Adaptive and Reliable Parallel Computing
on Networks of Workstations

Robert D. Blumofe Philip A. Lisiecki
Department of Computer Sciences MIT Laboratory for Computer Science
The University of Texas at Austin 545 Technology Square
Austin, Texas 78712 Cambridge, Massachusetts 02139
rdb@cs.utexas.edu lisiecki@mit.edu

October 21, 1996

Abstract include graphics rendering, backtrack search, protein
folding [37], and thexSocrates chess program [25]

In thls paper, we present Fhe design @“"NOW' & which won second prize at the 1995 ICCA World Com-
runtime system that adaptively and reliably executes uter Chess Championship running on t84-node In-
functional Cilk programs in parallel on a network of P P P 9

. . o tel P t Sandia National Labs. Like all runti
UNIX workstations. Cilk (pronounced “silk”) is a par- el raragon gL sancia Matona Labs. - LIke a’ runtime

allel multithreaded extension of the C language, and aleStems for Cilk, Cilk-NOW schedules threads using a

Cilk runtime systems employ a provably efficient thread-provably efficient algorithm based on the technique of

scheing lorim Gk NOW i such a unime sys- 27967 WO Seaing 6 9) naich processors ity
tem, and in addition, Cilk-NOW automatically delivers '

With this algorithm, Cilk delivers performance that is
X :) E;uaranteed to be both efficient and predictable [6, 8]. In
of Cilk programs. By ada_ptwe ex_e_cut|on, we mean thataddition to thread scheduling, Cilk-NOW also performs
each Cilk program dynamically utilizes a changing set Ofmacroschedulin@SO]. Thatis, Cilk-NOW automatically

otherwise-idle workstations. By reliable execution, W€identifies idle workstations and assigns those idle work-
mean that the Cilk-NOW system as a whole and each ex 9

. . . détations to help out with running Cilk programs.
ecuting Cilk program are able to tolerate machine an The Cilk-NOW runti term is desianed t ¢
network faults. Cilk-NOW provides these features while € Lk runtime system 1s designed fo execute

programs remaiffiault oblivious meaning that Cilk pro- Cilk programs eff|C|entI_y in the highly dynamic envi
ronment of a NOW. Figure 1(a) plots the number of
grammers need not code for fault tolerance. Through-) . D
: : ..~ machines that were idleat each point in time over the
out this paper, we focus on end-to-end design decisions .
- : course of a typical week for a network & SPARCsta-
and we show how these decisions allow the design to ex:

ploit high-level algorithmic properties of the Cilk pro- tions at the MIT Laboratory for Computer Science. As

gramming model in order to simplify and streamline the £a" be seen frOT" t.h.'s plot, though more r_nachmes_ are
implementation. idle at night, a significant number of machines are idle

at various times throughout the day. Therefore, by adap-
] tively using idle machines both day and night, we can
1 Introduction take advantage of significantly more machine resources

A strong case argues for the use of networks of Work_than if we run our parallel jobs as batch jobs during the

statons (NOWS) a parale-computaton piatons (3,7 FOe 1) = 2 istogram gvng e il de
and Cilk-NOW [6] is a software system that has been P y :

designed and implemented to run parallel programs east_hls experiment. This histogram shows that a significant

I I - 0,
ily and efficiently on networks of UNIX workstations. percentage of idle time (1104 processors-hours, or 19.'1A’
: : of the total 5776 processor-hours) comes from machines
Implemented entirely in user-level software on top of

UNIX, Cilk-NOW is a runtime system for a functional g}ﬁ;gﬁ |§I)I(e Ig;;ﬁiitgf Ir:ﬂ?é Onr:;';l:itneessa:ea 3?:3 ;I;]halisr’ntr_e
subset of the paralleCilk language [6, 8, 26], a mul- P d

tithreaded extension of C. Applications written in Cilk

1For this experiment, a machine is idle if the keyboard and seou

This research was supported in part by the Advanced Re_have not been touched fas minutes and thd, 5, and15 minute

sech rjects Agency (ARPA) uncer Granis NODDLA-Saaea 0°C°S50 024 Meriges e bt o A spectiey
N00014-92-J-1310. Robert Blumofe was supported in part iy a trary
ARPA High-Performance Computing Graduate Fellowship. '
This paperappears in tigoceedings of the USENIX 1997 Annual
Technical Symposiumnaheim, California, January 610, 1997.

40

35

30

N
o
T

Number of idle machines
I N
ol o
T

N
o
T

o
T

midnight.

3 4
Time (days)

(a) Idle machines

N I o

o @ =}

=} =) =}
T T

w

@

=)
T

Total idle processor—hours
&
o

value

Average '

[

. .
1 2 3 5 6 7 8 9 10
Idle time-interval (hours)

(b) Idle time

Figure 1: (a) This plot shows the number of machines, out ofthenachines in our network, that were idle at each point in time
over the course of one typical week in March, 199%) This histogram shows the number of idle processor-hoursgdordown

by idle time-interval. When a machine remains idle for agef¢ hours, it contributes hours to the height of the bar plotted at
positiont rounded up to the nearest 10 minutes.

chines are able to join and leave a computation quickly
and without human intervention. These observations are

consistent with those of others [5, 20, 27, 28, 31].
Cilk-NOW provides the following features for running

Cilk programs on a network of workstations.

Easeof use. A user can run a Cilk program in parallel

willing to contribute their workstations for use by

others.

Security. The Cilk-NOW system uses secure protocols

on a NOW as if the program were only being run

on the local workstation. The user simply types the 5 o anteed performance. The Cilk-NOW system ex-
program’s command line, and then the Cilk-NOW

runtime system automatically schedules the execu-

tion of the program in parallel across the network.
Adaptiveparalldism. The Cilk-NOW system adap-

tively executes Cilk programs on a dynamically
changing set of otherwise-idle workstations [6, 10].

When a given workstation is not being used by its
owner, the workstation automatically joins in and
helps out with the execution of a Cilk program.

tomatically retreats from the Cilk program.

themselves remaifault oblivious That is, Cilk-

that programmers code for fault tolerance.

that do not open a workstation to unauthorized users

running foreign code on a machine. The desired de-
gree of security is that which a given system uses to
authenticate its remote execution protocol.

ecutes Cilk programs using a work-stealing sched-
uler. This scheduler delivers performance that
can be predicted accurately with a simple abstract
model [6, 8]. Moreover this simple model can be
adapted to the case of heterogeneous processors and
networks [32].

Recently, we ran a Cilk protein-folding application
pfold

[37] using Cilk-NOW on a network of about

; 50 Sun SPARCstations connected by shared 10-Mb/s
When the owner retums to work, the machine AU Ethernet to solve a large-scale protein-folding problem.
The program ran fof days, surviving several machine
Fault tolerance. The Cilk-NOW runtime system auto- crashes and reboots, utilizifig66 processor-hours of
matically performs checkpointing, detects failures, otherwise-idle cycles, with no administrative effort on
and performs recovery [6] while Cilk programs our part (besides typingfold at the command-line to
begin execution), while other users of the network went
NOW provides fault tolerance without requiring about their business unaware of the program’s presence.
It is important to note that Cilk-NOW provides these
Flexibility. The Cilk-NOW system allows the condi- features only for Cilk-2 programs which are essentially
tions that are used to determine the idleness ofunctional. Cilk-NOW does not support more recent ver-
workstations to be set dynamically, in accordancesions of Cilk (Cilk-3 and Cilk-4) that incorporate virtual
with the tastes of the users and the owners of the mashared memory, and in particular, Cilk-NOW does not
chines whose cycles are being stolen. This flexibil-provide any kind of distributed shared memory. In addi-
ity preserves the sovereignty of each workstation’stion, Cilk-NOW does not provide fault tolerance for its
owner which is essential to ensure that owners ard/O facility.

