
Adaptive and Reliable Parallel Computing
on Networks of Workstations

Robert D. Blumofe
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712
rdb@cs.utexas.edu

Philip A. Lisiecki
MIT Laboratory for Computer Science

545 Technology Square
Cambridge, Massachusetts 02139

lisiecki@mit.edu

October 21, 1996

Abstract
In this paper, we present the design ofCilk-NOW, a
runtime system that adaptively and reliably executes
functional Cilk programs in parallel on a network of
UNIX workstations. Cilk (pronounced “silk”) is a par-
allel multithreaded extension of the C language, and all
Cilk runtime systems employ a provably efficient thread-
scheduling algorithm. Cilk-NOW is such a runtime sys-
tem, and in addition, Cilk-NOW automatically delivers
adaptive and reliable execution for a functional subset
of Cilk programs. By adaptive execution, we mean that
each Cilk program dynamically utilizes a changing set of
otherwise-idle workstations. By reliable execution, we
mean that the Cilk-NOW system as a whole and each ex-
ecuting Cilk program are able to tolerate machine and
network faults. Cilk-NOW provides these features while
programs remainfault oblivious, meaning that Cilk pro-
grammers need not code for fault tolerance. Through-
out this paper, we focus on end-to-end design decisions,
and we show how these decisions allow the design to ex-
ploit high-level algorithmic properties of the Cilk pro-
gramming model in order to simplify and streamline the
implementation.

1 Introduction
A strong case argues for the use of networks of work-
stations (NOWs) as parallel-computation platforms [3],
and Cilk-NOW [6] is a software system that has been
designed and implemented to run parallel programs eas-
ily and efficiently on networks of UNIX workstations.
Implemented entirely in user-level software on top of
UNIX, Cilk-NOW is a runtime system for a functional
subset of the parallelCilk language [6, 8, 26], a mul-
tithreaded extension of C. Applications written in Cilk
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include graphics rendering, backtrack search, protein
folding [37], and the?Socrates chess program [25]
which won second prize at the 1995 ICCA World Com-
puter Chess Championship running on the1824-node In-
tel Paragon at Sandia National Labs. Like all runtime
systems for Cilk, Cilk-NOW schedules threads using a
provably efficient algorithm based on the technique of
random “work stealing” [6, 9] in which processors with
no threads steal threads from victims chosen at random.
With this algorithm, Cilk delivers performance that is
guaranteed to be both efficient and predictable [6, 8]. In
addition to thread scheduling, Cilk-NOW also performs
macroscheduling[30]. That is, Cilk-NOW automatically
identifies idle workstations and assigns those idle work-
stations to help out with running Cilk programs.

The Cilk-NOW runtime system is designed to execute
Cilk programs efficiently in the highly dynamic envi-
ronment of a NOW. Figure 1(a) plots the number of
machines that were idle1 at each point in time over the
course of a typical week for a network of50 SPARCsta-
tions at the MIT Laboratory for Computer Science. As
can be seen from this plot, though more machines are
idle at night, a significant number of machines are idle
at various times throughout the day. Therefore, by adap-
tively using idle machines both day and night, we can
take advantage of significantly more machine resources
than if we run our parallel jobs as batch jobs during the
night. Figure 1(b) is a histogram giving the total idle
processor-hours broken down by idle time-interval, from
this experiment. This histogram shows that a significant
percentage of idle time (1104 processors-hours, or 19.1%
of the total 5776 processor-hours) comes from machines
that are idle for less than 30 minutes at a time. Thus, the
efficient exploitation of idle machines requires that ma-

1For this experiment, a machine is idle if the keyboard and mouse
have not been touched for15 minutes and the1, 5, and15 minute
processor load averages are below0:35, 0:30, and0:25 respectively.
These load-average thresholds are reasonable but also somewhat arbi-
trary.
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Figure 1: (a) This plot shows the number of machines, out of the50 machines in our network, that were idle at each point in time
over the course of one typical week in March, 1995.(b) This histogram shows the number of idle processor-hours broken down
by idle time-interval. When a machine remains idle for a period of t hours, it contributest hours to the height of the bar plotted at
positiont rounded up to the nearest 10 minutes.

chines are able to join and leave a computation quickly
and without human intervention. These observations are
consistent with those of others [5, 20, 27, 28, 31].

Cilk-NOWprovides the following features for running
Cilk programs on a network of workstations.

Ease of use. A user can run a Cilk program in parallel
on a NOW as if the program were only being run
on the local workstation. The user simply types the
program’s command line, and then the Cilk-NOW
runtime system automatically schedules the execu-
tion of the program in parallel across the network.

Adaptive parallelism. The Cilk-NOW system adap-
tively executes Cilk programs on a dynamically
changing set of otherwise-idle workstations [6, 10].
When a given workstation is not being used by its
owner, the workstation automatically joins in and
helps out with the execution of a Cilk program.
When the owner returns to work, the machine au-
tomatically retreats from the Cilk program.

Fault tolerance. The Cilk-NOW runtime system auto-
matically performs checkpointing, detects failures,
and performs recovery [6] while Cilk programs
themselves remainfault oblivious. That is, Cilk-
NOW provides fault tolerance without requiring
that programmers code for fault tolerance.

Flexibility. The Cilk-NOW system allows the condi-
tions that are used to determine the idleness of
workstations to be set dynamically, in accordance
with the tastes of the users and the owners of the ma-
chines whose cycles are being stolen. This flexibil-
ity preserves the sovereignty of each workstation’s
owner which is essential to ensure that owners are

willing to contribute their workstations for use by
others.

Security. The Cilk-NOW system uses secure protocols
that do not open a workstation to unauthorized users
running foreign code on a machine. The desired de-
gree of security is that which a given system uses to
authenticate its remote execution protocol.

Guaranteed performance. The Cilk-NOW system ex-
ecutes Cilk programs using a work-stealing sched-
uler. This scheduler delivers performance that
can be predicted accurately with a simple abstract
model [6, 8]. Moreover this simple model can be
adapted to the case of heterogeneous processors and
networks [32].

Recently, we ran a Cilk protein-folding application
pfold [37] using Cilk-NOW on a network of about50 Sun SPARCstations connected by shared 10-Mb/s
Ethernet to solve a large-scale protein-folding problem.
The program ran for9 days, surviving several machine
crashes and reboots, utilizing6566 processor-hours of
otherwise-idle cycles, with no administrative effort on
our part (besides typingpfold at the command-line to
begin execution), while other users of the network went
about their business unaware of the program’s presence.

