theorem 6.3 Consider a Cilk program with guard statements that never containparallelism. The Review-Guards algorithm detects a data race in the computationof this program running serially on a given input if and only if a data race exists inthe computation.Proof: ()) We now show that data races reported indeed exist. Given that at leastone write is involved, Review-Guards reports a race in the following two cases: 57

Case 1: The current access is in parallel with reader (writer) and either reader-guard (writer-guard) is nil or a di�erent guard address than the one protectingthe current access, so a race between the current access and reader (writer) isreported|e.g. line 6 of Write. In this case, the existence of a data race asreported follows because reader-guard (writer-guard) always corresponds to theguard address of reader (writer).Case 2: The current access uses the same guard as reader-guard (writer-guard) butis in parallel with nonguarder [reader-guard] (nonguarder [writer-guard]), so arace between the current access and the nonguarder is reported|e.g. line 10of Write. In this case, the existence of a data race as reported follows fromLemma 6.2.(() Suppose a data race exists; we show that the algorithm reports a race. Lete1 and e2 be threads which form a data race on l, where e2 executes after e1 in theserial execution. Since there is a race, the threads did not use the same guard addresswhile accessing l or at least one of the accesses was unguarded.Suppose e1 reads and e2 writes, and that reader [l] = e when e2 runs. If e = e1,then consider what happens in Write(l) when e2 runs: the algorithm will discoverthat reader [l] k e2 (since reader [l] = e = e1) and that reader-guard [l] is e1's guardaddress or nil, causing a race to be reported in line 19. We now assume that e 6= e1and consider two cases depending on whether e1 is a serial or parallel read. Notethat since reader [l] and reader-guard [l] correspond, reader-guard [l] will be the guardaddress used by e, or nil if none, at the time e2 runs.Case 1: The access in e1 is a serial read, so it updates reader [l] e1. In thiscase, e must run after e1 since reader [l] = e when e2 runs. By Lemma 6.1 wehave e1 � e; and then by e1 k e2 and Lemma 2.1 we have e k e2. Considerwhat happens in Write(l) when e2 runs. If reader-guard [l] is nil or di�erentfrom e2's current guard address (current-guard), then a race will be reported inline 19.Otherwise, current-guard [l] = reader-guard [l] and we need to show thatnonguarder [reader-guard [l]] k e2 and that a race is reported in line 21. Considerthe most recent serial read e0 before e which was unguarded or protected bya di�erent guard address than reader-guard [l] (e's guard address). Since theserial read in e1 was either unguarded or not protected by current-guard [l] =reader-guard [l] (there would be no race with e2 otherwise), either e0 = e1 ore0 ran after e1, in which case by Lemma 6.1 we have e1 � e0. By Lemma 6.2we know that nonguarder [reader-guard [l]] either equals e0 or is a thread af-ter e0 in series with it, so either trivially or by transitivity we have e1 �nonguarder [reader-guard [l]]. By Lemma 2.1 we then have nonguarder [reader-guard [l]] k e2, as desired.Case 2: The access in e1 is a parallel read, and so does not update reader [l]. Lete0 be the most recent thread which updates reader [l] before e1. Then e0 k e1,since otherwise e1 would have updated reader [l] in line 17 of Read(l). By58