In this paper, we present the design of Cilk-NOW, fo- | thread Fib (cont int k, int n)
cusing on those features of Cilk-NOW that are partic- | { if (n<2)
ular to the NOW environment. The Cilk-2 language, send _argument (k, n);
work-stealing scheduler, MPP implementation, and guar- else
anteed performance model have been covered at length {
in other papers [6, 8, 9, 26]. In this paper, we shall fo-
cus on adaptive parallelism and fault tolerance. Specifi-
cally, we will show how Cilk-NOW's end-to-end design }
[38] leverages algorithmic properties of the Cilk pro- }
gramming model and work-stealing scheduler in order
to amortize all the overhead of adaptive parallelism and | thread Sum (cont int k, int x, int y)
fault tolerance against the analytically and empirically | { send_argument (k, x+y);
bounded overhead of Cilk’'s work-stealing scheduler. }

The remainder of this paper is organized as followsgigyre 2: A Cilk procedure to compute theth Fibonacci
In Section 2 we review the Cilk-2 language and work- number. This procedure contains two threddis, andSum
stealing scheduler as first introduced in [8]. In Section 3
we describe the architecture of a Cilk job executing un-Figure 2 shows how this function is written as a Cilk pro-
der the Cilk-NOW runtime system. Then, in Section 4 cedure consisting of two Cilk thread§ib and Sum
we explain how Cilk-NOW implements adaptive paral- while double recursion is a terrible way to compute
lelism, and in Section 5 we explain how Cilk-NOW per- Fibonacci numbers, this toy example does illustrate a
forms checkpointing, fault detection, and fault recovery.common pattern occurring in divide-and-conquer appli-
In Section 6 we describe the Cilk-NOW macrosched-cations: recursive calls solve smaller subcases and then
uling system architecture. In Section 7 we compare thehe partial results are merged to produce the final result.
Cilk-NOW SyStem to related work. Fina”y, in Section 8 A Cilk thread generates para”e"sm at runtime by
we outline plans for future work, and we conclude. spawninga child thread that is thanitial thread of a
child procedure. A spawn is the parallel equivalent of
a function call. A spawn differs from a call in that when
a thread spawns a child, the parent and child may execute
concurrently. After spawning one or more children, the
parent thread cannot then wait for its children to return—
In this section we overview the Cilk parallel mul- in Cilk, threads never suspend. Rather, the parent thread
tithreaded language and its runtime system’s work-must additionally spawn auccessor threatb wait for
stealing scheduler [6, 8, 26]. For brevity, we shall notthe values “returned” from the children. The spawned
present the entire Cilk language, and we shall omit som&uccessor is part of the same procedure as its predeces-
details of the work-stealing algorithm. Since Cilk-2 sor. The child procedures return values to the parent pro-
forms the basis for the Cilk-NOW system, we shall fo- cedure by sending those values to the parent’s waiting
cus on the Cilk-2 language and on the Cilk-2 runtimesuccessor. Thus, a thread may wait to begin executing,
system as implemented without adaptive parallelism otbut once it begins executing, it cannot suspend. This
fault tolerance. style of interaction among threads is caltzmhtinuation-

A Cilk program contains one or mor€ilk proce- passing stylg¢4]. Spawning successor and child threads
dures and each Cilk procedure contains one or nfditk is done with thespawn _next andspawn keywords re-
threads A Cilk procedure is the parallel equivalent of a spectively. Sending a value to a waiting thread is done
C function, and a Cilk thread is a nonsuspending piece ofvith thesend _argument statement. The Cilk runtime
a procedure. The Cilk runtime system manipulates angystem implements these primitives using two basic data
schedules the threads. The runtime system is not awargructures: closures and continuations.
of the grouping of threads into procedures. Cilk proce- Closuresare data structures employed by the runtime

cont int X, v;

spawn_next Sum (k, ?X, ?y);
spawn Fib (x, n-1);

spawn Fib (y, n-2);

2 The Cilk language and work-
stealing scheduler

dures are purely an abstraction supported byilk&c
type-checking preprocessor [33].

system to keep track of and schedule the execution of
spawned threads. Whenever a thread is spawned, the run-

Consider a program that uses double recursion to comtime system allocates a closure for it from a simple heap.
pute the Fibonacci function. The Fibonacci function A closure consists of a pointer to the code for that thread,

fib(n) for n > 0 is defined as

fib(n) = n if n<2;
"= fib(n — 1) +fib(n — 2) otherwise.

a slot for each of the thread'’s specified arguments, and a
join counterindicating the number of missing arguments
that need to be supplied before the thread is ready to run.
The closure, or equivalently the spawned threackasly

Closure \

Thread——> Sum
Join counter—>= 2

—> | K - _____ — k
Arguments\

Empty
argument slots

Continuations

Figure 3: TheFib thread spawns a successor and two children. For the succkésseates a closure with 2 empty argument
slots, and for each child, it creates a closure with a coation referring to one of these empty slots. The backgrotvadisng
denotes Cilk procedures.

if it has obtained all of its arguments, and itigitingif with the value oih-1 . The join counter is set to zero, so
some arguments are missing. To run a ready closure, thibe thread is ready.
Cilk scheduler invokes the thread using the values in the An executing thread sends a value to a waiting thread
closure as arguments. When the thread dies, the closut®/ placing the value into an argument slot of the wait-
is freed. ing thread's closure. Thsend _argument statement

A continuationis a global reference to an empty argu- sends a value to the empty argument slot of a waiting
ment slot of a closure, implemented as a compound datelosure specified by its argument. The types of the con-
structure containing a pointer to a closure and an offsetinuation and the value must be compatible. The join
that designates one of the closure’s argument slots. Coreounter of the waiting closure is decremented, and if
tinuations are typed with the C data type of the slotin theit becomes zero, then the closure is ready. For exam-
closure. In the Cilk language, continuations are declareghle, the statemergend _argument (k, n) in Fib
by the type modifier keywordont . For example, the writes the value of into an empty argument slot in the
Fib thread declares two integer continuationgndy . parent procedure’s waitinBumclosure and decrements

Using thespawn_next primitive, a thread spawns a its join counter. When th&umclosure’s join counter
successor thread by creating a closure for the successaeaches zero, it is ready. When tBemthread gets exe-
The successor thread is part of the same procedure as itsited, it adds its two arguments,andy, and then uses
predecessor. For example, in thid thread, the state- send _argument to “return” this result up to its parent
ment spawn_next Sum (k, ?x, ?y) allocates a procedure’s waitinggumthread.
closure withSumas the thread and three argument slots, At runtime, each processor maintains a “ready” deque
as illustrated in Figure 3. The first slot is initialized with (double-ended queue) which contains all of the ready
the continuatiork and the last two slots are empty. The closures. Whenever a closure is created, if its join
continuation variableg andy are initialized to refer to counter is0, then it is placed on the head of the ready
these two empty slots, and the join counter is se2.to deque. Whenever send _argument call is made, the
This closure is waiting. join counter is decremented, and if the join counter is

