
Scheduling Adaptively Parallel JobsbyBin SongA. B. (Computer Science and Mathematics), Dartmouth College (1996)Submitted to the Department of Electrical Engineering and Computer Sciencein partial ful�llment of the requirements for the degree ofMaster of Scienceat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYJanuary 1998c
 Massachusetts Institute of Technology 1998. All rights reserved.Author :Department of Electrical Engineering and Computer ScienceNovember 6, 1998Certi�ed by :Charles E. LeisersonProfessor of Computer Science and EngineeringThesis SupervisorAccepted by :Arthur C. SmithChairman, Departmental Committee on Graduate Students

2

Scheduling Adaptively Parallel JobsbyBin SongSubmitted to the Department of Electrical Engineering and Computer Sciencein partial ful�llment of the requirements for the degree ofMaster of Scienceat theMassachusetts Institute of TechnologyAbstractAn adaptively parallel job is one in which the number of processors which can be usedwithout waste changes during execution. When allocating processors to multiple adap-tively parallel jobs, a job scheduler should attempt to be fair|meaning that no job getsfewer processors than another, unless it demands fewer|and e�cient|meaning that thescheduler does not waste processors on jobs that do not need them. Moreover, the schedulershould adapt quickly and be implementable in a distributed fashion.In this thesis, I present and analyze a randomized processor allocation algorithm, theSRLBA algorithm, which allocates processors to adaptively parallel jobs in a distributedsystem of P processors and J jobs. The algorithm consists of rounds of load-balancing stepsin which processor migration may occur. In the case that each job has a demand which ismore than its fair share P=J of the processors, I show that after O(lgP) rounds, the systemis in an almost fair and e�cient allocation with high probability.To analyze the algorithm, I use a two-phase analysis with a potential-function argument.In Phase 1, I show that after O(lgP) rounds every job has at least a constant fraction ofP=J processors. Then I show that in Phase 2, after an additional O(lgP) rounds, thesystem converges to an almost fair and e�cient con�guration.Finally, I conclude my thesis with some directions for future work.Thesis supervisor: Charles E. LeisersonTitle: Professor of Computer Science and Engineering
3

4

AcknowledgmentsFirst I would like to thank my advisor, Professor Charles E. Leiserson. Charles �rst intro-duced me to the �eld of parallel job scheduling, and has guided my research in the areaever since. He has provided valuable guidance and good ideas to improve my research, inaddition to always challenging me to do my best. Charles has also read my thesis over andover, helping me to present it better.The algorithm and analysis presented in this thesis are joint work with Drs. RobertBlumofe, Charles Leiserson, Aravind Shrinivason, and David Zuckerman. I have gainedvaluable knowledge and inspiration from working with them.This research was supported in part by the Defense Advanced Research Projects Agencyunder Grant N00014-94-1-0985. I thank DARPA for the support.I would also like to thank my family for their moral support.Finally, I want to thank my �ance, Matthew Cheyney. Matt is also a computer sciencestudent. He listened to me talking about my research, and pushed me to justify or changesome of the more unrealistic assumptions of my model, resulting in a stronger paper. Healso helped me tremendously with the writeup and the English therein.
5

6

Contents1 Introduction 92 The SRLBA Algorithm and the Potential-Function Argument 142.1 The SRLBA Algorithm : 142.2 The Potential Function Arguments : 173 Analysis of Phase 1 of the SRLBA Algorithm 214 Analysis of Phase 2 of the SRLBA Algorithm 314.1 The Potential functions for Phase 2 : 314.2 Case (a) : 334.3 Case (b) : 384.4 Combined analysis of cases (a) and (b) : 435 Conclusion and Future Work 44
7

8

Chapter 1IntroductionMultiprocessor systems have moved from a rare research tool to a commercially viableproduct within the last ten years. Unfortunately, no clear consensus has emerged abouthow to schedule jobs on these systems. We believe that any good solution to schedulingshould have the three characteristics. First, the system should adapt as the parallelismof jobs changes. Second, the system should converge to the desired processor allocationquickly. Third, the system should be distributed, since it should be easily scalable.This thesis studies the problem of how to allocate processors to parallel jobs in a dis-tributed multiprocessor system. In particular, we are concerned with adaptively paralleljobs: those for which the number of processors which can be used without waste changesduring execution. I shall refer to this maximum number of e�ciently usable processors fora job as the desire of the job. A scheduling algorithm can allocate a job more processorsthan it desires, in which case some of the processors will be underutilized. Similarly, ascheduling algorithm can allocate a job fewer processors than it desires, in which case someof the job's parallelism will not be exploited.We call the problem of how to allocate processors to adaptively parallel jobs the adap-tively parallel processor-allocation problem. As multiprocessor systems become morecommon and as the number of processors in them increases, the the adaptively parallelprocessor-allocation problem also increases in importance. There is no obvious solutionto this problem in a distributed system. Much research has been done on this prob-lem [4, 7, 10, 11, 12, 14]. Some results concern static scheduling schemes [12]; othersemphasize speci�c network topologies [9], such as a mesh; while others [7, 14] study the9

performances of di�erent scheduling polices on shared memory multiprocessors. Most ex-isting research is empirical. In this thesis, we consider the problem theoretically.The results presented here represent joint work with Drs. Robert Blumofe, CharlesLeiserson, Aravind Shrinivason, and David Zuckerman. We have developed and analyzed adistributed randomized dynamic processor-allocation algorithm which can bring the systemto a \fair" and \e�cient" con�guration quickly as jobs enter and leave the system andchange their parallelism.In the remainder of this chapter, I de�ne the notion of a \macroscheduling system" andthe meaning of \fair" and \e�cient" in the context of the processor allocation problem.Then I brie
y describe the SRLBA processor allocation algorithm and the main result ofthis paper|the running time of the algorithm.In the remainder of this paper, we use the notation [n] to denote the set f1; 2; : : : ; ng. Tomodel the adaptively parallel processor-allocation problem, we de�ne a macroschedulingsystem with P processors and J jobs to be a distributed system with a set of processors[P], and a set of adaptively parallel jobs [J]. At any time, each job j 2 [J] has a desiredj . In such a system, we wish to allocate an allotment mj of processors to each job j sothat the resulting allocation is \fair" and \e�cient". An allocation which is \fair", but notnecessarily \e�cient", might give each job P=J processors, assuming P is a multiple of J .Whenever a job desires fewer than P=J processors, however this fair allocation is ine�cient,because the excess processors might be put to a more productive use on another job. Thisobservation leads to an intuitive de�nition of \e�cient". An allocation is e�cient if nojob receives more processors than it desires. An allocation is fair if whenever a job receivesfewer processors than it desires, then no other job receives more than one more processorthan this job received. (Exactly equal allotments may be impossible due to integer roundo�.)We desire processor allocations that are both fair and e�cient. An example of a fair ande�cient allocation is illustrated in Figure 1-1.In a macroscheduling system, the desires of the adaptive parallel jobs may change overtime. A good scheduling algorithm should adapt as quickly as possible to changes. Sinceit is di�cult to analyze the behavior of a scheduling algorithm in the midst of changingjob desires, our analysis focuses on how rapidly the scheduler adapts to a fair and e�cientallocation, assuming that the jobs' desires do not change during that adaption.One simple scheme to solve the adaptive processor-allocation problem is equipartition-10