pseudotransitivity (Lemma 2.2) we have e0 k e2. Either e0 = e and thus e k e2or, by Lemma 6.1, e0 � e, which further means, by Lemma 2.1, that e k e2.Consider what happens in Write(l) when e2 runs. As in the previous caseabove, if reader-guard [l] is nil or di�erent from current-guard [l], a race will bereported in line 19.Otherwise reader-guard [l] = current-guard [l], and we need to show thatnonguarder [reader-guard [l]] will be discovered to be in parallel with e2, leadingto a race being reported in line 21. Let e00 be the most recent serial read notprotected by reader-guard [l] (e's guard address), or the initial thread if no suchread exists.Suppose e00 either equals e0 or that it ran after e0, in which case by Lemma 6.1we have e0 � e00. By Lemma 6.2 we have either nonguarder [reader-guard [l]] = e00or that nonguarder [reader-guard [l]] is a thread after e00 in series with it. Thus, ei-ther trivially or by applying transitivity (to get e0 � nonguarder [reader-guard [l]])and Lemma 2.1 (using the fact that e0 k e2), we have nonguarder [reader-guard [l]]k e2, as desired.Now suppose e00 ran before e0, and let w be the thread stored in non-guarder [reader-guard [l]] at the time the read in e1 executed. Since e00 is the mostrecent serial read not protected by e's guard address (the same as e2's) or no suchread exists, at the time e1 runs (which is after e0) we have reader-guard [l] 6= niland reader-guard [l] 6= current-guard (since e0, being after e00, has the same guardaddress as e2 but e1 does not). Thus, since e1 is a parallel read, it checkedwhether w � e1, and if it was, set nonguarder [reader-guard [l]] e1 (lines 10{11 of Read(l)). As any serial read after e00 used the same guard address as eand so nonguarder [reader-guard [l]] is not updated in a serial read, any Subse-quent updates to nonguarder [reader-guard [l]] are in parallel reads and thereforeonly update nonguarder [reader-guard [l]] with serial values (lines 10{11). Bytransitivity we have e1 � nonguarder [reader-guard [l]] and by Lemma 2.1 wehave nonguarder [reader-guard [l]] k e2. If, however, the read in e1 found that wwas in parallel in line 10 of Read(l) and so did not update nonguarder [reader-guard [l]], then by pseudotransitivity (Lemma 2.2) we have w k e2, and by similarreasoning we can by transitivity conclude that w � nonguarder [reader-guard [l]]and thus, by Lemma 2.1, that nonguarder [reader-guard [l]] k e2, as desired.The argument when e1 is a write and e2 is either a read or a write is analogous.In proving the runtime performance ofReview-Guards, we assume that current-blocks is maintained as a red-black tree indexed by the start addresses of the memoryblocks. Insertion and deletion of memory blocks in Enter-Guard and Exit-Guardare handled in the obvious way. In lines 1{3 of Read andWrite, the algorithm �ndsthe guard address (if any) of a location by searching the tree for either a memory blockthat starts with the location, in which case the location itself is the guard address, orthe predecessor to the memory location in the tree, in which case the predecessor'sstart address is the guard address if that memory block contains the location. Since59

insert, delete, search, and search-for-predecessor operations for a red-black tree run inlogarithmic time, and the size of current-blocks is at most k, the operations involvingcurrent-blocks each run in O(lg k) time.Theorem 6.4 Consider a Cilk program with guard statements that never containparallelism which runs serially on a given input in T , uses V shared memory loca-tions, and guards at most k memory blocks simultaneously. The Review-Guardsalgorithm checks this computation in O(T (lgk+�(V; V))) time using O(V +k) space.Proof: The space bound follows since a constant amount of shadow space informationper shared memory location, and current-blocks takes O(k) space. The time boundfollows since, in addition to the red-black tree operations during Enter-Guard,Exit-Guard, and each memory access, the algorithm performs, at each access, aconstant number of series/parallel relationships checks, each taking O(�(V; V)) time.Since k is almost always at most 2 or 3, it is probably not worth using a red-blacktree in practice. Instead, the current-blocks data structure can be kept as an unsortedlinked list, with operations on it taking O(k) time.6.4 The Review-Guards-Shared algorithmIn this section, we present the Review-Guards-Shared algorithm, an extensionof Review-Guards that allows for parallelism within critical section. The logic ofReview-Guards-Shared is, oddly enough, almost exactly a concatenation of thelogic of Review-Guards with that of SP-bags, the algorithm upon which all thealgorithms in thesis thesis, including Review-Guards, are based. After describingReview-Guards-Shared, we show that it is correct and prove that it has the same,almost-linear performance bounds as the original Review-Guards.As discussed in Section 3.2, we require that all procedures spawned in a criticalsection always �nish before the end of the critical section. Therefore, just as we requirea sync after the last spawn in a critical section ended by a Cilk unlock statement,we extend the semantics of guard statements to include an implicit sync just beforethe exit from a guard statement.When guard statements contain parallelism, two parallel accesses protected bythe same guard address may still form a data race, since they may share the same\instance" of the guard address. Given a guarded access to location l, the instanceof the guard address of that access is the outermost guard statement in the runtimecomputation which protects a memory block including l|in other words, the currentguard statement that actually acquired a lock, or otherwise provides atomicity, forl's guard address. If two parallel accesses to the same location, at least one of whichis a write, share the same instance of a guard address, the accesses form a data race.Parallelism within guard statements is considerably easier to handle than par-allelism within locked critical regions, because there is always at most one guard60

