
The Worst Page-Replacement Policy

Kunal Agrawal1, Michael A. Bender2, and Jeremy T. Fineman1

1 MIT, Cambridge, MA 02139, USA
2 Stony Brook University, Stony Brook, NY 11794-4400, USA

Abstract. In this paper, we consider the question: what is the worst
possible page-replacement strategy? Our goal is to devise an online strat-
egy that has the highest possible fraction of misses as compared to the
worst offline strategy. We show that there is no deterministic, online page-
replacement strategy that is competitive with the worst offline strategy.
We give a randomized strategy based on the “most-recently-used” heuris-
tic, and show that this is the worst possible online page-replacement
strategy.

1 Introduction

Since the early days of computer science, thousands of papers have been written
on how to optimize various components of the memory hierarchy. In these papers
a recurrent question (at least four decades old) is the following: Which page-
replacement strategies are the best possible?

The point of this paper is to address the reverse question: Which page-
replacement strategies are the worst possible? In this paper we explore different
ways to formulate this question. In some of our formulations, the worst strategy
is a new algorithm that (luckily) has little chance of ever being implemented in
software or silicon. In others, the worst strategy may be disturbingly familiar.

We proceed by formalizing the paging problem. We assume a two-level mem-
ory hierarchy consisting of a small fast memory, the cache , and an arbitrarily
large slow memory. Memory is divided into unit-size blocks or pages. Exactly
k pages fit in fast memory. In order for a program to access a memory location,
the page containing that memory location must reside in fast memory. Thus, as
a program runs, it makes page requests. If a requested page is already in fast
memory, then the request is satisfied at no cost. Otherwise, the page must be
transferred from slow to fast memory. When the fast memory already holds k
pages, one page from fast memory must be evicted to make room for the new
page. (The fast memory is initially empty, but once it fills up, it stays full.) The
cost of a program is measured in terms of the number of transfers.

The objective of the paging problem is to minimize the number of page
transfers by optimizing which pages should be evicted on each page requests.

This research was supported in part by NSF grants CCF 0621439/0621425,
CCF 0540897/05414009, CCF 0634793/0632838, CCF 0541209, and CNS 0627645,
and by Google Inc.



When all page requests are known a priori (the offline problem), then the optimal
strategy, proposed by Belady, is to replace the page whose next request occurs
furthest in the future [2].

More recent work has focused on the online problem, in which the paging
algorithm must continually decide which pages to evict without prior knowledge
of future page requests. Sleator and Tarjan introduce competitive analysis [10] to
analyze online strategies. Let A(σ) represent the cost incurred by the algorithm
A on the request sequence σ, and let OPT(σ) be the cost incurred by the optimal
offline strategy on the same sequence. For a minimization problem, we say that
an online strategy A is c-competitive if there exists a constant β such that for
every input sequence σ,

A(σ) ≤ c · OPT(σ) + β .

Sleator and Tarjan prove that there is no online strategy for page replace-
ment that is better than k-competitive, where k is the memory size. Moreover,
they show that the least-recently-used (LRU) strategy, in which the page
chosen for eviction is always the one requested least recently, is k-competitive.
If the online strategy operates on a memory that is twice the size of that used
by the offline strategy, they show that LRU is 2-competitive. Since this seminal
result, many subsequent papers have analyzed paging algorithms using compet-
itive analysis and its variations. Irani [7] gives a good study of many of these
approaches.

Page-replacement strategies are used at multiple levels of the memory hierar-
chy. Between main memory and disk, memory transfers are called page faults,
and between cache and main memory, they are cache misses. There are other
differences in between levels besides mere terminology. In particular, because
caches must be fast, a cache memory block, called a cache line , can only be
stored in one or a limited number x of cache locations. The cache is then called
direct mapped or x-way-associative , respectively. There have been several
recent algorithmic papers showing how caches with limited associativity can use
hashing techniques to acquire the power of caches with unlimited associativ-
ity [5, 9].

We are now ready to describe what we mean by the worst page-replacement
strategy. First of all, we are interested in “reasonable” paging strategies. When
we say that the strategy is reasonable , we mean that it is only allowed to evict
a page from fast memory when

1. an eviction is necessary to service a new page request, i.e., when the fast
memory is full, and

2. the evicted page is replaced by the currently requested page.

Without this reasonableness restriction a paging strategy could perform poorly
by preemptively evicting all pages from fast memory. In contrast, we explore
strategies that somehow try to do the right thing, but just fail miserably.

