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Abstract. In this paper we present algorithms with optimal average-case and
close-to-best known worst-case performance for the classic online bin packing
problem. It has long been observed that known bin packing algorithms with op-
timal average-case performance are not optimal in the worst-case. In particular
First Fit and Best Fit have optimal asymptotic average-case ratio of 1 but a worst-
case competitive ratio of 1.7. The competitive ratio can be improved to 1.691 us-
ing the Harmonic algorithm. Further variations of this algorithm can push down
the competitive ratio to 1.588. However, these algorithms have poor performance
on average; in particular, Harmonic algorithm has average-case ratio of 1.27. In
this paper, first we introduce a simple algorithm which we term Harmonic Match.
This algorithm performs as well as Best Fit on average, i.e., it has an average-case
ratio of 1. Moreover, the competitive ratio of the algorithm is as good as Har-
monic, i.e., it converges to 1.691 which is an improvement over Best Fit and First
Fit. We also introduce a different algorithm, termed as Refined Harmonic Match,
which achieves an improved competitive ratio of 1.636 while maintaining the
good average-case performance of Harmonic Match and Best Fit. Our experimen-
tal evaluations show that our proposed algorithms have comparable average-case
performance with Best Fit and First Fit, and this holds also for sequences that
follow distributions other than the uniform distribution.

1 Introduction

An instance of the online bin packing problem is defined by a sequence σ = 〈σ1, . . . , σn〉
of items each having a size in the range (0, 1]. Items arrive one by one, and an algorithm
should take an irrecoverable decision by placing each item into a bin without any knowl-
edge about the forthcoming items. The goal is to pack items into a minimum number
of bins of uniform capacity. Next Fit (NF) algorithm keeps one open bin. If an item
does not fit in the open bin, it gets closed and a new bin is opened. First Fit algorithm
(FF) maintains bins in the order they are opened and places each item in the first bin
with enough space. If such a bin does not exist, a new bin is opened. Best Fit (BF)
performs similarly to FF, except that it maintains bins in the decreasing order of their
levels, where the level of a bin is the total size of items in it. An alternative approach is
to partition items into a fixed number of classes and pack items of each class apart from
other classes. An example is the Harmonic (HA) algorithm which defines K intervals



(1/2, 1], (1/3, 1/2], . . . , (1/K, 1/(K − 1)], and (0, 1/K]. Items with sizes in the same
interval are treated separately using the Next Fit strategy.

Bin packing algorithms are usually compared through their average-case and worst-
case performance. Under average-case analysis, it is assumed that item sizes are gen-
erated independently at random and follow a fixed distribution that is typically the
uniform distribution over the interval [0, 1). With this assumption, one can define the
asymptotic average-case performance ratio, or simply average ratio, of an online algo-
rithm A as lim

n→∞
E
[
A(σ(n))

OPT(σ(n))

]
, where σ(n) is a randomly generated sequence of length

n and A(σ) denotes the number of bins used by A for packing σ (the same notation is
used for OPT). Next Fit has average ratio of 4/3 [5] while First Fit and Best Fit both
have optimal average ratio of 1 [2]. To compare algorithms with average ratio of 1,
a more precise measure of expected waste is defined as E[A(σ(n)) − s(σ(n))], where
s(σ(n)) denotes the total size of items in σ(n). First Fit and Best Fit have expected
waste of Θ(n2/3) and Θ(

√
n lg3/4 n), respectively [21,16]. All online algorithms have

expected waste of size Ω(
√
n lg1/2 n) [21].