Enter-Guard with memory blocks p1[n1]; p2[n2]; : : :1 for each memory block pi[ni]2 do insert pi[ni] into current-blocks3 for each location l in pi[ni]4 do inside-reader [l] ID of initial thread5 inside-writer [l] ID of initial threadExit-Guard with guard statement ID s and memory blocks p1[n1]; p2[n2]; : : :1 perform Exit-Guard logic from the original Review-GuardsWrite(l) in thread e1 perform Write(l) logic from the original Review-Guards2 if current-guard 6= nil � current-guard variable from line 13 then if inside-writer [l] k e4 then declare race between inside-writer [l] and current write5 if inside-reader [l] k e6 then declare race between insider-reader [l] and current write7 inside-writer [l] eRead(l) in thread e1 perform Read(l) logic from the original Review-Guards2 if current-guard 6= nil � current-guard variable from line 13 then if inside-writer [l] k e4 then declare race between inside-writer [l] and current read5 if inside-reader [l] � e6 then inside-reader [l] eFigure 6-4: The Review-Guards-Shared algorithm. Logic is shown for for enteringand exiting a guard statement, and for reading and writing a shared memory location.
61

address protecting any given location. To �nd data races involving parallelism withinguard statements, a detection algorithm need only check a guarded access againstother accesses sharing the instance of its one guard address. In fact, it would besu�cient to �nd basic determinacy races on a location l within guard statements thatprotect location l, since any accesses to l within such guard statements cannot alsobe guarded by any other guard statements.Accordingly, Review-Guards-Shared extends Review-Guards by simplyperforming the logic of SP-bags, the e�cient determinacy race detection algorithm(Chapter 2), to �nd races on a location l within each guard statement that protects l.SP-bags maintains reader [l] and writer [l] at each location l to record informationabout past reads and writes to l in the SP-tree; Review-Guards-Shared main-tains, if l is currently guarded, inside-reader [l] and inside-writer [l] to do the samething, except only for the part of the SP-tree corresponding to the code inside theguard statement that protects l. At the entry to a guard statement that protects l,Review-Guards-Shared resets inside-reader [l] and inside-writer [l] to the valuethey would have at the beginning of SP-bags (the ID of the initial thread), so thatthe determinacy-race detection logic can begin anew for the part of the computationwithin that guard statement.The logic for Review-Guards-Shared is shown in Figure 6-4. Lines 3{6 ofRead and lines 3{7 ofWrite exactly mirror the read and write logic in SP-bags (see[9]). The logic for entering and exiting guard statements is exactly as in the originalReview-Guards algorithm (Figure 6-2), except that in lines 4{5 of Enter-Guard,the inside-reader [l] and insider-writer [l] �elds are reset to the ID of the initial thread.Theorem 6.5 The Review-Guards-Shared algorithm detects a data race in thecomputation of a Cilk program with guard statements running serially on a giveninput if and only if a data race exists, assuming that any parallelism within guardstatements is restricted as described above.Proof: ThatReview-Guards-Shared correctly �nds data races between unguard-ed accesses or accesses protected by di�erent guard addresses follows trivially from thecorrectness of Review-Guards (Theorem 6.3). That it correctly �nds data racesbetween guarded accesses that share the same instance of a guard address followsfrom the correctness SP-bags (see [9]), and the fact that Review-Guards-Sharedperforms SP-bags's logic for a location l within each guard statement that protects l.Theorem 6.6 Consider a Cilk program with guard statements that runs serially ona given input in T time using V shared memory locations. The Review-Guards-Shared algorithm checks this computation in O(T (lgk+�(V; V))) time using O(V +k) space.Proof: Follows trivially from the performance bounds of the Review-Guards andSP-bags algorithms.62

