
Debugging Multithreaded Programs thatIncorporate User-Level LockingbyAndrew F. StarkSubmitted to the Department of Electrical Engineering and Computer Sciencein partial ful�llment of the requirements for the degrees ofBachelor of Science in Computer Science and EngineeringandMaster of Engineering in Electrical Engineering and Computer Scienceat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYJune 1998c Andrew F. Stark, MCMXCVIII. All rights reserved.The author hereby grants to MIT permission to reproduce and distribute publiclypaper and electronic copies of this thesis document in whole or in part, and to grantothers the right to do so.
Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Department of Electrical Engineering and Computer ScienceMay 22, 1998Certi�ed by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Charles E. LeisersonProfessor of Computer Science and EngineeringThesis SupervisorAccepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Arthur C. SmithChairman, Department Committee on Graduate Theses



Debugging Multithreaded Programs that IncorporateUser-Level LockingbyAndrew F. StarkSubmitted to the Department of Electrical Engineering and Computer Scienceon May 22, 1998, in partial ful�llment of therequirements for the degrees ofBachelor of Science in Computer Science and EngineeringandMaster of Engineering in Electrical Engineering and Computer ScienceAbstractA multithreaded program with a bug may behave nondeterministically, and this nondeter-minism typically makes the bug hard to localize. This thesis presents a debugging tool, theNondeterminator-2, which automatically �nds certain nondeterminacy bugs in programscoded in the Cilk multithreaded language. Speci�cally, the Nondeterminator-2 �nds \dagraces," which occur when two logically parallel threads access the same memory locationwhile holding no locks in common, and at least one of the accesses writes the location.The Nondeterminator-2 contains two dynamic algorithms, All-Sets and Brelly,which check for dag races in the computation generated by the serial execution of a Cilkprogram on a given input. For a program that runs serially in time T , accesses V sharedmemory locations, uses a total of n locks, and holds at most k � n locks simultaneously,All-Sets runs in O(nkT �(V; V )) time and O(nkV ) space, where � is Tarjan's functionalinverse of Ackermann's function. The faster Brelly algorithm runs in O(kT �(V; V )) timeusing O(kV ) space and can be used to detect races in programs intended to obey the\umbrella" locking discipline, a programming methodology that precludes races.In order to explain the guarantees provided by the Nondeterminator-2, we provide aframework for de�ning nondeterminism and de�ne several \levels" of nondeterministic pro-gram behavior. Although precise detection of nondeterminism is in general computationallyinfeasible, we show that an \abelian" Cilk program, one whose critical sections commute,produces a determinate �nal state if it is deadlock free and if it can generate a dag-race freecomputation. Thus, the Nondeterminator-2's two algorithms can verify the determinacy ofa deadlock-free abelian program running on a given input.Finally, we describe our experiences using the Nondeterminator-2 on a real-world ra-diosity program, which is a graphics application for modeling light in di�use environments.With the help of the Nondeterminator-2, we were able to speed up the entire radiosityapplication 5.97 times on 8 processors while changing less than 5 percent of the code. TheNondeterminator-2 allowed us to certify that the application had no race bugs with a highdegree of con�dence.Thesis Supervisor: Charles E. LeisersonTitle: Professor of Computer Science and Engineering
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Chapter 1
Introduction
When parallel programs have bugs, they can be nondeterministic, meaning that dif-ferent executions produce di�erent behaviors. In this thesis, we present a debuggingtool, the Nondeterminator-2, which automatically �nds nondeterminacy bugs in par-allel programs. We give a theoretical model of nondeterminism that precisely explainsthe guarantees provided by the Nondeterminator-2. We further demonstrate the ef-fectiveness of this debugging tool by showing how it was used to parallelize a complex,real-world application.NondeterminismBecause of the vagaries of timings of multiple processors, parallel programs can benondeterministic. Nondeterminism poses a serious challenge for debugging, becausereproducing the situation that caused a particular bug can be di�cult. Also, verifyingthat a program works correctly in one scheduling does not preclude the possibility ofbugs in future executions.In this thesis, we develop techniques for debugging parallel programs coded inthe Cilk language. The Cilk [3, 4, 7, 16, 23] project is designed to make it easy forprogrammers to write e�cient parallel programs. Parallel computing has long beenan area of research, but it has yet to reach the \mainstream" world of professionalprogrammers, even though parallel machines are becoming more available. Tradi-9



int x; cilk void foo1(){cilk int main() x += 2;{ }x = 2;spawn foo1(); cilk void foo2()spawn foo2(); {printf("%d", x); x *= 3;return 0; }}Figure 1-1: A nondeterministic Cilk program. The spawn statement in a Cilk programcreates a parallel subprocedure, and the sync statement provides control synchronizationto ensure that all spawned subprocedures have completed.
Time
?

Processor 1 Processor 2tmp1  x tmp2  xtmp1  tmp1 + 2 tmp2  tmp2 � 3x tmp1 x tmp2
Temporary valuestmp1 tmp2{ {2 {2 24 24 64 64 6Figure 1-2: An example of the machine instructions comprising updates to a sharedvariable x being interleaved. The �nal value of x in this particular execution is 6.tional techniques for parallelization typically require programmers to have intimateknowledge of the workings of their parallel architectures. Cilk alleviates this problemby allowing programmers to code in the Cilk language, which is a simple extension tothe programming language C [24]. The Cilk runtime system then automatically ande�ciently runs this code on multiprocessor machines.Cilk programs can still have nondeterminacy bugs, however. Figure 1-1 shows aCilk program that behaves nondeterministically. The procedures foo1 and foo2 runin parallel, resulting in parallel access to the shared variable x. The value of x printedby main is 12 if foo1 happens to run before foo2, but it is 8 if foo2 happens to runbefore foo1. Additionally, main might also print 4 or 6 for x, because the statementsin foo1 and foo2 are composed of multiple machine instructions that may interleave,possibly resulting in a lost update to x. 10



int x; cilk void foo1()Cilk_lockvar A; { Cilk_lock(A);cilk int main() x += 2;{ Cilk_unlock(A);x = 2; }Cilk_lock_init(A);spawn foo1(); cilk void foo2()spawn foo2(); {printf("%d", x); Cilk_lock(A);return 0; x *= 3;} Cilk_unlock(A);}Figure 1-3: A Cilk program that incorporates user-level locking to produce atomic crit-ical sections. Locks are declared as Cilk lockvar variables, and must be initialized byCilk lock init() statements. The function Cilk lock() acquires a speci�ed lock, andCilk unlock() releases a lock.Figure 1-2 shows an example of this interleaving occurring. Processor 1 performsthe x += 2 operation at the \same time" as processor 2 performs the x *= 3 opera-tion. The individual machine instructions that comprise these operations interleave,producing the value 6 as the �nal value of x.This behavior is likely to be a bug, but it may be the programmer's intention. It isalso possible that the programmer intended 8 or 12 to be legal �nal values for x, butnot 4 or 6. This behavior could be legitimately achieved through the use of mutual-exclusion locks. A lock is a language construct, typically implemented as a locationin shared memory, that can be acquired and released but that is guaranteed to beacquired by at most one thread at once. In other words, locks allow the programmerto force certain sections of the code, called critical sections, to be \atomic" withrespect to each other. Two operations are atomic if the instructions that comprisethem cannot be interleaved. Figure 1-3 shows the program in Figure 1-1 with locksadded. In this version, the value of x printed by main may be either 8 or 12, butcannot be 4 or 6.The program in Figure 1-3 is nondeterministic, but it is somehow \less nonde-terministic" than the program in Figure 1-1. Indeed, while Figure 1-3 uses locksto \control" nondeterminism, the locks themselves are inherently nondeterministic,11



int x; cilk void foo1()Cilk_lockvar A; {Cilk_lockvar B; Cilk_lock(A);x += 2;cilk int main() Cilk_unlock(A);{ }x = 2;Cilk_lock_init(A); cilk void foo2()Cilk_lock_init(B); {spawn foo1(); Cilk_lock(B);spawn foo2(); x *= 3;printf("%d", x); Cilk_unlock(B);return 0; }}Figure 1-4: A Cilk program that uses locks but that still contains a data race. Thedistinct locks A and B do not prevent the updates to x from interleaving.because the semantics of locks is that any of the threads trying to acquire a lockmay in fact be the one to get it. In fact, it is arguable that any Cilk program isnondeterministic, because memory updates happen in di�erent orders depending onscheduling.Rather than attempt to discuss these issues with such ambiguity, we present aformal model for de�ning nondeterminism. Under this model, we can precisely de�nemultiple kinds of nondeterminism. In particular, we de�ne the concept of a datarace: intuitively, a situation where parallel threads could update (or update andaccess) a memory location \simultaneously." Figure 1-1 contains a data race, whereasFigure 1-3 does not. It should be noted, however, that the mere presence of locks doesnot preclude data races. It still necessary to use the right locks in the right places.Figure 1-4 shows an example where locks have been used (presumably) incorrectly.The two distinct locks A and B do not have any e�ect on each other, so the updatesto x once again may interleave in a data race.Data races may not exactly represent the form of nondeterminism that program-mers care about. Data races are likely to be bugs, however, and they are interestingbecause they are a form of nondeterminism that we can hope to detect automatically.By automatically detecting data races, we can provide debugging information to the12



x=2 Cilk_lock_init(A)

Cilk_unlock(B)

Cilk_lock(A)
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Cilk_unlock(A)x+=2
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Figure 1-5: The computation dag for the program in Figure 1-3. A dag race existsbetween the two highlighted nodes.programmer that is of great use when trying to track down nondeterminacy bugs.Unfortunately, even detection of data races is computationally too di�cult to bedone in a practical debugging tool. Instead, the Nondeterminator-2 detects \dagraces." Roughly, a dag race race is like a data race, but the question of whethertwo memory accesses could occur simultaneously is approximated. We say that anexecution of a Cilk program generates a computation , which is a directed acyclicgraph (dag) where the nodes represent the instructions of the program and the edgesrepresent the parallel control constructs. The dag for Figure 1-4 is shown in Figure 1-5.1 The dag is an approximation of other possible executions of the same program onthe same input; that is, we consider the possible executions of the program on thatinput to be the topological sorts of the dag in which each lock is held at most once atany given time. A dag race, then, occurs when two instructions that are unrelatedin the dag both access the same memory location, at least one of the accesses is awrite, and no common lock is held across both of the accesses. Figure 1-5 has a dagrace between the two highlighted nodes.As we shall see, the dag races that the Nondeterminator-2 detects are not the1This picture of the dag is a simpli�cation; a formal method for construction of the dag is givenin Chapter 7. 13



same thing as data races. Nonetheless, experience shows that dag races are a goodenough approximation to be useful to report as debugging information to the program-mer. Furthermore, we show that for some set of programs, the dag races preciselycorrespond to data races. One such set of programs is the \abelian" programs inwhich all critical sections protected by the same lock \commute": intuitively, thecritical sections produce the same e�ect regardless of scheduling. We show that ifa (deadlock-free) abelian program generates a computation with no dag races, thenthe program is determinate: all schedulings produce the same �nal result. Theconsequence, therefore, is that for an abelian program, the Nondeterminator-2 canverify the determinacy of the program on a given input.The Nondeterminator-2 cannot provide such a guarantee for nonabelian programs.Even for such programs, however, we expect that reporting dag races to the userprovides a useful debugging heuristic. Indeed, this approach has been implicitlytaken by all previous dynamic race-detection tools.Race-detection algorithmsIn previous work, some e�orts have been made to detect data races statically (atcompile-time) [31, 42]. Static debuggers have the advantage that they sometimes candraw conclusions about the program for all inputs. Since understanding any nontrivialsemantics of the program is generally undecidable, however, most race detectors aredynamic tools in which potential races are detected at runtime by executing the pro-gram on a given input. Some dynamic race detectors perform a post-mortem analysisbased on program execution traces [12, 21, 29, 32], while others perform an \on-the-y" analysis during program execution. On-the-y debuggers directly instrumentmemory accesses via the compiler [10, 11, 14, 15, 28, 36], by binary rewriting [39], orby augmenting the machine's cache coherence protocol [30, 37].In this thesis, we present two race detection algorithms which are based on theNondeterminator [14], a tool that �nds dag races in Cilk programs that do not uselocks. The Nondeterminator executes a Cilk program serially on a given input, main-taining an e�cient \SP-bags" data structure to keep track of the logical series/parallel14



relationships between threads. For a Cilk program that runs serially in time T and ac-cesses V shared-memory locations, the Nondeterminator runs in O(T �(V; V )) timeand O(V ) space, where � is Tarjan's functional inverse of Ackermann's function,which for all practical purposes is at most 4.The Nondeterminator-2, the tool presented here, �nds dag races in Cilk programsthat use locks. This race detector contains two algorithms, both of which use the samee�cient SP-bags data structure from the original Nondeterminator. The �rst of thesealgorithms, All-Sets, is an on-the-y algorithm that, like most other race-detectionalgorithms, assumes that no locks are held across parallel control statements, suchas spawn and sync. The second algorithm, Brelly, is a faster on-the-y algorithm,but in addition to reporting dag races as bugs, it also reports as bugs some complexlocking protocols that are probably undesirable but that may be race free.The All-Sets algorithm executes a Cilk program serially on a given input andeither detects a dag race in the computation or guarantees that none exist. For aCilk program that runs serially in time T , accesses V shared-memory locations, usesa total of n locks, and holds at most k � n locks simultaneously, All-Sets runsin O(nkT �(V; V )) time and O(nkV ) space. Tighter, more complicated bounds onAll-Sets are given in Chapter 2.In previous work, Dinning and Schonberg's \Lock Covers" algorithm [11] alsodetects all dag races in a computation. The All-Sets algorithm improves the LockCovers algorithm by generalizing the data structures and techniques from the originalNondeterminator to produce better time and space bounds. Perkovic and Keleher [37]o�er an on-the-y race-detection algorithm that \piggybacks" on a cache-coherenceprotocol for lazy release consistency. Their approach is fast (about twice the serialwork, and the tool runs in parallel), but it only catches races that actually occurduring a parallel execution, not those that are logically present in the computation.Although the asymptotic performance bounds of All-Sets are the best to date,they are a factor of nk larger in the worst case than those for the original Nonde-terminator. The Brelly algorithm is asymptotically faster than All-Sets, and itsperformance bounds are only a factor of k larger than those for the original Nondeter-15



minator. For a Cilk program that runs serially in time T , accesses V shared-memorylocations, and holds at most k locks simultaneously, the serial Brelly algorithmruns in O(kT �(V; V )) time and O(kV ) space. Since most programs do not holdmany locks simultaneously, this algorithm runs in nearly linear time and space. Theimproved performance bounds come at a cost, however. Rather than detecting dagraces directly, Brelly only detects violations of a \locking discipline" that precludesdag races.A locking discipline is a programming methodology that dictates a restrictionon the use of locks. For example, many programs adopt the discipline of acquiringlocks in a �xed order so as to avoid deadlock [22]. Similarly, the \umbrella" lockingdiscipline precludes dag races by requiring that each location be protected by thesame lock within every parallel subcomputation of the computation. Threads thatare in series may use di�erent locks for the same location (or possibly even none, ifno parallel accesses occur), but if two threads in series are both in parallel with athird and all access the same location, then all three threads must agree on a singlelock for that location. If a program obeys the umbrella discipline, a dag race cannotoccur, because parallel accesses are always protected by the same lock. The Brellyalgorithm detects violations of the umbrella locking discipline.Savage et al. [39] originally suggested that e�cient debugging tools can be devel-oped by requiring programs to obey a locking discipline. Their Eraser tool enforces asimple discipline in which any shared variable is protected by a single lock throughoutthe course of the program execution. Whenever a thread accesses a shared variable, itmust acquire the designated lock. This discipline precludes dag races from occurring,and Eraser �nds violations of the discipline in O(kT ) time and O(kV ) space. (Thesebounds are for the serial work; Eraser actually runs in parallel.) Eraser only worksin a parallel environment containing several linear threads, however, with no nestedparallelism or thread joining as is permitted in Cilk. In addition, since Eraser doesnot recognize the series/parallel relationship of threads, it does not properly under-stand at what times a variable is actually shared. Speci�cally, it heuristically guesseswhen the \initialization phase" of a variable ends and the \sharing phase" begins,16



and thus it may miss some dag races.In comparison, our Brelly algorithm performs nearly as e�ciently, is guaran-teed to �nd all violations, and importantly, supports a more exible discipline. Inparticular, the umbrella discipline allows separate program modules to be composedin series without agreement on a global lock for each location. For example, an appli-cation may have three phases|an initialization phase, a work phase, and a clean-upphase|which can be developed independently without agreeing globally on the locksused to protect locations. If a fourth module runs in parallel with all of these phasesand accesses the same memory locations, however, the umbrella discipline does re-quire that all phases agree on the lock for each shared location. Thus, although theumbrella discipline is more exible than Eraser's discipline, it is more restrictive thanwhat a general dag-race detection algorithm, such as All-Sets, permits.Figure 1-6 compares the asymptotic performance of All-Sets and Brelly withother race detection algorithms in the literature. A more in-depth discussion of thiscomparison is given in Chapter 4.Using the Nondeterminator-2In addition to presenting the All-Sets and Brelly algorithms themselves, we dis-cuss practical issues surrounding their use. Speci�cally, we explain how they can beused when memory is allocated and freed dynamically. We describe techniques forannotating code in order to make dag race reports more useful for practical debuggingpurposes. Additionally, we present timings of the algorithms on a few example Cilkprograms.Finally, we present an in-depth case study of our experiences parallelizing a largeradiosity application. Radiosity is a graphics algorithm for modeling light in di�useenvironments. Figure 1-7 shows a scene in which radiosity was used to model thereections of light o� of the walls of a maze. The majority of the calculation timefor radiosity is spent calculating certain properties of the scene geometry. Thesecalculations can be parallelized, and Cilk is ideally suited for this parallelization,because its load-balancing scheduler is provably good, and so can obtain speedup17



HandlesAlgorithm Handles series- Detects Time per Totallocks parallel memory access spaceprogramsEnglish-Hebrew NO YES Dag races O(pt) O(V t+min(bp; V tp))labeling [36]Task NO YES Dag races O(t) O(t2 + V t)Recycling [10]O�set-span NO YES Dag races O(p) O(V +min(bp; V p))Labeling [28]SP-bags [14] NO YES Dag races O(�(V; V )) O(V )Lock YES YES Dag races O(tnk) O(t2 + tnkV )Covers [11] EraserEraser [39] YES NO discipline O(k) O(kV )violationsAll-Sets YES YES Dag races O(nk �(V; V ))) O(nkV )UmbrellaBrelly YES YES discipline O(k �(V; V )) O(kV )violationsp = maximum depth of nested parallelismt = maximum number of logically concurrent threadsV = number of shared memory locations usedb = total number of threads in the computationk = maximum number of locks held simultaneouslyFigure 1-6: Comparison of race detection algorithms. Tighter, more complicated boundsare given for All-Sets (and Lock Covers) in Figure 4-1.even for such irregular calculations.Parallelization speedup, however, is not particularly impressive if the same resultcould be achieved by optimizing the serial execution. Therefore, it is usually notdesirable to rewrite applications for parallel execution, because the optimizations inthe serial code might be lost. So instead of implementing our own radiosity code,we downloaded a large radiosity application developed at the Computer GraphicsResearch Group of the Katholieke Universiteit Leuven, in Belgium [2]. Since thecode is written in C, and Cilk is a simple extension of C, running the code as a Cilkprogram is e�ortless. 18