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��

�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�#p

ro
ce

ss
or

s

1 2 3 4 5 6 7 8 job index

desire

allotment

Figure 1-1: An example of the adaptively parallel processor-allocation problem. Each jobj = 1; 2; : : : ; 8 has a desire dj. A fair and e�cient allocation mj for these desires is shown.ing [11, 14]. A centralized scheduler initially allocates one processor to each job. Any jobsthat have reached their desires drop out. The scheduler repeats with the remaining jobsuntil either there are no remaining jobs or all processors have been allocated. An allocationwhich is produced by equipartitioning is both fair and e�cient. Equipartitioning is hard toimplement in a fully distributed fashion, however. It must be rerun whenever a job changesits desire or a job is created or destroyed.Our �rst distributed scheduling algorithm for the adaptively parallel processor-allocationproblem is called the RLB (Randomized Load-Balancing) algorithm. It works roughly asfollows. Each processor periodically pauses its computation and initiates a load-balancingstep with a mate. This mate is another processor chosen uniformly at random, independ-ently of any other load-balancing step. Suppose that a processor p 2 [P] working on job kchooses processor r 2 [P] working for job j as a mate. If the allotment of job k exceeds theallotment of job j by 2 or more and job j's allotment is less than its desire, then processorp migrates to work on job j. Conversely, if the allotment of job j exceeds the allotment ofjob k by 2 or more and job k's allotment is less than its desire, then processor r migratesto work on job k. Otherwise, no processor migration occurs. Figure 1-2 illustrates such aload-balancing step, in which processor p migrates to work for job j.Like equipartitioning,the RLB algorithm converges to a fair and e�cient processor al-location. Unlike equipartitioning, however the RLB algorithm does not need centralized11

job

 job

j

k

r

pFigure 1-2: A load-balancing step. Circles denote jobs. Rounded rectangles are processors.This load-balancing step is initiated by processor p which is working for job k. Processor pchooses a processor r working for job j as its mate. Suppose job j's allotment is less thenits desire, then, since job k's allotment is larger than job j's allotment by more than 2,processor p migrates to work for job j.information on all jobs. It only requires that each job maintain its processor allotment. Anempirical study [8] of this algorithm has already been performed. Simulation shows thatthis algorithm is e�cient and stable when selected migrations are \damped" by allowingthem to proceed only with a certain probability.Although the structure of the RLB algorithm is suitable for a distributed environment, adistributed setting introduces several complicating issues. For example, what should happenwhen two processors randomly select the same mate? How does one de�ne a job's processorallotment when several of its processors are attempting to balance loads simultaneously?Because of these complications, we have chosen to analyze this algorithm in a simplermodel that highlights the behavior of the load-balancing step without introducing the fullcomplexity of a distributed setting.One simplifying assumption is that all load-balancing steps occur serially, and that theallotment of each job involved in such a step is updated promptly. We call this modelthe sequential perfect-information model. Under the sequential perfect-informationmodel, we can view the RLB algorithm as proceeding in a sequence of rounds. Each roundconsists of P sequential load-balancing steps, in which each of the P processors has a chanceto initiate a load-balancing step. To analyze the worst-case behavior of the system, we alsointroduce an adversary into the model. The adversary, in each step i of the round, having12

observed the previous i� 1 steps, chooses a processor not previously chosen in this roundto initiate the ith load balancing step.We call the variant of the RLB algorithm that operates under the sequential perfect-information model and under the assumption of the adversary the SRLBA (SequentialRandomized Load-Balancing with Adversary) algorithm. We de�ne the absolute averageallotment in a macroscheduling system with P processors and J jobs as � = P=J . Forsimplicity, we assume that � is an integer in the remainder of this paper. We show thatwith the SRLBA algorithm, if each job has a desire which is more than the absolute averageallotment and each job has at least one processor to start with, then within O(lgP) rounds,every job has within 1 of P=J processors with high probability. Using the assumption thatthe jobs' desires are more than the absolute average allotment is a simpli�cation step of ouranalysis. We justify this assumption in Chapter 5. In the remainder of this paper, unlessotherwise stated, we assume that every job has a desire that is more than the absoluteaverage allotment.The proof uses a two-phase analysis. Initially, some jobs may have very few processors.Phase 1 shows that with high probability, after O(lgP) steps, all jobs have at least �P=Jprocessors, where 0 < � < 1 is a constant. Phase 2 shows that in an additional O(lgP)rounds, with high probability, every job has within 1 of P=J processors.In each phase, we use a \potential-function" argument, in which we associate the systemstate with a nonnegative real-valued potential function. The potential is 0 if and only if thesystem reaches the desired processor allocation of the corresponding phase. We show thatin each phase, the potential goes to 0 within O(lg P) rounds.The remainder of the thesis is organized as follows. In Chapter 2, I give a formal descrip-tion of the SRLBA algorithm and present the potential-function argument. In Chapter 3and Chapter 4, I analyze Phase 1 and 2 of the algorithm using the corresponding potential-function arguments. Finally, in Chapter 5, I summarize our results, and point to somefuture work.
13

Chapter 2The SRLBA Algorithm and thePotential-Function ArgumentIn the �rst part of this Chapter, I introduce the notion of \system con�gurations" to formallydescribe the SRLBA algorithm for the adaptive parallel processor allocation problem. Inthe second part of this chapter, I present a potential-function argument which is used inthe two-phase analysis of the SRLBA algorithm in Chapter 3 and Chapter 3.2.1 The SRLBA AlgorithmIn this section, I model the macroscheduling system as a series of \con�gurations". Iintroduce the notion of an \almost fair and e�cient" con�guration. In addition, I describethe SRLBA algorithm precisely under this model.The system we consider is a macroscheduling system with P processors and J jobs. Inthis system, at any time, each processor is allocated to one and only one job, and it worksexclusively on that job. We say that the job owns the processor. We also say that theprocessor belongs to the job. We assume that initially, the allotment of every job is atleast 1.At any given time, we de�ne the system con�guration M to be the mappingM : [P]! [J] [? ;where M(p) = j if and only if processor p belongs to job j at that time. If processor p does14

not belong to any job, then M(p) = ?. We de�ne the con�guration space CP;J to be theset of all legal con�gurations.We de�ne the con�guration vector V of a con�guration M : [P] ! [J], to be theJ-tuple V = hm1; m2; : : : ; mJi ;where mk = j fp :M(p) = kg j is the allotment of job k. Since there are P jobs, it followsthat Pk2J mk � P . We de�ne a legal con�guration to be a con�guration in which eachjob owns at least one processor. Thus, for a legal con�guration, the con�guration vectorhas no zero entries. In the remainder of this paper, when we talk about a con�guration, weassume that the con�guration is legal, unless otherwise noted.The SRLBA algorithm takes the system through a sequence of con�gurations by per-forming rounds of load-balancing steps. More precisely, each round consists P load-balancingsteps. We begin the round with a con�guration M (0). A generic round operates as follows.At the beginning of step i, i 2 [P], the system is in con�guration M (i�1). The adversary,having observed the �rst i � 1 steps of the round, picks a processor p(i) that has not yetbeen chosen this round. That is, p(i) 6= p(j) for j 2 [i � 1]. Processor p(i) then performsa load-balancing step. The load-balancing step begins with processor p(i) selecting a mater(i) 2 [P] uniformly at random, independently of any other load-balancing steps. The twoprocessors compare the processor allotments of the two jobs to which they belong. If thediscrepancy in the processor allotments is 2 or more, then either p(i) migrates to r(i)'sjob or r(i) migrates to p(i)'s job, whichever diminishes the discrepancy. At the end of theload-balancing step, processor allotments of the two jobs involved are updated appropri-ately to produce con�guration M (i). We call this new con�guration M (i) the successor ofcon�guration M (i�1). Thus, during the round the adversary and the load-balancing algo-rithm together determine a trajectory hM (0);M (1); : : : ;M (P)i of the system through thecon�guration space.And example of a round is illustrated in Figure 2-1, where we have a macroschedulingsystem with 9 processors and 3 jobs. We assume that the processor desire of each job islarger than 9.In the remaining of the analysis, we assume that the absolute average allotment � is aninteger that is at least 2. Under the assumption that each job has desire larger than �, a15

