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Abstract

I have implemented a cache-oblivious dynamic search tree as an alternative to the ubiquitious
B-tree. I use a binary tree with a \van Emde Boas" layout whose leaves point to 5ntervals
5n a \packed memory structure". We refer to the data structure as a COB-Tree. The COB-
Tree supports e–cient lookup, as well as e–cient amortized 5nsertion and deletion. E–cient
implementation of a B-tree requires understanding the cache-line size and page size and is
optimized for a speciflc memory hierarchy. In contrast, the COB-Tree conta5ns no machine-
dependent variables, performs well on any memory hierarchy, and requires minimal user-level
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Chapter 1

Introduction



The COB-Tree is tested on large test cases, comparing performance with the standard

solution, B-trees, and analyzing asymptotic properties. One set of experiments involving disk

access shows comparisons between the cache-oblivious search tree and B-trees. I compare



Chapter 2

Description

We focus on the problem of creating a data structure that supports e–cient data scans,

searches, insertions, and deletions. The traditional solution, B-trees, has limitations. B-trees

perform sub-optimally on machines with complex memory hierarchies and employ machine





Figure 2-2: B-tree with capacity of 3 keys per node.

using a multilevel memory hierarchy, the programmer of a B-tree must decide which level of

memory is the bottleneck and optimize accordingly. To program e–ciently under a multilevel

memory hierarchy requires the user to consider multiple block sizes B1; B2; : : : ; Bn







flrst layout the top half recursively. Then layout the remaining 2h=2 subtrees recursively in



some c > 1. The remaining fraction of the array, 1 ¡ 1=c, is blank. Let T be the size of the

array. We specify T to be a power of 2 at all times. Divide T into equally sized sections of

size s = £(log2 T ) such that s



node that is within threshold. Rebalance



Figure 2-4: An example of the packed memory structure containing the values 1 through
16. The array contains 8 sections. The binary tree is labeled with a breadth-flrst layout
along with the bit representations of the layout. The sections are labeled below the array.
The numbers in bold italics in the nodes are values held by the node.

Algorithms

Data Query Data query is simple. To search for a particular element i, flrst search

the binary tree to flnd which appropriate section i belongs. To do so, we traverse a path of

the tree. If i is less than or equal to the key at a node of the tree, go left. Otherwise, go

right. Figure 2-4 shows an example of the packed memory structure. Once the section is

found, perform a binary search within the section.

To search for a range of elements [a; b), search for the element a
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Chapter 3

Results







3.2.2 Insertion-at-Head Pattern

We focus on runtime. Figure 3-3 shows the average time for inserting elements using the

insertion-at-head pattern. We don’t see the same dips and sharp increases as Figure 3-1

because rebalances occur much more frequently. Figure 3-4 shows the average runtime for

the insertion-at-head pattern normalized by dividing by lg2
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Figure 3-10: (Average rebalancing sum)/(lg2(number of elements)) with insertion-at-headpattern.
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Chapter 4

Static Cache-Oblivious Binary Tree

Implementation

Chapter 2 described the two data structures that form the COB-Tree, a static cache-oblivious

binary tree with a van Emde Boas layout, and a packed memory structure. Chapter 3

provided experimental results. This chapter presents implementation details of a tree with

a van Emde Boas layout. Chapter 5 presents implementation details of the packed memory

structure.

The tree is represented in memory as an array. The value at location i of the array

corresponds to some node of the tree. We need a way of computing the location of the left

and right children of node i. One solution is to have the array store pointers, but pointers

cost space. Instead, we wish to have an array such that the root of the tree is the flrst

element of the array, and for a given node located at array location i, the locations of the

node’s two children are easily found. This chapter provides details.

Consider the breadth-flrst layout, a simple tree layout. In a breadth-flrst layout, a binary

tree of N nodes is represented as an array. Each element of the array corresponds to a node.

The values held in the array are values of nodes. The root node is located at the flrst



breadth-flrst layout simple to use and conserves space by not allocating pointers for children

of nodes. Figure 4-1 shows an example of a binary tree with breadth-flrst indices, along with

van Emde Boas indices.

Figure 4-1



a binary search on a tree with a breadth-flrst layout. The variables, depth and height, are









two bits gives us the root of Bi to be 000 : : : 0001011 = 11. Therefore, x = 7 + (11 ¡ 8) ⁄



To change the flrst k ¡ 2 bits to 0000:::0001 may be done easily. In the bit representation

of n, we know the dth bit is a 1 and all higher order bits are 0. Thus, to evaluate n0, we

need to right-shift bits up to position d to position d0. For example, for



Chapter 5

Packed Memory Structure



2. The size of the array T , is a power of 2. The array is divided into sections of size S

such that S is the power of 2 arithmetically closest to lg2 T . Note that (
p

2=2) lg2 T •
S • p

2 2 T





has several issues, along with several possible solutions, all of which are presented in the next

section. We focus on updating the search tree. Suppose we have found and rebalanced the

proper portion that will contain i. The subtree rooted at the node in the tree representing

the rebalanced portion is no longer valid. We must update the subtree representing this

portion. This can be done recursively. If the node is a leaf, return the maximum value of the

represented section. Every internal node solves for two values from its children, the largest

key in each child’s -278(can)-279(b)8(cTh)27(us,)-305(the)-300(no)-27(de)-301(returns)-300(the)-300(v)53(alue)-299(receiv)26(ed)-299(b)26(y)-299(the)-301(righ)27(t)-300(c)27(hild,)-305(the)]TJ 0 -21.66 TD[(largest)-384(k)26(ey)-384(in)-385(the)-385(no)-27(de’s)-385(o)26(wn)-383(p)-28(ortionn)22-305(79(b)8ltoresn)-385(the)-385(v)54(aluy)-384(reture(79(b)8(b)26(y)-384(the)-344(eft79(b)8(c)26(hilnn)2289(the)]TJ 0 -21.67 TD[(largest)-)26(k)26(ey)-254(in)-240(the)--27(eft79(240(c)26(hild’s)-254(p)-28(ortio79(b395(The)-240(no)-27(de)--27ise)-240(presen)26(ted)-254bp)-28eloc)27w.e)]TJETG BT/1F2 11.95 Tf 0 2548.47 TD[(long)514[(long)5154(itg)514[up(datTtre�(nde*g)5154btre,g)514[size_tg)5154(idex,g)5154pair*g)514[array){e





Figure 5-1: The initial state of the array before rebalancing begins. The array has four
sections, each with a capacity of four elements.





Figure 5-5: The state of the array after section 1 is crunched towards Section 2. Sections
3 and 4 remain to be crunched.



is lost. Similarly, if a and b are both left moving elements, flrst move a and then b. If a is

a left moving element and b





Chapter 6

Conclusion



be intolerable to users. Thus, one area of research is to deamortize the cost of insertion.

That is, flnd a way to reduce the variance of the time to insert elements.
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