
Memory-Mapped Transactions

by

Jim Sukha

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2005

c© Massachusetts Institute of Technology 2005. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 19, 2005

Certified by. .
Charles E. Leiserson

Professor of Computer Science and Engineering
Thesis Supervisor

Certified by. .
Bradley C. Kuszmaul

Research Scientist

Thesis Supervisor

Accepted by .

Arthur C. Smith
Chairman, Department Committee on Graduate Theses

2

Memory-Mapped Transactions

by

Jim Sukha

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2005, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Memory-mapped transactions combine the advantages of both memory mapping and
transactions to provide a programming interface for concurrently accessing data on
disk without explicit I/O or locking operations. This interface enables a programmer
to design a complex serial program that accesses only main memory, and with little to
no modification, convert the program into correct code with multiple processes that
can simultaneously access disk.

I implemented Libxac, a prototype for an efficient and portable system sup-
porting memory-mapped transactions. Libxac is a C library that supports atomic
transactions on memory-mapped files. Libxac guarantees that transactions are seri-
alizable, and it uses a multiversion concurrency control algorithm to ensure that all
transactions, even aborted transactions, always see a consistent view of a memory-
mapped file. Libxac was tested on Linux, and it is portable because it is written as
a user-space library, and because it does not rely on special operating system support
for transactions.

With Libxac, I was easily able to convert existing serial, memory-mapped im-
plementations of a B+-tree and a cache-oblivious B-tree into parallel versions that
support concurrent searches and insertions. To test the performance of memory-
mapped transactions, I ran several experiments inserting elements with random keys
into the Libxac B+-tree and Libxac cache-oblivious B-tree. When a single pro-
cess performed each insertion as a durable transaction, the Libxac search trees ran
between 4% slower and 67% faster than the B-tree for Berkeley DB, a high-quality
transaction system. Memory-mapped transactions have the potential to greatly sim-
plify the programming of concurrent data structures for databases.

Thesis Supervisor: Charles E. Leiserson
Title: Professor of Computer Science and Engineering

Thesis Supervisor: Bradley C. Kuszmaul
Title: Research Scientist

3

4

Acknowledgments

These acknowledgments are presented in a random order:

I would like to thank my advisor, Charles E. Leiserson for his helpful comments

on this thesis, and on his helpful advice in general.

I would also like to thank Bradley C. Kuszmaul, who has been deeply involved

in this project from day one. Bradley’s initial idea started me on this project that

eventually became Libxac, and I have had many helpful discussions with him on this

topic ever since.

I’d like to thank Bradley for giving me an implementation of a B+-tree, and

Zardosht Kasheff for the code for the cache-oblivious B-tree. The experimental results

on search trees without Libxac are primarily the work of Bradley, Michael A. Bender,

and Martin Farach-Colton.

All of the people in the SuperTech group deserve a special round of acknowledg-

ments. Those people in SuperTech, also in random order, include Gideon, Kunal,

Jeremy, Angelina, John, Tim, Yuxiong, Vicky, and Tushara. Everyone has been won-

derfully patient in listening to my ramblings about transactions, names for Libxac,

research, and life in general. They have all kept me (relatively) sane throughout the

past year. In particular, I’d like to Kunal, Angelina, and Jeremy for their feedback

on parts of my thesis draft, and more generally for choosing to serve the same sen-

tence. I’d also like to thank Ian and Elizabeth, who are not in the SuperTech group,

but have also been subjected to conversations about transactions and other research

topics. Thanks to Leigh Deacon, who kept SuperTech running administratively.

Thanks to Akamai and MIT for the Presidential fellowship that funded my stay

here this past year. Also, thanks to the people I met through SMA for their helpful

comments on the presentation I gave in Singapore.

Thank you to my family and to my friends, here at MIT and elsewhere. Without

their support, none of this would have been possible.

I apologize to all those other people I am sure I have missed that deserve acknowl-

edgments. I will try to include you all when the next thesis rolls around.

5

This work was partially supported by NSF Grant Numbers 0305606d and 0324974,

and by the Singapore MIT Alliance. Any opinions, findings and conclusions or recom-

mendations expressed in this material are those of the author(s) and do not necessarily

reflect the views of the National Science Foundation (NSF).

6

Contents

1 Introduction 17

1.1 Explicit I/O vs. Memory Mapping 19

1.2 Locks vs. Transactions . 23

1.3 Concurrent Disk-Based Programs . 30

1.4 Thesis Overview . 32

2 The Libxac Interface 37

2.1 Programming with Libxac . 38

2.2 Semantics of Aborted Transactions 45

2.3 Optimizations for Libxac . 50

2.4 Related Work . 51

2.5 Advantages of the Libxac Interface 55

3 The Libxac Implementation 57

3.1 Overview . 58

3.2 Transactions on a Single Process . 62

3.3 Concurrent Transactions . 67

3.4 Conclusion . 74

4 A Performance Study 77

4.1 The Hardware . 78

4.2 Performance of Nondurable Transactions 80

4.2.1 Page-Touch Experiment . 80

7

4.2.2 Page-Touch with an Advisory Function 81

4.2.3 Decomposing the Per-Page Overhead 85

4.3 Durable Transactions . 91

4.4 Testing Concurrency in Libxac . 92

5 Search Trees Using Libxac 97

5.1 Introduction . 98

5.2 Serial B+-trees and CO B-trees . 102

5.3 Search Trees Using Libxac . 105

5.4 Durable Transactions on Search Trees 106

5.5 Summary of Experimental Results . 108

6 Conclusion 113

6.1 Ideas for Future Work . 114

6.2 Libxac and Transactional Memory 115

A Restrictions to the Libxac Interface 125

A.1 Restrictions to Libxac . 125

B Transaction Recovery in Libxac 129

C Detailed Experimental Results 135

C.1 Timer Resolution . 135

C.2 Page-Touch Experiments . 137

C.3 Experiments on Various System Calls 137

C.4 Durable Transactions . 141

C.5 Concurrency Tests . 144

C.6 Search Trees using Libxac . 144

8

List of Figures

1-1 Two versions of a simple C program that reads the first 4-byte integer

from each of 5 randomly selected pages of a file, computes their sum,

and stores this value as the first 4-byte integer on a randomly selected

6th page. In Program A, the entire file is brought into memory using

read, the selected pages are modified, and the entire file is written out

to disk using write. On the first 5 pages, Program B does an explicit

disk seek to read the first integer. Then B does a seek and a write to

modify the 6th page. 20

1-2 A third version of the C program from Figure 1-1, written using mmap. 22

1-3 Concurrent processes sharing data through a memory mapped file. . . 24

1-4 An interleaving of instructions from the execution of the programs in

Figure 1-3 that causes a data race. 24

1-5 Two different locking protocols for the program in Figure 1-2. Program

D acquires a global lock, while Program E acquires a different lock for

every page. For simplicity, only the body of the code is shown here. . 26

1-6 Program F. This version of the program from Figure 1-2 is written

with memory-mapped transactions. 28

1-7 An illustration of the possible space of programs that can concurrently

access data on disk. 31

2-1 Libxac program that increments the first integer of a memory-mapped

file. 40

9

2-2 A side-by-side comparison of the program in Figure 1-2 and the parallel

version written with Libxac. 42

2-3 A recursive function that uses nested transactions. 43

2-4 A transaction that that accesses local variables inside a transaction. . 48

3-1 Changes to the memory map for a simple transaction. 61

3-2 An example of a consistency tree. 69

4-1 A simple transaction that (a) reads from n consecutive pages, and (b)

writes to n consecutive pages. 81

4-2 Average time per page to execute the transactions shown in Figure 4-1

on Machine 1. For each value of n, each transaction was repeated 1000

times. 82

4-3 The transactions in Figure 4-1 written with the advisory function. The

transaction in (a) reads from n consecutive pages, the transaction in

(b) writes to n consecutive pages. 83

4-4 Average time per page to execute the transactions shown in Figure 4-3

on Machine 1. For each value of n, each transaction was repeated 1000

times. 84

4-5 Concurrency Test A: Each transaction increments the first integer on

a page 10,000 times. 94

4-6 Concurrency Tests B and C: Test B increments every integer on the

page. Test C repeats the transaction in Test B 1,000 times. I omit the

outermost for-loop, but as in Figure 4-5, each transaction is repeated

10,000 times. 94

5-1 An illustration of the Disk Access Machine (DAM) model. 99

5-2 The van Emde Boas layout (left) in general and (right) of a tree of

height 5. 101

5-3 Machine 3: Time for kth most expensive insert operation. 109

10

B-1 An example of a Libxac log file when transactions execute (a) on one

process, and (b) on two processes. 130

C-1 Machine 1:Distribution of Delay Times Between Successive gettimeofday

Calls. 137

C-2 Average time per page to execute the transactions shown in Figure 4-3

on Machine 2. For each value of n, each transaction was repeated 1000

times. 138

C-3 Average time per page to execute the transactions shown in Figure 4-3

on Machine 3. For each value of n, each transaction was repeated 1000

times. 139

C-4 Average time per page to execute the transactions shown in Figure 4-3

on Machine 4. For each value of n, each transaction was repeated 1000

times. 140

11

12

List of Tables

2.1 The Libxac functions for nondurable transactions. 39

4.1 Processor speeds and time per clock cycle for the test machines. . . . 80

4.2 Average # of clock cycles per page access for transactions touching

1024 pages, with and without the advisory function. Numbers are in

thousands of cycles. Percent speedup is calculated as 100
(

Normal - With Adv
Normal

)

. 85

4.3 Number of clock cycles required to enter SIGSEGV handler, call mmap,

and exit handler (average of 10,000 repetitions). 86

4.4 Clock cycles required to write to a page for the first time after memory

mapping that page. Each experiment was repeated 5 times. 87

4.5 Clock cycles required for a memcpy between two 4K character arrays in

memory. 88

4.6 Average # of clock cycles per page access for transactions touching

1024 pages. All numbers are in thousands of clock cycles. 89

4.7 Average Access Time (µs) per Page, for Transactions Touching 1024

Pages. 91

4.8 Time required to call msync and fsync on a 10,000 page file with one

random page modified, 1000 repetitions. All times are in ms. 93

4.9 Concurrency tests for nondurable transactions. Times are µs per trans-

action. Speedup is calculated as time on 1 processor over time on 2

processors. 95

4.10 Concurrency tests for durable transactions. Times are milliseconds per

transaction. 96

13

5.1 Performance measurements of 1000 random searches on static trees.

Both trees use 128-byte keys. In both cases, we chose enough data

so that each machine would have to swap. On the small machine, the

CO B-tree had 223 (8M) keys for a total of 1GB. On the large machine,

the CO B-tree had 229 (512M) keys for a total of 64GB. 103

5.2 Timings for memory-mapped dynamic trees. The keys are 128 bytes

long. The range query is a scan of the entire data set after the in-

sert. Berkeley DB was run with the default buffer pool size (256KB),

and with a customized loader that uses 64MB of buffer pool. These

experiments were performed on the small machine. 104

5.3 The time to insert a sorted sequence 450,000 keys. Inserting sorted

sequence is the most expensive operation on the packed memory array

used in the dynamic CO B-tree. 105

5.4 Changes in Code Length Converting B+-tree and CO B-tree to Use

Libxac. 106

5.5 Time for 250,000 durable insertions into Libxac search trees. All times

are in ms. Percent speedup is calculated as 100(t1−t2)
t2

, where t1 and t2

are the running times on 1 and 2 processors, respectively. 107

5.6 The % speedup of Libxac search trees over Berkeley DB. Percent

speedup is calculated as 100(tL−tB)
tB

, where tL and tB are the running

times on the Libxac and the Berkeley DB tree, respectively. Speedup

is t1/t2. 107

C.1 Delay (in clock cycles) between successive calls to timer using rdtsc

instruction, 10,000 repetitions. 136

C.2 Delay between successive calls to gettimeofday (in µs), 10,000 repe-

titions. 136

C.3 Timing data for entering SIGSEGV handler, calling mmap, and leaving

handler, 10,000 repetitions. All times are processor cycles. 141

14

C.4 Clock cycles to do 1,000 calls to memcpy between two 4K character

arrays in memory, 1,000 repetitions. times are in µs. 141

C.5 Average Access Time (µs) per Page, for Transactions Touching 1024

Pages. 142

C.6 Timing data for calling msync and fsync on a 10,000 page file with a

random page modified, 1000 repetitions. All times are in µs. 143

C.7 Time to write 10,000 pages to a file, 1,000 repetitions. All times are in

µs. 143

C.8 Time to compute SHA1 and MD5 hash functions on a single page. All

times are in thousands of clock cycles. 143

C.9 Concurrency tests for nondurable transactions. Times are µs per trans-

action. 145

C.10 Concurrency tests for durable transactions. Times are per transaction. 146

C.11 Time to do 250,000 nondurable insertions into Libxac search trees. . 147

C.12 Time to do 250,000 durable insertions on a single process into the

various search trees, with write-caches on the harddrives enabled. All

times are in ms. 148

15

16

Chapter 1

Introduction

In this thesis, I argue that memory-mapped transactions provide a simple yet expres-

sive interface for writing programs with multiple processes that concurrently access

persistent data. Memory-mapped transactions rely on two important components:

memory mapping and transactions. Memory mapping uses virtual-memory mecha-

nisms to present the programmer with the illusion of a single level of storage, simpli-

fying code by allowing a program to access data on disk as though it were stored in

main memory, without explicit input/output (I/O) operations. Transactions simplify

parallel programs by providing a mechanism for easily specifying that a critical sec-

tion of code executes atomically, without using locks. Memory-mapped transactions

combine the advantages of both memory mapping and transactions to provide an in-

terface that allows programs to concurrently access data on disk without explicit I/O

or locking operations. This interface allows a programmer to design a complex serial

program that accesses only main memory, and with little to no modification, convert

the program into correct code with multiple processes that can simultaneously access

disk.

To demonstrate my thesis, I implemented Libxac, a prototype for an efficient and

portable system supporting memory-mapped transactions. Libxac is a C library that

supports atomic transactions on memory-mapped files. With Libxac, I was easily

able to convert existing serial, memory-mapped implementations of a B+-tree and

a cache-oblivious B-tree (CO B-tree) into parallel versions that support concurrent

17

searches and insertions. To test the performance of memory-mapped transactions

in an actual application, I ran several experiments inserting 250,000 elements with

randomly chosen keys into the Libxac B+-tree and Libxac CO B-tree. When a

single process performed each insertion as a durable transaction, the Libxac search

trees ran between 4% slower and 67% faster than the B-tree for Berkeley DB [44], a

high-quality transaction system. This result shows that the Libxac prototype can

support durable memory-mapped transactions on a single process efficiently in an

actual application.

In the remainder of this chapter, I exhibit several example programs that illustrate

how memory-mapped transactions can be both efficient and easy to use. First, I

explain how a program written with memory mapping more easily achieves both of

these advantages simultaneously, compared to a program written with explicit I/O.

Section 1.1 describes three programs that access 6 random locations of a file on disk.

The first program that uses explicit I/O to read and buffer the entire file in an array

in memory is easy to code but is inefficient. The second program that does an explicit

I/O operation before every access to the file is more efficient, but harder to code. The

third program that uses memory mapping, however, is both efficient and easy to code.

Next, I show that in code with multiple processes, transactions can be both ef-

ficient and easy to use compared with explicit locking. Programmers traditionally

use locks in parallel programs to avoid errors caused by data races. In Section 1.2,

I present two programs that use both locks and memory mapping to concurrently

access disk. The first program that uses a global lock is easy to code, but is inef-

ficient because the accesses to shared memory are effectively serialized. The second

program that uses a fine-grained locking scheme is more efficient because it admits

more concurrency, but it is more difficult to program correctly. I then describe a third

program using transactions that is as easy to code as the first program but is also as

efficient as the second program.

Memory-mapped transactions combine the advantages of both memory mapping

and transactions to provide a simple interface for programs with multiple processes

that simultaneously access disk. I conclude this chapter in Section 1.4 by illustrating

18

how memory-mapped transactions fit into the space of programs that concurrently

access disk, and by presenting an outline of the rest of this thesis.

1.1 Explicit I/O vs. Memory Mapping

For serial programs that access data on disk, memory-mapped transactions exhibit

many of the advantages of normal memory mapping. In this section, I present two

versions of a program that both use explicit I/O operations instead of memory map-

ping to access disk. The first program is easy to code but inefficient, while the second

program is more efficient but more difficult to code. Finally, I describe a third pro-

gram using memory mapping that is both efficient and easy to code, thereby retaining

the advantages of both explicit I/O solutions.

Using Explicit I/O to Access Disk

Consider a toy C program which reads the first 4-byte integer from each of 5 randomly

selected 4096-byte pages of a file, computes their sum, and stores this sum in a 6th

randomly-selected page. Figure 1-1 illustrates two versions of this program, both

coded in C using explicit I/O operations. Program A uses the read system call to

buffer the entire file in memory, does the entire computation, and then uses the write

system call to save the modifications to disk. Program B does an explicit read on

each of the 5 integers and then uses write to modify the value of the 6th integer.

Program A has the advantage that the main body (Lines 13 through 22) is simple

to code. The program can easily manipulate the data because it is buffered in the

array x. This version of the code also requires only two explicit I/O operations. If

the file happens to be stored sequentially on disk, then these operations cause only

two disk seeks: one to read in the file and one to write it back out to disk.

On the other hand, Program A is inefficient when the file is large compared to

the number of pages being accessed. If the program were accessing 50,000 different

pages, then reading in all 100,000 pages of the file might make sense. Reading the

whole file into memory is wasteful, however, when a program accesses only 6 different

19

// Program A buffers the

// entire file.

1 int fileLength = 100000;

2 int main(void) {

3 int i, j, sum = 0;

4 int fd;

5 int* x;

6

7 fd = open("input.db",

8 O_RDWR, 0666);

9 x=(int*)malloc(4096*fileLength);

10 read(fd, (void*)x,

11 4096*fileLength);

12

13 for (j = 0; j < 5; j++) {

14 i = rand() % fileLength;

15

16

17 sum += x[1024*i];

18 }

19

20 i = rand() % fileLength;

21

22 x[1024*i] = sum;

23

24 lseek(fd, 0, SEEK_SET);

25 write(fd, (void*)x,

26 4096*fileLength);

27 close(fd);

28 return 0;

29 }

// Program B reads and writes

// each int individually.

1 int fileLength = 100000;

2 int main(void) {

3 int i, j, sum = 0;

4 int fd;

5 int value;

6

7 fd = open("input.db",

8 O_RDWR, 0666);

9

10

11

12

13 for (j = 0; j < 5; j++) {

14 i = rand() % fileLength;

15 lseek(fd, 4096*i, SEEK_SET);

16 read(fd, &value, 4);

17 sum += value;

18 }

19

20 i = rand() % fileLength;

21 lseek(fd, 4096*i, SEEK_SET);

22 write(fd, &value, 4);

23

24

25

26

27 close(fd);

28 return 0;

29 }
A B

Figure 1-1: Two versions of a simple C program that reads the first 4-byte integer from each
of 5 randomly selected pages of a file, computes their sum, and stores this value as the first
4-byte integer on a randomly selected 6th page. In Program A, the entire file is brought
into memory using read, the selected pages are modified, and the entire file is written out
to disk using write. On the first 5 pages, Program B does an explicit disk seek to read the
first integer. Then B does a seek and a write to modify the 6th page.

20

pages.

Program B is more efficient because it avoids reading in the entire file by doing

an explicit disk read or write to access each page. The tradeoff is that the main

body of Program B is cluttered with additional explicit I/O operations. Program A

simply reads the first integer on a page in Line 17 by accessing an array in memory.

In Lines 15 and 16, Program B must first position the cursor into the file and then

read in the value. For a larger program with more complicated data structures and

a more complicated data layout, it is cumbersome to repeatedly calculate the correct

file offsets every time the program accesses a new piece of data.

Using Memory Mapping to Access Disk

A version of program that uses memory mapping can be both easy to code and effi-

cient compared to a version written with explicit I/O. Figure 1-2 presents Program C,

a program that uses memory mapping to combine the ease of programming of Pro-

gram A with the efficiency of Program B. In Lines 9–11, Program C uses mmap to

memory-map the entire file instead of reading it into memory. After calling mmap, the

program can access the file through the pointer x as though it was a normal array

in main memory. Thus, the body of the two programs, Lines 13–22, are exactly the

same.

Although Program C appears similar to Program A, Program C is still efficient

because the operating system only buffers those pages of the file that the program

accesses through x. Thus, the programmer achieves the efficiency of Program B with-

out coding explicit read and write operations. Memory mapping gives programmers

the best of both worlds.

Although Program C in Figure 1-2 is only a toy example, its behavior is designed to

match the page-access pattern of more practical applications. For example, consider

an application that checks for a path between two vertices in a graph. On a large

graph, a long path is likely to jump around to vertices stored on different pages.

Similarly, another application that can generate seemingly random memory accesses

is following pointers down a linked list.

21

// Program C memory-maps

// the file.

1 int fileLength = 100000;

2 int main(void) {

3 int i, j, sum = 0;

4 int fd;

5 int* x;

6

7 fd = open("input.db",

8 O_RDWR, 0666);

9 x=(int*)mmap(0, 4096*fileLength,

10 PROT_READ|PROT_WRITE,

11 MAP_SHARED, fd, 0);

12

13 for (j = 0; j < 5; j++) {

14 i = rand() % fileLength;

15

16

17 sum += x[1024*i];

18 }

19

20 i = rand() % fileLength;

21

22 x[1024*i] = sum;

23

24 munmap(x, fileLength);

25

26

27 close(fd);

28 return 0;

29 }

// Program A buffers the

// entire file.

1 int fileLength = 100000;

2 int main(void) {

3 int i, j, sum = 0;

4 int fd;

5 int* x;

6

7 fd = open("input.db",

8 O_RDWR, 0666);

9 x=(int*)malloc(4096*fileLength);

10 read(fd, (void*)x,

11 4096*fileLength);

12

13 for (j = 0; j < 5; j++) {

14 i = rand() % fileLength;

15

16

17 sum += x[1024*i];

18 }

19

20 i = rand() % fileLength;

21

22 x[1024*i] = sum;

23

24 lseek(fd, 0, SEEK_SET);

25 write(fd, (void*)x,

26 4096*fileLength);

27 close(fd);

28 return 0;

29 }

C A

Figure 1-2: A third version of the C program from Figure 1-1, written using mmap.

22

1.2 Locks vs. Transactions

For programs with multiple processes that access shared memory, memory-mapped

transactions represent a more convenient alternative than locks. In this section, I

illustrate an example of a program written using memory-mapped transactions that

is more efficient and easier to code than two corresponding programs both written

using locks.

First, I illustrate how a data race in parallel code can cause a program error,

and then describe locking, the traditional solution for eliminating data races. I then

present two versions of the program from Figure 1-2 coded with locks. The first

version is correct and easy to code, but it has poor performance when two processes

each run a copy of the program concurrently. The second version executes more

efficiently in parallel, but it is incorrect because it has the potential for deadlock.

Finally, I describe a third program using memory-mapped transactions that is as

simple to code as the first program, but still executes efficiently in parallel as the

second program.

Data Races in Parallel Programs

Memory mapping, in addition to facilitating access to data on disk, also allows mul-

tiple processes to share data through a memory-mapped file. Consider the two C

programs in Figure 1-3. Programs 1 and 2 increment and decrement the first 4-byte

integer in the file input.db, respectively. If x[0] has an initial value of 42, then if

both programs run concurrently, we expect that after both programs finish executing,

the value of x[0] will still be 42.

It is possible, however, that the value of x[0] may be corrupted by a data race. A

data race occurs when two or more concurrent processes try to read or write from the

same memory location simultaneously with at least one of those accesses being a write

operation [43]. For example, consider an execution where the machine instructions

for x[0]++ and x[0]-- are interleaved as shown in Figure 1-4. The increment and

decrement operations in Figure 1-3 may be decomposed into three machine instruc-

23

// Program 1

int main(void) {

int fd;

int* x;

fd = open("input.db",

O_RDWR, 0666);

x=(int*)mmap(x, 4096,

PROT_READ |

PROT_WRITE,

MAP_SHARED, fd, 0);

x[0]++;

munmap(x, 4096);

close(fd);

return 0;

}

// Program 2

int main(void) {

int fd;

int* x;

fd = open("input.db",

O_RDWR, 0666);

x=(int*)mmap(x, 4096,

PROT_READ |

PROT_WRITE,

MAP_SHARED, fd, 0);

x[0]--;

munmap(x, 4096);

close(fd);

return 0;

}

Figure 1-3: Concurrent processes sharing data through a memory mapped file.

Program 1 Program 2 x[0] R1 R2

R1 ← x[0] 42 42 –
R2 ← x[0] 42 42 42

R1 ← R1 + 1 42 43 42
R2 ← R2 - 1 42 43 41

x[0] ← R1 43 43 41
x[0] ← R2 41 43 41

Figure 1-4: An interleaving of instructions from the execution of the programs in Figure
1-3 that causes a data race.

tions: the first loads the value of x[0] into a register, the next updates the value,

and the last stores the register back into memory. Suppose that the initial value

of x[0] is 42. If both programs load the value of x[0], after which both programs

store a new value, then the final value of x[0] may be 41 or 43, depending on which

program completes its store to x[0] first. Such nondeterministic behavior is usually

a programming error.

24

Parallel Programming with Locks

The traditional method for eliminating data races is to acquire locks before executing

critical sections of code. Locks guarantee mutual exclusion, i.e., that the critical sec-

tions of code do not execute concurrently. A straightforward method for eliminating

the data race from the code in Figure 1-3 is for each program to acquire a global

lock, modify x[0], and then release the global lock. Using the lock ensures that the

interleaving of operations in Figure 1-4 cannot occur.

For more complicated programs, however, it is not always clear what the best

locking protocol to use is. Suppose that we have two processes, each running a

copy of Program C from Figure 1-2 concurrently. With different random seeds, each

process most likely accesses different pages. A correct version of Program C still

requires locks, however, as it is still possible to have a data race if both processes

happen to access the same random page and one of the processes is writing to that

page. Figure 1-5 illustrates Programs D and E, two versions of Program C that both

use locks.