job 2job 3job 2

job 1 job 3job 2job 1 job 3job 2job 1 job 3job 2

job 1 job 3job 2job 1 job 3job 2job 1 job 3job 2

job 1 job 3job 2job 1 job 3job 1
step 2step 1

step 4

step 8step 7

3
5
7
8

2

9 6

1

3
5
7
8

2

9 6

41

3
5
7
8

2

9 6

41

step 3

3
5
7
8

2

9 6

41

4

3
5
7
8

2

9 6

41

37
8

2

9 6

4

5
1

37
8

2

9 6

4

5
1

step 5

1

3
5
7
8

4
2

9 6

step 6

step 9

3
5
7
8

2

9 6

41

Figure 2-1: An example of a round in a macroscheduling system with 9 processors and 3jobs. The rounded squares represent processors. In each load-balancing step, the adversarychooses a processor (the dark square) to initiate the step. This selected processor randomlychooses a processor as a mate (the light square). The arrows show the directions of processormigrations.fair and e�cient con�guration is one in which every job has exactly � = P=J processors.Moreover, for any con�guration vector hm1; m2; : : : ; mJi, we have Pj2[J]mj = P .Although a fair and e�cient con�guration is desirable, it may take the system a rela-tively long time to converge to an exact fair and e�cient con�guration using the SRLBAalgorithm.1 Thus, we introduce the notion of an almost fair and e�cient con�gura-tion, in which the processor allotment of every job belongs to the set f� � 1; �; �+ 1g. Analmost fair and e�cient con�guration is a very good approximation to the exact fair and1Consider the case where all jobs have exactly � processors except 2 jobs, where one of them has � + 1processors and the other has � � 1 processors. To get to the exact con�guration the expected number ofrounds could be �(P) when J = �(P). 16

e�cient con�guration.When there are changes in the system, a good scheduling algorithm should bring thesystem to a con�guration as close to the fair and e�cient con�guration as soon as possible.We demonstrate this property of the SRLBA algorithm by proving the following result. Ina macroscheduling system with P processors and J jobs, if each job has desire larger thanthe absolute average allotment, and each job starts with at least 1 processor, then using theSRLBA algorithm, after O(lg P) rounds, with probability at least 1� 1=P , the system is inan almost fair and e�cient con�guration.The proof runs roughly as follows. We utilize a two-phase analysis of the algorithm.Initially, some jobs may have very few processors. We show that with high probability, afterO(lgP) rounds, all jobs have at least �� processors, where 0 < � < 1 is a constant. Wecall these O(lgP) rounds Phase 1 of the analysis. We show that in an additional O(lgP)rounds, with high probability, every job has within 1 of � processors. These additionalO(lgP) rounds constitutes Phase 2 of our analysis. In each phase, we associate a non-negative potential function with the con�gurations of the system. In Phase 1, the potentialfunction is 0 if and only if every job has at least �� processors. In Phase 2, the potentialfunction is 0 if and only if the system is in an almost fair and e�cient con�guration. Forboth phases, we are able to prove that after O(lgP) rounds, with high probability, thepotential goes to 0.The proof is presented in three parts. Section 2.2 provides two lemmas concerningpotential functions that will be used to analyze the phases. Chapter 3 analyzes the �rstphase, and Chapter 4 analyzes the second phase.2.2 The Potential Function ArgumentsThe running-time analysis of the SRLBA algorithm is based on potential functions. The ba-sic idea is that we associate a real-valued potential function with each system con�guration.When the potential function reaches 0, then a desired con�guration has been attained. Inthis section, we provide two lemmas that give conditions under which the potential functionsused in the two-phase analysis converge quickly to 0.For a macroscheduling system with P processors and J jobs, a potential function� : CP;J ! IR is a mapping from the con�guration space to the real numbers such that17

�(M) � 0 for all con�gurationsM 2 CP;J . The following lemma shows that if a single load-balancing step decreases the expected potential of the system con�gurations by a factor of1=P , then in one round, we expect the potential to decrease by a constant factor.Lemma 1 Suppose that the load-balancing steps of a round take a macroscheduling systemwith P processors and J jobs through the trajectory hM (0);M (1); : : : ;M (P)i, and supposethat for some � > 0, a potential function � : CP;J ! IR can be shown to satisfy�(M (i�1))� E h�(M (i))i � (�=P)�(M (i�1)) (2.1)for i = 1; 2; : : : ; P . Then, we haveE h�(M (P))i � e���(M (0)) :Proof: Rewriting Inequality (2.1), we obtainE h�(M (i))i � (1� �=P)�(M (i�1)) :By linearity of expectation and iterating, we obtainE h�(M (P))i � �(M (0)) (1� �(1=P))P� e���(M (0)) ;since 1 + x � ex for all x 2 IR.We will show that the potential functions used to analyze the two phases of the load-balancing algorithm satisfy the property that they are polynomially bounded in the numberP of processors. Moreover, they satisfy a \gap" property: if a potential function is su�-ciently small, it is in fact 0. The next lemma shows that if in each round, the expecteddecrease in potential is a constant factor, then after O(lgP) rounds, the potential is 0 withhigh probability.Lemma 2 Suppose that T rounds of load balancing take a macroscheduling system withP processors and J jobs through the trajectory hM (0);M (1); : : : ;M (T)i, where M (0) is the18

initial con�guration and M (i) is the con�guration at the end of round i for i = 1; 2; : : : ; T .Let � : C ! IR be a potential function that satis�esE h�(M (i))i < ��(M (i�1)) ; (2.2)where � < 1 is a positive constant, and suppose that for any con�guration M of the system,there exist positive constants a and b such that1. �(M) < P a,2. �(M) < 1=P b implies �(M) = 0.Then, for any � > 0, if T � log1=�(1=�) + (a + b) log1=� P , we have E h�(M (T))i = 0 withprobability at least 1� �.Proof: By linearity of expectation and iterating, we obtainE h�(M (T))i � �T�(M (0))� �log1=�(1=�)+log1=� Pa+b�(M (0))= �P�a�b�(M (0))� �P�a�bP a= �P�b ;since �(M (0)) < P a and T � log1=�(1=�) + (a+ b) log1=� P .Markov's inequality [5, p. 114] asserts that for any nonnegative random variable Xwith �nite expectation, we have Pr fX � tg � E [X] =t for all t > 0. Consequently, byCondition 2 we have Prn�(M (T)) > 0o = Prn�(M (T)) � P�bo� E h�(M (T))i =P�b� � ;which completes the lemma.In the following two sections, we will use the potential function argument to help provethe lower bound on the running time of our algorithm. Our analysis has two phases.19

Initially, some jobs may have very few processors. We show that after the O(lgP) roundsof Phase 1, with high probability, every job has at least �=8 processors. We show that inthe additional O(lg P) rounds of Phase 2, with high probability, the system is in an almostfair and e�cient con�guration. We use di�erent potential functions in the analysis of thetwo di�erent phases. Chapter 3 presents Phase 1, and Chapter 4 resents Phase 2.

20

Chapter 3Analysis of Phase 1 of the SRLBAAlgorithmIn this chapter, we consider Phase 1 of the SRLBA algorithm for the adaptive processorallocation problem. We show that, in a macroscheduling system with P processors andJ jobs, if every job has a desire which is more than the absolute average allotment andeach job starts with at least one processor, then under the SRLBA algorithm, with highprobability, within O(lgP) rounds, every jobs has at least �� processors, where � � 1=8 isthe \Phase-1 constant". We de�ne the Phase-1 constant to be � = d�=8e =�. Althoughthe de�nition of � depends on �, once � is decided, then � is a constant. For 2 � � � 8, wehave � = 1=�, in which case, �� = 1. For � > 8, we have 1=8 � � � 1=4 and �� is an integer� �=8.We call a con�guration a desired Phase-1 con�guration if every job has at least�� processors. Since every con�guration considered here is a legal con�guration in whicheach job owns at least one processor, we obtain that, if 2 � � � 8, every con�gurationis automatically a desired Phase-1 con�guration. Thus, in the remainder of the section,we only consider the systems where � > 8 is an integer. Thus, the corresponding Phase-1constant � is in the range [1=8; 1=4].Let M be a con�guration of the system in Phase 1. Let V = hm1; m2; : : : ; mJi be thecon�guration vector of M , where mi = j fp :M(p) = ig j is the processor allotment of job i.We de�ne the Phase-1 partition of con�guration M to be the following four disjoint sets21