Chapter 7ConclusionAfter summarizing this thesis, we conclude by discussing two questions. First, weoutline several issues related to the question, \How should atomicity be speci�ed?"Second, we consider the pitfalls of detecting apparent rather than feasible races,explaining how the correctness guarantees proven for the algorithms in this thesis,though of limited practical use, are suggestive of debugging methodologies involvingthe cooperation between program annotation and algorithms with guarantees.Summary of thesisThis thesis has presented three algorithms for data-race detection in multithreadedprograms, as well as extensions to these algorithms for handling critical sectionscontaining parallelism. We have constrained the debugging problem by consideringonly the computation of a program running serially on a given input, which in Cilkcorresponds to a left-to-right depth-�rst treewalk of the series-parallel parse tree rep-resenting the program's dynamically unfolding dag of threads. Threads have beenconsidered to be \logically in parallel" according to this parse tree, taking no accountof program semantics which may cause nonexisting races to show up as apparent racesin the tree. Given these limiting assumptions, we have shown that our algorithmsare guaranteed to �nd data races (or umbrella discipline violations) in computationsif and only if any exist.The �rst algorithm, All-Sets, detects (apparent) data races precisely, with slow-down and space-blowup factors (i.e. the factors by which a computation's runningtime is slowed down and space usage increased) dominated by L, the maximum num-ber of lock sets held during accesses to any particular location. Even though L maygrow with input size for some applications, likely causing the algorithm to be imprac-tical, All-Sets is the fastest data-race detection algorithm seen to date.The second algorithm, Brelly, debugs computations asymptotically faster thanAll-Sets, with slowdown and space-blowup factors of only k, the maximum numberof simultaneously held locks. Brelly achieves this gain in e�ciency at the cost ofexibility and precision: rather than detecting data races directly, it detects (appar-ent) violations of the \umbrella locking discipline," which precludes some race-freelocking protocols as well as data races. Preliminary testing shows that Brelly is63

indeed signi�cantly faster than All-Sets in practice when L is not a small constant.We also have preliminary experience showing that the number of nonrace violationsreported by Brelly can be signi�cant, due to apparent but infeasible violationscaused by the practice of \memory publishing," described below. Despite its limita-tions, the umbrella discipline in more exible than other locking disciplines proposedin the context of data race detection. We have also presented several heuristics thatcan conservatively determine whether an umbrella violation is caused by a data race.The third algorithm, Review-Guards, checks for (apparent) data races in theserial computations of programs using a proposed \guard statement," rather thanlocks, to specify atomicity. This algorithm takes advantage of the higher-level seman-tics of guard statements, which associate atomic operations with speci�c memorylocations, to achieve nearly linear performance in both time and space. We know ofno other algorithm for detecting data races in the context of a language constructsimilar to our guard statement.We have given -Shared extensions for each of these three algorithm which cor-rectly handle critical sections containing parallelism. The extensions for All-Setsand Brelly perform only a factor of k worse than the originals in time and space,while the extension ofReview-Guards performs with the same nearly-linear asymp-totic performance as the original.In the course of presenting these algorithms, we have given a useful model forprograms with critical sections containing parallelism, and, in extending our basicalgorithms, have given examples of how to use this model in a way that may generalizeto other algorithms. We have also speci�ed the guard statement and suggested howit might be implemented, given the stipulation of \same-start semantics," which ismotivated by runtime e�ciency.What should atomicity look like?A theme of our work in this thesis has been the question: how should atomicity bespeci�ed? A good answer to this question must satisfy concerns at several di�erentlevels. Atomicity should be expressed in a way that is easy for programmers to use andunderstand. Many di�erent kinds of applications, with various atomic operations anddata structures, need to be provided for. The overhead of atomicity during runtimemust be minimal. And, of course, there should be e�cient and reliable algorithms fordetecting data races in programs containing atomicity. The following are several issuesthat arise in the search for good tradeo�s between these often competing interests.The \right" locking discipline. Is the umbrella discipline in any meaningfulway the right locking discipline? We have seen that adopting it allows signi�cantand provable performance gains in debugging, but does it correspond to any usefulprogramming methodology? Since the discipline allows di�erent parallel subcompu-tations that are in series with each other to use di�erent locks for each location, weexpect the main utility of the discipline to be in modular software development. If,within each parallel module, a programmer ensures that one lock (or set of locks)64