Thus, our pessimal-cache problem is as follows: identify replacement strate-
gies that maximize the number of memory transfers, no matter how efficiently
code happens to be optimized for the memory system.



As with traditional paging problems, we use competitive analysis. Since we
now have a maximization problem, the definition of competitive is slightly dif-
ferent: An online algorithm A is c-competitive if there exists a constant β such
that for every input sequence σ,

A(σ) ≥
1

c
· OPT(σ) − β .

An input sequence σ consists of a sequence of page requests.3 The objective
of the online algorithm A is to maximize the number of page faults on the input
sequence, and OPT is the offline strategy that maximizes the total number of
page faults.

Since we are turning the traditional problem on its head, terminology may
now seem backwards. Optimal now means optimally bad from a traditional point
of view. The adversary is trying to give us an input sequence for which we do
not have many more page faults than OPT. Thus, in some sense, the adversary
is our friend, who is looking out for our own good, whereas we are trying to
indulge in bad behavior.

Note that the pessimal-cache problem still assigns cost in the same way,
and thus counts competitiveness in terms of the number of misses and not the
number of hits. We leave the problem in this form because OPT may have no
hits, whereas even the best online strategies have infinitely many.

Results In this paper, we present the following results:

– We prove that there is no deterministic, competitive, online algorithm for
the pessimal-cache problem (Section 2).

– We show that there is no (randomized) algorithm better than k-competitive
for the pessimal-cache problem (Section 2).

– We give an algorithm for the pessimal-cache problem that is expected k-
competitive, and hence optimal (Section 3). Since this strategy exhibits a
1/k fraction of the maximum number of page faults on every input sequence,
this strategy is the worst page-replacement strategy.

– We next examine page-replacement strategies for caches with limited asso-
ciativity. We prove that for the direct-mapped caches, the page-replacement
is, in fact, worst possible, under the assumption that page locations are ran-
dom (Section 4).

2 Lower Bounds

This section gives lower bounds on the competitiveness of the pessimal-cache
problem. We show that no deterministic strategy is competitive. Then we show

3 If a page is requested repeatedly without any other page being interleaved, all strate-
gies have no choice, and there is no page fault on any but the first access. Thus, we
consider only sequences in which the same page is repeated only when another page
is accessed in between.



that no strategy can be better than expected k-competitive, where k is the fast-
memory size.

Our first lemma states that there is no deterministic online strategy that is
competitive with the offline strategy.

Lemma 1. Consider any deterministic strategy A for the pessimal-cache prob-
lem with fast-memory size k ≥ 2. For any ε > 0 and constant β, there exists an
input sequence σ such that A(σ) < ε · OPT(σ) − β.

Proof. Consider a sequence σ that begins by requesting pages v1, v2, . . . , vk+1.
While the first k pages are requested, all strategies have no choice and have a
fast-memory containing pages v1, . . . , vk. At the time vk+1 is requested, one of the
pages must be evicted from fast memory. Suppose that the deterministic strategy
chooses to evict page vi. Then for any j with 1 ≤ j ≤ k and i 6= j, consider the
sequence σ = v1, v2, . . . , vk+1, vj , vk+1, vj , vk+1, . . . that alternates between vk+1

and vj . Since the deterministic strategy has v1, . . . , vk in fast memory when vk+1

is requested, and vi 6= vj is evicted, both vj and vk+1 are in fast memory after
the request. Thus, all future requests are to pages already in fast memory, and
this strategy does not incur any more page faults after the first k+1. The offline
strategy OPT, on the other hand, still incurs a page fault on every request by
evicting page vj when vk+1 is requested and vice versa. Extending the length of
the sequence proves the lemma.

Lemma 1 also holds even if we introduce resource deaugmentation , that
is, the online strategy runs with a smaller fast memory of size kon ≥ 2 and offline
optimal strategy runs with a larger fast memory of size koff ≥ kon.4 Even so,
there is still no competitive deterministic strategy. The same proof still applies
with the same sequence–the proof just relies on the fact that there are two
particular pages in the fast memory of the online algorithm.

We now turn our attention to randomized strategies with an oblivious ad-
versary , meaning that the adversary must choose the entire input sequence
before seeing the result of any of the coin tosses used by the randomized al-
gorithm. Note that in the presence of a nonoblivious adversary, randomization
does not provide extra power for pessimal-cache problem.

