
Upper Bounds on Number of Steals in Rooted
Trees

Charles E. Leiserson1, Tao B. Schardl1, and Warut Suksompong2

1 MIT Computer Science and Artificial Intelligence Laboratory
32 Vassar St, Cambridge, MA 02139, USA

{cel,neboat}@mit.edu
2 Department of Computer Science, Stanford University

353 Serra Mall, Stanford, CA 94305, USA
warut@cs.stanford.edu

Abstract. Inspired by applications in parallel computing, we analyze
the setting of work stealing in multithreaded computations. We obtain
tight upper bounds on the number of steals when the computation can be
modeled by rooted trees. In particular, we show that if the computation
with n processors starts with one processor having a complete k-ary tree
of height h (and the remaining n − 1 processors having nothing), the
maximum possible number of steals is

∑n
i=1(k − 1)i

(
h
i

)
.

Keywords: work stealing, parallel algorithm, extremal combinatorics,
binomial coefficient

1 Introduction

The two main scheduling paradigms that are commonly used for scheduling mul-
tithreaded computations are work sharing and work stealing. The two paradigms
differ in how the threads are distributed. In work sharing, the scheduler migrates
new threads to other processors so that underutilized processors have more work
to do. In work stealing, on the other hand, underutilized processors attempt to
“steal” threads from other processors. Intuitively, the migration of threads oc-
curs more often in work sharing than in work stealing, since no thread migration
occurs in work stealing when all processors have work to do, whereas a work-
sharing scheduler always migrates threads regardless of the current utilization
of the processors.

The idea of work stealing has been around at least as far back as the 1980s.
Burton and Sleep’s work [4] on functional programs on a virtual tree of processors
and Halstead’s work [7] on the implementation of Multilisp are among the first to
outline the idea of work stealing. These authors point out the heuristic benefits of
the work-stealing paradigm with regard to space and communication. Since then,
several other researchers [1, 2, 6, 8] have found applications of the work-stealing
paradigm or analyzed the paradigm in new ways.

An important contribution to the literature of work stealing was made by
Blumofe and Leiserson [3], who gave the first provably good work-stealing sched-
uler for multithreaded computations with dependencies. Their scheduler executes

2 C. E. Leiserson, T. B. Schardl, W. Suksompong

a fully strict (i.e., well-structured) multithreaded computations on P processors
within an expected time of T1/P +O(T∞), where T1 is the minimum serial ex-
ecution time of the multithreaded computation (the work of the computation)
and T∞ is the minimum execution time with an infinite number of processors
(the span of the computation.) Furthermore, the scheduler has provably good
bounds on total space and total communication in any execution.

This paper analyzes upper bounds on the number of steals in multithreaded
computations. While the existing literature has dealt extensively with proba-
bilistic and average-case analysis, it has not covered worst-case analysis on work
stealing. We obtain tight upper bounds on the number of steals when the com-
putation can be modeled by rooted trees. In particular, we show that if the
computation with n processors starts with one processor having a complete k-
ary tree of height h (and the remaining n − 1 processors having nothing), the
maximum possible number of steals is

∑n
i=1(k − 1)i

(
h
i

)
.

The remainder of this paper is organized as follows. Section 2 introduces the
setting that we will analyze throughout the paper. Section 3 introduces some
notation that we will use later in the paper. Section 4 analyzes the case where at
the beginning all the work is owned by one processor, and the computation tree is
a binary tree. Section 5 generalizes Section 4 to the case where the computation
tree is an arbitrary rooted tree. Section 6 generalizes Section 5 one step further
and analyzes the case where at the beginning all processors could possibly own
work. Finally, Section 7 concludes and suggests directions for future work.

2 Setting

This section introduces the setting that we will analyze throughout the paper.
We describe the setting while keeping the mathematical core as our focus. Suk-
sompong [9] provides more detail on the connection between this setting and the
work-stealing paradigm.

Suppose that there are P processors. Each processor owns some work, which
we model as a computation tree. Throughout this paper, we assume that com-
putation trees are rooted trees with no “singleton nodes” (i.e., nodes that have
exactly one child.) At any point in the execution of work stealing, a processor is
allowed to perform the following two-step operation:

1. Finish its own work, i.e., destroy its computation tree.
2. Pick another processor that currently owns a computation tree with more

than one node, and “steal” from that processor.

We now describe how a steal proceeds. Suppose that processor P2 steals from
processor P1, and assume that the root node of P1 has m children. If m > 2,
then P2 steals the rightmost subtree, leaving the root node and the other m− 1
subtrees of P1 intact. If m = 2, on the other hand, then P2 steals the right
subtree, leaving P1 with the left subtree, while the root node disappears.