There are algorithms which are based on matching a “large” item with a “small”.
Throughout the paper, we call an item large if it is larger than 1/2 and small otherwise.
Interval First Fit (IFF) algorithm [9] divides the unit interval into K intervals of equal
length, namely It = ( t−1K , tK ] for t = 1, 2, . . . ,K, where K = 2j + 1 is an odd
integer. The algorithm defines j + 1 classes so that intervals Iτ and IK−τ form class
τ (1 ≤ τ ≤ j) and interval IK forms class j + 1. Items in each class are packed
separately using a strategy similar to First Fit. Algorithm Online Match (OM) [7] also
has a parameter K and declares two items as being companions if their sum is in the
range [1− 1

K , 1]. A new bin is opened for each large item. For placing a small item x, the
algorithm checks whether there is an open bin β with a large companion of x; in case
there is, it places x in β and closes β. Otherwise, it packs x using the NF strategy in a
separate list of bins. Matching Best Fit (MBF) algorithm is similar to Best Fit except that
it closes a bin as soon as it receives the first small item. There is an online algorithm with
expected waste of sizeΘ(

√
n lg1/2 n) [22] which matches the lower bound of [21]. The

above matching algorithms have promising average-case performance; however, they
perform poorly in the worst case (see Table 1).

Competitive analysis is the standard worst-case measure for comparing online algo-
rithms. Throughout the paper, by ‘competitive ratio’ of an online algorithm A, we mean
‘asymptotic competitive ratio’ of A, which is defined as inf{r ≥ 1 : for some N >
0, A(σ)/OPT(σ) ≤ r for all σ with OPT(σ) ≥ N}. Next Fit has a competitive ratio
of 2 while First Fit and Best Fit have the same ratio of 1.7 [11]. For large values of
K, the competitive ratio of HA approaches to T∞ =

∑∞
i=1

1
ti−1 , where t1 = 2 and

ti+1 = ti(ti−1)+1, i ≥ 1. Members of a general framework of Super Harmonic algo-
rithms [20] have even better competitive ratios. Similar to HA, these algorithms classify
items by their sizes and pack items of the same class together. To improve over HA, a
fraction of opened bins include items from different classes. These bins are opened with
items of small sizes in the hopes of subsequently adding items of larger sizes. At the
time of opening a bin, it is pre-determined how many items from each class should be
placed in the bin, and it is guaranteed that the reserved spot is enough for any member
of the class. Hence, the expected total size of items in the bin is less than 1, and the ex-



Algorithm Average Ratio Expected waste Competitive Ratio
Next Fit (NF) 1.3̄ [5] Ω(n) 2
Best Fit (BF) 1 [2] Θ(

√
n lg3/4 n) [21,16] 1.7 [11]

First Fit (FF) 1 [16] Θ(n2/3) [21,6] 1.7 [11]
Harmonic (HA) 1.2899 [15] Ω(n) → T∞ ≈ 1.691 [14]

Refined First Fit (RFF) > 1 Ω(n) 1.6̄6 [23]
Refined Harmonic (RH) 1.2824 [10] Ω(n) 1.636 [14,10]

Modified Harmonic (MH) 1.189 [17] Ω(n) 1.615[18]
Harmonic++ > 1 Ω(n) 1.588 [20]

Harmonic Match HM 1 Θ(
√

n lg3/4 n) → T∞ ≈ 1.691

Refined Harmonic Match (RHM) 1 Θ(
√

n lg3/4 n) 1.636

Table 1: Average ratio, expected waste (under continuous uniform distribution), and
competitive ratios for bin packing algorithms. Results in bold are our contributions.

pected waste is linear to the number of opened bins. This implies that the average ratio
of Super Harmonic algorithms is strictly larger than 1. Regarding the lower bound for
competitive ratio of online algorithms, Balogh et al. [1] proved that no online algorithm
can have a competitive ratio better than 1.54037. Table 1 includes a summary of the
performance of bin packing algorithms.

In their survey of bin packing, Coffman et al. [4] state that ‘All algorithms that do
better than First Fit in the worst-case seem to do much worse in the average-case.’ In
this paper, however, we show that this is not necessarily true and introduce an algorithm
whose competitive ratio, average ratio, and expected wasted space are all at or near the
top of each class. This also addresses a conjecture by Gu et al. [10] stated as ‘Harmonic
is better than First Fit in the worst-case performance, and First Fit is better than Har-
monic in the average-case performance. Maybe there exists an on-line algorithm with
the advantages of both First Fit and Harmonic.’