The following lemma states that no randomized strategy is better than ex-
pected k-competitive when both the online and offline strategies have the same
fast-memory size k. Moreover, when the offline strategy uses a fast memory of
size koff and the online strategy has a fast memory of size kon ≤ koff , no online
strategy is better than koff/(koff − kon + 1).

Lemma 2. Let koff be the fast memory size of the offline strategy and kon (with
1 ≤ kon ≤ koff) be the fast memory size of the online strategy. Consider any
(randomized) online strategy A. For any c < koff/(koff − kon + 1) and constant
β, there exists an input σ such that E[A(σ)] < 1

c
· OPT(σ) − β.

4 Note that resource deaugmentation in the pessimal-cache problem means is the ana-
log of resource augmentation in the classical problem, in which the online algorithm
has a larger cache than the offline algorithm.



Proof. The proof is similar to that of Lemma 1. After the (koff+1)st page request
vkoff+1, the online algorithm A has kon pages in fast memory. Page vkoff+1 is
definitely in fast memory. Of the remaining koff pages requested so far, kon − 1
are in A’s fast memory.

Now let vj be a randomly selected page from v1, . . . , vkoff
. Page vj is in

A’s fast memory with probability (kon − 1)/koff . Now consider the sequence
v1, . . . , vkoff

, vkoff+1, vj , vkoff+1, vj , vkoff+1, . . .. With probability (kon − 1)/koff ,
page vj is still in fast memory after vkoff+1 is requested. In this case, no fu-
ture page requests cause page faults, giving the online strategy a total of koff +1
page faults. With probability (koff − kon + 1)/koff , vj is not in memory, and the
strategy may be able to attain the optimal ℓ page faults, where ℓ is the length of
the sequence following the first request for vkoff+1. Thus, the expected number
of page faults is at most (koff + 1) + ℓ(koff − kon + 1)/koff , whereas the offline
strategy attains (k +1)+ ℓ. Choosing a long enough sequence proves the lemma.

3 Most-Recently Used

This section describes two k-competitive strategies for the pessimal-cache prob-
lem. The first strategy uses one step of randomization followed by the deter-
ministic “most-recently-used” (MRU) heuristic. The second strategy uses more
randomization to achieve the optimal result even when the offline and online
strategies have different fast-memory sizes.

Since least-recently-used (LRU) is k-competitive and optimal for traditional
paging, we explore reverse strategies for the the pessimal-cache problem. The
most-recently-used (MRU ) heuristic always evicts the page in fast memory
that was used most frequently. It might be reasonable to expect MRU to be
k-competitive for the pessimal-cache problem. MRU, however, is deterministic,
and Lemma 1 states that no deterministic strategy can be competitive.

Instead, we consider a natural variation on MRU, which we call randomized
MRU . In randomized MRU, the first page evicted is chosen at random. (Recall
that this first eviction happens when the (k+1)th distinct page is requested.) All
subsequent evictions follow the MRU strategy. Randomized MRU gets around
the alternating-request strategy used to prove lower bounds in Lemmas 1 and 2.
The following lemma shows that MRU keeps a (slightly) random set of pages in
fast memory.

Lemma 3. Let k be the size of fast memory (for both online and offline strate-
gies), and consider any request sequence σ. After the (k + 1)st distinct page
is requested, randomized MRU guarantees that there are k pages each having
probability exactly 1 − 1/k of being in fast memory, and there is one page, the
most-recently-used page, that has probability 1 of being in fast memory. All other
pages are definitely not in fast memory.

Proof. We prove the claim by induction on the requests over time.
Base case. The base case is after the (k + 1)st distinct page is requested,

which is after the first eviction. Since there are k pages in fast memory at the



time that the (k+1)st distinct page is requested, and one is chosen to be evicted
at random, the claim holds for the base case.

Inductive step. Suppose that the claim holds up until the tth request. Assume
that the next request is for page vi. There are several cases.

Case 1. Suppose that vi is definitely not in fast memory. Then the most-
recently-used page vj is evicted, and hence vi is definitely in fast memory and
vj is definitely not.

Case 2. Suppose that vi is in fast memory with probability 1. Then none of
the probabilities change.

Case 3. Suppose that vi is in fast memory with probability 1− 1/k and that
vj is the most-recently-used page. Then with probability 1/k we have vi not in
fast memory, and hence the request for vi evicts vj . Otherwise, vj stays in fast
memory. Thus, the probability that vj is in fast memory is 1 − 1/k, and the
probability that the most recently used page vi is in fast memory is 1.