of jobs A, B, C, and D: A = fj 2 [J] : mj � �� � 1g ;B = fj 2 [J] : mj = ��g ;C = fj 2 [J] : mj = �� + 1g ;D = fj 2 [J] : mj � �� + 2g :We want to associate some potential function with Phase 1, such that the potentialfunction is 0 if and only if the desired con�guration of Phase 1 is achieved. Thus, no jobs inpartition B, C, and D should contribute to the potential, and at the same time, every jobin partition A should contribute positively to the potential. In addition, if a con�gurationis far from the desired Phase-1 con�guration, the potential of this con�guration should bebig. So, if a job j has a small allotment mj , the job should contribute substantially tothe potential. At the same time, this job j may increase its allotment quickly during around relative to its allotment before the round. This rapid increase occurs, because aprocessor p working for job j is likely to choose a processor working for a job with biggerallotment as a mate during the load-balancing step initiated by processor p. Thus, everyprocessor working for job j is likely to recruit another processor to migrate to work forjob j. Therefore, intuitively the allotment mj of job j is likely to double after a round.This doubling process indicates a good progress towards the desired Phase-1 con�guration.Thus, for a job j in set A with allotment mj , we would like the term 1=mj to appear in thepotential function. When mj is small, 1=mj is big; when mj gets doubled, 1=mj is halved.Using this intuition, we de�ne the potential function 	 of con�guration M to be	(M) = Xj2A(1=mj � 1=��) ;where 1=�� is a normalization factor. Consequently, when mj = ��, job j's contribution tothe potential is 0. The function 	(M) represents the relative discrepancy ofM from the de-sired Phase-1 con�guration. In addition, we de�ne the potential function � of con�gurationM to be �(M) = Xj2A[B(�� �mj + 1=2) ;22

which represents the absolute discrepancy of M from the desired Phase-1 con�guration.Note that for any con�guration M , the functions 	(M) and �(M) are nonnegative.The potential function which we shall use for Phase 1 is the product 	�(M) = 	(M)�(M)of the two potential functions. We show that 	�(M) = 0 if and only if con�guration Mis a desired Phase-1 con�guration. And we show that in O(lg P) steps, 	� = 0 with highprobability.Here is the outline of the argument. Consider any round of the algorithm. In each stepof the round, the adversary must choose a processor owned by a job that either belongs toset A[B of the Phase-1 partition or belongs to set C[D of the Phase-1 partition to initiatea load-balancing step. We show that if a processor owned by a job that belongs to A[B ischosen by the adversary, then there is enough expected decrease in �; if a processor ownedby a job that belongs to C [D is chosen by the adversary, then there is enough expecteddecrease in 	. In either case, we show that the expected decrease of the product of 	� islarge enough in each step, so that after a round, we expect 	� to decrease by a constantfactor. Then, applying Lemma 2, we obtain that within O(lgP) rounds, 	� = 0 with highprobability.Lemma 3 and Lemma 4 provide some basic properties of the potential functions 	 and�.Lemma 3 Consider a macroscheduling system with P processors. Under the SRLBA al-gorithm, given any con�guration M , the potential function 	 has the following properties:(i) if M 0 is a successor of M , then 	(M 0) � 	(M);(ii) 	(M) � P ;(iii) 	(M) = 0, if and only if M is a desired con�guration of Phase 1;(iv) if 	(M) < P�2, we must have 	(M) = 0.Proof: Let � be the Phase-1 constant. Let � = P=J where J is the number of jobs in themacroscheduling system. We �rst show part (i). After a load-balancing step, 	 changesonly when a processor previously working for a job l 2 [J] migrates to work for a di�erentjob k 2 [J]. According to the di�erent Phase-1 partitions to which job l and job k maybelong right before the load-balancing step, we have the following three cases.23

� Before the load-balancing step, job l and job k both belong to A [B of the Phase-1partition of M . Let ml and mk be job l and k's processor allotment in con�gurationM , and m0l and m0k be job l and job k's processor allotment in con�guration M 0. Ifjml �mkj < 2, then, no migration happens and 	(M 0) = 	(M). Otherwise, withoutloss of generality, we assume that ml�mk � 2. Thus, m0l = ml� 1 and m0k = mk +1.We obtain 	(M)�	(M 0) = � 1ml + 1mk�� 1m0l + 1m0k!= � 1ml + 1mk�� � 1ml � 1 + 1mk + 1�= 1mk(mk + 1) � 1ml(ml � 1)> 0 :The last inequality holds because mk < ml � 1 and mk + 1 < ml, since ml �mk � 2.� Before the load-balancing step, job l and job j both belongs to the set B [C [D ofthe Phase-1 partition of M . In this case, 	 does not change.� Before the load-balancing step, job l belongs to set C[D of the Phase-1 partition andjob k belongs to set A. In this case, job l cannot be in set A of the Phase-1 partitionof the successor con�gurationM 0, and thus job l contributes 0 to the potential in bothcon�gurations. Job k will have one more processor, and therefore its contribution tothe potential will decrease. Thus 	 decreases.In any case, we have proved that 	 never increases. Thus, part (i) is true.To prove part (ii), we only need to observe that or any job j 2 A, we have 1=mj�1=(��) <1. Since � � 2, we have J < P . Thus, 	(M) � P for all con�gurations M .For part (iii), from the de�nition of 	, we know that 	(M) = 0 if and only if A isempty, which means that a desired con�guration of Phase 1 has been achieved.To show the last property, notice that if 	(M) 6= 0, then there exists a job j 2 A. Jobj's contribution to the potential is at least1=mj � 1=�� � 1=(��� 1)� 1=��� 1=(��)224

> P�2 :Therefore, If 	(M) < P�2, then 	(M) = 0.Lemma 4 Consider a macroscheduling system with P processors. Under the SRLBA al-gorithm, given any con�guration M , we have� (i) 0 � �(M) < �P < P ;� (ii) if �(M) < 1=2, then �(M) = 0;� (iii) if M 0 is a successor of M , then �(M 0) � �(M);� (iv) if M 0 is a successor of M and �(M)� �(M 0) > 0, then �(M)� �(M 0) � 1=2.Proof: Let � be the Phase-1 constant. Let � = P=J where J is the number of jobs in themacroscheduling system. Let hm1; m2; : : : ; mJi be the con�guration vector of M . For part(i), since for all job j 2 [J], mj � 1, we have�(M) � J(�� � 1=2)< P�< P :For part (ii), we know that if there exists a job j belonging to set A [B, then job j atleast contributes 1=2 to �. Thus, if �(M) < 1=2, it must be 0.As for parts (iii) and (iv), consider the load-balancing step between con�gurationM andits successor M 0. If there is no processor migration at all, or if a processor migration takesplace between two jobs that both belong to C [D of the Phase-1 partition of con�gurationM , or if a processor migration takes place between two jobs that both belong to set A[Bof the Phase-1 partition of con�guration M , then �(M 0) = �(M).Another case is to consider is when a migration takes place between a job j belongingto set A [B of the Phase-1 partition of M and a job k belonging to set D of the Phase-1partition of con�guration M . Since mk � �� + 2, after the migration, in the successorcon�guration M 0, job k cannot be in the set A [B. Thus, if job j belongs to set A of thePhase-1 partition of con�guration M , we have �(M 0) = �(M)� 1; if j belongs to set B ofthe Phase-1 partition of con�guration M , then �(M (i)) = �(M (i�1))� 1=2.25

