
This article was published in the above mentioned Springer issue.
The material, including all portions thereof, is protected by copyright;
all rights are held exclusively by Springer Science + Business Media.

The material is for personal use only;
commercial use is not permitted.

Unauthorized reproduction, transfer and/or use
may be a violation of criminal as well as civil law.

ISSN 0920-8542, Volume 51, Number 3

J Supercomput (2010) 51: 244–257
DOI 10.1007/s11227-010-0405-3

The Cilk++ concurrency platform

Charles E. Leiserson

Published online: 18 March 2010
© Springer Science+Business Media, LLC 2010

Abstract The availability of multicore processors across a wide range of comput-
ing platforms has created a strong demand for software frameworks that can harness
these resources. This paper overviews the Cilk++ programming environment, which
incorporates a compiler, a runtime system, and a race-detection tool. The Cilk++
runtime system guarantees to load-balance computations effectively. To cope with
legacy codes containing global variables, Cilk++ provides a “hyperobject” library
which allows races on nonlocal variables to be mitigated without lock contention or
substantial code restructuring.

Keywords Amdahl’s Law · Dag model · Hyperobject · Multicore programming ·
Multithreading · Parallelism · Parallel programming · Race detection · Reducer ·
Span · Speedup · Work

1 Introduction

Although the software community has extensive experience in serial programming
using the C [22] and C++ [32] programming languages, they have found it hard to
adapt C/C++ applications to run in parallel on multicore systems. In earlier work,
the MIT Cilk system[16, 34] extended the C programming language with parallel
computing constructs. The Cilk++ solution similarly extends C++, offering a gentle

Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. DAC’09 July 26–31, 2009, San Francisco, California, USA.

C.E. Leiserson (�)
MIT CSAIL, MIT, Cambridge, MA, USA
e-mail: cel@mit.edu

 Author's personal copy

mailto:cel@mit.edu

The Cilk++ concurrency platform 245

1 // Parallel quicksort
2 using namespace std;
3
4 #include <algorithm>
5 #include <iterator>
6 #include <functional>
7
8 template <typename T>
9 void qsort(T begin, T end) {

10 if (begin != end) {
11 T middle = partition(begin, end, bind2nd(

less<typename iterator_traits<T>::
value_type>(),*begin));

12 cilk_spawn qsort(begin, middle);
13 qsort(max(begin + 1, middle), end);
14 cilk_sync;
15 }
16 }
17
18 // Simple test code:
19 #include <iostream>
20 #include <cmath>
21
22 int main() {
23 int n = 100;
24 double a[n];
25
26 cilk_for (int i=0; i<n; ++i) {
27 a[i] = sin((double) i);
28 }
29
30 qsort(a, a + n);
31 copy(a, a + n, ostream_iterator<double>(cout,

"\n"));
32
33 return 0;
34 }

Fig. 1 Parallel quicksort implemented in Cilk++

and reliable path to enable the estimated three million C++ programmers [33] to write
parallel programs for multicore systems. Cilk++ is available for the Windows Visual
Studio and the Linux/gcc compilers.

Like the MIT Cilk system [16, 34], Cilk++ is a faithful linguistic extension of
C++, which means that parallel code retains its serial semantics when run on one
processor. The Cilk++ extensions to C++ consist of just three keywords, which can
be understood from an example. Figure 1 shows a Cilk++ program adapted from
http://www.cvgpr.uni-mannheim.de/heiler/qsort.html, which implements the quick-
sort algorithm [9, Chap. 7]. Observe that the program would be an ordinary C++
program if the three keywords cilk_spawn, cilk_sync, and cilk_for were
elided.

Parallel work is created when the keyword cilk_spawn precedes the invocation
of a function. The semantics of spawning differ from a C++ function (or method)
call only in that the parent can continue to execute in parallel with the child, instead
of waiting for the child to complete as is done in C++. The scheduler in the Cilk++
runtime system takes the responsibility of scheduling the spawned functions on the
individual processor cores of the multicore computer.

 Author's personal copy

http://www.cvgpr.uni-mannheim.de/heiler/qsort.html

246 C.E. Leiserson

A function cannot safely use the values returned by its children until it executes a
cilk_sync statement. The cilk_sync statement is a local “barrier,” not a global
one as, for example, is used in message-passing programming [35, 36]. In the quick-
sort example, a cilk_sync statement occurs on line 14 before the function returns
to avoid the anomaly that would occur if the preceding calls to qsort were sched-
uled to run in parallel and did not complete before the return, thus leaving the vector
to be sorted in an intermediate and inconsistent state.