Program D is correct, but it exhibits poor performance when two copies of D run

on concurrent processes. Because Program D acquires a global lock, it is impossible

for the processes to update the array x concurrently. The critical sections in each

process execute serially even if they could have correctly run simultaneously.

Program E acquires a lock before it accesses every page, allowing two processes

that each run a copy of Program E to execute concurrently when the set of pages they

touch is disjoint. Program E is more efficient than Program D, but unfortunately E

suffers from the problem of being incorrect. Because the program randomly selects

pages to touch, there is no specified order that each program follows when acquiring

locks. Thus, it is possible for the system to deadlock if each program waits to acquire

a lock that is held by the other. For example, one process running Program E could

acquire a lock on page 10 be waiting to acquire the lock on page 43, while the other

process has already acquired the lock on page 43 and is waiting on the lock for page

10.

25

// Program D: Global Lock

1 lockVar globalLock;

2

3 ...

4 lock(globalLock);

5 for (j = 0; j < 5; j++) {

6 i=rand()%fileLength;

7

8 sum += x[1024*i];

9 }

10

11 i=rand()%fileLength;

12

13 x[1024*i] = sum;

14

15 unlock(globalLock);

16

17

// Program E: Page-Granularity Locking

1 lockVar pageLocks[fileLength];

2 int lockedPages[6];

3 ...

4

5 for (j = 0; j < 5; j++) {

6 lockedPages[j]=4096*(rand()%fileLength);

7 lock(pageLocks[lockedPages[j]]);

8 sum += x[lockedPages[j]];

9 }

10

11 lockedPages[5]=4096*(rand()%fileLength);

12 lock(pageLocks[lockedPages[5]]);

13 x[lockedPages[5]] = sum;

14

15 for (j = 0; j < 6; j++) {

16 unlock(pageLocks[lockedPages[j]]);

17 }

D E

Figure 1-5: Two different locking protocols for the program in Figure 1-2. Program D ac-
quires a global lock, while Program E acquires a different lock for every page. For simplicity,
only the body of the code is shown here.

Deadlock can be avoided in Program E if we first precompute the 6 random pages

that will be accessed by the program and then acquire the locks in order of increasing

page number. This approach does not work in a more complicated program where

the next page to access depends on the data stored in the current page (for example,

if we are following pointers down a linked list). Other deadlock-free solutions for this

problem exist, but all require additional code that is even more complicated than

Program E.

The example in Figure 1-5 demonstrates two alternatives for programming with

locks. We can implement a simple but inefficient locking scheme that is clearly cor-

rect, or we can implement a complex but more efficient locking scheme that is more

difficult to program correctly. Furthermore, we are allowed to pick only one of these

alternatives. If we run Program D on one process and run Program E concurrently

on another process, then then we have a data race because both programs have not

agreed upon the same locking protocol. Locking protocols are often implementation-

specific, breaking natural program abstractions and modularity.

26

As a final sad end to this story, imagine that somewhere in the midst of a large

piece of software, we forget to add locks to one copy of Program C. Discovering this

error through testing and simulation becomes more difficult as the file size grows.

The probability that both programs access the same pages and that the operations

interleave in just the right (or perhaps, wrong) way to cause an error is quite small.

Data races are not just a theoretical problem: these programming errors can have

real-world consequences. In August of 2003, a race condition buried in 4 million lines

of C code helped cause the worst power blackout in North American history [30]. A

correct locking protocol is useless if the programmer forgets to use it.

Parallel Programming with Memory-Mapped Transactions

Programming with memory-mapped transactions is more convenient than program-

ming with locks. In this section, I present a new version of the program from Figure

1-2 written with memory-mapped transactions that is as simple to code as Program

D, but still admits concurrency when the critical sections of code are independent as

in Program E.

A transaction, as described in [18, 20], is a fundamental abstraction that is used

extensively in database systems. Conceptually, a transaction is a section of code

that appears to either execute successfully (i.e., it commits), or not execute at all

(i.e., it aborts). For databases, transaction systems typically guarantee the so-called

ACID properties for transactions: atomicity, consistency, isolation, and durability

[20]. These properties guarantee that two committed transactions never appear as

though their executions were interleaved. Thus, data races can be eliminated by

embedding the relevant critical sections of code inside transactions.

Programming with transactions has traditionally been limited to database sys-

tems. With Herlihy and Moss’s proposal for transactional memory in [24], however,

many researchers (including [1, 14, 21, 22, 23, 25, 42]) have begun to focus on trans-

actions as a viable programming paradigm in more a general context.1 The term

1I doubt I have come anywhere close to citing all the relevant papers on transactional memory,
especially since new papers are appearing on a regular basis. My apologies to anyone I have missed.

27

1 while(1) {

2 xbegin();

3

4 for (j = 0; j < 5; j++) {

5 i = rand() % fileLength;

6 sum += x[1024*i];

7 }

8

9 i = rand() % fileLength;

10 x[1024*i] = sum;

11

12 if (xend() == COMMITTED) break;

13 backoff();

14 }

Figure 1-6: Program F. This version of the program from Figure 1-2 is written with memory-
mapped transactions.

transactional memory is used by Herlihy and Moss in [24] to describe a hardware

mechanism, built using existing cache-coherency protocols, that guarantees that a

set of transactional load and store operations executes atomically. More generally,

others have used the term to refer to any system, hardware or software, that provides

a construct that facilitates programming with transactions.

I describe an interface for programming with transactions in C modeled after the

interface described in [1]. The authors of [1] describe a hardware scheme that provides

two machine instructions, xbegin and xend. All instructions of a thread that execute

between an xbegin/xend pair represent a single transaction that is guaranteed to

execute atomically with respect to all other transactions. I have implemented Libxac,

a C library supporting transactions in which xbegin and xend are function calls.

Figure 1-6 illustrates the body of a simple program using a memory-mapped trans-

action. Program F is another version of our favorite example from Figure 1-2, a ver-

sion converted to use transactions.2 Superficially, Program F is almost identical to

Program D. The only differences are that we have replaced the acquire/release lock-

ing operations with xbegin and xend, and we have enclosed the entire transaction in

2For simplicity, I show only the body of the transaction here. Chapter 1.4 presents the complete
interface.

28

a while loop to retry the transaction in case of an abort. If the transaction aborts,

any modifications that the transaction made to x are automatically rolled back by

the underlying transaction system. Therefore, when the xend function completes, the

transaction either appears to have atomically modified x, or it appears as though no

changes to x were made at all. Program F still has the advantage of D, that writing

a race-free parallel program is relatively easy.

Although Programs D and F appear quite similar, their behavior during execution

is quite different. When two copies of Program F run concurrently on different pro-

cesses, the two processes can modify x concurrently, while in Program D, the updates

to the array must occur serially. The transactions in Program F are only aborted

in the unlikely event that the the two transactions conflict with each other. Thus,

Program F can be just as efficient as with page-granularity locking in Program E,

but as simple to code as a program with a global lock in Program D.

If two processes each run copies of Program F, there is no problem with deadlock

as with Program E. Since one transaction aborts if two transactions conflict with

each other, it is impossible to have the two processes each waiting on the other. With

transactions, there may be a possibility for livelock, i.e., when two or more transactions

never succeed because they keep aborting each other. This situation, I argue, is much

easier for the programmer to avoid than deadlock. The programmer is better equipped

to deal with a transaction abort than a deadlock because the programmer already

codes a transaction taking into account the possibility that the transaction may not

succeed. In contrast, without some external mechanism for detecting and resolving

deadlocks, there is little the programmer can do in the code that is waiting to acquire

a lock.

To avoid livelock, the programmer can also implement a backoff function, as in

Line 13 of Program F. This function specifies how long a transaction waits before

retrying after an abort. If the programmer chooses an appropriate backoff strategy,

then it is likely that the transactions will complete in a reasonable amount of time.

One key property is that each transaction can have a different backoff function, and

the code will still run correctly. Transactions with different backoff strategies do not

29

have the same incompatibility problem that programs using different locking protocols

have.

Finally, the underlying transaction system may specify a policy for aborting trans-

actions that guarantees that a transaction always eventually succeeds, thereby elimi-

nating the problem of livelock altogether. For example, the transaction system could

guarantee that whenever two transactions conflict, that the one that began first always

succeeds. This mechanism guaranteers that a transaction always succeeds eventually,

as the oldest transaction in the system never gets aborted. The underlying transac-

tion system may also implement other policies for resolving transaction conflicts. The

effect of using different policies for the application programmer is minimal, however,

in the common case where transactions rarely conflict with each other.

1.3 Concurrent Disk-Based Programs

In this section, I characterize the space of programs that concurrently manipulate

data on disk and describe where memory-mapped transactions belong in this space.

Throughout this chapter, I have presented multiple versions of the same hypo-

thetical program that sums the first integer from each of 5 random pages of a file

and stores the result into the first integer on a 6th random page. Figure 1-7 illus-

trates where each of these programs belongs in the space of possible programs that

concurrently access disk.

The horizontal axis depicts how the program accesses disk. Programs that access

disk using explicit I/O operations are on the left, programs that do not access disk at

all are in the middle, and programs that use memory mapping to access disk are on

the right. Moving right along this axis corresponds to a higher level of abstraction. In

Programs A and B, the programmer codes explicit I/O operations, while in Program

C the distinction between main memory and disk is almost completely abstracted

away by the use of memory mapping.

Similarly, the vertical axis depicts how the programs handle concurrency. Pro-

grams that use transactions are at the top, programs that run code serially are in

30

Figure 1-7: An illustration of the possible space of programs that can concurrently access
data on disk.

the middle, and programs that use explicit locking are on the bottom. Moving up

corresponds to a higher levels of abstraction: with transactions, the programmer can

write parallel programs without worrying about the details of concurrency control

that a program with locks must deal with. Programs D and E both use memory

mapping to access disk, but they use locking to avoid data races.

Programs that use Libxac, a library for supporting memory-mapped transactions,

fit into the upper right corner of this diagram. This corner represents the most

convenient place for the application programmer: programmers can write code with

multiple processes that simultaneously access disk without worrying about explicit

locking or I/O operations.

Programs in the three other corners of this diagram exist as well. The lower left

corner, programs with explicit I/O and locking, is where the programmer has the most

control over the details of the code. For a simple application, a programmer may be

able to create an efficient, optimized program. The difficulty of doing such optimiza-

tions rapidly increases, however, as the application gets more complex. Program E is

an example of code that belongs in the lower right corner; the programmer does not

worry about moving data between disk and main memory, but does handle concur-

31

rency control. Finally, a program in the upper left corner works uses transactions, but

explicitly manages accesses to disk. In this case, the transaction system may provide

explicit transaction read and write operations from disk, and the transaction system

takes care of rolling back transactional writes to disk on an a transactional abort.

1.4 Thesis Overview

In this section, I describe the primary design goals of usability and portability for

Libxac, a C library for supporting memory-mapped transactions. Finally, I conclude

this chapter with an outline of the rest of this thesis.

Design Goals for Libxac

I designed Libxac with two primary goals in mind:

1. Libxac should provide an interface for concurrently accessing data on disk

that is simple and easy to use, but still expressive enough to provide reasonable

functionality. Programming with memory-mapped transactions, I argue in this

thesis, satisfies this requirement of usability.

2. Libxac should be portable to a variety of systems. For this reason, Libxac

is written as a user-level C library and tested on a Linux operating system.

Libxac relies only on generic memory mapping and signal-handling routines,

not on the special features of research operating systems or special hardware.

Outline

In this thesis, I argue that memory-mapped transactions provide a convenient inter-

face for concurrent and persistent programming. I also present evidence that suggests

that it is possible to support a memory-mapped transactional interface portably and

efficiently in practice.

32

Programming Interface

First, I demonstrate that an interface based on memory-mapped transactions has a

well-defined and usable specification by describing the specification for Libxac, a C

library supporting memory-mapped transactions. Libxac provides an xMmap function

that allows programmers to memory-map a file transactionally. Programmers can

then easily specify transactions that access this file by enclosing the relevant code

between two function calls, xbegin and xend. Programming with memory-mapped

transactions is easy because the runtime automatically detects which pages in memory

a transaction accesses.

Libxac’s memory model guarantees that transactions are “serializable,” and that

aborted transactions always see a consistent view of the memory-mapped file. This

property leads to more predictable program behavior and in principle allows read-

only transactions to always succeed. Programs that use Libxac, I argue, are more

modular, and thus easier to write, debug, and maintain than code that with explicit

I/O or locking operations.

The specification for the interface and the memory model both simplify the writing

of programs that have multiple processes that concurrently access disk. With Libxac,

I was able to easily convert existing serial memory-mapped implementations of a

B+-tree and a cache-oblivious tree (CO B-tree) into a parallel version supporting

concurrent searches and insertions. This conversion took little time and required few

changes to the code, demonstrating the ease of using memory-mapped transactions

to code a concurrent, disk-based data structure.

In Chapter 1.4, I describe the Libxac specification and memory model. In Chap-

ter 5, I describe the conversion of the serial search tree implementations into parallel

versions.

Implementation

Next, I demonstrate that it is possible to implement a memory-mapped transaction

system by describing a prototype implementation of the Libxac specification on

33

Linux. The implementation itself uses memory mapping, thereby using Linux’s virtual

memory subsystem to buffer pages from disk in main memory. The Libxac prototype

also supports durable transactions on a single process by logging enough information

on disk to restore a memory-mapped file to a consistent state after a program crash.

The prototype does have several drawbacks; for example, it uses a centralized control

mechanism that limits concurrency, and it does not include the routine for recovery

yet. I argue that these drawbacks can be overcome, however, and that this prototype

shows that providing support for memory-mapped transactions is feasible in practice.

Although the prototype has many shortcomings, it does have the advantage of

being portable. The prototype relies primarily on the memory-mapping function

mmap and the ability to specify a user-level handler for the SIGSEGV signal to support

nondurable transactions. This implementation is more portable than transaction

systems that rely on special features of research operating systems [8, 11, 12, 19, 46].

In Chapter 3, I describe these details of the Libxac implementation.

Experimental Results

The last step is to determine whether memory-mapped transactions can be supported

efficiently in practice. I describe results from several experiments designed to measure

the prototype’s performance on both small nondurable and durable transactions that

fit into main memory. A durable transaction incurs additional overhead compared to

a nondurable transaction because the runtime logs enough information to be able to

restore the memory-mapped file to a consistent state in case the program crashes.

I first used the experimental data to construct a performance model for memory-

mapped transactions. For a small nondurable transaction that reads from R pages and

writes to W pages, this model estimates that the additive overhead for executing the

transaction is roughly of the form aR+bW , where a is between 15 to 55 microseconds

and b ≈ 2a. In some cases, at least 50% of this runtime overhead is spent entering and

exiting fault handlers and calling mmap. The majority of the remaining time appears

to be spent handling cache misses and page faults. The performance model for a

small durable transaction, is roughly aR + bW + c, where a is tens of microseconds, b

34

is hundreds to a few thousand microseconds, and c is between 5 and 15 milliseconds.

The single-most expensive operation for a durable transaction is the time required to

synchronously write data out to disk on a transaction commit.

I then ran experiments to estimate the potential concurrency of independent trans-

actions using Libxac. The results suggest that for a simple program that executes

independent, nondurable transactions on a multiprocessor machine, when the work

each transaction does per page is two orders of magnitude more than the per-page run-

time overhead, the program achieves near-linear speedup on two processes compared

to one process. The synchronous disk write required for each transaction commit ap-

pears to be a serial bottleneck that precludes any noticeable speedup when running

independent, durable transactions on multiple processes, however. An implementa-

tion that is modified to work with multiple disks might admit more concurrency for

durable transactions.

Finally, I measured the time required to insert 250,000 elements with randomly

chosen keys into a Libxac search tree. The Libxac B+-tree and CO B-tree were

both competitive with Berkeley DB, when a single process performed each insertion

as a durable transaction. On modern machines, the performance of the Libxac B+-

tree and CO B-tree ranged from being 4% slower to 67 % faster than insertions done

using Berkeley DB. The fact that a program using the unoptimized Libxac prototype

actually runs faster than a corresponding program using a high-quality transaction

system such as Berkeley DB is quite surprising. This promising result suggests that

it is possible for memory-mapped transactions to both provide a convenient program-

ming interface and still achieve good performance in an actual practical application.

I describe the construction of the performance model and the experiments for

estimating the concurrency of independent transactions in Chapter 4. I describe the

experiments on Libxac search trees in Chapter 5.

Future Work

My treatment of memory-mapped transactions in this thesis is certainly not com-

prehensive. I conclude this thesis in Chapter 6 by describing possible improvements

35

to the implementation and possible directions for future work. In particular, I dis-

cuss the possibility of using a transaction system such as Libxac to help support

unbounded transactional memory [1]. One weakness of the prototype is the overhead

required to execute nondurable transactions. By combining a hardware transactional

memory mechanism with a software transactional memory implementation such as

Libxac, it may possible to provide an interface for programming with nondurable

transactions that is both efficient and easy to use.

In summary, in this thesis, I argue that memory-mapped transactions simplify the

writing of programs with multiple processes that access disk. I then present evidence

that suggests that a memory-mapped transaction system can be efficiently supported

in practice.

36

Chapter 2

The Libxac Interface

In this chapter, I present the specification for Libxac, a C library supporting memory-

mapped transactions. Libxac demonstrates that a programming interface based on

memory-mapped transactions can have a well-defined and usable specification.

In Section 2.1, I illustrate how to write programs with memory-mapped transac-

tions. I present the prototypes for Libxac’s basic functions for nondurable transac-

tions and exhibit their use in a complete program. Libxac’s interface, modeled after

ordinary memory mapping, provides an xMmap function that allows a programmer to

memory-map a file transactionally. A programmer can easily specify a transaction

by enclosing the relevant code in between xbegin and xend function calls, and the

runtime automatically detects which pages a transaction accesses. Section 2.1 also

illustrates how Libxac supports nested transactions by subsuming inner transac-

tions into the outermost transaction, and describes additional functions for durable

transactions.

In Section 2.2, I show that memory-mapped transactions can have well-defined

semantics by describing Libxac’s memory model. This model guarantees that both

committed and aborted transaction instances are “serializable,” and that aborted

transactions always see a consistent view of the memory-mapped file. Transactions

abort synchronously at the xend call, and only changes to the xMmaped file are rolled

back on an abort; any changes that the transaction makes to local variables remain.

These restrictions on the behavior of aborted transactions, I argue, lead to more

37

predictable program behavior and thus simpler programs.

Because memory-mapped transactions provide a simple interface, opportunities

for additional program optimizations exist. I discuss three functions for optimizing

Libxac programs in Section 2.3. First, Libxac provides a function for explicitly

validating a transaction in the middle of execution. A program can prematurely

abort a transaction if this function reports that the runtime has already detected a

conflict. Second, Libxac uses a multiversion concurrency control scheme to provide

special functions for specifying read-only transactions that never generate transaction

conflicts. Finally, Libxac provides an advisory function that reduces the overhead

of automatic detection of pages accessed by a transaction.

I explain how memory-mapped transactions fit in the context of other work in

Section 2.4. I briefly describe other systems that provide mechanisms for simplify-

ing concurrent and/or persistent programming, focusing on three areas: transaction

systems for databases, persistent storage systems, and transactional memory.

In Section 2.5, I conclude with a summary of the main advantages of an interface

based on memory-mapped transactions. Programs and data structures written using

memory-mapped transactions are modular because they separate the concurrency

structure of the program from the specific implementation. Because memory-mapped

transactions hide details such as I/O operations and locking, programmers can easily

code complex but algorithmically efficient data structures. Finally, an interface based

on memory-mapped transactions is flexible because it can provide features such as

multiversion concurrency control and support for durable transactions.

2.1 Programming with Libxac

In this section, I illustrate how to write programs with memory-mapped transactions

using Libxac. First, I present the prototypes for Libxac’s basic functions for non-

durable transactions and demonstrate their use in two complete sample programs.

Next, I describe how Libxac’s supports nested subsumed transactions with another

sample program. Finally, I describe Libxac’s functions for supporting durable trans-

38

int xInit(const char *path,

int flags);

This function initializes Libxac. The path

argument specifies where Libxac stores
its log and control files. The flag specifies
the kind of transaction to support (either
NONDURABLE or DURABLE).

int xShutdown(void);

This function shuts down Libxac. This
function should be called only after finishing
all transactions on all processes.

void* xMmap(const char *name,

size_t length);

The xMmap function memory-maps the first
length bytes of the specified file transac-
tionally. Length must be a multiple of the
system page size. The function returns a
pointer to the transactionally-mapped file,
or MAP FAILED on an error.

int xMunmap(const char *name); The xMunmap unmaps the specified file.

int xbegin(void);
The xbegin function marks the beginning
of a transaction.

int xend(void);

The xend function marks the end of a
transaction. Returns COMMITTED (ABORTED)
if the transaction completed successfully
(unsuccessfully). For a nested transaction,
xend returns PENDING if no conflict has
been detected, and FAILED otherwise.

Table 2.1: The Libxac functions for nondurable transactions.

actions and some restrictions to the Libxac interface.

The Libxac Specification

Table 2.1 gives the prototypes for Libxac’s basic functions. All functions except

xMmap and xend return 0 if they complete successfully and a nonzero error code

otherwise.

39

1 int fileLength = 10;

2 int main(void) {

3 int* x;

4

5 xInit(".", NONDURABLE);

6 x = (int*)xMmap("input.db", 4096*fileLength);

7

8 while (1) {

9 xbegin();

10 x[0]++;

11 if (xend() == COMMITTED) break;

12 }

13

14 xMunmap("input.db");

15 xShutdown();

16 return 0;

17 }

Figure 2-1: Libxac program that increments the first integer of a memory-mapped file.

A Simple Libxac Program

Figure 2-1 illustrates a simple program using Libxac that increments the first integer

stored in the file input.db.

Line 5 calls xInit to initialize Libxac. The second argument is a flag specifying

whether transactions should be durable or nondurable. For durable transactions,

Libxac writes enough information to disk to guarantee that the data can be restored

to a consistent state, even if the program crashes during execution.

Line 6 calls xMmap to transactionally memory-map the first 10 pages of the file

input.db. This function returns a pointer to a shared-memory segment that corre-

sponds to the appropriate pages in the shared file. The second argument to xMmap

must be a multiple of the system’s page size. The function prototype for xMmap is

effectively a version of the normal mmap with fewer arguments.1

Lines 8–12 contain the actual transaction, delimited by xbegin and xend function

1Memory protections and sharing are handled by Libxac, eliminating the need for those extra
arguments. The xMmap function does not use an offset argument because the prototype currently
allows only mappings that start at the beginning of the file. A more general specification for xMmap
would behave more like mmap, handling multiple shared-memory segments and mappings of only
parts of a file.

40

calls. After calling xMmap, programs may access the shared-memory segment inside a

transaction (Line 10).2 The transaction appears to either execute atomically or not

at all. The xend function returns COMMITTED if the transaction completes successfully,

and ABORTED otherwise.

A transaction may abort because of a conflict with another concurrent transaction.

This program encloses the transaction in a simple loop that immediately retries the

transaction until it succeeds, but in a real application, the programmer may want to

specify some algorithm for backoff (i.e, waiting) between transaction retries to reduce

contention.

Libxac’s memory model guarantees that transactions are serializable with respect

to the shared-memory segment. In other words, when the program executes, there

exists a serial order for all committed transactions such that execution is consistent

with that ordering. For example, if two copies of the program in Figure 2-1 run

concurrently, the execution always appears as if one transaction happens completely

before the other. In particular, the interleaving shown in Figure 1-4 can never occur.

As I describe later in Section 2.2, Libxac actually makes a stronger guarantee, that

aborted transactions see a consistent view of the shared-memory segment as well.

Line 14 calls xMunmap, the transactional analog to munmap. This function should

not be called by a process until all transactions on that process have completed. Line

15 calls xShutdown to shuts down Libxac, guaranteeing that all changes made to

files that have been xMmaped have been stored on disk. After xShutdown completes,

it is safe to modify those files via normal means, such as mmap or write.

Programs with Complex Transactions

Libxac’s interface is easy to use because specifying a block of code as a transaction

is independent of that code’s complexity. Even a long and complicated transaction in

between xbegin and xend still appears to execute atomically. For example, recall the

program using memory-mapped transactions that reads the first 4-byte integer from

2Attempting to access the shared-memory segment outside a transaction results in unspecified
program behavior (usually a fatal program error).

41

// Serial version using mmap.

1 int fileLength = 100000;

2 int main(void) {

3 int i, j, sum = 0;

4 int fd;

5 int* x;

6 fd = open("input.db",

7 O_RDWR,

8 0666);

9 x = (int*)mmap(x,

10 4096*fileLength,

11 PROT_READ|PROT_WRITE,

12 MAP_SHARED,

13 fd,

14 0);

15

16

17 for (j = 0; j < 5; j++) {

18 i = rand() % fileLength;

19 sum += x[1024*i];

20 }

21

22 i = rand() % fileLength;

23 x[1024*i] = sum;

24

25

26

27 munmap(x, fileLength);

28 close(fd);

29 return 0;

30 }

// Concurrent version using Libxac

// and xMmap

1 int fileLength = 100000;

2 int main(void) {

3 int i, j, sum = 0;

4 int* x;

5

6 xInit(".", NONDURABLE);

7

8

9 x = (int*)xMmap("input.db",

10 4096*fileLength);

11

12

13

14

15 while (1) {

16 xbegin();

17 for (j = 0; j < 5; j++) {

18 i = rand() % fileLength;

19 sum += x[1024*i];

20 }

21

22 i = rand() % fileLength;

23 x[1024*i] = sum;

24 if (xend()==COMMITTED) break;

25 }

26

27 xMunmap("input.db");

28 xShutdown();

29 return 0;

30 }

Figure 2-2: A side-by-side comparison of the program in Figure 1-2 and the parallel version
written with Libxac.

each of 5 randomly selected pages in a file and stores their sum on a randomly selected

6th page (see Figure 1-6). Figure 2-2 compares the original serial memory-mapped

version of this program to the complete Libxac version. The only significant changes

in the transactional version are the addition of xbegin and xend calls and the while

loop to retry aborted transactions.