An example of a steal is shown in Figure 1. In this example, the root node
has four children, and therefore the steal takes away the rightmost subtree and

Upper Bounds on Number of Steals in Rooted Trees 3

leaves the remaining three subtrees intact. This definition of stealing in rooted
trees is not arbitrary. It is, in fact, the one commonly used in parallel computing.

2 3 4 5

1

11 12

13 14

6 7 8 9 10 19 20

16 17 18

15

P1 P2

(a) Initial configuration

2 3 4

1

6 7 8 9 10

11 12

5

13 14

P1 P2

(b) Processor P2 steals from processor P1

Fig. 1. Example of a steal

The question that we analyze in this paper is as follows: Given any starting
configuration of computation trees corresponding to the processors, what is the
maximum possible number of steals that can occur in an execution of work
stealing?

Before we begin our analysis on the number of steals, we consider an example
of a complete execution of work stealing in Figure 2. There are two processors in
this example, P1 and P2, and the initial computation trees corresponding to the
two processors are shown in Figure 2(a). Three steals are performed, yielding the
trees in Figures 2(b), 2(c), and 2(d) respectively. In this example, one can check
that the maximum number of steals that can be performed in the execution is
also 3.

3 Notation

This section introduces some notation that we will use later in the paper.

4 C. E. Leiserson, T. B. Schardl, W. Suksompong

4 5 6 7

2 3

1

8 9

13 14 15 16

11 12

10

P1 P2

(a) Initial configuration

4 5

2

8 9

6 7

3

P1 P2

(b) Processor P2 steals from processor P1

4

8 9

5

P1 P2

(c) Processor P2 steals from processor P1

8 9

P1 P2

(d) Processor P2 steals from processor P1

Fig. 2. Example of an execution of work stealing

Upper Bounds on Number of Steals in Rooted Trees 5

Binomial Coefficients

For positive integers n and k, the binomial coefficient
(
n
k

)
is defined as

(
n

k

)
=

n!

k!(n− k)!
if n ≥ k

0 if n < k.

The binomial coefficients satisfy Pascal’s identity [5](
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
(1)

for all integers n, k ≥ 1. One can verify the identity directly using the definition.

Trees

Let EMPT denote the empty tree with no nodes, and let TRIVT denote the
trivial tree with only one node.

For h ≥ 0, let CBT (h) denote the complete binary tree with height h. For
instance, the tree CBT (4) is shown in Figure 3.

Fig. 3. The complete binary tree CBT (4) of height 4

For k ≥ 2, h ≥ 0, and 1 ≤ b ≤ k − 1, let ACT (b, k, h) denote the “almost
complete” k-ary tree with b · kh leaves. In particular, the root has b children
if b 6= 1 and k children if b = 1, and every other node has 0 or k children.
For instance, the tree ACT (2, 3, 2) is shown in Figure 4. By definition, we have
CBT (h) = ACT (1, 2, h). Also, the tree ACT (b, k, h) is complete exactly when
b = 1.

For any tree T , denote by |T | the size of the tree T , i.e., the number of nodes
in T .

6 C. E. Leiserson, T. B. Schardl, W. Suksompong

Fig. 4. The almost complete ternary tree ACT (2, 3, 2) of height 3 and root branching
factor 2

4 Binary Tree and One Starting Processor

In this section, we establish the upper bound on the number of steals in the
case where at the beginning, all the work is owned by one processor, and the
computation tree is a binary tree. We define a potential function to help with es-
tablishing the upper bound, and we derive a recurrence relation for the potential
function. The recurrence directly yields an algorithm that computes the upper
bound in time O(|T |n). Finally, we show that the maximum number of steals
that can occur if our configuration starts with the tree CBT (h) is

∑n
i=1

(
h
i

)
.

Recurrence

Suppose that we are given a configuration in which all processors but one start
with an empty tree, while the exceptional processor starts with a tree T . How
might a sequence of steals proceed? The first steal is fixed—it must split the tree
T into its left and right subtrees, Tl and Tr. From there, one way to proceed
is, in some sense, to be greedy. We obtain as many steals out of Tl as we can,
while keeping Tr intact. As such, we have P − 1 processors that we can use to
perform steals on Tl, since the last processor must maintain Tr. Then, after we
are done with Tl, we can perform steals on Tr using all of our P processors. This
motivates the following definition.

Definition 1. Let n ≥ 0 be an integer and T a binary tree. The nth potential
of T is defined as the maximum number of steals that can be obtained from a
configuration of n+ 1 processors, one of which has the tree T and the remaining
n of which have empty trees. The nth potential of T is denoted by Φ(T, n).

If we only have one processor to work with, we cannot perform any steals,
hence Φ(T, 0) = 0 for any tree T . Moreover, the empty tree EMPT and the trivial
tree with a single node TRIVT cannot generate any steals, hence Φ(EMPT , n) =
Φ(TRIVT , n) = 0 for all n ≥ 0.