In addition to explicit synchronization provided by the cilk_sync statement,
every Cilk function syncs implicitly before it returns, thus ensuring that all of its
children terminate before it does. Thus, for this example, the cilk_sync before the
return is technically unnecessary.

Cilk++ improves upon the original MIT Cilk in several ways. It provides full sup-
port for C++ exceptions. Loops can be parallelized by simply replacing the keyword
for with the keyword cilk_for keyword, which allows all iterations of the loop
to operate in parallel. Within the main routine, for example, the loop starting on
line 26 fills the array in parallel with random numbers. In the MIT Cilk system, such
loops had to be rewritten by the programmer as divide-and-conquer recursion, but
Cilk++ provides the cilk_for syntax for automatically parallelizing such loops.
In addition, Cilk++ includes a library for mutual-exclusion (mutex) locks. Locking
tends to be used much less frequently than in other parallel environments, such as
Pthreads [21], because all protocols for control synchronization are handled by the
Cilk++ runtime system.

The remainder of this paper is organized as follows. Section 2 provides a brief tu-
torial on the theory of parallelism. Section 3 describes the performance guarantees of
Cilk++’s “work-stealing” scheduler and overviews how it operates. Section 4 briefly
describes the Cilkscreen race-detection tool which guarantees to find race bugs in
ostensibly deterministic code. Section 5 explains Cilk++’s “hyperobject” technology,
which allows races on nonlocal variables to be mitigated without lock contention or
restructuring of code. Finally, Section 6 provides some concluding remarks.

2 An overview of parallelism

The Cilk++ runtime system contains a provably efficient work-stealing scheduler
[5, 16], which scales application performance linearly with processor cores, as long
as the application exhibits sufficient parallelism (and the processor architecture pro-
vides sufficient memory bandwidth). Thus, to obtain good performance, the program-
mer needs to know what it means for his or her application to exhibit sufficient par-
allelism. Before describing the Cilk++ runtime system, it is helpful to understand
something about the theory of parallelism.

Many discussions of parallelism begin with Amdahl’s Law [1], originally prof-
fered by Gene Amdahl in 1967. Amdahl made what amounts to the following ob-
servation. Suppose that 50% of a computation can be parallelized and 50% cannot.
Then, even if the 50% that is parallel were run on an infinite number of processors,
the total time is cut at most in half, leaving a speedup of at most 2. In general, if
a fraction p of a computation can be run in parallel and the rest must run serially,
Amdahl’s Law upper-bounds the speedup by 1/(1 − p).

 Author's personal copy

The Cilk++ concurrency platform 247

Fig. 2 A directed acyclic graph
representation of a
multithreaded execution. Each
vertex is an instruction. Edges
represent ordering dependencies
between instructions

Although Amdahl’s Law provides some insight into parallelism, it does not quan-
tify parallelism, and thus it does not provide a good understanding of what a concur-
rency platform such as Cilk++ should offer for multicore application performance.
Fortunately, there is a simple theoretical model for parallel computing which pro-
vides a more general and precise quantification of parallelism that subsumes Am-
dahl’s Law. The dag (directed acyclic graph) model of multithreading [3] views the
execution of a multithreaded program as a set of instructions (the vertices of the dag)
with graph edges indicating dependencies between instructions (see Fig. 2). We say
that an instruction x precedes an instruction y, sometimes denoted x ≺ y, if x must
complete before y can begin. If neither x ≺ y nor y ≺ x, we say that the instruc-
tions are in parallel, denoted x ‖ y. In Fig. 2, for example, we have 1 ≺ 2, 6 ≺ 12,
and 4 ‖ 9.

The dag model of multithreading can be interpreted in the context of the Cilk++
programming model. A cilk_spawn of a function creates two dependency edges
emanating from the instruction immediately before the cilk_spawn: one edge goes
to the first instruction of the spawned function, and the other goes to the first instruc-
tion after the spawned function. A cilk_sync creates dependency edges from the
final instruction of each spawned function to the instruction immediately after the
cilk_sync. A cilk_for can be viewed as divide-and-conquer parallel recursion
using cilk_spawn and cilk_sync over the iteration space.