It is important to note that Cilk-NOW provides these
features only for Cilk-2 programs which are essentially
functional. Cilk-NOW does not support more recent ver-
sions of Cilk (Cilk-3 and Cilk-4) that incorporate virtual
shared memory, and in particular, Cilk-NOW does not
provide any kind of distributed shared memory. In addi-
tion, Cilk-NOW does not provide fault tolerance for its
I/O facility.
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In this paper, we present the design of Cilk-NOW, fo-
cusing on those features of Cilk-NOW that are partic-
ular to the NOW environment. The Cilk-2 language,
work-stealing scheduler, MPP implementation, and guar-
anteed performance model have been covered at length
in other papers [6, 8, 9, 26]. In this paper, we shall fo-
cus on adaptive parallelism and fault tolerance. Specifi-
cally, we will show how Cilk-NOW’s end-to-end design
[38] leverages algorithmic properties of the Cilk pro-
gramming model and work-stealing scheduler in order
to amortize all the overhead of adaptive parallelism and
fault tolerance against the analytically and empirically
bounded overhead of Cilk’s work-stealing scheduler.

The remainder of this paper is organized as follows.
In Section 2 we review the Cilk-2 language and work-
stealing scheduler as first introduced in [8]. In Section 3
we describe the architecture of a Cilk job executing un-
der the Cilk-NOW runtime system. Then, in Section 4
we explain how Cilk-NOW implements adaptive paral-
lelism, and in Section 5 we explain how Cilk-NOW per-
forms checkpointing, fault detection, and fault recovery.
In Section 6 we describe the Cilk-NOW macrosched-
uling system architecture. In Section 7 we compare the
Cilk-NOW system to related work. Finally, in Section 8
we outline plans for future work, and we conclude.

2 The Cilk language and work-
stealing scheduler

In this section we overview the Cilk parallel mul-
tithreaded language and its runtime system’s work-
stealing scheduler [6, 8, 26]. For brevity, we shall not
present the entire Cilk language, and we shall omit some
details of the work-stealing algorithm. Since Cilk-2
forms the basis for the Cilk-NOW system, we shall fo-
cus on the Cilk-2 language and on the Cilk-2 runtime
system as implemented without adaptive parallelism or
fault tolerance.

A Cilk program contains one or moreCilk proce-
dures, and each Cilk procedure contains one or moreCilk
threads. A Cilk procedure is the parallel equivalent of a
C function, and a Cilk thread is a nonsuspending piece of
a procedure. The Cilk runtime system manipulates and
schedules the threads. The runtime system is not aware
of the grouping of threads into procedures. Cilk proce-
dures are purely an abstraction supported by thecilk2c
type-checking preprocessor [33].

Consider a program that uses double recursion to com-
pute the Fibonacci function. The Fibonacci function
fib(n) for n � 0 is defined as

fib(n) = � n if n < 2;
fib(n � 1) + fib(n� 2) otherwise.

thread Fib (cont int k, int n)f if (n<2)
send argument (k, n);

elsef cont int x, y;
spawn next Sum (k, ?x, ?y);
spawn Fib (x, n-1);
spawn Fib (y, n-2);gg

thread Sum (cont int k, int x, int y)f send argument (k, x+y);g
Figure 2: A Cilk procedure to compute thenth Fibonacci
number. This procedure contains two threads,Fib andSum.

Figure 2 shows how this function is written as a Cilk pro-
cedure consisting of two Cilk threads:Fib and Sum.
While double recursion is a terrible way to compute
Fibonacci numbers, this toy example does illustrate a
common pattern occurring in divide-and-conquer appli-
cations: recursive calls solve smaller subcases and then
the partial results are merged to produce the final result.

A Cilk thread generates parallelism at runtime by
spawninga child thread that is theinitial thread of a
child procedure. A spawn is the parallel equivalent of
a function call. A spawn differs from a call in that when
a thread spawns a child, the parent and child may execute
concurrently. After spawning one or more children, the
parent thread cannot then wait for its children to return—
in Cilk, threads never suspend. Rather, the parent thread
must additionally spawn asuccessor threadto wait for
the values “returned” from the children. The spawned
successor is part of the same procedure as its predeces-
sor. The child procedures return values to the parent pro-
cedure by sending those values to the parent’s waiting
successor. Thus, a thread may wait to begin executing,
but once it begins executing, it cannot suspend. This
style of interaction among threads is calledcontinuation-
passing style[4]. Spawning successor and child threads
is done with thespawn next andspawn keywords re-
spectively. Sending a value to a waiting thread is done
with thesend argument statement. The Cilk runtime
system implements these primitives using two basic data
structures: closures and continuations.

Closuresare data structures employed by the runtime
system to keep track of and schedule the execution of
spawned threads. Whenever a thread is spawned, the run-
time system allocates a closure for it from a simple heap.
A closure consists of a pointer to the code for that thread,
a slot for each of the thread’s specified arguments, and a
join counterindicating the number of missing arguments
that need to be supplied before the thread is ready to run.
The closure, or equivalently the spawned thread, isready
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Figure 3: TheFib thread spawns a successor and two children. For the successor, it creates a closure with 2 empty argument
slots, and for each child, it creates a closure with a continuation referring to one of these empty slots. The background shading
denotes Cilk procedures.

if it has obtained all of its arguments, and it iswaiting if
some arguments are missing. To run a ready closure, the
Cilk scheduler invokes the thread using the values in the
closure as arguments. When the thread dies, the closure
is freed.

A continuationis a global reference to an empty argu-
ment slot of a closure, implemented as a compound data
structure containing a pointer to a closure and an offset
that designates one of the closure’s argument slots. Con-
tinuations are typed with the C data type of the slot in the
closure. In the Cilk language, continuations are declared
by the type modifier keywordcont . For example, the
Fib thread declares two integer continuations,x andy .

Using thespawn next primitive, a thread spawns a
successor thread by creating a closure for the successor.
The successor thread is part of the same procedure as its
predecessor. For example, in theFib thread, the state-
ment spawn next Sum (k, ?x, ?y) allocates a
closure withSumas the thread and three argument slots,
as illustrated in Figure 3. The first slot is initialized with
the continuationk and the last two slots are empty. The
continuation variablesx andy are initialized to refer to
these two empty slots, and the join counter is set to2.
This closure is waiting.