Figure 1-7: A maze scene rendered after 100 iterations of the radiosity algorithm.The di�culty, however, is that the program is large, consisting of 75 source �lesand 23,000 lines of code. The code was not written with parallelization in mind, sothere are portions where memory is shared \unnecessarily." That is, operations thatin principle could be independent actually write to the same memory locations. Theseconicts need to be resolved if those operations are to be run in parallel. Searchingthrough the code for such problems would be very tedious. The Nondeterminator-2,however, provides a much faster approach. We just run in parallel those operationsthat are \in principle" independent, and use the Nondeterminator-2 to �nd the placesin the code where this parallelization failed. In this way, we are directly pointed tothe problem areas of the code and have no need to examine pieces of the code thatdon't demonstrate any races. Our resulting Cilk radiosity code achieves a 5.97 timesspeedup on 8 processors.Organization of this thesisThis thesis is organized into three major parts.Part I discusses the race-detection algorithms. Chapter 2 presents the All-Setsalgorithm for detecting dag races in a Cilk computation, and Chapter 3 presentsthe Brelly algorithm for detecting umbrella discipline violations. Chapter 4 thengives a comparison of the asymptotic performance of these algorithms with other19



race-detection algorithms in the literature.Part II presents our theory of nondeterminism. Chapter 5 presents a frameworkfor de�ning nondeterminism, and data races in particular. Chapter 6 shows thatprecise detection of data races is computationally infeasible. Chapter 7 explains whythe dag races that are detected by the Nondeterminator-2 are not the same thing asdata races. Chapter 8, however, de�nes the notion of abelian programs, and showsthat there is a provable correspondence between dag races and data races for abelianprograms. Furthermore, that chapter shows that the Nondeterminator-2 can verifythe determinacy of deadlock-free abelian programs. A complicated proof of one lemmaneeded for this result is left to Appendix A.Finally, in Part III, we discuss some practical considerations surrounding the useof the Nondeterminator-2. Chapter 9 discusses how to detect races in the pres-ence of dynamic memory allocation and how to reduce the number of \false racereports" that the Nondeterminator-2 produces. Timings of our implementation ofthe Nondeterminator-2 are also given in that chapter. Some of the ideas describedin Chapter 9 were inspired by our experiences parallelizing the radiosity application;these experiences are described in Chapter 10. Chapter 11 o�ers some concludingremarks.Some of the results in this thesis appear in [6] and represent joint work withGuang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, and Keith Randall.
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Race-Detection Algorithms
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Chapter 2
The All-Sets Algorithm
In this chapter, we present the All-Sets algorithm, which detects dag races in Cilkcomputations.1 We �rst give some background on Cilk and explain the series-parallelstructure of its computations. Next we review the SP-bags algorithm[14] used by theoriginal Nondeterminator. We then we present the All-Sets algorithm itself, showthat it is correct, and analyze its performance. Speci�cally, we that for a program thatruns serially in time T , accesses V shared memory locations, uses a total of n locks,and holds at most k� n locks simultaneously, All-Sets run in O(nkT �(V; V )) timeand O(nkV ) space, where � is Tarjan's functional inverse of Ackermann's function.Furthermore, All-Sets guarantees to �nd a dag race in the generated computationif and only if such a race exists.CilkCilk is an algorithmic multithreaded language. The idea behind Cilk is to allowprogrammers to easily express the parallelism of their programs, and to have theruntime system take care of the details of running the program on many processors.Cilk's scheduler uses a work-stealing algorithm to achieve provably good performance.While this feature is not the main focus of this paper, it surfaces again as motivationfor the radiosity example.1Some of the results in this chapter appear in [6].23



In order to make it as easy as possible for programmers to express parallelism,Cilk was designed as a simple extension to C. A Cilk program is a C program witha few keywords added. Furthermore, a Cilk program running on one processor hasthe same semantics as the C program that is left when those keywords are removed.Cilk does not require programmers to know a priori on how many processors theirprograms will run.The Cilk keyword spawn, when immediately preceding a function call, declaresthat the function may be run in parallel. In other words, the parent function thatspawned the child is allowed to continue executing at the same time as the childfunction executes. The parent may later issue a sync instruction, which means thatthe parent must wait until all the children it has spawned complete before continuing.2Any procedure that spawns other procedures or that itself is spawned must be declaredwith the type quali�er cilk.Figure 2-1 gives an example Cilk procedure that computes the nth Fibonacci num-ber. The two recursive cases of the Fibonacci calculation are spawned o� in parallel.The code then syncs, which forces it to wait for the two spawned subcomputationsto complete. Once they have done so, their results are available to be accumulatedand returned.Additionally, Cilk provides the user with mutual-exclusion locks. A lock is es-sentially a location in shared memory that can be \acquired" or \released." It isguaranteed, however, that at most one thread can acquire a given lock at once. Thecommand Cilk lock() acquires a speci�ed lock, and Cilk unlock() releases a spec-i�ed lock. If the lock is already acquired then Cilk lock() \spins," meaning that itwaits until the lock is released, and then attempts to acquire it again. We assume inthis thesis, as does the race-detection literature, that parallel control constructs aredisallowed while locks are held.32The semantics of spawn and sync are similar to that of fork/join, but spawn and sync arelightweight operations.3The Nondeterminator-2 can still be used with programs for which this assumption does nothold, but the race detector prints a warning, and some races may be missed. We are developingextensions of the Nondeterminator-2's detection algorithms that work properly for programs thathold locks across parallel control constructs. See [5] for more discussion.24



cilk int fib(int n)f int x;int y;if (n < 2)return n;x = spawn fib(n-1);y = spawn fib(n-1);sync;return (x+y);g Figure 2-1: A Cilk procedure that computes the nth Fibonacci number.The computation of a Cilk program on a given input can be viewed as a directedacyclic graph, or dag , in which vertices are instructions and edges denote orderingconstraints imposed by control statements. A Cilk spawn statement generates a vertexwith out-degree 2, and a Cilk sync statement generates a vertex whose in-degree is 1plus the number of subprocedures syncing at that point.We de�ne a thread to be a maximal sequence of vertices that does not containany parallel control constructs. If there is a path in the dag from thread e1 to threade2, then we say that the threads are logically in series, which we denote by e1 � e2.If there is no path in the dag between e1 and e2, then they are logically in parallel ,e1 k e2. Only the series relation � is transitive. A dag race exists on a Cilkcomputation if two threads e1 k e2 access the same memory location while holdingno locks in common, and at least one of the threads writes the location.The computation dag generated by a Cilk program can itself be represented asa binary series-parallel parse tree, as illustrated in Figure 2-2. In the parsetree of a Cilk computation, leaf nodes represent threads. Each internal node is ei-ther an S-node if the computation represented by its left subtree logically precedesthe computation represented by its right subtree, or a P-node if its two subtrees'computations are logically in parallel.A parse tree allows the series/parallel relation between two threads e1 and e225



int x; cilk void foo3() {Cilk_lockvar A, B; Cilk_lock(B);x++;cilk void foo1() { Cilk_unlock(B);Cilk_lock(A); }Cilk_lock(B);x += 5; cilk int main() {Cilk_unlock(B); Cilk_lock_init(A);Cilk_unlock(A); Cilk_lock_init(B);} x = 0;spawn foo1();cilk void foo2() { spawn foo2();Cilk_lock(A); spawn foo3();x -= 3; sync;Cilk_unlock(A); printf("%d", x);} }
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Figure 2-2: A Cilk program and the associated series-parallel parse tree, abbreviated toshow only the accesses to shared location x. Each leaf is labeled with a code fragment thataccesses x, with the set of locks held at that access shown above the code fragment.to be determined by examining their least common ancestor, which we denote bylca(e1; e2). If lca(e1; e2) is a P-node, the two threads are logically in parallel (e1 ke2). If lca(e1; e2) is an S-node, the two threads are logically in series: e1 � e2,assuming that e1 precedes e2 in a left-to-right depth-�rst tree walk of the parse tree.The original NondeterminatorThe original Nondeterminator uses the e�cient SP-bags algorithm to detect dagraces in Cilk programs that do not use locks. The SP-bags algorithm executes a Cilkprogram on a given input in serial, depth-�rst order. This execution order mirrorsthat of normal C programs: every subcomputation that is spawned executes com-pletely before the procedure that spawned it continues. Every spawned procedure4is given a unique ID at runtime. These IDs are kept in the fast disjoint-set datastructure [8, Chapter 22] analyzed by Tarjan [43]. The data structure maintains adynamic collection � of disjoint sets and provides three elementary operations:Make-Set(x): � � [ ffxgg.4Technically, by \procedure" we mean \procedure instance," that is, the runtime state of theprocedure. 26



spawn procedure F :SF  Make-Set(F )PF  fgsync in a procedure F :SF  Union(SF ; PF )PF  fgreturn from procedure F 0 to F :PF  Union(PF ; SF 0)Figure 2-3: The SP-bags algorithm for updating S-bags and P-bags, which are repre-sented as disjoint sets.Union(X; Y ): � �� fX; Y g [ fX [ Y g. The sets X and Y are destroyed.Find-Set(x): Returns the set X 2 � such that x 2 X.Tarjan shows that any m of these operations on n sets take a total of O(m�(m;n))time.During the execution of the SP-bags algorithm, two \bags" of procedure ID's aremaintained for every Cilk procedure on the call stack. These bags have the followingcontents:� The S-bag SF of a procedure F contains the ID's of those descendants of F 'scompleted children that logically \precede" the currently executing thread, aswell as the ID for F itself.� The P-bag PF of a procedure F contains the ID's of those descendants ofF 's completed children that operate logically \in parallel" with the currentlyexecuting thread.The S-bags and P-bags are represented as sets using the disjoint-set data struc-ture. At each parallel control construct of the program, the contents of the bags areupdated as described in Figure 2-3. To determine the logical relationship of the cur-rently executing thread with any already executed thread only requires a Find-Setoperation, which runs in amortized �(V; V ) time. If the set found is an S-bag, the27



threads are in series, whereas if a P-bag is found, the threads are in parallel.In addition, SP-bags maintains a shadow space that has an entry correspond-ing to each location of shared memory. For a location l of shared memory, the cor-responding shadow space entry keeps information about previous accesses to l. Thisinformation is used to �nd previous threads that have accessed the same location asthe current thread.The All-Sets algorithmThe All-Sets algorithm is an extension of the SP-bags algorithm that detects dagraces in Cilk programs that use locks. The All-Sets algorithm also uses S-bagsand P-bags to determine the series/parallel relationship between threads. Its shadowspace lockers is more complex than the shadow space of SP-bags, however, becauseit keeps track of which locks were held by previous accesses to the various locations.The lock set of an access is the set of locks held by the thread when the accessoccurs. The lock set of several accesses is the intersection of their respective locksets. If the lock set of two parallel accesses to the same location is empty, and at leastone of the accesses is a write, then a dag race exists. To simplify the descriptionand analysis of the race detection algorithm, we shall use a small trick to avoid theextra condition for a race that \at least one of the accesses is a write." The ideais to introduce a fake lock for read accesses called the r-lock, which is implicitlyacquired immediately before a read and released immediately afterwards. The fakelock behaves from the race detector's point of view just like a normal lock, but duringan actual computation, it is never actually acquired and released (since it does notactually exist). The use of r-lock simpli�es the description and analysis of All-Sets, because it allows us to state the condition for a dag race more succinctly: ifthe lock set of two parallel accesses to the same location is empty, then a dag raceexists. By this condition, a dag race (correctly) does not exist for two read accesses,since their lock set contains the r-lock.The entry lockers[l ] in All-Sets' shadow space stores a list of lockers: threadsthat access location l, each paired with the lock set that was held during the access.28



lock(A)Add A to Hunlock(A)Remove A from Haccess(l) in thread e with lock set H1 for each he0; H 0i 2 lockers[l ]2 do if e0 k e and H 0 \H = fg3 then declare a dag race4 redundant  false5 for each he0; H 0i 2 lockers[l ]6 do if e0 � e and H 0 � H7 then lockers[l ] lockers[l ]� fhe 0;H 0ig8 if e0 k e and H 0 � H9 then redundant  true10 if redundant = false11 then lockers[l ] lockers[l ] [ fhe;H igFigure 2-4: The All-Sets algorithm. The operations for the spawn, sync, and returnactions are unchanged from the SP-bags algorithm.If he;Hi 2 lockers[l ], then thread e accesses location l while holding the lock set H.location l is accessed by thread e while it holds the lock set H.As an example of what the shadow space lockers may contain, consider a threade that performs the following:Cilk lock(A); Cilk lock(B);read(l)Cilk unlock(B); Cilk unlock(A);Cilk lock(B); Cilk lock(C);write(l)Cilk unlock(C); Cilk unlock(B);For this example, the list lockers[l ] contains two lockers|he; fA; B;r-lockgi andhe; fB; Cgi.The All-Sets algorithm is shown in Figure 2-4. Intuitively, this algorithmrecords all lockers, but it is careful to prune redundant lockers, keeping at most29



one locker per distinct lock set. Locks are added and removed from the global lockset H at Cilk lock and Cilk unlock statements. Lines 1{3 check to see if a dagrace has occurred and report any violations. Lines 5{11 then add the current lockerto the lockers shadow space and prune redundant lockers.Correctness of All-SetsBefore proving the correctness of All-Sets, we restate two lemmas from [14].Lemma 1 Suppose that three threads e1, e2, and e3 execute in order in a serial,depth-�rst execution of a Cilk program, and suppose that e1 � e2 and e1 k e3. Then,we have e2 k e3.Lemma 2 (Pseudotransitivity of k) Suppose that three threads e1, e2, and e3 ex-ecute in order in a serial, depth-�rst execution of a Cilk program, and suppose thate1 k e2 and e2 k e3. Then, we have e1 k e3.We now prove that the All-Sets algorithm is correct.Theorem 3 The All-Sets algorithm detects a dag race in a computation of a Cilkprogram running on a given input if and only if a dag race exists in the computation.Proof: ()) To prove that any race reported by the All-Sets algorithm really existsin the computation, observe that every locker added to lockers[l ] in line 11 consistsof a thread and the lock set held by that thread when it accesses l. The algorithmdeclares a race when it detects in line 2 that the lock set of two parallel accesses (bythe current thread e and one from lockers[l ]) is empty, which is exactly the conditionrequired for a dag race.(() Assuming a dag race exists in a computation, we shall show that a dag raceis reported. If a dag race exists, then we can choose two threads e1 and e2 such thate1 is the last thread before e2 in the serial execution that has a dag race with e2. Ifwe let H1 and H2 be the lock sets held by e1 and e2, respectively, then we have e1 k e2and H1 \H2 = fg. 30



We �rst show that immediately after e1 executes, lockers[l ] contains some threade3 that races with e2. If he1; H1i is added to lockers[l ] in line 11, then e1 is suchan e3. Otherwise, the redundant ag must have been set in line 9, so there must exista locker he3; H3i 2 lockers[l ] with e3 k e1 and H3 � H1. Thus, by pseudotransitivity(Lemma 2), we have e3 k e2. Moreover, since H3 � H1 and H1 \ H2 = fg, we haveH3 \H2 = fg, and therefore e3, which belongs to lockers[l ], races with e2.To complete the proof, we now show that the locker he3; H3i is not removed fromlockers[l ] between the times that e1 and e2 are executed. Suppose to the contrary thathe4; H4i is a locker that causes he3; H3i to be removed from lockers[l ] in line 7. Then,we must have e3 � e4 and H3 � H4, and by Lemma 1, we have e4 k e2. Moreover,since H3 � H4 and H3 \H2 = fg, we have H4 \H2 = fg, contradicting the choice ofe1 as the last thread before e2 to race with e2.Therefore, thread e3, which races with e2, still belongs to lockers[l ] when e2 exe-cutes, and so lines 1{3 report a race.Analysis of All-SetsIn Chapter 1, we claimed that for a Cilk program that executes in time T on oneprocessor, references V shared memory locations, uses a total of n locks, and holdsat most k� n locks simultaneously, the All-Sets algorithm can check this compu-tation for dag races in O(nkT �(V; V )) time and using O(nkV ) space. These bounds,which are correct but weak, are improved by the next theorem.Theorem 4 Consider a Cilk program that executes in time T on one processor, ref-erences V shared memory locations, uses a total of n locks, and holds at most k lockssimultaneously. The All-Sets algorithm checks this computation for dag races inO(TL(k+�(V; V ))) time and O(kLV ) space, where L is the maximum of the numberof distinct lock sets used to access any particular location.Proof: First, observe that no two lockers in lockers have the same lock set, becausethe logic in lines 5{11 ensure that if H = H 0, then locker he;Hi either replaces he0; H 0i31



(line 7) or is considered redundant (line 9). Thus, there are at most L lockers in thelist lockers[l ]. Each lock set takes at most O(k) space, so the space needed for lockersis O(kLV ). The length of the list lockers[l ] determines the number of series/parallelrelations that are tested. In the worst case, we need to perform 2L such tests (lines 2and 6) and 2L set operations (lines 2, 6, and 8) per access. Each series/parallel testtakes amortized O(�(V; V )) time, and each set operation takes O(k) time. Therefore,the All-Sets algorithm runs in O(TL(k + �(V; V ))) time.The looser bounds claimed in Chapter 1 of O(nkT �(V; V )) time and O(nkV ) spacefor k � n follow because L � Pki=0 �ni� = O(nk=k!). As we shall see in Chapter 9,however, we rarely see the worst-case behavior given by the bounds in Theorem 4.
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Chapter 3
The Brelly Algorithm
In this section, we formally de�ne the \umbrella locking discipline" and present theBrelly algorithm for detecting violations of this discipline.1 We prove that theBrelly algorithm is correct and analyze its performance, which we show to be asymp-totically better than that of All-Sets. Speci�cally, we show that for a program thatruns serially in time T , accesses V shared memory locations, uses a total of n locks,and holds at most k � n locks simultaneously, Brelly runs in O(kT �(V; V )) timeusing O(kV ) space, where � is Tarjan's functional inverse of Ackermann's function.We further prove thatBrelly guarantees to �nd a violation of the umbrella disciplinein the computation if and only if a violation exists.The umbrella disciplineThe umbrella discipline can be de�ned precisely in terms of the parse tree of a givenCilk computation. An umbrella of accesses to a location l is a subtree rooted at aP-node containing accesses to l in both its left and right subtrees, as is illustrated inFigure 3-1. An umbrella of accesses to l is protected if its accesses have a nonemptylock set and unprotected otherwise. A program obeys the umbrella locking dis-cipline if it contains no unprotected umbrellas. In other words, within each umbrellaof accesses to a location l, all threads must agree on at least one lock to protect their1Some of the results in this chapter appear in [6].33
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Figure 3-1: Three umbrellas of accesses to a location l. In this parse tree, each shadedleaf represents a thread that accesses l. Each umbrella of accesses to l is enclosed by adashed line.accesses to l.The next theorem shows that adherence to the umbrella discipline precludes dagraces from occurring.Theorem 5 A Cilk computation with a dag race violates the umbrella discipline.Proof: Any two threads involved in a dag race must have a P-node as their leastcommon ancestor in the parse tree, because they operate in parallel. This P-noderoots an unprotected umbrella, since both threads access the same location and thelock sets of the two threads are disjoint.The umbrella discipline can also be violated by unusual, but dag-race free, lockingprotocols. For instance, suppose that a location is protected by three locks and thatevery thread always acquires two of the three locks before accessing the location.No single lock protects the location, but every pair of such accesses is mutuallyexclusive. The All-Sets algorithm properly certi�es this bizarre example as race-free, whereas Brelly detects a discipline violation. In return for disallowing theseunusual locking protocols (which in any event are of dubious value), Brelly checksprograms asymptotically faster than All-Sets.The Brelly algorithmLike All-Sets, the Brelly algorithm extends the SP-bags algorithm used in theoriginal Nondeterminator and uses the r-lock fake lock for read accesses (see Chap-ter 2). Figure 3-2 gives pseudocode for Brelly. Like the SP-bags algorithm,34



lock(A)Add A to Hunlock(A)Remove A from Haccess(l) in thread e with lock set H1 if accessor [l ] � e2 then � serial accesslocks[l ] H , leaving nonlocker [h] with its oldnonlocker if it was already in locks[l ] butsetting nonlocker [h] accessor [l ] otherwise3 for each lock h 2 locks[l ]4 do alive[h] true5 accessor [l ] e6 else � parallel access7 for each lock h 2 locks[l ]� H8 do if alive[h] = true9 then alive[h] false10 nonlocker [h] e11 for each lock h 2 locks[l ] \ H12 do if alive[h] = true and nonlocker [h] k e13 then alive[h] false14 if no locks in locks[l ] are alive (or locks[l ] = fg)15 then report violation on l involvinge and accessor [l ]16 for each lock h 2 H \ locks[l ]17 do report access to l without hby nonlocker [h]Figure 3-2: The Brelly algorithm. While executing a Cilk program in serial depth-�rstorder, at each access to a shared-memory location l, the code for access(l) is executed.Locks are added and removed from the lock set H at Cilk lock and Cilk unlock state-ments. To determine whether the currently executing thread is in series or parallel withpreviously executed threads, Brelly uses the SP-bags data structure.
35