 Author's personal copy

248 C.E. Leiserson

The dag model admits two natural measures that allow us to define parallelism
precisely, as well as to provide important bounds [4, 6, 12, 19] on performance and
speedup.

2.1 The Work Law

The first important measure is work, which is the total amount of time spent in all the
instructions. Assuming for simplicity that it takes unit time to execute an instruction,
the work for the example dag in Fig. 2 is 18.

We can adopt a simple notation to be more precise. Let TP be the fastest possible
execution time of the application on P processors. Since the work corresponds to the
execution time on 1 processor, we denote it by T1. Among the reasons that work is
an important measure is because it provides a lower bound on P -processor execution
time:

TP ≥ T1/P. (1)

This Work Law holds because, in our simple theoretical model, each processor exe-
cutes at most 1 instruction per unit time, and hence P processors can execute at most
P instructions per unit time. Thus, with P processors, to do all the work, it must take
at least T1/P time.

We can interpret the Work Law (1) in terms of the speedup on P processors, which
using our notation, is just T1/TP . The speedup tells us how much faster the applica-
tion runs on P processors than on 1 processor. Rewriting the Work Law, we obtain
T1/TP ≤ P , which is to say that the speedup on P processors can be at most P . If
the application obtains speedup proportional to P , we say that the application exhibits
linear speedup. If it obtains speedup exactly P (which is the best we can do in our
model), we say that the application exhibits perfect linear speedup. If the application
obtains speedup greater than P (which cannot happen in our model due to the Work
Law, but can happen in models that incorporate caching and other processor effects),
we say that the application exhibits superlinear speedup.

2.2 The Span Law

The second important measure is span, which is the longest path of dependencies
in the dag. The span of the dag in our example is 9, which corresponds to the path
1 ≺ 2 ≺ 3 ≺ 6 ≺ 7 ≺ 8 ≺ 11 ≺ 12 ≺ 18. This path is sometimes called the critical
path of the dag, and span is sometimes referred to in the literature as critical-path
length. Since the span is the theoretically fastest time the dag could be executed
on a computer with an infinite number of processors (assuming no overheads for
communication, scheduling, etc.), we denote it by T∞. Like work, span also provides
a bound on P -processor execution time:

TP ≥ T∞. (2)

This Span Law arises for the simple reason that a finite number of processors cannot
outperform an infinite number of processors because the infinite-processor machine
could just ignore all but P of its processors and mimic a P -processor machine exactly.

 Author's personal copy

The Cilk++ concurrency platform 249

2.3 Parallelism

We define parallelism as the ratio of work to span, or T1/T∞. Parallelism can be
viewed as the average amount of work along each step of the critical path. Moreover,
perfect linear speedup cannot be obtained for any number of processors greater than
the parallelism T1/T∞. To see why, suppose that P > T1/T∞, in which case the Span
Law (2) implies that the speedup satisfies T1/TP ≤ T1/T∞ < P . Since the speedup
is strictly less than P , it cannot be perfect linear speedup. Another way to see that
the parallelism bounds the speedup is to observe that, in the best case, the work is
distributed evenly along the critical path, in which case the amount of work at each
step is the parallelism. But, if the parallelism is less than P , there isn’t enough work
to keep P processors busy at every step.

As an example, the parallelism of the dag in Fig. 2 is 18/9 = 2. That means that
there’s little point in executing it with more than 2 processors, since additional proces-
sors will be surely starved for work.

As a practical matter, many problems admit considerable parallelism. For exam-
ple, matrix multiplication of 1000 × 1000 matrices is highly parallel, with a paral-
lelism in the millions. Many problems on large irregular graphs, such as breadth-first
search, generally exhibit parallelism on the order of thousands. Sparse matrix algo-
rithms can often exhibit parallelism in the hundreds.

3 Runtime system

Although optimal multiprocessor scheduling is known to be NP-complete [18],
Cilk++’s runtime system employs a “work-stealing” scheduler [5, 16] that achieves
provably tight bounds. An application with sufficient parallelism can rely on the
Cilk++ runtime system to dynamically and automatically exploit an arbitrary num-
ber of available processor cores near optimally. Moreover, on a single core, typical
programs run with negligible overhead (less than 2%).

