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Abstract

Hardware transactions offer a performance advantage over software implementations by har-
nessing the power of existing cache coherence mechanisms which are already fast, automatic, and
parallel. The source of superior performance, however, is also the root of their weakness: existing
implementations of hardware transactions abort when the working set exceeds the capacity of the
underlying hardware. Before we can incorporate this nascent technology into high-performing
concurrent data structures, it is necessary to investigate these capacity constraints in order to
better inform programmers of their abilities and limitations.

This paper provides the first comprehensive empirical study of the “capacity envelope” of
HTM in Intel’s Haswell and IBM’s Power8 architectures, providing what we believe is a much
needed understanding of the extent to which one can use these systems to replace locks.

1 Introduction

As Moore’s law has plateaued [25] over the last several years, the number of researchers investigat-
ing technologies for fast concurrent programs has doubled approximately every two years. ! High
performance concurrent programs require the effective utilization of ever-increasing core counts
and perhaps no technology has been more anticipated toward this end than Hardware Transactional
Memory (HTM). Transactional memory [12] was originally proposed as a programming abstraction
that could achieve high performance while maintaining the simplicity of coarse-grained locks [29]
and recently Intel [15,22] and IBM [2,13,19] have both introduced mainstream multicore processors
supporting restricted HTM. Hardware transactions are faster than traditional coarse-grained locks
and software transactions [4,29], yet they have similar performance to well-engineered software us-
ing fine-grained locks and atomic instructions (e.g. COMPARE-AND-SWAP [11]). The Intel and IBM
systems are both restricted in that they are a best effort hardware transactional memory implementa-
tion [2,7,14,15]: transactions can fail due to limitations of the underlying hardware implementation
even when executed serially. The conditions under which such a failure may occur dramatically
impacts whether the complexity of designing a software system using restricted HTM is justified by
the expected performance. Characterizing these conditions is the goal of this paper.

Related Work Recently, several researchers have considered variations of hybrid transactional
memory (HyTM) systems [5, 6, 18] which exploit the performance potential of recent HTM imple-
mentations, while preserving the semantics and progress guarantees of software transactional mem-
ory (STM) systems [24]. Underlying all of this work is the assumption that hardware constraints
on the size of transactions are sufficiently unforgiving, supported by recent sequential access eval-
uations of Haswell [8, 9,21, 23], that elaborate workarounds are justified. For instance, Xiang et
al. [27, 28] propose the decomposition of a transaction into a nontransactional read-only planning
phase and a transactional write-mostly completion phase in order to reduce the size of the actual

'We can observe this exponential increase in research activity related to concurrent programming via a search of the ACM
Digital Library [1] for papers with titles including relevant phrases (eg. transactional memory, concurrent data structures,
parallel runtimes etc.) for each year over the last few decades.



transaction. Wang et al. [26] use a similar nontransactional execution phase and a transactional
commit phase in the context of an in-memory database in order to limit the actual transaction to
the database meta-data and excluding the payload data. Likewise, Leis et al. [16] use timestamp
ordering [3] to glue together smaller transactions in order to compose one large transaction in an
in-memory database.

Background Transactions require the logical maintenance of read sets, the set of memory loca-
tions that are read within a transaction, and write sets, the set of memory locations that are written
within a transaction [12]. Upon completion of a transaction, the memory state is validated for con-
sistency before the transaction commits, making modifications to memory visible to other threads.
In addition to conflict aborts that occur due to concurrent transactional accesses to the same mem-
ory address?, hardware transactions suffer from capacity aborts when the underlying hardware lacks
sufficient resources to maintain the read or write set of an attempted transaction.

Read and write sets are often maintained in hardware using an extension to an existing cache
hierarchy. Caches in modern processors are organized in sets and ways, where a surjection from
memory address to set number is used in hardware to restrict the number of locations that must be
checked on a cache access. The number of ways per set is the associativity of the cache and an
address mapping to a particular set is eligible to be stored in any one of the associated ways. To
maintain the read and write sets of a transaction, one can “lock” each accessed memory address
into the cache until the transaction commits. The logic of the cache coherence protocol can also
be extended to ensure atomicity of transactions by noting whether or not a cache-to-cache transfer
of data involves an element of a transaction’s read or write set. These extensions to the caches and
the cache coherence protocol are very natural and lead to high performance, however the nature of
the design reveals an inherent weakness: caches are finite in size and associativity, thus such an
architecture could never guarantee forward progress for arbitrarily large transactions.