Libxac also supports simple nested transactions by subsumption, i.e., nested

inner transactions are considered part of the outermost transaction. This feature is

necessary for transactions that involve recursion. Consider the method in Figure 2-3

that recursively walks down a tree and computes the sum of all the nodes in the

42

1 int sum(tree* t) {

2 int answer = 0;

3 while (1) {

4 xbegin();

5 if (t == NULL) answer = 0;

6 else {

7 answer = t->value + sum(t->left) + sum(t->right);

8 }

9 if (xend() != ABORTED) break;

10 }

11 return answer;

12 }

Figure 2-3: A recursive function that uses nested transactions.

tree. An xend call nested inside another transaction returns FAILED if the runtime

detects that the outermost transaction has encountered a conflict and will abort, and

PENDING otherwise.3 In a recursive function, the programmer should only retry the

transaction if the status returned is ABORTED, i.e., when the outermost transaction

reaches its xend. Libxac must support at least subsumed nested transactions if it

allows a transaction to call a subroutine that contains another transaction. This

feature is desirable for program modularity: a transaction should not care whether

its subroutines are themselves implemented with transactions.

Interface for Durable Transactions

Programmers using Libxac can choose for all transactions to be durable by calling

the xInit function with the DURABLE flag. When a durable transaction commits,

Libxac forces enough data and meta-data out to a log file on disk to ensure that

the changes made by committed transactions are not lost if the program or system

crashes.4 There are three library functions specific to durable transactions:

1. xRecover: If the program crashes, then calling xRecover on the xMmaped file

3A side note: the program in Figure 2-3, cannot return answer from inside the transaction
because control flow will skip the xend function call. In general, every xbegin call must be paired
with a corresponding xend.

4This guarantee assumes that the hardware (i.e., the disk) has not failed.

43

restores the file to a consistent state. After recovery has been run, Libxac

guarantees that all changes made by committed transactions have been restored,

in the same order as before. Recovery is done by scanning the log files and

copying the changes made by committed transactions back into the original file.

2. xCheckPoint: Checkpointing reduces the number of transactions that have to

be repeated during recovery by forcing the runtime to copy changes made by

committed transactions into the original file.5

3. xArchive: A log file is no longer needed for recovery once all the changes

recorded in that log file have been copied back to the original file. This function

identifies all such log files that are safe to delete.

For both nondurable and durable transactions, xShutdown automatically executes

a xCheckPoint operation, ensuring that the original file contains consistent data after

Libxac has been shut down. Similarly, the specification of the xInit requires that

Libxac verify the integrity of the file and run xRecover if necessary. The description

of these functions for durable transactions, completes the specification for all the basic

functions that a fully functional version of Libxac provides.6

Restrictions on Libxac

The implementation inevitably imposes some restrictions on the Libxac interface.

The most significant one is that programs using Libxac can have only one transaction

per process. Because Libxac supports concurrency control between processes, not

threads, transactions on one thread should not run concurrently with conflicting code

5Because of the multiversion concurrency control, after a checkpoint completes, it is not true
that the data from every committed transaction has been copied back into the file. A transaction
that is still running may need to access older values stored in the original file. The checkpoint
operation copies as much data as possible, however. If no other transactions are being executed,
then all changes is copied into the original file.

6As a caveat, although I have devised a specification for the recovery, checkpoint, and archive
functions, in the Libxac prototype, in the prototype, I have not actually implemented the recovery
or archive routines, and I have only implemented the implicit xCheckpoint in xShutdown. See
Chapter 3 for implementation details.

44

on other threads in the same process. This restriction is difficult to remove because

Linux supports memory protections at a per-process level, not a per-thread level.

Another restriction is that every xbegin function call must be properly paired

with an xend. In other words, the control flow of a program should never jump out of

a transaction without executing xend. See Appendix A for a more detailed discussion

of restrictions to Libxac.

2.2 Semantics of Aborted Transactions

In this section, I argue that memory-mapped transactions can have well-defined se-

mantics by describing Libxac’s memory model. Libxac guarantees that both com-

mitted and aborted transactions are “serializable,” and that aborted transactions

always see a consistent view of the memory-mapped file. Libxac specifies that trans-

actions abort synchronously upon reaching the xend function, and that on an abort,

only changes to the shared-memory segment are rolled back, and any changes that

the transaction makes to local variables remain. I argue that these restrictions on the

behavior of aborted transactions lead to more predictable program behavior.

Libxac guarantees that transactions on the shared-memory segment appear to

happen atomically or not at all. The committed transactions are serializable, meaning

there exists a total order of all transactions such that the system appears to have

executed transactions in that order.7 This definition of serializability is intuitive and

fairly straightforward. For a more formal, textbook treatment of serializability theory,

in both the single-version and multiversion contexts, see [6].

The behavior of a transaction that commits is straightforward because a trans-

action completes successfully in only one way. Aborted transactions, however, can

be handled in multiple ways. In this section, I discuss several design decisions for

aborted transactions.

7In this situation, I use the term transaction to refer to a particular transaction instance, i.e.,
the instructions that execute between an xbegin and an xend. When a transaction is aborted and
retried, it counts as a different transaction instance.

45

Asynchronous vs. Synchronous Aborts

Once the runtime detects a conflict and decides to abort a transaction, it can either

abort the transaction immediately i.e., asynchronously, or it can continue to exe-

cute the transaction until it reaches a specified point where it can be safely aborted

synchronously. This specified point can be in the middle of a transaction, or it can

simply be the xend function call. A transaction that will abort but has not reached

a specified point is said to have FAILED.

Libxac synchronously aborts a transaction once the xend function is reached

because asynchronous aborts are more difficult to implement cleanly and portably.8

Unfortunately, performing synchronous aborts may be inefficient for a program with

many levels of nested transactions. If the outermost transaction aborts, the runtime

must still return from each nested transaction. An asynchronous abort might allow

the program to jump immediately to the outermost transaction.

Consistent vs. Inconsistent Execution

A system that performs synchronous aborts may specify what kinds of values an

FAILED transaction can see in the shared-memory segment. A transaction’s execu-

tion is consistent if a FAILED transaction never sees intermediate data from other

transactions. A system that guarantees consistent execution typically requires a mul-

tiversion concurrency control protocol.

If a system performs synchronous aborts but does not guarantee a consistent

execution, then a transaction may enter an infinite loop or cause a fatal error because

it read a corrupted value in the shared memory segment. In this case, the runtime

must be capable of handling these exceptional cases.

Libxac supports consistent execution, ensuring that aborted transactions always

see a consistent view of the shared-memory segment. In other words, if one considers

only the operations each transaction does on the shared-memory segment, then all

transactions, whether committed or aborted, are serializable. If a transaction aborts,

8I have not fully explored using setjmp and longjmp to do asynchronous aborts in Libxac.

46

its changes to the shared-memory segment are discarded. If the transaction commits,

however, its changes are made visible to transactions that come later in the order.

In Libxac, the combination of synchronous aborts and consistent execution has

an interesting implication because the point of abort is at the xend function call.

Since all transactions see a consistent view of the shared-memory segment, read-only

transactions, in principle, can always succeed.

Transactional vs. Nontransactional Operations

Libxac only enforces transactional semantics for memory operations that access the

shared-memory segment. We refer to these as transactional operations, while other

operations that access process-local variables or other memory are nontransactional

operations.9 By default, it is unclear how these two types of operations should interact

with each other. For example, suppose that the two programs in Figure 2-4 run

concurrently. Program 1 modifies local variables b, y, and z inside the transaction. If

the initial value of x[0] is 42, what are the possible final values for a, b, y and z?

The answer depends on how the system deals with local variables. If the runtime

does a complete rollback, then all nontransactional operations get rolled back to their

original value, before the transaction started executing. With this approach, variables

b, y, and z are always rolled back to 0 on a transaction abort. Therefore, after the

transaction in Program 1 commits, y is 1 and a is the number of times the transaction

tried to execute. Both b and z will be 41 if the transaction in Program 2 executes

first, and both will be 42 otherwise. Unfortunately, without additional compiler

support for detecting local variables and backing up their original values, it seems

difficult to support complete rollback with only a runtime library. Semantically,

complete rollback works equally well with synchronous or asynchronous aborts and

with consistent or inconsistent execution, provided that it is possible to rollback all

nontransactional operations. Nontransactional operations such as printf may be

9Note that this definition is based on the memory location, not whether the operation happened
in a transaction. The Libxac prototype disallows transactional operations outside of a transaction,
but it does specify the behavior of some nontransactional operations inside a transaction.

47

// Program 1

1 int main(void) {

2 int y = 0, z = 0; a = 0, b = 0;

3 int* x;

4 xInit(".", NONDURABLE);

5 x = xMmap("input.db", 4096);

6

7 while (1) {

8 a++;

9 xbegin();

10 b += x[0];

11 y++;

12 x[0]++;

13 z += (x[0] - 1);

14 if (xend()==COMMITTED) break;

15 }

16

17 munmap(x, 4096);

18 xShutdown();

19 return 0;

20 }

// Program 2

1 int main(void) {

2

3 int* x;

4 xInit(".", NONDURABLE);

5 x = xMmap("input.db", 4096);

6

7 while (1) {

8

9 xbegin();

10

11

12 x[0]--;

13

14 if (xend()==COMMITTED) break;

15 }

16

17 munmap(x, 4096);

18 xShutdown();

19 return 0;

20 }

Figure 2-4: A transaction that that accesses local variables inside a transaction.

impossible to roll back however, if the output has already been sent to the user’s

terminal.

Alternatively, the system can roll back only transactional operations. More specif-

ically, Libxac, reverses changes to the shared-memory segment, but not to local

variables. There are several cases to consider:

1. If the runtime does not guarantee consistent execution of transactions, then

arbitrary values may get stored into b and z.

2. If the runtime performs asynchronous aborts and guarantees consistent execu-

tion, after Program 1 completes, the variable a stores the number of times the

transaction was attempted, while y stores the number of times the transaction

made it past the increment of y before aborting or committing. Similarly, b and

z may have different values, depending on how often and when the transaction

was aborted.

3. With synchronous aborts and consistent execution, after Program 1 completes,

48

a and y will always both equal the number of different transaction instances

executed on process 1. Also, b and z will always have the same value (41 if the

transaction in program 2 completes first, and 42 otherwise).

Libxac satisfies Case 3, the case that most cleanly specifies the behavior of non-

transactional operations inside a transaction. The example program demonstrates

that Case 3 leads to the most predictable behavior for aborted transactions. Concep-

tually, an aborted transaction is similar to a committed transaction. First, a trans-

action modifies its own local copy of the shared-memory segment. After the xend

completes, these changes atomically replace the actual values in the shared-memory

segment only if the transaction commits.

One final method for handling nontransactional operations is to simply ignore

them, leaving their behavior completely unspecified. This option is undesirable, how-

ever, as the program in Figure 2-4 demonstrates that it is possible to have well-defined

semantics for some nontransactional operations inside a transaction. nontransac-

tional operations provide the programmer with a loophole to strict serializability. For

example, the programmer can use local variables to log what happens in aborted

transaction instances. Obviously, such a loophole should be used cautiously.

Related Work

Serializability theory is discussed for both single-version and multiversion concur-

rency control in [5]. These concepts are also described in [6]. Many researchers have

proposed other correctness criteria for concurrent systems. One such definition is the

concept of linearizability for concurrent objects, proposed by Herlihy and Wing in

[27]. In this model, each object has a set of operations it can perform. To perform an

operation, an object makes a request, and later it receives a response. Every response

matches a particular request. If the objects are transaction instances (committed or

aborted), then the request and response are the beginning and end of the transaction,

respectively. Linearizability guarantees that each transaction appears as though the

execution happened instantaneously between the request and response. The Libxac

49

memory model can be thought of as a particular case of linearizability.

2.3 Optimizations for Libxac

The simplicity of an interface based on memory-mapped transactions creates opportu-

nities for additional program optimizations. This section discusses three functions for

optimizing Libxac programs. The xValidate function explicitly validates a transac-

tion in the middle of execution, facilitating quicker detection of transaction conflicts.

The xbeginQuery and xendQuery functions specify a read-only transaction that never

generates transaction conflicts. Finally, the advisory function, setPageAccess in-

forms the runtime that a transaction wishes to access a certain page, reducing the

overhead of automatically detecting accesses to that page.

Transaction Validation

Since Libxac synchronously aborts transactions, a transaction that fails because of a

conflict keeps running until reaching xend. Continuing to run a long transaction that

has already failed is inefficient, however. To avoid unnecessary work, a program can

periodically call xValidate inside a transaction to check if it has failed. This function

returns FAILED if the runtime has detected a conflict and will abort the transaction,

and returns PENDING otherwise. Based on the result, the program can use goto to

jump to a user-specified label at xend to abort the transaction.10

Read-Only Transactions

Read-only transactions in Libxac can, in principle, always succeed because transac-

tions always see a consistent view of the shared-memory segment. Libxac assumes

that all transactions both read and write to the segment, however. Thus, xend may

return ABORTED even for a read-only transaction that could have safely committed. A

10The xValidate function has a one-sided error: if it returns FAILED, then there is a conflict,
but when it returns PENDING, there can still be a conflict. This specification allows the runtime to
simply query a status flag, instead of actively checking for new conflicts.

50

programmer that knows a transaction is read-only could safely ignore the return value,

but this approach is susceptible to error. Instead, Libxac provides the xbeginQuery

and xendQuery functions for explicitly specifying a read-only transaction.

As a replacement for xbegin and xend, xbeginQuery and xendQuery provide

three advantages. First, Libxac performs slightly less bookkeeping for read-only

transactions because they always succeed. Second, even if Libxac is in durable-

transaction mode, the runtime does not need to force data out to disk when a read-

only transaction commits. Finally, Libxac can report an error if a program writes to

the shared-memory segment inside a read-only transaction (by immediately halting

the program, for example). Note that it is legal to nest a read-only transaction inside

a normal transaction, but not a normal transaction inside a read-only transaction.

Advisory Function

A programmer can reduce the overhead incurred when a transaction accesses a page

in the shared-memory segment for the first time by calling the advisory function,

setPageAccess. Without the advisory function, Libxac automatically detects a

page access by handling a SIGSEGV. A programmer can use the advisory function to

inform Libxac that the current transaction plans to access a specified page with a

specified access permission (read or read/write), thereby avoiding the SIGSEGV.

Using the advisory function affects only the performance of a program, not its

correctness. If the programmer uses the advisory function on the wrong page, then

this only hurts concurrency by generating a possibly false conflict. On the other hand,

if the programmer forgets to call the advisory function on a page, the access will be

caught by the default mechanism.

2.4 Related Work

In this section, I discuss memory-mapped transactions in the context of related work

on mechanisms for simplifying concurrent and/or persistent programming. I focus

51

primarily on three areas: transaction systems for databases, persistent storage sys-

tems, and transactional memory.

The idea of virtual memory and memory-mapping is decades old. For exam-

ple, in the 1960’s, Atlas [31] implemented paged virtual memory and Multics [37]

implemented a single-level store. Appel and Li in [2] survey many applications of

memory-mapping, including the implementation of distributed-shared memory and

persistent stores. Transactions, described in [18, 33], are a fundamental concept in

database systems. See [20] for an extensive treatment of database issues.

Transaction Systems

Countless systems implement transactions for databases,11 but in this thesis, I only

compare Libxac primarily to two similar transaction systems: McNamee’s imple-

mentation of transactions on a single level store, the Recoverable Memory System

(RMS), [35], and Saito and Bershad’s implementation of the Rhino transactional

memory service [41].

Like Libxac, both RMS and Rhino provide a memory-mapped interface: a pro-

grammer calls functions to attach and detach a persistent segment of memory. Pro-

grammers should not store address pointers in this persistent area, as the base ad-

dress for the segment changes between different calls to xMmap. Some persistent

storage systems perform pointer swizzling, i.e., runtime conversion between persistent

addresses on disk and temporary addresses in memory, to eliminate this restriction.

This method further simplifies programming, but incurs additional overhead. An al-

ternative to pointer swizzling, adopted by the µDatabase, a library for creating and

memory-mapping multiple memory segments [9], is to always attach persistent areas

at same address. This scheme allows a program to access only one memory-mapped

file at a time, however.

Both RMS and Rhino provide two separate functions for committing and aborting

a transaction, while Libxac provides one single xend function which returns a status

11There are many transaction systems in both research and practice. Some examples (but certainly
not all) include [8, 12, 13, 35, 38, 41, 44, 45, 46, 47].

52

of COMMITTED or ABORTED and automatically aborts the transaction. Although the

programmer can control if and when rollback of the shared-memory segment occurs

with the first option, Libxac’s automatic rollback is more convenient for the default

case.

Like Libxac, both RMS and Rhino automatically detect the memory locations

accessed by a transaction, and both specify the same memory model. Aborts only

happen synchronously, when the programmer calls the appropriate function. This

abort only rolls back the values in the shared-memory segment. The authors of both

RMS and Rhino ignore the issue consistent execution because they do not discuss

concurrent transactions. Instead, they assume that the programmer or the system

designer uses a conventional locking protocol such as two-phase locking [20].

McNamee describes an implementation that could run on a Linux operating sys-

tem, but Saito and Bershad describe two implementations: one on an extensible

operating system, SPIN [7], and one on Digital UNIX. The Digital UNIX implemen-

tation appears to rely on the ability to install a callback that runs right before a

virtual-memory pageout. Other examples of operating systems with built-in support

for transactions on a single-level store are [8, 45, 46].

Persistent Storage Systems

The goal of many persistent storage systems is to provide a single-level store interface.

Libxac, RMS, and Rhino all provide persistent storage by having a persistent area

of memory that the programmer can attach and detach. Other systems choose to

maintain persistent objects in terms of reachability: any object or region that is

accessible through a pointer stored anywhere in the system is considered persistent.

Persistent stores are sometimes implemented with compiler support and a special

language that allows programmers to declare whether objects should be persistent.

Others provide orthogonal persistence (persistence that is completely transparent to

the programmer) by implementing a persistent operating system ([40] is one example).

Inohara, et al. in [28] describe an optimistic multiversion concurrency control

algorithm for a distributed system. In [28], persistent objects are memory-mapped

53

shared-memory segments, at the granularity of a page. The programming interface

is reversed compared to Libxac: first, the programmer calls a function to begin a

transaction, and then calls a function to open/attach each object/segment inside the

transaction before using it.

Transactional Memory

Libxac’s programming interface is based on work on transactional memory. Un-

like databases, transactional memory supports nondurable transactions on shared-

memory machines. Herlihy and Moss described the original hardware mechanism for

transactional memory in [24], a scheme that builds on the existing cache-coherency

protocols to guarantee that transactions execute atomically. Ananian, Asanović,

Kuszmaul, Leiserson, and Lie in [1] describe a hardware scheme that uses xbegin

and xend machine instructions for beginning and ending a transaction, respectively.

Instructions between xbegin and xend form a transaction that is guaranteed to exe-

cute atomically.

Although hardware transactional memory systems usually track the cache lines

accessed by a transaction, recent implementations of software transactional memory

(STM) work with transactional objects. Fraser in [14] implements a C library for

transactional objects (FSTM), while Herlihy, Luchangco, Moir, and Scherer imple-

ment a dynamic STM system in Java [25], DSTM.

As in [28], the interface of DSTM and FSTM requires the programmer to ex-

plicitly open each transactional object inside a transaction before that transaction

can access the object. Thus, these systems do not automatically detect the memory

locations a transaction accesses. Although both DSTM and FSTM do not handle

nesting of transactions, both describe modifications for supporting subsumed nested

transactions.

The authors of DSTM describe a release function that allows a transaction

in progress to drop a transactional object from its read or write set. Using this

feature may lead to transactions that are not serializable, but it provides potential

performance gains in applications where complete serializability is unnecessary. None

54

of the authors of DSTM or FSTM focus on the interaction between transactional and

nontransactional objects.

DSTM, like Libxac, performs incremental validation for transactions, checking

for violations of serializability on a transaction’s first access to a transactional object,

(i.e., opening a transactional object). DSTM maintains an old copy and a new copy

of every transactional object. Transactions always execute consistently: after opening

an object, a transaction either accesses the correct copy, or it aborts by throwing an

exception.

On the other hand, FSTM uses an optimistic validation policy, with a combina-

tion of both synchronous and asynchronous aborts. A transaction is validated when

it attempts to commit, and aborts synchronously if there is a conflict. With this

scheme, it is possible for transactions to read inconsistent data, causing a null pointer

dereference or an infinite loop. Therefore, the system detects these cases by catches

faults and by gradually validating the objects touched by a transaction during execu-

tion. After detecting these exceptional conditions, the transaction encountering these

exceptional conditions, the transaction aborts asynchronously by using the setjmp

and longjmp functions.

In Libxac, xMmap returns a pointer to a transactional memory segment. Program-

ming dynamic data structures in this segment is somewhat cumbersome however, as

the Libxac prototype does not provide a corresponding memory allocation routine.

Object-based transactional interfaces do not suffer from this problem.

2.5 Advantages of the Libxac Interface

In this section I summarize the main advantages an interface based on memory-

mapped transactions. Programs that use memory-mapped transactions are more

modular than programs that perform explicit I/O or locking operations. With memory-

mapped transactions, programmers can easily parallelize existing serial code and code

complex but algorithmically efficient data structures. Finally, a memory-mapped

transaction system is flexible enough to provide features such as multiversion concur-

55

rency control and support for durable transactions.

Libxac implements xMmap, a transactional version of the mmap function. Memory-

mapping provides the illusion of a single-level storage system, allowing programs to

access data on disk without explicit I/O operations. A programmer can easily specify

a transaction in Libxac by enclosing the relevant code between xbegin and xend

function calls. The runtime automatically detects which pages a transaction accesses,

eliminating the need for explicit locking operations. Programs written with Libxac

are modular because the concurrency properties of a program or data structure are

independent of the specific implementation.

Later, in Chapter 5, I describe how I used Libxac to easily parallelize existing

serial, memory-mapped implementations of a B+-tree and a cache-oblivious B-tree

(CO B-tree). This process using Libxac was considerably easier than it would have

been using locks, as it was unnecessary for me to understand all the details of the spe-

cific implementation. The fact that I was able to easily parallelize a cache-oblivious

B-tree shows that memory-mapped transactions facilitate the programming of com-

plex but algorithmically efficient data structures.

Finally, an memory-mapped transaction system is flexible enough to provide extra

useful features. Since Libxac uses a multiversion concurrency control algorithm to

guarantee that aborted transactions always see a consistent view of the memory-

mapped file, read-only transactions can always succeed. Libxac could also support

transactions that are recoverable after a program or system crash.

The simplicity of a memory-mapped transactional interface is both an advan-

tage and a disadvantage. With memory-mapped transactions, programmers do not

have fine-grained control over I/O or synchronization operations. There is a tradeoff

between simplicity and performance. In this chapter, I have argued that Libxac

provides a simple programming interface. Later, in Chapters 4 and 5, I investigate

the cost in performance of using this interface.

56

Chapter 3

The Libxac Implementation

In this chapter, I describe the prototype implementation of the Libxac specifica-

tion. This prototype demonstrates that it is possible to implement portable memory-

mapped transaction system that supports multiversion concurrency control.

The Libxac prototype has the advantage of being portable. In Section 3.1, I

present Libxac’s system requirements and provides a high-level description of how

Libxac uses standard system calls in Linux to support transactions. Since the proto-

type relies primarily on the mmap and fsync system calls and the ability to specify a

user-level SIGSEGV handler, the implementation is more portable than a transaction

system that is built on a special research operating system.

In Section 3.2, I explain in greater detail how Libxac executes memory-mapped

transactions on a single process. In particular, I explain how Libxac uses the virtual-

memory subsystem to buffer pages from disk in main memory, and how RMS [35] and

Rhino [41] support memory-mapped transactions on a single process.

I explain how Libxac supports memory-mapped transactions executed on multi-

ple processes in Section 3.3. I describe Libxac’s centralized control mechanism, the

consistency tree data structure that Libxac uses to ensure transactions are serializ-

able, and related work on concurrency control by Inohara, et al.[28].

In Section 3.4, I summarize the main shortcomings of the Libxac prototype and

explain how the implementation might be improved. First, Libxac’s centralized

control is a potential bottleneck that limits concurrency. Second, although Libxac in

57

principle writes enough data to disk to recover from crashes, the recovery mechanism

has not been implemented yet and some minor changes to the structure of Libxac’s

log files need to be made before Libxac can fully support recoverable transactions

running on multiple processes. Finally, the prototype uses several unsophisticated

data structures which impose unnecessary restrictions on the Libxac interface.

3.1 Overview

In this section, I explain how a memory-mapped transaction system can be imple-

mented portably. I first describe the system requirements of Libxac, and then

present a high-level description of how Libxac uses the mmap system call and user-

level SIGSEGV handlers in Linux to execute a simple, nondurable transaction.

System Requirements

The Libxac prototype is portable because it is designed as a user-space C library for

systems running Linux. It does not rely on any special operating system features or

hardware, and can be adapted to any system that provides the following functionality:

1. Memory mapping: The operating system must support memory mapping of

pages, i.e., mmap and munmap, with read/write, read-only, and no-access memory

protections. Programs must be able to change the mapping of a particular

page. The OS must also support multiple mappings, each with different memory

protections, for the same page in a file. The mmap function must also support

the MAP FIXED argument, which allows the programmer to force a memory map

to begin at particular address. Durable transactions also require msync to flush

changes from a memory-mapped file to disk.

2. File management: Libxac uses the open system call to open a file and get its

file descriptor. For durable transactions, the operating system must support

fsync or a similar method that forces changes made to a file out to disk.1

1The man page states that when fsync returns, the data may not actually be written to disk if
the harddrive’s write-cache is enabled.

58

3. SIGSEGV handler: the system must allow programs to run a user-specified fault

handler when the memory-protection on a page is violated.

4. Locking primitives: Since Libxac requires must execute some runtime methods

atomically, I resort to using simple spin locks in the implementation. Ideally,

the runtime could also be implemented with non-blocking synchronization prim-

itives such as compare-and-swap (CAS) instructions.

Aside from these important system-dependent components, the runtime is imple-

mented using standard C libraries.

Executing a Simple Transaction

In Libxac, every transaction that executes has the following state associated with it:

• Readset and Writeset: The readset and writeset are the set of pages in the

shared-memory segment that the transaction has read from and written to,

respectively.2

• Status: A transaction in progress is either PENDING or FAILED. This status

changes from PENDING (FAILED) to COMMITTED (ABORTED) during an xend.