3.1 Performance bounds

Specifically, for an application with T1 work and T∞ span running on a computer
with P processors, the Cilk++ works-stealing scheduler achieves expected running
time

TP ≤ T1/P + O(T∞). (3)

If the parallelism T1/T∞ exceeds the number P of processors by a sufficient mar-
gin, this bound (proved in [5]), guarantees near-perfect linear speedup. To see why,
assume that T1/T∞ � P . Equivalently, we have T∞ � T1/P . Thus, in (3), the T1/P

term dominates the O(T∞) term, and thus the running time is TP ≈ T1/P , leading to
a speedup of T1/TP ≈ P .

The Cilk++ development environment contains a performance-analysis tool that
allows a programmer to analyze the work and span of an application. Figure 3 shows
the output of this tool running the quicksort program from Fig. 1 on 100 million num-
bers. The upper bound on speedup provided by the Work Law corresponds to the line

 Author's personal copy

250 C.E. Leiserson

Fig. 3 Parallelism profile of quicksort produced by the Cilk++ performance analyzer

of slope 1, and the upper bound provided by the Span Law corresponds to the hori-
zontal line at 10.31. The performance analysis tool also provides an estimated lower
bound on speedup—the lower curve in the figure—based on burdened parallelism,
which takes into account the estimated cost of scheduling. Although quicksort seems
naturally parallel, one can show that the expected parallelism for sorting n numbers is
only O(lgn). Practical sorts with more parallelism exist, however. See [9, Chap. 27]
for more details.

In addition to guaranteeing performance bounds, the Cilk++ runtime system also
provides bounds on stack space. Specifically, on P processors, a Cilk++ program
consumes at most P times the stack space of a single-processor execution. Consider
the following simple code fragment:

for (int i=0; i<1000000000; ++i) {
cilk_spawn foo(i);

}
cilk_sync;

This code conceptually creates one billion invocations of foo that operate logically
in parallel. Executing on one processor, however, this Cilk++ code uses no more stack
space than a serial C++ execution, that is, the call depth is of whichever invocation
of foo requires the deepest stack. On two processors, it requires at most twice this
space, and so on. This guarantee contrasts with that of more naive schedulers, which
may create a work-queue of one billion tasks, one for each iteration of the subroutine
foo, before executing even the first iteration, thus blowing out physical memory.

 Author's personal copy

The Cilk++ concurrency platform 251

3.2 Work stealing

Cilk++’s work-stealing scheduler operates as follows. When the runtime system starts
up, it allocates as many operating-system threads, called workers, as there are proces-
sors (although the programmer can override this default decision). Each worker’s
stack operates like a work queue. When a subroutine is spawned, the subroutine’s
activation frame containing its local variables is pushed onto the bottom of the stack.
When it returns, the frame is popped off the bottom. Thus, in the common case,
Cilk++ operates just like C++ and imposes little overhead.

When a worker runs out of work, however, it becomes a thief and “steals” the top
frame from another victim worker’s stack. Thus, the stack is, in fact, a double-ended
queue, with the worker operating on the bottom and thieves stealing from the top.
This strategy has the great advantage that all communication and synchronization is
incurred only when a worker runs out of work. If an application exhibits sufficient
parallelism, one can prove mathematically [5, 16] that stealing is infrequent, and thus
the cost of communication and synchronization to effect a steal is negligible.

The dynamic load-balancing capability provided by the Cilk++ runtime system
adapts well in real-world multiprogrammed computing environments. If a worker
becomes descheduled by the operating system (for example, because another appli-
cation starts to run), the work of that worker can be stolen away by other workers.
Thus, Cilk++ programs tend to “play nicely” with other jobs on the system.

Cilk++’s runtime system also makes Cilk++ programs performance-composable.
Suppose that a programmer develops a parallel library in Cilk++. That library can
be called not only from a serial program or the serial portion of a parallel program,
it can be invoked multiple times in parallel and continue to exhibit good speedup. In
contrast, some concurrency platforms constrain library code to run on a given number
of processors, and if multiple instances of the library execute simultaneously, they end
up thrashing as they compete for processor resources.

4 Race detection

The Cilk++ development environment includes a race detector, called Cilkscreen,
a powerful debugging tool that greatly simplifies the task of ensuring that a paral-
lel application is correct. We define a strand to be a sequence of serially executed
instructions containing no parallel control, that is, a path in the multithreaded dag,
where each vertex except the first in the path has at most one incoming edge and
every vertex except the last in the path has at most one outgoing edge. A data race
[28] exists if logically parallel strands access the same shared location, the two strands
hold no locks in common, and at least one of the strands writes to the location. A data
race is usually a bug because the program may exhibit unexpected, nondeterministic
behavior depending on how the strands are scheduled. Serial code containing nonlo-
cal variables is particularly prone to the introduction of data races when the code is
parallelized.