Similarly, using thespawn primitive, a thread spawns decremented to zero, then the closure is placed on the
a child thread by creating a closure for the child. Thehead of the ready deque. When a thread finishes, the next
child thread is the initial thread of a newly spawned childthread to execute is chosen from the head of the ready
procedure. Thepawn statement is semantically iden- deque.
tical to spawn_next . For example, thé-ib thread If no threads are available in the ready deque, a proces-
spawns two children as shown in Figure 3. The statesor engages iwork stealing To steal work, a processor,
mentspawn Fib (x, n-1) allocates a closure with called thethief, chooses another processor, calledihe
Fib as the thread and two argument slots. The first slotim, at random and requests a closure to be sent back. If
is initialized with the continuatior which, as a conse- that processor has any closures in its ready deque, one
guence of the previous statement, refers to a slot in itss removed from the tail of the victim’s ready deque and
parent’s successor closure. The second slot is initializedent across the network to the thief, who will add this

closure to its own ready deque. The thief may then begirkeeping track of all the other processes that comprise
work on the stolen closure. If the victim has no readya given job. These other processes are calledkers
closures, it informs the thief who then tries to steal fromA worker is a process running the actual executable of a
another random processor until a ready closure is founcilk program. Since Cilk jobs are adaptively parallel, the
or program execution completes. set of workers is dynamic. At any given time during the
This simple work-stealing scheduler has been shownexecution of a job, a new worker may join the job or an
both analytically and empirically, to deliver efficient existing worker may leave. Thus, each Cilk job consists
and predictable performance [6, 8, 9] for “well struc- of one or more workers and a clearinghouse to keep track
tured” computations. Awell structured computation of them.
is one in which each procedure sends values (with The Cilk-NOW runtime system contains additional
send _argument) only to its parent and only as the last components that perform macroscheduling as discussed
action performed by its last thread. For well structuredin Section 6, but for the purpose of our present discus-
computations executing on any numbeof processors, sion, we need only introduce the “node managers.” A
the execution time can be modeled accuratelyids®+ node manageis a process running a system-supplied
T, whereT; denotes thevork of the computation—that program calledCilkNodeManager . A node manager
is, the execution time with processor—an,, denotes runs as a background daemon on every machine in the
the critical-path length—that is, the theoretical execu- network. It continually monitors its machine to deter-
tion time on an ideal machine with infinitely many pro- mine when the machine is idle.
cessors. Such performance is within a factor of 2 of opti- To see how all of these components work together
mal, and additiona”yWhen the critical path is short com-in managing the execution of a Cilk job’ we shall run
pared to the amount of work per processor, such perforthrough an example. (In describing interactions with
mance displayBnear speedup the macroscheduler, we shall refer to the macrosched-
The key element in proving this; /P + Tt perfor- yler as a single entity, though actually, as we shall see
mance bound is the fact that closures are always stolefy Section 6, the macroscheduler is a distributed subsys-
from the tail of the ready deque. For well structured com-tem with several components.) Suppose that a user sits
putations, a closure that is on the critical path must be aglown at a machine calleBenguin to run thepfold
the tail of some processor’'s ready deque. Thus, wheprogram. In our example, the user types
processors are not executing closures, they are stealing pfold 3 7

work and, therefore, are likely to be making progress on) o
the critical path. As a corollary to this result, the number@t the shell, thereby launching a Cilk job to enumerate

of work-steal attempts per processor is proportional Al pr_otein_foldings using initial folding sequences and
the critical-path length and does not grow with the work. Starting with therth one.

Thus, a computation with a sufficiently short critical path The new Cilk job begins execution as illustrated in
compared to the work per processor can continue to disEigure 4(a). The new process running fifeld exe-
play linear speedup even when communication is Verycutable is the first worker and begins execution by fork-
expensive. This idea of amortizing overhead against th&g a clearinghouse with the command line

critical path plays an important role in our later discus- CilkChouse -- pfold 3 7

sion of adaptive parallelism and fault tolerance. Thus, the clearinghouse knows that itis in charge of a job
whose workers are runningfold 3 7 .” The clear-

3 Cilk-NOW jOb architecture inghouse begins execution by sendingla description

to the macroscheduler. The job description is a record

The Cilk-NOW runtime system consists of several com-containing several fields. Among these fields is the name
ponent programs that (in addition to macroschedulingof the Cilk program executable—in this cagtold —
duties discussed later) manage the execution of each irand the clearinghouse’s network address. The clearing-
dividual Cilk program. In this section, we shall cover the house then goes into a service loop waiting for messages
architecture of a Cilk program as it is executed by thefrom its workers. After forking the clearinghouse, the
Cilk-NOW runtime system, explaining the operation of first workerregisterswith the clearinghouse by sending it
each component and their interactions. a message containing its own network address. Now the

In Cilk-NOW terminology, we refer to an executing clearinghouse knows about one worker, and it responds
Cilk program as a Cillob. Since Cilk programs are par- to that worker by assigning it a uniquame Workers
allel programs, a Cilk job consists of several processesre named with numbers, starting with numBerHav-
running on several machines. One process, called thimg registered, worke® begins executing the Cilk pro-
clearinghousgin each Cilk job runs a system-supplied gram as described in Section 2. We now have a running
program calledCilkChouse that is responsible for Cilk job with one worker.

Macroschedule
Node m@nager
Clearinghouse

Node manager obtains job

Clearinghouse from macroscheduler.

submits job to
macroschedule

Macroscheduler

detects idle.

registers with
clearinghouse.

T~ T[sparmow

Worker steals work
from another.

Node manager I

Clearinghouse

Node|manager

| orker.
rst worker forks a

earinghouse and
len registers.

Penguin

(a) A Cilk job starts. (b) An idle machine joins the job.

Macroscheduler
Node mafiager
Clearinghouse

Node manager
notifies macroscheduler.

detects busy.

unregisters.

Node manager I

Node|manager
sends kill signal

T~ Tsparmoy

Worker offloads
work to others.

Penguin

(c) A no-longer-idle machine leaves the job.

Figure 4: (a) The first worker forks a clearinghouse, and then the clehdnge submits the job to the macroschedBrwhen

the node manager detects that its machine is idle, it obtajob from the macroscheduler and then forks a worker. Thé&evor
registers with the clearinghouse and then begins workistedk) When the node manager detects that its machine is no-longer
idle, it sends a kill signal to the worker. The worker catctigs signal, offloads its work to other workers, unregisteith the
clearinghouse, and then terminates.

A second worker joins the Cilk job when some other worker that it is to be an additional worker in an already
workstation in the network discovers that it is idle, as existing Cilk job. (Without this flag, the worker would
illustrated in Figure 4(b). Suppose the node managefork a new clearinghouse and start a new Cilk job.) The
on a machine name®&parrow detects that the ma- -Address field on the command line tells the worker
chine is idle. The node manager sends a message to tehere in the network to find the clearinghouse. The
macroscheduler, and the macroscheduler responds witlhiorker uses this address to send a registration message,
the job description of a Cilk job for the machine to work containing its own network address, to the clearinghouse.

on. In this case, the job description specifies piotd
job by giving the name of the executabl@feld —and

the network address of the clearinghouse. The node marine arguments—in this casepfold 3 7

The clearinghouse responds with the worker’s assigned
name—in this case, numbg&r—and the job’s command-
" Addition-

ager then uses this information to fork a new worker as ally, the clearinghouse responds with a list of the network

child with the command line

pfold -NoChouse
-Address= cl eari nghouse- addr ess

The -NoChouse flag on the command line tells the

addresses of all other registered workers. Now the new
worker knows the addresses of the other workers, so it
can commence execution of the Cilk program and steal
work as described in Section 2. We now have a running
Cilk job with two workers.

Now, suppose that someone touches the keyboard dieatured counterpart. Second, in an environment where
Sparrow . In this case, the node manager detects thamachines can crash and networks can break, the notion
the machine is busy, and the machine leaves the Cilk jolof a “reliable” message-passing layer is somewhat sus-
as illustrated in Figure 4(c). After detecting that the ma-pect. A runtime system operating in an inherently un-
chine is busy, the node manager sends a kill signal to itseliable environment cannot expect the message-passing
child worker. The worker catches this signal and pre-layer to make the environment reliable. Rather, the run-
pares to leave the job. First, the worker offloads all of itstime system must incorporate appropriate mechanisms
closures to other workers as explained in more detail irinto its protocols to take action when a communication
Section 4. Next, the worker sends a message to the cleagndpoint or link fails. For these reasons, we chose to
inghouse tainregister Finally, the worker terminates. build the Cilk-NOW runtime system on top of a minimal