Similarly, using thespawn primitive, a thread spawns
a child thread by creating a closure for the child. The
child thread is the initial thread of a newly spawned child
procedure. Thespawn statement is semantically iden-
tical to spawn next . For example, theFib thread
spawns two children as shown in Figure 3. The state-
mentspawn Fib (x, n-1) allocates a closure with
Fib as the thread and two argument slots. The first slot
is initialized with the continuationx which, as a conse-
quence of the previous statement, refers to a slot in its
parent’s successor closure. The second slot is initialized

with the value ofn-1 . The join counter is set to zero, so
the thread is ready.

An executing thread sends a value to a waiting thread
by placing the value into an argument slot of the wait-
ing thread’s closure. Thesend argument statement
sends a value to the empty argument slot of a waiting
closure specified by its argument. The types of the con-
tinuation and the value must be compatible. The join
counter of the waiting closure is decremented, and if
it becomes zero, then the closure is ready. For exam-
ple, the statementsend argument (k, n) in Fib
writes the value ofn into an empty argument slot in the
parent procedure’s waitingSumclosure and decrements
its join counter. When theSumclosure’s join counter
reaches zero, it is ready. When theSumthread gets exe-
cuted, it adds its two arguments,x andy , and then uses
send argument to “return” this result up to its parent
procedure’s waitingSumthread.

At runtime, each processor maintains a “ready” deque
(double-ended queue) which contains all of the ready
closures. Whenever a closure is created, if its join
counter is0, then it is placed on the head of the ready
deque. Whenever asend argument call is made, the
join counter is decremented, and if the join counter is
decremented to zero, then the closure is placed on the
head of the ready deque. When a thread finishes, the next
thread to execute is chosen from the head of the ready
deque.

If no threads are available in the ready deque, a proces-
sor engages inwork stealing. To steal work, a processor,
called thethief, chooses another processor, called thevic-
tim, at random and requests a closure to be sent back. If
that processor has any closures in its ready deque, one
is removed from the tail of the victim’s ready deque and
sent across the network to the thief, who will add this
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closure to its own ready deque. The thief may then begin
work on the stolen closure. If the victim has no ready
closures, it informs the thief who then tries to steal from
another random processor until a ready closure is found
or program execution completes.

This simple work-stealing scheduler has been shown,
both analytically and empirically, to deliver efficient
and predictable performance [6, 8, 9] for “well struc-
tured” computations. Awell structuredcomputation
is one in which each procedure sends values (with
send argument ) only to its parent and only as the last
action performed by its last thread. For well structured
computations executing on any numberP of processors,
the execution time can be modeled accurately asT1=P +T1 whereT1 denotes theworkof the computation—that
is, the execution time with1 processor—andT1 denotes
the critical-path length—that is, the theoretical execu-
tion time on an ideal machine with infinitely many pro-
cessors. Such performance is within a factor of 2 of opti-
mal, and additionally when the critical path is short com-
pared to the amount of work per processor, such perfor-
mance displayslinear speedup.

The key element in proving thisT1=P + T1 perfor-
mance bound is the fact that closures are always stolen
from the tail of the ready deque. For well structured com-
putations, a closure that is on the critical path must be at
the tail of some processor’s ready deque. Thus, when
processors are not executing closures, they are stealing
work and, therefore, are likely to be making progress on
the critical path. As a corollary to this result, the number
of work-steal attempts per processor is proportional to
the critical-path length and does not grow with the work.
Thus, a computation with a sufficiently short critical path
compared to the work per processor can continue to dis-
play linear speedup even when communication is very
expensive. This idea of amortizing overhead against the
critical path plays an important role in our later discus-
sion of adaptive parallelism and fault tolerance.

3 Cilk-NOW job architecture
The Cilk-NOW runtime system consists of several com-
ponent programs that (in addition to macroscheduling
duties discussed later) manage the execution of each in-
dividual Cilk program. In this section, we shall cover the
architecture of a Cilk program as it is executed by the
Cilk-NOW runtime system, explaining the operation of
each component and their interactions.

In Cilk-NOW terminology, we refer to an executing
Cilk program as a Cilkjob. Since Cilk programs are par-
allel programs, a Cilk job consists of several processes
running on several machines. One process, called the
clearinghouse, in each Cilk job runs a system-supplied
program calledCilkChouse that is responsible for

keeping track of all the other processes that comprise
a given job. These other processes are calledworkers.
A worker is a process running the actual executable of a
Cilk program. Since Cilk jobs are adaptively parallel, the
set of workers is dynamic. At any given time during the
execution of a job, a new worker may join the job or an
existing worker may leave. Thus, each Cilk job consists
of one or more workers and a clearinghouse to keep track
of them.

The Cilk-NOW runtime system contains additional
components that perform macroscheduling as discussed
in Section 6, but for the purpose of our present discus-
sion, we need only introduce the “node managers.” A
node manageris a process running a system-supplied
program calledCilkNodeManager . A node manager
runs as a background daemon on every machine in the
network. It continually monitors its machine to deter-
mine when the machine is idle.

To see how all of these components work together
in managing the execution of a Cilk job, we shall run
through an example. (In describing interactions with
the macroscheduler, we shall refer to the macrosched-
uler as a single entity, though actually, as we shall see
in Section 6, the macroscheduler is a distributed subsys-
tem with several components.) Suppose that a user sits
down at a machine calledPenguin to run thepfold
program. In our example, the user types

pfold 3 7

at the shell, thereby launching a Cilk job to enumerate
all protein foldings using3 initial folding sequences and
starting with the7th one.

The new Cilk job begins execution as illustrated in
Figure 4(a). The new process running thepfold exe-
cutable is the first worker and begins execution by fork-
ing a clearinghouse with the command line

CilkChouse -- pfold 3 7 .