In addition, the discussion leading up to the definition shows that if a binary
tree T has left subtree Tl and right subtree Tr, then for any n ≥ 1, we have

Φ(T, n) ≥ 1 + Φ(Tl, n− 1) + Φ(Tr, n).

Upper Bounds on Number of Steals in Rooted Trees 7

By symmetry, we also have

Φ(T, n) ≥ 1 + Φ(Tr, n− 1) + Φ(Tl, n).

Combining the two inequalities yields

Φ(T, n) ≥ 1 + max{Φ(Tl, n− 1) + Φ(Tr, n), Φ(Tr, n− 1) + Φ(Tl, n)}.

In the next theorem, we show that this inequality is in fact always an equality.

Theorem 1. Let T be a binary tree with at least 2 nodes, and let Tl and Tr be
its left and right subtrees. Then for any n ≥ 1, we have

Φ(T, n) = 1 + max{Φ(Tl, n− 1) + Φ(Tr, n), Φ(Tr, n− 1) + Φ(Tl, n)}.

Proof. Since we have already shown that the left-hand side is no less than the
right-hand side, it only remains to show the reverse inequality.

Suppose that we are given any sequence of steals performed on T using n
processors. As we have noted before, the first steal is fixed—it must split the tree
T into its two subtrees, Tl and Tr. Each of the subsequent steals is performed
either on a subtree of Tl or a subtree of Tr (not necessarily the left or right
subtrees of Tl or Tr.) Assume for now that the last steal is performed on a
subtree of Tr. That means that at any particular point in the stealing sequence,
subtrees of Tl occupy at most n−1 processors. (Subtrees of Tl may have occupied
all n processors at different points in the stealing sequence, but that does not
matter.) We can canonicalize the sequence of steals in such a way that the steals
on subtrees of Tl are performed first using n− 1 processors, and then the steals
on subtrees of Tr are performed using n processors. Therefore, in this case the
total number of steals is at most 1 + Φ(Tl, n− 1) + Φ(Tr, n).

Similarly, if the last steal is performed on a subtree of Tl, then the total
number of steals is at most 1 +Φ(Tr, n−1) +Φ(Tl, n). Combining the two cases,
we have

Φ(T, n) ≤ 1 + max{Φ(Tl, n− 1) + Φ(Tr, n), Φ(Tr, n− 1) + Φ(Tl, n)},

which gives us the desired equality.

Algorithm

When combined with the base cases previously discussed, Theorem 1 gives us
a recurrence that we can use to compute Φ(T, n) for any binary tree T and
any value of n. But how fast can we compute the potential? The next corollary
addresses that question. Recall from Section 3 that |T | denotes the size of the
tree T .

Corollary 1. Let T be a binary tree. There exists an algorithm that computes
the potential Φ(T, n) in time O(|T |n) and space O(hn), where h denotes the
height of T .

8 C. E. Leiserson, T. B. Schardl, W. Suksompong

Proof. The algorithm uses dynamic programming to compute Φ(T, n). For each
subtree T ′ of T and each value 0 ≤ i ≤ n, the algorithm computes Φ(T ′, i) using
the recurrence given in Theorem 1. There are O(|T |n) subproblems to solve,
and each subproblem takes O(1) time to compute. Hence the running time is
O(|T |n).

To optimize space, we can traverse the tree using post-order traversal. When-
ever we have computed the values Φ(T ′, i) for two siblings, we use those values
to compute Φ(T ′, i) for the parent and subsequently delete the values for the
siblings. One can check that at any stage, if we do not consider the tree whose
root node we are currently traversing, then the trees T ′ for which we store the
values Φ(T ′, i) have root nodes that are of pairwise different depth from the root
node of T . Hence we store at most hn values at any stage, and the algorithm
takes space O(hn).

Complete Binary Trees

An interesting special case is when the initial tree T is a complete binary tree, i.e.,
a full binary tree in which all leaves have the same depth and every parent has
two children. Recall from Section 3 that CBT (h) denotes the complete binary
tree with height h. The next corollary establishes the potential of CBT (h). Recall
also from Section 3 that

(
a
b

)
= 0 if a < b.

Corollary 2. We have

Φ(CBT (h), n) =

(
h

1

)
+

(
h

2

)
+ · · ·+

(
h

n

)
=

n∑
i=1

(
h

i

)
,

Proof. The case h = 0 holds, since

Φ(CBT (0), n) =

n∑
i=1

(
0

i

)
= 0.