• Global id: During a call to xbegin, every transaction is assigned a unique integer

id equal to the current value of a global transaction counter. This counter is

incremented after every xbegin.

• Runtime id: Every transaction is also assigned a runtime id that is unique among

all live transactions. A transaction is alive until the transaction manager has

determined that it can safely kill it (i.e delete its state information).

The prototype stores the transaction state in a data structure that is globally acces-

sible to all processes that have xMmaped the shared-memory segment.

Since I argued in Section 1.1 that programs that use memory mapping are simpler

than those using explicit I/O operations, it is not surprising that Libxac runtime

2The readset and writeset are defined to be disjoint sets.

59

itself uses memory mapping. As a transaction executes, Libxac modifies both the

global state information and the memory-map for each process. Figure 3-1 illustrates

the steps of the execution of a simple transaction.

1. The xMmap call initially maps the entire shared-memory segment (x in this ex-

ample) for the current process with no-access memory protection (PROT NONE).

The xbegin call starts the current transaction with a status of PENDING.

2. Line 6 causes a segmentation fault when it attempts to read from the first

page of mapped file. Inside the SIGSEGV handler, Libxac checks the global

transaction state to determine whether one or more transactions need to be

FAILED because this memory access causes a conflict. As described in Section

2.2, a failed transaction always sees a consistent value for x[0], and keeps

executing until the xend call completes and the transaction becomes ABORTED.

Whether or not the transaction is PENDING or FAILED, Libxac mmap’s the correct

version of the page with read-only permission, PROT READ.

3. Line 7 causes two segmentation faults when it tries to write to the second page

of the file.3 Libxac handles two segmentation faults. Libxac handles the first

SIGSEGV as in Step 2, checking for conflicts and mapping the page as read-only.

On the second fault, Libxac checks for conflicts again, possibly failing one or

more transactions. The runtime then creates a copy of the page and mmap’s the

new copy with read/write access, PROT READ|PROT WRITE.

4. After mapping the second page with read/write access, the transaction updates

the value of x[1024]. When the xend function is reached, the transaction

commits if its status is pending and aborts if the status is failed. All pages that

the transaction touched are mapped with no-access protection again.

5. It may be incorrect to immediately replace the original version of a page because

failed transactions may still need to read the older versions. Eventually, dur-

3To my knowledge, Linux does not provide any mechanism for differentiating between a SIGSEGV

caused by a read and one caused by a write.

60

1 int main(void) {

2 int a; int* x;

3 x = (int*)xMmap("input.db",

4 4*4096);

5 xbegin();

6 a = x[0];

7 x[1024] += (a+1);

8 xend();

9

10 xMunmap("input.db", 4*4096);

11 return 0;

12 }

Figure 3-1: Changes to the memory map for a simple transaction.

61

ing execution of a later transaction or during a checkpoint operation, Libxac

garbage collects new versions of pages by copying them back into the original

file when it determines that the older versions are no longer necessary.

These first four steps (xbegin, the first read of a page, the first write to a page, and

xend) represent the basic actions handled by the runtime. In Section 3.3, I describe

how Libxac handles these actions with multiple, concurrent transactions.

3.2 Transactions on a Single Process

In this section, I explain in more detail how Libxac supports memory-mapped trans-

actions executed on a single process. In particular, I describe how Libxac uses the

virtual-memory subsystem to buffer pages from disk in memory and how the trans-

action systems in [35, 41] support memory-mapped transactions on a single process.

Libxac buffers the pages touched by a transaction in virtual memory by using

mmap. For nondurable transactions, Libxac stores the copies of pages made by trans-

action writes in a memory-mapped buffer file on disk. Pages from this buffer file are

allocated sequentially, as transactions write to new pages. When a transaction reads

from a page, the runtime mmap’s the correct page from the original user file or the

buffer file with read-only access. The runtime either creates a new buffer file when

the existing buffer file is full, or reuses an old buffer file once all the new versions of

pages in that file have been copied back into the original file.

For durable transactions, Libxac stores the pages written by transactions in

memory-mapped log files. Since log information must be maintained until the pro-

grammer explicitly deletes it, the runtime does not reuse log files. For durable trans-

actions, the log file also contains the following types of metadata pages:

• XBEGIN: On an xbegin function call, the runtime reserves a page in the log for

recording the the transaction’s global id. On an xend call, this page is updated

with the list of pages in the log file that the transaction wrote to. This list may

spill over onto multiple pages for large transactions.

62

• XCOMMIT: The runtime writes this page in the log when a transaction commits.

This page stores the global id and also a checksum for all other the pages (data

and metadata) written by this transaction.

• XABORT: This page records the global id of an aborted transaction.

• XCHECKPT BEGIN and XCHECKPT END: The runtime writes these pages when a

checkpoint operation starts and finishes, respectively.

When a durable transaction commits, the runtime performs an asynchronous

msync followed by an fsync on the log file(s) to force the transaction’s data and

metadata out to disk. After a program crash, the recovery routine uses the checksum

to determine whether a transaction successfully wrote all of its pages to disk.4

When the user calls xCheckPoint, the runtime determines which pages will be

garbage collected, i.e., copied back to the original file, and records this list in a

XCHECKPT BEGIN page. This page is synchronized on disk using fsync, and then the

new versions are copied back to the original file. Those pages are forced to disk with

fsync, and a XCHECKPT END page is written and synchronized with a final fsync.

The XCHECKPT BEGIN page also contains a list of pointers to the XBEGIN pages of all

transactions whose new pages could not be garbage-collected. After a XCHECKPT END

page appears in a log, the only committed transactions whose updates may need to be

copied back to the original file are those transactions whose XBEGIN pages are either

referenced in the XCHECKPT BEGIN page or appear after the XCHECKPT BEGIN.

Although Libxac in principle writes enough data to disk to do recovery, I have

not yet implemented the recovery module, and I need to cleanly separate metadata

and data pages in the log file to correctly support recovery when multiple processes

execute transactions concurrently. One way of achieving this separation is to write the

metadata and data into separate log files. This change should not hurt performance if

4The prototype does not yet compute this checksum. The data in Table C.8 in Appendix C and
in Chapter 4 show that using a hash function such as md5 is not too expensive compared to the cost
of writing the page out to disk. Alternatively, the runtime could force the data out to disk with an
fsync, write the XCOMMIT metadata page, and then perform a second fsync. This method ensures
that a transaction’s XCOMMIT page never makes it to disk before any of its data pages.

63

the system can use multiple disks. See Appendix B for a more detailed discussion of

how transaction recovery in Libxac might be supported. Since transaction recovery

has been extensively studied, there are likely to be many ways of handling recovery

in Libxac. For example, many transaction systems in the literature derive their

recovery mechanism from the ARIES system [36].

Comparison with Related Work

In this section, I compare and contrast Libxac with the RMS [35] and Rhino [41]

transaction systems. See [20] for a more general, extensive treatment of transaction

systems.

Transaction systems for databases traditionally maintain explicit buffer pools for

caching pages accessed by transactions. Whenever a transaction accesses an un-

buffered page, the system brings the page into the buffer pool, possibly evicting

another page if the buffer is full. Since paging is also done by an operating system,

researchers have explored the integration of transaction support into operating sys-

tems. In [35], McNamee argues that in an environment where other programs are

competing for memory, a transaction system that maintains an explicit buffer pool

does not perform as well as one that integrates buffer management with the operating

system. The primary reason is the phenomenon of double paging [17], the fact that a

page cached by the buffer pool may have been paged out by the operating system.

McNamee also argues that most commercial operating systems do not provide sup-

port for transactions, and most research operating systems use special OS features

to integrate buffer management with virtual memory. For example, the Camelot dis-

tributed transaction system uses the external pager of Mach, a research operating

system [46]. This pager allows users to specify their own routines for moving pages

between disk and main memory. Other examples of transaction systems implemented

on top of special operating systems include [8, 11, 12, 19]. Because integration usually

happens only on special operating systems, McNamee presents a hybrid transaction

system, RMS, that is compatible with commercial operating systems. Like Libxac,

this system works by manipulating process memory maps and virtual memory pro-

64

tections.

Saito and Bershad in [41] also implement Rhino, a transaction system in both

Digital UNIX and also on SPIN [7], an extensible operating system. Their system

also memory-maps the database files to avoid double paging, and uses virtual memory

protections to automatically detect which pages transactions write to. One main point

of [41] is that an extensible operating system such as SPIN can support automatic

write detection more efficiently than Digital UNIX because SPIN requires fewer user-

kernel boundary crossings to handle a page fault.

There are several interesting comparisons to make between Libxac and the RMS

and Rhino. First, Libxac, like RMS and Rhino, integrates buffer pool manage-

ment with the virtual-memory system by using memory mapping. Also, both RMS

and Rhino automatically detect transaction writes by memory-mapping the shared-

memory segment with read-only protection by default. When a transaction writes to

the page, a SIGSEGV handler creates a before-image, (a copy of the old data), and

then mmap’s the existing page with read/write protection.

Both RMS and Rhino must guarantee that the before-image is written on disk

before this call to mmap. Otherwise, the database will be corrupted if the trans-

action modifies the page, the OS writes this temporary page out to disk, and the

program crashes, all before the before-image is saved to disk. McNamee’s scheme

synchronously forces this before-image out to disk before calling mmap. Therefore,

this scheme require a synchronous disk write every time a transaction writes to a new

page, even when nothing needs to be paged out. The experimental results in Chapter

4 indicate that a synchronous disk write in a modern system is quite expensive. Saito

and Bershad avoid this problem because SPIN, like Mach, allows users to specify their

own procedures for pageouts. Before a new version is paged out, the system has a

chance to write the before-image to disk first.

Libxac can avoid performing synchronous disk writes in the middle of a trans-

action or using a special OS feature such as an external pager because the runtime

maintains redo records instead of undo records. On a transaction write, Libxac

creates a copy of the original page, but mmap’s the new copy of the data instead of

65

the original. Thus, the before-image on disk is never overwritten if the new version

is paged out. This policy is similar to a no-steal buffer replacement, because the

before-image always remains in the database before the transaction commits.5 Alter-

natively, in a steal policy, the before-image is overwritten during a pageout. See [20]

for a textbook discussion of buffer replacement policies.

Since Libxac has a complicated multiversion concurrency control algorithm, it is

natural to mmap the new copies of a page instead of the old copy: there is only one

committed version of a page, but multiple working copies. In contrast, the systems

described in [35, 41] maintain at most two copies of a given page at any one time.

Both McNamee and Saito and Bershad do not discuss concurrency control since both

assume that a standard locking protocol such as two-phase locking is used.

Because Libxac maintains multiple versions of a page, transactions must find the

correct version to mmap before every page access. Pages that are contiguous in the

shared-memory segment may actually be mapped to discontiguous pages in the log

file. Eventually, however, garbage collection will copy the pages back to the original

file, and the original ordering. This problem of fragmented data occurs in database

systems that use shadow files instead of write-ahead-logging. Write-ahead logging,

the mechanism used by [35, 41], is the technique of writing undo or redo information

to a log on disk before modifying the actual database. A system that uses shadow files

constantly switches between two versions of a page: one version that is the committed

version, and one that is the working version that active transactions modify. Two

examples of systems that use shadow files are [13, 19]. When there are n processes

attached to the shared-memory segment, Libxac’s multiversion concurrency control

could be implemented by reserving enough virtual address space to have n extra

shadow copies of the segment, one for each process.

Finally, one idea for a future implementation of Libxac is to separate the data

and metadata pages in the log into separate files, ideally, on two different disks. This

design allows metadata entries in the log to be smaller, as we would not need to waste

5The steal/no-steal definitions tend to assume single-version concurrency control, so they not be
completely applicable for Libxac.

66

an entire page to store a global transaction id for an XBEGIN or XCOMMIT. This scheme

would also write less data to disk on a commit if the runtime logged only the diffs of

the pages that a transaction wrote. The authors of [41] in their study concluded that

computing page-diffs provided better performance than page-grain logging for small

transactions. Using page diffs had previously been proposed in [47].

3.3 Concurrent Transactions

In this section, I explain how Libxac supports memory-mapped transactions exe-

cuted on multiple processes. The runtime’s centralized control mechanism uses locks

to ensure that the four primary events, the xbegin function call, a transaction’s first

read from a page, a transaction’s first write to a page, and the xend function call,

are all processed atomically. I also describe the consistency tree data structure that

Libxac uses to ensure transactions are serializable, and one example of related work

on concurrency control, [28].

The Libxac Runtime

In Section 3.1, I described the four primary events that the runtime handles: xbegin,

a transaction’s first read from a page, first write to a page, and xend. With multiple

concurrent transactions, the runtime uses locks to process each event atomically.

The Libxac prototype is implemented using centralized control, storing all control

data structures in a control file which is memory-mapped by a process during a call to

xMmap. This control file stores four main pieces of information: the transaction state

described in Section 3.1, transaction page tables for recording which transactions

are reading or writing a particular page, the log information required to manage

the buffer/log files described in Section 3.2, and finally a consistency tree used for

concurrency control between transactions.

The prototype obeys a relatively simple locking protocol of holding a global lock

while processing a transaction event. To improve concurrency, the runtime does not

hold the global lock while changing the memory map with mmap or munmap or during

67

calls to msync or fsync. Libxac decouples log file manipulation and transaction

state modification by using a separate global lock for managing the log files.

Libxac’s centralized control is easy to implement, but represents a bottleneck

that limits scalability to systems with many processes. Since the primary target

system for the Libxac prototype is symmetric multiprocessor systems with only 2,

4, or 8 processors, a centralized control mechanism may be tolerable. A scalable

solution, however, would have an efficient distributed control mechanism. Using a

fine-grained locking scheme could also improve system performance. A nonblocking

implementation of the runtime using synchronization primitives such as compare-and-

swap or load-linked-store-conditional instructions may also be a complex but efficient

alternative to using global locks.

Consistency Tree

Libxac supports the memory model presented in Section 2.2 by maintaining a consis-

tency tree of transactions. Every transaction in the system is represented by a node

in this tree. The root is a special committed transaction T0 that represents main

memory (T0’s writeset is the entire shared-memory segment). A transaction T is said

to own a version of a page x if it writes to x. Libxac uses the tree to determine

which version of a page a transaction should read when it executes.

An edge in the consistency tree captures potential dependencies between trans-

actions, i.e., if a transaction T is an ancestor of T ′, then T comes before T ′ in some

serializable schedule of transactions. Recall that every transaction can be in one

of four states: PENDING, FAILED, COMMITTED, and ABORTED. A valid consistency tree

must satisfy the following invariants:

Invariant 1: For every page x in the readset of a transaction T , T reads the version

from the closest ancestor of T in the tree that owns x.

Invariant 2: Only COMMITTED transactions have children, and a transaction has at

most one COMMITTED child.

Figure 3-2 exhibits one example of a consistency tree. By Invariant 1, T3 can read

page T1’s version of x only if both T5 and T6 do not write to x. Invariant 1 guarantees

68

Figure 3-2: An example of a consistency tree.

that a parent-child relationship between two committed transactions corresponds to

a valid serial ordering of the two transactions. Because T1 is the parent of T5, it is

correct to order T1 before T5. This ordering is the only correct one if T5 reads any

page written by T1.

By Invariant 2, T2, T3, T4 and T7 cannot have children, and T0, T1, T5, and T6 can

each have at most one committed child. Invariant 2 is required for Libxac’s memory

model. Suppose a new transaction T8 could read a page x from an uncommitted

transaction T3. Since the runtime traps only T3’s first write to a page, T8 sees an

inconsistent view of x if T8 reads x and then T3 writes to x again. This invariant

implies that the tree is an ordered list of unordered lists. Each unordered list is a

committed transaction with some number of uncommitted children.

It can be shown that if transactions read and write pages in a way that maintains

Invariants 1 and 2 on the consistency tree, then the schedule of transactions is seri-

alizable. The correct serialization order for transactions corresponds to a pre-order

traversal of the tree, where the committed children of a transaction are visited last.

The consistency tree is simplification of a serialization graph data structure [6].

With a complete serialization graph, a schedule of transaction reads and writes is seri-

69

alizable if and only if the graph does not have a cycle. The consistency tree maintains

less information and only permits a subset of all possible serializable schedules. Every

valid consistency tree allows some, but not all serializable schedules of transactions.

I have only specified Libxac’s memory model for committed and aborted trans-

actions. The prototype implementation however, maintains an additional invariant

for pending and failed transactions:

Invariant 3: If the readsets and writesets of all pending (failed) transactions do not

change (i.e., all transactions stop reading from or writing to new pages), then all

pending (failed) transactions can be committed (aborted).

Invariant 3 states that Libxac performs incremental validation of transactions.

Since the runtime checks that serializability is maintained after every page access,

during an xend, a transaction can automatically commit if its status was still PENDING.

Implemented Policies

Libxac uses the consistency tree to implement the following generic concurrency

control algorithm:

1. On an xbegin, Libxac inserts a new PENDING transaction as a child of some

COMMITTED transaction in the tree. This step satisfies Invariant 2.

2. Whenever a transaction reads from (or writes to) a page for the first time, the

runtime updates the transaction’s readset (or writeset) and checks the trans-

action page tables for a possible transaction conflict. A conflict occurs if at

least one other PENDING transaction is already accessing that page, and one of

those transactions or the current transaction is writing to the page. If there is

a conflict, Libxac may fail some transactions in order to preserve Invariant 3.

Whether the transaction is PENDING or FAILED, on a page read, the runtime

walks up the consistency tree to determine which version of the page to read.

On a page write, the system copies the version of the page that was previously

being read. This step satisfies Invariant 1.

70

3. On an xend, Libxac either commits a PENDING transaction or aborts a FAILED

transaction.

4. In steps 2 or 3, the runtime may change the parent of a PENDING transaction to

be a different COMMITTED transaction as long as Invariants 1 and 3 are satisfied.

This framework is general enough to support most reasonable concurrency con-

trol algorithms.6 In the prototype, however, I have implemented only two simple

policies for concurrency control. Both policies satisfy two additional constraints

on the consistency tree, that all PENDING transactions must be children of the last

COMMITTED transaction in the tree, and that transactions that have FAILED never be-

come PENDING again. The first constraint implies that any particular page has either

multiple PENDING readers or one PENDING writer.7 The second constraint means that

the transaction page table can ignore page accesses by a FAILED transaction because

that transaction never generates conflicts by becoming PENDING again.

With these two constraints, when we have both reading transactions and a writing

transaction for a page, we need to decide whether to abort the writer or all the readers.

I arbitrarily chose to implement two abort policies:

• Self-Abort: A transaction aborts itself whenever it conflicts on a page x. More

specifically, when a transaction T tries to read x, it aborts if there is already a

writer for x. Similarly, when T tries to write to x, it aborts if there is already

a reader or writer for x.

• Oldest-Wins: Always abort the transaction(s) with larger global id. Since

Libxac assigns global transaction ids according to an increasing counter, this

id acts as a timestamp. A new reader aborts the existing writer only if the

reader has a smaller id. A new writer aborts an existing writer or all existing

readers only if it has the smallest id of all the transactions accessing the page.

6A consistency tree can also support optimistic concurrency control if we omit Invariant 3.
7In the more general case, it is possible to have T1 reading page x and T2 writing to x simultane-

ously, as long as T1’s parent is earlier in the chain of committed transactions than T2’s parent. For
example, if T1 is a read-only transaction specified using xbeginQuery and xendQuery, it never fails.

71

Under this policy, livelock is impossible because the transaction with the small-

est time stamp never fails. Starvation is still possible however, because Libxac

assigns a new global id to a transaction after an abort.

Libxac could also support the two opposite policies:

• Selfish-Abort: Whenever a transaction T discovers a conflict with a transaction

T ′, it aborts T ′.

• Youngest-Wins: Always abort the transaction(s) with the smaller global id.

The last two policies are obstruction-free [26]: a transaction always succeeds if

all other transactions stop running. The self-abort and oldest-wins policies do not

have this property; if one process crashes while executing its transaction, the other

transactions end up waiting indefinitely on that transaction. Some questions that I

have not explored include what the best policies are to use in different situations, and

whether some policies are more efficient to implement than others, particularly with

a distributed control system for the runtime.

Garbage Collection

Libxac also uses the consistency tree to determine when it is safe to garbage-collect

pages. It is safe to delete a transaction’s version of a page if no PENDING or FAILED

transactions can access that version of the page.

In the consistency tree, we say a chain of committed transactions can be collapsed

if all transactions in the chain except the last have no PENDING or FAILED children.

Libxac collapses the chain of transactions by transferring ownership of the latest

version of each page to the first transaction in that chain. Transferring ownership of

a page back to T0 corresponds to copying the version back into the original file.

In the example in Figure 3-2, T5 and T6 can be collapsed together, leaving only T5

with T3 and T7 as its children. T6 can then be safely deleted from the consistency tree.

Libxac does garbage collection of transactions only when the number of transactions

in the tree goes above a fixed threshold or during a checkpoint operation.

72

Comparison with Related Work

The textbook concurrency control algorithm for database systems is two-phase locking

(2PL) [20]. In 2PL, transactions first enter an expanding phase when they can only

acquire locks, and then a shrinking phase when they can only release locks. For 2PL

in a multiversion system, the shrinking phase may occur at the end of the transaction,

and may also involve acquiring certification locks to validate the transaction. Because

Libxac does incremental validation of transactions, its concurrency control can be

thought of as 2PL, except that transactions never wait to acquire a lock. Instead,

either the transaction waiting on the lock or the transaction holding the lock gets

aborted immediately.

Alternatively, Libxac could use an optimistic concurrency control algorithm like

the one originally proposed in [32]. Optimistic algorithms execute the entire trans-

action and then check for conflicts once, during commit. One way to implement an

optimistic policy using a consistency tree is to never switch the parent for a PENDING

transaction until that transaction tries to commit.

The Libxac prototype is not scalable, partly because accesses to the consistency

tree occur serially. One possible improvement to Libxac is to use a multiversion

concurrency control algorithm designed for distributed systems. The authors of [28]

present one such algorithm, the page-based versioned optimistic (VO) scheme. First,

they describe the VO scheme for a centralized system. When a transaction begins,

it is assigned a timestamp that is 1 more than the timestamp of the last committed

transaction in the system. When a transaction T writes to a page for the first time,

it creates a version with its timestamp. When T reads a page x, it finds the version

of x with the greatest timestamp less that T ’s timestamp. If T is read-only, it always

commits. T aborts if, for some page x that T wrote to, some other transaction T ′

has written a newer version of x. In the VO scheme, a read-only transaction can be

serialized before or after a committed transaction, but a read/write transaction can

only be serialized after all other committed transactions.

The consistency tree framework can in theory implement a VO scheme. Trans-

73

action T ′ is a child of T in consistency tree if and only if in the VO scheme, T ′’s

timestamp is one more than T ’s timestamp. The fact that a transaction’s timestamp

never changes in the VO scheme implies that a PENDING transaction in the consis-

tency tree never switches parents until it tries to commit. The VO scheme validates

a transaction T by checking whether T can be serialized after all committed transac-

tions. This approach is equivalent to checking whether a PENDING transaction can be

the child of the last committed transaction during xend.

3.4 Conclusion

In this section, I summarize the main shortcomings of the Libxac prototype, and

explain how the implementation might be improved in a more complete system sup-

porting memory-mapped transactions.

The primary drawbacks to the Libxac prototype are:

1. Libxac is implemented with centralized control data structures. One possible

improvement is to applying ideas from distributed systems and work such as

[28] to create a more decentralized control for Libxac.

2. Libxac’s control data structures have relatively naive implementations that

some impose unnecessary restrictions on transactions (see Appendix A).

3. The structure of Libxac’s log files for durable transactions does not fully sup-

port recovery when transactions are executed on multiple processes. As I discuss

in Appendix B, one possible improvement is to separate the metadata pages and

data pages into different files.

Although these problems with the current implementation are significant, I believe

none of them are fatal. In Chapter 5, I present results from experiments doing random

insertions on search trees using Libxac. When each insertion was done as a durable

transaction, the performance of Libxac search trees ranged from being 4% slower to

actually 67 % faster than insertions done on Berkeley DB’s B-tree. In light of the

74

issues I have described, this result is quite promising. If even a simple implementation

can achieve reasonable performance in some cases, then there is hope that a more

sophisticated and optimized version can support Libxac’s specification efficiently in

practice.

75

76

Chapter 4

A Performance Study

Memory-mapped transactions are easy to use because the underlying system automat-

ically handles I/O operations and concurrency control, but this convenience comes

at a cost. In this chapter, I describe several experiments designed to measure the

performance of memory-mapped transactions in Libxac. I use these results to con-

struct approximate performance models for both nondurable and durable transactions

whose working sets fit into main memory.

In Section 4.1, I describe the four different machines on which I tested the Libxac

prototype: a 3.0 GHz Pentium 4, a 2-processor 2.4 GHz Xeon, a 4-processor, 1.4 GHz

AMD Opteron, and a 300 MHz Pentium II.

In Section 4.2, I estimate the cost of executing a nondurable memory-mapped

transaction by measuring the time required for expensive operations: entering and

exiting a SIGSEGV handler and executing the mmap system calls. For a nondurable

transaction that reads from R different pages and writes to W different pages, I

estimate the additive overhead on a modern machine for executing the transaction

is roughly of the form aR + bW , where b ≈ 2a and a is in the range of 15 to 55 µs.

Using the advisory function to inform the runtime which pages a transaction accesses

reduces this overhead on modern machines by anywhere from 20% to 50%.

Section 4.3 describes similar experiments for estimating the cost of executing

a durable memory-mapped transaction. The single-most expensive operation for a

durable transaction is the call to fsync that forces data to be written out to disk

77

on a transaction commit. For durable transactions that write to only a few pages,

I conjecture a performance model of the form aR + bW + c, where a is tens of mi-

croseconds, b is a few hundred microseconds, and c is fixed cost of anywhere from 5

to 15 ms.

Section 4.4 presents results from experiments designed to measure the poten-

tial concurrency of Libxac. On a multiprocessor machine, when two different pro-

cesses ran independent nondurable transactions, Libxac achieved near-perfect linear

speedup when the work done on the page touched by each transaction required time

approximately two orders of magnitude greater than the overhead of accessing that

page. With durable transactions, however, the same Libxac program did not exhibit

any speedup on two processors, most likely because the time to synchronously write

data to disk during a transaction commit represents a serial bottleneck.