Thus, the clearinghouse knows that it is in charge of a job
whose workers are running “pfold 3 7 .” The clear-
inghouse begins execution by sending ajob description
to the macroscheduler. The job description is a record
containing several fields. Among these fields is the name
of the Cilk program executable—in this casepfold —
and the clearinghouse’s network address. The clearing-
house then goes into a service loop waiting for messages
from its workers. After forking the clearinghouse, the
first workerregisterswith the clearinghouse by sending it
a message containing its own network address. Now the
clearinghouse knows about one worker, and it responds
to that worker by assigning it a uniquename. Workers
are named with numbers, starting with number0. Hav-
ing registered, worker0 begins executing the Cilk pro-
gram as described in Section 2. We now have a running
Cilk job with one worker.
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Figure 4: (a) The first worker forks a clearinghouse, and then the clearinghouse submits the job to the macroscheduler.(b) When
the node manager detects that its machine is idle, it obtainsa job from the macroscheduler and then forks a worker. The worker
registers with the clearinghouse and then begins work stealing. (c) When the node manager detects that its machine is no-longer
idle, it sends a kill signal to the worker. The worker catchesthis signal, offloads its work to other workers, unregisterswith the
clearinghouse, and then terminates.

A second worker joins the Cilk job when some other
workstation in the network discovers that it is idle, as
illustrated in Figure 4(b). Suppose the node manager
on a machine namedSparrow detects that the ma-
chine is idle. The node manager sends a message to the
macroscheduler, and the macroscheduler responds with
the job description of a Cilk job for the machine to work
on. In this case, the job description specifies ourpfold
job by giving the name of the executable—pfold —and
the network address of the clearinghouse. The node man-
ager then uses this information to fork a new worker as a
child with the command line

pfold -NoChouse
-Address= clearinghouse-address
-- .

The -NoChouse flag on the command line tells the

worker that it is to be an additional worker in an already
existing Cilk job. (Without this flag, the worker would
fork a new clearinghouse and start a new Cilk job.) The
-Address field on the command line tells the worker
where in the network to find the clearinghouse. The
worker uses this address to send a registration message,
containing its own network address, to the clearinghouse.
The clearinghouse responds with the worker’s assigned
name—in this case, number1—and the job’s command-
line arguments—in this case, “pfold 3 7 .” Addition-
ally, the clearinghouse responds with a list of the network
addresses of all other registered workers. Now the new
worker knows the addresses of the other workers, so it
can commence execution of the Cilk program and steal
work as described in Section 2. We now have a running
Cilk job with two workers.
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Now, suppose that someone touches the keyboard on
Sparrow . In this case, the node manager detects that
the machine is busy, and the machine leaves the Cilk job
as illustrated in Figure 4(c). After detecting that the ma-
chine is busy, the node manager sends a kill signal to its
child worker. The worker catches this signal and pre-
pares to leave the job. First, the worker offloads all of its
closures to other workers as explained in more detail in
Section 4. Next, the worker sends a message to the clear-
inghouse tounregister. Finally, the worker terminates.

When a Cilk job is running, each worker periodi-
cally checks in with the clearinghouse. Specifically, each
worker periodically (every2 seconds) sends a message to
the clearinghouse, and the clearinghouse responds with
an updatemessage informing the worker of any other
workers that have left the job and any new workers that
have joined the job. For each new worker that has joined,
the clearinghouse also provides the network address. If
the clearinghouse does not receive any messages from
a given worker for an extended period of time (30 sec-
onds), then the clearinghouse determines that the worker
has crashed. In later update messages, the clearinghouse
informs the other workers of the crash, and the other
workers take appropriate remedial action as described in
Section 5.

All communication between workers, and between
workers and the clearinghouse, is implemented with
UDP/IP [13, 40]. Knowing that UDP datagrams are un-
reliable, the Cilk-NOW protocols incorporate appropri-
ate mechanisms, such as acknowledgments, retries, and
timeouts, to ensure correct operation when messages get
lost. We shall not discuss these mechanisms in any detail,
and in order to simplify our exposition of Cilk-NOW, we
shall often speak of messages being sent and received as
if they are reliable. What we will say about these mecha-
nisms is that they are built on top of UDP but without any
effort to create a reliable message-passing layer. Rather
these mechanisms are built directly into the runtime sys-
tem’s protocols, so in the common case when a message
does get through, Cilk-NOW pays no overhead to make
the message reliable.

We chose to build Cilk-NOW’s communication pro-
tocols using an unreliable message-passing layer instead
of a reliable one for two reasons, both based on end-to-
end design arguments [38]. First, reliable layers such as
TCP/IP [40] and PVM [41] perform implicit acknowl-
edgments and retries to achieve reliability. Therefore,
such layers either preclude the use of asynchronous com-
munication or require extra buffering and copying. A
layer such as UDP which provides minimal service guar-
antees can be implemented with considerably less soft-
ware overhead than a layer with more service features.
In the common case when the additional service is not
needed, the minimal layer can easily outperform its fully-

featured counterpart. Second, in an environment where
machines can crash and networks can break, the notion
of a “reliable” message-passing layer is somewhat sus-
pect. A runtime system operating in an inherently un-
reliable environment cannot expect the message-passing
layer to make the environment reliable. Rather, the run-
time system must incorporate appropriate mechanisms
into its protocols to take action when a communication
endpoint or link fails. For these reasons, we chose to
build the Cilk-NOW runtime system on top of a minimal
layer of message-passing service and incorporate mech-
anisms directly into the runtime system’s protocols in or-
der to handle issues of reliability. The downside to this
approach is complexity. The protocols implemented in
the Cilk-NOW runtime system are complex: the code
for these protocols takes almost20 percent of the total
runtime-system code, and the programming effort was
probably near half of the total. Nevertheless, this was
a one-time effort that we expect will reap performance
rewards for a long time to come.

4 Adaptive parallelism
Adaptive parallelism allows a Cilk job to take advan-
tage of idle machines whether or not they are idle when
the job starts and whether or not they will remain idle
for the duration of the job. In order to efficiently uti-
lize machines that may join and leave a running job, the
overhead of supporting this feature must not excessively
slow down the work of any worker at a time when it is
not joining or leaving. As we saw in the previous sec-
tion, a new worker joins a job easily enough by register-
ing with the clearinghouse and then stealing a closure.
A worker leaves a job by migrating all of its closures
to other workers, and here the danger lies. When we
migrate a waiting closure, other closures with continu-
ations that refer to this closure must somehow update
these continuations so they can find the waiting closure
at its new location. (Without adaptive parallelism, wait-
ing closures never move.) Naively, each migrated wait-
ing closure would have to inform every other closure of
its new location. In this section, we show how we can
take advantage of Cilk’s well structuring and the work-
stealing scheduler to make this migration extremely sim-
ple and efficient. (Experimental results documenting the
efficiency of Cilk-NOW’s adaptive parallelism have been
omitted for lack of space but can be found in [6].)