1.1 Contribution

We introduce an algorithm called Harmonic Match (HM) which has a competitive ratio
similar to Harmonic, i.e., approaches T∞ ≈ 1.691 for large values of K, where K is
a parameter of the algorithm. For sequences generated uniformly and independently
at random, Harmonic Match has an optimal average ratio of 1 and expected waste of
Θ(
√
n lg3/4 n) which is as good as Best Fit and better than First Fit. The idea behind

Harmonic Match can be used in a general way to improve Super Harmonic algorithms.
We illustrate this for the simplest member of this family, namely the Refined Harmonic
algorithm of Lee and Lee [14]. We introduce a new algorithm called Refined Harmonic
Match (RHM), which has a competitive ratio of at most 1.636. At the same time, the
average ratio and expected waste of RHM are as good as those of Best Fit.

Harmonic Match and Refined Harmonic Match are easy-to-implement, and their
running time is as good as Best Fit. This makes them useful in practical scenarios in
which the worst-case scenarios might indeed happen. One example is the denial of ser-
vice attacks in cloud [13] in which an adversary sends items (jobs or ‘tenants) that form
a worst-case sequence. In these cases, the advantage of RHM over Best Fit is significant



from the perspective of cloud service providers. Although the analysis techniques used
in this paper are straightforward, we use them to prove an important result that shows the
average performance does not need to be compromised for better competitive ratios. For
the bulk of this paper, we assume item sizes are distributed uniformly and independently
in the interval (0, 1]. However, for a better picture on the average-case performance, we
test them on sequences that follow other distributions. The results of our experiments
suggest that Harmonic Match and Refined Harmonic Match have comparable perfor-
mance with Best Fit and First Fit. At the same time, they have a considerable advantage
over other members of the Harmonic family of algorithms. Due to space restrictions,
many proofs have been removed. They will appear in the long version of the paper.

2 Harmonic Match Algorithm

Similarly to Harmonic algorithm, Harmonic Match has a parameter K and divides
items into K classes based on their sizes. We use HMK to refer to Harmonic Match
with parameter K. The algorithm defines K pairs of intervals as follows. The i-th pair
(1 ≤ i ≤ K − 1) contains intervals ( 1

i+2 ,
1
i+1 ] and ( i

i+1 ,
i+1
i+2 ]. The K-th pair includes

intervals (0, 1
K+1 ] and ( K

K+1 , 1]. An item x belongs to class i if the size of x lies in any
of the two intervals associated with the i-th pair. Note that the intervals in HMK are the
same as Harmonic with parameter K+1 except that the interval ( 12 , 1] in the Harmonic
algorithm is further divided intoK+1 more intervals in Harmonic Match. This division
enables “matching” large items with proportionally smaller items. The pair of intervals
which form a class have the same length. This is essential for a good average-case per-
formance for our uniform distribution on (0, 1]. The algorithm applies a strategy similar
to Best Fit to place items inside each class. The Harmonic-type classification of items
allows improvement on the competitive ratio.

The packing maintained by Harmonic Match includes two types of bins: the “ma-
ture” bins which are almost full and “normal” bins which become mature by receiving
more items. For placing an item x, HM detects the class that x belongs to and applies the
following strategy to place x. If x is a large item (x > 1/2), the algorithm opens a new
bin and declares it as a normal bin. If x is small (x ≤ 1/2), the algorithm applies the
Best Fit (BF) strategy to place x in a mature bin. If there is no mature bin with enough
space, the BF strategy is applied one more time to place x in a normal bin that contains
the largest “companion” of x. A companion of x is a large item of the same class that
fits with x in the same bin. In case x is placed in a bin (i.e., there is a normal bin with a
companion of x) the selected bin is declared as a mature bin. Otherwise, the algorithm
applies the Next Fit (NF) strategy to place x in a single normal bin maintained for that
class; such a bin includes small items of the same class. If the bin maintained by NF
does not have enough space, it is declared as a mature bin and a new NF-bin is opened.