When a Cilk job is running, each worker periodi- layer of message-passing service and incorporate mech-
cally checks in with the clearinghouse. Specifically, eachanisms directly into the runtime system’s protocols in or-
worker periodically (everg seconds) sends a message toder to handle issues of reliability. The downside to this
the clearinghouse, and the clearinghouse responds witpproach is complexity. The protocols implemented in
an updatemessage informing the worker of any other the Cilk-NOW runtime system are complex: the code
workers that have left the job and any new workers thafor these protocols takes almai percent of the total
have joined the job. For each new worker that has joinediuntime-system code, and the programming effort was
the clearinghouse also provides the network address. Brobably near half of the total. Nevertheless, this was
the clearinghouse does not receive any messages frofone-time effort that we expect will reap performance
a given worker for an extended period of ting® (sec- rewards for a long time to come.
onds), then the clearinghouse determines that the worker
has crashed. In later update messages, the clearinghouge : :
informs the other WOYEGI’S of the cgrjash, and the gther Ad aptlve para”ellsm

workers take appropriate remedial action as described iﬂ\daptive parallelism allows a Cilk job to take advan-
Section 5. tage of idle machines whether or not they are idle when
All communication between workers, and betweenthe job starts and whether or not they will remain idle
workers and the clearinghouse, is implemented withfor the duration of the job. In order to efficiently uti-
UDP/IP [13, 40]. Knowing that UDP datagrams are un-lize machines that may join and leave a running job, the
reliable, the Cilk-NOW protocols incorporate appropri- overhead of supporting this feature must not excessively
ate mechanisms, such as acknowledgments, retries, artbw down the work of any worker at a time when it is
timeouts, to ensure correct operation when messages gebt joining or leaving. As we saw in the previous sec-
lost. We shall not discuss these mechanisms in any detaifion, a new worker joins a job easily enough by register-
and in order to simplify our exposition of Cilk-NOW, we ing with the clearinghouse and then stealing a closure.
shall often speak of messages being sent and received Asworker leaves a job by migrating all of its closures
if they are reliable. What we will say about these mecha-to other workers, and here the danger lies. When we
nisms is that they are built on top of UDP but without any migrate a waiting closure, other closures with continu-
effort to create a reliable message-passing layer. Rathettions that refer to this closure must somehow update
these mechanisms are built directly into the runtime systhese continuations so they can find the waiting closure
tem’s protocols, so in the common case when a messagat its new location. (Without adaptive parallelism, wait-
does get through, Cilk-NOW pays no overhead to makeng closures never move.) Naively, each migrated wait-
the message reliable. ing closure would have to inform every other closure of
We chose to build Cilk-NOW'’s communication pro- its new location. In this section, we show how we can
tocols using an unreliable message-passing layer insteddke advantage of Cilk’s well structuring and the work-
of a reliable one for two reasons, both based on end-tostealing scheduler to make this migration extremely sim-
end design arguments [38]. First, reliable layers such aple and efficient. (Experimental results documenting the
TCP/IP [40] and PVM [41] perform implicit acknowl- efficiency of Cilk-NOW's adaptive parallelism have been
edgments and retries to achieve reliability. Therefore,omitted for lack of space but can be found in [6].)
such layers either preclude the use of asynchronous com- Our approach is to impose additional structure on the
munication or require extra buffering and copying. A organization of closures and continuations, such that the
layer such as UDP which provides minimal service guar-structure is cheap to maintain while simplifying the mi-
antees can be implemented with considerably less sofigration of closures. Specifically, we maintain closures
ware overhead than a layer with more service featuredn “subcomputations” that migrate en masse, and every
In the common case when the additional service is notontinuation in a closure refers to a closure in the same
needed, the minimal layer can easily outperform its fully-subcomputation. In order to send a value from a clo-

sure in one subcomputation to a closure in another, watoring the name of the thief worker and the name of the
forward the value through intermediate “result closures,’thief's subcomputation (as contained in the steal request
and give each result closure the ability to send the valuenessage) in the assignment information. Finally, the vic-
to precisely one other closure in one other subcomputatim worker sends a copy of the closure to the thief. When
tion. With this structure and these mechanisms, all of thehe thief receives the stolen closure, it records the name
overhead associated with adaptive parallelism (other thaof the victim worker in its subcomputation, and it places
the actual migration of closures) occurs only when clo-the closure in the subcomputation’s ready pool. Now the
sures are stolen, and as we saw in Section 2, the numbémief’s subcomputation is ready, and the thief worker may
of steals grows at most linearly with the critical path of commence executing it. Notice that the victim closure
the computation and is not a function of the work. Theand thief subcomputation can refer to each other via the
bulk of this section’s exposition concerns the organiza-thief subcomputation’s name which is stored both in the
tion of closures in subcomputations and the implemenvictim closure’s assignment information and in the thief
tation of continuations. After covering these topics, thesubcomputation, as illustrated in Figure 5.
mechanism by which closures are migrated to facilitate When a worker finishes executing a subcomputation,
adaptive parallelism is quite straightforward. the link between the subcomputation and its victim clo-
In Cilk-NOW, every closure is maintained in one of sure is destroyed. Specifically, when a subcomputation
three pools associated with a data structure calleaba has no closures in any of its three pools, then the subcom-
computation A subcomputation is a record contain- putationisfinished A worker with a finished subcompu-
ing (among other things) three pools of closures. Theation sends a message containing the subcomputation’s
ready poolis the list of ready closures described in name to the subcomputation’s victim worker. Using this
Section 2. Thewaiting poolis a list of waiting clo- name, the victim worker finds the victim closure. This
sures. Theassigned poois a list of ready closures closure is removed from its subcomputation’s assigned
that have been stolen away. Program execution begingool and then the closure and its assignment informa-
with one subcomputation—th@ot subcomputation— tion are freed. The victim worker then acknowledges
allocated by worke® and containing a single closure— the message, and when the thief worker receives the ac-
the initial thread oftilk _main —in the ready pool. In knowledgment, it frees its subcomputation. When the
general, a subcomputation with any closures in its readyoot subcomputation is finished, the entire Cilk job is fin-
pool is said to beeady, and ready subcomputations can ished.
be executed by the scheduler as described in Section 2 |n addition to allocating a new subcomputation, when-
with the additional provision that each waiting closure is ever a worker steals a closure, it also allocates a new “re-
keptin the waiting pool and then moved to the ready poolsult” closure, and it alters the continuation in the stolen
when its join counter decrements to zero. The assignedlosure so that it refers to the result closure. Consider a
pool is used in work stealing as we shall now see. thief stealing a closure, and suppose the victim closure

The act of work stealing creates a new subcomputatiogontains a continuation referring to a closure that we call
on the thief which is linked to a copy of the stolen clo- thetarget (The victim and target closures must be in
sure kept in an assigned pool on the victim. If a workerthe same subcomputation in the victim worker.) Con-
needs to steal work, then before sending a steal request tiuations are implemented as the address of the target
a victim, it allocates a new subcomputation from a sim-closure concatenated with the index of an argument slot
ple runtime heap and gives the subcomputation a uniqué the target closure. Therefore, the continuation in the
name The subcomputation’s name is formed by con-Vvictim closure contains the address of the target closure,
catenating the thief worker’'s name and a number uniqu@nd this address is only meaningful to the victim worker.
to that worker. The first subcomputation allocated by aThus, when the thief worker receives the stolen closure,
workerr is namedr:1 , the second is nameat? , and it replaces the continuation with a new continuation re-
so on. The root subcomputationis nan@edl . The steal ~ ferring to an empty slot in a newly allocateesult clo-
request message contains the name of the thief’s newlgure. The stolen and result closures are part of the same
allocated subcomputation. When the victim worker getssubcomputation. The result closure’s thread is a special
the request message, if it has any ready subcomputationgystem thread whose operation we shall explain shortly.
then it chooses a ready subcomputation in round-robirf his thread takes one argumentresult value The re-
fashion, removes the closure at the tail of the subcomsult value is initially missing, and the continuation in the
putation’s ready pool, and places thistim closurein stolen closure is set to refer to this argument slot. The
the assigned pool. As illustrated in Figure 5, the victimresult closure is waiting and its join counterlis
worker thenassignghe closure to the thief's subcompu- Using continuations to send values from one thread to
tation by adding to the closure assignmentinformation another operates as described in Section 2, but when a
record allocated from a simple runtime heap, and thervalue is sent to a result closure, communication between

Victim workers Thief workemr
Subcomputation
si
Assigned
pool
Victim Subcomputation Victim worker
closure name name
Assignment information) (
—r [n < |
[A
) lK rj ‘ s
Thief worker. Thief
name subcomputation name

Figure 5: A victim closure stolen from the subcomputat&in of victim workers is assigned to the thief subcomputatign .