As an example of a race bug, suppose that line 13 in Fig. 1 is replaced with the
following line:

 Author's personal copy

252 C.E. Leiserson

qsort(max(begin + 1, middle-1), end);

The resulting serial code is still correct, but the parallel code now contains a race bug
because the two subproblems overlap, which could cause an error during execution.

Race conditions have been studied extensively [8, 10, 11, 13–15, 20, 24–27
29–31]. They are pernicious and occur nondeterministically. A program with a race
bug may execute successfully millions of times during testing, only to raise its head
after the application is shipped. Even after detecting a race bug, writing regression
tests to ensure its continued absence is difficult.

The Cilkscreen race detector is based on provably good algorithms [2, 8, 14] de-
veloped originally for MIT Cilk. In a single serial execution on a test input for a
deterministic program, Cilkscreen guarantees to report a race bug if the race bug is
exposed: that is, if two different schedulings of the parallel code would produce dif-
ferent results. Cilkscreen uses efficient data structures to track the series-parallel re-
lationships of the executing application during a serial execution of the parallel code.
As the application executes, Cilkscreen uses dynamic instrumentation [7, 23] to inter-
cept every load and store executed at user level. Metadata in the Cilk++ binaries al-
lows Cilkscreen to identify the parallel control constructs in the executing application
precisely, track the series-parallel relationships of strands, and report races precisely.
Additional metadata allows the race to be localized in the application source code.

5 Reducer hyperobjects

Many serial programs use nonlocal variables, which are variables that are bound out-
side of the scope of the function, method, or class in which they are used. If a variable
is bound outside of all local scopes, it is a global variable. Nonlocal variables have
long been considered a problematic programming practice [37], but programmers of-
ten find them convenient to use because they can be accessed at the leaves of a com-
putation without the overhead and complexity of passing them as parameters through
all the internal nodes. Thus, nonlocal variables have persisted in serial programming.
In the world of parallel computing, nonlocal variables may inhibit otherwise inde-
pendent parts of a multithreaded program from operating in parallel because they
introduce races. This section describes Cilk++ reducer hyperobjects [17], which can
mitigate races on nonlocal variables without creating lock contention or requiring
code restructuring.

As an example of how a nonlocal variable can introduce a data race, consider the
problem of walking a binary tree to make a list of those nodes that nodes satisfy a
given property. A C++ code to solve the problem is abstracted in Fig. 4. If the node
x being visited is nonnull, the code checks whether x has the desired property in line
8, and if so, it appends x to the list stored in the global variable output_list in
line 10. Then, it recursively visits the left and right children of x in lines 12 and 13.

Figure 5 illustrates a straightforward parallelization of this code in Cilk++. In line
12 of the figure, the walk function is spawned recursively on the left child, while
the parent continues on to execute an ordinary recursive call of walk in line 13.
As the recursion unfolds, the running program generates a tree of parallel execution

 Author's personal copy

The Cilk++ concurrency platform 253

1 bool has_property(Node *);
2 std::list<Node *> output_list;
3 // ...
4 void walk(Node *x)
5 {
6 if (x)
7 {
8 if (has_property(x))
9 {

10 output_list.push_back(x);
11 }
12 walk(x->left);
13 walk(x->right);
14 }
15 }

Fig. 4 C++ code to create a list of all the nodes in a binary tree that satisfy a given property

1 bool has_property(Node *);
2 std::list<Node *> output_list;
3 // ...
4 void walk(Node *x)
5 {
6 if (x)
7 {
8 if (has_property(x))
9 {

10 output_list.push_back(x);
11 }
12 cilk_spawn walk(x->left);
13 walk(x->right);
14 cilk_sync;
15 }
16 }

Fig. 5 A naive Cilk++ parallelization of the code in Fig. 4. This code has a data race in line 10

that follows the structure of the binary tree. Unfortunately, this naive parallelization
contains a data race. Specifically, two parallel instantiations of walk may attempt to
update the shared global variable output_list in parallel at line 10.