The case n = 0 holds similarly. Now suppose that h, n > 0. Since the two subtrees
of CBT (h) are symmetric, the recurrence in Theorem 1 yields

Φ(CBT (h), n) = 1 + Φ(CBT (h− 1), n− 1) + Φ(CBT (h− 1), n).

Upper Bounds on Number of Steals in Rooted Trees 9

We proceed by induction. Suppose that the formula for the potential values
hold for CBT (h− 1). Using Pascal’s identity (Equation 1), we have

Φ(CBT (h), n) = 1 + Φ(CBT (h− 1), n− 1) + Φ(CBT (h− 1), n)

=

(
h− 1

0

)
+

n−1∑
i=1

(
h− 1

i

)
+

n∑
i=1

(
h− 1

i

)

=

n∑
i=1

((
h− 1

i− 1

)
+

(
h− 1

i

))

=

n∑
i=1

(
h

i

)
,

as desired.

We can write the recurrence

Φ(CBT (h), n) = 1 + Φ(CBT (h− 1), n− 1) + Φ(CBT (h− 1), n)

in the form
F (h, n) = F (h− 1, n− 1) + F (h− 1, n),

where F (h, n) = Φ(CBT (h), n) + 1. The recurrence equation of F is the same as
that of the binomial coefficients. On the other hand, the initial conditions of the
two recurrences differ slightly. The initial conditions of the binomial coefficients
are

(
h
0

)
= 1 for all h ≥ 0 and

(
0
n

)
= 0 for all n ≥ 1, while the initial conditions

of F are F (h, 0) = F (0, n) = 1 for all h, n ≥ 0.
For fixed n, Φ(CBT (h), n) grows as O(hn). Indeed, one can obtain the (loose)

bound
n∑
i=1

(
h

i

)
≤ hn

for h, n ≥ 2, for example using the simple bound(
h

i

)
=
h(h− 1) · · · (h− i+ 1)

i!
≤ h(h− 1)i−1

and then computing a geometric sum.
When n ≥ h, Corollary 2 implies that Φ(CBT (h), n) =

∑n
i=1

(
h
i

)
= 2h − 1.

The quantity 2h−1 is 1 less than the number of leaves in a complete binary tree
of height h. Hence, the bound is equivalent to the trivial upper bound that the
number of steals is at most the number of tasks in the tree. It is worth noting
that the condition n ≥ h might hold in many practical applications, and we
would be stuck with this upper bound in such situations. For instance, if we
process less than 1 billion tasks using at least 30 processors, the condition n ≥ h
is fulfilled.

We have established the upper bound on the number of steals in the case
where at the beginning, all the work is owned by one processor, and the compu-
tation tree is a binary tree. In the next sections we will generalize to configura-
tions where the work can be spread out at the beginning and take the form of
arbitrary rooted trees as well.

10 C. E. Leiserson, T. B. Schardl, W. Suksompong

5 Rooted Tree and One Starting Processor

In this section, we consider a generalization of Section 4 to the configuration
in which the starting tree is an arbitrary rooted tree. The key observation is
that we can transform an arbitrary rooted tree into a “left-child right-sibling”
binary tree that is equivalent to the rooted tree with respect to steals. With this
transformation, an algorithm that computes the upper bound in time O(|T |n)
follows. Finally, we show that the maximum number of steals that can occur if
our configuration starts with the tree ACT (b, k, h) is

∑n
i=1(k − 1)i

(
h
i

)
+ (b −

1)
∑n−1
i=0 (k − 1)i

(
h
i

)
.

Algorithm

The key to establishing the upper bound in the case of arbitrary rooted trees is
to observe that the problem can in fact be reduced to the case of binary trees,
which we have already settled in Section 4. We transform any rooted tree into
a binary tree by transforming each node with more than two children into a
left-child right-sibling binary tree [5]. The transformation of one such node with
four children is shown in Figure 5.

A node with k children is equivalent with respect to steals to a left-child
right-sibling binary tree of height k − 1. We show this fact for the setting in
Figure 5; the proof for the general setting is similar. For both trees in Figure 5,
the first steal takes subtree T4 and leaves the tree containing subtrees T1, T2, and
T3. The second steal takes subtree T3 and leaves the tree containing subtrees T1
and T2. Finally, the third steal takes subtree T2 and leaves subtree T1.

Consequently, we can use the same algorithm as in the case of binary trees to
compute the maximum number of successful steals, as the next theorem shows.
Recall from Section 3 that |T | denotes the size of the tree T .

Theorem 2. Let T be a rooted tree. There exists an algorithm that computes
the potential Φ(T, n) in time O(|T |n) and space O(hkn), where h denotes the
height of T , and k the maximum number of children of any node in T .