always protects each particular data structure, the modules can be combined in serieswithout unifying their locking schemes.Other disciplines are either easier to understand or may be more exible, however.Enforcing a single lock that protects each location throughout an entire program isstraightforward, and it is not overly restrictive for the many programs that naturallyfollow such a rule. One possibly useful discipline that is more exible than the um-brella discipline is the requirement that each \writer-centric parallel region" (insteadof each umbrella) use a single lock to protect each location. A writer-centric parallelregion consists of all the accesses to some location that are logically in parallel withsome write to that location. Since umbrellas encompass both writer- and reader-centric parallel regions (de�ned analogously), enforcing �xed locks per location onlyin writer-centric regions is more exible. It may also be more natural, since a writealways races with parallel accesses while a read in parallel with another read is nevera race. We have investigated algorithms for checking for violations of a disciplinebased on writer-center regions but found nothing promising.1Are guard statements too limiting? We have no experience using the guardstatement in real-world applications. We do expect that its syntax and semantics aresu�cient for many programs, in which the needed atomic operations �t naturally withthe built-in structure, and which do not need more than same-start semantics. And aswe have seen with the parallel table example at the end of Section 6.1, programmingtasks for which guard statements, as given, are not su�cient may be intrinsicallydi�cult, even with the full exibility of user-level locking.E�cient implementation of the original semantics of guard statements.Guard statements would be easier to think about and more exible to use if we coulddo away with the requirement that guarded blocks of memory start with the sameaddress. To do this, we need to �nd a runtime e�cient implementation of the originalsemantics, in which atomicity is truly considered per-location, with no reference toblocks of memory and start addresses. As for data-race detection, Review-Guardscan easily be modi�ed to work with the original semantics: inEnter-Guard, updatethe current guard address of each location to itself rather than to the start addressof the block of memory which contains it. We consider it unlikely, however, thatan e�cient implementation exists: again, there seem to be intrinsic di�culties withperforming atomic operations on overlapping blocks of memory.Guard statements with locks. Perhaps an ideal programming language wouldprovide both guard statements and locks to users, giving them to the option of usingeither or both in any particular situation. Are there general guidelines for programs1The question of the \right" locking discipline can also be asked with reference of deadlockdetection. The problem of detecting deadlocks, even \apparent" deadlocks in a computation dag,is NP-hard [28]. We have investigated using locking disciplines based on the notion of umbrellasto make the problem of deadlock detection easier, with no progress. Is there some useful lockingdiscipline which precludes deadlock and for which violations are easy (or just tractable) to detect?65

using guard statements and locks or unexpected complications arising from theirinteraction, perhaps relating to deadlock? As for data-race detection, such \mixed"programs could be checked by a further variation of the algorithms for locks modi�edfor guard statements, described in Section 6.2. The algorithm keeps both a global lockset H and per-location guard addresses H[l]. Then, each access to l is considered tobe protected (as it indeed is) by H [H[l], with the rest of the algorithm as usual.Since H[l] contains at most a single guard address per location l, the maximumsize of the unioned lock set would be one more than the maximum number of locksheld simultaneously. Thus, the asymptotic bounds for the variants of All-Sets andBrelly for mixed programs would be the same as for the original algorithms forlocks alone. To handle mixed programs with critical sections (of either kind) con-taining parallelism, the logic for Review-Guards-Shared could easily be merged,also without degrading asymptotic performance, into the -Shared versions of thealgorithms for locks.Apparent versus feasible data racesThe algorithms we presented in this thesis are guaranteed to �nd all apparent dataraces (or discipline violations) in a computation. The utility of this guarantee issigni�cantly weakened by the existence of apparent but infeasible races, which leadto false alarms. Apparent races are races between accesses that appear to be in parallelaccording to the SP-tree that captures the semantics of the parallel control commandsin a program's execution|i.e. the accesses are logically in parallel. Apparent racesmay or may not actually be feasible since alternate control ows due to changes inscheduling may cause certain accesses to never happen at all: so they either happenin one order (after some other access, for instance) or not at all. Our algorithmscannot distinguish between apparent and feasible races because they rely solely onthe structure of spawns and syncs in the computation to deduce the series/parallelrelationships between threads.In our experience, a signi�cant source of apparent but infeasible data races is thepractice of \memory publishing." Suppose some thread allocates some memory fromglobal storage, writes to the memory, and then \publishes" the memory by making apointer to it available to other threads through a global, shared data structure. Then,if another thread logically in parallel with this thread reads from the newly publishedmemory, the two threads will form an apparent data race|even though the read fromthe memory could only happen after the write, since the memory was not globallyaccessible until after the memory was published after the write. Apparent data racesdue to memory publishing is common in programs operating on global linked-list andother dynamic data structures in parallel. Stark gives a thorough discussion of theproblem in [26].Stark also presents in [26] a theory of nondeterminism, in which one feature isthe notion of an \abelian" program. Intuitively, a program is abelian if its criticalsection commute|i.e. they produce the same results regardless of the order in whichthey execute. Stark shows that abelian programs without data races (and withoutdeadlocks) produce the same computation when running on a given input no matter66