Our approach is to impose additional structure on the
organization of closures and continuations, such that the
structure is cheap to maintain while simplifying the mi-
gration of closures. Specifically, we maintain closures
in “subcomputations” that migrate en masse, and every
continuation in a closure refers to a closure in the same
subcomputation. In order to send a value from a clo-
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sure in one subcomputation to a closure in another, we
forward the value through intermediate “result closures,”
and give each result closure the ability to send the value
to precisely one other closure in one other subcomputa-
tion. With this structure and these mechanisms, all of the
overhead associated with adaptive parallelism (other than
the actual migration of closures) occurs only when clo-
sures are stolen, and as we saw in Section 2, the number
of steals grows at most linearly with the critical path of
the computation and is not a function of the work. The
bulk of this section’s exposition concerns the organiza-
tion of closures in subcomputations and the implemen-
tation of continuations. After covering these topics, the
mechanism by which closures are migrated to facilitate
adaptive parallelism is quite straightforward.

In Cilk-NOW, every closure is maintained in one of
three pools associated with a data structure called asub-
computation. A subcomputation is a record contain-
ing (among other things) three pools of closures. The
ready pool is the list of ready closures described in
Section 2. Thewaiting pool is a list of waiting clo-
sures. Theassigned poolis a list of ready closures
that have been stolen away. Program execution begins
with one subcomputation—theroot subcomputation—
allocated by worker0 and containing a single closure—
the initial thread ofcilk main —in the ready pool. In
general, a subcomputation with any closures in its ready
pool is said to beready, and ready subcomputations can
be executed by the scheduler as described in Section 2
with the additional provision that each waiting closure is
kept in the waiting pool and then moved to the ready pool
when its join counter decrements to zero. The assigned
pool is used in work stealing as we shall now see.

The act of work stealing creates a new subcomputation
on the thief which is linked to a copy of the stolen clo-
sure kept in an assigned pool on the victim. If a worker
needs to steal work, then before sending a steal request to
a victim, it allocates a new subcomputation from a sim-
ple runtime heap and gives the subcomputation a unique
name. The subcomputation’s name is formed by con-
catenating the thief worker’s name and a number unique
to that worker. The first subcomputation allocated by a
workerr is namedr:1 , the second is namedr:2 , and
so on. The root subcomputation is named0:1 . The steal
request message contains the name of the thief’s newly
allocated subcomputation. When the victim worker gets
the request message, if it has any ready subcomputations,
then it chooses a ready subcomputation in round-robin
fashion, removes the closure at the tail of the subcom-
putation’s ready pool, and places thisvictim closurein
the assigned pool. As illustrated in Figure 5, the victim
worker thenassignsthe closure to the thief’s subcompu-
tation by adding to the closure anassignment information
record allocated from a simple runtime heap, and then

storing the name of the thief worker and the name of the
thief’s subcomputation (as contained in the steal request
message) in the assignment information. Finally, the vic-
tim worker sends a copy of the closure to the thief. When
the thief receives the stolen closure, it records the name
of the victim worker in its subcomputation, and it places
the closure in the subcomputation’s ready pool. Now the
thief’s subcomputation is ready, and the thief worker may
commence executing it. Notice that the victim closure
and thief subcomputation can refer to each other via the
thief subcomputation’s name which is stored both in the
victim closure’s assignment information and in the thief
subcomputation, as illustrated in Figure 5.

When a worker finishes executing a subcomputation,
the link between the subcomputation and its victim clo-
sure is destroyed. Specifically, when a subcomputation
has no closures in any of its three pools, then the subcom-
putation isfinished. A worker with a finished subcompu-
tation sends a message containing the subcomputation’s
name to the subcomputation’s victim worker. Using this
name, the victim worker finds the victim closure. This
closure is removed from its subcomputation’s assigned
pool and then the closure and its assignment informa-
tion are freed. The victim worker then acknowledges
the message, and when the thief worker receives the ac-
knowledgment, it frees its subcomputation. When the
root subcomputation is finished, the entire Cilk job is fin-
ished.

In addition to allocating a new subcomputation, when-
ever a worker steals a closure, it also allocates a new “re-
sult” closure, and it alters the continuation in the stolen
closure so that it refers to the result closure. Consider a
thief stealing a closure, and suppose the victim closure
contains a continuation referring to a closure that we call
the target. (The victim and target closures must be in
the same subcomputation in the victim worker.) Con-
tinuations are implemented as the address of the target
closure concatenated with the index of an argument slot
in the target closure. Therefore, the continuation in the
victim closure contains the address of the target closure,
and this address is only meaningful to the victim worker.
Thus, when the thief worker receives the stolen closure,
it replaces the continuation with a new continuation re-
ferring to an empty slot in a newly allocatedresult clo-
sure. The stolen and result closures are part of the same
subcomputation. The result closure’s thread is a special
system thread whose operation we shall explain shortly.
This thread takes one argument: aresult value. The re-
sult value is initially missing, and the continuation in the
stolen closure is set to refer to this argument slot. The
result closure is waiting and its join counter is1.

Using continuations to send values from one thread to
another operates as described in Section 2, but when a
value is sent to a result closure, communication between
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Figure 5: A victim closure stolen from the subcomputations:i of victim workers is assigned to the thief subcomputationr:j .
The victim closure is placed in the assigned pool and augmented with assignment information that records the name of the thief
worker and the name of the thief subcomputation. The thief subcomputation records its own name and the name of the victim
worker. Thus, the victim closure and thief subcomputation can refer to each other via the thief subcomputation’s name.

different subcomputations occurs. When a result closure
receives its result value, it becomes ready, and when its
thread executes, it forwards the result value to another
closure in another subcomputation as follows. When a
worker executing a subcomputation executes a result clo-
sure’s thread, it sends a message to the subcomputation’s
victim worker. This message contains the subcomputa-
tion’s name as well as the result value that is the thread’s
argument. When the victim worker receives this mes-
sage, it uses the subcomputation name to find the victim
closure, and then it uses the continuation in the victim
closure to send the result value to the target.