Since the overhead of automatically detecting pages accessed is significant for

nondurable transactions, and the synchronous writes to disk are a serial bottleneck

for concurrent, durable transactions, the current Libxac prototype seems best suited

for executing durable transactions on a single process. Improving the implementation

to work with multiple disks may improve the performance of concurrent, durable

transactions.

4.1 The Hardware

This section describes the four machines I used for testing the Libxac prototype.

1. A 3.0GHz Pentium 4 with hyperthreading and 2GB of RAM. The system has

a RAID 10 configured with 4 120GB, 7200-rpm SATA disks with 8MB cache

and a 3ware 8506 controller. The drives were mounted with an ext3 filesystem.

The system runs Fedora Core 2 with Linux kernel 2.6.8-1.521-smp.1

2. A machine with 2, 2.4GHz Intel Xeon processors and 1GB of RAM. The hard-

drive is a 80GB, 7200rpm Barracuda ATA IV with a 2MB cache. The drive was

1The kernel was modified to install perfctr, a package for performance monitoring counters.

78

mounted with an ext3 filesystem. The system was running Fedora Core 1 with

Linux kernel 2.4.22-1.2197.nptlsmp.

3. A machine with 4, 1.4GHz AMD64 Opteron processors and 16 GB of RAM.

The system was running SUSE 9.1, with Linux kernel 2.6.5-7.147-smp. This

machine has two different disks that I ran tests on:

(a) A 73.4GB, 10,000rpm IBM Ultrastar 146Z10 with 8MB cache and an Ul-

tra320 SCSI interface, mounted with the ReiserFS filesystem.

(b) A 146.8GB, 10,000rpm IBM Ultrastar disk with 8MB cache and an Ul-

tra320 SCSI interface, mounted with an ext3 filesystem.

4. A 300 MHz Pentium II with 128 MB of RAM, running Redhat 8.0 with Linux

Kernel 2.4.20. The machine has a 4.3 GB ATA disk drive.

The first three machines are relatively modern machines; the first is a standard single-

processor machine while the second and third are more expensive multiprocessor

machines. The fourth is a relatively old system with a slow processor and limited

amount of memory. Testing Libxac on these different systems ensures I am not

obtaining results that are specific to a single machine.

Each aspect of the system has a different effect on Libxac’s performance. The

type and number of processors affects how quickly transactions can execute and how

much concurrency we can expect to get. See Table 4.1. The amount of RAM deter-

mines how many pages can be buffered in main memory. A nondurable transaction

that accesses data that is entirely in memory should not incur the cost of disk writes.

Changes made between Linux kernel 2.4 and 2.6 may affect the performance of system

calls such as mmap. Finally, for durable transactions, the cost of msync and fsync

depends on the rotational latency, seek times, and write speed of the disk drives.

Unless otherwise noted, all times for nondurable transactions in Section 4.2 were

measured by reading the processor’s cycle counter twice using the rdtsc instruction,

and recording the time difference. For durable transactions, in Section 4.3, I instead

used gettimeofday. See Appendix C.1 for details on the resolution of the timers.

79

Machine Processor Speed Time per Cycle
1 3.0 GHz 0.33 ns
2 2.4 GHz 0.42 ns
3 1.4 GHz 0.71 ns
4 300 MHz 3.33 ns

Table 4.1: Processor speeds and time per clock cycle for the test machines.

4.2 Performance of Nondurable Transactions

In this section, I present a rough performance model for small nondurable trans-

actions. The additive overhead on a modern machine for executing a nondurable

transaction that reads from R distinct pages and writes to W distinct pages is ap-

proximately aR+ bW , where a is a constant between 10 and 60 µs and b ≈ 2a. Using

an advisory function to inform the runtime which pages a transaction accesses reduces

this overhead by anywhere from 20 to 50%. I also describe several experiments that

suggest that a significant fraction of the overhead for a transaction is spent entering

and exiting the SIGSEGV handler, calling mmap, and handling page faults.

4.2.1 Page-Touch Experiment

For a transaction that reads from R pages and writes to W pages, I conjecture a

performance model of aR+bW and in this section I describe experiments designed to

estimate the constants a and b. From the results, I conclude that for small nondurable

transactions, a is on the order of tens of microseconds, and b ≈ 2a. Whenever a

transaction reads from or writes to a new page, the Libxac runtime must mmap the

appropriate page in memory. During a transaction commit or abort, the runtime

must change the memory protection of every accessed page back to no-access. The

performance model is reasonable because the time for these operations is proportional

to the number of pages accessed.

I tested the accuracy of this model with an experiment that ran the transactions

shown in Figure 4-1. Transaction (a) reads from n consecutive pages, while (b) writes

to n consecutive pages. Figure 4-2 shows the results on Machine 1 for transactions

80

// Transaction that reads

// from n pages

int* x = xMmap("input.db",

n*PAGESIZE);

int i, value;

...

xbegin();

for (i = 0; i < n; i++) {

value = x[i*PAGESIZE/sizeof(int)];

}

xend();

// Transaction that writes

// to n pages

int* x = xMmap("input.db",

n*PAGESIZE);

int i;

...

xbegin();

for (i = 0; i < n; i++) {

x[i*PAGESIZE/sizeof(int)] = i;

}

xend();

(a) (b)

Figure 4-1: A simple transaction that (a) reads from n consecutive pages, and (b) writes
to n consecutive pages.

(a) and (b) as n varies between 1 and 1024. Transaction (a) took an average of about

110,000 clock cycles (37 µs) per page read. The data was less consistent for (b); for

n ≥ 24, the average time per page written was roughly 200,000 clock cycles.

The sharp peak for transaction (b) in Figure 4-2 is somewhat typical behavior for

long running Libxac programs. Although the average and median times to execute

a small transaction are fairly stable, the maximum time is often one or more orders

of magnitude greater than the average time. Since Linux does not generally provide

any bound on the worst-case time for mmap or other system calls, this result is not too

surprising. Also, because I measure real time in all experiments, any time when the

test program is swapped out is also included. One of these phenomena may possibly

explain the sharp peak.

4.2.2 Page-Touch with an Advisory Function

In this section, I present data that suggests that using the advisory function described

in Section 2.3 for the page-touch experiment reduces the cost per page access on

a modern machine by anywhere from 20 to 50%. Libxac detects which pages a

transaction accesses by handling the SIGSEGV signal caused by the transaction first

attempt to read from or write to a page. The advisory function, setPageAccess

informs the runtime that a transaction is about to access a page. This optimization

81

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

C

lo
ck

 C
yc

le
s/

10
00

k

Machine 1: Transaction Reading 2^k Pages

Mean
Median

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 2 4 6 8 10

C

lo
ck

 C
yc

le
s/

10
00

k

Machine 1: Transaction Writing 2^k Pages

Mean
Median

Figure 4-2: Average time per page to execute the transactions shown in Figure 4-1 on
Machine 1. For each value of n, each transaction was repeated 1000 times.

82

// Transaction that reads

// from n pages

int* x = xMmap("input.db",

n*PAGESIZE);

int i, value;

...

xbegin();

for (i = 0; i < n; i++) {

int j = i*PAGESIZE/sizeof(int);

setPageAccess(&(x[j]),

READ);

value = x[j];

}

xend();

// Transaction that writes

// to n pages

int* x = xMmap("input.db",

n*PAGESIZE);

int i;

...

xbegin();

for (i = 0; i < n; i++) {

int j = i*PAGESIZE/sizeof(int);

setPageAccess(&(x[j]),

READ_WRITE);

x[j] = i;

}

xend();

(a) (b)

Figure 4-3: The transactions in Figure 4-1 written with the advisory function. The trans-
action in (a) reads from n consecutive pages, the transaction in (b) writes to n consecutive
pages.

replaces the triggering and handling of a SIGSEGV with a function call.

Figure 4-3 exhibits the programs from the page-touch experiment, modified to call

the advisory function before each page access. Figure 4-4 plots the average access

times per page as n varies from 1 to 1024 on Machine 1. The advisory function reduced

the average time per page read and write from 110,000 to about 60,000 clock cycles

and from 200,000 to just under 100,000 clock cycles, respectively. Thus, on Machine

1, the advisory function cut down the per-page overhead by almost a factor of 2. Also,

with the advisory function, the plots do not have any sharp peaks, suggesting that

eliminating the need to handle SIGSEGVs reduced the variability of the experiment.2

Table 4.2 summarizes the average access times per page for all machines for n =

1024. The advisory function improved performance on Machine 1 by approximately

a factor of 2, but the improvement was less significant on the other machines. For

example, on Machine 3, the speedup was only 26% and 20% for page reads and

writes, respectively. One explanation that I discuss in Section 4.2.3 is that the cost

of entering a SIGSEGV handler appears to be particularly expensive on Machine 1

2Similar plots for other machines are shown in Appendix C.2.

83

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

C

lo
ck

 C
yc

le
s/

10
00

k

Machine 1: Transaction Reading 2^k Pages, With Advisory Function

Mean
Median

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

C

lo
ck

 C
yc

le
s/

10
00

k

Machine 1: Transaction Writing 2^k Pages, With Advisory Function

Mean
Median

Figure 4-4: Average time per page to execute the transactions shown in Figure 4-3 on
Machine 1. For each value of n, each transaction was repeated 1000 times.

84

Machine tread twrite

Normal With Adv. % Speedup Normal With Adv. % Speedup
1 110.0 58.5 47% 195.5 88.2 55%
2 44.4 31.1 31% 91.6 63.4 31%
3 21.7 16.0 26% 43.5 34.8 20%
4 16.1 10.1 37% 149.4. 143.8 4%

Table 4.2: Average # of clock cycles per page access for transactions touching 1024 pages,
with and without the advisory function. Numbers are in thousands of cycles. Percent

speedup is calculated as 100
(

Normal - With Adv
Normal

)

.

compared to the other machines. The speedup for writes on Machine 4 was only 4%.

Since Machine 4 has only 64 MB, it is possible that this experiment no longer fits

into main memory. Machine 4’s slow processor speed might be another factor.

Converting the time per page read from clock cycles to microseconds, we find that

a, the time per page read, ranges from 15 µs on Machine 3 to 54 µs on Machine 4.

On all but Machine 4, b, the time per page write, is slightly less than 2a.

4.2.3 Decomposing the Per-Page Overhead

In this section, I attempt to account for the per-page overheads observed in Sections

4.2.1 and 4.2.2 by estimating the times required for individual runtime operations.

The experimental results suggest that in most cases, over half the overhead can be

explained by the time required to handle a SIGSEGV signal, to call mmap, to copy a

page on a transaction write, and the time to handle a page fault. I conjecture that

most of the remaining time is spent handling cache misses and additional page faults.

Memory Mapping and Fault Handlers

As I described in Section 3.1, the runtime detects which pages a transaction accesses

by mapping pages with no-access or read-only memory protections and handling

SIGSEGV signals. I describe results from an experiment that measured the time re-

quired for the three expensive operations in this process: entering the fault handler,

calling mmap, and exiting the handler.

85

Machine Entering SIGSEGV Exiting SIGSEGV mmap

Handler (Cycles) Handler (Cycles) Clock Cycles µs
1 32,216 29,323 15,156 5.05
2 8,032 9,723 10,054 4.19
3 3,489 4,745 3,228 2.31
4 3,078 3,140 2,282 7.61

Table 4.3: Number of clock cycles required to enter SIGSEGV handler, call mmap, and exit
handler (average of 10,000 repetitions).

In the experiment, I ran a loop that captures the basic actions that the runtime

executes when a transaction tries to read from or write to a new page for the first

time. The times required for the loop operations give a lower bound on the overhead

of a nondurable transaction. Starting with a memory-mapped file that is initially

unmapped, I timed 10,000 repetitions of the following loop:

1. Attempt to increment the first int stored on the first page of the file. Measure

the time required to enter the SIGSEGV handler for this operation.

2. Inside the SIGSEGV handler, mmap the same page with read-write protection.

Record the time for this operation.

3. Measure the time required to exit the SIGSEGV handler.

4. Unmap the first page in the file and repeat.

Table 4.3 reports the average number of clock cycles required to do these op-

erations on each machine. The main observation is that entering and exiting fault

handlers and the mmap system call all took several thousand to tens of thousands of

clock cycles. These times are one or two orders of magnitude greater than a cache

miss that takes a hundred clock cycles. Of the three modern machines, Machine 1,

the Pentium 4 required the most time for these operations. In summary, a transaction

must incur at least several microseconds in overhead for every new page accessed.

Although I present only average values here, there is some variability in the mea-

sured values. For example, on Machines 2 and 3, the maximum time for an mmap

86

Machine Avg. # of Clock Cycles σ Time in µs
1 16,851 945 5.6
2 5,310 139 2.2
3 3,311 211 2.3
4 3,995 1,133 13.3

Table 4.4: Clock cycles required to write to a page for the first time after memory mapping
that page. Each experiment was repeated 5 times.

operation was about 5 times the average value. See Table C.3 in Appendix C for

more complete statistics for this experiment.

First Access to an mmaped Page

Linux does not actually bring an mmap’ed page into memory until it is first accessed.

The time to handle this page fault represents another expensive component of non-

durable transactions. In this experiment, I mmap’ed a single page of a file with

read/write protection and then recorded the time required to increment the first in-

teger on the page for the first time. Table 4.4 shows that these times are comparable

to the time to enter and exit a fault handler.

Test of memcpy

Before a transaction writes to a page for the first time, Libxac first makes a copy of

the old page. In this experiment, I measured the time required for a memcpy between

two 4K character arrays. In Table 4.5, the first value is the time for the program’s

first memcpy, the second is the average time of the 2nd through 5th memcpy’s, and the

third is the average time for 1,000 memcpy’s between the two arrays.3

The data suggests that optimizing the Libxac runtime to avoid cache misses and

page faults could significantly improve performance. For the first two machines, a

memcpy between two pages that are already in cache (the third value) costs approx-

imately an order of magnitude less than the mmap from Table 4.3. The difference is

less for the other two machines, but a memcpy is still faster than an mmap. On the

3The first and second values are averages from 5 repetitions of the experiment. The third is an
average from 1000 repetitions of the experiment. See Table C.4 for detailed data.

87

Machine First memcpy Avg. of Ops 2 through 5 Avg. of 1000 Ops.

1 44,067 2,493 1,122
2 19,497 1,718 1,052
3 9,578 676 608
4 7,324 3,320 932

Table 4.5: Clock cycles required for a memcpy between two 4K character arrays in memory.

other hand, a memcpy when the arrays are not cached is a factor of about 2 to 3 more

expensive than an mmap call.

Predicting Per-Page Overhead

I use the data in Tables 4.3, 4.4, and 4.5 to try explain the per-page overheads

observed in the page-touch experiments from Sections 4.2.1 and 4.2.2.

For transaction (a) in Figures 4-1 and 4-3, recall that every time a transaction

tries to read from a page for the first time, the runtime must handle a SIGSEGV and

change the memory map from a page mapped as no-access to a (possibly different)

page mapped read-only. At least one page fault occurs when the transaction actually

reads from the page. Finally, when the transaction commits, the memory protection

on that page must be changed back to no-access. Thus, transaction (a) involves

handling one SIGSEGV, two calls to mmap and one page fault. Using the advisory

function eliminates the cost of entering and exiting the fault handler.

On a given machine, let tsegvEnter and tsegvExit be the average time to enter and exit

a SIGSEGV handler, respectively, and let tmmap and tpageFault be the average times to

call mmap and to handle a page fault, respectively. Then, based on this model, a lower

bound on tread and t′read, the time to read a new page inside a transaction, without

and with the advisory function, is4

tread ≥ tsegvEnter + tsegvExit + 2tmmap + tpageFault

t′read ≥ 2tmmap + tpageFault

(4.1)

4To get a more accurate lower bound, I actually subtract ttimerDelay, the delay in our timer, once
from every measured value measured (in this case, 5ttimerDelay).

88

Machine tread twrite

Est. Actual ∆ % Diff. Est. Actual ∆ % Diff.

1, no Adv. 108.2 110.0 1.8 1.6% 185.7 195.5 9.8 5.0%
1, w Adv. 46.9 58.5 11.6 19.8% 47.9 88.2 40.3 45.7%
2, no Adv. 43.2 44.4 1.3 2.8% 72.0 91.6 19.6 21.3 %
2, w. Adv. 25.4 31.1 5.7 18.2% 26.5 63.4 26.5 58.2 %
3, no Adv. 18.0 21.7 3.8 17.4% 30.0 43.5 13.5 31.0 %
3, w. Adv. 9.7 16.0 6.3 39.3% 10.3 34.8 24.4 70.3 %
4, no Adv. 14.6 16.1 1.6 9.7% 23.9 149.4. 125.6 84.0 %
4, w. Adv. 8.4 10.1 1.7 16.4% 9.3 143.8. 134.5 93.5 %

Table 4.6: Average # of clock cycles per page access for transactions touching 1024 pages.
All numbers are in thousands of clock cycles.

When a transaction writes to a page, the runtime handles two SIGSEGV’s: the

first for reading the page, and the second to copy the page and mmap the new copy

with read/write protection. Thus, a page write requires one extra fault handler, an

additional call to mmap, and one memcpy.5 Using the advisory function eliminates the

entering and exiting of the SIGSEGV, and also one call to mmap, as the runtime does

not need to map the original version of the page as read-only first. Thus, I estimate

twrite and t′write, the time required for a transaction to write to a new page, without

and with the advisory function, as

twrite ≥ 2tsegvEnter + 2tsegvExit + 3tmmap + tpageFault + tmemcpy

t′write ≥ 2tmmap + tpageFault + tmemcpy

(4.2)

After repeating the transactions in Figures 4-1 and 4-3 1,000 times, with n = 1024,

I obtained the data shown in Table 4.6. I use the average values from Table 4.3 as

estimates for tsegvEnter, tsegvExit, and tmmap, and I use the data in Table 4.4 and 4.5 as

estimates for tpageFault and tmemcpy, respectively.

On modern machines, a majority of the overhead for a nondurable transaction

comes from handling the SIGSEGV signal, calling mmap, copying the page, and handling

page faults. On Machines 1, 2, and 4, the lower bound in (4.1) accounted for all but

10% of tread. The bound in (4.2) was less accurate for predicting twrite, however.

5For tmemcpy, I use the value the smallest value, value 3, from Table 4.5.

89

Generally, the predictions were most accurate for Machine 1, which has the greatest

overhead in clock cycles for the fault handler and the mmap operations. With the

exception of twrite on Machine 4, the predictions for tread and twrite account for at least

50% of the time spent per page access.

The lower bounds are even less successful for predicting the overheads when the

advisory function is used. Equation (4.1) accounts for at least 50% of t′read, but

equation (4.2) significantly underestimates t′write. One reason for this discrepancy is

that Equations (4.1) and (4.2) assume the time spent updating control data structures

is negligible. Although the computation required to modify the transaction state or

maintain the consistency tree is not significant for a small transaction running on a

single process, any cache misses or page faults incurred when accessing the control

data structures may noticeably increase the overhead. For example, when running

the transaction in Figure 4-1(a) with n = 1 on Machine 3, I noticed that the Libxac

runtime spent 21,000 cycles inside the fault handler, but actually spent about 11,500

cycles adding the first page to the transaction’s readset. Since this operation only

involves adding an element to an empty list stored in an array, this operation is

probably expensive only because a page was not cached in main memory.

I conjecture that most of the unexplained overhead is due to poor caching behav-

ior. Libxac’s data structures for a transaction’s readset and writeset and for the

transaction page tables are both implemented as large, fixed-size arrays. These data

structures are unlikely to exhibit significant locality, since they are stored in a 59 MB

control file. This phenomenon may be even more noticeable on Machine 4, which is

only 300 MHz and has only 64 MB of RAM. With a more efficient implementation of

the control structures, the discrepancies may be lower.

Although Equations (4.1) and (4.2) underestimate the overhead, for small trans-

actions that fit into memory, the simple linear performance model of aR+ bW should

still be reasonable. Failing to account for all the page faults or cache misses should

only increase the constants a and b.

90

Machine Avg. Time (µs)
Page Read Page Write

1, no Adv. 39 1,569
1, w. Adv. 22 1,297

3(a), no Adv. 15 235
3(a), w. Adv. 14 179
3(b), no Adv. 16 227
3(b), w. Adv 15 182

Table 4.7: Average Access Time (µs) per Page, for Transactions Touching 1024 Pages.

4.3 Durable Transactions

In this section, I attempt to construct a performance model for durable transactions

and test this model by repeating some of the experiments described in Section 4.2 for

durable transactions.6 Durable transactions incur extra overhead when they commit

because the runtime must synchronously force data to the log file on disk using an

fsync. This disk write should add both a large constant overhead to all transactions

for the latency of accessing disk, and a roughly constant overhead per page written

for updating the log file. Thus, I conjecture that a small durable transaction that

reads from R pages and writes to W page incurs an additive overhead of aR+bW +c,

where a is tens of microseconds, b is hundreds to a few thousand microseconds, and

c is between 5 and 15 milliseconds.

Page Touch Experiments

Table 4.7 presents data from page-touch experiments for durable transactions, when

n = 1024.7 Since each transaction runs for tens to hundreds of milliseconds, the

latency of accessing disk is not significant and I can use this data to construct slight

over-estimates of a and b.

From the data, we see that the per-page overhead for nondurable and durable

read-only transactions are roughly the same. Since fsync for a read-only transaction

6For these tests, I disabled the write-cache to ensure that fsync actually writes all data to disk.
I omit results from Machine 2, because I had insufficient permissions to disable the write-cache.

7Table C.5 gives a more complete version of this table.

91

writes only meta-data to disk, the latency to access disk is amortized over 1024 pages.

The time required per page write, however, increases by several orders of magnitude.

Machine 1, which only has SATA drives, performs page writes 6 or 7 times slower

than Machine 3, which has SCSI drives. It is possible, however, that other effects

may explain this difference.

Synchronizing a File

To estimate c, the latency of a write to disk, I measured the time required to syn-

chronize a memory-mapped file after modifying a one randomly selected page. This

benchmark repeats the following loop:

1. Pick a page uniformly at random from the 10,000 page memory-mapped file.

Increment the first int on that page.8

2. Measure the time for an asynchronous msync on that page in the file.

3. Measure the time for an fsync on the file.

The time required for the msync operation was on average less than 10 µs on all

machines. In Table 4.8, I report the times required to do fsync. The average time for

to write a page out to disk seems to be between 5 and 15 ms on average. Again, the

harddrives on Machine 3 are faster than on Machine 1. The maximum time required

for an fsync is 0.8 seconds on Machine 3, and almost 6 seconds on Machine 1. This

result is consistent with the fact that the operating system does not provide any

guarantees on the worst-case behavior of system calls. Expensive operations occur,

but only infrequently.

4.4 Testing Concurrency in Libxac

I conclude this chapter by describing several experiments that test Libxac’s per-

formance when executing independent transactions on two concurrent processes. In

8I had arbitrarily set the default size for Libxac’s log files to 10,000 pages.

92

Operation Mean St. Dev Min Median 99th %tile Max
1: fsync 13.6 184.3 2.4 8.0 12.7 5,836.5
3(a): fsync 4.8 24.0 0.7 4.0 7.0 761.6
3(b): fsync 4.7 23.1 0.8 3.9 6.9 731.9

Table 4.8: Time required to call msync and fsync on a 10,000 page file with one random
page modified, 1000 repetitions. All times are in ms.

an experiment for nondurable transactions, the system achieved near-linear speedup

when the work done on a page touched by a transaction was about two orders of

magnitude greater than the overhead of accessing that page. The same program did

not exhibit significant concurrency with durable transactions, however, most likely

because the writes to disk during a transaction commit represents a serial bottleneck.

Test Programs

Figure 4-5 shows the transactions used to test the concurrency of Libxac. The

single-process version of Test A executes a simple transaction 10,000 times, while the

two-process version runs 5,000 independent transactions on each process.9 Since Test

A does little work incrementing the first integer on a page, I also tested two other

versions of this program, shown in Figure 4-6. Test B increments every integer on

the page inside the transaction, and Test C repeats B’s loop 1000 times. In Figure

4-6, I only show the single-process version, as the two-process version is similar.

Nondurable Transactions

Table 4.9 exhibits the results with nondurable transactions for Tests A, B, and C.10

From this data, we can make several observations. First, there is no significant

speedup on Machines 1 or 4. Since both machines have a single processor, this result

is not surprising. The slight speedup for Tests A and B on Machine 1 may be due to

the Pentium 4’s hyperthreading.

Machine 2, which has 2 processors, exhibited speedup on all three tests, ranging

9Although this code does not show it, I use the advisory function for these concurrency tests.
10See Table C.9 for more detailed data.

93

Test A

Single process version:

for (i = 0; i < 10000; i++) {

xbegin();

x[0]++;

xend();

}

Two process version:

Process 1

for (i = 0; i < 5000; i++) {

xbegin();

x[0]++;

xend();

}

Process 2

for (i = 0; i < 5000; i++) {

xbegin();

x[PAGESIZE/sizeof(int)]++;

xend();

}

Figure 4-5: Concurrency Test A: Each transaction increments the first integer on a page
10,000 times.

Test B Test C

xbegin();

for (j = 0;

j < PAGESIZE/sizeof(int);

j++) {

x[j]++;

}

xend();

xbegin();

for (k = 0; k < 1000; k++) {

for (j = 0;

j < PAGESIZE/sizeof(int);

j++) {

x[j]++;

}

}

xend();

Figure 4-6: Concurrency Tests B and C: Test B increments every integer on the page. Test
C repeats the transaction in Test B 1,000 times. I omit the outermost for-loop, but as in
Figure 4-5, each transaction is repeated 10,000 times.

94

Machine Test Mean Time per Xaction Speedup
1 proc. 2 proc.