Harmonic Match treats items of the same class in a similar way that Online Match
does except that there is no restriction on the sum of the sizes of two companion items.
To facilitate our analysis, we introduce the Relaxed Online Match (ROM) algorithm as
a subroutine of HM. To place a large item, ROM opens a new bin. To place a small
item x, it applies the Best Fit strategy to place x in an open bin with a single large
item and closes the bin. If such a bin does not exists, ROM places x using the Next Fit



strategy (and opens a new bin if necessary). Using ROM, we can describe the Harmonic
Match algorithm in the following way. To place a small item, HMK applies the Best Fit
strategy to place it in a mature bin. Large items and the small items which do not fit in
mature bins are treated using the ROM strategy along with other items of their classes.
The bins which are closed by the ROM strategy are declared as mature bins.

2.1 Worst-Case Analysis

To analyze Harmonic Match, we observe that the classic Harmonic algorithm is mono-
tone in the sense that removing an item does not increase the number of bins it opens.

Lemma 1. Removing any item from an input sequence σ does not increase the number
of bins used by the Harmonic algorithm for packing σ.

Using the above lemma, we show that the number of bins used by HMK for any
sequence is no larger than that of Harmonic with parameterK+1 (HAK+1). Informally
speaking, the small items which are placed with large items in HMK can be thought as
being “removed” from the packing of Harmonic.

Lemma 2. The number of bins used by Harmonic Match with parameter K (HMK) to
pack any sequence σ is no larger than that of Harmonic with parameter K (HAK+1).

Proof. We say a small item is red if it is placed in a bin with a large item in the packing
of HMK , and call it white otherwise. Consider a subsequence σ− of σ in which red items
are removed. We show HMK(σ) = HAK+1(σ

−). Let σi denote the sequence formed by
items of class i in HMK (1 ≤ i ≤ K). The number of bins opened by HMK for σi is
li+ NF(Wi) where li is the number of large items of σi and Wi is the sequence formed
by the white items in σi. Let σ−i be a subsequence of σi in which red items are removed.
Since small and large items are treated separately by HAK+1, the number of bins used
by HAK+1 for σ−i is also li+NF(Wi), and we have HMK(σi) = HAK+1(σ

−
i ). Taking

the sum over all classes, we get HMK(σ) = HAK+1(σ
−). Since HA is monotone by

Lemma 1, we have HAK+1(σ
−) ≤ HAK+1(σ), and HMK(σ) ≤ HAK+1(σ). ut

For large values of K, the competitive ratio of Harmonic Match approaches T∞ ≈
1.691. Indeed, the above upper bound is tight and we get the following result.

Theorem 1. The competitive ratio of HMK is equal to that of HAK+1, i.e., it converges
to T∞ ≈ 1.691 for large values of K.

2.2 Average-Case Analysis

We study the average-case performance of the HM algorithm, assuming item sizes are
distributed uniformly in the interval (0, 1]. Like most related work, we make use of the
results related to the up-right matching problem. An instance of this problem includes n
points generated uniformly and independently at random in a unit-square in the plane.
Each point receives a⊕ or	 label with equal probability. The goal is to find a maximum
matching of ⊕ points with 	 points so that in each pair of matched points the ⊕ point



appears above and to the right of the 	 point. Let Un denote the number of unmatched
points in an optimal up-right matching of n points. For the expected size of Un, it is
known that E[Un] = Θ(

√
n lg3/4 n) [21,16,19,8]. Given an instance of bin packing

defined by a sequence σ, one can make an instance of up-right matching as follows
[12]. Each item x of size s(x) in σ is plotted as a point in the unit square. The vertical
coordinate of the point corresponds to the index of x in σ (scaled to fit in the square).
If x is smaller than 1/2, the point is labelled as ⊕ and its horizontal coordinate will be
1− 2s(x) where s(x) is the size of x; otherwise, the point will be 	 and its horizontal
coordinate will be 2s(x) − 1. A solution to the up-right matching instance gives a
packing of σ in which the items associated with a pair of matched points are placed in
the same bin. Note that the sum of the sizes of these two items is no more than the bin
capacity. Also, in such a solution, each bin contains at most two items.