The victim closure is placed in the assigned pool and augedenith assignment information that records the name ofhied t
worker and the name of the thief subcomputation. The thieEemputation records its own name and the name of the victim
worker. Thus, the victim closure and thief subcomputatian efer to each other via the thief subcomputation’s name.

different subcomputations occurs. When a result closuréim worker. Thus, all of the links between victim closures
receives its result value, it becomes ready, and when itand thief subcomputations are restored.

thread executes, it forwards the result value to another

closure in another subcomputation as follows. When a

worker executing a subcomputation executes aresultclo® ~ Fault tolerance

sures thread, it se_nds amessage to_the subcomputatlorwith transparent fault tolerance built into the Cilk-NOW
victim worker. This message contains the subcomputa-

tion’s name as well as the result value that is the thread’gumIme system, Cilk jobs may survive machine crashes

argument. When the victim worker receives this mes->" network outages despite the fact that Cilk programs

sage, it uses the subcomputation name to find the victing © fault oblivious, having been coded with no special

closure, and then it uses the continuation in the victimproviSion for handling machine or network failures. If
closure'to send the result value to the target a worker crashes, then other workers automatically redo

any work that was lost in the crash. In the case of a more
To summarize, each subcomputation contains a colleccatastrophic failure, such as a power outage, a total net-
tion of closures and every continuationin a closure refersyork failure, or a crash of the file server, then all work-
to another closure in the same subcomputation. To sengrs may crash. For this case, Cilk-NOW provides au-
a value from a closure in one subcomputation to a clotomatic checkpointing, so when service is restored, the
sure in another, the value must be forwarded through agilk job may be restarted with minimal lost work. Recall
intermediate result closure. that Cilk-NOW does not provide fault tolerance for I/O.
With this structure, migrating a subcomputation from In this section, we show how the structure used to sup-
one worker to another is fairly straightforward. At the port adaptive parallelism—which leverages Cilk’s tree
source worker, the entire subcomputation is “pickled” by structure and the work-stealing scheduler—may be fur-
giving each of the subcomputation’s closures a numbether leveraged to build these fault tolerant capabilities
and replacing each continuation’s pointer with the corre-in Cilk-NOW. As with adaptive parallelism, all of the
sponding number. Then, after sending the closures to theverhead associated with fault tolerance (other than the
destination worker, the destination worker reconstructsost of periodic checkpoints) can be amortized against
the subcomputation by reversing the pickling operationthe number of steals which grows at most linearly with
The subcomputation keeps its name, so after a migratiorihe critical path and is not a function of the work.
the first component of the subcomputation name will be Given adaptive parallelism, fault tolerance is only a
different than the name of the worker. When the sub-short step away. With adaptive parallelism, a worker may
computation and all of its closures have been migrated tdeave a Cilk job, but before doing so, it first migrates
their destination worker, this worker sends a message tall of its subcomputations to other workers. In contrast,
the subcomputation’s victim worker to inform the victim when a worker crashes, all of its subcomputations are
closure of its thief subcomputation’s new thief worker. lost. To support fault tolerance, we add a mechanism
Additionally, for each of the subcomputation’s assignedthat allows surviving workers to redo any work that was
closures, it sends a message to the thief worker to inforndone by the lost subcomputations. Such a mechanism
the thief subcomputation of its victim closure’s new vic- must address two fundamental issues. First, not all work

is necessarily idempotent, so redoing work may presenthief subcomputation named in the message and recur-
problems. We address this issue with a technique that weively aborts it. All of the work done by these aborted
call areturn transaction Specifically, we ensure that the subcomputations must eventually be redone. In order to
work done by any given subcomputation does not affeciavoid aborting all of these subcomputations (which may
the state of any other subcomputations until the givercomprise the entire job in the case when the root subcom-
subcomputation finishes. Thus, from the point-of-viewputation is lost) and redoing potentially vast amounts of
of any other subcomputation, the work of a subcompu-work, and in order to allow restarting when the entire job
tation appears as a transaction: either the subcomputés lost, we need checkpointing.

tion finishes and commits its work by making it visible Cilk-NOW performs automatic checkpointing without
to other subcomputations, or the subcomputation neveany synchronization among different workers and with-
happened. Second, the lost subcomputations may hawt any notion of global state. Specifically, each sub-
done a large amount of work, and we would like to mini- computation is periodically checkpointed to a file named
mize the amount of work that needs to be redone. We adwith the subcomputation’s name. For example, a sub-
dress this issue by incorporating a transparent and fullgomputation namedi would be checkpointed to a file
distributed checkpointing facility. This checkpointiregf namedscomp_r _i . We assume that all workers in the
cility also allows a Cilk job to be restarted in the case ofjob have access to a common file system (through NFS or
a total system failure in which every worker crashes. AFS, for example), and all checkpoint files are written to

To turn the work of a subcomputation into a return @ common checkpoint directofyTo write a checkpoint
transaction, we modify the behavior of the subcompu-file for a subcomputationi , the worker first opens a
tation’s result closure. In Cilk, returning a value is al- file namedscomp.r _i.temp . Then, it writes the sub-
ways the last operation performed by a Cilk procedurecomputation record and all of the closures—including
so the result closure cannot be ready until the subcompuhe assignment information for the assigned closures—
tation is finished. In addition, recall that the execution ofinto the file. Finally, it atomically renames the file
the result closure and the finishing of the subcomputatioscomp.r _i.temp toscomp.r i , overwriting any pre-
both warrant a message to the victim worker. Thus, wevious checkpoint file. A checkpoint file can be read
bundle these two messages into a single larger messad@ recover the subcomputation. On writing a check-
sent to the victim worker. When the victim worker re- pointfile, the worker additionally prunes any no-longer-
ceives this message, it commits all of the thief subcomneeded checkpoint files.
putation’s work by sending the appropriate result value |f workers crash, the lost subcomputations can be re-
from the victim closure, freeing the victim closure (and covered from checkpoint files. In the case of a single

its assignment information), and sending an acknowledgworker crash, the lost subcomputations can be recov-
ment back to the thief worker. ered automatically. When a surviving worker finds that

it has a subcomputation with a closure assigned to the
ture, a Cilk job can tolerate individual worker crashes crashed worker, then it can recover the thief subcom-

as follows. Suppose a worker crashes. Eventually, th@utation by reading the checkpoint file. In the case of
clearinghouse will detect the crash, and the other living? 1arge-scale failure in which every worker crashes, the
workers will learn of the crash at the next update fromCilkjob can be restarted from checkpoint files by setting
the clearinghouse. When a worker learns of a crash, ithe€-Recover flag on the command line. Recovery be-

goes through all of its subcomputations, checking eactf"S with the root subcomputation whose checkpoint file

assigned closure to see if it is assigned to the crashef§ SCOMP-0-1. After recovering the root subcomputa-
worker. Each such closure is moved from the assigned®": then every other subcomputation can be recovered

pool back to the ready pool (and its assignment informaPY recursively recovering the thief subcomputation for

tion is freed). Thus, all of the work done by the closure’s #¢h of the root subcomputation’s assigned closures.
thief subcomputation which has been lost in the crash

will eventually be redone. Additionally, when aworker § Cjijlk-NOW macroscheduli ng

learns of a crash, it goes through all of its subcomputa-

tions to see if it has any that record the crashed worker a¥he Cilk-NOW runtime system contains components
the subcomputation’s victim. For each such subcomputhat perform macroscheduling [30]. The macroscheduler
tation' the worker aborts it as follows. The worker goesidentiﬁes idle machines and determines which machines
through all of the subcomputation’s assigned closuregvork on which jobs. In this section, we discuss each
sending to each thief worker ambort message speci- component of the macroscheduler, and we show how
fylng the name of the thief Su_bcompUtatlon_' Then the 2We have not yetimplemented any sort of distributed file systa
worker frees the subcomputation and all of its closuresye cyrrent implementation, workers implicitly synchraivhen they
When a worker receives an abort message, it finds therite checkpointfiles, since they all access a common filéesys