Brelly executes the program on a given input in serial depth-�rst order, maintain-ing the SP-bags data structure so that the series/parallel relationship between thecurrently executing thread and any previously executed thread can be determinedquickly. Like the All-Sets algorithm, Brelly also maintains a set H of currentlyheld locks. In addition, Brelly maintains two shadow spaces of shared memory:accessor , which stores for each location the thread that performed the last \serialaccess" to that location; and locks, which stores the lock set of that access. Eachentry in the accessor space is initialized to the initial thread (which logically precedesall threads in the computation), and each entry in the locks space is initialized to theempty set.Unlike the All-Sets algorithm, Brelly keeps only a single lock set, rather thana list of lock sets, for each shared-memory location. For a location l, each lock inlocks[l ] potentially belongs to the lock set of the largest umbrella of accesses to lthat includes the current thread. The Brelly algorithm tags each lock h 2 locks[l ]with two pieces of information: a thread nonlocker [h] and a ag alive[h]. The threadnonlocker [h] is a thread that accesses l without holding h. The ag alive[h] indicateswhether h should still be considered to potentially belong to the lock set of theumbrella. To allow reports of violations to be more precise, the algorithm \kills" alock h by setting alive[h] false when it determines that h does not belong to thelock set of the umbrella, rather than simply removing it from locks[l ].Whenever Brelly encounters an access by a thread e to a location l, it checksfor a violation with previous accesses to l, updating the shadow spaces appropriatelyfor future reference. If accessor [l ] � e, we say the access is a serial access, and thealgorithm performs lines 2{5, setting locks[l ]  H and accessor [l ]  e, as well asupdating nonlocker [h] and alive[h] appropriately for each h 2 H. If accessor [l ] k e,we say the access is a parallel access, and the algorithm performs lines 6{17, killingthe locks in locks[l ] that do not belong to the current lock set H (lines 7{10) or whosenonlockers are in parallel with the current thread (lines 11{13). If Brelly �nds inline 14 that there are no locks left alive in locks[l ] after a parallel access, it has foundan unprotected umbrella, and it then reports a discipline violation in lines 15{17.36
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thread accessor [l ] locks [l ] access typeinitial e0 f ge1 e1 fa(e0);b(e0)g seriale2 e1 fa(e0);b(e2)g parallele3 e1 fa(e0);b(e2)g parallele4 e4 f g seriale5 e5 fa(e4);b(e4)g seriale6 e5 fa(e6);b(e4)g parallele7 e5 fa(e6);b(e4)g parallelFigure 3-3: A sample execution of the Brelly algorithm. We restrict our attention tothe algorithm's operation on a single location l. In the parse tree, each leaf represents anaccess to l and is labeled with the thread that performs the access (e.g., e1) and the lockset of that access (e.g., fa;bg). Umbrellas are enclosed by dashed lines. The table displaysthe values of accessor [l ] and locks [l ] after each thread's access. The nonlocker for each lockis given in parentheses after the lock, and killed locks are underlined. The \access type"column indicates whether the access is a parallel or serial access. A discipline violation isreported after the execution of e7, because e7 is a parallel access and no locks are left alivein locks [l ].When reporting a violation, Brelly speci�es the location l, the current threade, and the thread accessor [l ]. It may be that e and accessor [l ] hold locks in com-mon, in which case the algorithm uses the nonlocker information in lines 16{17 toreport threads that accessed l without each of these locks. Thus, every violationmessage printed by the algorithm always describes enough information to show thatthe umbrella in question is in fact unprotected.Figure 3-3 illustrates how Brelly works. The umbrella containing threads e1,e2, and e3 is protected by lock a but not by lock b, which is reected in locks[l ] afterthread e3 executes. The umbrella containing e5 and e6 is protected by b but not by a,which is reected in locks[l ] after thread e6 executes. During the execution of threade6, a is killed and nonlocker [a] is set to e6, according to the logic in lines 7{10. When37



e7 executes, b remains as the only lock alive in locks[l ] and nonlocker [b] is e4 (due toline 2 during e5's execution). Since e4 k e7, lines 11{13 kill b, leaving no locks alivein locks[l ], properly reecting the fact that no lock protects the umbrella containingthreads e4 through e7. Consequently, the test in line 14 causes Brelly to declare aviolation at this point.Correctness of BrellyThe following two lemma will be helpful in proving the correctness of Brelly.Lemma 6 Suppose a thread e performs a serial access to location l during an execu-tion of Brelly. Then all previously executed accesses to l logically precede e in thecomputation.Proof: By transitivity of the � relation, all serial accesses to l that execute beforee logically precede e. We must also show the same for all parallel accesses to l thatare executed before e. Now, consider a thread e0 that performs a parallel access to lbefore e executes, and let e00 k e0 be the thread stored in accessor [l ] when e0 executesits parallel access. Since e00 is a serial access to l that executes before e, we havee00 � e. Consequently, we must have e0 � e, because otherwise, by pseudotransitivity(Lemma 2) we would have e00 k e, a contradiction.Lemma 7 The Brelly algorithm maintains the invariant that for any location land lock h 2 locks[l ], the thread nonlocker [h] is either the initial thread or a threadthat accessed l without holding h.Proof: There are two cases in which nonlocker [h] is updated. The �rst is in theassignment nonlocker [h]  e in line 10. This update only occurs when the currentthread e does not hold lock h (line 7). The second case is when a lock's nonlocker [h]is set to accessor [l] in line 2. If this update occurs during the �rst access to l in theprogram, then accessor [l] is the initial thread. Otherwise, locks[l] is the set of locks38



held during an access to l in accessor [l], since locks[l] and accessor [l] are updatedtogether to the current lock set H and current thread e, respectively, during a serialaccess (lines 2{5), and neither is updated anywhere else. Thus, if h 62 locks[l], whichis the case if nonlocker [h] is being set to accessor [l] in line 2, then accessor [l] did nothold lock h during its access to l.Theorem 8 The Brelly algorithm detects a violation of the umbrella discipline ina computation of a Cilk program running on a given input if and only if a violationexists.Proof: We �rst show that Brelly only detects actual violations of the discipline,and then we argue that no violations are missed. In this proof, we denote by locks�[l ]the set of locks in locks[l ] that have true alive ags.()) Suppose that Brelly detects a violation caused by a thread e, and lete0 = accessor [l ] when e executes. Since we have e0 k e, it follows that p = lca(e0; e)roots an umbrella of accesses to l, because p is a P-node and it has an access to lin both subtrees. We shall argue that the lock set U of the umbrella rooted at p isempty. Since Brelly only reports violations when locks�[l ] = fg, it su�ces to showthat U � locks�[l ] at all times after e0 executes.Since e0 is a serial access, lines 2{5 cause locks�[l ] to be the lock set of e0. Atthis point, we know that U � locks�[l ], because U can only contain locks held byevery access in p's subtree. Suppose that a lock h is killed (and thus removed fromlocks�[l ]), either in line 9 or line 13, when some thread e0 executes a parallel accessbetween the times that e0 and e execute. We shall show that in both cases h 62 U ,and so U � locks�[l ] is maintained.In the �rst case, if thread e0 kills h in line 9, it does not hold h, and thus h 62 U .In the second case, we shall show that w, the thread stored in nonlocker [h] whenh is killed, is a descendant of p, which implies that h 62 U , because by Lemma 7,w accesses l without the lock h. Assume for the purpose of contradiction that w isnot a descendant of p. Then, we have lca(w; e0) = lca(w; e0), which implies thatw k e0, because w k e0. Now, consider whether nonlocker [h] was set to w in line 1039



or in line 2 (not counting when nonlocker [h] is left with its old value in line 2). Ifline 10 sets nonlocker [h]  w , then w must execute before e0, since otherwise, wwould be a parallel access, and lock h would have been killed in line 9 by w beforee0 executes. By Lemma 6, we therefore have the contradiction that w � e0. If line 2sets nonlocker [h]  w , then w performs a serial access, which must be prior to themost recent serial access by e0. By Lemma 6, we once again obtain the contradictionthat w � e0.(() We now show that if a violation of the umbrella discipline exists, then Brellydetects a violation. If a violation exists, then there must be an unprotected umbrellaof accesses to a location l. Of these unprotected umbrellas, let T be a maximal onein the sense that T is not a subtree of another umbrella of accesses to l, and let p bethe P-node that roots T . The proof focuses on the values of accessor [l ] and locks[l ]just after p's left subtree executes.We �rst show that at this point, accessor [l ] is a left-descendant of p. Assumefor the purpose of contradiction that accessor [l ] is not a left-descendant of p (and istherefore not a descendant of p at all), and let p0 = lca(accessor [l ]; p). We knowthat p0 must be a P-node, since otherwise accessor [l ] would have been overwritten inline 5 by the �rst access in p's left subtree. But then p0 roots an umbrella that is aproper superset of T , contradicting the maximality of T .Since accessor [l ] belongs to p's left subtree, no access in p's right subtree overwriteslocks[l ], as they are all logically in parallel with accessor [l ]. Therefore, the accessesin p's right subtree may only kill locks in locks[l ]. It su�ces to show that by the timeall accesses in p's right subtree execute, all locks in locks[l ] (if any) have been killed,thus causing a race to be declared. Let h be some lock in locks�[l ] just after the leftsubtree of p completes.Since T is unprotected, an access to l unprotected by h must exist in at least oneof p's two subtrees. If some access to l is not protected by h in p's right subtree,then h is killed in line 9. Otherwise, let eleft be the most-recently executed threadin p's left subtree that performs an access to l not protected by h. Let e0 be thethread in accessor [l ] just after eleft executes, and let eright be the �rst access to l in40



the right subtree of p. We now show that in each of the following cases, we havenonlocker [h] k eright when eright executes, and thus h is killed in line 13.Case 1: Thread eleft is a serial access. Just after eleft executes, we have h 62 locks[l ](by the choice of eleft) and accessor [l ] = eleft . Therefore, when h is later placed inlocks[l ] in line 2, nonlocker [h] is set to eleft . Thus, we have nonlocker [h] = eleft k eright .Case 2: Thread eleft is a parallel access and h 2 locks[l ] just before eleft executes.Just after e0 executes, we have h 2 locks[l ] and alive[h] = true, since h 2 locks[l ]when eleft executes and all accesses to l between e0 and eleft are parallel and do notplace locks into locks[l ]. By pseudotransitivity (Lemma 2), e0 k eleft and eleft k erightimplies e0 k eright . Note that e0 must be a descendant of p, since if it were not, T wouldbe not be a maximal umbrella of accesses to l. Let e00 be the most recently executedthread before or equal to eleft that kills h. In doing so, e00 sets nonlocker [h]  e 00 inline 10. Now, since both e0 and eleft belong to p's left subtree and e00 follows e0 in theexecution order and comes before or is equal to eleft , it must be that e00 also belongsto p's left subtree. Consequently, we have nonlocker [h] = e 00 k eright .Case 3: Thread eleft is a parallel access and h 62 locks[l ] just before eleft exe-cutes. When h is later added to locks[l ], its nonlocker [h] is set to e0. As above, bypseudotransitivity, e0 k eleft and eleft k eright implies nonlocker [h] = e 0 k eright .In each of these cases, nonlocker [h] k eright still holds when eright executes, sinceeleft , by assumption, is the most recent thread to access l without h in p's left subtree.Thus, h is killed in line 13 when eright executes.Analysis of BrellyTheorem 9 On a Cilk program that executes serially in time T , uses V shared-memory locations, and holds at most k locks simultaneously, the Brelly algorithmruns in O(kT �(V; V )) time and O(kV ) space.Proof: The total space is dominated by the locks shadow space. For any location l,the Brelly algorithm stores at most k locks in locks[l ] at any time, since locks areplaced in locks[l ] only in line 2 and jHj � k. Hence, the total space is O(kV ).41



Each loop in Figure 3-2 takes O(k) time if lock sets are kept in sorted order,excluding the checking of nonlocker [h] k e in line 12, which dominates the asymptoticrunning time of the algorithm. The total number of times nonlocker [h] k e is checkedover the course of the program is at most kT , requiring O(kT �(V; V )) time.
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Chapter 4
Related Work
In this chapter, we compare the All-Sets and Brelly algorithms to previous racedetection algorithms in the literature. Although they may not have made it explicit,these past algorithms also detect dag races, and not data races. (Further discussionof the di�erence between the two kinds of races is given in Chapters 5 and 7.) Wefocus on dynamic, on-the-y debugging tools. On-the-y tools detect races as theprogram executes and are generally more e�cient than postmortem tools, which rundetection algorithms on program execution traces.Figure 4-1 summarizes the comparison of All-Sets and Brelly with previouswork. (This �gure is the �gure from Chapter 1 with tighter bounds for All-Setsand Dinning and Schonberg's Lock Covers.) The All-Sets algorithm is the fastestalgorithm that precisely detects dag races in programs that use locks. The Brellyalgorithm is the fastest algorithm that detects locking discipline violations in fullyseries-parallel programs.The original work in this area was the English-Hebrew labeling method proposedby Nudler and Rudolph [36]. Their model assumes nested parallelism similar to Cilk'sspawn/sync, but does not address programs that use locks.1 In order to determine thelogical relation between threads, each thread is given an English label and a Hebrewlabel. The ith child of a thread is labeled with i appended to its parents' label, where1Nudler and Rudolph do discuss handling explicit synchronization operations between parallelthreads, but we do not discuss that portion of the algorithm here.43



HandlesAlgorithm Handles series- Detects Time per Totallocks parallel memory access spacedagsEnglish-Hebrew NO YES Dag races O(pt) O(V t+min(bp; V tp))labeling [36]Task NO YES Dag races O(t) O(t2 + V t)Recycling [10]O�set-span NO YES Dag races O(p) O(V +min(bp; V p))Labeling [28]SP-bags [14] NO YES Dag races O(�(V; V )) O(V )Lock YES YES Dag races O(tk2L) O(t2 + tkLV )Covers [11] EraserEraser [39] YES NO discipline O(k) O(kV )violationsAll-Sets YES YES Dag races O(L(k + �(V; V ))) O(kLV )UmbrellaBrelly YES YES discipline O(k �(V; V )) O(kV )violationsp = maximum depth of nested parallelismt = maximum number of logically concurrent threadsV = number of shared memory locations usedb = total number of threads in the computationk = maximum number of locks held simultaneouslyL = maximum number of distinct lock sets used to access a locationFigure 4-1: Comparison of dag-race detection algorithms. This �gure gives tighter boundsfor All-Sets and Lock Covers than those given in Figure 1-6.i is counted left to right for the English label and right to left for the Hebrew label.If each label of e1 is less than the corresponding label of e2, then e1 � e2.The length of the labels is O(p), where p is the maximum depth of nested paral-lelism. In addition to keeping the labels, the algorithm must keep an \access history"for each memory location. An access history is a list containing information onwhich threads have accessed the location. (The access histories are essentially de-signed to keep the same information that the Nondeterminator-2 keeps in its shadowspaces.) In this case, the access history is a list of pointers to labels. The access44



history for each location may grow as large as the maximum number of logically con-current threads t. The reason for this potentially large growth is that all concurrentthreads that read the location must be noted in the access history. The parallel rela-tion k is not transitive. So if two threads e1 k e2 both read a memory location, theymust both be noted in the access history, because a write to that location by anotherthread e3 must be checked with both e1 and e2 for dag races.If the program uses a total of V shared memory locations, then the algorithm keepsO(V t) pointers in access histories. With reference counting garbage collection, thestorage for the labels can be bounded by O(V tp). This storage can also be boundedby O(bp), where b is the total number of threads in the execution. Thus, the totalamount of space used by the English-Hebrew labeling scheme is O(V t+min(bp; V tp)).At each memory access, the algorithm does O(t) comparisons of size O(p) labels, fora time of O(pt). Essentially, then, the algorithm slows down ordinary execution by afactor of O(pt).2The task recycling algorithm, due to Dinning and Schonberg [10], records moreinformation in order to reduce the time to check if two threads are concurrent. LikeEnglish-Hebrew labeling, the algorithm does not address programs with locks. Thealgorithm uses at most t task identi�ers, which it assigns to all the threads. Todistinguish between multiple threads with the same task id, each thread is a givena unique version number for its task. In addition, each currently executing thread emaintains a parent vector of size t. The ith entry in this vector denotes the largestversion number for task i that serially precedes e. Thus, determining the logicalrelationship between threads requires only a constant time operation|a vector lookupand version number comparison.The task recycling algorithm, however, must still keep the O(t) size access historyfor each memory location. Thus, at each access, the algorithm performs O(t) opera-tions, each taking O(1) time, for a program slowdown of O(t). Up to t threads may2To be fully precise, we should also mention the O(p) time to create and join threads. Thisterm can be ignored when compared with the O(pt) operation at each memory access, and anywaymemory accesses occur much more frequently than thread creation/termination in most programs.45