To summarize, each subcomputation contains a collec-
tion of closures and every continuation in a closure refers
to another closure in the same subcomputation. To send
a value from a closure in one subcomputation to a clo-
sure in another, the value must be forwarded through an
intermediate result closure.

With this structure, migrating a subcomputation from
one worker to another is fairly straightforward. At the
source worker, the entire subcomputation is “pickled” by
giving each of the subcomputation’s closures a number
and replacing each continuation’s pointer with the corre-
sponding number. Then, after sending the closures to the
destination worker, the destination worker reconstructs
the subcomputation by reversing the pickling operation.
The subcomputation keeps its name, so after a migration,
the first component of the subcomputation name will be
different than the name of the worker. When the sub-
computation and all of its closures have been migrated to
their destination worker, this worker sends a message to
the subcomputation’s victim worker to inform the victim
closure of its thief subcomputation’s new thief worker.
Additionally, for each of the subcomputation’s assigned
closures, it sends a message to the thief worker to inform
the thief subcomputation of its victim closure’s new vic-

tim worker. Thus, all of the links between victim closures
and thief subcomputations are restored.

5 Fault tolerance
With transparent fault tolerance built into the Cilk-NOW
runtime system, Cilk jobs may survive machine crashes
or network outages despite the fact that Cilk programs
are fault oblivious, having been coded with no special
provision for handling machine or network failures. If
a worker crashes, then other workers automatically redo
any work that was lost in the crash. In the case of a more
catastrophic failure, such as a power outage, a total net-
work failure, or a crash of the file server, then all work-
ers may crash. For this case, Cilk-NOW provides au-
tomatic checkpointing, so when service is restored, the
Cilk job may be restarted with minimal lost work. Recall
that Cilk-NOW does not provide fault tolerance for I/O.

In this section, we show how the structure used to sup-
port adaptive parallelism—which leverages Cilk’s tree
structure and the work-stealing scheduler—may be fur-
ther leveraged to build these fault tolerant capabilities
in Cilk-NOW. As with adaptive parallelism, all of the
overhead associated with fault tolerance (other than the
cost of periodic checkpoints) can be amortized against
the number of steals which grows at most linearly with
the critical path and is not a function of the work.

Given adaptive parallelism, fault tolerance is only a
short step away. With adaptive parallelism, a worker may
leave a Cilk job, but before doing so, it first migrates
all of its subcomputations to other workers. In contrast,
when a worker crashes, all of its subcomputations are
lost. To support fault tolerance, we add a mechanism
that allows surviving workers to redo any work that was
done by the lost subcomputations. Such a mechanism
must address two fundamental issues. First, not all work
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is necessarily idempotent, so redoing work may present
problems. We address this issue with a technique that we
call areturn transaction. Specifically, we ensure that the
work done by any given subcomputation does not affect
the state of any other subcomputations until the given
subcomputation finishes. Thus, from the point-of-view
of any other subcomputation, the work of a subcompu-
tation appears as a transaction: either the subcomputa-
tion finishes and commits its work by making it visible
to other subcomputations, or the subcomputation never
happened. Second, the lost subcomputations may have
done a large amount of work, and we would like to mini-
mize the amount of work that needs to be redone. We ad-
dress this issue by incorporating a transparent and fully
distributed checkpointing facility. This checkpointing fa-
cility also allows a Cilk job to be restarted in the case of
a total system failure in which every worker crashes.

To turn the work of a subcomputation into a return
transaction, we modify the behavior of the subcompu-
tation’s result closure. In Cilk, returning a value is al-
ways the last operation performed by a Cilk procedure,
so the result closure cannot be ready until the subcompu-
tation is finished. In addition, recall that the execution of
the result closure and the finishing of the subcomputation
both warrant a message to the victim worker. Thus, we
bundle these two messages into a single larger message
sent to the victim worker. When the victim worker re-
ceives this message, it commits all of the thief subcom-
putation’s work by sending the appropriate result value
from the victim closure, freeing the victim closure (and
its assignment information), and sending an acknowledg-
ment back to the thief worker.

With subcomputations having this transactional na-
ture, a Cilk job can tolerate individual worker crashes
as follows. Suppose a worker crashes. Eventually, the
clearinghouse will detect the crash, and the other living
workers will learn of the crash at the next update from
the clearinghouse. When a worker learns of a crash, it
goes through all of its subcomputations, checking each
assigned closure to see if it is assigned to the crashed
worker. Each such closure is moved from the assigned
pool back to the ready pool (and its assignment informa-
tion is freed). Thus, all of the work done by the closure’s
thief subcomputation which has been lost in the crash
will eventually be redone. Additionally, when a worker
learns of a crash, it goes through all of its subcomputa-
tions to see if it has any that record the crashed worker as
the subcomputation’s victim. For each such subcompu-
tation, the worker aborts it as follows. The worker goes
through all of the subcomputation’s assigned closures
sending to each thief worker anabort message speci-
fying the name of the thief subcomputation. Then the
worker frees the subcomputation and all of its closures.
When a worker receives an abort message, it finds the

thief subcomputation named in the message and recur-
sively aborts it. All of the work done by these aborted
subcomputations must eventually be redone. In order to
avoid aborting all of these subcomputations (which may
comprise the entire job in the case when the root subcom-
putation is lost) and redoing potentially vast amounts of
work, and in order to allow restarting when the entire job
is lost, we need checkpointing.

Cilk-NOW performs automatic checkpointing without
any synchronization among different workers and with-
out any notion of global state. Specifically, each sub-
computation is periodically checkpointed to a file named
with the subcomputation’s name. For example, a sub-
computation namedr:i would be checkpointed to a file
namedscomp r i . We assume that all workers in the
job have access to a common file system (through NFS or
AFS, for example), and all checkpoint files are written to
a common checkpoint directory.2 To write a checkpoint
file for a subcomputationr:i , the worker first opens a
file namedscomp r i.temp . Then, it writes the sub-
computation record and all of the closures—including
the assignment information for the assigned closures—
into the file. Finally, it atomically renames the file
scomp r i.temp to scomp r i , overwriting any pre-
vious checkpoint file. A checkpoint file can be read
to recover the subcomputation. On writing a check-
point file, the worker additionally prunes any no-longer-
needed checkpoint files.