Proof. We transform T into a binary tree according to the discussion leading up
to this theorem, and apply the algorithm described in Corollary 1. Even though
the transformed tree can be larger than the original one, it is no more than twice
as large. Indeed, transforming a node with k > 2 children introduces k− 2 extra
nodes in the resulting binary tree.

The transformation takes time of order |T |, and the algorithm takes time of
order |T |n. Since the transformed tree has height no more than kn, the algorithm
takes space O(hkn).

Complete k-ary Trees

As in our analysis of binary trees, an interesting special case is the case of
complete k-ary trees, i.e., full k-ary trees in which all leaves have the same

Upper Bounds on Number of Steals in Rooted Trees 11

T1 T2 T3 T4

(a) Tree whose root node has 4 children

T1 T2

T3

T4

(b) Tree resulting from transformation of root node

Fig. 5. Transformation of root node in rooted tree

depth and every parent has k children. Moreover, we determine the answer for
almost complete k-ary trees. Recall from Section 3 that for k ≥ 2, h ≥ 0, and
1 ≤ b ≤ k − 1, ACT (b, k, h) denotes the almost complete k-ary tree with b · kh
leaves.

Theorem 3. For k ≥ 2, h ≥ 0, and 1 ≤ b ≤ k − 1, we have

Φ(ACT (b, k, h), n) =

(
(k − 1)

(
h

1

)
+ (k − 1)2

(
h

2

)
+ · · ·+ (k − 1)n

(
h

n

))
+ (b− 1)

((
h

0

)
+ (k − 1)

(
h

1

)
+ · · ·+ (k − 1)n−1

(
h

n− 1

))
=

n∑
i=1

(k − 1)i
(
h

i

)
+ (b− 1)

n−1∑
i=0

(k − 1)i
(
h

i

)
.

12 C. E. Leiserson, T. B. Schardl, W. Suksompong

Proof. We first show that the formula is consistent even if we allow the tree
ACT (1, k, h+ 1) to be written as ACT (k, k, h) for h ≥ 0. Indeed, we have

Φ(ACT (1, k, h+ 1), n) = (k − 1)

(
h+ 1

1

)
+ (k − 1)2

(
h+ 1

2

)
+ · · ·+ (k − 1)n

(
h+ 1

n

)
= (k − 1)

((
h

0

)
+

(
h

1

))
+ (k − 1)2

((
h

1

)
+

(
h

2

))
+ · · ·+ (k − 1)n

((
h

n− 1

)
+

(
h

n

))
=

(
(k − 1)

(
h

1

)
+ (k − 1)2

(
h

2

)
+ · · ·+ (k − 1)n

(
h

n

))
+ (k − 1)

((
h

0

)
+ (k − 1)

(
h

1

)
+ · · ·+ (k − 1)n−1

(
h

n− 1

))
= Φ(ACT (k, k, h), n),

where we used Pascal’s identity (Equation 1).

We proceed to prove the formula by induction on b · kh. The case b · kh = 1
holds, since both the left-hand side and the right-hand side are zero. The case
n = 0 holds similarly. Consider the tree ACT (b, k, h), where b · kh > 1 and
2 ≤ b ≤ k. Using the consistency of the formula that we proved above, it is safe
to represent any nontrivial tree in such form. Now, the recurrence in Theorem 1
yields

Φ(ACT (b, k, h), n) = 1 + max{A,B},

where A = Φ(ACT (b− 1, k, h), n) +Φ(ACT (1, k, h), n− 1) and B = Φ(ACT (b−
1, k, h), n− 1) + Φ(ACT (1, k, h), n).

Using the induction hypothesis, we have

A =

(
n∑
i=1

(k − 1)i
(
h

i

)
+ (b− 2)

n−1∑
i=0

(k − 1)i
(
h

i

))
+

n−1∑
i=1

(k − 1)i
(
h

i

)

=

(
n∑
i=1

(k − 1)i
(
h

i

)
+ (b− 1)

n−1∑
i=0

(k − 1)i
(
h

i

))
− 1

and

B =

(
n−1∑
i=1

(k − 1)i
(
h

i

)
+ (b− 2)

n−2∑
i=0

(k − 1)i
(
h

i

))
+

n∑
i=1

(k − 1)i
(
h

i

)
= A− (b− 2)(k − 1)n−1

(
h

n− 1

)
≤ A.

Upper Bounds on Number of Steals in Rooted Trees 13

Therefore, we have

Φ(ACT (b, k, h), n) = 1 +A

=

n∑
i=1

(k − 1)i
(
h

i

)
+ (b− 1)

n−1∑
i=0

(k − 1)i
(
h

i

)
,

as desired.