The probability of any other page (other than the ones mentioned in the
appropriate case) being in fast memory is unchanged across the request.

The following theorem states that randomized MRU is k-competitive, where
k is the size of fast memory.

Theorem 1. Randomized MRU is expected k-competitive, where k is the size of
fast memory.

Proof. Consider any input sequence σ. If sequence σ contains requests to fewer
than k+1 distinct pages, then randomized MRU has at the same number of page
faults as the offline strategy OPT (Both strategies have page faults only the first
time each distinct page is requested.) Consider any request after the first (k+1)st
distinct page is requested. If the request is for the most-recently-used page, then
neither OPT nor randomized MRU have a page fault, since that page must be
in fast memory. Otherwise, OPT causes a page fault. By Lemma 3, randomized
MRU incurs a page fault with probability at least 1/k. Specifically, MRU incurs
a fault with exactly probability 1/k for any of k pages and probability 1 for any
of the other pages. Thus, in expectation, randomized MRU incurs at least 1/k
page faults for each page fault incurred by OPT.

This result for randomized MRU is not quite analogous to the result of
Sleator and Tarjan’s [10] result for LRU. It is true that LRU is k-competitive for
the traditional paging problem, and randomized MRU is k-competitive for the
pessimal-cache problem. However, LRU also has good performance with resource
augmentation. Specifically, if LRU has a fast memory of size k and the offline
strategy has a fast memory size (1−1/c)k, then LRU is c-competitive. In partic-
ular, if the LRU has twice the fast memory of offline, then LRU is 2-competitive.
The above result for the pessimal-cache problem does not generalize in the same
way–the competitive ratio depends only on the size of randomized MRU’s fast
memory. If randomized MRU has a size-k fast memory and the offline strategy
has a size 2k fast memory, then randomized MRU is still only k-competitive.



We now give a more powerful MRU algorithm, reservoir MRU , that achieves
a better competitive ratio for the case of resource deaugmentation. As before,
let koff and kon ≤ koff be the sizes of the offline and online’s fast memory, re-
spectively.

The main idea of reservoir MRU is to keep a reservoir of kon − 1 pages,
where each previously-requested page resides in the reservoir with equal prob-
ability. (This technique is based on Vitter’s reservoir sampling [11].) Reservoir
MRU works as follows. For the first kon distinct requests, the fast memory is
not full, and thus there are no evictions. Subsequently, if there is a request
for a previously-requested page vi, and the page is not in memory, then the
most-recently requested page is evicted. Otherwise, when the nth new page is
requested, for any n > kon, with probability 1 − (kon − 1)/(n − 1), the most
recently requested page is evicted. Otherwise, the page to evict (other than the
most-recently-used page) is chosen uniformly at random.

Reservoir MRU has an invariant that is a generalization of Lemma 3. After
any request, the page that was requested most recently has probability 1 of
being in fast memory. All other n − 1 pages have probability (kon − 1)/(n − 1)
probability of being in fast memory.

Lemma 4. Let koff and kon ≤ koff be the fast memory sizes of the offline strategy
and of reservoir MRU, respectively. Consider any page-request sequence σ to
reservoir MRU. After the n > konth distinct page is requested, there is a single
page, the most-recently-used page, that has probability 1 of being in fast memory.
All other pages have probability (kon − 1)/(n − 1) of being in fast memory.

Proof. The proof is by induction on the requests, and is reminiscent of the proof
of Lemma 3.

Base case. After the (kon +1)th distinct request, the (kon +1)th page is defi-
nitely in fast memory, and one page randomly chosen has been evicted. Reservoir
MRU evicts the most recently used page with probability 1 − (kon − 1)/kon =
1/kon and all other page with the same probability. Thus, every page, except the
last one has probability 1− 1/kon of being in fast memory, and the lemma holds
for the base case.

Inductive step. Consider a request for page vi after the nth distinct page
has been requested. Assume by induction that the most-recently-used page vj

is definitely in fact memory and that all other n − 1 pages are in fast memory
with probability (kon − 1)/(n − 1). There are several cases.

Case 1. Suppose that page vi = vj , i.e., vj is in fast memory with probabil-
ity 1. Then none of the probabilities change.

Case 2. Suppose that page vi has been previously requested, but vi 6= vj . If vi

is already in fast memory then nothing is evicted. Otherwise, by the properties of
reservoir MRU, page vj is evicted. Since vi was in fast memory with probability
(kon − 1)/(n − 1), page vj is evicted with probability 1 − (kon − 1)/(n − 1)
and remains in fast memory with probability (kon − 1)/(n − 1). None of the
probabilities for pages other than vi and vj change.