require size t parent vectors, so the parents vectors require O(t2) space. The storagefor parent vectors together with the space for access histories yields O(t2 + V t) totalspace.Mellor-Crummey's o�set-span labeling approach [28] reduces the size of accesshistories by keeping ids only for \lowest leftmost" and \lowest rightmost" readers. Inthis way, all dag races can be found, because a write that races with any read alsoraces with one of the reads in the access history. The space for the access histories istherefore reduced to O(V ). To determine concurrency, each thread is assigned a labelwhich consists of a sequence of o�set-span pairs. The ith child thread is labeled byappending the pair [i; s] to its parent's label, where s is the total number of childrenbeing created, the span , and i is called the o�set . The mechanism for thread joiningis complicated, but the idea is that one of the pairs [o; s] is replaced with [o + s; s].We can check if thread e1 precedes e2 by checking if the threads' labels contain pairs[o1; s] and [o2; s], respectively, such that o1 mod s = o2 mod s.The maximum size of labels is once again O(p), so the space for the labels isbounded by O(V p) (assuming garbage collection). This space is also bounded by(bp), so the total space of the algorithm is O(V +min(bp; V p)). Assuming that modis a constant time operation, the time to check each memory access is just O(p), thetime to compare two labels.The SP-bags algorithm [14], as we have seen, uses a variation on Tarjan's leastcommon ancestor algorithm to �nd the logical relationships between threads. Thisalgorithm runs in �(V; V ) amortized time per memory access, and its disjoint setstructure requires O(V ) space when reference counting garbage collection is used.One key idea of SP-bags is that by running the program in a known serial order, thesize of the access history can be reduced, because the relation k is pseudotransitive(Lemma 2). SP-bags thus keeps only one reader per access history and so requiresonly O(V ) total space.So far all of the algorithms we have discussed do not properly handle programswith locks. That is, they report as dag races parallel updates, even if those updateshold a lock in common. Dinning and Schonberg give a way to extend their previous46



work to correctly identify dag races in programs with locks [11]. The idea is to keep,for every thread id in an access history, the set of locks that were held at the timeof that access. Accesses that use distinct locksets must all be recorded in the accesshistory. Dinning and Schonberg's Lock Covers algorithm maintains access historiesof size O(tkL), where k is the maximum number of locks held simultaneously, andL is the maximum of the number of distinct lock sets used to access any particularlocation.Dinning and Schonberg do not specify how this algorithm should determine con-currency. If we assume they use their earlier task recycling algorithm, then concur-rency can be determined in O(1) time and O(t2) space. In order to detect dag races,the algorithm must also intersect sets of locks; such an intersection requires O(k)time (assuming the sets are sorted in some way). The algorithm therefore requiresO(tk2L) time per memory access and O(t2 + tkLV ) total space.The All-Sets algorithm, then, can be seen as a variation of Lock Covers thatachieves better asymptotic performance by using the same ideas as the originalNondeterminator|the disjoint set structure and the pseudotransitivity of k. As wehave seen, the algorithm uses O(kLV ) space and O(L(k + �(V; V ))) amortized timeper memory access.Savage et al. [39] originally proposed the idea of using a locking discipline forrace-detection purposes. Their discipline requires that every access to a variable thatis shared be protected a single lock. Their model does not allow for nested parallelismor barriers. Rather, they simply assume that all accesses are in parallel with eachother.3 At each access, the set of locks that is allowed to protect the location beingaccessed is intersected with the currently held set of locks. This operation takes O(k)time and requires the access history to hold a lockset of size O(k). So Eraser takesO(k) time per memory access, and requires a total of (kV ) space.The Brelly algorithm can therefore be seen as an application of the idea of3Actually, Eraser allows for an initial serial \initialization phase" in which a variable may bewritten without being protected by a lock. This phase is assumed to end as soon as an access ina di�erent thread occurs. This access itself may constitute a race, but Eraser does not report thispossibility. 47



locking disciplines to a general series-parallel environment. Its O(k �(V; V )) amortizedtime per memory access and O(kV ) space usage are almost equivalent to Eraser'sasymptotic bounds.Others have proposed detecting races by \piggybacking" on the machine's cachecoherence protocol [30, 37]. In principle, such piggybacking is only useful in detectingdata races that actually occur in an execution. That is, the cache coherence protocolcan detect when threads that actually run in parallel access the same location. Todetect races based on logical relationships, these approaches must do extra worksimilar to the other algorithms we have seen.Comparing times per memory access is slightly unfair, because SP-bags, All-Sets, and Brelly all run in series, whereas the other algorithms run in parallel. Theother algorithms, however, need to add extra locking in order to synchronize betweenupdates to the access histories. This synchronization adds extra work to the programand may reduce its parallelism as well. Additionally, running the debugger in parallelmeans that if the input program is nondeterministic, then the debugger itself willbe nondeterministic. This behavior is probably not desirable when debugging, asprogrammers may need to run the debugger several times if they plan on �xing racebugs one-by-one.
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Part II
Theory of Nondeterminism
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Chapter 5
Nondeterminism
In this chapter, we give a model for de�ning nondeterminism and use that model tode�ne a hierarchy of forms of nondeterminism. The model allows programmers tode�ne the speci�c form of nondeterminism that they care about for any particularprogram. The model is used in Chapters 7 and 8 to precisely explain the guaranteesof determinacy that the Nondeterminator-2 provides.A model for Cilk executionIn order to describe nondeterministic program executions, we �rst give a formal mul-tithreaded machine model that describes the actual execution of a Cilk program.In particular, we explain how a program execution can be viewed as a sequence of\instruction instantiations."We can view the abstract execution machine for a multithreaded language as a(sequentially consistent [26]) shared memory together with a collection of inter-preters. (See [4, 9, 20] for examples of multithreaded implementations similar tothis model.) Each interpreter contains private state which only it can modify. Partof its private state is a program counter , which points to an instruction within thecode for the program. (We assume that the code is read-only, and so where it residesis immaterial.) The state of the multithreaded machine can be viewed as a privatestate vector , consisting of the private interpreter states, together with a shared51



state vector , consisting of the shared memory. Both state vectors may grow andshrink during execution, since new interpreters are created and destroyed, and sharedmemory can be allocated and freed.Although a multithreaded execution may proceed in parallel, we consider a seri-alization of the execution in which only one interpreter executes at a time, but theinstructions of the di�erent interpreters may be interleaved.1 The initial state of themachine consists of a single interpreter whose program counter points to the �rstinstruction of the program. At each step, a nondeterministic choice among the cur-rent nonblocked interpreters is made, and the instruction pointed to by its programcounter is executed.When an instruction is executed by an interpreter, it maps the current state ofthe multithreaded machine to a new state.2 There are eight types of instructions3:alu: Modi�es only the state of the interpreter that executes it.read: Loads a value from shared memory into the local interpreter state.write: Stores a value into shared memory from the local interpreter state.lock: Acquires a speci�ed lock (special location in shared memory). Cannot beexecuted unless no other interpreter holds the lock.unlock: Releases a speci�ed lock.spawn: Creates a new interpreter with a speci�ed program counter and local state.The new interpreter is a child of the original interpreter.sync: No-op. Cannot be executed unless the interpreter has no children.return: Syncs, then destroys the interpreter.1The fact that any parallel execution can be simulated in this fashion is a consequence of our choiceof sequential consistency as the memory model. The model also assumes that single instructions areguaranteed to be atomic by the hardware, which is the case in most modern machine architectures.2An instruction can formally be said to be a state to state mapping. This de�nition means thatan instruction itself is always deterministic; we do not discuss random number generators or otherforms of \serial nondeterminism."3Two additional instructions, malloc and free, are discussed in Chapter 9.52



In addition to performing one of these actions, executing an instruction typicallycauses an interpreter to modify its program counter to point to the next instructionin the program. Only an alu instruction is allowed to modify the program counterto become anything other than the next instruction speci�ed by the program.4 Aninterpreter whose next instruction cannot be executed is said to be blocked . If allinterpreters are blocked, the machine is deadlocked , and the execution is said to bea deadlock execution .Additionally, during the execution of a program, we can assign a unique inter-preter name to each interpreter, in the following manner. The �rst interpreteris named by some �xed string, say \Interpreter." At each spawn, an interpreternames the newly created child interpreter by appending the number of children ithas spawned to its own name. For example, the interpreter that is the third childspawned from the fourth child of the initial interpreter is named \Interpreter43."When an instruction executes in a run of a program, it has a dynamic e�ect onthe state of the machine. To formalize the e�ect of an instruction execution, wede�ne an instantiation of an instruction to be a 3-tuple consisting of an instructionI, the shared memory location l on which I operates (if any), and the name of theinterpreter that executes I. (Technically, this 3-tuple should probably be called apartial instantiation, as it does not specify all the values involved in the execution ofI, but we refer to it as an instantiation for convenience.) By examining the eight typesof machine instructions, we can see that when an interpreter executes an instruction,the instantiation of that instruction is entirely determined by the private state of theinterpreter.We therefore think of an execution of a program to be the sequence of instan-tiations resulting from running the machine model on the program. This view ofexecutions is precisely the reason we have de�ned the concept of an instantiation:to make it explicit which memory locations are touched by the instructions of anexecution. This formulation makes it easier to de�ne nondeterminism.4In other words, the program may not branch on a value in shared memory. It must �rst readthat value into private memory, and then issue a branching alu instruction.53



A model of nondeterminismThis section provides a framework for de�ning forms of nondeterminism, and de�nesa few common nondeterminacy classes. In particular, we give a formal de�nition ofwhat it means for a program to have a data race.From the English de�nition of the word, a program might be called \nondeter-ministic" if it produces di�ering behaviors on di�erent executions. Many forms ofnondeterminism are possible, however. Nondeterminism may be intended by the pro-gram, or it may be an accidental artifact of parallel execution. A program mightbehave nondeterministically \in the middle" of execution but produce a deterministicanswer.Rather than using the term \nondeterministic" ambiguously, it is desirable to dis-tinguish between its many forms. Emrath and Padua [13] call a program determi-nate if it \always leads to the same results," or nondeterminate otherwise. Theyfurther divide these categories into subcategories. They call a program internallydeterminate if the sequence of instructions each thread executes, along with the val-ues of the variables used by each instruction, is determinate. If a program's output isdeterminate, but the program is not internally determinate, Emrath and Padua sayit is externally determinate. A nondeterminate program is called associativelynondeterminate if the nondeterminate output is due only to lack of associativityof oating-point operations, or completely nondeterminate otherwise.Netzer and Miller [35] use a formal model of program behavior based on Lamport'stheory of concurrent systems [27] to de�ne nondeterminism. They are speci�callyconcerned with de�ning race conditions. They de�ne a general race to occur ina program when two conicting memory accesses are not forced to occur in a �xedorder. The idea is that a general race is a bug in a program that is intended to bedeterministic. A data race, on the other hand, is a bug in a program that's intendedto be nondeterministic, and represents only nonatomic execution of critical sections.Netzer and Miller further distinguish both general and data races as being either\feasible" or \apparent." A feasible race is one which could occur in an actual54



execution of the program. An apparent race is a race that appears when only theexplicit synchronization of the program is considered. Netzer and Miller say thatapparent races are approximations to feasible races, and that most race detectionalgorithms implicitly detect apparent races.We present our own formal model for de�ning types of nondeterminism. Our goalis twofold. First, we would like to be able to de�ne a framework in which any formof nondeterminism can be de�ned. Rather than de�ning the particular forms thatwe think are important, our formalization makes it possible to de�ne an unlimitednumber of types of nondeterminism.Secondly, our formalism allows us to explain precisely what our proposed racedetection algorithms do. We discuss program executions at the instruction level, sothat the model is easy to understand. An instruction has a precisely de�ned meaning,and so may be easier to reason about than a model based on \events."We observe that it does not really make sense to speak of a single executionas being nondeterministic, because nondeterminism implies that multiple executionsproduce varying results. Therefore, we de�ne a set of executions as being deterministicor nondeterministic. Initially, the set of executions we consider are the executions thatthe program can generate according to the machine model. Later in this thesis, weconsider other sets of executions as well.To de�ne a form of nondeterminism, we de�ne an equivalence relation � on exe-cutions. Thus, a set of executions X is nondeterministic under � if there existsexecutions X1; X2 2 X such that X1 6� X2. Similarly, X is deterministic under� if X1 � X2 for all X1; X2 2 X .Using this approach, we can de�ne many forms of nondeterminism. We discussseveral common possibilities here. Rather than explicitly saying \deterministic underequivalence relation �," we often call such programs \� deterministic."As Emrath and Padua point out, a program may be deterministic on one inputbut nondeterministic on another. Since we have chosen to de�ne forms of determinacyon sets of executions, we are implicitly discussing the determinacy of a program fora given input. 55



Serial determinacy

Location determinacy

Read-permute determinacy

Final-state determinacy

Data race freedom

Figure 5-1: The hierarchy of determinacy classes. Each oval in the diagram representsthe set of programs that satisfy a particular de�nition of determinacy.A hierarchy of determinismFigure 5-1 shows the hierarchy of determinism (or nondeterminism) that we de�ne.This chapter does not formally show the relationships between the di�erent typesof nondeterminism, but each relationship can either be inferred directly from thede�nition or is shown later in this thesis.An execution is serial equivalent only to itself. Therefore, a program is serialdeterministic if it generates only one execution, namely, if it is a serial program.Recall that an execution X is de�ned to be a sequence of instantiations, where aninstantiation x is a triple h I; l; � i consisting of instruction I, memory location l,and interpreter �. For such an instantiation, we de�ne the selectors I, L, and N suchthat I(x) = I, L(x) = l, and N (x) = �. Let us de�ne the location subsequence56



Xjl of location l on execution X to be the subsequence formed by taking all xi 2 Xsuch that L(xi) = l.5 We also will use � to denote a permutation on a set of integers.Two executions X = x1x2 : : : xm and Y = y1y2 : : : yn are location equivalent ifthe following two conditions hold:1. There exists a permutation � such that xi = y�(i) for all i 2 1; 2; : : : ; n(and hence n = m).2. For all memory locations l, we have Xjl = Y jl.In other words, a location deterministic program is allowed to have operationson di�erent memory locations interleaved, but the operations on each individual mem-ory location must be serialized in a �xed order.We can weaken this de�nition of determinacy by allowing reads to be permuted.Two executions X = x1x2 : : : xm and Y = y1y2 : : : yn are read permute equiva-lent if both of the following conditions are true:1. There exists a permutation � such that xi = y�(i) for all i 2 1; 2; : : : ; n(and hence n = m).2. For all memory locations l, there exists a permutation �l such that thefollowing two conditions hold:(a) xi 2 Xjl if and only if y�l(i) 2 Y jl.(b) If I(xi) or I(xj) is not a read instruction for any xi; xj 2 Xjl,then i < j ) �l(i) < �l(j).A read permute deterministic program, therefore, is allowed to have readsof the same memory location permuted around each other, but not around writes tothat location. Read-permute determinism is what is typically meant by just the word\deterministic."Two executions are �nal state equivalent if both leave the machine in the same5Given a sequence X = x1x2 : : : xm, another sequence Z = z1z2 : : : zk is a subsequence of X ifthere exists a strictly increasing sequence i1i2 : : : ik of indices of X such that for all j = 1; 2; : : : k,we have xij = zj . 57



exact state after completion. Programs that are �nal state deterministic are alsocalled determinate.Many more forms of determinacy exist that one might like to de�ne. It mightbe useful to have a concept of \observable determinacy," meaning that only theexternally observable state of the machine is determinate. Another possible form ofdeterminacy is to allow writes to be permuted when they are part of commutativecritical sections.6 This particular form of determinacy resurfaces in Chapter 8. Fornow, we use our framework to de�ne race conditions formally. Race conditions are ofparticular interest because they can be viewed as a \local" form of nondeterminism.Such local properties are usually easier to detect than large properties of the entireprogram.A data race exists between two executions X = x1x2 : : : xm and Y = y1y2 : : : ynif there exists an integer i in the range 1 � i < min(m;n) such that the following fourconditions hold:1. x1x2 : : : xi�1 = y1y2 : : : yi�1,2. L(xi) = L(xi+1),3. xi = yi+1 and xi+1 = yi,4. I(xi) or I(xi+1) is a write instruction.A program (with input) has a data race if any two of its executions have a datarace between them. In other words, the program exhibits a data race when it can runa �xed sequence of instructions up to the point of the race, and then execute in eitherorder two conicting instructions. This de�nition captures the idea of \simultaneous"conicting instructions, in light of the fact that the instructions themselves are atomic.
6Determinacy that allows permutation of commuting critical sections is not the same as �nal-statedeterminacy, for programs with noncommuting critical sections may still be �nal-state deterministic.58



Chapter 6
Complexity of Race Detection
Ideally, we would have an algorithm to detect nondeterminacy for each form of non-determinacy de�ned in Chapter 5, and programmers would use whatever algorithmbest suited their own programs. In most cases, however, precise detection of nonde-terminacy is extremely di�cult, if not impossible. Precise detection of data races,like all nontrivial properties of programs, is undecidable. Furthermore, in this chap-ter we show that even in simpli�ed models, detecting data races is computationallyintractable. We argue that the Nondeterminator-2's detection of dag races is a com-putationally practical approximation to data-race detection.Theorem 10 Detection of data races in Cilk programs is undecidable.Proof: The proof is similar to the standard programming proof of the undecidabilityof the halting problem. Assume there exists a serial decider has data race that takesas input a Program P (represented as a string). has data race returns TRUE if P hasa data race, or FALSE if not.Consider the program in Figure 6-1. The routine Run code with a race(), ifexecuted, may exhibit a data race. If we pass the DoOpposite program as an ar-gument to itself, we obtain a contradiction. For, if has data race(DoOpposite)returns TRUE, then DoOpposite returns without ever having a data race. If hasdata race(DoOpposite) returns FALSE, then DoOpposite executes Run code with59



cilk int DoOpposite(Program P){ if (has_data_race(P)){ return 0;}else{ spawn Run_code_with_a_race();sync;return 0;}}Figure 6-1: A program used to contradict the existence of a decider for race detection.a race(), and so has a data race. Therefore, the serial decider has data race cannotexist.The implication of Theorem 10 is that we cannot detect data races exactly atcompile time. (We typically do not want to take the risk that our compiler mayrun forever.) The question, then, is whether data races can be detected exactly atrun-time. Running the program does not suddenly turn an undecidable problem intoa decidable one. Rather, the program itself may still run forever. If we assume thatthe program halts, however, then we may be able to guarantee that a detection toolwould halt.The �rst observation about this approach is that when the program runs, theremay be portions of the code that do not execute at all due to the particular scheduling.For that code, we are back to the original problem. We can't statically �nd races, sowe need to run that code as well and assume it terminates. Thus, if we assume thatevery scheduling of the program terminates, we may be able to exactly detect dataraces by running all possible schedulings. This approach requires O(T !) time, whereT is the ordinary execution time of the program.This bound, while �nite, is far too expensive for a practical debugging tool. Thenext question, then, is whether we can ignore code that is never executed and justattempt to detect all data races in the code that gets run at least once. (This idea60