The traditional solution to fixing this kind of data race is to associate a mutual-
exclusion lock (mutex) L with output_list, as is shown in Fig. 6. Before up-
dating output_list, the mutex L is acquired in line 11,and after the update, it is
released in line 13. Although this code is now correct, the mutex may create a bot-
tleneck in the computation. If there are many nodes that have the desired property,
the contention on the mutex can destroy all the parallelism. For example, on one set
of test inputs for a real-world tree-walking code that performs collision-detection of
mechanical assemblies, lock contention actually degraded performance on 4 proces-
sors so that it was worse than running on a single processor. In addition, the locking
solution has the problem that it jumbles up the order of list elements. That might be
okay for some applications, but other programs may depend on the order produced
by the serial execution.

 Author's personal copy

254 C.E. Leiserson

1 bool has_property(Node *);
2 std::list<Node *> output_list;
3 mutex L;
4 // ...
5 void walk(Node *x)
6 {
7 if (x)
8 {
9 if (has_property(x))

10 {
11 L.lock();
12 output_list.push_back(x);
13 L.unlock();
14 }
15 cilk_spawn walk(x->left);
16 walk(x->right);
17 cilk_sync;
18 }
19 }

Fig. 6 Cilk++ code that solves the race condition using a mutex

An alternative to locking is to restructure the code to accumulate the output lists
in each subcomputation and concatenate them when the computations return. If one
is careful, it is also possible to keep the order of elements in the list the same as in
the serial execution. For the simple tree-walking code, code restructuring may suf-
fice, but for many larger codes, disrupting the original logic can be time-consuming
and tedious undertaking, and it may require expert skill, making it impractical for
parallelizing large legacy codes.

Cilk++ provides a novel approach [17] to avoiding data races in code with nonlocal
variables. A Cilk++ reducer hyperobject is a linguistic construct that allows many
strands to coordinate in updating a shared variable or data structure independently
by providing them different but coordinated views of the same object. The state of a
hyperobject as seen by a strand of an execution is called the strand’s “view” of the
object at the time the strand is executing. A strand can access and change any of its
view’s state independently, without synchronizing with other strands. Throughout the
execution of a strand, the strand’s view of the reducer is private, thereby providing
isolation from other strands. When two or more strands join, their different views are
combined according to a system- or user-defined reduce() method. Thus, reducers
preserve the advantages of parallelism without forcing the programmer to restructure
the logic of his or her program.

As an example, Fig. 7 shows how the tree-walking code from Fig. 4 can be par-
allelized using a reducer. Line 3 declares output_list to be a reducer hyper-
object for list appending. The reducer_list_append class implements a re-
duce function that concatenates two lists, but the programmer of the tree-walking
code need not be aware of how this class is implemented. All the programmer does
is identify the global variables as the appropriate type of reducer when they are de-
clared. No logic needs to be restructured, and if the programmer fails to catch all the
use instances, the compiler reports a type error.

This parallelization takes advantage of the fact that list appending is associative.
That is, if we append a list L1 to a list L2 and append the result to L3, it is the same

 Author's personal copy

The Cilk++ concurrency platform 255

1 #include <reducer_list.h>
2 bool has_property(Node *);
3 cilk::hyperobject<cilk::reducer_list_append<Node

*> > output_list;

4 // ...
5 void walk(Node *x)
6 {
7 if (x)
8 {
9 if (has_property(x))

10 {
11 output_list().push_back(x);
12 }
13 cilk_spawn walk(x->left);
14 walk(x->right);
15 cilk_sync;
16 }
17 }

Fig. 7 A Cilk++ parallelization of the code in Fig. 4, which uses a reducer hyperobject to avoid data races

as if we appended list L1 to the result of appending L2 to L3. As the Cilk++ run-
time system load-balances this computation over the available processors, it ensures
that each branch of the recursive computation has access to a private view of the
variable output_list, eliminating races on this global variable without requiring
locks. When the branches synchronize, the private views are reduced (combined) by
concatenating the lists, and Cilk++ carefully maintains the proper ordering so that the
resulting list contains the identical elements in the same order as in a serial execution.

6 Conclusion

Multicore microprocessors are now commonplace, and Moore’s Law is steadily in-
creasing the pressure on software developers to multicore-enable their codebases.
Cilk++ provides a simple but effective concurrency platform for multicore program-
ming which leverages almost two decades of research on multithreaded program-
ming. The Cilk++ model builds upon the sound theoretical framework of multi-
threaded dags, allowing parallelism to be quantified in terms of work and span. The
Cilkscreen race detector allows race bugs to be detected and localized. Cilk++’s hy-
perobject library mitigates races on nonlocal variables. Although parallel program-
ming will surely continue to evolve, Cilk++ today provides a full-featured suite of
technology for multicore-enabling any compute-intensive application.