For our purposes, we study σt as a subsequence of σ which only includes items
which belong to the same class in the HM algorithm. The items in σt are generated
uniformly at random from ( 1

t+1 ,
1
t ] ∪ (

t−1
t ,

t
t+1 ] where t is a positive integer. Since the

two intervals have the same length, as we will describe, the items can be plotted in a
similar manner on the unit square. Any bin packing algorithm which closes a bin after
placing a small item can be used for the up-right matching problem. Each edge in the
matching instance corresponds to a bin which includes one small and one large item.
Recall that the algorithm Matching Best Fit (MBF) is similar to Best Fit except that it
closes a bin as soon as it receives an item with size smaller than or equal to 1/2. So,
MBF can be applied for the up-right matching problem. Indeed, it creates an optimal
up-right matching, i.e., if we apply MBF on a sequence σt which is randomly generated
from (0, 1], the number of unmatched points will be Θ(

√
nt lg

3/4 nt), where nt is the
length of σt [21]. We show the same result holds for the bin packing sequences in which
items are taken uniformly at random from ( 1

t+1 ,
1
t ] ∪ ( t−1t ,

t
t+1 ].

Lemma 3. For a sequence σt of length nt in which item sizes are selected uniformly at
random from ( 1

t+1 ,
1
t ] ∪ ( t−1t ,

t
t+1 ], we have E[MBF(σt)] = nt/2 +Θ(

√
nt lg

3/4 nt).

Proof. Define an instance of up-right matching as follows. Let x, with size s(x), be
the i-th item of σt (1 ≤ i ≤ nt). If x is small, plot a point with ⊕ label at position
(1 − (s(x) × t(t + 1) − t), i/nt); otherwise, plot a point with 	 label at position
(s(x)× t(t+1)− (t2−1), i/nt). This way, the points will be bounded in a unit square.
Since item sizes are generated uniformly at random from the two intervals and the
sizes of the intervals are the same, the point locations and labels are assigned uniformly
and independently at random. Hence, the number of unmatched points in the up-right
matching solution by MBF is expected to be Θ(

√
nt lg

3/4 nt). The unmatched points
are associated with the items in σt which are packed as a single item in their bins by
MBF. Let sg denote the number of such items. We have E[sg] = Θ(

√
nt lg

3/4 nt).
Except these sg items, other items are packed with exactly one other item in the same
bin. So we have MBF(σt)− sg = nt/2 which implies E[MBF(σt)] = nt/2+E[sg] =

nt/2 +Θ(
√
nt lg

3/4 nt). ut

Recall that ROM is a subroutine of HM. The main difference between ROM and
MBF is in placing small items without companions. For those, ROM applies the NF
strategy while MBF opens a new bin for each item. Clearly, ROM has an advantage.



Lemma 4. For any instance σ of the bin packing problem, the number of bins used by
ROM to pack σ is no more than that of MBF.

To prove the main result, we also need to show that MBF is monotone:

Lemma 5. Removing an item does not increase the number of bins used by MBF.

Provided with the above lemmas, we prove the main result of this section.

Theorem 2. For packing a sequence σ of length n in which item sizes are selected
uniformly at random from (0, 1], the expected wasted space of HM is Θ(

√
n lg3/4 n).

Proof. Let σ− be a copy of σ in which the items which are placed in mature bins are
removed. Let σ−1 , . . . , σ

−
K be the subsequences of σ− formed by items belonging to

different classes of HM. We have:

HM(σ) =
∑K
t=1 ROM(σ−t ) ≤

∑K
t=1 MBF(σ−t ) ≤

∑K
t=1 MBF(σt)

The inequalities come from Lemmas 4 and 5, respectively. By Lemma 3, we have:

E[HM(σ)] ≤
∑K
t=1

(
nt/2 +Θ(

√
nt lg

3/4 nt)
)
= n

2 +Θ(
√
n lg3/4 n)