itself is not very well de�ned, but this particular discussion is intended to be informal.)When critical sections execute, they occur in a particular order, but exactly detect-ing data races requires determining whether critical sections \synchronize." Considerthe program in Figure 6-2(a). Whether the writes to x in Write1 and Write2 con-stitute a data race depends on the behavior of the Unknown1 and Unknown2 routines.If Unknown1 and Unknown2 do not a�ect each other's control ow, as is the case inFigure 6-2(b), then the program has a data race, and the �nal value of x may beeither 1 or 2. The code in Figure 6-2(c), however, is also possible. In that code,Unknown2 does not complete until Unknown1 runs �rst. In that case, there is no datarace, for the assignment x = 2 must always occur after the assignment x = 1.In general, Unknown1 and Unknown2 could be arbitrary operations. In order todetect whether the program in Figure 6-2 has a data race, we must determine whetherUnknown1 and Unknown2 synchronize each other in some way. This determination canbe shown to be undecidable in a similar fashion to the earlier undecidability proof.One possible simpli�cation is to assume that critical sections always form somekind of synchronization operation. We can model this simpli�cation by assumingthat every critical section is either an increment or a decrement of some \semaphore"variable. A semaphore variable may be incremented or decremented, but may neverbecome negative. That is, if the semaphore is 0, then a decrement operation mustwait until the semaphore becomes positive before proceeding. We will refer to thisrequirement as the semaphore constraint .In this model, we do not need to discern the behavior of critical sections, as theyare assumed to be semaphore operations, and so we avoid that undecidable problem.We still need to discern which instruction orderings are allowed by the semaphoreconstraint, however. That is, in Figure 6-2(c), the statement x = 2 must always occurafter x = 1. If, however, there were a third parallel procedure that also incrementeddone, then x = 2 could happen before x = 1, and there would be a data race.For a program that runs in time T , discovering which reorderings of the instruc-tions conform to the semaphore constraint can be reduced from a size T graph problemthat is NP-hard [25]. Thus, even in the simpli�ed case where all critical sections are61



int x; void Unknown1() void Unknown1()int done; { {Cilk_lockvar A; done++; done++;} }cilk int main(){ void Unknown2() void Unknown2()done = 0; { {spawn Write1(); done++; while (!done)spawn Write2(); } {sync; /* allow Unknown1()printf("%d", x); to acquire A */return 0; Cilk_unlock(A);} Cilk_lock(A);}cilk void Write1() }{ x = 1;Cilk_lock(A);Unknown1();Cilk_unlock(A);}cilk void Write2(){ Cilk_lock(A);Unknown2();Cilk_unlock(A);x = 2;} (a) (b) (c)Figure 6-2: The program in (a) may exhibit a data race on x depending on the behaviorof Unknown1 and Unknown2. (b) shows an example of these routines that leads to a race onx, whereas (c) shows an example that does not.
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known to be semaphore operations, exact detection of data races is still computation-ally infeasible.The Nondeterminator-2, therefore, does essentially the opposite: It assumes thatcritical sections do not synchronize each other in any way. In other words, theNondeterminator-2 assumes that locks are being used only to provide atomicity,and not to implement synchronization. Thus, for the program in Figure 6-2(c), theNondeterminator-2 reports a data race when there is none. This chapter has shown,however, that any computationally practical algorithm cannot be 100 percent accu-rate in its race-detection reporting. The precise meaning of the Nondeterminator'srace reports is discussed and formalized in the next few chapters.An alternate assumption also allows computationally feasible race detection al-gorithms. This approach only considers the particular semaphore ordering that isexhibited in one execution of the program, rather than attempting to discern otherorderings. The advantage of this approach is that it only detects true data races. Theproblem, however, is that many data races will be missed when, as is commonly thecase, critical sections do not synchronize.
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Chapter 7
The Dag Execution Model
We have seen that detection of data races is computationally infeasible, but wehave also seen that the Nondeterminator can e�ciently detect dag races. In thischapter, we explain precisely why dag races are not the same thing as data races.Since the Nondeterminator-2 detects dag races, this chapter details exactly when theNondeterminator-2 reports bugs that are not data races, and when the tool fails toreport data races.When a Cilk program executes, it generates an associated computation dag.1 Theidea is that a dag generated by a single execution contains information about otherpossible executions of the program. By examining the dag, we can glean informationabout executions other than the one that was actually run. In other words, the dagis an attempt to abstract away from a particular scheduling of threads to processors.Hence, the dag contains \logical" relationships rather than \actual" ones. Theselogical relationships, however, only represent the synchronization of the program dueto parallel control constructs, and not any synchronization that may occur due to theoperation of critical sections on shared memory.1Formally, a computation dag can be constructed from an execution as follows. An initial node iscreated that can be considered to correspond to the initialization of the �rst interpreter. Wheneveran interpreter executes an instruction I other than a return, with instantiation x, the interpretercreates a new vertex x and adds to the dag an edge y ! x from its last executed instantiation y to x.If the instruction is a spawn, an additional instantiation z is created (representing the initializationof the child interpreter), and the edge y ! z is added to the dag. If the instruction is a return,no new vertex is created, but an edge goes from y to the vertex created by the next sync of theinterpreter's parent. 65



A scheduling X of a dag G is a topological sort of the dag.2 A scheduling islegal if, for any two lock statements that acquire the same lock, there is an unlockof that lock in between them. A dag G0 is said to be a pre�x of a dag G, if, for anynodes x and y such that x �G y and y 2 G0, we have x �G0 y. A partial schedulingof G is a legal scheduling of a pre�x of G, and if any partial scheduling of G canbe extended to a scheduling of G, we say that G is deadlock free. Otherwise, Ghas at least one deadlock scheduling , which is a partial scheduling that cannot beextended.A legal scheduling of a dag, therefore, is an approximation to an execution of theprogram. When a legal scheduling of the dag corresponds to an actual executionof the program as de�ned by the machine model, we say that the scheduling is afeasible scheduling ; otherwise, it is an infeasible scheduling .It may in fact be the case that a legal scheduling of a dag is not feasible, for twopossible reasons. The �rst reason is demonstrated by the program and correspondingdag in Figure 7-1.3 In particular, that dag is generated when bar1 obtains lock Abefore bar2. Every scheduling of this dag contains the instantiation x6 even thoughit does not occur in every execution. (If bar2 obtains lock A before bar1, then they = 3 statement is never executed.) So x0x1x8x9x10x11x3x4x5x6x7x2, for example, isa legal scheduling that is not feasible.We call this situation the forced program counter anomaly . A schedulingof a dag speci�es an entire sequence of instantiations. When the machine modelexecutes an instantiation, the model also speci�es which instruction should next beexecuted by that interpreter. The next instruction executed by that interpreter inthe dag scheduling, on the other hand, is \forced" to be the next one speci�ed in thedag, and so may not match the one chosen by the machine model.The other reason that legal schedulings may not be feasible is the forced memory2A topological sort X of G is a permutation of the nodes of G that satis�es the constraints ofthe dag; if x � y in G, then x must occur before y in X .3Recall that the nodes of a dag are actually instantiations, not instructions. Since each instructionis executed only once in this example, we simplify notation by labeling the instructions of the programin Figure 7-1 with the instantiations xi they generate. This labeling is a further simpli�cation becausesome lines of the program actually each correspond to multiple machine instantiations.66



int x;int y;Cilk lockvar A;cilk int main()fx0 : x = 0;x1 : Cilk lock init(A);spawn foo1();spawn foo2();sync;x2 : printf("%d", y);return 0;g

cilk void foo1()fx3 : Cilk lock(A);x4 : x++;x5 : if (x == 1)x6 : y = 3;x7 : Cilk unlock(A);gcilk void foo2()fx8 : Cilk lock(A);x9 : x++;x10 : Cilk unlock(A);x11 : y = 4;g
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x8 x9 x10 x11Figure 7-1: A program that generates a dag that exhibits the forced program counteranomaly. The dag shown here is generated when foo1 acquires lock A before foo2. Thereis a dag race between the highlighted instantiations, but the program has no data race.location anomaly . An instantiation contains a shared memory location. In a dagscheduling, the sequence of shared memory locations that are read is �xed. Thissequence may not match the memory locations that would be read, however, if themachine model were to execute the same sequence of instructions. For example, aninstruction might be \read into register 1 the contents of memory that is at theaddress contained in register 2." In a dag scheduling, the memory location readby this instruction's instantiation is �xed, and may not correspond to the locationspeci�ed by register 2.Figure 7-2 shows an example of a program that exhibits the forced memory loca-67



int x[2];int *y;int z;Cilk lockvar A;cilk int main()f x[0] = 0;x[1] = 1;y = x;Cilk lock init(A);spawn bar1();spawn bar2();sync;printf("%d", x);return 0;g

cilk void bar1()f Cilk lock(A);z = *y;Cilk unlock(A);gcilk void bar2()f Cilk lock(A);(*y)++;Cilk unlock(A);g
Figure 7-2: A program that exhibits the forced memory location anomaly.tion anomaly. The memory location that is read in the statement z = *y depends onwhether bar1 or bar2 obtains lock A �rst. Any dag for this program, however, has a�xed memory location in the instantiation for the read of *y.Although dag schedulings do not always correspond to machine executions, we canstill consider them as executions of a dag execution machine. The dag executionmachine behaves similarly to the ordinary Cilk execution machine, but the programcounter of each interpreter is always set to point to the next instruction in the dag,and the memory locations read are those speci�ed in the instantiations, rather than bythe instructions. When viewed as a set of dag execution machine executions, the legalschedulings of a dag form either a deterministic or nondeterministic set, according tothe de�nitions in Chapter 5. In particular, a dag has a data race if two of its legalschedulings have a data race between them.By de�nition, a dag race exists on a computation dag if two logically parallelthreads access the same memory locations while holding no locks in common, and atleast one of the threads writes the location. This de�nition of a dag race is equivalentto the de�nition of a data race on the set of legal schedulings of a dag. For, iftwo parallel threads hold no locks in common, then we can always construct a legal68



int max;int x;Cilk lockvar A;cilk int main()fx0 : max = 0;x1 : Cilk lock init(A);spawn GetMax1(7);spawn GetMax1(3);sync;x2 : printf("%d", x);return 0;g

cilk void GetMax1(int y)fx3 : x = max;x4 : Cilk lock(A);x5 : if (y > max)x6 : max = y;x7 : Cilk unlock(A);gcilk void GetMax2(int y)fx8 : Cilk lock(A);x9 : if (y > max)x10 : max = y;x11 : Cilk unlock(A);g
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x8 x9 x11Figure 7-3: A program with a data race (on variable max) that may not appear as a dagrace due to the forced program counter anomaly. The dag shown, generated when GetMax1acquires A before GetMax2, does not have a dag race.scheduling of the dag by scheduling all of the predecessors of the threads, followed bythe threads themselves in either order.Since dag executions are not always machine executions, it is not surprising thatdag races do not always correspond to data races in the program. Figure 7-1 showsa program that does not exhibit a data race. Indeed, the �nal value of y is always 4.The dag in Figure 7-1, however, exhibits a dag race on y, as the two writes to y arelogically in parallel, and do not hold any locks in common.Additionally, there may be data races in the program that do not appear as dagraces. Such \missing races" once again may be due to the forced memory location or69



forced program counter anomalies. Figure 7-3 shows an example of the latter causinga data race to be missing from the dag. The program takes the maximum of twonumbers in parallel, but the writes to the max variable depend on the order in whichthe critical sections are executed. The dag in Figure 7-3, for example, is generatedby an execution in which GetMax1 obtains lock A before GetMax2. In that dag, thepotential write of max by GetMax2 does not appear. The dag has no dag races, butthere is a data race between the write of max in GetMax2 and the read of max done inthe x = max; statement. The �nal value of x in this program may be either 0 or 3.There is another reason that data races may not appear as dag races that is notdue to either of the aforementioned anomalies. The reason is that some code maynever be executed, as discussed in Chapter 6. Figure 7-4 shows a simple example.The dag in Figure 7-4, which has no dag races, is generated by an execution whereWriteX1 obtains lock A before WriteX2. Yet clearly, if the opposite occurred, therewould later be a race on the variable y.In many cases, therefore, dag races are not the same as data races. Since theNondeterminator-2 reports dag races, its reports will not exactly correspond to dataraces. When the computation has a dag race that is not actually a data race, theNondeterminator-2 will report a \false positive." When the program has a data racethat does not appear as a dag race in the computation, the Nondeterminator-2 willfail to report that race | a \false negative."The Nondeterminator-2 detects dag races because, intuitively, they may some-times be the same as data races, as the dag is an approximation to the semantics ofthe program. We would therefore like to answer the question: When is it that dagraces actually correspond to data races?
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int x;int y;Cilk lockvar A;cilk int main()fx0 : x = 0;x1 : y = 0;x2 : Cilk lock init(A);spawn WriteX1();spawn WriteX2();sync;x3 : if (x == 1)fspawn RaceY(3);spawn RaceY(4);sync;gx4 : printf("%d", y);return 0;g

cilk void WriteX1()fx5 : Cilk lock(A);x6 : x = 1;x7 : Cilk unlock(A);gcilk void WriteX2()fx8 : Cilk lock(A);x9 : x = 2;x10 : Cilk unlock(A);gcilk void RaceY(int z)fx11 : y = z;g
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Figure 7-4: A program with a data race (on variable y) that may not appear as a dagrace, because the code that exhibits the race may not be executed. Here we show thedag generated when the lock A is obtained �rst by WriteX1 and then by WriteX2. As theinstantiation x11 appears nowhere in the dag, there is no dag race.
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Chapter 8
Abelian Programs
In this chapter, we de�ne \abelian" programs and prove that a deadlock-free abelianprogram has a data race if and only if every possible generated dag has a dag race.1Furthermore, we show that the absence of dag races in a single computation of adeadlock-free abelian program implies that the program, when run on the same input,is determinate. Thus, the Nondeterminator-2 can verify that a deadlock-free abelianprogram is determinate for a given input.In practice, most programs that use locks in any signi�cant way are not abelian.The existence of the class of abelian programs is itself interesting, however. Thisclass shows that there is in fact a formal relationship between dag races and dataraces. Furthermore, the guarantee that the Nondeterminator-2 provides for abelianprograms is a somewhat remarkable result, because programs that use locks are gen-erally \inherently nondeterministic;" that is, they are read-permute nondeterministic.Nonetheless, abelian read-permute nondeterministic programs can be shown to alwaysproduce the same �nal machine state.Abelian programsThe program in Figure 8-1 is an example of an abelian program. The program isread-permute nondeterministic, as the updates to x may happen in di�erent orders.1Some of the results in this chapter appear in [6].73



int x;Cilk lockvar A;cilk int main()f x = 0;Cilk lock init(A);spawn UpdateX1();spawn UpdateX2();sync;printf("%d", x);return 0;g
cilk void UpdateX1()f Cilk lock(A);x += 2;Cilk unlock(A);gcilk void UpdateX2()f Cilk lock(A);x += 3;Cilk unlock(A);gFigure 8-1: An example of an abelian program. This particular program has no dataraces or deadlocks, and so is determinate.In other words, x has an \intermediate" value that is nondeterministically either 2 or3, but x always ends with a value of 5.The critical sections in the program in Figure 8-1 obey the following strict de�ni-tion of commutativity: Two critical sections R1 and R2 commute if, beginning withany reachable program state S, the execution of R1 followed by R2 yields the samestate S 0 as the execution of R2 followed by R1; and furthermore, in both executionorders, each critical section must execute the identical sequence of instructions onthe identical memory locations.2 Thus, not only must the program state remain thesame, the same accesses to shared memory must occur, although the values returnedby those accesses may di�er.3 The program in Figure 8-1 also exhibits \properlynested locking." Locks are properly nested if any thread that acquires a lock a andthen a lock b releases b before releasing a. We say that a program is abelian if anypair of parallel critical sections that are protected by the same lock commute, and all2It may be the case that even though R1 and R2 are in parallel, they cannot appear adjacent inany execution, because a lock that is acquired preceding R1 and released after R1 is also acquiredby R2 (or vice versa). Therefore, we require the additional technical condition that the executionof R1 followed by any pre�x R02 of R2 generates for R02 the same instructions operating on the samelocations as executing R02 alone. This requirement is used in the proof of deadlock in Appendix A.3By requiring that the entire machine state S remain the same, we mean that the private statesof the interpreters that execute R1 and R2, in addition to the shared memory M , must be thesame regardless of the execution order of the regions. This requirement implies that any temporaryvariables that are used to store intermediate values should be reset at the end of every critical region,in order to satisfy the commutativity de�nition. In practice, of course, temporary variables that arenot live at the end of critical regions can be left with nondeterministic values.74



locks in the program are properly nested.The idea that critical sections should commute is natural. A programmer presum-ably locks two critical sections with the same lock not only because he intends themto be atomic, but because he intends them to \do the same thing" no matter in whatorder they are executed. The programmer's notion of commutativity is usually lessrestrictive, however, than what our de�nition allows. First, both execution ordersof two critical sections may produce distinct program states that the programmernevertheless views as equivalent. Our de�nition insists that the program states beidentical. Second, even if they leave identical program states, the two execution or-ders may cause di�erent memory locations to be accessed. Our de�nition demandsthat the same memory locations be accessed.In practice, therefore, most programs are not abelian, but abelian programs nev-ertheless form a nontrivial class of nondeterministic programs that can be checked fordeterminacy. For example, programs that use locking to accumulate values atomi-cally, such as a histogram program, fall into this class. Additionally, all programs thatdon't use locks at all are abelian. Although abelian programs form an arguably smallclass in practice, the algorithms that we present in this thesis can provide guaran-tees of determinacy for abelian programs that are not provided by any other existingrace-detectors for any class of lock-employing programs.The converse of the determinacy guarantee is not true. That is, a program mayhave a data race, but later deterministically overwrite that value, resulting in a de-terministic �nal memory state. Also, once a dag race is found, then later parts of thedag may once again exhibit the forced memory location or forced program counteranomalies. The guarantee, therefore, is that any computation dag of a deadlock-freeabelian program at least contains a dag race corresponding to the \�rst" data raceof the program (if a data race exists at all).Proof of the Nondeterminator-2's determinacy guaranteeThe proof of the determinacy guarantee centers around \regions" of instantiations,which are sequences of instantiations executed by a single interpreter. Precisely, a75



region is either a single instantiation other than a lock or unlock instruction,or a sequence of instantiations that comprise a critical section (including the lockand unlock instantiations themselves).4 Every instantiation belongs to at least oneregion and may belong to many. Since a region is a sequence of instantiations, it isdetermined by a particular execution of the program and not by the program codealone. We de�ne the nesting count of a region R to be the maximum number oflocks that are acquired in R and held simultaneously at some point in R.Since we are only concerned with the �nal memory states of feasible schedulings,we de�ne two legal schedulings of G to be equivalent if both are infeasible, orboth are feasible and have the same �nal memory state. An alternate de�nition ofcommutativity, then, is that two regions R1 and R2 commute if, beginning with anyreachable machine state S, the instantiation sequences R1R2 and R2R1 are equivalent.The proof of the equivalence of dag race freedom and �nal-state determinismproceeds as follows. Starting with a dag-race free, deadlock-free computation Gresulting from the execution of an abelian program, we �rst prove that adjacentregions in a legal scheduling of G can be commuted. Second, we show that regionsthat are spread out in a legal scheduling of G can be grouped together. Third, weprove that all legal schedulings of G are feasible and yield the same �nal memorystate. Finally, we prove that all executions of the abelian program generate the samecomputation and hence the same �nal memory state.Lemma 11 (Reordering) Let G be a dag-race free, deadlock-free computation re-sulting from the execution of an abelian program. Let X be some legal scheduling ofG. If regions R1 and R2 appear adjacent in X, i.e., X = X1R1R2X2, and R1 k R2,then the two schedulings X1R1R2X2 and X1R2R1X2 are equivalent.Proof: We prove the lemma by double induction on the nesting count of the regions.Our inductive hypotheses is the theorem as stated for regions R1 of nesting count iand regions R2 of nesting count j.4The instantiations within a critical section must be serially related in the dag, as we disallowparallel control constructs while locks are held. 76