Case 3. Suppose that page vi has never been requested before, that is, vi is the
(n+1)st distinct request. By the properties of reservoir MRU, the most-recently-



used page vj (which is definitely in fast memory) is evicted with probability
1− (kon − 1)/n and remains in fast memory with probability (kon − 1)/n. Thus,
the probability that vj is in fast memory is at the desired value.

The probability that each additional page is in shared memory now also needs
to decrease since the number of distinct pages has increased by one. Since with
probability (kon − 1)/n, a random page from the other kon − 1 pages is evicted
from fast memory, each page in fast memory is evicted with probability 1/n. The
probability that any page is in fast memory after this process is the probability
that the page was in a fast memory before the (n + 1)st distinct page request
times the probability that the page was not evicted by this request, which is
(kon − 1)/(n − 1)(1 − 1/n) = (kon − 1)/n. Since the number of distinct pages
requested is now n + 1, this probability also matches the lemma statement.

We now use the previous lemma to prove a better competitive ratio for reser-
voir MRU in the case of resource deaugmentation.

Theorem 2. Reservoir MRU is expected koff/(koff −kon +1)-competitive, where
koff is the size of fast memory of the offline strategy, and kon ≤ koff is the size
of fast memory for reservoir MRU.

Proof. Before koff distinct requests, reservoir MRU has at least as many page
faults as the offline strategy. And after this point, each time the offline strat-
egy has a page fault, since n > koff , reservoir MRU incurs a page fault with
probability at least 1 − (kon − 1)/koff from Lemma 4.

This theorem means that when the offline strategy and reservoir MRU have
the same fast-memory size k, reservoir MRU is k-competitive. When reservoir
MRU has fast-memory size kon and the offline strategy has fast-memory size
(1 + 1/c)kon, reservoir MRU is (c + 1)-competitive.5

Reservoir MRU requires some additional state—in particular, we need one bit
per page to indicate whether the page has been requested before. Consequently,
if the sequence requests n distinct pages, then we need O(n) extra bits of state.
In contrast, Achlioptas et. al.’s [1] optimal randomized algorithm for the page-
replacement problem requires only O(k2 log k) extra bits of state. The extra state
is unavoidable for reservoir MRU, however, because we must know when n, the
number of distinct pages, increases. Fortunately, these extra bits can be stored in
the slow memory, associated with each page—only the more reasonable O(log n)
bits for the counter storing n need be remembered by the algorithm at any given
time.

4 Direct Mapping

In this section we consider the page-replacement strategy used in direct-mapped
caches. We show that for the pessimal-cache problem, direct mapping is k-
competitive under some assumptions about the mapping strategy or about the
layout in slow memory.

5 In fact, the offline strategy can have a slightly smaller memory–with size
⌈(1 + 1/c)(kon − 1)⌉–and we still attain the (c + 1)-competitiveness.



In a direct-mapping strategy (see, e.g., [6]) each page vi can be stored in only
a single location L(vi) in fast memory. Thus, in a direct-mapped cache, once the
function L(vi) is chosen, there are no algorithmic decisions to make: whenever a
page vi is requested, we must evict the page that is currently stored in location
L(vi) and store vi there instead.

In the following, we show that if L(vi) is randomly chosen for each vi, then
direct mapping is k-competitive with the optimal offline strategy (with no direct-
mapped restrictions).

In fact, typically in real caches, the function L(vi) is determined by the low-
order bits in the address of vi in slow memory; it is not random. However, if
each page vi is stored in a random memory address in slow memory then our
theorem still applies. While it is often unrealistic to assume that each page vi is
randomly stored, this approach was also used in [5, 9] to enable direct-mapped
caches to simulate caches with no restrictions on associativity.

Observe that direct mapping is not a reasonable strategy when compared
with the optimal off-line strategy with no mapping restrictions. In particular, a
direct-mapped fast memory may evict a page before the rest of the fast memory
is full. However, since caches with limited associativity are so common, it is of
interest to explore this special case.

The following theorem states that direct mapping is competitive with the
optimal offline strategy for the pessimal-cache problem.

Theorem 3. Direct-mapping is k-competitive, where k is the fast-memory size
of the both be the direct-mapping and offline strategies.