It is worth noting that the exponential factor (k − 1)i becomes huge when
k > 2. Instead, if we were to convert a node with k > 2 children into binary nodes
forming a balanced binary tree, we would only have to replace the height h of
the tree by h log k. It should not be surprising that a balanced binary tree yields
a much better upper bound than a node with multiple children. Indeed, as we
have shown, a node with k > 2 children is equivalent to a left-child right-sibling
binary tree, which is highly unbalanced. When the tree is highly unbalanced, it
is possible that a large number of steals are generated if the execution of smaller
subtrees always finishes before that of larger ones. When the tree is balanced,
on the other hand, the execution is more likely to reach a point where every
processor owns a relatively large tree, and the execution of one such tree has to
finish before the next steal can be performed.

We have established the upper bound on the number of steals in the con-
figuration with one processor having an arbitrary rooted tree at the beginning.
In the next section, we generalize one step further by allowing any number of
processors to own work at the beginning.

6 Rooted Tree and Multiple Starting Processors

In this section, we consider a generalization of Section 5 where the work is not
limited to one processor at the beginning, but rather can be spread out as well.
We derive a formula for computing the potential function of a configuration based
on the potential function of the individual trees. This leads to an algorithm that
computes the upper bound for the configuration with trees T1, T2, . . . , TP in time
O(P 3 +P (|T1|+ |T2|+ · · ·+ |TP |)). We then show that for complete k-ary trees,
we only need to sort the trees in order to compute the maximum number of
steals. Since we can convert any rooted tree into a binary tree as described in
Section 5, it suffices throughout this section to analyze the case in which all trees
are binary trees.

Formula

Suppose that in our configuration, the P processors start with trees T1, T2, . . . , TP .
How might a sequence of steals proceed? As in our previous analysis of the case
with one starting processor, we have an option of being greedy. We pick one
tree—say T1—and obtain as many steals as possible out of it using one proces-
sor. After we are done with T1, we pick another tree—say T2—and obtain as

14 C. E. Leiserson, T. B. Schardl, W. Suksompong

many steals as possible out of it using two processors. We proceed in this way
until we pick the last tree—say TP—and obtain as many steals out of it using
all P processors.

We make the following definition.

Definition 2. Let T1, T2, . . . , Tn be binary trees. Then Φ(T1, T2, . . . , Tn) is the
maximum number of steals that we can get from a configuration of n processors
that start with the trees T1, T2, . . . , Tn.

Note that we are overloading the potential function operator Φ. Unlike the
previous definition of Φ, this definition does not explicitly include the num-
ber of processors, because this number is simply the number of trees included
in the argument of Φ. It follows from the definition that Φ(T1, T2, . . . , Tn) =
Φ(Tσ(1), Tσ(2), . . . , Tσ(n)) for all permutations σ of 1, 2, . . . , n.

From the discussion leading up to the definition, we have

Φ(T1, T2, . . . , TP) ≥ Φ(Tσ(1), 0) + Φ(Tσ(2), 1) + · · ·+ Φ(Tσ(P), P − 1)

for any permutation σ of 1, 2, . . . , P . It immediately follows that

Φ(T1, T2, . . . , TP) ≥ max
σ∈SP

(
Φ(Tσ(1), 0) + Φ(Tσ(2), 1) + · · ·+ Φ(Tσ(P), P − 1)

)
,

where SP denotes the symmetric group of order P , i.e., the set of all permutations
of 1, 2, . . . , P .

The next theorem shows that this inequality is in fact an equality.

Theorem 4. Let T1, T2, . . . , TP be binary trees. We have

Φ(T1, T2, . . . , TP) = max
σ∈SP

(
Φ(Tσ(1), 0) + Φ(Tσ(2), 1) + · · ·+ Φ(Tσ(P), P − 1)

)
.

Proof. We have already shown that the left-hand side is no less than the right-
hand side, hence it only remains to show the reverse inequality.

Suppose that we are given any sequence of steals performed on T1, T2, . . . , TP
using the P processors. Each steal is performed on a subtree of one of the trees
T1, T2, . . . , TP .

Assume without loss of generality that the last steal performed on a subtree
of T1 occurs before the last steal performed on a subtree of T2, which occurs
before the last steal performed on a subtree of T3, and so on. That means that
at any particular point in the stealing sequence, subtrees of Ti occupy at most
i processors, for all 1 ≤ i ≤ P . (Subtrees of Ti may have occupied a total of
more than i processors at different points in the stealing sequence, but that does
not matter.) We can canonicalize the sequence of steals in such a way that all
steals on subtrees of T1 are performed first using one processor, then all steals
on subtrees of T2 are performed using two processors, and so on, until all steals
on subtrees of TP are performed using P processors. Therefore, in this case the
total number of steals is no more than Φ(T1, 0) + Φ(T2, 1) + · · ·+ Φ(TP , P − 1).