2 A 26.2 23.0 1.14
2 B 28.3 24.2 1.16
2 C 1,786 903 1.98

3(a) A 22.9 24.3 0.94
3(a) B 28.1 27.5 1.02
3(a) C 2,259 1,132 2.00
3(b) A 24.3 24.9 0.98
3(b) B 28.2 26.3 1.07
3(b) C 2,248 1,130 1.99

Table 4.9: Concurrency tests for nondurable transactions. Times are µs per transaction.
Speedup is calculated as time on 1 processor over time on 2 processors.

from about 12% for Test A to almost 50% is Test C. On the other hand, Tests A and B

actually run faster on one process than on two on Machine 3. Test C, which performs

a lot of work on one page, does manage to achieve near-perfect linear speedup. It

is unclear whether the differences between Machines 2 and 3 are due to the different

architectures or due to some other factor.

These results suggest that on Machine 3, Libxac only exhibits concurrency for

independent transactions if each transaction does significantly more work per page

than the overhead for a page access. Thus, the prototype implementation of Libxac

may not be efficient for small concurrent nondurable transactions.

Durable Transactions

Table 4.10 presents the data for Tests A, B, and C, repeated with durable transactions.

For a durable transaction, the cost of forcing data out to disk at a transaction commit

is significant. These results are consistent with the data from Table 4.8 for the times

required to complete fsync on the various machines.

In these experiments, we do not observe any speedup on the multiprocessor ma-

chines. Since we are running transactions using only one disk, the fsync is likely to

be a serialization point. Thus, it may not be possible to achieve significant speedup

with only one disk without an implementation that supports group commits, i.e.,

95

Machine Test Mean Time per Xaction Speedup
1 proc. 2 proc.

3(a) A 6.12 6.16 0.99
3(a) B 6.11 6.20 0.99
3(a) C 6.32 6.63 0.95
3(b) A 6.21 6.26 0.99
3(b) B 6.22 6.21 1.00
3(b) C 6.39 6.62 0.97

Table 4.10: Concurrency tests for durable transactions. Times are milliseconds per trans-
action.

committing multiple transactions on different processes with the same synchronous

disk write. One possible reason for observing slowdown is that having multiple pro-

cesses accessing the same log file simultaneously may cause slightly more disk head

movement compared to having a single process access the file.

96

Chapter 5

Search Trees Using Libxac

In this chapter I describe how memory-mapped transactions can be used in a practical

application, specifically in search trees that support concurrent searches and inser-

tions. I also present experimental results comparing the performance of search trees

written using Libxac to the B-tree of Berkeley DB [44], a high-quality transaction

system.

For data that resides on disk, B-trees are the canonical data structure for support-

ing dictionary operations (search, insertion, deletion, and range queries). In Section

5.1, I describe the Disk Access Machine Model, the performance model primarily used

to analyze B-trees. In this model, computation is free, but moving a block between

main memory and disk has unit cost. I then describe the concept of a cache-oblivious

algorithm, an algorithm that tries to minimize the number of memory transfers per

operation without knowing the actual block size. Finally, I briefly describe how a

cache-oblivious B-tree (CO B-tree) supports dictionary operations with an asymptot-

ically optimal number of memory transfers.

In Section 5.2, I investigate the practical differences between two different B-tree

variants by presenting experimental results comparing the performance of a serial

B+-tree and a serial CO B-tree, both written using memory mapping, but without

Libxac.1 The data demonstrates that a CO B-tree can simultaneously support ef-

1Sections 5.1 and 5.2 describes joint work with Michael A. Bender, Martin Farach-Colton, and
Bradley C. Kuszmaul.

97

ficient searches, insertions, and range queries in practice. Random searches on the

CO B-tree ran only 3% slower than on a tuned B+-tree on one machine and ran 4%

faster on a newer machine.

In Section 5.3, I describe the ease of using memory-mapped transactions to convert

the serial implementations of the B+-tree and CO B-tree into parallel versions.

I present experimental results in Section 5.4 that suggest that small, durable

memory-mapped transactions using Libxac are efficient. In an experiment where

a single process performed random insertions, each as a durable transaction, the

Libxac B+-tree and CO B-tree are both competitive with Berkeley DB. On the

three newer machines, the performance of the B+-tree and CO B-tree ranged from

being 4% slower than Berkeley DB to actually being 67 % faster. This result is

quite surprising, especially in light of the fact that I am comparing an unoptimized

prototype with a sophisticated, commercial transaction system.

Finally, in Section 5.5, I conclude by describing possible future experiments for

evaluating the performance of Libxac. I also discuss potential improvements to the

implementation that are motivated by the experimental results.

5.1 Introduction

The DAM Model

In today’s computer systems, there is significant disparity between the time required

to access different memory locations at different levels of the memory hierarchy. In

Chapter 4, we saw examples of this phenomenon. A single clock cycle on the newer test

systems is less than 1 nanosecond. A memcpy between two arrays in memory takes

a few microseconds, while using fsync to force data out to disk typically requires

several milliseconds. The rotational latency of a 10,000 rpm disk is 6 ms, creating a

lower bound on the worst-case time to read data from disk. Because the time to access

disk is at least 6 orders of magnitude larger than the time for a single clock cycle, the

cost of actual computation for a program that performs many disk accesses can often

98

Figure 5-1: An illustration of the Disk Access Machine (DAM) model.

be ignored. Instead, the performance model traditionally used to analyze programs

that access large data sets on disk is the Disk-Access Machine (DAM) model [3]. The

DAM model assumes a system has two levels of memory, as illustrated in Figure 5-1.

Main memory has size M , disk has infinite capacity. In this model, computation

on data in main memory is free, but each transfer of a size-B block between main

memory and disk has unit cost.

Using the DAM model we can analyze the cost of doing a single query on a

B+-tree. A B-tree can be thought of as a normal binary-search tree, except with a

branching factor of Θ(B) instead of 2. A search on a B-tree storing N keys requires

O(logB N) block transfers: a constant number of transfers at every level of the tree.

An information-theoretic argument proves a lower bound on the worst-case time for

a dictionary operation of Ω(logB N). Thus, searches on B-trees use an asymptotically

optimal number of memory transfers. A B+-tree is similar to a B-tree, except that

the data is stored only at the leaves of the tree, minimizing the number of block

99

transfers by putting as many keys in a single block as possible. The fact that B-trees

or variants of B-trees are widely used in practice corroborates the validity of the DAM

model.

Cache-Oblivious B-Trees

The optimality of the B+-tree in the DAM model requires that the implementation

know the value of B. Unfortunately, in a real system, it is not always clear what the

exact value of B is. For example, on a disk, the cost of accessing data in a block near

the current position of the disk head is cheaper than accessing a block on a different

track. There are multiple levels of data locality: two memory locations may be on

the same cache line in L1 cache, the same line in L2 cache, the same page in memory,

the same sector on disk, or the same track on disk. In a real system, there may not

be a single “correct” block size B.

An alternative to the DAM model is the cache-oblivious model of computation

[16, 39]. An algorithm is said to be cache-oblivious if it is designed to minimize

the number of memory block transfers without knowing the values of B or M . A

fundamental result for cache-oblivious algorithms is that any algorithm that performs

a nearly optimal number of block transfers in a two-level memory model without

knowing B and M also performs a nearly optimal number of memory transfers on

any unknown, multilevel memory hierarchy [39].

A cache-oblivious B-tree (CO B-tree) [4] is a search tree structure that supports

dictionary operations efficiently. The CO B-tree guarantees the following bounds on

dictionary operations without needing to know the exact value of B:

1. Search: O(log
B

N) memory transfers.

2. Range queries of R elements: O(logB N + R/B) memory transfers.

3. Insertions and deletions: O(logB N + log2 N/B) memory transfers.

The bounds for searches and range queries are asymptotically optimal. A CO B-

tree achieves these bounds by organizing the tree in a van Emde Boas layout [39]. This

100

20

21 22

23

24 25 27

26

28

29

30 31

1

5 6 7 8 9 10 11 12 13 15 1614 22212018 19 23 24 25 29 30 3126 27 281 2 3 4 17

17

18
19

2
4

3

6 7

85

9 10

11

1312

14

15 16

Figure 5-2: The van Emde Boas layout (left) in general and (right) of a tree of height 5.

layout is a binary tree recursively laid out in memory. A tree with N nodes and height

h can be divided into one root tree with Θ(
√

N) nodes and height approximately h/2,

and Θ(
√

N) child subtrees, each also with Θ(
√

N) nodes and height h/2. In the van

Emde Boas layout, each of these height h/2 subtrees is stored contiguously in memory,

with the layout recursively repeated for each height h/2 tree. Figure 5-2 illustrates

this layout for trees of height 5.

Intuitively, this layout is cache-oblivious because for any block size B, we can

recurse until our layout eventually gets to a tree of height approximately Θ(lg B).

This tree fits entirely into one block, so any query from root to leaf in the original

tree visits O(lg N)/Θ(lg B), or O(log
B

N) blocks.

The van Emde Boas layout is sufficient for a static dictionary that does not support

insertions or deletions. One method for creating a dynamic tree is to use this static

tree as an index into a packed memory array [4]. A packed memory array stores

N elements in sorted order in O(N) space. The array leaves carefully spaced gaps

in between elements and carefully maintains these gaps to satisfy certain density

thresholds. These threshold ensure that large rearrangements of the array are be

amortized over many insert or delete operations.

I have only sketched the details the the CO B-tree here. For a more thorough

presentation of this data structure, I refer the reader to [4].

101

5.2 Serial B+-trees and CO B-trees

In this section,2 I present several experimental results that show the CO B-tree is

competitive with the B+-tree for dictionary operations. When doing random searches

on a static tree, the CO B-tree ran 3% slower than the B+-tree with the best block

size on one machine and 4% faster than the B+-tree on another machine. For dynamic

trees, we observe that as the block size increases, the time to do random insertions

in the B+-tree increases, but the time for range queries and searches decreases. The

CO B-tree is able to efficiently support all three operations simultaneously.

These experiments were conducted on Machine 3, which has 16 GB of RAM, and

on Machine 4, which has only 128 MB of RAM.3

Random Searches on Static Trees

The first experiment performed 1000 random searches on a B+-tree and a CO B-tree.

On Machines 3 and 4, these static trees had 229 and 223 keys, respectively. These sizes

were chosen to be large enough to require the machine to swap. For the B+-tree, we

tested block sizes ranging from 4 KB to 512 KB. In this test, we flushed the filesystem

cache by unmounting and then remounting the file system before the first search.

From the results in Table 5.1, we see that the CO B-tree is competitive on Machine

4: the B+-tree with the best block size only outperformed the CO B-tree by 3 %. For

Machine 3, the CO B-tree was 4% faster than the B+-tree with the best block size.

This data also hints at the slight difficulty in finding the right block size B for the

B+-tree. On Machine 3, the best block size was 256 KB, while on Machine 4 it was

32 KB. Both values are significantly larger than the default operating system page

size of 4 KB. For each machine, the B+-tree needed to be tuned to find the optimal

block size, while the CO B-tree was efficient without tuning.

2This section describes joint work with Michael A. Bender, Martin Farach-Colton, and Bradley
C. Kuszmaul

3These machines are described in Section 4.1. At the time of this test, however, Machine 3 was
running a 2.4 kernel.

102

Data structure Average time per search
Machine 4: small Machine 3: big

CO B-tree 12.3ms 13.8ms
Btree: 4KB Blocks: 17.2ms 22.4ms

16KB blocks: 13.9ms 22.1ms
32KB blocks: 11.9ms 17.4ms
64KB blocks: 12.9ms 17.6ms

128KB blocks: 13.2ms 16.5ms
256KB blocks: 18.5ms 14.4ms
512KB blocks: 16.7ms

Table 5.1: Performance measurements of 1000 random searches on static trees. Both trees
use 128-byte keys. In both cases, we chose enough data so that each machine would have
to swap. On the small machine, the CO B-tree had 223 (8M) keys for a total of 1GB. On
the large machine, the CO B-tree had 229 (512M) keys for a total of 64GB.

Dynamic Trees

The next experiment tested dynamic trees on the smaller machine, Machine 4. We

compared the time to insert 440,000 and 450,000 random elements for the CO B-tree,

respectively. We chose these data points because 450,000 is the point right after the

CO B-tree must reorganize the entire data structure. We also compared this data

to B+-trees with different block sizes. For the B+-tree experiments, allocation of

new blocks was done sequentially to improve locality on disk. This choice represents

the best possible behavior for the B+-tree. In a real system, as the data structure

ages, the blocks become dispersed on disk, possibly hurting performance. Finally, we

compared this data to random insertions done into a Berkeley DB database using the

db load command. The buffer pool size for Berkeley DB was set to 64 MB.

The data in Table 5.2 demonstrates that the CO B-tree performs well, even at the

pessimal point, just after reorganizing the entire array. For the B+-tree, there is a

tradeoff between small and large block sizes. Small block sizes imply that insertions

are faster, but only at the cost of more expensive range queries and searches. The

CO B-tree is able to efficiently support all three operations simultaneously. We did

not observe any block size B where the B+-tree was strictly better than the CO B-tree

for all three operations.

Using Berkeley DB with the default tuning parameters, it took 20 minutes to load

103

Block insert range 1000
Size query random

random of all searches
values data

CO B-tree 440,000 inserts 15.8s 4.6s 5.9s
CO B-tree 450,000 inserts 54.8s 9.3s 7.1s

B+-tree
Sequential 2K 19.2s 24.8s 12.6s

block 4K 19.1s 23.1s 10.5s
allocation: 8K 26.4s 22.3s 8.4s

(450,000 16K 41.5s 22.2s 7.7s
inserts) 32K 71.5s 21.4s 7.3s

64K 128.0s 11.5s 6.5s
128K 234.8s 7.3s 6.2s
256K 444.5s 6.5s 5.3s

Random block allocation: 2K 3928.0s 460.3s 24.3s
Berkeley DB (default parameters): 1201.1s
Berkeley DB (64 MB pool): 76.6s

Table 5.2: Timings for memory-mapped dynamic trees. The keys are 128 bytes long. The
range query is a scan of the entire data set after the insert. Berkeley DB was run with the
default buffer pool size (256KB), and with a customized loader that uses 64MB of buffer
pool. These experiments were performed on the small machine.

the data. Building a customized version of db load with the buffer pool size set to

64 MB, however, we managed to improve Berkeley DB to run only 40% slower than

the CO B-tree for insertions. Perhaps by tuning additional parameters, Berkeley DB

could be sped up even further. Unfortunately, needing to optimize a large number of

tuning parameters represents a disadvantage in practice.

In-Order Insertions

Finally, we ran an experiment testing the worst-case for the CO B-tree, when the data

is inserted in order. Table 5.3 shows the time required to insert 450,000 elements in

order into each search tree. In this case, the CO B-tree is about 65% slower than

Berkeley DB. This behavior is reasonable considering we are testing the CO B-tree

at a worst possible point.

In summary, these empirical results show that the performance of a serial CO B-

tree for dictionary operations is competitive, and in some situations, actually faster

than an optimally tuned B+-tree or Berkeley DB.

104

Time to insert a sorted sequence of 450,000 keys
Dynamic CO B-tree 61.2s
4KB Btree 17.1s
Berkeley DB (64MB) 37.4s

Table 5.3: The time to insert a sorted sequence 450,000 keys. Inserting sorted sequence is
the most expensive operation on the packed memory array used in the dynamic CO B-tree.

5.3 Search Trees Using Libxac

This section explains how I parallelized the serial implementations of the B+-tree and

the CO B-tree tested in the previous section. This process was relatively painless and

involved few changes to the existing code.

Parallelizing Search Trees Using Libxac

The serial implementations of a B+-tree and a CO B-tree that I started with both

stored data in a single file. Each tree opened and closed the database using mmap and

munmap, respectively. I modified the open and close methods to use Libxac’s xMmap

and xMunmap instead. I supported concurrent searches and insertions by enclosing

the search and insert methods between xbegin and xend function calls. In the im-

plementation, no backoff method was specified; every transaction immediately retries

after an abort until it succeeds.

Parallelizing these codes required only these few, simple changes. Table 5.4 gives

a rough estimate of the size of the source code before and after modification with

Libxac. Although counting the number of lines of code is, at best, an imprecise

way to estimate code complexity, these numbers reflect the total programmer effort

required to use Libxac. Less that two dozen Libxac function calls were required for

each data structure. For the B+-tree, 8 out of the 23 calls were actually optimizations,

i.e., calls to the advisory function, setPageAccess. Also, most of the additional code

for the B+-tree was for testing concurrent insertions on the tree, not for supporting

the data structure operations.

Because the conversion process was simple, I was able to successfully modify the

CO B-tree structure in only a few hours, i.e., overnight. Since the CO B-tree was

105

Code Serial Version Using Libxac Libxac Function Calls Added

B+-tree 1122 lines 1527 lines 23
CO B-tree 1929 lines 2026 lines 17

Table 5.4: Changes in Code Length Converting B+-tree and CO B-tree to Use Libxac.

previously implemented by another student [29], most of this time was spent actually

understand the existing code. The serial B+-tree was also coded by someone else.

My experience provides anecdotal evidence as to the ease of programming with

Libxac. Using this library, it was possible to modify a complex serial data structure

to support concurrent updates, knowing only a high-level description of the update

algorithm. Unlike a program that uses fine-grained locks, the concurrency structure

of the program with transactions is independent of the underlying implementation.

5.4 Durable Transactions on Search Trees

In this section, I describe experiments performing insertions on Libxac search trees,

with each insertion as a durable transaction. On newer machines, I found that the

search trees coded with Libxac were actually competitive with Berkeley DB’s B-tree,

running anywhere from 4% slower to 67% faster. Tables 5.5 and 5.6 summarize the

results from this experiment. For more details on the experimental setup, see Section

C.6.

On a single process, on an ext3 filesystem (Machines 1 and 3(b)), the average time

per insertion on the Libxac search trees was over 60% faster than on Berkeley DB.

On the Reiser FS filesystem (Machine 3(a)), the Libxac search trees ran only 4%

slower than Berkeley DB. These results demonstrate that durable memory-mapped

transactions with Libxac can be efficient.

It is unclear exactly why Berkeley DB takes so long to perform random insertions

as durable transactions. It is possible that I have not tuned Berkeley DB properly,

or that I have not taken full advantage of its functionality. The fact that I cannot

simply use Berkeley DB with default parameters is another argument in favor of

106

Machine Search Tree Avg. Time/Insert (ms) % Speedup Speedup
1 Proc. 2 Proc.

1 B+-tree, w. adv. 18.3 14.6 20.2% 1.25
1 CO B-tree, no adv. 13.5 15.7 -16.3% 0.86
1 Berkeley DB 45.9 44.2 3.7% 1.04

3(a) B+-tree, w. adv. 7.7 7.7 0 % 1.00
3(a) CO B-tree, no adv. 7.5 7.8 -4.0 % 0.96
3(a) Berkeley DB 7.4 5.1 31.1 % 1.45
3(b) B+-tree, w. adv. 7.4 7.2 2.7% 1.03
3(b) CO B-tree, no adv. 7.2 7.3 -1.4% 0.99
3(b) Berkeley DB 22.4 17.7 21.0% 1.28

4 B+-tree, w. adv. 82.0 – – –
4 CO B-tree, no adv. 66.5 – – –
4 Berkeley DB 57.7 – – –

Table 5.5: Time for 250,000 durable insertions into Libxac search trees. All times are in
ms. Percent speedup is calculated as 100(t1−t2)

t2
, where t1 and t2 are the running times on 1

and 2 processors, respectively.

Machine B+-tree vs. BDB CO B-tree vs. BDB
1 Proc. 2 Proc. 1 Proc. 2 Proc.

1 60% 67% 71% 65%
3(a) -4% -51% -1% -53 %
3(b) 67% 59% 68% 59%

4 -42% – -15% –

Table 5.6: The % speedup of Libxac search trees over Berkeley DB. Percent speedup is
calculated as 100(tL−tB)

tB
, where tL and tB are the running times on the Libxac and the

Berkeley DB tree, respectively. Speedup is t1/t2.

simpler interfaces like the one provided by Libxac.

The Libxac search trees on Machine 3 achieve almost no speedup or slight slow-

down going from one to two processes. These results are consistent with the previous

data from the concurrency tests on durable transactions in Table 4.10: the simple

transactions in concurrency Test A take about 6 ms on average, while the search tree

inserts take about 8 ms. It is interesting that the B+-tree achieves speedup about

20% speedup on Machine 1. One observation is that concurrency test A takes about

8 or 9 ms on Machine 1, while the B+-tree inserts take about 18 ms. Thus, there may

be more potential for speedup compared to Machine 3.

107

We can look a little more closely at the time required for individual inserts. Figure

5-3 plots the time required for the kth most expensive insert on Machine 3(a) and

3(b).

For all the search trees, only about 100 insertions require more than 100 ms.

There is a sharp contrast between the Libxac search trees and Berkeley DB; the

most expensive inserts for Libxac trees take over a second, while the most expensive

inserts for Berkeley DB take on the order of a tenth of a second. The fastest inserts

for Libxac tend to be faster than Berkeley DB however, taking on the order of a

millisecond. The conclusion is that the Berkeley DB B-tree exhibits more consistent

behavior than Libxac search trees, but on average the two systems are competitive.

Since Libxac relies more heavily on the operating system than Berkeley DB, the

fact that some insertions with Libxac are expensive is not surprising. Also, since all

results are real-time measurements, it is possible that some of these 100 expensive

insertions include times when the program was swapped out for a system process.

Finally, although I do not present the detailed results here, I have observed that

even when the write-cache on the harddrives are enabled, Berkeley DB and the

Libxac search trees are comparable (see Appendix C, Table C.12). Although these

transactions are not strictly recoverable, these results suggest that memory-mapped

transactions using Libxac may still be efficient in other situations, (if our systems

had harddrive caches with battery-backup, for example).

5.5 Summary of Experimental Results

In this chapter, I have presented experimental results testing the performance of

search trees implemented with and without Libxac. The results in Section 5.2 show

that a CO B-tree can simultaneously support efficient searches, insertions, and range-

queries in practice. The CO B-tree is even competitive with a B-tree whose block size

B has been carefully tuned. Section 5.4 shows that the Libxac B+-tree and CO B-

tree can support insertions as durable transactions efficiently. In the experiments I

conducted, insertions using Libxac search trees ranged from being only 4% slower to

108

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

T
im

e
(m

s)

k

Machine 3(a): Time Required for kth-Most Expensive Durable Insert

Libxac COB-Tree
Libxac B-Tree

Berkeley DB

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

T
im

e
(m

s)

k

Machine 3(b): Time for kth-Most Expensive Insert

Libxac COB-Tree
Libxac B-Tree

Berkeley DB

Figure 5-3: Machine 3: Time for kth most expensive insert operation.

109

about 67% faster than Berkeley DB. This last result is quite surprising, considering

the fact that I am comparing an unoptimized prototype of Libxac with several

significant flaws to a high-quality transaction system such as Berkeley DB.

Although this result is quite promising, I believe there is still significant work that

needs to be done:

1. Libxac needs to be modified to fully support recovery on multiple processes,

and a recovery process needs to be implemented and fully tested. Separating

the log data and meta-data into separate files should accomplish this goal and

not hurt performance if Libxac uses multiple disks, but it is impossible to know

for sure without actual tests.

In particular, one shortcut I took during implementation was to not calculate

the checksum for each page during transaction commit. Appendix C, Table C.8

shows that calculating an MD5 checksum on a single page takes about 36,000

clock cycles on Machines 1 and 2 (about 12 to 15 µs). For small transactions that

touch only a few pages, this cost seems fairly reasonable. For larger transactions,

however, performing two calls to fsync to ensure that the commit record is

written to disk after all the data pages is probably more efficient than computing

a checksum. In some cases, I have noticed that the time for a second fsync is

fairly small if it occurs soon after the first, possibly because the disk head does

not move between the two writes. It would be interesting to more rigorously

test whether performing two fsync’s during a transaction commit substantially

impacts the performance of Libxac.

2. Berkeley DB supports group commits, i.e., allowing transactions on different

threads or processes commit together with the same synchronous disk write.

Modifying Libxac to support group commits may improve concurrency when

the system uses a single disk.

3. The prototype currently limits a transaction’s maximum size to around 64 or

128 MB.4 Unfortunately, on the three newer machines, this constraint allows us

4In Linux, a process is allowed to have at most 216 different mmaped segments. The Libxac

110

to test only search trees that can fit into main memory. It would be interesting

to test Libxac on large databases that do not fit into memory.

Another interesting experiment would be to test Libxac in a memory-competitive

environment, with other applications running simultaneously.

4. Currently, Libxac maintains its logs at page granularity; the runtime saves a

copy of every page that a transaction writes, even if the transaction modifies

only a few bytes on a page. A single run of the experiment doing 250,000

insertions to a B+-tree or CO B-tree, Libxac generates approximately 5 GB

of log files. In contrast, Berkeley DB only creates 185 MB of log files. There is

significant room for improvement in the way Libxac maintains its logs.

In addition to questions related to the Libxac implementation, there are also

several theoretical questions that these experiments raise:

1. In all these experiments, I have used the oldest-wins abort policy with no backoff

when transactions conflict. A backoff loop may improve performance for con-

current insertions in practice. It would be interesting to experiment with other

policies for contention resolution, especially if the Libxac runtime is modified

to be more decentralized.

2. Although I managed to “parallelize” the CO B-tree, it is unclear whether this

data structure still performs an optimal number of memory-transfers per opera-

tion. For example, some CO B-tree insert operations must rebalance the entire

packed memory array, leading to a transaction that conflicts with any other

transaction that modifies the tree. Appropriate backoff in this situation may

improve the performance of a concurrent version of the CO B-tree.

3. The serial version of the CO B-tree written without Libxac is cache-oblivious

by construction. Since Libxac supports multiversion concurrency by memory-

mapping multiple copies of pages in complex ways, it is unclear whether the

runtime ends up creating 1 or 2 segments for every page a transaction touches.

111

property of cache-obliviousness still holds. For example, in Libxac, it is possi-

ble for two adjacent pages in the user file to end up being mapped to two non-

adjacent pages in Libxac’s log file, and vice-versa. The behavior is even more

complicated when operations are being done on multiple processors. One inter-

esting research question to explore is whether a serial, cache-oblivious B-tree

can be converted into a parallel cache-oblivious structure while still supporting

multiversion concurrency.

In conclusion, I consider Libxac not as a finished product, but as work in progress.