The last equation holds since K is a constant. The expected value of s(σ), the total
size of items in σ, is n/2. Consequently, for the expected waste of HM , we have the
following equality which completes the proof:

E[HM(σ)− s(σ)] = n/2 +Θ(
√
n lg3/4 n)− n/2 = Θ(

√
n lg3/4 n) ut

3 Refined Harmonic Match

In this section, we introduce a slightly more complicated algorithm, called Refined
Harmonic Match (RHM), which has a better competitive ratio than BF and HM while
performing as well as them on average. Similar to HM, RHM classifies items based on
their sizes. The classes defined for RHM are the same as those of HMK with K = 19.
The items which belong to class t ≥ 2 are treated using the HM strategy. Namely,
a set of mature bins are maintained. If an item fits in mature bins, it is placed there
using the BF strategy; otherwise, it is placed together with similar items of its class
using the ROM strategy. At the same time, the bins closed by the ROM strategy are
declared as being mature. The only difference between HM and RHM in packing items
of class 1, i.e., items in the range (1/3, 2/3]. RHM divides these items into four groups
a = (1/3, 37/96], b = (37/96, 1/2], c = (1/2, 59/96], and d = (59/96, 2/3]. To
handle the sequences which result in the lower bound of T∞ for competitive ratios of
HA and HM, RHM designates a fraction of bins opened by items of type a to host the
future c items. Note that the total size of a c item and an a item is no more than 1.

In what follows, we introduce an online algorithm called Refined Relaxed Online
Match (RRM) as a subroutine of RHM that is specifically used for placing items of class
1. At each step of the algorithm, when two items of class 1 are placed in the same bin,
that bin is declared to be mature and will be added to the set of mature bins maintained



by the HM algorithm that packs items of other classes. RRM uses the following strategy
to place an item x of class 1 (x ∈ (1/3, 2/3]). If x is a d-item, RRM opens a new bin
for x. If x is a c item, the algorithms checks whether there are bins with an a item
designated to be paired with a c item. In case there are, x is placed in a bin with an
a item using the BF strategy; otherwise, a new bin is opened for x. For a and b items
(small items of class 1), RRM uses the BF strategy to select a bin with enough space
which includes a single large item (if there is such a bin). This is particularly important
to guarantee a good average-case behavior. If x is a b item, the algorithms checks the
bin with the highest level in which x fits; if such a bin includes a c or a b item, x is
placed there. Otherwise (when there is no selected bin or when it has an a item), a new
bin is opened for x. If x is an a item, the algorithm uses the BF strategy to place it into
a bin with a d or c item. If no suitable bin exist, x is placed in a bin with a single a item
(there is at most one such bin). If there is no such bin, a new bin is opened for x.

When a new bin is opened for an a-item, the bin will be marked to either include a
c item or another a item in the future. We define A-bins as those which include two a
items or a single a item designated to be paired with another a item, and define C-bins
as those which include either a c item together with an a or a b item or a single a item
designated to be paired with a c item in the future. RHM tries to maintain the number of
A-bins as close to three times the number of C-bins as possible. Namely, when a bin is
opened for an a item, if the number of A-bins is less than 3 times of C-bins, the bin is
declared as an A-bin to host another a item later; otherwise, the open bin is declared as
a C-bin to host a c item. This way, the number of A-bins is close to (but no more than)
3 times that of C-bins.

3.1 Worst-Case Analysis

In this section, we prove an upper bound of 1.636 for the competitive ratio of RHM.
Since RHM applies HM for placing items of class t ≥ 2, by Lemma 2, the number of
bins opened by RHM for these items is no more than that of Harmonic. An analysis of
the number of bins opened by the Harmonic algorithm gives the following lemma.

Lemma 6. For the number of bins used by RHM to pack a sequence σ we have

RHM(σ) ≤ RRM(σcl1) + nX +
18∑
t=2
b nt

t+1c+ 20W ′/19 + 20

in which σcl1 is the subsequence formed by items of class 1, nX is the number of large
items in classes other than class 1, nt is the number of small items in class t, and W ′ is
the total size of small items in class 19 (the last class).