With subcomputations having this transactional na-

10

they work together. up once every second to determine if the machine is still
Like the workers and the clearinghouse, which to-idle (adding an estimate of the running job’s processor
gether comprise a single parallel Cilk job, the com-usage to any processor load-average threshold). If the
ponents of the macroscheduler are distributed acrosgachine is no longer idle, then the node manager sends
the network. As already mentioned, each machine irgKill signal to the worker as previously described. When
the network runs a node manager, an instance of th#éhe worker process dies for any reason, the node manager
CilkNodeManager program, that monitors the ma- takes one of two possible actions. If the machine is still
chine’s idleness and the status of a worker if one isidle, then it obtains a new job description and forks a new
present. In addition to the clearinghouse, each Cilkworker. If the machine is no longer idle, then it returns
job executes a singl@b managey an instance of the to monitoring the machine once evergeconds.
CilkJobManager program, that services requests for When a Cilk job begins execution, a job manager is
the job description. Each of these components regstarted automatically by the clearinghouse. The clear-
isters with a centraljob broker an instance of the inghouse submits the job description to the job manager
CilkJobBroker program. The job broker keeps track as alluded to in Section 3, and then the job manager reg-
of the set of node managers and job managers runningters itself with the job broker. The job manager then
in the network. The Cilk-NOW runtime system can con- goes to sleep, and it periodically wakes up to reregister
tinue operation even if some of these components, inwith the job broker in case the job broker has crashed
cluding the job broker, fail. and restarted. When the job terminates, the job manager
Each machine in the network runs a node managetnregisters with the job broker. The job manager is the
that is responsible for determining when the machine igentral authorizing agent for the job. Any time a node
idle. When the machine is being used, the node manageénanager forks a worker, it receives a copy of the job de-
wakes up every seconds to determine if the machine hasscription directly from the job’s job manager.
gone idle. It looks at how much time has elapsed since When a node manager forks a new worker, it must
the keyboard and mouse have been touched, the numbtake special precautions that the user specified in the job
of users logged in, and the processor load averages. Ttdescription actually authorized the job to be run. Fail-
node manager then passes these values through a predre to do so would allow an outsider to gain unautho-
cate to decide if the machine is idle. A typical predicaterized access to a user’'s account. Furthermore, it is de-
might require that the keyboard and mouse have not beesirable for the macroscheduler’'s protocols to be secure
touched for at leadt minutes and thé-minute processor against unauthorized messages. For these reasons, all of
load average is below.35. The predicate can be cus- the macroscheduler’s protocols are secured with an ab-
tomized for each machine. We believe that maintainingstraction on top of UDP calledecure active messages
the owner’s sovereignty is essential if we want owners tg30]. This abstraction maintains all of the semantics of
allow their machines to be used for parallel computationthe split-phase protocols mentioned earlier but adds a
A user can change a predicate with a simple commandguarantee of the authenticity of messages to the receiver.
line utility called CilkPred . For example, issuing the Unlike a normal UDP message which is sent from one

command network address to another, a secure active message is
CilkPred user=lisiecki global add sent between “principals.” Arincipal is a pair consist-
idletime=900 ing of a network address and a claim as to the identity

causes any workstation on the network to require that thé)f the sender. Each secure active message contains user

user “lisiecki” be idle for at least 900 seconds. Alterna-data’ the sending principal, and whatever additional data

tivelv. a user miaht issue the command might be required by the underlying authentication pro-
Y) 9 tocol, whether that be the standard UNi3h protocol
CilkPred always node=vulture add

or a protocol like Kerberos [34]. The security layer is
load=.2,.2,.2 very simplistic, providing only enough functionality to
which applies only to the workstatiofulture andre- allow the protocols to be secured in a manner indepen-
quires it to have a load average @® or less for all of dent of the authentication protocol.
thel, 5, and15 minute load averages. The decision to receive the job description directly

When all applicable conditions of the predicate arefrom the job manager stems from security considerations

satisfied, the machine is idle, and the node manager olwith protocols like Kerberos, where the job broker and
tains a job description from a job manager (using an adnode managers are not trusted with the user’s credentials.
dress given by the job broker or another node managerPnly the user in the possession of tickets can be trusted
and forks a worker. The node manager then monitor¢o start a remote process. Since the job manager runs
the worker and continues to monitor the machine’s idle-as the desired user, retrieving the job description diyectl
ness. With a worker running, the node manager wakeand securely from the job manager assures that the user

11

has actually authorized running the job. ranha system [24, 27], which is based on the Linda pro-
The task of scheduling jobs on workstations is sharedyramming model [12], is also adaptively parallel. (In
between the job broker and the node managers. The jofact, the authors of Piranha appear to have coined the
broker is responsible for ensuring that each job is runningerm “adaptively parallel.”) These systems support pro-
on at least one workstation. The node managers thegramming models that are quite different from Cilk’s,
use a distributed, randomized algorithm to divide thebut as with the Cilk-NOW design, both leverage prop-
workstations evenly among the jobs. Because the noderties of their programming model in order to imple-
managers are capable of performing scheduling, tempanent adaptive parallelism. A runtime system for the
rary outages of the job broker do not impede progresprogramming language COOL [14] running on symmet-
in scheduling jobs on the network of workstations. Weric multiprocessors [44] and cache-coherent, distributed
are currently experimenting with a distributed, random-shared-memory machines uses process control to sup-
ized macroscheduling algorithm that uses steal rates tport adaptive parallelism. This system relies on special-
estimate worker utilization. Each job should get its fair purpose operating system and hardware support. In con-
share of the idle machines, but no job should get mordrast, Cilk-NOW supports adaptive parallelism entirely
machines than it can efficiently utilize. in user-level software on top of commercial hardware
and operating systems. The Spawn system [45] sup-
orts concurrent applications with dynamic and adaptive
7 Related work Fesource managenrire)nt policies bas}e/d on microecor?omic

Cilk-NOW is unigue in delivering adaptive and reliable Principles. Unlike Cilk-NOW, none of these systems are
execution for parallel programs on networks of worksta-fault tolerant.
tions. Traditionally, systems such as PVM [41], Tread-
Marks [2], and others [11, 16, 23, 29] that are designed A growing number of systems do provide fault toler-
to support parallel programs on networks of workstationgance, but unlike Cilk-NOW, none provide “application”
have not provided adaptive parallelism or fault tolerancefault tolerance in a high-level parallel programming en-
On the other hand, most systems that do provide suppodironment. The Hive [15] distributed operating system
for adaptive execution or fault tolerance take a “processprovides “system” fault tolerance, meaning that a fault
centric” approach. That is, they provide an abstractionn one component does not bring down the entire system.
of mobile processes and/or an abstraction of reliable proHive does not, however, provide “application” fault tol-
cesses. As such these systems are very general in thélrance, meaning that with Hive, if an application is using
potential application, but they do not provide much sup-a failed component, then the entire application crashes
port for parallel programs. In contrast, Cilk-NOW does (unless the application itself has taken care to be fault
provide support for parallel programs and it does pro-tolerant). Application fault tolerance is provided by the
vide adaptive parallelism and fault tolerance, but it doegManetho system [21] via the technique of message log-
so only for the Cilk parallel programming model. Such ging. The Sam system [39] uses message logging to im-
specificity allows the Cilk-NOW design to take an end- plement a fault tolerant distributed shared memory. The
to-end approach [38] that leverages properties of the Cilksam implementation leverages properties of its shared-
programming model in order to implement adaptive par-memory consistency model in order to avoid logging cer-
allelism and fault tolerance simply and efficiently. tain messages. Unlike Cilk-NOW, both Manetho and
Distributed operating systems [17, 36, 43, 46] and re-Sam are process-centric, as they both provide the abstrac-
mote execution facilities [18, 19, 31, 35, 47] provide tion of reliable processes, and neither is really a high-
services such as remote process execution and, in sonivel parallel programming environment.
cases, process migration. These systems are not intended
to be parallel programming environments, though pre- In comparing Cilk-NOW with these other process-
sumably a parallel programming environment could bycentric systems, an interesting question to ask is, why
built atop one of these systems. In fact, Orca [42], whichnot build the Cilk-NOW runtime system on top of one
has been built on top of Amoeba, is such a system. Thesthese other systems? After all, these systems already
systems are process-centric in that they adapt only by reémplement adaptive and/or fault-tolerant execution. The
motely executing and/or migrating processes. answer is performance. As we have seen, the overhead
A small number of parallel programming and runtime of adaptive parallelism and fault tolerance in Cilk-NOW
systems have been built that are adaptively parallel, buis amortized against the overhead in Cilk’s provably ef-
unlike Cilk-NOW, none are fault tolerant. Possibly the ficient scheduling algorithm. This amortization is only
first adaptively parallel system is the Benevolent Banditpossible because all facets of the design are specialized
Laboratory (BBL) [22], and Cilk-NOW borrows some with high-level knowledge of algorithmic structure in the
of its overall system architecture from BBL. The Pi- Cilk programming model.