The Libxac prototype has some interesting features in its implementation, but there

is much room for improvement. The fact that Libxac manages to support durable

search-tree insertions as efficiently as the Berkeley DB B-tree in our experiments is a

strong indication that memory-mapped transactions can be practical.

I have spent the majority of this chapter discussing performance, but arguably

the most important result is the one I have spent the least time discussing. Libxac is

intended to be a library that is easy to program with. For concurrent and persistent

programs, the hope is that the ease of parallelizing serial data structures is the rule

rather than the exception.

112

Chapter 6

Conclusion

In this thesis, I have argued that memory-mapped transactions provide a simple yet

expressive interface for writing programs with multiple processes that concurrently

access disk. I described Libxac, a prototype C library that demonstrates that effi-

cient and portable support for memory-mapped transactions is feasible in practice.

Using Libxac, I was able to easily converted existing serial implementations of a

B+-tree and a CO B-tree to support concurrent searches and insertions. In an experi-

ment with a single process performing doing random insertions on these search trees,

with each insertion as durable transaction, these search trees run anywhere from 4%

slower to 67% faster than transactional inserts into a Berkeley DB B-tree. This result

demonstrates that it is possible to use the simple interface based on memory-mapped

transactions in a practical application and still achieve good performance in practice.

I have not fully explored every aspect of memory-mapped transactions however.

In this chapter, I discuss possible improvements to the Libxac prototype and ideas

for future research. In particular, I focus on the idea of combining a hardware transac-

tional memory system and a memory-mapped transaction system to support efficient,

unbounded nondurable transactions.

113

6.1 Ideas for Future Work

In this section, I discuss ways the Libxac prototype could more efficiently support

memory-mapped transactions and list several aspects of memory-mapped transactions

that I have not explored.

At the end of Chapters 3 and 5, I enumerated several ways of improving the

Libxac implementation and other interesting research questions.

1. The centralized control data structures for Libxac represent a serial bottleneck

that limits the scalability of the prototype. One topic for research is how to

design and implement an efficient decentralized control mechanism.

2. Libxac’s control data structures have relatively naive implementations that

impose unnecessary restrictions on the interface. In Appendix A, I discuss

possible improvements in more detail.

3. The log file for Libxac needs to be restructured to support durable transactions

for programs with multiple processes, and the recovery program needs to be

implemented. Appendix B describes these issues in greater detail.

4. Although I describe a memory model for memory-mapped transactions in Sec-

tion 2.2, I do not formally show that this model has reasonable semantics. For

example, I claim without proof that the interaction between transactional and

nontransactional operations is well-defined when nontransactional operations

modify only local variables. One idea for future work is to adapt the framework

described in [15, 34] to handle memory-mapped transactions.

5. One topic to explore is what policies for handling transaction conflicts and what

algorithms for backoff are efficient in theory and in practice. In Section 3.3, I

describe several policies for handling conflicts between transactions, but I do

not experiment with these different policies.

6. Because Libxac maintains multiple versions of a given page, it is not immedi-

ately clear whether the cache-oblivious property of a CO B-tree is maintained

114

when insertions are performed as memory-mapped transactions, or when inser-

tions happen in parallel. It would be interesting to investigate whether cache-

oblivious algorithms can retain their optimal caching behavior in a memory-

mapped transaction system.

6.2 Libxac and Transactional Memory

By combining Libxac with other transactional memory systems, I believe it is pos-

sible to support efficient, unbounded nondurable transactions. I finish this thesis by

sketching one possibility for combining Libxac with a hardware implementation of

transactional memory.

Although the primary goal in designing Libxac was to create a convenient in-

terface for programming concurrent, disk-based data structures, the inspiration for

Libxac was actually to create a library for software transactional memory in C. Un-

fortunately, the results in Chapters 4 suggest that the per-page overheads incurred

by the Libxac runtime may be too great for practical, nondurable transactions. A

system such as Libxac may not be able to support efficient nondurable transactions

by itself. By combining Libxac with other transactional memory systems, I believe

it is possible to support efficient, unbounded nondurable transactions.

The term transactional memory was originally used by Herlihy and Moss to de-

scribe a hardware scheme for supporting atomic transactions, HTM [24]. The HTM

scheme uses extra bits in the cache to mark when a cache line is accessed by a trans-

action. By modifying the existing cache-coherence protocols, HTM guarantees that

transactions execute atomically. HTM is unable to handle transactions that did not fit

completely into the transactional cache. Ananian, et. al. in [1] describe an improved

hardware scheme, UTM, that support transactions of unbounded size and duration.

UTM added two new machine instructions: xbegin and xend. Any instructions on

that same thread between xbegin and xend form a transaction.

The fact that Libxac has function calls named xbegin and xend is not a coinci-

dence. Libxac was originally intended to be an implementation of software transac-

115

tional memory at a page-level granularity. In terms of programming interface, Libxac

is similar to transactional memory; the library is as easy to use for concurrent pro-

gramming as the original hardware proposal for transactional memory was intended

to be. In terms of performance, however, Libxac is not successful. Transactional

memory is specifically designed with small, nondurable transactions in mind. Even

with substantial improvements to the runtime, it is possible that a page-granular

transaction system using memory mapping may not be as practical as other software

transactional memory implementations for small transactions.

Nondurable transactions in Libxac may still be practical in other situations, how-

ever. As the authors of UTM argue, not all transactions are small. In an experiment

where the Linux 2.4 kernel was “transactified”, the authors notice that 99.9% of all

transactions touched less than 54 cache lines, but the largest transaction touched

over 7,000 64-byte cache lines. They advocate that hardware transactional memory

implementations should support transactions of unbounded size. From the perspec-

tive of good software engineering, this principle makes sense. If the working set of

a transaction is limited to the size of the hardware cache, for example, then trans-

actional code that runs on one machine may not be supported on a machine with a

smaller cache. Code complexity would increase as applications would now be system-

dependent. Note that this problem is not only a performance issue. It is not correct

to simply use hardware transactional memory for small transactions and use ordinary

locks for large transactions; by default, these two mechanisms are incompatible with

each other.

UTM supports unbounded transactions by spilling cache lines from transactions

into main memory and handling that transaction in software. The mechanisms for

doing this are fairly complicated however. With access to a system such as Libxac,

however, it may be possible to support unbounded transactions with only the simpler

hardware scheme of [24]. In what follows, I sketch one possible proposal for integrating

the various transaction systems.

116

A Generic Transactional Memory Hierarchy

My proposal for integrating Libxac with other transactional memory systems is

motivated by the idea of the memory hierarchy. Computer systems cache memory at

different granularities. For example, machine instructions operate on memory stored

in registers, threads often access memory stored in lines in cache, and a process usually

accesses pages that are stored in RAM. A particular program can be thought of as

having a particular level of the hierarchy at which it primarily operates; usually, most

of the working set of a program can be completely cached at this level. Typically,

moving data in and out of the cache at this level represents a performance bottleneck.

We can apply the same concept to parallel programs with transactions. A trans-

action with a large working set should operate at a higher level in the hierarchy than

a transaction with a small working set. It does not make sense to handle concurrency

control on a cache-line basis for two transactions that each touch a total of 10 pages

of data. It seems equally bad to handle concurrency control at the page level for two

transactions that each touch only 10 different cache lines. The concurrency control for

transactional memory should operate at appropriate levels in the memory hierarchy.

Consider a two-level memory hierarchy, with block sizes B1, B2 and cache sizes

M1, M2, respectively. We assume that B1 < B2, M1 < M2. B1 ≪ M1 and B2 ≪ M2.

For any memory address x, let f1(x) and f2(x) be the corresponding size-B1 and size-

B2 blocks that contain x. We assume that the caches are inclusive: for any memory

address x, if f1(x) is cached at level 1, then f2(x) must also be cached at level 2.

In a simple transactional memory hierarchy, I propose that every transaction

instance executes at only one level of the hierarchy. Concurrency control for all

transactions at a particular level is handled by a hardware (or software) transactional

memory (TM) scheme operating at that level. For example, the level-1 TM scheme

guarantees level-1 transactions are atomic by monitoring accesses to blocks of size

B1. Similarly, the level-2 TM scheme tracks accesses to blocks of size B2.

The tricky part is determining how the two levels can communicate with each

other. I sketch a simple scheme that tries to keep the two levels as independent of

117

each other as possible. I propose that at every level of the hierarchy, a block can

conceptually be in one of the following states: N , R, W , L, or U .

• N: Not in a transaction. This status must be consistent at all levels of the

hierarchy. For example, if block q1 is marked as N at level 1, then f2(q1) (the

block at level 2 containing q1) must also be marked as N .

• R: Read by a transaction. At a particular level, multiple transactions may be

reading the same block. If level 1 has block q1 in state R, then f2(q1) must be

in state L at level 2. On the other hand, if level 2 has a block q2 in state R,

then all level-1 blocks in q2 must be in state U if they are cached at level 1.

• W: Written by a transaction. Typically, only one transaction is allowed have

a block in this state. Again, if level 1 has block q1 in state W , the f2(q1) must

be in state L at level 2. If level 2 has a block q2 in state W , then any level-1

blocks in q2 cached at level 1 must be in state U .

• L: A lower level TM system is handling this block. If a block q2 is in state L at

level 2, then level 1 transactions are free to access the entire block q2 without

interference from the level 2 TM system. Level-2 transactions would not be

allowed to access any blocks in state L.

• U: An upper level TM system is handling this block. For example, if block q1 is

in state U at level 1, then every small block in the larger block f2(q1) that is in

the level 1 cache must also be in state U . In this example, a level 1 transaction

is not allowed to access any memory in block f2(q1), but level 2 transactions

can.

The following communication is required between the different layers (for sim-

plicity, I only describe 2 layers, but this description can be generalized to multiple

layers):

1. When a level-1 transaction tries to access an uncached block q1 or a block in

the U state, the runtime must communicate with the level-2 TM system:

118

• If level 2 has f2(q1) in state L or N or uncached, then level 2 sets the state

on that block to L, and level 1 can then access block q1.

• If level 2 has f2(q1) in the R or W state, then the level 1 TM system must

signal to level 2 that it wishes to access block f2(q1). The transaction at

level 2 must either complete or abort before the level 1 transaction can

continue. Alternatively, the level-1 transaction could simply abort.

• If level 2 has f2(q1) in the U state, then level 2 must signal up to any higher

levels and wait for them to either abort or complete their transactions

involving the block f2(q1).

2. When a level-2 transaction tries to access any level-2 block q2 that is in the L

state, it must communicate with the level-1 TM system and ask it to release all

level-1 blocks in q2 (i.e. flush them or set them in the U state).

In summary, a level-i TM system must communicate with level i + 1 whenever it

tries to access an uncached block or a block in the U state. Level i communicates

with level i − 1 when it tries to access a block in the L state. A particular transac-

tion instance T always executes at a single level. Transactions in the system can be

executing at both levels concurrently, but level-1 transactions are completely indepen-

dent of level-2 transactions (at the granularity of level 2). Under certain conditions,

transactions may be moved up to execute at a higher level (or even down to execute

at a lower level), depending on the policies for dealing with aborted transactions. By

extending this scheme to multiple levels of transactional memory, we can in principle

support transactions of unbounded size.

A Specific Example

Imagine that level 1 corresponds to a hardware transactional memory (HTM) mech-

anism that operates on cache lines, as proposed in [24], and level 2 is actually a

software mechanism such as Libxac that operates on pages. I propose one possible

design for integrating these two systems. In this design, I attempt to use the HTM

scheme largely as a black box, making a minimal number of modifications.

119

I describe a scheme that handles a restricted set of programs with multiple threads

and processes. HTM works both on transactions running on different threads or

on different processes, while Libxac only works for sharing data between different

processes through a memory-mapped file. In the scheme I propose, every process

must either be in HTM mode (level 1) or Libxac mode (level 2):

• In HTM mode, a process can have multiple threads, each possibly accessing the

shared-memory segment. The restriction is, however, that no level-2 transac-

tions can be executed on this process while in HTM mode.

• Similarly, in Libxac mode, the process must execute serially, and no level-1

transactions can be executed.

Each process can have a page in the shared memory segment in one of the four

possible states: N, R, W and L. The system behavior depends on these states:

• For all processes in Libxac mode, pages that have state N or L are mapped

with no-access protection. When a level-2 transaction tries to read or write to

a page x for the first time, it causes a SIGSEGV. As long as that no process has

x in the L state, Libxac handles conflicts normally.

If the current process or any other process has x in the L state however, then

there is a conflict between levels 1 and 2 on page x. One solution is to have

the level-2 transaction always abort. The other extreme is to have Libxac tell

HTM system to evict all cache lines on that page from all transactional caches,

wait until this process finishes, and then mark the page as R or W as before.

At this point, it is unclear whether one policy is better than the other.

• For all processes in HTM mode, pages that are in state N are mapped with no-

access protection, but pages in state L are mapped with read/write protection.

This choice means that level-1 transactions are free to modify pages in state L

without incurring any Libxac overhead. Conflicts between level-1 transactions

are handled automatically by the HTM layer.

120

When a level-1 transaction tries to access a page marked N , it is as though this

page was not in memory initially. Libxac’s SIGSEGV handler traps this access

and then checks for conflicts. If no other process has this page set to R or W ,

then it changes the page state for this process to L.1 If some other process is

reading or writing to this page, then we again have a conflict between a level

1 and level 2 transaction. The two choices are to have the level-1 transaction

abort, or have the HTM system signal to Libxac to release that particular page

and mark it as L.

Unresolved Questions

This abstract description of the scheme is far from a complete. Many important

details have not been worked out:

1. I have not specified the exact communication protocols between TM levels 1

and 2. In the current proposal, the HTM layer communicates only indirectly

with level 2 by causing a SIGSEGV when accessing a page mapped with no-access

protection. Libxac needs to have a way to ask the HTM system to release all

cache-lines from a particular page, either by flushing them from the cache or

putting them in the U state. We do not have to maintain an explicit U state in

level 1 if we simply flush those lines from the transactional cache. In the worst

case, if this selective flushing of cache lines is difficult to accomplish, Libxac

could simply flush the entire transactional cache. More efficient solutions might

also be feasible, however.

2. Although the requirement that each process either be in HTM mode or Libxac

mode is restrictive, is seems necessary because there appears to be no easy way

set memory protections on a per-thread basis instead of per-process. Having a

level-1 transaction and a level-2 transaction running concurrently on the same

process is difficult for the same reason that having multiple threads in Libxac

1To support multiversion concurrency for level-2 transactions, we may also copy the page before
switching it to status L.

121

is. Solving the latter problem might remove this restriction from the former.

3. Efficiently switching a process between Libxac mode and HTM mode may be

an inefficient operation. In the current proposal, to switch modes, we must flip

the memory-protection of all the pages marked L between read/write access

and no-access.

This operation may be quite expensive if many pages are marked as L. In fact,

we expect the common case to be that most transactions execute at level 1,

so most pages should be marked as L by level 2. On the other hand, switches

between Libxac and HTM mode should occur only infrequently.

4. My previous description of a transactional memory hierarchy implicitly assumes

that all the TM levels do incremental validation of transactions, i.e., that two

transactions will not simultaneously and optimistically modify a memory block

and discover a conflict only at commit. One can imagine trying to design a

hierarchy where some levels can execute transactions optimistically.

5. Similarly, Libxac actually supports multiversion concurrency. In our specific

example, because Libxac represents the top of the hierarchy, this fact does not

seem to be a problem. One can imagine however, having another layer on top

of Libxac that handles transactions on a distributed-shared memory cluster.

It may be possible to have a hierarchy with some levels supporting multiversion

concurrency.

6. Finally, we might integrate Libxac and HTM in a different way by trying to

use hardware transactional memory to implement the Libxac runtime system.

With the current proposal, this approach may be problematic because Libxac

is constantly doing system calls that involve context switches that may flush the

transactional cache. Still, if this issue could be resolved, then Libxac might do

concurrency control between transactions by creating a meta-transaction that

is handled in HTM. In this approach, every page in the shared-memory segment

gets mapped to a particular cache line. Every time a level-2 transaction reads

122

or writes from a new page, Libxac will read or write from the appropriate

cache line. Thus, Libxac may be able to use the HTM mechanism to detect

transaction conflicts at the page level.

In summary, I have attempted to sketch one possible description for a transactional

memory hierarchy, based on two specific transactional memory implementations. This

design is still in the earliest stages of completion. I believe, however, that it is a good

first step towards having a unified programming interface for concurrent programming

that simplifies code and works efficiently at all levels of the memory hierarchy.

123

124

Appendix A

Restrictions to the Libxac Interface

A.1 Restrictions to Libxac

This appendix enumerates the various programming restrictions when using Libxac,

and discusses potential improvements to the implementation.

1. Libxac’s most significant restriction is that only one transaction per process is

allowed. Libxac uses the no-access, read-only, and read/write memory protec-

tions provided by the mmap function. If the OS maintains a single memory map

for each process rather than for each thread, we can not use memory protections

to map a page read-only for one thread and read/write for a different thread

on the same process. In this case, Libxac could not support multiple concur-

rent transactions on the same process without using a different mechanism for

detecting the pages accessed by a transaction.

2. Libxac currently supports having only one shared memory segment. In other

words, all concurrent processes that xMmap the same file must call xMmap with

the same filename and length arguments. The motivation for this restriction is

that programs can often simply make one call to xMmap to map one large file

for the entire shared memory space.

The implementation described in Chapter 3 could theoretically be extended to

support the full functionality of normal mmap (i.e allowing multiple xMmap calls

125

on different files, mapping only part of a file instead of the entire file, or mapping

the same page in a file to multiple addresses). These extensions would require

Libxac to maintain a more complicated map between the transactional page

addresses returned by xMmap and the physical page address of files on disk, but

these changes are, in principle, relatively straightforward. In this extension,

accesses to pages in multiple files would be treated as though the multiple files

were concatenated logically into one large shared file.

This idea is different from the proposal of allowing a process access to multiple

shared memory segments that are logically distinct in terms of the Libxac’s

atomicity guarantees. Having two distinct shared-memory segments (for ex-

ample, A and B) has interesting semantics. Libxac would guarantee that

transactions are serializable only with respect to operations on A, and also with

respect to only operations on B. The serial order of transactions could be dif-

ferent for A and for B, however, so there is no guarantee of serializability if we

consider all operations on A and B together.

3. The prototype arbitrarily sets the maximum size of the shared memory segment

to 100,000 pages, and the maximum number of concurrent transactions to 16.

This restriction allowed us to implement control data structures simply (and

inefficiently) with large fixed-size arrays. Using dynamic control structures eas-

ily removes this limitation, and may also improve the caching behavior of the

runtime system.

4. Linux limits a process to having at most 216 different memory segments (virtual

memory areas, or vma’s in the kernel [10]) at any point in time. Whenever a

transaction touches a page, Libxac calls mmap on that page and generates a

new segment for that page. Thus, a single transaction can not possibly touch

more than 216 pages at once.

One way of raising this limit, aside from modifying the Linux kernel, is to

concatenate adjacent segments together when a transaction touches adjacent

pages. This proposal does not fix the problem, as it is possible for a transaction

126

to touch every other page. In that situation however, Libxac should escalate

its concurrency control and work at a larger granularity, treating multiple pages

as a single large segment when it detects a large transaction.

5. Every xbegin function call must be properly paired with an xend. The control

flow of a program should not jump out of a transaction. If we also require that

every xbegin must be paired with exactly one xend, then it is possible to detect

unmatched function calls with compiler support.

6. As described in Section 3.2, recovery for durable transactions has not been

implemented. Also, the structure of the log file is incorrect for transactions

on multiple processes if transactions write data pages to the log that can be

confused as metadata pages. Separating the metadata and actual data pages

into separate files solves this problem and also facilitates further optimizations

such as logging only page diffs.

7. Libxac does not provide any mechanism for allocating memory from the shared

memory segment. This shortcoming is not technically a restriction on the imple-

mentation, but it is quite inconvenient if the programmer wishes to dynamically

allocate and work with transactional objects. Providing a malloc function that

allocates memory from the shared segment might lead to simpler user programs.

127

128

Appendix B

Transaction Recovery in Libxac

For durable transactions the Libxac prototype writes meta-data pages in the log and

synchronously force changes out to disk. This in principle is enough to recover from

a program crash and restore the user data file back to a consistent state, assuming

the disk itself has not failed.

Although Libxac writes enough data to disk to do recovery, I have not yet im-

plemented the recovery module for the prototype. In this section, I sketch a possible

algorithm for transaction recovery when transactions execute on a single process.

Libxac’s log files have the following structure:

• The XCOMMIT pages appear in the log in the order that transactions are com-

mitted.

• The XBEGIN page points to all pages belonging to T , and also to any spill-

over pages for this storing this list. For any transaction, T , all spill-over pages

and data pages written by T appear between the T ’s XBEGIN and XCOMMIT (or

XABORT) meta-data pages.

• All pages in a new log file are initialized to all zeros before the log file is used.

Figure B-1 illustrates two example layouts for the log file when transactions are

executing on a single process and two processes, respectively. At a high level, the

recovery algorithm is as follows:

129

(a) (b)

Figure B-1: An example of a Libxac log file when transactions execute (a) on one process,
and (b) on two processes.

130

1. Go to log file containing the last XCHECKPT BEGIN page that has a valid matching

XCHECKPT END.1 Scan through the entire log starting at this point and compute

which transaction each page in the log belongs to.

We know that every valid page that comes after the XCHECKPT BEGIN page is

either (i) a meta-data page, (ii) a data page pointed to by an XBEGIN page in

the list stored in the XCHECKPT BEGIN page, or (iii) a data page pointed to by

some XBEGIN page that comes after the XCHECKPT BEGIN page. Therefore, we

can match pages for all transactions after the last checkpoint. Any unmatched

pages are considered to be invalid.

For a transaction T , we may detect the following inconsistencies:

• T has an XBEGIN page, but no XCOMMIT or XABORT page. This event means

T had not completed at the time of the crash, or the XCOMMIT page did

not make it out to disk.

• T has both XBEGIN and XCOMMIT pages, but the checksum is wrong. Since

writes of multiple pages are not guaranteed to happen atomically, the

XCOMMIT page may get written to disk before one of the data pages. The

checksum should detect this error.

• T does not have an XBEGIN page. This situation can occur if a system

crashes before the XBEGIN is flushed to disk. In this case, none of T ’s data

pages will be pointed to by a valid transaction.

In these three situations, the transaction T is considered to be aborted.

2. Once we have identified which transactions in the log were successfully commit-

ted, we can replay all those transactions in the correct serial order. This process

is done by copying a transaction’s pages into the original file. Alternatively, we

1We assume Libxac maintains a separate file on disk recording the location of all checkpoint
meta-data pages. This file is synchronized a second fsync that occurs after the first fsync does the
actual synchronization. Thus, the XCHECKPT END page is not considered valid until this meta-meta-
data appears on disk.

131

could also attempting a more clever algorithm that works from the end of the

log and only copies the latest version of each page back into the file.

Note that in the actual implementation, the recovery process must itself keep a

log of its changes so we can restore the data to a consistent state in case of a crash

during the recovery process.

In the example in Figure B-1 (a), scanning through the log file, we discover that

the last valid checkpoint started at page 9. We only need to repeat transaction 3

because it is pointed to by the XCHECKPT BEGIN page, and transaction 4 because it

comes after that page. Transaction 5 attempted to commit, and the XCOMMIT page

made it to disk. Its checksum will be incorrect however, as the corresponding XBEGIN

page did not make it successfully to disk. Note that the system must have crashed

before fsync returned. Thus, Libxac did not see transaction 5 finish its commit,

and no other transaction could have read values written by 5.

The example in Figure B-1 (b) shows transactions executing concurrently on two

processes. In this case, pages from different transactions can be interleaved in the log

file. For this example, transaction 3 crashed while attempting to commit, and thus

its XBEGIN page at page 7 did not successfully get written to disk. Transaction 4 that

was executing on the other process did successfully commit however. Transaction 4

could not have read pages from transaction 3 because the fsync that was writing

transaction 3’s data did not succeed.

When all transactions are executed on a single process (but checkpointing may be

done by a different process), this recovery process works correctly because Libxac

guarantees that the log will have at most two invalid data pages interleaved between

valid log pages (the two pages reserved for XCHECKPT BEGIN and XCHECKPT END, in case

the checkpointing process crashed). Since we record the pointers to the checkpoint

meta-data pages in a separate file, we can always distinguish meta-data pages from

data pages.

Unfortunately, this recovery algorithm does not always work when two or more

processes execute transactions. In Figure B-1(b), when we see pages 9 and 14 in the

log, these could either be meta-data pages for transaction 4, or they could theoreti-

132

cally be data pages for transaction 3 that crashed. This proposed recovery algorithm

assumes that it is always possible to distinguish between data pages and meta-data

pages. It seems quite unlikely that a programmer would accidentally execute a trans-

action that writes data pages that are exactly the meta-data plus data pages for a

valid transaction. It is conceivable, however, that a programmer might call xMmap on

a log file generated by Libxac, and perhaps copy a portion of this file as part of a

transaction. In this case, the recovery process can no longer distinguish between data

and meta-data.

When pages from transactions on different processes can be interleaved, it seems

difficult to differentiate between data and meta-data without imposing additional

structure on the log file. Possible solutions to this problem are to enforce some global

structure in log (ex. all odd pages are meta-data, all even pages are data), to use

separate log files for each process, or to use separate files for data and meta-data.

The last two options are perhaps the most practical, although these implementations

may require multiple disks to achieve good performance. Otherwise, the system may

waste a significant amount of time doing disk seeks between two different files on disk.

133

134

Appendix C

Detailed Experimental Results

This appendix presents a more detailed description of some of the experiments de-

scribed in Chapters 4 and 5. It also contains more detailed data collected from these

experiments.

C.1 Timer Resolution

In this section, I describe an experiment to determine the resolution of the timers

used in the empirical studies. Using the processor’s cycle counter and gettimeofday

is accurate at least for measuring times greater than 50 ns and 10 µs, respectively.

In all experiments, I measured the time for an event by checking the system time

before and after the event and reporting the difference. For nondurable transactions,

I typically used the processor’s cycle counter, via the rdtsc instruction. For longer

events, I used two calls to the gettimeofday function. To understand the resolution

of this method, I measured the difference between two consecutive calls to check the

timer, with no code in between. The results from repeating this experiment 10,000

times for rdtsc and gettimeofday are shown in Tables C.1 and C.2, respectively.