Base case: i = 0. Then R1 is a single instantiation. Since R1 and R2 are adjacentin X and are parallel, no instantiation of R2 can be guarded by a lock that guards R1,because any lock held at R1 is not released until after R2. Therefore, since G is dag-race free, either R1 and R2 access di�erent memory locations or R1 is a read and R2does not write to the location read by R1. In either case, the instantiations of each ofR1 and R2 do not a�ect the behavior of the other, so they can be executed in eitherorder without a�ecting the �nal memory state.Base case: j = 0. Symmetric with above.Inductive step: In general, R1 has nesting count i � 1, and is of the formlock(a) � � �unlock(a). R2 of count j � 1 has the form lock(b) � � �unlock(b).If a = b, then R1 and R2 commute by the de�nition of abelian. Otherwise, there arethree possible cases.Case 1: Lock a appears in R2, and lock b appears in R1. This situation cannotoccur, because it implies that G is not deadlock free, a contradiction. To construct adeadlock scheduling, we schedule X1 followed by the instantiations of R1 up to (butnot including) the �rst lock(b). Then, we schedule the instantiations of R2 until adeadlock is reached, which must occur, since R2 contains a lock(a) (although thedeadlock may occur before this instantiation is reached).Case 2: Lock a does not appear in R2. We start with the sequence X1R1R2X2and commute pieces of R1 one at a time with R2: �rst, the instantiation unlock(a),then the (immediate) subregions of R1, and �nally the instantiation lock(a). Theinstantiations lock(a) and unlock(a) commute withR2, because a does not appearanywhere in R2. Each subregion of R1 commutes with R2 by the inductive hypothesis,because each subregion has lower nesting count than R1. After commuting all of R1past R2, we have an equivalent execution X1R2R1X2.Case 3: Lock b does not appear in R1. Symmetric to Case 2.Lemma 12 (Region grouping) Let G be a dag-race free, deadlock-free computa-tion resulting from the execution of an abelian program. Let X be some legal schedulingof G. Then, there exists an equivalent scheduling X 0 of G in which the instantiations77



of every region are contiguous.Proof: We create X 0 by grouping the regions in X one at a time. Each groupingoperation does not destroy the grouping of already grouped regions, so eventually allregions are grouped.Let R be a noncontiguous region in X that completely overlaps no other noncon-tiguous regions in X. Since region R is noncontiguous, other regions parallel with Rmust overlap R in X. We �rst remove all overlapping regions that have exactly oneendpoint (an endpoint is the bounding lock or unlock of a region) in R, where by\in" R, we mean appearing in X between the endpoints of R. We shall show howto remove regions that have only their unlock in R. The technique for removingregions with only their lock in R is symmetric.Consider the partially overlapping region S with the leftmost unlock in R. Thenall subregions of S that have any instantiations inside R are completely inside R andare therefore contiguous. We remove S by moving each of its (immediate) subregionsin R to just left of R using commuting operations. Let S1 be the leftmost subregionof S that is also in R. We can commute S1 with every instruction I to its left until itis just past the start of R. There are three cases for the type of instruction I. If I isnot a lock or unlock, it commutes with S1 by Lemma 11 because it is a region inparallel with S1. If I = lock(b) for some lock b, then S1 commutes with I, becauseS1 cannot contain lock(b) or unlock(b). If I = unlock(b), then there must exista matching lock(b) inside R, because S is chosen to be the region with the leftmostunlock without a matching lock. Since there is a matching lock in R, the regionde�ned by the lock/unlock pair must be contiguous by the choice of R. Therefore,we can commute S1 with this whole region at once using Lemma 11.We can continue to commute S1 to the left until it is just before the start of R.Repeat for all other subregions of S, left to right. Finally, the unlock at the end ofS can be moved to just before R, because no other lock or unlock of that samelock appears in R up to that unlock.Repeat this process for each region overlapping R that has only an unlock in R.Then, remove all regions that have only their lock in R by pushing them to just78



after R using similar techniques. Finally, when there are no more unmatched lockor unlock instantiations in R, we can remove any remaining overlapping regions bypushing them in either direction to just before or just after R. The region R is nowcontiguous.Repeating for each region, we obtain an execution X 0 equivalent to X in whicheach region is contiguous.Lemma 13 Let G be a dag-race free, deadlock-free computation resulting from theexecution of an abelian program. Then every legal scheduling of G is feasible andyields the same �nal memory state.Proof: Let X be the execution that generates G. Then X is a feasible schedulingof G. We wish to show that any legal scheduling Y of G is feasible. We shallconstruct a set of equivalent schedulings of G that contain the schedulings X and Y ,thus proving the lemma.We construct this set using Lemma 12. Let X 0 and Y 0 be the schedulings ofG with contiguous regions that are obtained by applying Lemma 12 to X and Y ,respectively. From X 0 and Y 0, we can commute whole regions using Lemma 11 to puttheir threads in the serial depth-�rst order speci�ed by G, obtaining schedulings X 00and Y 00. We have X 00 = Y 00, because a computation has only one serial depth-�rstscheduling. Thus, all schedulings X, X 0, X 00 = Y 00, Y 0, and Y are equivalent. SinceX is a feasible scheduling, so is Y , and both have the same �nal memory state.Lemma 14 Let G be a dag-race free, deadlock-free computation resulting from theexecution of an abelian program. Then every machine execution of the program (onthe same input) generates the same dag G.Proof: Let X be the original machine execution that generated G. Let Y be anarbitrary execution of the same program. Let H be the computation generated by Y ,and let Hi be the pre�x of H that is generated by the �rst i instantiations of Y . IfHi is a pre�x of G for all i, then H = G, proving the lemma. Otherwise, assume for79



contradiction that i0 is the largest value of i for which Hi is a pre�x of G. Supposethat the (i0 + 1)st instantiation of Y is executed by an interpreter with name �. Weshall derive a contradiction through the creation of a new legal scheduling Z of G.We construct Z by starting with the �rst i0 instantiations of Y , and next adding thesuccessor ofHi0 inG that is executed by interpreter �. We then complete Z by adding,one by one, any nonblocked instantiation from the remaining portion of G. One suchinstantiation always exists because G is deadlock free. By Lemma 13, the schedulingZ that results is a feasible scheduling of G. We thus have two feasible schedulings thatare identical in the �rst i0 instantiations but that di�er in the (i0+1)st instantiation.In both schedulings the (i0+1)st instantiation is executed by interpreter �. But, thestate of the machine is the same in both Y and Z after the �rst i0 instantiations,which means that the (i0 + 1)st instantiation must be the same for both, which is acontradiction.Theorem 15 An abelian Cilk program that produces a deadlock-free computation withno dag races is determinate.Proof: Combine Lemma 13 and Lemma 14.Theorem 16 A deadlock-free computation produced by an abelian Cilk program hasa dag race if and only if the program has a data race.Proof: (() If a deadlock-free computation has no dag races, then from Lemma 14,every machine execution generates the same dag, so every such execution is a schedul-ing of that dag. Thus, if two machine executions have a data race between them, thenthere is also a dag race between them, which is a contradiction.()) Let G be a deadlock-free computation of an abelian program with a dag racethat is generated by an execution X of the program. Say that the dag race occursbetween instantiations x and y. Let Z = Z1xyZ2 be a legal scheduling of G in whichx and y occur adjacently. (Such a scheduling must exist, because x and y are inparallel and have no locks in common by de�nition of dag race, and the computationhas no deadlocks.) 80



We attempt to use the techniques of Lemma 13 to commute X into the formof Z. That is, we commute X into the depth-�rst scheduling and then commute thatinto Z. We show that each step either succeeds or yields a feasible data race.If all steps succeed, then Z is feasible. Since x and y are logically in parallel, theyexecute on di�erent interpreters. Moreover, since the instantiation of an instructiondepends only on the private state of its interpreter, changing the order of executionof I(x) and I(y) does not a�ect the instantiations of either of those instructions.Therefore, Z 0 = Z1yx is a feasible partial execution of the program, and so theprogram has a data race between executions Z and Z 0.The only place where the technique of Lemma 13 can fail is in the base caseof the proof of Lemma 11, as that is the only portion that depends on dag-racefreedom. In that case, we have a scheduling X1R1R2X2 that is equivalent to theoriginal execution X (and so is feasible), with R1 a single instantiation, say x0, andR1 k R2. The regions R1 and R2 can successfully be commuted unless x0 writes alocation accessed by R2 or x0 reads a location written by R2. Let y0 be the �rst suchconicting instantiation in R2. Then, we can commute x0 until it is adjacent withy0, yielding a feasible scheduling X 01x0y0X 02. By the same argument as above, X 01y0x0is also a feasible (partial) execution of the program, and so the program has a datarace. A symmetric argument can be made when R2 consists of a single instantiationby choosing the last conicting instantiation in R1.All of the results so far have assumed a deadlock-free computation, but in gen-eral, a deadlock-free computation is not equivalent to a deadlock-free program. For-tunately, the following lemma shows that the programmer does not need to worryabout this distinction when applying Theorems 15 and 16. The proof of this lemmais complicated and so is left to Appendix A.Lemma 17 Let G be a dag-race free computation generated by an abelian program.G is deadlock free if and only if the program is deadlock free (on the same input).
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Corollary 18 If the All-Sets algorithm detects no data races in an execution of adeadlock-free abelian Cilk program, then the program running on the same input hasno data races and is determinate.Proof: Combine Theorems 3 and 15 and Lemma 17.Corollary 19 If the Brelly algorithm detects no violations of the umbrella disci-pline in an execution of a deadlock-free abelian Cilk program, then the program runon the same input has no data races and is determinate.Proof: Combine Theorems 5, 8, and 15 and Lemma 17.
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Part III
Using the Nondeterminator-2
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Chapter 9
Implementation Issues
In this chapter, we discuss practical issues surrounding the implementation and useof the Nondeterminator-2. We explain how to catch dag races involving the dynamicmemory allocator, and show that memory cannot be recycled without the risk of miss-ing races. We provide some heuristics for reducing the number of false reports that theNondeterminator-2 may produce in the case of nonabelian programs, when dag racesmay not really be data races. Finally, we give some timings of the Nondeterminator-2on a selection of Cilk codes, which show that the algorithms roughly conform to theirtheoretical bounds in practice. On all of our sample codes, Brelly is fast enoughto be used as an interactive debugger, but All-Sets sometimes runs too slow to bepractical.Dynamic memory allocationCilk provides the routines Cilk malloc() and Cilk free() to dynamically allocateand deallocate shared memory. (We refer to these as single instructions malloc andfree in the Cilk machine model.) The �rst observation is that these routines may infact be involved in data races. For example, a read of *x occurring in parallel withthe command Cilk free(x) constitutes a race. If the free instruction happens �rst,then the value in *x might become garbage before it is read.11The semantics of free allow it to write garbage into memory, although in practice the memoryreally only changes after it is allocated again. 85



The solution is to treat the free instruction like a write when it occurs. In otherwords, when a free occurs, it is compared with all the past accesses in the shadowspace to check for races. After the free occurs, any later access to the freed memory(other than a malloc) is an error, regardless of whether the access is a serial orparallel access. The free instruction therefore puts the special tag FREE ID into theshadow space. If a later access observes this value, a bug is reported.Once memory is freed, later accesses to it are always incorrect, regardless of whichlocks are held. Therefore, after memory is freed, the history of which locks have beenused to access that memory is no longer needed. The Nondeterminator-2's internalmemory, which is used to store that information, can thus be deallocated as well. Thisapproach maintains the convenient property that the internal memory for storing locksets is only allocated as long as the user's memory is allocated.When memory is about to be allocated via a malloc statement, the shadow spacecontains FREE ID. (The memory allocator is trusted to be correct.) malloc simplyoverwrites FREE ID with the id of whatever thread it's running in. In this way, falsepositives are not reported when memory is reused. For example, consider two threadse1 k e2: Thread e1 Thread e2*x = 5; y = Cilk malloc(...)Cilk free(x); *y = 6;Even though e1 k e2, it is possible that in a particular execution, e1 runs beforee2, and that the address returned from Cilk malloc() and assigned to y is the sameas the address contained in x. It would therefore appear that there is a dag racebetween the two writes to that address, *x = 5 and *y = 6, as those two writes arelogically in parallel. The writes do not actually constitute a race, however, becauseif the Cilk malloc() statement were executed before the Cilk free(x) statement,the memory allocator would assure that Cilk malloc() would return an addressdi�erent from x. The protocol for the Nondeterminator-2 we have described handlesthis situation correctly, because the Cilk malloc() statement puts the ID for thread86



e2 in the shadow space, and so the *y = 6 is a serial access and does not appear tobe a race with the write to *x.This approach also catches races involving the malloc statement itself. Thatis, by writing the current thread id into newly allocated memory, dag races can becaught if that memory is written in parallel.There is, however, a problem with the approach we have described. Consider thefollowing example, which is similar to the one above, but in which e2 writes *x ratherthan *y. Thread e1 Thread e2*x = 5; y = Cilk malloc(...)Cilk free(x); *x = 6;In this example, there is always a race between the writes to *x. This race maybe missed, however, if the Cilk malloc() statement returns the same address as x.Then the *x = 6 appears to be writing newly allocated memory, rather than writingto the data pointed to by x.In order to distinguish this case from the previous one, we need some way to dis-tinguish between writing to \*x" and \*y" even though both end up writing the samememory location. Making this distinction requires some understanding of the mean-ing of the program, rather than just monitoring of the memory locations accessed.This sort of alias analysis is typically very di�cult, and we do not attempt to do it.Rather, our solution is very simple. The Nondeterminator-2 does not recyclememory. That is, when the memory allocator is run in debugging mode, it assuresthat Cilk malloc() never returns memory that has previously been allocated. Whenmemory is freed, it is simply left in the free state forever. In this way, memory isnever aliased, and the problem in the previous example cannot occur.The justi�cation for this approach is that in modern machines, memory (andvirtual address space) is large and cheap. It is acceptable to use a lot of memorywhen debugging; memory is still be recycled when the application is in productionmode. If users do not have enough memory, they can simply turn this feature of the87



Nondeterminator-2 o�, and go back to recycling memory. In that case, however, thedag race in the last example will be missed.Reducing false race reportsAs we have seen, some dag races may not correspond to data races if they are arti-facts of other races or of noncommutative critical sections. Other researchers haveattempted to algorithmically identify \�rst races," as compared to later artifacts ofthose races [33, 34]. While we do not attempt anything of this magnitude, we doimplement several tricks that can make the race reports of the Nondeterminator-2more manageable for the user.The �rst trick is to avoid reporting the \same" race more than once. When a raceis reported, we enter all of the involved line numbers and �le names into a hash table.If we later encounter a race with the same lines in the same �les, we don't report it,as it is assumed to be another instance of the same race. This feature is essentialfor making the number of races reported be manageable; without it, a single race,executed over and over again, could produce thousands of lines of debugging reports.The Brelly algorithm has an additional problem of reporting multiple races. Ifan unprotected umbrella is discovered, that umbrella may potentially be reported oncefor every access in the umbrella (other than the �rst one). Rather than reporting allof these separately, the Brelly algorithm should group all the accesses together andreport them all at once. In some cases, it is possible to determine that some subsetof the accesses actually constitutes a dag race, and those accesses can be reported inpreference to the entire umbrella. See [5] for more details.When false reports due to infeasible dag races occur, we would like to provide someway for the user to inform the Nondeterminator-2 that these races are infeasible, sothat it can avoid reporting them in future executions. One approach is to allow theuser to \turn o�" the Nondeterminator-2's memory checking, so that certain memoryaccesses are ignored. User annotation can either be done lexically via a compilerpragma or dynamically by setting a global ag. While this approach may reducerace reports, it requires users to manually assure themselves that there are no races88



involving the ignored accesses.A solution that requires less veri�cation from the user is to use of fake locks|locksthat are acquired and released only in debugging mode, as in the implicit r-lockfake lock. The user can then protect accesses involved in infeasible dag races usinga common fake lock. Fake locks reduce the number of false reports made by theNondeterminator-2, and they require the user to manually check for data races onlybetween critical sections locked by the same fake lock.A particularly common cause of false reports is \publishing." One thread allocatesa heap object, initializes it, and then \publishes" it by atomically making a �eld in aglobal data structure point to the new object so that the object is now available toother threads. If a logically parallel thread now accesses the object in parallel throughthe global data structure, an infeasible dag race occurs between the initialization ofthe object and the access after it was published.Fake locks do not seem to help much with the publishing problem, because it ishard for the initializer to know all the other threads that may later access the object,and we do not wish to suppress data races among those later accesses. One possiblesolution is to allow users to explicitly put in publish statements in the program,to declare that memory is being published. The e�ect of a publish statement is toerase the history of past accesses that is contained in the shadow space. Since parallelthreads were unable to access the memory up to the point of the publish statement,accesses before that statement cannot be involved in races.There are some practical di�culties in using publish in C. The size of struc-tures may not be known statically, so the user may be required to supply the size.Furthermore, there is no way to specify that structures that are nested via pointersare all part of the same \object." The user must therefore explicitly issue a publishstatement for each nested pointer data structure. Publishing of objects could be moreelegantly handled in a strongly-typed language. A possible solution for C is to usecheckpointing technology, which is able to automatically trace through entire datastructures [40]. Even then, the semantics of publish could be di�cult to express ifonly parts of a data structure are being published.89



Timings of the Nondeterminator-2In this section, we give some experimental measurements of the performance of theNondeterminator-2.2 As it is a debugging tool, the Nondeterminator-2 does not needto achieve absolutely optimal performance. Rather, it just needs to be fast enoughto use in an interactive debugging environment.Our implementations of All-Sets and Brelly have not yet been optimized,and so the timings presented here are preliminary; better performance than what wereport here is likely to be possible. In particular, our current implementation treatsevery read like an access with the fake r-lock, as described in Chapter 2. Thisapproach requires an allocation of a lock set at every read operation. We expect thatthe running time of both algorithms could be greatly improved if we optimized thecommon case of reads with no locks held.According to Theorem 4, the factor by which All-Sets slows down a program isroughly �(Lk) in the worst case, where L is the maximum number of distinct lock setsused by the program when accessing any particular location, and k is the maximumnumber of locks held by a thread at one time. According to Theorem 9, the worst-caseslowdown factor for Brelly is about �(k). In order to compare our experimentalresults with the theoretical bounds, we characterize our four test programs in termsof the parameters k and L:3maxflow: A maximum-ow code based on Goldberg's push-relabel method [17].Each vertex in the graph contains a lock. Parallel threads perform simple operationsasynchronously on graph edges and vertices. To operate on a vertex u, a threadacquires u's lock, and to operate on an edge (u; v), the thread acquires both u's lockand v's lock (making sure not to introduce a deadlock). Thus, for this application, themaximum number of locks held by a thread is k = 2, and L is at most the maximumdegree of any vertex.n-body: An n-body gravity simulation using the Barnes-Hut algorithm [1]. Inone phase of the program, parallel threads race to build various parts of an \octtree"2Some of the results in this section appear in [6].3These characterizations do not count the implicit fake r-lock used by the detection algorithms.90