12

8 Conclusion http://theory.lcs.mit.edu/ cilk

The widespread use of NOWSs for parallel computation
requires a software infrastructure that allows programACknOWledg ments

mers to code in a high-level language that abstract%e wish to thank the entire Cilk project team at MIT.
away the complexity of protocols, scheduling, and € ed by Professor Charles E. Leiserson, this team in-

source man_agement. C_”k and Cilk-NOW aré part Ofcludes or has included Matteo Frigo, Michael Halbherr
this developing software infrastructure. In this paper, Weow of the Boston Consulting Group, Chris Joerg now

have shown hO_W C”k'NOW,S end-tq-end design_lever- of DEC’s Cambridge Research Lab, Bradley Kuszmaul
ages structure in the Cilk programming model to |mple-nOW of Yale University, Howard Lu, Rob Miller now of

ment adaptive parallelism and fault tolerance simply andCarnegie Mellon University, David Park now of McKin-

efficiently. All overheads are amortized against Work-Sey and Associates, Keith Randall, and Yuli Zhou now
stealing operations, and the number of steals grows Wit%f AT&T Labs Research. Of particular note in this

the critical path and not with the work. This result is only roup, we wish to extend an extra note of gratitude to

pos_s_ible because C”k_'NOW_ incorporates C:”k'SpecmcDavid Park, who helped conceive and write the very first
policies at all levels of its design. Cilk-NOW prototype (back then we called the system
The Cilk-NOW runtime system, as described in this«phish™) and especially to Charles Leiserson. From its
paper and as currently implemented, supports the Cilk-Zonception, Charles has supported this project with a
Ianguage which is essentia”y functional in that it doeSgenerous allocation of resources, both human and ma-
not have support for a global address space or parakhine, and with his enthusiasm, ideas, and sense of hu-
lel /O. More recent incarnations of Cilk for MPPs mor.
and SMPs have support for a global address space Us- other current and former members of MIT’s Labora-
ing “dag-consistent” distributed shared memory [7], andiory for Computer Science who we wish to thank include
we are currently working on extensions for parallel I/O. oryind, Scott Blomquist, Eric Brewer now of the Uni-

With these additions to Cilk, preserving Cilk-NOW's yersity of California at Berkeley, Frans Kaashoek, Larry
adaptive and fault tolerant execution model remains &Rudolph, and Sivan Toledo now of IBM.

challenging open problem. We are currently working on ginajly, we wish to thank the anonymous reviewers for
this problem. The dag-consistency model was conceiveg,qir many helpful comments and our “shepherd,” Fred

with adaptive parallelism and fault tolerance in mind, Douglis, for his patience and guidance in helping us ad-
and we are investigating the idea of coupling our currenty,ess the reviewers’ comments.

return transactions mechanism with a causal message-
logging mechanism [1].
In other current research, we are investigating dis-References
tributed macroscheduling algorithms. The goal of such |17 | grenzo ANvisi and Keith Marzullo. Message logging:

an algorithm is to assign idle workstations to Cilk jobs Pessimistic, optimistic, causal and optimal. Rroceed-
so that each job gets a “fair” share and without requir- ings of the 15th IEEE International Conference on Dis-
ing that users explicitly state their application’s resmur tributed Computing Systensages 229-236, Vancouver,

needs. Itturns out that the parallelism of a Cilk job can be Canada, June 1995.

determined continuously and automatically by monitor- [2] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete
ing the steal rate. We are examining a macroscheduling Keleher, Honghui Lu, Ramakrishnan Rajamony, Weimin
algorithm in which this information is used in random- Yu, and Willy Zwaenepoel. TreadMarks: Shared memory
ized pairwise interactions among processors. The idea computing on networks of workstatiorl&EE Computer

is that periodically (and asynchronously) each processor ~ 29(2):18-28, February 1996.

picks another processor in the network at random, and[3] Thomas E. Anderson, David E. Culler, and Da_vid A. Pat-
if the two processors are working on different jobs, then terson. A case for NOW (networks of workstatiofSEE
one processor may switch to the job of the other. The Micro, 15(1):54-64, Febrgary 1_995' o

switching decision is randomized and based only on in- [4 Andrew W. Appel. Compiling with ContinuationsCam-
formation about the parallelism and size of the two jobs b”dge_ UnlverS|t¥ Press, New York, 1992. _

involved. Early simulation results indicate that such a [®] Remzi H. Arpaci, Andrea C. Dusseau, Amin M. Vahdat,

scheme is very effective [30], and we are currently work- Lok T. Liu, Thomas E. Anderson, and David A. Patter-
. . . . son. The interaction of parallel and sequential workloads
ing on analysis and implementation.

)) o) on a network of workstations. lfProceedings of the
More information about Cilk, including papers, docu- 1995 ACM SIGMETRICS Conference on the Measure-
mentation, and software releases, but not including Cilk- ment and Modeling of Computer Systepeges 267-278,

NOW software, can be found on the World-Wide Web at May 1995.

13

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Robert D. Blumofe. Executing Multithreaded Programs
Efficiently PhD thesis, Department of Electrical Engi-
neering and Computer Science, Massachusetts Institute
of Technology, September 1995.

Robert D. Blumofe, Matteo Frigo, Christopher F. Jo-

erg, Charles E. Leiserson, and Keith H. Randall. Dag-[20]

consistent distributed shared memory. Rmoceedings
of the 10th International Parallel Processing Symposium
(IPPS) pages 132-141, Honolulu, Hawaii, April 1996.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. [21]

Kuszmaul, Charles E. Leiserson, Keith H. Randall, and
Yuli Zhou. Cilk: An efficient multithreaded runtime sys-
tem. InProceedings of the Fifth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming

(PPoPP) pages 207-216, Santa Barbara, California, July[zz]

1995.

Robert D. Blumofe and Charles E. Leiserson. Schedul-
ing multithreaded computations by work stealing Pliro-

ceedings of the 35th Annual Symposium on Foundationstg]

of Computer Science (FOCS$)ages 356—368, Santa Fe,
New Mexico, November 1994.

Robert D. Blumofe and David S. Park. Scheduling large-
scale parallel computations on networks of workstations.
In Proceedings of the Third International Symposium

on High Performance Distributed Computing (HPDC) [24]

pages 96-105, San Francisco, California, August 1994.
Clemens H. Cap and Volker Strumpen. Efficient parallel
computing in distributed workstation environmen®sr-
allel Computing 19:1221-1234, 1993.