Proof. We claim that a particular page is requested many times and the offline
strategy incurs a page fault on ℓ of these requests, then direct mapping incurs
at least ℓ/k page faults on vi in expectation. We prove this claim by induction
on the number of requests to vi.

The first time that vi is requested, there is a page fault. If vi is requested again
immediately (without any interleaving page requests), then both strategies have
the page in fast memory. If vi is requested again after another page is requested,
then the offline strategy may have a page fault. The direct-mapping strategy
incurs a page fault with probability at least 1/k, because at least one page vj is
requested between vi requests, and this page vj has a 1/k probability of evicting
vi from fast memory.

5 Conclusions

For the pessimal-cache problem, randomization is necessary to achieve any com-
petitive ratio, and the best competitive ratio without resource deaugmentation
is k. In contrast, for the original problem, deterministic strategies can be k-
competitive [10], and upper [1, 4, 8] and lower [4] bounds of Θ(log k) exist for
randomized strategies against oblivious adversaries.

In this paper, competitive ratios are k or larger; is there some model in
which the competitive ratio is smaller? Essentially, we’re trying to get a better



definition of reasonable strategies giving the adversary just the right amount
of power. This concept is similar to many approaches for the original page-
replacement problem—for example, the graph-theoretic approach [3] tries to
better model locality. Unfortunately, the traditional approaches seem to have
little impact for the pessimal-cache problem. For example, looking at access
patterns matching a graph, little can be said even if the graph is just a simple
line. Adding power like lookahead to the online strategy, on the other hand,
trivializes the problem since the optimal offline strategy can be implemented
with a lookahead of 1. It would be nice to come up with a more accurate model
that allows us to beat k-competitiveness.

It’s interesting that direct-mapped cache is optimally bad when the pro-
gram shows no locality (i.e., as in a multiprogrammed environment). In this
model, however, we cannot show anything about the badness of a 2-way (or,
more generally, c-way) set-associative cache using LRU. In particular, the LRU
subcomponent forces the cache to make the “right” choice for eviction, and the
sequence ping-ponging between two pages is sufficient to guarantee no future
misses.

One way of weakening the adversary is to restrict the definition of “reason-
able” strategies by disallowing the eviction of the most (or perhaps the c most)
recently used pages. In some sense, we’re forcing the cache to model some small
amount of locality, since, after all, that is the purpose of the cache. This mod-
ification of the problem has the nice property that it allows us to analyze the
pessimal-cache problem for a c-way set-associative cache. In particular, a 2-way
set-associative cache is roughly k2-competitive for the pessimal-cache problem.
This result appears to generalize for c-way set-associative caches as well.

It would nice to see if anything from this paper applies to other problems, or
generalizations of the paging problem, like the k-servers on a line problem, for
example.

References

1. Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive analysis of ran-
domized paging algorithms. In Annual European Symposium on Algorithms (ESA),
volume 1136 of Lecture Notes in Computer Science, pages 419–430, Barcelona,
Spain, September 25-27 1996.

2. Laszlo A. Belady. A study of replacement algorithms for virtual storage computers.
IBM Systems Journal, 5(2):78–101, 1966.

3. Allan Borodin, Sandy Irani, Prabhakar Raghavan, and Baruch Schieber. Compet-
itive paging with locality of reference. Journal of Computer and System Sciences,
50(2):244–258, April 1995.

4. Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator,
and Neal E. Young. Competitive paging algorithms. Journal of Algorithms,
12(4):685–699, December 1991.

5. Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran.
Cache-oblivious algorithms. In 40th Annual Symposium on Foundations of Com-
puter Science, pages 285–297, New York, New York, October 17–19 1999.



6. John L. Hennessy and David A. Patterson. Computer Architecture: a Quantitative
Approach. Morgan Kaufmann, San Francisco, CA, Third edition, 2003.

7. Sandy Irani. Competitive analysis of paging. In Developments from a June 1996
Seminar on Online Algorithms, volume 1442 of Lecture Notes in Computer Science,
pages 52–73, London, UK, 1998. Springer-Verlag.

8. Lyle A. McGeoch and Daniel D. Sleator. A strongly competitive randomized paging
algorithm. Algorithmica, 6:816–825, 1991.

9. Sandeep Sen and Siddhartha Chatterjee. Towards a theory of cache-efficient al-
gorithms. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 829–838, San Francisco, California, January 2000.

10. Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28(2):202–208, February 1985.

11. Jeffrey S. Vitter. Random sampling with a reservoir. ACM Transactions on Math-
ematical Software, 11(1):37–57, 1985.