Using the above lemma, we prove the following theorem.

Theorem 3. The competitive ratio of RHM is at most 373/228 < 1.636.

To prove the theorem, in the packing of RRM for items of class 1, we define a1-
bins as those which only include one a-item designated to be paired with a c-item. We
consider the following two cases and prove the theorem for each case separately.



– Case 1: There is at least one a1-bin in the final packing.
– Case 2: There is no a1-bin in the final packing.

Let nτ (τ ∈ {a, b, c, d}) denote the number of items of class q in the input sequence.
In both cases, we formulate the number of bins opened by RRM as a function of the
number of items in each group (i.e., as a function of na, nb, nc, and nd). By definition
of RRM, no c-bin and a1-bin can exist at the same time. So, in Case 1, there is no
c-bin in the packing. We can bound the number of C-bins by proving the inequality
3NC ≤ NA + 3 where NC and NA respectively denote the number of C-bins and A-
bins. Using the definition of A-bins and C-bins, we show the number of bins opened
by RRM is at most nd + 4na/7 + 4nb/7 + 1. Plugging this to Lemma 6 and applying
a straightforward weighting function similar to that of Lee and Lee [14] completes the
proof. In Case 2, we note that NA ≤ 3NC and use it to show the number of bins opened
by RRM is at most nd + nc + nb/2+ 3na/7+ 2. Applying another weighting function
completes the proof. The details will appear in the long version of the paper.

3.2 Average-Case Analysis

We show that the average-case performance of RHM is as good as BF and HM. Except
the following lemma, other aspects of the proof are similar to those in Section 2.2.

Lemma 7. For any instance σ of the bin packing problem in which items are in the
range (1/3, 2/3], the number of bins used by RRM to pack σ is no more than that of
Matching Best Fit (MBF).

The key observation in the proof is that RRM uses the BF strategy to place a small item x
in a bin which includes a large item. Note that small items are a and b items in the RRM
algorithm. Only if such a bin does not exist, RRM deviates from the BF strategy (this is
the main difference between RRM and Refined Harmonic of [14]). Given Lemma 7, a
similar argument as the proof of Theorem 2 results in the following theorem.

Theorem 4. For a sequence σ of length n in which item sizes are selected uniformly at
random from (0, 1], the expected wasted space of RHM is Θ(

√
n lg3/4 n).

4 Experimental Evaluation

The results of the previous sections indicate that HM and RHM have similar average-
case performance as BF if item sizes are taken uniformly at random from the range
(0, 1]. In this section, we expand the range of distributions beyond this distribution to
further observe the performance of these algorithms. For that, we considered uniform
distribution with different ranges for items sizes (ranges (0, 1/2] and (0, 1/10]), as well
as Normal and Weibull distributions with different parameters. We also considered uni-
form instances in which items are sorted in decreasing order of their sizes. The details
about these distributions can be found in the long version of the paper. For all distribu-
tions, we computed the average number of bins used by different algorithms for packing
1000 sequences of length 100,000. For algorithms that classify items by their sizes, the
number of classes K is set to 20.