In Table C.1, the data on Machines 1 and 2 suggests that the delay when checking

the cycle counter is about 100 clock cycles (less than 50 ns). The delay is even less

for Machines 3 and 4. Although the maximum value on Machine 1 was about 12

µs, the 99th percentile was still under 50 ns, suggesting that this mechanism for

135

Machine Mean St. Dev Min Median 99th Percentile Max

1 99.5 458 92 92 112 35332
2 92.0 0.92 92 92 92 184
3 9.0 3.2 5 8 23 36
4 41.0 0.16 41 41 41 51

Table C.1: Delay (in clock cycles) between successive calls to timer using rdtsc instruction,
10,000 repetitions.

Machine Mean St. Dev Min Median 99th Percentile Max

1 2.87 2.24 2.0 3.0 7.0 201.0
2 0.87 0.39 0.0 1.0 1.0 20.0
3 1.3 0.50 1.0 1.0 2.0 8.0
4 1.55 2.99 1.0 2.0 2.0 271.0

Table C.2: Delay between successive calls to gettimeofday (in µs), 10,000 repetitions.

estimating times is reasonably accurate for measuring times to within a few tenths of

a microsecond, provided we make repeated measurements.

From the data in Table C.2, we observe that the delay between gettimeofday

calls on all four machines was less than 7 microseconds for 99% of measurements.

This data suggests gettimeofday has a resolution of a few microseconds.

On Machine 1, the maximum delay was approximately 200 µs. If we observe

the distribution of delay times, as shown in Figure C-1, then we see that this was a

rare event. This behavior is not surprising, as it is impossible to stop basic system

processes during our experiments. An interrupt or other operating system process

may have caused the timer code to get swapped out. These rare but expensive delays

must be kept in mind when interpreting the experimental results.

In summary, the data suggests we can use gettimeofday to measure times longer

than approximately 10 µs with reasonable accuracy provided the time interval is long

enough or we do enough repetitions.

136

 1

 10

 100

 1000

 1 10 100 1000 10000

T
im

e
(u

s)

kth longest delay.

kth longest delay between gettimeofday calls

Machine 1

Figure C-1: Machine 1:Distribution of Delay Times Between Successive gettimeofday

Calls.

C.2 Page-Touch Experiments

This section contains results from the page-touch experiments on Machines 2 through

4. These experiments were previously described in Section 4.2.1 and 4.2.2. Figures

C-2 through C-4 plot the times per page read and write in the page-touch experiments

with nondurable transactions.

C.3 Experiments on Various System Calls

In this section, I present detailed data from the microbenchmark experiments dis-

cussed in Section 4.2.3.

Memory Mapping and Fault Handlers

Table C.3 is a more complete version of Table 4.3.

137

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 2 4 6 8 10

C

yc
le

s
/ 1

00
0

k

Machine 2: Transaction Reading 2^k Pages

Mean
Median

Mean, w. Advisory
Median, w. Advisory

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10

C

lo
ck

 C
yc

le
s

/ 1
00

0

k

Machine 2: Transaction Writing 2^k Pages

Mean
Median

Mean, w. Advisory
Median, w. Advisory

Figure C-2: Average time per page to execute the transactions shown in Figure 4-3 on
Machine 2. For each value of n, each transaction was repeated 1000 times.

138

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10

C

lo
ck

 C
yc

le
s/

10
00

k

Machine 3: Transaction Reading 2^k Pages

Mean
Median

Mean, w. Advisory
Median, w. Advisory

 0

 10

 20

 30

 40

 50

 60

 70

 0 2 4 6 8 10

C

lo
ck

 C
yc

le
s/

10
00

k

Machine 3: Transaction Writing 2^k Pages

Mean
Median

Mean, w. Advisory
Median, w. Advisory

Figure C-3: Average time per page to execute the transactions shown in Figure 4-3 on
Machine 3. For each value of n, each transaction was repeated 1000 times.

139

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

C

yc
le

s
/ 1

00
0

k

Machine 4: Transaction Reading 2^k Pages

Mean
Median

Mean, w. Advisory
Median, w. Advisory

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10

C

lo
ck

 C
yc

le
s

/ 1
00

0

k

Machine 4: Transaction Writing 2^k Pages

Mean
Median

Mean, w. Advisory
Median, w. Advisory

Figure C-4: Average time per page to execute the transactions shown in Figure 4-3 on
Machine 4. For each value of n, each transaction was repeated 1000 times.

140

Operation Mean St. Dev Min Median 99th %tile Max

1: Entering SIGSEGV 32,216 11,268 33,320 33,956 54,772 648,236
1: mmap 15,156 2,747 13,916 14,580 26,672 70,748
1: Exiting SIGSEGV 29,323 9,288 27,408 28,428 44,996 635,340

2: Entering SIGSEGV 8,032 546 7,884 8,032 8,132 45,720
2: mmap 10,054 639 9,920 10,024 10,380 49,520
2: Exiting SIGSEGV 9,723 830 9,632 9,704 9,872 46,960
3: Entering SIGSEGV 3,489 182 3,238 3,466 3,741 13,190
3: mmap 3,228 512 2,892 3,205 3,420 13,335
3: Exiting SIGSEGV 4,745 110 4,377 4,709 4,844 9,204
4: Entering SIGSEGV 3,078 613 2,971 3,051 3,155 30,968
4: mmap 2,282 711 2,142 2,259 2,340 56,322
4: Exiting SIGSEGV 3,140 537 3,055 3,114 3,267 21,255

Table C.3: Timing data for entering SIGSEGV handler, calling mmap, and leaving handler,
10,000 repetitions. All times are processor cycles.

Operation Mean St. Dev Min Median 99th %tile Max

1: memcpy 1,122,167 129,167 1,064,328 1,076,620 1.803,956 2,204,000

2: memcpy 1,052,253 7,379 1,046,292 1,052,316 1,086,384 1,106,784
3: memcpy 608,482 8,049 605,017 608,112 612,237 791,724
4: memcpy 931,823 98,636 925,048 925,089 953,525 4,037,042

Table C.4: Clock cycles to do 1,000 calls to memcpy between two 4K character arrays in
memory, 1,000 repetitions. times are in µs.

Test of memcpy

Table C.4 is a more detailed look at the time required to do memcpy between two

arrays 1,000 times (i.e. the last column of Table 4.5).

C.4 Durable Transactions

All times in this section of the appendix were measured using gettimeofday as the

clock.

Page-Touch Experiments

Table C.5 is a more complete version of Table 4.7 from Section 4.3.

141

Machine Mean σ Min. Median 99th %tile Max
1, Page Read 38.6 65.0 34.6 35.5 52.7 2044.5
1, Page Read w. Adv. 22.4 75.0 18.1 18.8 36.0 2032.2
1, Page Write 1569.3 4146.0 560.4 731.3 9578.2 106,560
1, Page Write w. Adv. 1297.4 2808.0 524.4 842.5 8645.2 54,514
3(a), Page Read 15.4 33.1 14.1 14.4 14.7 1062.6
3(a), Page Read w. Adv. 14.0 32.5 11.8 13.0 13.5 1039.4
3(a), Page Write 235.0 276.3 108.7 126.0 1231.71 1800.13
3(a), Page Write w. Adv. 179.4 173.9 102.9 114.7 822.3 1612.6
3(b), Page Read 16.4 10.6 15.5 15.8 30.2 344.6
3(b), Page Read w. Adv. 15.1 25.2 12.7 13.8 25.9 636.2
3(b), Page Write 226.8 297.6 103.9 121.2 1510.3 1798.0
3(b), Page Write w. Adv. 182.2 203.8 97.8 115.3 1072.4 1674.3

Table C.5: Average Access Time (µs) per Page, for Transactions Touching 1024 Pages.

Synchronizing a File

Table C.6 is a more complete version of Table 4.8.

Write Speed

This benchmark measures the time to write 10,000 pages to a file, 1 page at a time,

using the write system call. This operation was repeated 1000 times. The results

from this test are shown below in Table C.7.

The data suggests that lseek is actually lazy, with the disk head not actually

moving until an I/O operation executes. This test was done when the write-cache on

all machines was enabled.

Checksum Calculations

Table C.8 shows the time required to calculate the SHA1 and MD5 hash functions

on a single page. On Machines 1 and 2, the average time for MD5 is 12 and 15

µs, respectively. This data suggests that the overhead of computing a checksum of

each page a transaction writes on a transaction commit is not too expensive for small

durable transactions.

142

Operation Mean St. Dev Min Median 99th Percentile Max

1: msync 8 1 7 8 16 27
1: fsync 13575 184338 2439 8015 12672 5836456

2: msync 11 3 8 9 19 25
2: fsync 5137 36919 294 2663 41061 1156245
3(a): msync 5 1 4 5 6 12
3(a): fsync 4794 24018 735 4002 7000 761552
3(b): msync 5 1 4 5 6 12
3(b): fsync 4698 23090 818 3949 6925 731910
4: msync 33 6 28 31 43 111
4: fsync 3531 46,721 592 632 32,576 1,460,662

Table C.6: Timing data for calling msync and fsync on a 10,000 page file with a random
page modified, 1000 repetitions. All times are in µs.

Operation Mean St. Dev Min Median 99th %tile Max

1: lseek 6 2 5 6 13 62
1: write 103,446 244,907 90,564 92,088 113,437 5,615,347

2: lseek 4 13 2 3 4 406
2: write 151,895 166,318 119,006 119,571 1,193,881 1,278,444
3(a): lseek 3 1 2 2 4 9
3(a): write 63,465 4,036 62,992 63,270 64,268 190,798
3(b): lseek 3 1 2 3 4 9
3(b): write 92,507 70,402 78,171 83,658 586,612 837,660
4: lseek 9 5 7 8 9 103
4: write 2,168,185 504,761 1,423,656 2,521,593 2,893,774 3,070,492

Table C.7: Time to write 10,000 pages to a file, 1,000 repetitions. All times are in µs.

Machine Hash Mean σ Min Median 99th % Max
1 SHA1 85.6 16.5 81.7 82.9 118.6 685.6
1 MD5 36.3 10.1 34.4 35.1 67.3 680.5
2 SHA1 84.5 2.3 83.6 84.2 86.4 177.5
2 MD5 35.5 5.7 34.4 35.5 35.9 582.0
4 SHA1 105.2 555.9 52.2 52.3 69.2 6,069.2
4 MD5 54.6 412.2 25.9 25.9 30.6 6,050.1

Table C.8: Time to compute SHA1 and MD5 hash functions on a single page. All times
are in thousands of clock cycles.

143

C.5 Concurrency Tests

Table C.9 shows the average time required per nondurable transaction for the concur-

rency tests described in Section 4.4. This table represents a more complete version of

Table 4.9. For transactions on two processes, I report the number of aborted trans-

actions on each process. All times in this section are measured with gettimeofday.

Similarly, Table C.10 is a more complete version of the data for concurrency tests

for durable transactions, originally presented in Table 4.10.

C.6 Search Trees using Libxac

I use gettimeofday as the timers for all experiments on the Libxac search trees. For

insertions done on a single process, I measure and record the time required for every

insertion. To provide a comparison on two processes, I use a call to fork, and did

125,000 insertions on each process. To estimate the time required for each insertion,

I record the time to complete each insertion and compare that to the time before

the call to fork. Note that this introduce a slight bias in favor of the single process

because I am also including the time required to do the fork operation. On the other

hand, each insertion on two processes requires only one call to gettimeofday instead

of two.

Insertions as Nondurable Transactions

This section describes the details of the experiments done on the Libxac search trees

and on Berkeley DB’s B-tree and presents a complete table of results for nondurable

and durable transactions. See Section 5.4 for details.

With the Libxac versions of the B+-tree and the CO B-tree, I measured the time

to insert 250,000 elements. Each search tree had 512-byte data blocks, each indexed by

a 64-bit key. For the B+-tree, the blocksize was 4K. The keys for the inserted elements

were chosen at random using the rand function, with each insert being a separate

transaction. I tested 2 versions of the B+-tree: one unoptimized implementation, and

144

Machine Test # Avg. Time per Standard Dev. Speedup
Xaction (µs) (µs)

1 A, 1 proc. 32.2 0.27
1 A, 2 proc. 30.7 0.36 1.05
1 B, 1 proc. 33.6 0.25
1 B, 2 proc. 32.2 0.87 1.04
1 C, 1 proc. 1,453 4.90
1 C, 2 proc. 1,460 56.0 1.00

2 A, 1 proc. 26.2 0.10
2 A, 2 proc. 23.0 0.15 1.14
2 B, 1 proc. 28.3 0.26
2 B, 2 proc. 24.2 0.48 1.17
2 C, 1 proc. 1,787 30.3
2 C, 2 proc. 903 36.3 1.98

3(a) A, 1 proc. 22.9 0.63
3(a) A, 2 proc. 24.3 1.14 0.94
3(a) B, 1 proc. 28.1 0.42
3(a) B, 2 proc. 27.5 1.05 1.02
3(a) C, 1 proc. 2,259 3.90
3(a) C, 2 proc. 1,132 1.82 2.00

3(b) A, 1 proc. 24.3 1.36
3(b) A, 2 proc. 24.9 1.07 0.98
3(b) B, 1 proc. 28.2 1.67
3(b) B, 2 proc. 26.3 0.74 1.07
3(b) C, 1 proc. 2,248 2.74
3(b) C, 2 proc. 1,130 1.30 1.99

4 A, 1 proc. 109 3.39
4 A, 2 proc. 185 13.1 0.59
4 B, 1 proc. 121 3.39
4 B, 2 proc. 190 11.5 0.64
4 C, 1 proc. 10,487 8.51
4 C, 2 proc. 10,565 8.86 0.99

Table C.9: Concurrency tests for nondurable transactions. Times are µs per transaction.

145

Machine Test # Mean Time per Xaction (µs) Standard Dev. (µs) Speedup

1 A, 1 proc. 8,231 234
1 A, 2 proc. 8,531 3500 0.96
1 B, 1 proc. 8,868 46.5
1 B, 2 proc. 8,878 3133 1.00
1 C, 1 proc. 9,125 65.6
1 C, 2 proc. 10,042 1452 0.91

3(a) A, 1 proc. 6,116 8.23
3(a) A, 2 proc. 6,162 95.3 0.99
3(a) B, 1 proc. 6,113 3.28
3(a) B, 2 proc. 6,201 93.8 0.98
3(a) C, 1 proc. 6,315 6.57
3(a) C, 2 proc. 6,626 464 0.95

3(b) A, 1 proc. 6,210 23.1
3(b) A, 2 proc. 6,264 64.8 0.99
3(b) B, 1 proc. 6,215 18.1
3(b) B, 2 proc. 6,213 20.1 1.00
3(b) C, 1 proc. 6,388 16.2
3(b) C, 2 proc. 6,619 438.4 0.97

Table C.10: Concurrency tests for durable transactions. Times are per transaction.

one that uses the advisory function. I only tested an unoptimized CO B-tree.

For the Berkeley DB B-Tree, I used the DB AUTO COMMIT feature to automatically

make each put operation on the B-tree its own transaction. On Machines 1 and 3, I

ran Berkeley DB version 4.2 (-ldb-4.2). Machines 2 and 4 had Berkeley DB version

4.1 (-ldb-4.1). On each machine, the cache size was set to be 2 caches, 1 MB in

size.

To make transactions nondurable, for the machines Berkeley DB 4.2, I used the

DB TXN NOT DURABLE flag to turn off durability. For Machines 2 and 4, finding an

appropriate point of comparison with Berkeley DB was challenging, as using Berkeley

DB version 4.1 seemed to cause some incompatibility with this flag. Instead, I used

the flag DB TXN NOSYNC on Machines 2 and 4.

146

Machine Search Tree # Proc. Avg. Time (µs) # Aborts
per Insert

1 B+-tree, no adv. 1 411 –
1 B+-tree, no adv. 2 488 59,992, 56,193,
1 B+-tree, w. adv. 1 240 –
1 B+-tree, w. adv. 2 236 27,753, 28,041
1 CO B-tree, no adv. 1 490 –
1 CO B-tree, no adv. 2 455 3,370, 2,876
1 Berkeley DB 1 37 –
1 Berkeley DB 2 29 –
2 B+-tree, no adv. 1 244 –
2 B+-tree, no adv. 2 191 32,270, 33,397,
2 B+-tree, w. adv. 1 189 –
2 B+-tree, w. adv. 2 152 31,491, 27,238
2 CO B-tree, no adv. 1 260 –
2 CO B-tree, no adv. 2 189 3,733, 5,785
2 Berkeley DB 1 24 –

3(a) B+-tree, no adv. 1 266 –
3(a) B+-tree, no adv. 2 264 31,128, 27,250
3(a) B+-tree, w. adv. 1 232 –
3(a) B+-tree, w. adv. 2 229 26,877, 25,497
3(a) CO B-tree, no adv. 1 338 –
3(a) CO B-tree, no adv. 2 337 3,345, 5,166
3(a) Berkeley DB 1 26 –
3(a) Berkeley DB 2 20 –
4 B+-tree, no adv. 1 18,019 –
4 B+-tree, w. adv. 1 17,408 –
4 CO B-tree, no adv. 1 2,286 –
4 Berkeley DB 1 393 –

Table C.11: Time to do 250,000 nondurable insertions into Libxac search trees.

147

Machine B+-tree CO B-tree Berkeley DB B-Tree
1 2.6 2.2 2.1
2 6.0 4.8 4.6

3(a) 2.7 2.1 6.5
3(b) 2.0 1.7 14.1

Table C.12: Time to do 250,000 durable insertions on a single process into the various
search trees, with write-caches on the harddrives enabled. All times are in ms.

Durable Insertions with Write-Cache Enabled

Table C.12 shows the average times per durable insert when the write-caches on the

harddrives on all machines were enabled. It is unclear how to interpret these numbers,

as these transactions are not strictly durable. The main point is, however, that the

performance of Libxac search trees and Berkeley DB are still comparable under

different hardware settings.

148

Bibliography

[1] C. Scott Ananian, Krste Asanović, Bradley C. Kuszmaul, Charles E. Leiserson,

and Sean Lie. Unbounded transactional memory. In Proceedings of the 11th Inter-

national Symposium on High-Performance Computer Architecture (HPCA’05),

pages 316–327, San Franscisco, California, February 2005.

[2] Andrew W. Appel and Kai Li. Virtual memory primitives for user programs. In

ASPLOS-IV, pages 96–107, April 1991.

[3] Lars Arge and Jeffrey Scott Vitter. Optimal dynamic interval management in

external memory. In FOCS 1996, pages 560–569, October 1996.

[4] M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. In

FOCS 2000, pages 399–409, 2000.

[5] Philip A. Bernstein and Nathan Goodman. Multiversion concurrency control—

theory and algorithms. ACM Transactions on Database Systems (TODS),

8(4):465–483, 1983.

[6] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concurrency

Control and Recovery in Database Systems. Addison-Wesley, 1987.

[7] Brian N. Bershad, Craig Chambers, Susan J. Eggers, Chris Maeda, Dylan Mc-

Namee, Przemyslaw Pardyak, Stefan Savage, and Emin Gun Sirer. SPIN – an

extensible microkernel for application-specific operating system services. In ACM

SIGOPS European Workshop, pages 68–71, 1994.

149

[8] Haran Boral, William Alexander, Larry Clay, George Copeland, Scott Danforth,

Michael Franklin, Brian Hart, Marc Smith, and Patrick Valduriez. Prototyping

Bubba, a highly parallel database system. IEEE Transactions on Knowledge and

Data Engineering, 2(1):4–24, 1990.

[9] Peter A. Buhr and Anil K. Goel. uDatabase annotated reference manual, version

1.0. Technical report, Dept. of Comp. Sci., Univ. of Waterloo, Ontario, Canada,

September 1998.

[10] Rémy Card, Éric Dumas, and Franck Mével. The Linux Kernel Book. John

Wiley and Sons, 1999.

[11] Albert Chang and Mark F. Mergen. 801 storage: Architecture and programming.

ACM Transactions on Computer Systems, 6(1):28–50, February 1988.

[12] J. M. Cheng, C. R. Loosely, A. Shibamiya, and P. S. Worthington. IBM Database

2 performance: Design, implementation and tuning. IBM Systems J., 23(2):189–

210, 1984.

[13] W. P. Cockshot, M. P. Atkinson, K. J. Chisholm, P. J. Bailey, and R. Morrison.

Persistent object management system. Software-Practice and Experience, 14(1),

January 1984.

[14] Keir Fraser. Practical lock-freedom. Technical Report 579, University of Cam-

bridge, February 2004.

[15] Matteo Frigo. The weakest reasonable memory model. Master’s thesis, MIT

Department of Electrical Engineering and Computer Science, January 1998.

[16] Matteo Frigo. Portable High-Performance Programs. PhD thesis, MIT EECS,

June 1999.

[17] R. Goldberg and R. Hassinger. The double paging anomaly. In Proc. 1974

National Computer Conference, pages 195–199, May 1974.

150

[18] Jim Gray. The transaction concept: Virtues and limitations. In Seventh Inter-

national Conference of Very Large Data Bases, pages 144–154, September 1981.

[19] Jim Gray, Paul McJones, Mike Blasgen, Bruce Lindsay, Raymond Lorie, Tom

Price, Franco Putzolu, and Irving Traiger. The recovery manager of the System

R database manager. ACM Computing Surveys, 13(2):223–242, 1981.

[20] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-

niques. Morgan Kaufmann, 1993.

[21] Lance Hammond, Brian D. Carlstrom, Vicky Wong, Ben Hertzberg, Mike Chen,

Christos Kozyrakis, and Kunle Olukotun. Programming with transactional co-

herence and consistency (TCC). In ASPLOS-XI: Proceedings of the 11th Inter-

national Conference on Architectural Support for Programming languages and

Operating Systems, pages 1–13, New York, NY, USA, 2004. ACM Press.

[22] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis,

Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and

Kunle Olukotun. Transactional memory coherence and consistency. In ISCA

’04: Proceedings of the 31st Annual International Symposium on Computer Ar-

chitecture, page 102, Washington, DC, USA, 2004. IEEE Computer Society.

[23] Tim Harris and Keir Fraser. Language support for lightweight transactions.

In OOPSLA ’03: Proceedings of the 18th Annual ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and Applications, pages

388–402, New York, NY, USA, 2003. ACM Press.

[24] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for

lock-free data structures. In Proceedings of the Twentieth Annual International

Symposium on Computer Architecture, 1993.

[25] Maurice Herlihy, Victor Luchangco, Mark Moir, and III William N. Scherer.

Software transactional memory for dynamic-sized data structures. In PODC

151

’03: Proceedings of the Twenty-Second Annual Symposium on Principles of Dis-

tributed Computing, pages 92–101, New York, NY, USA, 2003. ACM Press.

[26] Maurice P. Herlihy, Victor Luchangco, and Mark Moir. Obstruction-free syn-

chronization: Double-ended queues as an example. In ICDCS, pages 522–529,

Providence, Rhode Island, May 2003.

[27] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condi-

tion for concurrent objects. ACM Transactions on Programming Languages and

Systems (TOPLAS), 12(3):463–492, 1990.

[28] Shigekazu Inohara, Yoji Shigehata, Keitaro Uehara, Hajime Miyazawa, Kouhei

Yamamoto, and Takashi Masuda. Page-based optimistic concurrency control for

memory-mapped persistent object systems. In HICSS (2), pages 645–654, 1995.

[29] Zardosht Kasheff. Cache-oblivious dynamic search trees. Master’s thesis, MIT

EECS, June 2004.

[30] Kevin Poulsen. Tracking the blackout bug. http://www.securityfocus.com, 2004.

[31] T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Summer. One-level

storage system. IRE Trans. on Electronic Computers, EC-11(2):223–235, April

1962.

[32] H.T. Kung and John T. Robinson. On optimistic methods for concurrency con-

trol. ACM Transactions on Database Systems, 6(2):213–226, June 1981.

[33] B. W. Lampson and H. E. Sturgis. Crash recovery in a distributed data storage

system. Technical report, Xerox PARC, April 1979.

[34] Victor Luchangco. Memory Consistency Models for High Performance Dis-

tributed Computing. PhD thesis, MIT, 2001.

[35] Dylan James McNamee. Virtual Memory Alternatives for Transaction Buffer

Management in a Single-level Store. PhD thesis, Univ. of Wash., 1996.

152

[36] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.

ARIES: a transaction recovery method supporting fine-granularity locking and

partial rollbacks using write-ahead logging. ACM Trans. Database Syst.,

17(1):94–162, 1992.

[37] Elliot I. Organick. The Multics System: An Examination of its Structure. The

MIT Press, Cambridge, MA, 1972.

[38] The PostgreSQL Global Development Group. PostgreSQL 7.2.1 Documentation,

2001.

[39] Harald Prokop. Cache-oblivious algorithms. Master’s thesis, MIT EECS, June

1999.

[40] John Rosenberg, Alan Dearle, David Hulse, Anders Lindström, and

Stephen Norris. Operating system support for persistent and recoverable com-

putations. Commun. ACM, 39(9):62–69, 1996.

[41] Yasushi Saito and Brian Bershad. A transactional memory service in an exten-

sible operating system. In USENIX Annual Technical Conference, pages 53–64,

1998.

[42] Nir Shavit and Dan Touitou. Software transactional memory. In Symposium on

Principles of Distributed Computing, pages 204–213, 1995.

[43] Abraham Silberschatz and Peter B. Galvin. Operating System Concepts.

Addison-Wesley, Fifth edition, 1998.

[44] Sleepycat Software. The Berkeley database. http://www.sleepycat.com, 2005.

[45] Frank G. Soltis. Inside the AS/400. Duke Press, Loveland, Colorado, 1997.

[46] Alfred Z. Spector, D. Thompson, R.F. Pausch, J.L. Eppinger, D. Duchamp,

R. Draves, D.S. Daniels, and J.L. Bloch. Camelot: A distributed transaction

facility for Mach and the Internet—An interim report. Technical Report CMU-

CS-87-129, Carnegie Mellon University, 1987.

153

[47] Seth J. White and David J. DeWitt. QuickStore: A high performance mapped

object store. VLDB Journal: Very Large Data Bases, 4(4):629–673, 1995.

154