how threads are scheduled. Further, he shows that if a feasible data race exists inan abelian program, an apparent race will exist in any computation of that program.Thus, the algorithms presented in this thesis can be used to certify that an abelianprogram, when running on a given input, either produces determinate results orcontains a data race.What about nonabelian programs? The guarantee that the algorithms in thisthesis �nd all data races (or discipline violations) in a computation seem to be ratherpointless for these programs. Indeed, for nonabelian programs, the guarantees arenot in themselves particularly useful, except perhaps as an vague indication that ouralgorithms may tend to catch more data races than algorithms with no guarantees.But the chief value of our guarantees|the if-and-only-if correctness proofs ofour algorithms|is that they are suggestive. We know we cannot expect programveri�cation: �nding feasible data races exactly is NP-hard [20]. But there may be avia media between intractable problems and merely heuristic solutions. For instance,could programmers annotate code to help race detection algorithms \understand" theprogram's semantics better? The practice of memory publishing, which can causemany apparent but infeasible data races in a computation, might be alleviated, if notdecidedly solved, in this way. Suppose a programmer annotated code that publishesmemory in a way that a compiler could tell a debugging tool what was happening.Perhaps the debugging tool could then �gure out when apparent data races werecaused by the publication of memory. A simpler idea is to have a programmer usefake locks to \protect" the creation and later access of data object after publicationagainst each other. (These explicit fake locks are akin to the hidden fake read lockused by the All-Sets and Brelly algorithms; see Chapter 2.) In essence, theprogrammer uses a fake lock to tell the debugging algorithm that the two operationsdo not form a data race. He translates application-speci�c logic into something simplethat detection algorithms can understand: locks. There may very well be other waysin which program annotation and algorithms, with guarantees, can work together.

67

68

Bibliography[1] J. Barnes and P. Hut. A hierarchical O(N logN) force-calculation algorithm.Nature, 324:446{449, 1986.[2] Philippe Bekaert, Frank Suykens de Laet, and Philip Dutre. Renderpark, 1997.Available on the Internet from http://www.cs.kuleuven.ac./cwis/research/graphics/RENDERPARK/.[3] Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, andAndrew F. Stark. Detecting data races in Cilk programs that use locks. InProceedings of the Tenth Annual ACM Symposium on Parallel Algorithms andArchitectures, June 1998. To appear.[4] Cilk-5.1 Reference Manual. Available on the Internet from http://theory.lcs.mit.edu/~cilk.[5] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introductionto Algorithms. The MIT Press, Cambridge, Massachusetts, 1990.[6] Anne Dinning and Edith Schonberg. An empirical comparison of monitoring al-gorithms for access anomaly detection. In Proceedings of the Second ACM SIG-PLAN Symposium on Principles & Practice of Parallel Programming (PPoPP),pages 1{10. ACM Press, 1990.[7] Anne Dinning and Edith Schonberg. Detecting access anomalies in programswith critical sections. In Proceedings of the ACM/ONR Workshop on Paralleland Distributed Debugging, pages 85{96. ACM Press, May 1991.[8] Perry A. Emrath, Sanjoy Ghosh, and David A. Padua. Event synchronizationanalysis for debugging parallel programs. In Supercomputing '91, pages 580{588,November 1991.[9] Mingdong Feng and Charles E. Leiserson. E�cient detection of determinacyraces in Cilk programs. In Proceedings of the Ninth Annual ACM Symposiumon Parallel Algorithms and Architectures (SPAA), pages 1{11, Newport, RhodeIsland, June 1997.[10] Yaacov Fenster. Detecting parallel access anomalies. Master's thesis, HebrewUniversity, March 1998. 69