If workers crash, the lost subcomputations can be re-
covered from checkpoint files. In the case of a single
worker crash, the lost subcomputations can be recov-
ered automatically. When a surviving worker finds that
it has a subcomputation with a closure assigned to the
crashed worker, then it can recover the thief subcom-
putation by reading the checkpoint file. In the case of
a large-scale failure in which every worker crashes, the
Cilk job can be restarted from checkpoint files by setting
the-Recover flag on the command line. Recovery be-
gins with the root subcomputation whose checkpoint file
is scomp 0 1. After recovering the root subcomputa-
tion, then every other subcomputation can be recovered
by recursively recovering the thief subcomputation for
each of the root subcomputation’s assigned closures.

6 Cilk-NOW macroscheduling
The Cilk-NOW runtime system contains components
that perform macroscheduling [30]. The macroscheduler
identifies idle machines and determines which machines
work on which jobs. In this section, we discuss each
component of the macroscheduler, and we show how

2We have not yet implemented any sort of distributed file system. In
the current implementation, workers implicitly synchronize when they
write checkpoint files, since they all access a common file system.
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they work together.
Like the workers and the clearinghouse, which to-

gether comprise a single parallel Cilk job, the com-
ponents of the macroscheduler are distributed across
the network. As already mentioned, each machine in
the network runs a node manager, an instance of the
CilkNodeManager program, that monitors the ma-
chine’s idleness and the status of a worker if one is
present. In addition to the clearinghouse, each Cilk
job executes a singlejob manager, an instance of the
CilkJobManager program, that services requests for
the job description. Each of these components reg-
isters with a centraljob broker, an instance of the
CilkJobBroker program. The job broker keeps track
of the set of node managers and job managers running
in the network. The Cilk-NOW runtime system can con-
tinue operation even if some of these components, in-
cluding the job broker, fail.

Each machine in the network runs a node manager
that is responsible for determining when the machine is
idle. When the machine is being used, the node manager
wakes up every5 seconds to determine if the machine has
gone idle. It looks at how much time has elapsed since
the keyboard and mouse have been touched, the number
of users logged in, and the processor load averages. The
node manager then passes these values through a predi-
cate to decide if the machine is idle. A typical predicate
might require that the keyboard and mouse have not been
touched for at least5 minutes and the1-minute processor
load average is below0:35. The predicate can be cus-
tomized for each machine. We believe that maintaining
the owner’s sovereignty is essential if we want owners to
allow their machines to be used for parallel computation.
A user can change a predicate with a simple command-
line utility calledCilkPred . For example, issuing the
command

CilkPred user=lisiecki global add
idletime=900

causes any workstation on the network to require that the
user “lisiecki” be idle for at least 900 seconds. Alterna-
tively, a user might issue the command

CilkPred always node=vulture add
load=.2,.2,.2

which applies only to the workstationVulture and re-
quires it to have a load average of0:2 or less for all of
the1, 5, and15 minute load averages.

When all applicable conditions of the predicate are
satisfied, the machine is idle, and the node manager ob-
tains a job description from a job manager (using an ad-
dress given by the job broker or another node manager)
and forks a worker. The node manager then monitors
the worker and continues to monitor the machine’s idle-
ness. With a worker running, the node manager wakes

up once every second to determine if the machine is still
idle (adding an estimate of the running job’s processor
usage to any processor load-average threshold). If the
machine is no longer idle, then the node manager sends
a kill signal to the worker as previously described. When
the worker process dies for any reason, the node manager
takes one of two possible actions. If the machine is still
idle, then it obtains a new job description and forks a new
worker. If the machine is no longer idle, then it returns
to monitoring the machine once every5 seconds.

When a Cilk job begins execution, a job manager is
started automatically by the clearinghouse. The clear-
inghouse submits the job description to the job manager
as alluded to in Section 3, and then the job manager reg-
isters itself with the job broker. The job manager then
goes to sleep, and it periodically wakes up to reregister
with the job broker in case the job broker has crashed
and restarted. When the job terminates, the job manager
unregisters with the job broker. The job manager is the
central authorizing agent for the job. Any time a node
manager forks a worker, it receives a copy of the job de-
scription directly from the job’s job manager.

When a node manager forks a new worker, it must
take special precautions that the user specified in the job
description actually authorized the job to be run. Fail-
ure to do so would allow an outsider to gain unautho-
rized access to a user’s account. Furthermore, it is de-
sirable for the macroscheduler’s protocols to be secure
against unauthorized messages. For these reasons, all of
the macroscheduler’s protocols are secured with an ab-
straction on top of UDP calledsecure active messages
[30]. This abstraction maintains all of the semantics of
the split-phase protocols mentioned earlier but adds a
guarantee of the authenticity of messages to the receiver.
Unlike a normal UDP message which is sent from one
network address to another, a secure active message is
sent between “principals.” Aprincipal is a pair consist-
ing of a network address and a claim as to the identity
of the sender. Each secure active message contains user
data, the sending principal, and whatever additional data
might be required by the underlying authentication pro-
tocol, whether that be the standard UNIXrsh protocol
or a protocol like Kerberos [34]. The security layer is
very simplistic, providing only enough functionality to
allow the protocols to be secured in a manner indepen-
dent of the authentication protocol.

The decision to receive the job description directly
from the job manager stems from security considerations
with protocols like Kerberos, where the job broker and
node managers are not trusted with the user’s credentials.
Only the user in the possession of tickets can be trusted
to start a remote process. Since the job manager runs
as the desired user, retrieving the job description directly
and securely from the job manager assures that the user
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has actually authorized running the job.
The task of scheduling jobs on workstations is shared

between the job broker and the node managers. The job
broker is responsible for ensuring that each job is running
on at least one workstation. The node managers then
use a distributed, randomized algorithm to divide the
workstations evenly among the jobs. Because the node
managers are capable of performing scheduling, tempo-
rary outages of the job broker do not impede progress
in scheduling jobs on the network of workstations. We
are currently experimenting with a distributed, random-
ized macroscheduling algorithm that uses steal rates to
estimate worker utilization. Each job should get its fair
share of the idle machines, but no job should get more
machines than it can efficiently utilize.