Since no migration happens when a load-balancing step occurs between a job belongingto set B and a job belonging to set C, the only other case left is when a migration takesplace between a job j belonging to set A of the Phase-1 partition ofM and a job k belongingto set C. After the migration, job j will get one more processor, which will decrease thepotential by 1; job k will be in set B of the Phase-1 partition of the successor con�gurationM 0, and it contributes 1=2 to the potential. In this case, we have �(M 0) = �(M)� 1=2.Therefore, in all cases, �(M (i�1)) � �(M (i)) � 0, proving part (iii). Moreover, if�(M (i�1))� �(M (i)) > 0, then �(M (i�1))� �(M (i)) � 1=2, proving part (iv).With the properties of 	 and � above, we shall show in Lemma 5 and Lemma 6 thatafter any given step i 2 [P], either the expected value of 	 decreases by a factor of 1=2Por the expected value of � decreases by a factor of 1=2P .Lemma 5 In a macroscheduling system of P processors and J jobs with � > 8, considerthe SRLBA algorithm. If in the load-balancing step right after con�guration M is obtained,the adversary chooses a processor p which works for a job belonging to C [D of the Phase-1partition of con�guration M , then for the successor con�guration M 0, we have E [(M 0)] �	(M)(1� 1=2P).Proof: When � > 8, for the Phase-1 constant �, we have 1=8 < � < 1=4. For any job k inset A of the Phase-1 partition of M , processor p will choose r which belongs to job k withprobability mk=P , where mk is the allotment for job k; if this happens, processor p migratesto work for job k, and 	(M 0) = 	(M) � 1=mk + 1=(mk + 1) = 	(M) � 1=mk(mk + 1).Thus, for j 2 [�� � 1], if there are nj jobs in set A of the Phase-1 partition of M with jprocessors each, then 	(M) = ���1Xj=1 nj(1=j � 1=��) ;and 	(M)� E �	(M 0)� = ���1Xj=1 jnj=Pj(j + 1)= ���1Xj=1 nj=P (j + 1) :26

Thus, 	(M)� E [(M 0)]	(M) = ���1Xj=1 nj=P (j + 1)���1Xj=1 nj(1=j � 1=��) : (3.1)What choice of the nj 's minimizes the righthand side of Equation (3.1)? Recall thatif a1; a2; : : : ; an and b1; b2; : : : ; bn are nonnegative constants, then the minimum value of(Pj ajxj)=(Pj bjxj), subject to the condition that the xj 's are nonnegative (and that notall of them are 0), is minj faj=bjg. If we let xj = nj , aj = 1=P (j + 1) and bj = 1=j � 1=��,then the righthand side of Equation (3.1) is at leastminj 1=P (j + 1)1=j � 1=�� = (1=P)minj 1=(j + 1)1=j � 1=�� :Now, 1=(j + 1)1=j � 1=�� = ��j(j + 1)(��� j)= ���1� 1j + 1�� 1�� � j� :Since 1 � 1=(j + 1) and 1=(�� � j) are both increasing functions of j, we conclude thatthe minimum occurs at j = 1. Thus, the righthand side of Equation (3.1) is at least(1=2P)=(1� 1=��) � 1=2P . Thus, E [(M 0)] � 	(M)(1� 1=2P).Lemma 6 In a macroscheduling system of P processors and J jobs with � > 8, considerthe SRLBA algorithm. If in the load-balancing step right after con�guration M is obtained,the adversary chooses a processor p which works for a job belonging to set A [B of thePhase-1 partition of con�guration M , then for the successor con�guration M 0, we haveE [�(M 0)] � �(M)(1� 1=2P).Proof: If in the load-balancing step, processor p picks a processor which belongs to a jobin set D of the Phase-1 partition of con�guration M , then a processor migration will takeplace, and � decreases at least by 1=2. Since � > 8, we have � < 1=4. We obtainXk2Dmk � P � (�� + 1)J� P=2 :27

Thus, we have �(M)� E ��(M 0)� � (1=2)Xk2Dmk=P� (1=2)(P=2)=P= 1=4 :By part (i) of Lemma 4, �(M) < �P � P=4, we obtainE ��(M 0)� � �(M)� 1=4� �(M)(1� 1=P)� �(M)(1� 1=2P) :Putting together Lemma 5 and Lemma 6 we have the following lemma about the productof 	 and �.Lemma 7 In a macroscheduling system of P processors and J jobs with � > 8, considerthe SRLBA algorithm. For any given round, if M (0) is the initial con�guration of the roundand M (P) is the con�guration at the end of the round, then we haveE h	�(M (P))i � e�1=2	�(M (0)) :Proof: For any i 2 [P], let M (i) be the con�guration at the end of step i. If in step i theadversary picks a processor p which works for a job in set C [D of the Phase-1 partitionof con�guration M (i�1), then since � is nonincreasing, by Lemma 5 we haveE h	�(M (i))i � E h	(M (i))�(M (i�1))i= E h	(M (i))i�(M (i�1))� 	(M (i�1))�(M (i�1))(1� 1=2P)� 	�(M (i�1))(1� 1=2P) :28

Similarly, if the adversary picks a processor p which works for a job in partition A [B ofcon�guration M (i�1), then since 	 is nonincreasing, by Lemma 6 we haveE h	�(M (i))i � E h	(M (i))�(M (i�1))i= E h	(M (i�1))i�(M (i�1))� 	(M (i�1))�(M (i�1))(1� 1=2P)� 	�(M (i�1))(1� 1=2P) :Thus, in any case, we have	(M (i�1))�(M (i�1))� E h	(M (i))�(M (i))i � (1=2P)	(M (i�1))�(M (i�1)) :Together with Lemma 1, we obtain the desired result.Lemma 7 shows that in every step of any round, the expected value of 	� decreases bya factor of 1=2P . Together with the lemmas proved in Section 2.2, we obtain the followingcorollary.Lemma 8 In a macroscheduling system of P processors and J jobs, consider the SRLBAalgorithm. Given any positive
 < 1, with probability at least (1�
), every job has at least�� processors after 2 ln(1=
) + 8 lnP rounds, where � is the Phase-1 constant.Proof: If � � 8, we are done. Otherwise, we have � > 8 and 1=8 < � � 1=4. By Lemma 3and Lemma 4, we know that for any con�guration M , we have 	�(M) < P 2. Also, if	�(M) < P�2=2 < P�2, then 	�(M) = 0. For i 2 N, let M (i) denote the con�gurationafter round i, and let M (0) be the initial con�guration before the �rst round. By Lemma 7,for any i 2 N, we have E h	�(M (i))i < e�1=2	�(M (i�1)). Thus, by Lemma 2, afterT = loge1=2(1=
) + (2 + 2) loge1=2 P= 2 ln(1=
)+ 8 lnProunds, with probability at least 1�
, we have 	�(M (T)) = 0. Notice that 	(M (T))�(M (T)) =0 if and only if 	(M (T)) = 0, which means that each job has at least �� processors.In Lemma 8, if we choose
 to be 1=P c, for any constant c, then with probability29

(1� 1=P c), after 2(c+4) lnP rounds, every job has at least �=8 processors. Therefore withhigh probability, after O(lgP) rounds, we obtain the desired Phase-1 con�guration.

30

Chapter 4Analysis of Phase 2 of the SRLBAAlgorithmIn this chapter, we consider Phase 2 of the SRLBA algorithm. For a macroschedulingsystem of P processors and J jobs with Phase-1 constant �, we show that under the SRLBAalgorithm, if every job has a desire which is more than the absolute average allotment �,and each job has at least �� processors, then with high probability, in O(lgP) rounds, thesystem is in an almost fair and e�cient con�guration.We �rst establish the potential functions that are used in the analysis of this phase.We assign a given round to one of two possible cases according to its initial potential. Weanalyze each of the two cases. Finally, we conclude that Phase 2 takes O(lgP) rounds.4.1 The Potential functions for Phase 2This section introduces the notion of \Phase-2" partition. It then describes the potentialfunctions used in Phase 2.In the SRLBA algorithm, once every job has more than �� processors, no job will everhave less than �� processors. Henceforth, we assume that, in Phase 2, every job has at least�� processors in every con�guration we consider, where 1=8 � � � 1=2.Let M be a con�guration of the system in Phase 2. Let hm1; m2; : : : ; mJi be the con-�guration vector of M , where mi = j fp :M(p) = ig j > �� is the processor allotment of jobi. We de�ne the Phase-2 partition of con�guration M to be the following disjoint sets of31