In general, let σ be the permutation of 1, 2, . . . , P such that the last steal
performed on a subtree of Tσ(1) occurs before the last steal performed on a

Upper Bounds on Number of Steals in Rooted Trees 15

subtree of Tσ(2), which occurs before the last steal performed on a subtree of
Tσ(3), and so on. Then we have

Φ(T1, T2, . . . , TP) ≤ Φ(Tσ(1), 0) + Φ(Tσ(2), 1) + · · ·+ Φ(Tσ(P), P − 1).

Therefore,

Φ(T1, T2, . . . , TP) ≤ max
σ∈SP

(
Φ(Tσ(1), 0) + Φ(Tσ(2), 1) + · · ·+ Φ(Tσ(P), P − 1)

)
,

which gives us the desired equality.

Algorithm

Now that we have a formula to compute Φ(T1, T2, . . . , TP), we again ask how
fast we can compute it. Recall from Section 3 that |T | denotes the size of the
tree T .

Corollary 3. There exists an algorithm that computes the potential Φ(T1, T2, . . . , TP)
in time O(P 3 + P (|T1|+ |T2|+ · · ·+ |TP |)).

Proof. The potentials Φ(Ti, j) can be precomputed by using dynamic program-
ming in time O(P (|T1|+ |T2|+ · · ·+ |TP |)) using the algorithm in Corollary 1. It
then remains to determine the maximum value of Φ(Tσ(1), 0)+Φ(Tσ(2), 1)+ · · ·+
Φ(Tσ(P), P−1) over all permutations σ of 1, 2, . . . , P . A brute-force solution that
tries all possible permutations σ of 1, 2, . . . , n takes time O(P !). Nevertheless,
our maximization problem is an instance of the assignment problem, which can
be solved using the classical “Hungarian method”. The algorithm by Tomizawa
[10] solves the assignment problem in time O(P 3). Hence, the total running time
is O(P 3 + P (|T1|+ |T2|+ · · ·+ |TP |)).

Complete Trees

It is interesting to ask whether we can do better than the algorithm in Corollary
3 in certain special cases. Again, we consider the case of complete trees. In this
subsection we assume that the P processors start with almost complete k-ary
trees (defined in Section 3) for the same value of k.

Suppose that at the beginning of the execution of work stealing, the pro-
cessors start with the trees ACT (b1, k, h1),ACT (b2, k, h2), . . . ,ACT (bP , k, hP),
where 1 ≤ b1, b2, . . . , bP ≤ k− 1. We may assume without loss of generality that
b1 ·kh1 ≤ b2 ·kh2 ≤ · · · ≤ bP ·khP . Intuitively, in order to generate the maximum
number of successful steals, one might want to allow larger trees more processors
to work with, because larger trees can generate more steals than smaller trees.
It turns out that in the case of complete trees, this intuition always works, as is
shown in the following theorem.

Theorem 5. Let b1 · kh1 ≤ b2 · kh2 ≤ · · · ≤ bP · khP . We have

Φ(ACT (b1, k, h1),ACT (b2, k, h2), . . . ,ACT (bP , k, hP)) =

P∑
i=1

Φ(ACT (bi, k, hi), i− 1).

16 C. E. Leiserson, T. B. Schardl, W. Suksompong

Proof. We use the exchange argument: if the trees are not already ordered in
increasing size, then there exist two consecutive positions j and j + 1 such that
bj · khj > bj+1 · khj+1 . We show that we may exchange the positions of the two
trees and increase the total potential in the process. Since we can always perform
a finite number of exchanges to obtain the increasing order, and we know that
the total potential increases with each exchange, we conclude that the maximum
potential is obtained exactly when the trees are ordered in increasing size.

It only remains to show that any exchange of two trees bj ·khj and bj+1 ·khj+1

such that bj ·khj > bj+1 ·khj+1 increases the potential. Denote the new potential
after the exchange by N and the old potential before the exchange by O. We
would like to show that N > O. We have

N −O =

(
j∑
i=1

(k − 1)i
(
hj
i

)
+ (bj − 1)

j−1∑
i=0

(k − 1)i
(
hj
i

))

+

(
j−1∑
i=1

(k − 1)i
(
hj+1

i

)
+ (bj+1 − 1)

j−2∑
i=0

(k − 1)i
(
hj+1

i

))

−

(
j−1∑
i=1

(k − 1)i
(
hj
i

)
+ (bj − 1)

j−2∑
i=0

(k − 1)i
(
hj
i

))

−

(
j∑
i=1

(k − 1)i
(
hj+1

i

)
+ (bj+1 − 1)

j−1∑
i=0

(k − 1)i
(
hj+1

i

))

= (k − 1)j
(
hj
j

)
+ (bj − 1)(k − 1)j−1

(
hj
j − 1

)
− (k − 1)j

(
hj+1

j

)
− (bj+1 − 1)(k − 1)j−1

(
hj+1

j − 1

)
.