Nicholas Carriero and David Gelernter. Linda in comtex [25]

Communications of the ACN32(4):444—-458, April 1989.

Vint Cerf and Robert Kahn. A protocol for packet net-
work intercommunication.|EEE Transactions on Com-
puters 22(5):637-648, May 1974.

Rohit Chandra, Anoop Gupta, and John L. Hennessy.

COOL: An object-based language for parallel program- [26]

ming. IEEE Computer27(8):13—-26, August 1994.

John Chapin, Mendel Rosenblum, Scott Devine,
Tirthankar Lahiri, Dan Teodosiu, and Anoop Gupta.

Hive: Fault containment for shared-memory multiproces-[27]

sors. InProceedings of the Fifteenth ACM Symposium
on Operating Systems Principles (SOSPages 12-25,
Copper Mountain Resort, Colorado, December 1995.

Jeffrey S. Chase, Franz G. Amador, Edward D. Lazowska,
Henry M. Levy, and Richard J. Littlefield. The Amber

system: Parallel programming on a network of multipro- [29]

cessors. IrProceedings of the Twelfth ACM Symposium
on Operating Systems Principles (SOSP, hi2ges 147—
158, Litchfield Park, Arizona, December 1989.

David R. Cheriton. The V distributed syste@ommuni-
cations of the ACM31(3):314—-333, March 1988.

Henry Clark and Bruce McMillin. DAWGS—a dis-
tributed compute server utilizing idle workstatiodeur-

nal of Parallel and Distributed Computindl4(2):175—
186, February 1992.

P. Dasgupta, R. C. Chen, S. Menon, M. P. Pearson,

14

(28]

[30]

[31]

R. Ananthanarayanan, U. Ramachandran, M. Ahamad,
R. J. LeBlanc, W. F. Appelbe, J. M. Bernabéu-Auban,
P. W. Hutto, M. Y. A. Khalidi, and C. J. Wilkenloh. The
design and implementation of the Clouds distributed op-
erating systemComputing System3(1):11-46, 1990.

Fred Douglis and John Ousterhout. Transparent process
migration: Design alternatives and the sprite implementa-
tion. Software—Practice and Experien@d (8):757-785,
August 1991.

Elmootazbellah N. Elnozahy and Willy Zwaenepoel.
Manetho: Transparent rollback-recovery with low over-
head, limited rollback and fast output commitEEE
Transactions on ComputersC-41(5):526-531, May
1992.

Robert E. Felderman, Eve M. Schooler, and Leonard
Kleinrock. The Benevolent Bandit Laboratory: A testbed
for distributed algorithmsIEEE Journal on Selected Ar-
eas in Communicationg(2):303-311, February 1989.

Vincent W. Freeh, David K. Lowenthal, and Gregory R.
Andrews. Distributed Filaments: Efficient fine-grain par-
allelism on a cluster of workstations. FProceedings of
the First Symposium on Operating Systems Design and
Implementation pages 201-213, Monterey, California,
November 1994.

David Gelernter and David Kaminsky. Supercomputing
out of recycled garbage: Preliminary experience with Pi-
ranha. InProceedings of the 1992 ACM International
Conference on Supercomputjrgpges 417-427, Wash-
ington, D.C., July 1992.

Chris Joerg and Bradley C. Kuszmaul. Mas-
sively parallel chess. InProceedings of the
Third DIMACS Parallel Implementation Challenge
Rutgers University, New Jersey, October 1994.
Available as ftp://theory.lcs.mit.edu/
pub/cilk/dimacs94.ps.Z

Christopher F. JoergThe Cilk System for Parallel Mul-
tithreaded Computing PhD thesis, Department of Elec-
trical Engineering and Computer Science, Massachusetts
Institute of Technology, January 1996.

David Louis Kaminsky. Adaptive Parallelism with Pi-
ranha PhD thesis, Yale University, May 1994.

Phillip Krueger and Rohit Chawla. The Stealth disttéuli
scheduler. IrProceedings of the 11th International Con-
ference on Distributed Computing Systemages 336—
343, Arlington, Texas, May 1991.

Kai Li. IVY: A shared virtual memory system for paral-
lel computing. InProceedings of the 1988 International
Conference on Parallel Processingages 94-101, Au-
gust 1988.

Philip Andrew Lisiecki. Macro-level scheduling in the
Cilk network of workstations environment. Master's
thesis, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology,
May 1996.

Michael J. Litzkow, Miron Livny, and Matt W. Mutka.
Condor—a hunter of idle workstations. Rroceedings of
the 8th International Conference on Distributed Comput-

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

ing Systemspages 104-111, San Jose, California, Jung45] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman,

1988.

Howard J. Lu. Heterogeneous multithreaded computing.
Master’s thesis, Department of Electrical Engineering and

Computer Science, Massachusetts Institute of Technof46]

logy, May 1995.

Robert C. Miller. A type-checking preprocessor forlCil
2, a multithreaded C language. Master’s thesis, Depart-
ment of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, May 1995.

Steven P. Miller, B. Clifford Neuman, Jeffrey |. Scleit|

and Jermoe H. Saltzer. Kerberos authentication and au-
thorization system. Athena technical plan, M.I.T. Project
Athena, October 1988.

David A. Nichols. Using idle workstations in a shared
computing environment. IRroceedings of the Eleventh
ACM Symposium on Operating Systems Principles (SOSP
11), pages 5-12, Austin, Texas, November 1987.

John K. Ousterhout, Andrew R. Cherenson, Freder-
ick Douglis, Michael N. Nelson, and Brent B. Welch.
The Sprite network operating systenEEE Computer
21(2):23-36, February 1988.

Vijay S. Pande, Christopher F. Joerg, Alexander Yu Gros
berg, and Toyoichi Tanaka. Enumerations of the hamil-
tonian walks on a cubic sublatticdournal of Physics A
27,1994,

J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
arguments in system desighCM Transactions on Com-
puter System®(4):277-288, November 1984.

Daniel J. Scales and Monica S. Lam. Transparent fault
tolerance for parallel applications on networks of work-
stations. InProceedings of the USENIX 1996 Annual
Winter Technical Conferenc8an Diego, California, Jan-
uary 1996.

W. Richard Stevens. UNIX Network Programming
Prentice-Hall, Englewood Cliffs, New Jersey, 1990.

V. S. Sunderam. PVM: A framework for parallel dis-
tributed computing. Concurrency: Practice and Expe-
rience 2(4):315-339, December 1990.

Andrew S. Tanenbaum, Henri E. Bal, and M. Frans
Kaashoek. Programming a distributed system using
shared objects. IfProceedings of the Second Inter-
national Symposium on High Performance Distributed
Computing pages 5-12, Spokane, Washington, July
1993.

Andrew S. Tanenbaum, Robbert van Renesse, Hans van
Staveren, Gregory J. Sharp, Sape J. Mullender, Jack
Jansen, and Guido van Rossum. Experiences with the
Amoeba distributed operating systef@ommunications

of the ACM 33(12):46—63, December 1990.

Andrew Tucker and Anoop Gupta. Process control and
scheduling issues for multiprogrammed shared-memory
multiprocessors. IrProceedings of the Twelfth ACM
Symposium on Operating Systems Principles (SOSP 12)
pages 159-166, Litchfield Park, Arizona, December
1989.

15

[47]

Jeffrey O. Kephart, and W. Scott Stornetta. Spawn: A
distributed computational economyEEE Transactions
on Software Engineerind8(2):103-117, February 1992.

Bruce Walker, Gerald Popek, Robert English, Charles
Kline, and Greg Thiel. The LOCUS distributed operat-
ing system. IrProceedings of the Ninth ACM Symposium
on Operating Systems Principles (SOSPages 49-70,
Bretton Woods, New Hampshire, October 1983.

Songnian Zhou, Jingwen Wang, Xiaohu Zheng, and
Pierre Delisle. Utopia: A load sharing facility for large,
heterogeneous distributed computer systeBustware—
Practice and Experien¢ge3(12):1305-1336, December
1993.