7 Related work
Cilk-NOW is unique in delivering adaptive and reliable
execution for parallel programs on networks of worksta-
tions. Traditionally, systems such as PVM [41], Tread-
Marks [2], and others [11, 16, 23, 29] that are designed
to support parallel programs on networks of workstations
have not provided adaptive parallelism or fault tolerance.
On the other hand, most systems that do provide support
for adaptive execution or fault tolerance take a “process-
centric” approach. That is, they provide an abstraction
of mobile processes and/or an abstraction of reliable pro-
cesses. As such these systems are very general in their
potential application, but they do not provide much sup-
port for parallel programs. In contrast, Cilk-NOW does
provide support for parallel programs and it does pro-
vide adaptive parallelism and fault tolerance, but it does
so only for the Cilk parallel programming model. Such
specificity allows the Cilk-NOW design to take an end-
to-end approach [38] that leverages properties of the Cilk
programming model in order to implement adaptive par-
allelism and fault tolerance simply and efficiently.

Distributed operating systems [17, 36, 43, 46] and re-
mote execution facilities [18, 19, 31, 35, 47] provide
services such as remote process execution and, in some
cases, process migration. These systems are not intended
to be parallel programming environments, though pre-
sumably a parallel programming environment could by
built atop one of these systems. In fact, Orca [42], which
has been built on top of Amoeba, is such a system. These
systems are process-centric in that they adapt only by re-
motely executing and/or migrating processes.

A small number of parallel programming and runtime
systems have been built that are adaptively parallel, but
unlike Cilk-NOW, none are fault tolerant. Possibly the
first adaptively parallel system is the Benevolent Bandit
Laboratory (BBL) [22], and Cilk-NOW borrows some
of its overall system architecture from BBL. The Pi-

ranha system [24, 27], which is based on the Linda pro-
gramming model [12], is also adaptively parallel. (In
fact, the authors of Piranha appear to have coined the
term “adaptively parallel.”) These systems support pro-
gramming models that are quite different from Cilk’s,
but as with the Cilk-NOW design, both leverage prop-
erties of their programming model in order to imple-
ment adaptive parallelism. A runtime system for the
programming language COOL [14] running on symmet-
ric multiprocessors [44] and cache-coherent, distributed,
shared-memory machines uses process control to sup-
port adaptive parallelism. This system relies on special-
purpose operating system and hardware support. In con-
trast, Cilk-NOW supports adaptive parallelism entirely
in user-level software on top of commercial hardware
and operating systems. The Spawn system [45] sup-
ports concurrent applications with dynamic and adaptive
resource management policies based on microeconomic
principles. Unlike Cilk-NOW, none of these systems are
fault tolerant.

A growing number of systems do provide fault toler-
ance, but unlike Cilk-NOW, none provide “application”
fault tolerance in a high-level parallel programming en-
vironment. The Hive [15] distributed operating system
provides “system” fault tolerance, meaning that a fault
in one component does not bring down the entire system.
Hive does not, however, provide “application” fault tol-
erance, meaning that with Hive, if an application is using
a failed component, then the entire application crashes
(unless the application itself has taken care to be fault
tolerant). Application fault tolerance is provided by the
Manetho system [21] via the technique of message log-
ging. The Sam system [39] uses message logging to im-
plement a fault tolerant distributed shared memory. The
Sam implementation leverages properties of its shared-
memory consistency model in order to avoid logging cer-
tain messages. Unlike Cilk-NOW, both Manetho and
Sam are process-centric, as they both provide the abstrac-
tion of reliable processes, and neither is really a high-
level parallel programming environment.

In comparing Cilk-NOW with these other process-
centric systems, an interesting question to ask is, why
not build the Cilk-NOW runtime system on top of one
these other systems? After all, these systems already
implement adaptive and/or fault-tolerant execution. The
answer is performance. As we have seen, the overhead
of adaptive parallelism and fault tolerance in Cilk-NOW
is amortized against the overhead in Cilk’s provably ef-
ficient scheduling algorithm. This amortization is only
possible because all facets of the design are specialized
with high-level knowledge of algorithmic structure in the
Cilk programming model.
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8 Conclusion

The widespread use of NOWs for parallel computation
requires a software infrastructure that allows program-
mers to code in a high-level language that abstracts
away the complexity of protocols, scheduling, and re-
source management. Cilk and Cilk-NOW are part of
this developing software infrastructure. In this paper, we
have shown how Cilk-NOW’s end-to-end design lever-
ages structure in the Cilk programming model to imple-
ment adaptive parallelism and fault tolerance simply and
efficiently. All overheads are amortized against work-
stealing operations, and the number of steals grows with
the critical path and not with the work. This result is only
possible because Cilk-NOW incorporates Cilk-specific
policies at all levels of its design.

The Cilk-NOW runtime system, as described in this
paper and as currently implemented, supports the Cilk-2
language which is essentially functional in that it does
not have support for a global address space or paral-
lel I/O. More recent incarnations of Cilk for MPPs
and SMPs have support for a global address space us-
ing “dag-consistent” distributed shared memory [7], and
we are currently working on extensions for parallel I/O.
With these additions to Cilk, preserving Cilk-NOW’s
adaptive and fault tolerant execution model remains a
challenging open problem. We are currently working on
this problem. The dag-consistency model was conceived
with adaptive parallelism and fault tolerance in mind,
and we are investigating the idea of coupling our current
return transactions mechanism with a causal message-
logging mechanism [1].

In other current research, we are investigating dis-
tributed macroscheduling algorithms. The goal of such
an algorithm is to assign idle workstations to Cilk jobs
so that each job gets a “fair” share and without requir-
ing that users explicitly state their application’s resource
needs. It turns out that the parallelism of a Cilk job can be
determined continuously and automatically by monitor-
ing the steal rate. We are examining a macroscheduling
algorithm in which this information is used in random-
ized pairwise interactions among processors. The idea
is that periodically (and asynchronously) each processor
picks another processor in the network at random, and
if the two processors are working on different jobs, then
one processor may switch to the job of the other. The
switching decision is randomized and based only on in-
formation about the parallelism and size of the two jobs
involved. Early simulation results indicate that such a
scheme is very effective [30], and we are currently work-
ing on analysis and implementation.

More information about Cilk, including papers, docu-
mentation, and software releases, but not including Cilk-
NOW software, can be found on the World-Wide Web at

http://theory.lcs.mit.edu/˜cilk .
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