jobs: A = fj 2 [J] : mj < �� 1g ;B = fj 2 [J] : mj = �� 1g ;C = fj 2 [J] : mj = �g ;D = fj 2 [J] : mj = �+ 1g ;E = fj 2 [J] : mj > �+ 1g :We de�ne �j = jmj � �j to be the discrepancy of job j. Given the con�guration M , wede�ne the potential functions � and � to be�(M) = Xj2A[E(�j � 1) ;�(M) = Xj2[J]�j :Both � and � are potential functions, as they are both nonnegative. Moreover, they bothare nonincreasing, have an upper bound P , and if they are not zero, they must be at least1. The potential function �(M) represents the discrepancy of M from the almost fair ande�cient con�guration, whereas �(M) represents the discrepancy of M from the absolutefair and e�cient con�guration. To simplify our notation, for any con�gurationM , we de�ne��(M) = �(M)�(M) ;which is also a potential function. Moreover, ��(M) = 0 if and only if the system is in analmost fair and e�cient con�guration.In this section, we shall show that during Phase 2, after each round, the expecteddecrease in the potential ��(M) is at least a constant fraction of what it was before enteringthe round. Then, using the potential-function argument established in Section 2.2, we showwith high probability that after O(lgn) rounds, ��(M) = 0.To further simplify the notation, we de�ne �A and �E to be�A(M) = Xj2A(�j � 1) ;32

�E(M) = Xj2E(�j � 1) :We have �A(M)+�E(M) = �(M). The function �A(M) represents the number of proces-sors wanted by those jobs whose allotments are fewer than ��1, whereas �E(M) representsthe extra processors to be taken from those jobs whose allotments are more than � + 1.Intuitively, if �A(M) is much larger than �E(M), then many jobs in the system have ex-actly � + 1 processors; conversely, if �E(M) is much larger than �A(M), then many jobsin the system have exactly � � 1 processors. If both �A(M) and �E(M) are 0, then thecon�guration M is an almost fair and e�cient con�guration.Consider any round. If R is the initial con�guration of the round, then at least one ofthe following two cases is true:(a) �E(R) � �(R)=2,(b) �A(R) � �(R)=2.In the follow two subsections, we shall prove that in either of the two cases, the expectedvalue of �� decreases by a constant fraction after a round of load-balancing steps.4.2 Case (a)In this section, we shall prove that if �E(R) � �(R)=2 for a con�guration R at the beginningof a round, then at the end of the round, the expected decrease in �� is at least a constantfraction of ��(R). The proof involves a sequence of four lemmas, in the last of which wederive the desired result.Given any con�guration M during Phase 2, the following lemma gives a lower boundon the number of processors working for jobs in set A [B of the Phase-2 partition.Lemma 9 In a macroscheduling system with P processors and J jobs, during Phase 2 ofthe SRLBA algorithm, for any con�guration M with con�guration vector hm1; m2; : : : ; mJi,we have Xj2A[Bmj � �2(1� �)�(M) :33

Proof: Since for any job j 2 A [B, we have �� � mj � �, it follows that�j = ��mj� (1� �)� ;and hence, mj=�j � �=(1� �). Thus, since PJ2A[B �j = �=2, we haveXJ2A[Bmj � �(1� �) XJ2A[B�j= �2(1� �)� :Given any con�gurationM of phase 2, the following lemma shows that if the contributionto the potential � from jobs in partition E is su�ciently large, then the expected potentialof M 's successor M 0 decreases by a factor of at least 1=7P .Lemma 10 In a macroscheduling system with P processors and J jobs, during Phase 2of the SRLBA algorithm, consider a round whose initial con�guration M (0) satis�es thecondition �E(M (0)) � �(M (0))=2. Let M be any con�guration of this round, and M 0 be asuccessor of M . If �E(M) > (1=7)�(M (0)), thenE h��(M 0)i � (1� 1=7P)��(M) :Proof: Let hm1; m2; : : : ; mJi be the con�guration vector of M . For job j 2 [P], let �jbe the discrepancy of job j in con�guration M . Suppose in the load-balancing step aftercon�guration M , the adversary picks up a processor p that belongs to job k. We have twocases.� In the �rst case, job k belongs to A[B [C of the Phase-2 partition of con�gurationM . We call the load-balancing step a success if processor p proposes to a processorr which works for a job in E of the Phase-2 partition of M . If the load-balancingstep is a success, we have �(M)� �(M 0) � 1, and ��(M)� ��(M 0) � �(M). The34

probability of a success is at leastXj2Emj=P > Xj2E(�j � 1)=P= �E(M)=P> (1=7P)�(M (0))� (1=7P)�(M)since � is nonincreasing. Thus,��(M)� E h��(M 0)i � �(1=7P)�(M)��(M)= (1=7P)��(M) :� In the second case, job k belongs to D[E of the Phase-2 partition of con�gurationM .In this case, we call the load-balancing step a success if processor p chooses processorr 2 A [B of the Phase-2 partition of M . If the load-balancing step is a success, wehave �(M)� �(M 0) = 2, and ��(M)� ��(M 0) � 2�(M). Since in Phase 2, everyjob has at least �� processors, by Lemma 9, we haveXj2A[Bmj � �2(1� �)�(M) :Since, out of the P total processors, there are at least (�=2(1 � �))�(M) processorsin A [B, the probability of a success is at least (�=2(1� �))�(M)=P . Therefore, theexpected decrease in �� is��(M)� E h��(M 0)i � �1� ���(M)=P :When 1=8 � � � 1=2, we have min f�=(1� �); 1=7g = 1=7, which completes the proof.In a given round, let M (0) be the initial con�guration, and for any i 2 [P], let M (i) bethe con�guration after step i of the round. For each i 2 f0; 1; : : : ; P � 1g, de�ne the eventsX(i) and Y (i) as follows:X(i) = n�E(M (i)) � �(M (0))=7 and ��(M (i�1)) > ��(M (0))=2o ;35

Y (i) = n�E(M (i)) < �(M (0))=7 or ��(M (i�1)) � ��(M (0))=2o :By de�nition PrnX(i)o + PrnY (i)o = 1, for every step i = 0; 1; : : : ; P � 1. The followinglemma shows the relationship between the expected decrease of �� and the events X(i)'s,for i = 0; 1; : : : ; P � 1.Lemma 11 In a macroscheduling system of P processors and J jobs, consider a round ofPhase 2 under the SRLBA algorithm. Suppose M (0), the initial con�guration of the round,satis�es the condition �E(M (0)) � �(M (0))=2. For i 2 [P], let M (i) be the con�gurationafter step i. Then, we haveE h��(M (i))i � E h��(M (i�1))i� PrnX(i�1)o��(M (0))=(14P) ;and E h��(M (P))i � ��(M (0)) 1� P�1Xi=0 PrnX(i�1)o! =14P! :Proof: In the beginning of step i, if the event X(i�1) is true, that is, �E(M (i�1)) ��(M (0))=7 and ��(M (i�1)) > ��(M (0))=2, then by Lemma 10, the following must hold:E h��(M (i�1))� ��(M (i))i � (1=7P)��(M (i�1))� (1=14P)��(M (0)) ;which is equivalent toE h��(M (i))i < E h��(M (i�1))i� (1=14P)��(M (0)) :Otherwise, the event X(i�1) is not true. In this case, using the fact that the potentialfunction �� is nonincreasing, we have E h��(M (i))i � E h��(M (0))i. Thus, in general, wehave E h��(M (i))i � PrnX(i�1)o �E h��(M (i�1))i� (1=14P)��(M (0))�+ �1� PrnX(i�1)o�E h��(M (i�1))i= E h��(M (i�1))i� PrnX(i�1)o��(M (0))=(14P) :36