Parameters Time (sec.) SlowdownProgram input k L orig. All. Br. All. Br.maxflow sp. 1K 2 32 0.05 30 3 590 66sp. 4K 2 64 0.2 484 14 2421 68d. 256 2 256 0.2 263 15 1315 78d. 512 2 512 2.0 7578 136 3789 68n-body 1K 1 1 0.6 47 47 79 782K 1 1 1.6 122 119 76 74bucket 100K 1 1 0.3 22 22 74 73rad iter. 1 2 65 1.2 109 45 91 37iter. 2 2 94 1.0 179 45 179 45iter. 5 2 168 2.8 773 94 276 33iter. 13 2 528 9.1 13123 559 1442 61Figure 9-1: Timings of our implementations on a variety of programs and inputs, runon an UltraSPARC I. (The input parameters are given as sparse/dense and number ofvertices for maxflow, number of bodies for n-body, number of elements for bucket, anditeration number for rad.) The parameter L is the maximum number of distinct lock setsused while accessing any particular location, and k is the maximum number of locks heldsimultaneously. Running times for the original optimized code, for All-Sets, and forBrelly are given, as well as the slowdowns of All-Sets and Brelly as compared to theoriginal running time.data structure. Each part is protected by an associated lock, and the �rst thread toacquire that lock builds that part of the structure. As the program never holds morethan one lock at a time, we have k = L = 1.bucket: A bucket sort [8, Section 9.4]. Parallel threads acquire the lock associatedwith a bucket before adding elements to it. This algorithm is analogous to the typicalway a hash table is accessed in parallel. For this program, we have k = L = 1.rad: The radiosity application (discussed further in Chapter 10). The code locks a\patch" of the scene along with the \surface" that the patch is on, so that k = 2, andL is the maximum number of patches per surface, which increases at each iterationas the rendering is re�ned.Figure 9-1 shows the preliminary results of our experiments on the test codes.These results indicate that the performance of All-Sets is indeed dependent on theparameter L. Essentially no performance di�erence exists between All-Sets andBrelly when L = 1, but All-Sets gets progressively worse as L increases. On allof our test programs, Brelly runs fast enough to be useful as a debugging tool. In91



some cases, All-Sets is as fast, but in other cases, the overhead of All-Sets is tooextreme (iteration 13 of rad takes over 3.5 hours) to allow interactive debugging.
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Chapter 10
Parallel Radiosity
In this chapter, we describe our experiences parallelizing a large, real-world radios-ity application. We view this application as a case study for the usefulness of theNondeterminator-2. We used the Nondeterminator-2 to minimize the amount of theradiosity code that we needed to examine and understand. Figure 10-1 shows thespeedup of our Cilk code as compared to the original optimized C version. With lessthan 5 percent of the code from the original version changed, the entire applicationachieves a speedup of 5.97 on 8 processors. Furthermore, the Nondeterminator-2 givesus a high degree of con�dence that the code is actually data-race free.Goals of parallelizing radiosityRadiosity is a graphics algorithm for modeling light in di�use environments. It is anirregular application, and therefore the computation is di�cult to balance staticallyacross processors. That is, the area where the majority of the CPU time is spentdepends on the input scene, and varies dynamically as the lighting is calculated. Inorder to get good performance on a parallel machine, the CPU time must be balancedevenly across all processors, so that all processors are utilized fully. This balancingis di�cult to do at compile time when the behavior of the computation is di�cult topredict.Cilk provides a dynamic scheduler which balances tasks across processors using93
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Figure 10-1: Speedup of the rad application on a maze scene as compared to the originaloptimized C code. Measurements were done on an 8-processor 167-MHz UltraSPARC I.a provably good work-stealing algorithm [4]. Radiosity, then, is a good test for thecapabilities of Cilk's scheduler. Past attempts at parallelizing radiosity have requiredthe algorithm to be modi�ed with explicit load balancing [41].In order to e�ectively test Cilk's performance, we prefer not to develop our ownradiosity application. It is somewhat \unfair" to develop such a test by writing codethat is intentionally designed to work well with Cilk. Also, we would prefer to havea known benchmark against which to measure the parallelized code. Speeding upour own code by parallelizing it is not convincing, because it might be that serialoptimizations could perform as well or better. Therefore, a better test is to try toparallelize code that was written and optimized by someone else. If we can speedup code that has already been optimized by graphics experts, our results clearlydemonstrate the usefulness of Cilk.We therefore downloaded a radiosity application, rad, which was originally written94



by Bekaert, Suykens de Laet, and Dutre at the Katholieke Universiteit Leuven inBelgium [2]. The application is large, consisting of 75 source �les and around 25,000lines of code. The application is written in C, and every C program is a legal Cilkprogram, so \porting" the application to Cilk required no e�ort.Correctly parallelizing the code, however, is not as trivial. The code was notoriginally written to be parallelized. Although we might expect certain operations tobe in principle independent, in fact they may use some shared data structures simplybecause the programmer implemented it that way. Such code would result in dataraces if those operations were executed in parallel.Ordinarily, in order to parallelize the code without introducing data races, wewould have to search through the entire code looking for shared data structures.The Nondeterminator-2, however, provides an alternate approach. We simply runin parallel those operations that we think should in principle be independent. Thenwe run the code through the Nondeterminator, which points us to the places in thecode where there is unexpected data sharing. We can �x these problems by copyingthe data, or by adding locks. More importantly, we do not need to examine at allcode that is not agged by the Nondeterminator-2; we simply leave it as is. In thatway, we minimize the amount of time we need to spend studying and understandingsomeone else's code.When parallelizing the radiosity application, we took precisely this approach ofimmediately depending on the Nondeterminator-2, although we actually began byusing the original Nondeterminator and not the Nondeterminator-2. This particularapplication was actually developed in conjunction with the Nondeterminator-2, andserved as the inspiration for many of that tool's features. We now illustrate some ofthe details of our e�ort in order to give a more concrete sense of what was involved.The parallelization e�ortThe �rst step was to gain an understanding of the underlying radiosity algorithm, sowe could �gure out what to parallelize. Radiosity is a lighting model that is suited fordi�use environments. Light striking a surface is assumed to undergo an ideal di�use95



reection, meaning that it scatters equally in all directions. The di�use reectionassumption is in contrast to ray tracing's assumption of specular reection, whereina beam of light is assumed to reect o� a surface in another single beam, with theangle of reection equaling the angle of incidence.As in many graphics algorithms, radiosity divides the scene into several small\patches." Each patch i has an associated power per unit area Bi from which thecolor of the patch i can be determined.1 The idea is that the power leaving patch iis the sum of the power emitted by i (if i is a light source) and the power reectingo� i that comes from all of the other patches in the room. This formula leads to thefollowing set of linear equations [18]:Bi = Ei + �i�jBjFijwhere Bi is the power/area of patch i, Ei is the emitted power/area of patch i, �iis the reectance of patch i, and Fij is the formfactor from i to j, the fraction ofradiant power leaving i that arrives at j.We can solve for Bi by numerical iteration. The majority of the calculation time,however, is not spent in the numerical solution, but rather in the calculation of theformfactors Fij. The formfactor from a point patch i to a patch j is the fraction ofi's hemisphere that j occupies. Computing the formfactor Fij thus requires a doubleintegral over the points of patch i and patch j. The formfactors are entirely a propertyof the geometry of the scene, and do not depend on lighting.As they are calculated directly from the initial geometry of the scene, distinctformfactors can be computed in parallel. Since the calculation of formfactors com-prises the majority of the execution time of the radiosity algorithm, this parallelizationshould noticeably speed up the entire execution.Armed with this knowledge, we searched through the rad code for the calculationof the formfactors, and ran them in parallel. We then ran the resulting code through1Actually, the color of patches is determined by assigning colors to vertices and then interpolatingthose colors to the rest of the patch, typically with Gourard shading [19].96



the Nondeterminator to look for data races.Since the code was initially serial, it did not contain any locks, and was there-fore abelian. One goal of parallelization is to keep the program abelian \as long aspossible," which provides the stronger guarantee for the Nondeterminator-2. (Thisstrategy often amounts to avoiding introducing locks for as long as possible.) When�nally forced to make the program nonabelian, the programmer must be sure to thinkabout the implementation more carefully.The �rst dag races we ran across in rad involved global variables. In some cases,these globals appeared to be used only for convenience, to avoid passing them aroundas arguments to procedures. We modi�ed the code to pass arguments rather than useglobals whenever possible. Another common use of global variables we found was justfor statistical purposes, such as timings. These statistics can either be ignored in theparallel execution (i.e. allowed to become garbage values), or they can be updatedatomically through the use of locks. Such atomic updates are commutative, and sopreserve the abelian property of the program.The rad code does not exactly implement the radiosity algorithm as we havedescribed it. The code does not precompute all the formfactors and then solve thenumerical system, as computing all the formfactors would require too much CPUtime and memory. Rather, the code interleaves the solution to the system with theformfactor calculations. Speci�cally, it chooses a single patch i where the error in theBi approximation is the greatest. It then improves the estimate for Bi by improvingits approximation of the formfactors Fij for all other patches j. The �rst few itera-tions of the application, shown in Figure 10-2, demonstrate how the code interleavesthe updating of the patch radiosities with the calculations of the formfactors. Thisalgorithm poses some problems for the parallel execution, because separate iterationsof the numerical solution cannot be run in parallel, as each iteration is dependent onthe previous one. The calculations of the formfactors from i to all the other patchesj can still be parallelized, however.22Once again, we could have rewritten the code to perform more formfactor calculations at once,but then we would have lost the serial optimizations of the original authors.97



Figure 10-2: The �rst three iterations of the rad program on a maze scene. At eachiteration, the program re�nes its formfactor estimates for the patch where the error isgreatest. In the �rst few iterations, the error is greatest near the light sources, so theprogram appears to be \lighting up" the lights one by one.The formfactors Fij are stored in a linked list in a data structure for patch i.Thus, we encountered a dag race on the updates to this list, as formfactors werebeing added in parallel to it. Fortunately, the order in which the formfactors occur inthe list doesn't matter, so they can be added in parallel as long as the list insertionoperations are made to be atomic. We added a lock to each patch data structure forthis purpose.This logic causes the program to be nonabelian, as the order of the nodes in thelinked list depends on the order of execution of critical sections. Nonetheless, it isnot hard to argue that the Nondeterminator still catches all dag races involving thislist. The reason is that the code never reads only part of the list; rather, it alwaysreads the entire list at once. Thus, if any writes race with those reads, they race withthe reads regardless of the order of the elements in the list.The next di�culty we encountered in our parallelization was patch re�nement.When the error in the estimate for the formfactor Fij is deemed to be too great,either patch i or j is re�ned. (The patch re�ned is the one with the greater surfacearea.) Re�nement means that the patch is subdivided into smaller patches in orderto get more accurate radiosity estimates.If two parallel threads attempt to subdivide a patch i at once, a data race occurson that patch. It is allowable, however, for either thread to do the actual re�nement,as long as the re�nement is done only once. This logic can be implemented withlocks. The �rst thread to acquire the \re�nement lock" for the patch performs the98



subdivision, and the second thread waits on that lock. After the �rst thread �nishesthe re�nement and releases the lock, the second thread acquires the lock but discoversthat the re�nement has already been done, and so does not repeat it. Also, re�ningpatch i does not destroy i, it merely creates \subpatches" of i. Therefore, a threade1 that re�nes a patch i does not interfere with a parallel thread e2 that calculatesdirectly with i. We can thus have many parallel threads calculating formfactors forpatch i, some of which re�ne i and some of which do not, without any data races.This protocol, unfortunately, is entirely nonabelian. A single thread creates andinitializes the subpatches of i. Many parallel threads read these subpatches, resultingin dag races. These dag races are not actually data races, because the locking protocolassures that no threads read the subpatches until the \�rst" thread �nishes initializingthem. This protocol is an example of the \publishing" problem discussed in Chapter 9,and false race reports for this protocol can be avoided by annotating the code withpublish statements.When a patch is re�ned, the newly created vertices are added to a list stored inthe patch's \surface." A surface is the top-level patch that initially gets created fromthe scene description. Multiple patches can thus have the same surface, so we need tocreate a lock for each surface that is acquired when vertices are added to it. Addingvertices to a surface, therefore, is similar to adding formfactors to a patch.When we initially ran the code, it appeared to be behaving correctly. We laterobserved, however, that the code was behaving nondeterministically after running forabout 10 iterations. Investigation of this problem showed that its manifestation wasthat a thread would read from freed memory. This discovery led us to think about themechanism for detecting races with the memory allocator, as discussed in Chapter 9,although that turned out not to be the problem in this particular case.We had been running the code through the Nondeterminator-2 for only one iter-ation, expecting that all dag races would show up there. We were also at that pointstruggling with a large number of false reports (dag races that were not actually dataraces). This di�culty led us to the idea of a hash table to avoid reporting the \same"race twice, as discussed in Chapter 9. After implementing that idea, we ran the99



debugging code for many iterations. Many false reports still showed up in the �rstiteration, but those were not reported again, so that later iterations did not reportraces. The �rst new race report appeared in iteration 10, and this report pointed usto the bug that we had seen.At this point, we were able to obtain a reasonable speedup, but we discoveredthat the serial code for patch re�nement was taking a lot of the execution time. Theexpensive part of this code is that in order to avoid adding duplicate vertices to thesurface's list of vertices, the program must search that list before adding each vertex.This search can be parallelized, because searching only requires reading the elementsof the list, not writing them.This parallelization requires an elaborate protocol, which is described in Figure 10-3. We �rst obtain the lock for the list, and record the head pointer of the list. Wethen release the lock and search the rest of the list for the vertex in question. If thevertex is found, then we don't need to add it to the list, so we're �nished. If thevertex is not found, then we acquire the lock for the list again in order to add it.Other vertices, however, may have been added to the list since the time we beganour search. We thus must search the beginning of the list, up to the point where webegan our earlier search, in order to check if a parallel thread has already added thevertex in question. If not, then we add the vertex to the front of the list while stillholding the lock for the list. The idea of this protocol is that the majority of thecomputation time is spent searching the bulk of the list with no locks held, which canbe done by many threads in parallel.3This protocol is once again nonabelian. When vertices are added to the list, theyare being \published." False races can thus be avoided by judicious use of publishstatements.As mentioned above, a \re�nement lock" is acquired when a patch is re�ned.The parallelism within patch re�nement, therefore, actually occurs while a lock isheld. This behavior is in theory disallowed, but in reality it does not cause any fatal3This code could likely be improved by using a more e�cient data structure than a linked list,but we do not wish to change the underlying algorithms of the original implementation.100
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Step 1. While holding the lock for the list, record the current head pointer of the listinto a local variable SAVE HEAD.

Step 2. Search the list starting at SAVE HEAD for the particular node in question. Ifthe node is not found, go to step 3; otherwise, nothing else need be done. The lockfor the list is not held during this step, so many searches may occur in parallel.

Step 3. Acquire the lock for the list again. Search for the node in question from thecurrent head pointer of the list until the node saved in SAVE HEAD. If the node is notfound, add it to the front of the list.Figure 10-3: The protocol for adding vertices to the surface's vertex list. Most of thesearching of the list can be done in parallel.101



problems. The only danger is that the Nondeterminator-2 may miss races becausethe re�nement lock appears to be protecting the parallel accesses when in fact it doesnot. In this particular case, no races are missed, because there are parallel threadsthat operate on di�erent patches but the same surface; these parallel accesses are notprotected by any single patch re�nement lock.When we ran the rad application on many processors, we discovered that the form-factor calculations and patch re�nement were su�ciently fast that other portions ofthe code were becoming bottlenecks. We parallelized two other CPU intensive rou-tines. One of these routines calculates the color of vertices from the patch radiosities;this color calculation can be done for the entire scene in parallel. The other routineperforms \T-vertex elimination," which essentially deallocates memory for certainundesirable kinds of vertices.Parallelization resultsTimings of the rad routines are given in Figure 10-4. As expected, the formfac-tor/patch re�nement calculations dominate execution time in the one processor exe-cution. Vertex color computation and T-vertex elimination also comprise a sizeableportion of the execution time. The rest of the CPU time is labeled \Other," andcorresponds to the remaining code, which was not parallelized. This code includes,for example, the numerical iterations updating the radiosity values and the hardwarerendering of the scene to the monitor. As the parallel routines speed up in multipro-cessor execution, the formfactor calculation with patch re�nement is still the mostexpensive operation, but the time spent in nonparallelized code becomes comparable.Figure 10-5 shows these measurements as speedups as compared to the originaloptimized C code. In particular, we observe that the one processor Cilk versionis negligibly slower than the original C version.4 The speedup curve for the entireparallelized application shows the combination of the running times of the four com-ponents given in Figure 10-4. The entire execution achieves a 5.97 times speedup on4The added overhead of Cilk procedure calls is balanced by the speedup from Cilk's fast memoryallocator. 102
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Figure 10-4: Running times of the components of the rad application. Timings weredone of 100 iterations of the application on the maze scene on an 8-processor 167-MHzUltraSPARC I.8 processors.Additionally, Cilk provides a way to measure the work and critical path of thecomputation. The work T1 is the time it takes the Cilk program to execute on asingle processor. The critical path T1 is the time it would take to execute theprogram on in�nitely many processors. The average parallelism is de�ned tobe T1=T1, and represents a measure of the speedup that the program can obtain.When the average parallelism of the program is much greater than the number ofprocessors P being used, a theorem shows that Cilk's scheduler runs the program intime approximately T1=P with high probability [4]. The average parallelism of theformfactor calculations is measured as 221. Unfortunately, this measurement doesnot account for time spent in contention for user locks; such contention both addswork for the program and reduces parallelism. On 8 processors, however, the work isonly increased by 18 percent, and the average parallelism is around 195. This highaverage parallelism implies that the calculations could be further sped up with morethan 8 processors. 103
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Chapter 11
Conclusion
The many challenges to successfully parallelizing programs include expressing theparallelism in the program, getting good performance out of parallel hardware, anddebugging. Cilk is designed to address the �rst two issues, and in this thesis, wehave addressed the third. We presented the All-Sets and Brelly algorithms for�nding dag races, and explained how those races relate to the semantics of the pro-gram. We showed how these tools were used to parallelize a large, real-world radiosityapplication.Although the Nondeterminator-2 is an e�cient tool for race-detection, many issuessurrounding its use remain unresolved. A key decision by Cilk programmers is whetherto adopt the umbrella locking discipline. Programmers might �rst debug with All-Sets, but unless they have adopted the umbrella discipline, they will be unable tofall back on Brelly if All-Sets seems too slow. We recommend that programmersuse the umbrella discipline initially, which is good programming practice in any event,and only use All-Sets if they are forced to drop the discipline.Even when using All-Sets, users can encounter false positives and false nega-tives from the Nondeterminator-2 when their programs are nonabelian. It is an openquestion whether there are other classes of programs (besides abelian programs) forwhich the Nondeterminator-2 can provide guarantees of determinacy. If we examinethe proof in Chapter 8, we �nd that we don't actually need the strong requirementof commutativity that each of two critical sections must execute the \identical se-105