Acknowledgements Many thanks to the great team at Cilk Arts and to our many customers who have
helped us refine the Cilk++ system. Cilk Arts was acquired by Intel Corporation in July 2009. Thanks to
Patrick Madden of SUNY Binghamton for proposing extensive revisions to the original manuscript.

This work was supported in part by the National Science Foundation under Grants 0615215, 0712243,
and 0822896 and in part by the Defense Advanced Research Projects Agency under Contract W31P4Q-
08-C-0156. Cilk, Cilk++, and Cilkscreen are registered trademarks of Intel Corporation.

 Author's personal copy

256 C.E. Leiserson

References

1. Amdahl G (1967) The validity of the single processor approach to achieving large-scale computing
capabilities. In: Proceedings of the AFIPS spring joint computer conference, April 1967, pp 483–485

2. Bender MA, Fineman JT, Gilbert S, Leiserson CE (2004) On-the-fly maintenance of series-parallel
relationships in fork-join multithreaded programs. In: Proceedings of the sixteenth annual ACM sym-
posium on parallel algorithms and architectures (SPAA 2004), Barcelona, Spain, June 2004, pp 133–
144

3. Blumofe RD, Leiserson CE (1993) Space-efficient scheduling of multithreaded computations. In: Pro-
ceedings of the twenty fifth annual ACM symposium on theory of computing, San Diego, California,
May 1993, pp 362–371

4. Blumofe RD, Leiserson CE (1998) Space-efficient scheduling of multithreaded computations. SIAM
J Comput 27(1):202–229

5. Blumofe RD, Leiserson CE (1999) Scheduling multithreaded computations by work stealing. J ACM
46(5):720–748

6. Brent RP (1974) The parallel evaluation of general arithmetic expressions. J ACM 21(2):201–206
7. Bruening D (2004) Efficient, transparent, and comprehensive runtime code manipulation. PhD thesis,

Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology
8. Cheng G-I, Feng M, Leiserson CE, Randall KH, Stark AF (1998) Detecting data races in cilk pro-

grams that use locks. In: Proceedings of the tenth annual ACM symposium on parallel algorithms and
architectures (SPAA ’98), Puerto Vallarta, Mexico, June 28–July 2 1998, pp 298–309

9. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms, 3rd edn. The MIT
Press, Cambridge

10. Dinning A, Schonberg E (1990) An empirical comparison of monitoring algorithms for access anom-
aly detection. In: Proceedings of the second ACM SIGPLAN symposium on principles & practice of
parallel programming (PPoPP). ACM Press, New York, pp 1–10

11. Dinning A, Schonberg E (1991) Detecting access anomalies in programs with critical sections. In:
Proceedings of the ACM/ONR workshop on parallel and distributed debugging. ACM Press, New
York, pp 85–96

12. Eager DL, Zahorjan J, Lazowska ED (1989) Speedup versus efficiency in parallel systems. IEEE
Trans Comput 38(3):408–423

13. Emrath PA, Ghosh S, Padua DA (1991) Event synchronization analysis for debugging parallel pro-
grams. In: Supercomputing’91, November 1991, pp 580–588

14. Feng M, Leiserson CE (1997) Efficient detection of determinacy races in Cilk programs. In: Proceed-
ings of the ninth annual ACM symposium on parallel algorithms and architectures (SPAA), Newport,
Rhode Island, June 22–25 1997, pp 1–11

15. Fenster Y (1998) Detecting parallel access anomalies. Master’s thesis, Hebrew University, March
1998

16. Frigo M, Leiserson CE, Randall KH (1998) The implementation of the Cilk-5 multithreaded lan-
guage. In: Proceedings of the ACM SIGPLAN ’98 conference on programming language design and
implementation, Montreal, Quebec, Canada, June 1998. ACM SIGPLAN Notices, vol 33, no 5, May
1998. ACM, New York, pp 212–223

17. Frigo M, Halpern P, Leiserson CE, Lewin-Berlin S (2009) Reducers and other Cilk++ hyperobjects.
In: Proceedings of the twenty-first annual ACM symposium on parallel algorithms and architectures
(SPAA’09), Calgary, Canada, August 2009 (to appear)

18. Garey MR, Johnson DS (1979) Computers and intractability. W.H. Freeman, New York
19. Graham RL (1966) Bounds for certain multiprocessing anomalies. Bell Syst Tech J 45:1563–1581
20. Helmbold DP, McDowell CE, Wang J-Z (1990) Analyzing traces with anonymous synchronization.