0 1 2 3 4 5 6 7

Unifrom-1 Unifrom-2 Unifrom-3 Normal-1 Normal-2 Sorted Weibull-1 Weibull-2

NF 66,671 29,855 5,173 67,966 70,634 64,493 30,384 57,021

WF 58,577 27,537 5,094 59,647 60,891 50,092 26,413 49,685

HA 64,499 28,991 5,172 67,055 74,151 64,501 30,015 55,802

RFF 64,461 28,919 5,002 67,183 75,066 64,444 29,770 55,684

RHA 64,871 29,735 5,172 67,525 74,709 64,873 30,265 56,218

OM 50,375 29,855 5,173 50,383 50,401 50,136 24,680 44,375

FF 50,705 25,154 5,002 50,752 50,821 50,090 23,542 43,600

BF 50,348 25,128 5,002 50,367 50,399 50,089 23,532 43,450

HM 50,525 25,122 5,007 50,538 50,467 50,192 23,557 43,268

RHM 50,530 28,557 5,007 50,542 50,468 50,197 23,836 43,385

OPT 49,999 24,998 4,999 49,998 50,001 49,998 23,521 42,933

500 1,000 1,000 500 100 1,000 100 100

getConUniformRandomSequence(minItemSize,1,n);getConUniformRandomSequence(minItemSize,.5,n);getConUniformRandomSequence(minItemSize,.1,n);getContRandomNormalSequence(minItemSize,1,.5,.33333,n);getContRandomNormalSequence(minItemSize,1,.5,.1,n);getContDecreasing(minItemSize,1,n);getContWeibullDistribution(n,minItemSize,1,.454,1);getContWeibullDistribution(n,minItemSize,1,1.044,1) 

Unifrom-1 Unifrom-2 Unifrom-3 Normal-1 Normal-2 Sorted Weibull-1 Weibull-2

NF 1.333 1.194 1.035 1.359 1.413 1.290 1.292 1.328

WF 1.172 1.102 1.019 1.193 1.218 1.002 1.123 1.157

HA 1.290 1.160 1.034 1.341 1.483 1.290 1.276 1.300

RFF 1.289 1.157 1.001 1.344 1.501 1.289 1.266 1.297

RHA 1.297 1.189 1.034 1.351 1.494 1.298 1.287 1.309

OM 1.008 1.194 1.035 1.008 1.008 1.003 1.049 1.034

FF 1.014 1.006 1.001 1.015 1.016 1.002 1.001 1.016

BF 1.007 1.005 1.000 1.007 1.008 1.002 1.000 1.012

HM 1.011 1.005 1.002 1.011 1.009 1.004 1.002 1.008HM 1.011 1.005 1.002 1.011 1.009 1.004 1.002 1.008

RHM 1.011 1.142 1.002 1.011 1.009 1.004 1.013 1.011
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Fig. 1: The bar chart for the experimental average ratios of online bin packing algo-
rithms. To make the results more visible, the vertical scale is changed to start at 0.9.

We compute the experimental average ratio of an algorithm as the ratio between the
observed expected number of bins used by the algorithm and that of OPT. We estimate
the number of bins opened by OPT to be the total size of items. Figure 1 shows the
bar chart for experimental average ratio of different online algorithms. It can be seen
that HM and RHM, along with BF and FF, have a significant advantage over other
algorithms.

A difference between the packings of HM and RHM occurs when a number of small
items of the first class (items of type a in RHM) appear before any large item of the same
class (an item of type c). In these cases, RHM reserves some bins for subsequent large
items (by declaring the bins to be C-bins). For symmetric distributions, where items of
sizes x and 1− x appear with the same probability, it is unlikely that many small items
appear before the next large item. Consequently, the average number of bins used by
HM and RHM are the same. On the other hand, for asymmetric sequences where small
items are more likely to appear, e.g., Uniform-2 with item sizes in the range (0, 1/2],
HM has a visible advantage over RHM. In these sequences, there is no reason to reserve
bins for the large items since they are unlikely to appear.

5 Remarks

HM and RHM can be seen as variants of Harmonic and Refined Harmonic algorithms in
which small and large items are carefully matched in order to improve the average-case
performance. We believe that the same approach can be applied to improve the average
performance of other Super Harmonic algorithms and in particular that of Harmonic++.
Given the complicated nature of these algorithms, modifying them involves a detailed
analysis which we leave as a future work.

It is possible to study the performance of bin packing algorithms using the rela-
tive worst order analysis [3]. Under this measure, when all items are larger than 1

K+1 ,
Harmonic with parameter K is strictly better than FF and BF by a factor of 6/5 [3]. Ap-
plying Lemma 2, when all items are larger than 1

K+2 , Harmonic Match with parameter
K is strictly better than FF and BF. This provides another theoretical evidence for the
advantage of Harmonic Match over BF and FF.
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