By induction, we obtainE h��(M (P))i � ��(M (0)) 1� P�1Xi=0 PrnX(i�1)o! =(14P)! :The next lemma proves that, given any con�guration R in the beginning of a round,if �E(R) � �(R), then at the end of the round, the expected decrease in �� is at least aconstant fraction of ��(R).Lemma 12 In a macroscheduling system with P processors and J jobs, consider a roundof Phase 2 under the SRLBA algorithm. Suppose �E(R) � �(R)=2, where R is the initialcon�guration of the round. If R0 is a con�guration at the end of the round, thenE h��(R0)i � (27=28)��(R) :Proof: In the beginning of the round, we have �E(R) � �(R)=2. If at the end of theround the event Y (P) is true, then either ��(R0) � ��(R)=2 or �E(R0) < �(R)=7. If�E(R0) < �(R)=7, then the decrease in � is at least(1=2)�(R)� (1=7)�(R) = (5=14)�(R) :Thus, ��(R0) � 914��(R). Otherwise, ��(R0) � ��(R)=2. In either case we have��(R0) � 914��(R) ;since max f9=14; 1=2g = 9=14. If the event Y (P) is not true , since the potential function�� is nonincreasing, we have ��(R0) � ��. So, when PrnY (P)o � �, we haveE h��(R0)i � (1� PrnY (P)o)��(R) + PrnY (P)o 914��(R)= ��(R)� PrnY (P)o 514��(R)� ��(R)� 514���(R)37

= �1� 514����(R) :Now consider the case where PrnY (P)o < �. Since �E, �, and � are nonincreasing, we havePrnY (i�1)o � PrnY (i)o for all i 2 [P]. Because PrnY (P)o < �, we have PrnY (i�1)o < �for all i 2 [P]. Since 8i 2 [P], PrnX(i�1)o+PrnY (i�1)o = 1, we obtain PP�1i=0 PrnX(i)o >(1� �)P . Using this and Lemma 11, we haveE h��(R0)i � �1� (1� �)P14P ���(R)� 13 + �14 ��(R) :Since the Phase-1 constant � satis�es the condition 1=8 � � � 1=2, we havemax f(13 + �)=14; (1� 5�=14)g � 27=28 :It follows that E h��(R0)i � 2728��(R) :4.3 Case (b)In this subsection, we shall prove that, for a con�guration R at the beginning of a round,if �A(R) � �(R)=2 , then at the end of the round, the expected decrease in �� is at leasta constant fraction of ��(R). The proof involves a sequence of four lemmas, in the last ofwhich we derive the desired result.Given any con�guration M of phase 2, the following lemma gives a lower bound on thenumber of processors working for jobs in the partition A [B in terms if �A(M) .Lemma 13 In a macroscheduling system with P processors and J jobs, during Phase 2 ofthe SRLBA algorithm, for any con�gurationM with the con�guration vector hm1; m2; : : : ; mJi,we have Xj2Amj � �1� ��A(M) :38

Proof: Since for any job j 2 A, we have mj � ��, it follows that�j � 1 < �j= � �mj� (1� �)� ;and hence, mj=(�j � 1) � �=(1� �). Thus, we haveXJ2Amj � �(1� �) XJ2A(�j � 1)= �1� ��A(M) :Given any con�guration M during phase 2, the following lemma shows that if the con-tribution to the potential � from jobs in partition A is su�ciently big, then the expectedpotential of M 's successor M 0 decreases by a factor of at least 1=28P .Lemma 14 In a macroscheduling system with P processors and J jobs, during Phase 2of the SRLBA algorithm, consider a round whose initial con�guration M (0) satis�es thecondition �A(M (0)) � �(M (0))=2. Let M be any con�guration of this round, and M 0 be asuccessor of M . If �A(M) > �(M (0))=4, thenE h��(M 0)i � (1� 1=28P)��(M) :Proof: Let hm1; m2; : : : ; mP i be the con�guration vector of M . For job j 2 [P], let �jbe the discrepancy of job j in con�guration M . Suppose that during the load-balancingstep following con�guration M , the adversary chooses a processor p belonging to job k toinitiate the load-balancing step. We have two cases.� In the �rst case, job k 2 C [D [E of the Phase-2 partition of con�guration M . Wecall the load-balancing step a success if p proposes to processor r which works for ajob in A of the Phase-2 partition of M . If the load-balancing step is a success, we39

have �(M)� �(M 0) � 1and ��(M)� ��(M 0) � �(M) :By Lemma 13 the probability of a success is at leastXj2Amj=P > �1� ��A(M)=P> �4(1� �)�(M (0))=P> �4(1� �)�(M)=P :Thus, E h��(M)i� ��(M 0) � �4(1� �)��(M)=P :� In the second case, job k 2 A[B of the Phase-2 partition of con�guration M . In thiscase, we call the load-balancing step a success if p proposes to a processor r workingfor a job in C [D [E of the Phase-2 partition of M . If the load-balancing step is asuccess, we have �(M)� �(M 0) = 2and ��(M)� ��(M 0) � 2�(M) :Since Xj2C[D[Emj � Xj2C[D[E�j= �(M)=2 ;the probability of a success is at least �(M)=2P . Therefore, the expected decrease in�� is ��(M)� E h��(M 0)i � ��(M)=P :Since the Phase-1 constant � satis�es 1=8 � � � 1=2, we obtain min f�=4(1� �); 1g � 1=28.40

Thus, we complete the proof.In a given round, let M (0) be the initial con�guration, and for any i 2 [P], let M (i) bethe con�guration after step i of the round. For each i 2 f0; 1; : : : ; P � 1g, de�ne the eventsX(i) and Y (i) to beX(i) = n�A(M (i)) > �(M (0))=4 and ��(M (i)) > ��(M (0))=2o ;Y (i) = n�A(M (i)) � �(M (0))=4 or ��(M (i)) � ��(M (0))=2o :By de�nition PrnX(i)o + PrnY (i)o = 1, for every step i = 0; 1; : : : ; P � 1. The followlemma shows the relationship between the expected decrease of �� and the events X(i)'s,for i = 0; 1; : : : ; P � 1.Lemma 15 In a macroscheduling system of P processors and J jobs, consider a round ofPhase 2 under the SRLBA algorithm. Suppose M (0), the initial con�guration of the round,satis�es the condition �A(M (0)) � �(M (0))=2. For i 2 [P], if M (i) is the con�guration afterstep i, then we haveE h��(M (i))i � E h��(M (i�1))i� PrnX(i�1)o��(M (0))=56P ;and E h��(M (P))i � ��(M (0)) 1� P�1Xi=0 PrnX(i�1)o! =56P! :Proof: Similar to the proof of Lemma 11.The next lemma proves that, given any con�guration R in the beginning of a round,if �A(R) � �(R), then at the end of the round, the expected decrease of �� is at least aconstant fraction of ��(R).Lemma 16 In a macroscheduling system with P processors and J jobs, consider a roundof Phase 2 under the SRLBA algorithm. Suppose �A(R) � �(R)=2, where R is the initialcon�guration of the round. If R0 is a con�guration at the end of the round, thenE h��(R0)i � 111112��(R) :41

Proof: In the beginning of the round, we have �A(R) � �(R)=2. If at the end of theround the event Y (P) is true, then either ��(R0) � ��(R)=2 or �A(R0) � �(R)=4. If�A(R0) � �(R)=4, then the decrease in � is at least �(R)=4, and hence,��(R0) � ��(R)=4 :Since max f1=2; 1=4g= 1=2, we have��(R0) � ��(R)=2 :If the event Y (P) is not true , since the potential function �� is nonincreasing, we have��(R0) � ��(R). So, if PrnY (P)o � �, we haveE h��(R0)i � (1� PrnY (P)o)��(R) + PrnY (P)o��(R)=2= ��(R)� PrnY (P)o��(R)=2� (1� �=2)��(R) :Now consider the case where PrnY (P)o < �. Since �E , � and � are nonincreasing, we haveY (i�1) � Y (i) for all i 2 [P]. Since Y (P) < �, we have Y (i�1) < � for all i 2 [P]. Since8i 2 [P], X(i�1) + Y (i�1) = 1, we haveP�1Xi=0 x(i) > (1� �)P :Using this and Lemma 15, we obtainE h��(R0)i � �1� (1� �)P56P ���(R)� 55 + �56 ��(R) :Since the Phase 1 constant � satis�es the condition 1=8 � � � 1=2, we obtainmax f(55 + �)=56; (1� �=2)g � 111=112 ;42