In: Proceedings of the 1990 international conference on parallel processing, August 1990, pp II70–
II77

21. Institute of Electrical and Electronic Engineers (1996) Information technology—Portable Operating
System Interface (POSIX)—Part 1: System application program interface (API) [C language]. IEEE
Standard 1003.1, 1996 Edition

22. Kernighan BW, Ritchie DM (1988) The C programming language, 2nd edn. Prentice Hall, New York
23. Luk C-K, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wallace S, Reddi VJ, Hazelwood K

(2005) Pin: building customized program analysis tools with dynamic instrumentation. In: PLDI ’05:
proceedings of the 2005 ACM SIGPLAN conference on programming language design and imple-
mentation, New York, NY, USA, 2005. ACM Press, New York, pp 190–200

 Author's personal copy

The Cilk++ concurrency platform 257

24. Mellor-Crummey, J (1991) On-the-fly detection of data races for programs with nested fork-join par-
allelism. In: Proceedings of supercomputing’91. IEEE Computer Society Press, Los Alamitos, pp
24–33

25. Miller BP, Choi J-D (1988) A mechanism for efficient debugging of parallel programs. In: Proceed-
ings of the 1988 ACM SIGPLAN conference on programming language design and implementation
(PLDI), Atlanta, Georgia, June 1988, pp 135–144

26. Min SL, Choi J-D (1991) An efficient cache-based access anomaly detection scheme. In: Proceed-
ings of the fourth international conference on architectural support for programming languages and
operating systems (ASPLOS), Palo Alto, California, April 1991, pp 235–244

27. Netzer RHB, Ghosh S (1992) Efficient race condition detection for shared-memory programs with
post/wait synchronization. In: Proceedings of the 1992 international conference on parallel process-
ing, St. Charles, Illinois, August 1992

28. Netzer RHB, Miller BP (1992) What are race conditions? ACM Lett Program Lang Syst 1(1):74–88
29. Nudler I, Rudolph L (1986) Tools for the efficient development of efficient parallel programs. In:

Proceedings of the first Israeli conference on computer systems engineering, May 1986
30. Perković D, Keleher P (1996) Online data-race detection via coherency guarantees. In: Proceedings

of the second USENIX symposium on operating systems design and implementation (OSDI), Seattle,
Washington, October 1996

31. Savage S, Burrows M, Nelson G, Sobalvarro P, Anderson T (1997) Eraser: A dynamic race detector
for multi-threaded programs. In: Proceedings of the sixteenth ACM symposium on operating systems
principles (SOSP), October 1997

32. Stroustrup B (2000) The C++ programming language, 3rd edn. Addison-Wesley, Reading
33. Stroustrup B (2005) C++ in 2005. Addison-Wesley, Reading. Preface to the Japanese translation
34. Supercomputing Technologies Group (2006) Massachusetts Institute of Technology Laboratory for

Computer Science. Cilk 5.4.2.3 Reference Manual, April 2006. Available from: http://supertech.csail.
mit.edu/cilk/home/software.html

35. The MPI Forum (1993) MPI: A message passing interface. In: Supercomputing ’93. Portland, Oregon,
November 1993, pp 878–883

36. The MPI Forum (1996) MPI-2: Extensions to the Message-Passing Interface. Technical Report, Uni-
versity of Tennessee, Knoxville. Available from: citeseer.ist.psu.edu/517818.html

37. Wulf W, Shaw M (1973) Global variable considered harmful. SIGPLAN Not 8(2):28–34

 Author's personal copy

http://supertech.csail.mit.edu/cilk/home/software.html
http://supertech.csail.mit.edu/cilk/home/software.html
http://citeseer.ist.psu.edu/517818.html

	The Cilk++ concurrency platform
	Abstract
	Introduction
	An overview of parallelism
	The Work Law
	The Span Law
	Parallelism

	Runtime system
	Performance bounds
	Work stealing

	Race detection
	Reducer hyperobjects
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