quence of instructions on the identical memory locations" in either order of execution.Rather, it is only necessary that each critical section read and write the same set ofmemory locations in either execution order, and also that in either execution ordereach critical section acquire the same locks in the same order. Thus, we may be ableto consider as abelian some programs that are not formally abelian by the de�nitiongiven in Chapter 8.This generalization of the de�nition of abelian has implications for nonabelianprograms as well; it could provide an approach to avoid some of the false negativeproblems discussed in Chapter 7. It may be possible for a compiler to conservativelyestimate the memory locations touched by critical sections. Thus, even if a criticalsection does not happen to touch all of those locations in a given computation, we maybe able to �nd dag races in other computations using those conservative estimates.In Chapter 10, we argued that although the process of adding nodes to a linkedlist in parallel is nonabelian, in practice the Nondeterminator-2 does not miss races,because the order of the nodes in the linked list doesn't matter. It may be possibleto prove such a claim by proving that the code operates on the same set of memorylocations regardless of the order of the nodes in the linked list.The techniques we have presented for reducing the number of false race reports innonabelian programs are at best imperfect. It would be preferable to have a \higherlevel" language construct for annotating code than publish, which requires the userto be explicitly aware of the exact memory locations being published. Furthermore,in some cases publish does not properly convey the semantics of the user's code.The user may in fact be using critical sections to synchronize the entire program, andnot to publish any particular memory. Such semantics might be better handled byintroducing other language constructs into Cilk that precisely express the synchro-nization semantics intended. A preferable solution is probably to once again allow theuser to annotate the code, expressing the fact that certain critical regions actuallysynchronize the program. In order to properly handle such directives, we need toextend the SP-bags algorithm to graphs that are not series-parallel.Missed races and false reports are not a problem when the program being debugged106



is abelian, but programmers would like to know whether an ostensibly abelian pro-gram is actually abelian. Dinning and Schonberg give a conservative compile-timealgorithm to check if a program is \internally deterministic" [11], and we have giventhought as to how the abelian property might likewise be conservatively checked. Theparallelizing compiler techniques of Rinard and Diniz [38] may be applicable.The guarantee of the Nondeterminator-2 for abelian programs requires that theprogram be deadlock-free, which is left to the user to verify. We would prefer to havea way of checking if a program, or at least a computation of a program, is deadlockfree. While this problem in general appears di�cult, there may be a reasonable,exible locking discipline that precludes deadlocks and that allows e�cient detection.Although we believe that the Nondeterminator-2 is a useful tool, we have the unfairadvantage of having developed it. Other programmers may not want to take the timeto learn how to use the tool. Past experience has shown that many programmersassume that their program is correct if they run it several times without failures.Will such programmers be willing to try out a debugging tool that may only producefalse race reports anyway? The answer remains to be seen, but from our experiencewe know that correct parallelization is hard, and we believe that any user would bewell advised to take the time to learn how to debug with the Nondeterminator-2.
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Appendix A
Deadlock in the Computation
In this appendix, we give a proof of Lemma 17.1 This lemma shows that for abelianprograms, a deadlock in a dag-race free computation corresponds exactly to a deadlockin the program.Ideally, we would have an algorithm that checks for deadlocks in a computationdag. Users would run this algorithm along with All-Sets or Brelly to directlyuse the results of Theorems 15 and 16. Since we do not (yet) have an e�cientalgorithm to detect deadlocks in a dag, however, using Theorems 15 and 16 directlyrequires users to manually examine computation dags for deadlocks. Users, however,presumably don't really care about deadlocks in computations; they care whethertheir programs can actually deadlock. Fortunately, Lemma 17 shows that checking anabelian program for deadlocks is equivalent to checking any dag-race free computationof that program for deadlocks.In our current formulation, proving that a deadlock scheduling of a computationis feasible is not su�cient to show that the machine actually deadlocks. A deadlockscheduling is one that cannot be extended in the computation, but it may be pos-sible for the machine to extend the execution if the next machine instruction doesnot correspond to one of the possibilities in the dag. In this appendix, in orderto prove machine deadlocks, we think of a lock instruction as being composed of1This proof is joint work with Keith Randall.109



two instructions: lock attempt and lock succeed. Every two lock succeedinstantiations that acquire the same lock must be separated by an unlock of thatlock, but multiple lock attempt instantiations for the same lock can be executed bydi�erent interpreters in arbitrary order. In other words, lock attempt instructionscan always be executed by the interpreter, but lock succeed instructions cannotbe executed unless no other interpreter holds the lock. If an interpreter executes alock attempt instruction, the next instruction executed by the interpreter mustbe a lock succeed instruction for the same lock. A feasible deadlock schedulingis therefore an actual machine deadlock, because the lock succeed instantiationsthat come next in the dag are always the same as the next possible instantiations forthe machine.A lock attempt instantiation commutes with any other parallel instantiation.For convenience, we still use the single instantiation lock to mean the sequencelock attempt lock succeed.It is the proof of Lemma 17 that requires the extra technical condition on com-mutativity that is mentioned in Chapter 8, which we call pre�x commutativity :essentially, a pre�x of a region locked by the same lock as a complete region must\commute" with the complete region. Precisely, given a partial scheduling X, twoparallel regions R1 and R2 that are surrounded by the same lock, and R02 a pre�xof R2, then XR1R02 being feasible implies that XR02 is feasible. The reason for thisrequirement is that it may be the case that it is never possible for two complete re-gions to execute adjacent to each other. An example is shown in Figure A-1. In thatprogram, it is never possible for the two regions that lock the lock b (lines 11{17 and20{26) to execute adjacent to each other, because those regions each acquire locksthat are held by the other thread. Therefore, without the requirement of pre�x com-mutativity those regions would not be required to commute in any way. It is possible,however, to execute one entire region, say lines 11{17, and then a pre�x of the other,namely from line 20 up to the lock attempt(a) in line 23. Pre�x commutativityrequires that this pre�x consist of the same instantiations as if it were executed beforethe complete region in lines 11{17. The code for the program in Figure A-1 does not110



int x;Cilk lockvar A;Cilk lockvar B;Cilk lockvar C;cilk double main()f1: x = 0;2: Cilk lock init(A);3: Cilk lock init(B);4: Cilk lock init(C);5: spawn foo1();6: spawn foo2();7: sync;8: printf("%d", x);9: return 0;g

cilk void foo1()f10: Cilk lock(A);11: Cilk lock(B);12: x++;13: if (x==2)f14: Cilk lock(C);15: x = 5;16: Cilk unlock(C);g17: Cilk unlock(B);18: Cilk unlock(A);g

cilk void foo2()f19: Cilk lock(C);20: Cilk lock(B);21: x++;22: if (x==2)f23: Cilk lock(A);24: x = 6;25: Cilk unlock(A);g26: Cilk unlock(B);27: Cilk unlock(C);gFigure A-1: A program that illustrates the need for the pre�x commutativity requirement.The program does not deadlock; of the two lock(b) � � �unlock(b) regions (lines 11{17 and20{26), only the second one to execute acquires another lock (either a or c). Furthermore,those regions can never execute entirely adjacent to each other, for the second one to executemust wait for the entire other thread to complete. This program does not have any data (ordag) races, but it may produce a �nal value of x as either 5 or 6. The pre�x commutativityrequirement means that this program is not considered to be abelian, because the pre�x inlines 20{23 does not \commute" with the complete region in lines 11{17.satisfy this requirement, and so the program is not abelian. In particular, we observethat the program uses special logic to avoid the possibility of deadlock. The pre-�x commutativity requirement allows us to prove that when parallel regions cannotactually occur adjacent in an execution, then the program must contain a deadlock.To prove Lemma 17, we �rst introduce new versions of Lemmas 11, 12, and 13that assume a deadlock-free program instead of a deadlock-free dag. We then usethese modi�ed versions to prove Lemma 17.Lemma 20 (Reordering) Let G be a dag-race free computation resulting from theexecution of a deadlock-free abelian program, and let R1 and R2 be two parallel regionsin G. Then:1. Let X be a partial scheduling of G of the form X1R1R2X2. The partial schedulingX and the partial scheduling X1R2R1X2 are equivalent.2. Let Y be a feasible partial scheduling of G of the form Y = Y1R1R02, where R02111



is a pre�x of R2. Then then the partial scheduling Y1R02 is feasible.Proof: We prove the lemma by double induction on the nesting count of the regions.Our inductive hypothesis is the theorem as stated for regions R1 of nesting count iand regions R2 of nesting count j. The proofs for part 1 and part 2 are similar, sosometimes we will prove part 1 and provide the modi�cations needed for part 2 inparentheses.Base case: i = 0. Then R1 is a single instantiation. Since R1 and R2 (R02) areparallel and are adjacent in X (Y ), no instantiation of R2 (R02) can be guarded by alock that guards R1, because any lock held at R1 is not released until after R2 (R02).Therefore, since G is dag-race free, either R1 and R2 (R02) access di�erent memorylocations or R1 is a read and R2 (R02) does not write to the location read by R1. Ineither case, the instantiations of each of R1 and R2 (R02) do not a�ect the behavior ofthe other, so they can be executed in either order without a�ecting the �nal memorystate.Base case: j = 0. Symmetric with above.Inductive step: In general, R1 has nesting count i � 1, and is of the formlock(a) � � �unlock(a). R2 of count j � 1 has the form lock(b) � � �unlock(b).If a = b, then R1 and R2 commute by the de�nition of abelian. Part 1 then followsfrom the de�nition of commutativity, and part 2 follows from pre�x commutativity.Otherwise, there are three possible cases.Case 1: Lock a does not appear in R2 (R02). For part 1, we start with the sequenceX1R1R2X2 and commute pieces of R1 one at a time with R2: �rst, the instantia-tion unlock(a), then the immediate subregions of R1, and �nally the instantiationlock(a). The instantiations lock(a) and unlock(a) commute with R2, becausea does not appear anywhere in R2. Each subregion of R1 commutes with R2 by theinductive hypothesis, because each subregion has lower nesting count than R1. Aftercommuting all of R1 past R2, we have an equivalent execution X1R2R1X2. For part 2,the same procedure can be used to drop pieces of R1 in the feasible partial scheduleY1R1R02 until the feasible partial schedule Y1R02 is reached.Case 2: Lock b does not appear in R1. The argument for part 1 is symmetric with112



Case 1. For part 2, we break R02 into its constituents: R02 = lock(b)R2;1 : : : R2;nR002 ,where R2;1 through R2;n are complete regions, and R002 is a pre�x of a region. Theinstantiation lock(b) commutes with R1 because b does not appear in R1, andthe complete regions R2;1 through R2;n commute with R1 by induction. From theschedule Y1lock(b)R2;1 : : : R2;nR1R002 , we again apply the inductive hypothesis todrop R1, which proves that Y1lock(b)R2;1 : : : R2;nR002 = Y1R02 is feasible.Case 3: Lock a appears in R2 (R02), and lock b appears in R1. For part 1, if bothschedulings X1R1R2X2 and X1R2R1X2 are infeasible, then we are done. Otherwise,we prove a contradiction by showing that the program can deadlock. Without loss ofgenerality, let the scheduling X1R1R2X2 be a feasible scheduling. Because X1R1R2X2is a feasible scheduling, the partial scheduling X1R1R2 is feasible as well.We now continue the proof for both parts of the lemma. Let �1 be the pre�x of R1up to (and including) the �rst lock attempt(b) instantiation, let �1 be the rest ofR1, and let �2 be the pre�x of R2 (R02) up to (and including) the �rst lock attemptof a lock acquired in R2 (R02) that is acquired but not released in �1. At least onesuch lock exists, namely a, so �2 is not all of R2 (R02).We show that the partial scheduling X1�1�2 is also feasible. This partial schedul-ing, however, cannot be completed to a full scheduling of the program because �1and �2 each hold the lock that the other is attempting to acquire.We prove the partial schedulingX1�1�2 is feasible by starting with the feasible par-tial scheduling X1R1�2 = X1�1�1�2 and dropping complete subregions and unpairedunlocks in �1 from in front of �2. The sequence �1 has two types of instantiations,those in regions completely contained in �1, and unpaired unlocks.Unpaired unlocks in �1 must have their matching lock in �1, so that lock doesnot appear in �2 by construction. Therefore, an unlock instantiation just before �2commutes with �2 and thus can be dropped from the schedule. Any complete regionjust before �2 can be dropped by the inductive hypothesis. When we have droppedall instantiations in �1, we obtain the feasible partial scheduling X1�1�2 which cannotbe completed, and hence the program has a deadlock.113



Lemma 21 (Region grouping) Let G be a dag-race free computation generated bythe execution of a deadlock-free abelian program. Let X1XX2 be a scheduling of G,for some instantiation sequences X1, X, and X2. Then, there exists an instantiationsequence X 0 such that X1X 0X2 is equivalent to X1XX2 and every region entirelycontained in X 0 is contiguous.Proof: As a �rst step, we create X 00 by commuting each lock attempt in X toimmediately before the corresponding lock succeed. In this way, every completeregion begins with a lock instantiation. If there is no corresponding lock succeedin X, we commute the lock attempt instantiation to the end of X 00.Next, we create our desired X 0 by grouping all the complete regions in X 00 oneat a time. This can be done using identical techniques to the proof of Lemma 12,applying Lemma 20 in place of Lemma 11.Lemma 22 Let G be a dag-race free computation resulting from the execution of adeadlock-free abelian program. Then every legal scheduling of G is feasible and yieldsthe same �nal memory state.Proof: The proof is identical to the proof of Lemma 13, using the Reordering andRegion Grouping lemmas from this appendix in place of those from Chapter 8.We restate and then prove Lemma 17.Lemma 17 Let G be a dag-race free computation generated by an abelian program.G is deadlock free if and only if the program is deadlock free (on the same input).Proof: (() If G is deadlock free, then every machine execution of the program is ascheduling of G by Lemma 14, so the machine cannot have a deadlock execution.()) By contradiction. Assume that a deadlock-free abelian program P can gener-ate a dag-race free computationG that has a deadlock. We show that P can deadlock,which is a contradiction. 114



The proof has two parts. In the �rst part, we generate a feasible scheduling Y of Gthat is \almost" a deadlock scheduling. Then, we show that Y can be modi�ed slightlyto generate a deadlock scheduling that is also feasible, which proves the contradiction.Every deadlock scheduling contains a set of threads e1; e2; : : : en, some of whichare completed and some of which are not. Each thread ei has a depth , whichis the length of the longest path in G from the initial node to the last instan-tiation in ei. We can de�ne the depth of a deadlock scheduling as the n-tuplehdepth(e1); depth(e2); : : : ; depth(en)i, where we order the ei such that depth(e1) �depth(e2) � : : : � depth(en). Depths of deadlocked schedulings are compared in thedictionary order.2We generate the scheduling Y of G which is almost a deadlock scheduling bymodifying a particular deadlock scheduling of G. We choose the deadlock schedulingX from which we will create the scheduling Y to have the maximum depth of anydeadlock scheduling of G.Let us examine the structure of X in relation to G. The deadlock scheduling X di-vides G into a set of completely executed threads, X1, a set of unexecuted threads X2,and a set of partially executed threads T = ft1; : : : ; tng, which are the threads whoselast executed instantiation in the deadlock scheduling is a lock attempt. We divideeach of the threads in T into two pieces. Let A = f�1; : : : ; �ng be the parts of the tiup to and including the last executed instantiation, and let B = f�1; : : : ; �ng be therest of the instantiations of the ti. We say that �i blocks �j if the �rst instantiationin �j is a lock succeed on a lock that is acquired but not released by �i.X is a deadlock scheduling containing the instantiations in X1 [A. To isolate thee�ect of the incomplete regions in A, we construct the legal scheduling X 0 which �rstschedules all of the instantiations in X1 in the same order as they appear in X, andthen all of the instantiations in A in the same order as they appear in X.The �rst instantiations of the �i cannot be scheduled in X 0 because they blocked2The dictionary order <D is a partial order on tuples that can be de�ned as follows: The size0 tuple is less than any other tuple. hii; i2; : : : ; imi <D hj1; j2; : : : ; jni if i1 < j1 or if i1 = j1 andhi2; i3; : : : ; imi <D hj2; j3; : : : ; jni. 115



by some �j. We now prove that the blocking relation is a bijection. Certainly, aparticular �i can only be blocked by one �j. Suppose there exists an �j blockingtwo or more threads in B. Then by the pigeonhole principle some thread �k blocksno threads in B. This contradicts that fact that X has maximum depth, becausethe deadlock scheduling obtained by scheduling the sequence X1tk, all subsequentlyrunnable threads in X2 in any order, and then the n� 1 partial threads in A� f�kgis a deadlock scheduling with a greater depth than X.Without loss of generality, let �2 be a thread in A with a deepest last instantiation.Since the blocking relation is a bijection, only one thread blocks �2; without loss ofgenerality, let it be �1. Break �1 up into two parts, �1 = �L1�R1 , where the �rstinstantiation of �R1 attempts to acquire the lock that blocks �2. (�L1 may be empty.)To construct a legal schedule, we start with X 0 and remove the instantiations in �R1from X 0. The result is still a legal scheduling because we did not remove any unlockwithout also removing its matching lock. We then schedule the �rst instantiationof �2, which we know is legal because we just unblocked it. We then complete thescheduling of the threads in T by scheduling the remaining instantiations in T (�R1 andall instantiations in B except for the �rst one in �2). We know that such a schedulingexists, because if it didn't, then there would be a deeper deadlock schedule (becausewe executed one additional instantiation from �2, the deepest incomplete thread,and we didn't remove any completed threads). We �nish o� this legal scheduling bycompleting X2 in topological sort order.As a result, the constructed schedule consists of four pieces, which we call Y1, Y2,Y 03 , and Y4. The sequence Y1 is some scheduling of the instantiations in X1, Y2 is somescheduling of the instantiations in �L1 [ �2 [ : : : [ �n, Y 03 is some scheduling of theinstantiations in �R1 [ �1 [ : : : [ �n, and Y4 is some scheduling of the instantiationsin X2. To construct Y , we �rst group the complete regions in Y 03 using Lemma 21to get Y3, and then de�ne Y to be the schedule Y1Y2Y3Y4. Since Y is a (complete)scheduling of G, it is feasible by Lemma 22.The feasible scheduling Y is almost the same as the deadlock scheduling X, except�R1 is not in the right place. We further subdivide �R1 into two pieces, �R1 = �01�001,116



where �01 is the maximum pre�x of �R1 that contains no lock succeed instantiationsof locks that are held but not released by the instantiations in �L1 ; �2; : : : ; �n. (Suchan �01 must exist in �R1 by choice of �R1 , and furthermore �01 is contiguous in Y because�1 completes the region started at �01, and both �1 and �01 are part of Y3.) We nowdrop all instantiations after �01 to make a partial scheduling. We then commute�01 to the beginning of Y3, dropping instantiations as we go, to form the feasiblescheduling Y1Y2�01. Two types of instantiations are in front of �01. Complete regionsbefore �01 are contiguous and can be dropped using Lemma 20. Unlock instantiationscan be dropped from in front of �01 because they are unlocks of some lock acquired in�L1 ; �2; : : : ; �n, which do not appear in �01 by construction. By dropping instantiations,we arrive at the feasible scheduling Y1Y2�01, which is a deadlock scheduling, as everythread is blocked. This completes the proof.
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