and thus, in either case, we haveE h��(R0)i � (111=112)��(R) :4.4 Combined analysis of cases (a) and (b)Combine Lemma 12 and Lemma 16, we obtain the following lemma for Phase 2.Lemma 17 In a macroscheduling system of P processors and J jobs, under the SRLBAalgorithm, once all jobs have no less than �� processors, with probability at lest 1 � �, ittakes (ln(112=111))�1(ln(1=
)+ 2 lnP) rounds for the system to converge to an almost fairand e�cient con�guration.Proof: For i 2 N, let R(i) denote the con�guration of the system after round i, and letR(0) denote the initial con�guration of the system. Since 111=112 > 27=28, by Lemma 12and Lemma 16, we obtainE h��(R(i))i � (111=112)��(R(i�1)) :Also, for any con�guration R, we have ��(R) < P 2. And if ��(R) < 1 = P 0, then��(R) = 0. By Lemma 2, afterT = log112=111(1=
) + (2 + 0) log112=111P= �ln 112111��1 (ln(1=
) + 2 lnP)rounds, with probability at least 1 �
, we have �� = 0, which implies that the systemconverges to an almost fair and e�cient con�guration.
43

Chapter 5Conclusion and Future WorkIn this Chapter I conclude my thesis with the main result of the analysis of the SRLBAalgorithm. I brie
y describe the result when some of the jobs desires are smaller thanthe absolute average allotment. Then, I discuss some directions for future work under theimperfect information model. Finally, I brie
y describe a system implementation of theadaptive processor allocator for the multithreaded language Cilk[1, 2, 6, 13].Theorem 18 In a macroscheduling system of P processors and J jobs, if each job hasa desire which is more than the absolute average allotment P=J, then given any initialcon�guration, under the SRLBA algorithm, the system arrives at an almost fair and e�cientcon�guration after O(lgP) rounds with probability at least 1� 1=P .Proof: Combine Lemma 8 and Lemma 17.Theorem 18 uses an simplifying assumption that each job has a desire which is morethan the absolute average allotment of the macroscheduling system. Although this assump-tion may not hold in a real system, the method we used to prove the theorem under thisassumption is still applicable to situations where some jobs have smaller desires than theabsolute average allotment. I have a sketch of an analysis of the SRLBA algorithm withoutthis simplifying assumption which, at this time, is not ready for publication. The analysisemploys the same potential function arguments with two phases, except that the secondphase is more complicated than without the simplifying assumption. The result is as follows.Consider a macroscheduling system with P processors. Let Q be the maximum totalnumber of processors which work for jobs whose desires are more than their allotment in any44

fair and e�cient con�guration of the system. Then with probability at least 1�1=P , withinO(P lgP=Q) rounds, the system converges to the almost fair and e�cient con�guration.Moreover, if Q is a constant fraction of P , we obtain that within O(lgP) rounds, thesystem is in a fair and e�cient con�guration with high probability.Another important direction of work is to extend our analysis to a system with imperfectinformation. In the sequential perfect-information model, we assume that the load-balancingsteps occur in serial and that for each processor, information on job allotment is updatedpromptly. In a real distributed system, however, it is very hard to serialize the load-balancing steps and update the information of a job's allotment quickly.Some related work has been done by Robert Blumofe and David Zuckerman on a case ofthe parallel imperfect information model [3]. They consider a system of P processors withtwo parallel jobs both with in�nite processor desires. Their algorithm proceeds in rounds,each of which consists P parallel load-balancing steps. A load-balancing step is modi�edso that the processor working on the job with larger allotment migrates to work on the jobwith smaller allotment with a certain \damping probability". This damping probabilitydepends on the allotments of the two jobs. They show that if the allotments of the jobs areupdated at the end of every round, the two-job system converges to the fair and e�cientcon�guration after O(lgP) rounds, where P is the number of processors.Our analysis of the SRLBA algorithm, together with the two-job imperfect informationanalysis, form a �rst step in the analysis of the more general and di�cult processor allocationproblem. We hope that our analysis or the methods employed therein may provide someinsight into a general and practically implementable solution to the adaptively parallelprocessor allocation problem.I have implemented an adaptive processor allocator for the multithreaded languageCilk [1, 2, 6, 13] base on the work presented in this thesis. We call this processor allocatorthe Cilk Macroscheduler, in contrast to the Cilk runtime system internal scheduler, themicroscheduler. Traditionally, in order to run a Cilk program, the user must specify thenumber of processes that the program uses. With the Macroscheduler, the system allocatesprocessors to concurrently running Cilk jobs in a fair and e�cient fashion. As the currentversion of Cilk runs on an SMP (symmetric multiprocessor), this Macroscheduler is able touse a centralized algorithm instead of a distributed one.45

One crucial part of the implementation the manner in which the Macroscheduler obtainsthe processor desire of user programs. The Macroscheduler gets this information throughthe interaction with the Cilk microscheduler. In a Cilk job, processors that are idle attemptto \steal" work from other processors. If the allotment of a job is more than its desire, thenits processors spend a large portion of the total running time stealing. If the allotment ismuch less than the desire, then they will not spend much time stealing. Thus, we can usethe steal information provided by the microscheduler to estimate a job's desire. We haveboth theoretical and empirical results to support this heuristic. This idea of using stealinformation to estimate the parallelism is based on an idea due to Charles Leiserson andRobert Blumofe. Charles Leiserson and I are currently preparing a separate paper aboutthe Cilk Macroscheduler for publication.

46

Bibliography[1] Robert D. Blumofe. Executing Multithreaded Programs E�ciently. PhD thesis, Mas-sachusettes Institute of Technology, September 1995.[2] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,Keith H. Randall, and Yli Zhou. Cilk: An e�cient multithreaded runtime system.Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Proctice ofParallel Programming (PPoPP), pages 207{216, July 1995.[3] Robert D. Blumofe and David Zuckerman, 1996. Private communication.[4] S.-H. Chiang, R. K. Mansharamani, and M. K. Vernon. Use of application charac-teristics and limited preemption for run-to-completion parallel processor scheduleingpolicies. Proceedings of the ACM SIGMETRICS Conference, June 1988.[5] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction toAlgorithms. The MIT Press, 1990.[6] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of theCilk-5 multithreaded language. Submitted for publication, 1997.[7] S. T. Leutenegger and M. K. Vernon. The performance of multiprogrammed multipro-cessor scheduling policies. Proceedings of the ACM SIGMETRICS Conference, May1990.[8] Philip A. Lisiecki. Macro-level scheduling in the Cilk network of workstations environ-ment. Master's thesis, Massachusettes Institute of Technology, May 1996.47

[9] Virginia Lo, Kurt Windisch, Wanqian Liu, and Bill Nitzberg. Non-contiguous proces-sor allocation algorithms for mesh-connected multicomputers. IEEE Transactions onParallel and Distributed Computing, 1996.[10] S. Majumdar, D. L. Eager, and R. B. Bunt. Scheduling in multiprogrammed parallelsystems. Proceedings of the ACM SIGMETRICS Conference, May 1988.[11] Cathy McCann, Raj Vaswani, and John Zahorjan. A dynamic processor allocation pol-icy for multiprogrammed shared-memory multiprocessors. ACM Trans. on ComputerSystems, 11(2):146{178, May 1993.[12] K. C. Sevcik. Characterization of prallelism in applications and their use in scheduling.Proceedings of the ACM SIGMETRICS Conference, May 1989.[13] Supercomputing Technologies Research Group, MIT Laboratory for C omputer Sci-ence, 545 Technology Square, Cambridge, Massachusetts 02139. Cilk 5.1 ReferenceManual, September 1997. http://theory.lcs.mit.edu/~cilk.[14] Andrew Tucker and Anoop Gupta. Process control and scheduling issues for multipro-grammed shared-memory multiprocessors. Proceedings of the 12th ACM Symposiumon Operating System Principles, pages 159{166, December 1989.

48