[11] Andrew V. Goldberg and Robert E. Tarjan. A new approach to the maximumow problem. In Proceedings of the Eighteenth Annual ACM Symposium onTheory of Computing, pages 136{146, Berkeley, California, 28{30 May 1986.[12] David P. Helmbold, Charles E. McDowell, and Jian-Zhong Wang. Analyzingtraces with anonymous synchronization. In Proceedings of the 1990 InternationalConference on Parallel Processing, pages II70{II77, August 1990.[13] John L. Hennessy and David A. Patterson. Computer Architecture: a Quantita-tive Approach. Morgan Kaufmann, San Francisco, CA, second edition, 1998.[14] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.Prentice-Hall, Englewood Cli�s, New Jersey, second edition, 1988.[15] John Mellor-Crummey. On-the-y detection of data races for programs withnested fork-join parallelism. In Proceedings of Supercomputing'91, pages 24{33.IEEE Computer Society Press, 1991.[16] Barton P. Miller and Jong-Deok Choi. A mechanism for e�cient debuggingof parallel programs. In Proceedings of the 1988 ACM SIGPLAN Conferenceon Programming Language Design and Implementation (PLDI), pages 135{144,Atlanta, Georgia, June 1988.[17] Sang Lyul Min and Jong-Deok Choi. An e�cient cache-based access anomaly de-tection scheme. In Proceedings of the Fourth International Conference on Archi-tectural Support for Programming Languages and Operating Systems (ASPLOS),pages 235{244, Palo Alto, California, April 1991.[18] Greg Nelson, K. Rustan M. Leino, James B. Saxe, and Raymie Stata. Ex-tended static checking home page, 1996. Available on the Internet fromhttp://www.research.digital.com/SRC/esc/Esc.html.[19] Robert H. B. Netzer and Sanjoy Ghosh. E�cient race condition detection forshared-memory programs with post/wait synchronization. In Proceedings of the1992 International Conference on Parallel Processing, St. Charles, Illinois, Au-gust 1992.[20] Robert H. B. Netzer and Barton P. Miller. On the complexity of event order-ing for shared-memory parallel program executions. In Proceedings of the 1990International Conference on Parallel Processing, pages II: 93{97, August 1990.[21] Robert H. B. Netzer and Barton P. Miller. What are race conditions? ACMLetters on Programming Languages and Systems, 1(1):74{88, March 1992.[22] Itzhak Nudler and Larry Rudolph. Tools for the e�cient development of e�cientparallel programs. In Proceedings of the First Israeli Conference on ComputerSystems Engineering, May 1986.70

[23] Dejan Perkovi�c and Peter Keleher. Online data-race detection via coherencyguarantees. In Proceedings of the Second USENIX Symposium on Operating Sys-tems Design and Implementation (OSDI), Seattle, Washington, October 1996.[24] Keith H. Randall. Cilk: E�cient Multithreaded Computing. PhD thesis, Depart-ment of Electrical Engineering and Computer Science, Massachusetts Instituteof Technology, June 1998.[25] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and ThomasAnderson. Eraser: A dynamic race detector for multi-threaded programs. InProceedings of the Sixteenth ACM Symposium on Operating Systems Principles(SOSP), October 1997.[26] Andrew F. Stark. Debugging multithreaded programs that incorporate user-level locks. Master's thesis, Department of Electrical Engineering and ComputerScience, Massachusetts Institute of Technology, June 1998.[27] Robert Endre Tarjan. Applications of path compression on balanced trees. Jour-nal of the Association for Computing Machinery, 26(4):690{715, October 1979.[28] Mihalis Yannakakis. Freedom from deadlock of safe locking policies. SIAMJournal on Computing, 11(2):391{408, May 1982.

71