We consider two cases.
Case 1: hj = hj+1 and bj > bj+1.
We have

N −O = (k − 1)j
(
hj
j

)
+ (bj − 1)(k − 1)j−1

(
hj
j − 1

)
− (k − 1)j

(
hj
j

)
− (bj+1 − 1)(k − 1)j−1

(
hj
j − 1

)
= (bj − 1)(k − 1)j−1

(
hj
j − 1

)
− (bj+1 − 1)(k − 1)j−1

(
hj
j − 1

)
= ((bj − 1)− (bj+1 − 1))(k − 1)j−1

(
hj
j − 1

)
= (bj − bj+1)(k − 1)j−1

(
hj
j − 1

)
> 0,

since bj > bj+1.

Upper Bounds on Number of Steals in Rooted Trees 17

Case 2: hj > hj+1.
We have

N −O = (k − 1)j
(
hj
j

)
+ (bj − 1)(k − 1)j−1

(
hj
j − 1

)
− (k − 1)j

(
hj+1

j

)
− (bj+1 − 1)(k − 1)j−1

(
hj+1

j − 1

)
≥ (k − 1)j

(
hj
j

)
− (k − 1)j

(
hj+1

j

)
− (bj+1 − 1)(k − 1)j−1

(
hj+1

j − 1

)
≥ (k − 1)j

(
hj
j

)
− (k − 1)j

(
hj+1

j

)
− (k − 1)(k − 1)j−1

(
hj+1

j − 1

)
= (k − 1)j

(
hj
j

)
− (k − 1)j

((
hj+1

j

)
+

(
hj+1

j − 1

))
= (k − 1)j

(
hj
j

)
− (k − 1)j

(
hj+1 + 1

j

)
= (k − 1)j

((
hj
j

)
−
(
hj+1 + 1

j

))
> 0,

since hj ≥ hj+1 + 1.
In both cases, we have N − O > 0, and hence any exchange increases the

potential, as desired.

It follows from Theorem 5 and Corollary 3 that in the case of complete k-
ary trees, one only needs to sort the trees with respect to their size in order
to compute the potential. It follows that the running time of the algorithm is
bounded by the running time of sorting, which is O(P lgP).

7 Conclusion and Future Work

In this paper, we have established tight upper bounds on the number of steals
when the computation can be modeled by rooted trees. Here we suggest two
possible directions for future work:

– This paper restricts the attention to computation trees. In general, however,
computations need not be trees. How do the upper bounds generalize to
the case where the computation can be modeled by directed acyclic graphs
(DAG)?

– Consider a model in which executing each task requires a constant amount
of time independent of the size of the computation trees. In this model, if
no processor steals from a particular processor for a long enough period,
that processor will finish executing its own tasks and can no longer be stolen
from. Can we achieve tighter bounds in this model?

18 C. E. Leiserson, T. B. Schardl, W. Suksompong

8 Note

The final publication is available at Springer via http://dx.doi.org/10.1007/

s00224-015-9613-9.

References

1. Kunal Agrawal, Yuxiong He, and Charles E. Leiserson, An empirical evaluation of
work stealing with parallelism feedback. In 26th IEEE International Conference
on Distributed Computing Systems (ICDCS 2006), July 2006.

2. Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling
for multiprogrammed multiprocessors. In Proceedings of the Tenth Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pages 119–129, June
1998.

3. Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computa-
tions by work stealing. Journal of the ACM, 46(5):720–748, 1999.

4. F. Warren Burton and M. Ronan Sleep. Executing functional programs on a virtual
tree of processors. In Proceedings of the 1981 Conference on Functional Program-
ming Languages and Computer Architecture, pages 187–194, 1981.

5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein,
Introduction to Algorithms. The MIT Press, 3rd edition, 2009.

6. James Dinan, D. Brian Larkins, P. Sadayappan, Sriram Krishnamoorthy, and Jarek
Nieplocha. Scalable work stealing. In Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis (SC), November 2009.

7. Robert H. Halstead, Jr. Implementation of Multilisp: Lisp on a multiprocessor. In
Proceedings of the 1984 ACM Symposium on LISP and Functional Programming,
pages 9–17, 1984.

8. Richard M. Karp and Yanjun Zhang. Randomized parallel algorithms for backtrack
search and branch-and-bound computation. Journal of the ACM, 40(3):765–789,
July 1993.

9. Warut Suksompong, Bounds on multithreaded computations by work stealing.
Master’s Thesis, Massachusetts Institute of Technology, 2014.

10. N. Tomizawa. On some techniques useful for solution of transportation network
problems. Networks, 1(2), 1972.