Contributions In this paper we summarize results of the first comprehensive empirical study of
the “capacity envelope” for recent Intel Haswell and IBM Power8 restricted HTM implementations
using experiments that determine how the read and write sets are maintained in hardware. We
conclude that the read and write sets are maintained in the L3 and L1 cache, respectively, for the
Intel Haswell. In addition, the IBM Power8 dedicates a small 64-entry cache per hardware thread.
This characterization should inform software development attempting to use the newly available
HTM support and HyTM systems [6, 17, 18].

2 Capacity Constraints

Physical limitations to the size of hardware transactions are governed by how they are implemented
in hardware. Such capacity constraints determine when a transaction will inevitably abort, even in
the case of zero contention. We devised a parameterizable array access experiment to measure the
maximum cache line capacity of sequential read-only and write-only hardware transactions. We
also experimented with strided memory access patterns to detect whether the read and write sets
are maintained on a per-cache line basis or a per-read / per-write basis. With knowledge of the
maximum sequential access capacity and also the maximum strided access capacity, we can draw
conclusions about where in the caching architecture the read and write sets are maintained.
Experimental Setup The Intel machine we experimented on contains a Haswell 17-4770 pro-
cessor with 4 cores running at 3.4GHz, 8 hardware threads, 64B cache lines, an 8MB 16-way shared
L3 cache, 256KB per-core §-way L2 caches, and 32KB per-core 8-way L1 caches. We also tested an
IBM Power8 processor with 10 cores running at 3.4GHz, 80 hardware threads, 128B cache lines, an
80MB 8-way shared L3 cache, and 64KB per-core 8-way L1 caches. All experiments are written in
C and compiled with GCC, optimization level -00.> Our code uses the GCC hardware transactional

2Specifically, a conflict abort occurs when one thread’s write set intersects at least one memory location in the read or
write set of another thread

3We compiled with -0@ because it generates precisely the assembly that we wish to test (i.e. a simple sequence of memory
accesses with very few supporting arithmetic instructions), whereas higher optimization levels sometimes optimize away the



memory intrinsics interface and is available online [20].
Intel We experimentally support the hypothesis that the Intel HTM implementation uses the L3
cache to store read sets and the L1 cache to store write sets.
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Figure 3: log, Stride vs log, Lines Read. Figure 4: log, Stride vs log, Lines Written.

Figure 1 summarizes the result of a sequential read-only access experiment where data points
represent the success probability of the transaction with respect to the number of cache lines read.
We see that a single transaction can reliably read around 75,000 contiguous cache lines. The L3
cache of the Intel machine has a maximum capacity of 2!7 (= 131,072) cache lines and it is unlikely
for much more than half of the total capacity to fit perfectly into the L3 due to the hash function
mapping physical address to L3 cache bank. This hash function gives rise to a *balls in bins’ behavior
for the load on each cache set. That is, n cache lines can be accessed such that the most loaded set
contains @(lgn/lglgn) = A cache lines [10], where A is the associativity of the cache. We observe
empirically in this setting (i.e. A = 16) that the maximum capacity is roughly half of the L3.

Figure 3 shows the result of a strided read-only access experiment. The stride amount indicates
the number of cache lines stepped over per iteration (e.g. reading cache lines 1, 5, 9, 13, 17 etc.
indicates a stride of 4) and each data point represents the maximum number of cache lines that
can be reliably read with respect to the stride amount. For example, the third data point in the
graph indicates that when the stride amount is 2> (= 4) (e.g. accessing every fourth cache line), the
transaction can reliably read 2'% (= 16,384) cache lines and commit. We can see that the number
of cache lines that can be read in a single transaction is generally halved as we double the stride
amount, presumably because the pattern accesses progressively fewer cache sets while completely
skipping over the other sets. It is important to note that the plot plateaus at 2% (= 16) cache lines.
When the stride amounts are large enough to consecutively hit the same cache set we see support
for the hypothesis that the read set is maintained in the L3 cache because the minimum number of
readable values never drops below 16, the L3 associativity.

We also conducted similar experiments for write-only accesses patterns. Figure 2 illustrates the
result of an identical array access experiment, except that the transactions are write-only instead of
read-only. A single write-only transaction can reliably commit about 400 contiguous cache lines.
The size of the L1 cache is 512 cache lines and a transaction must also have sufficient space to store

entire loop (e.g. read-only tests).



other program metadata (e.g. the head of the program stack), thus we would not expect to fill all 512
lines perfectly.

Figure 4 illustrates that the number of cache lines that can be written in a single transaction
is also generally halved as we double the stride amount. However, even as we increase the stride
amount significantly, the number of cache lines that a transaction can reliably write to does not fall
below 8, corresponding to the associativity of the L1 cache. This suggests that, at worst, one is
limited to storing all writes in a single, but entire, set of the L1 cache.

IBM We experimentally support the hypothesis that the IBM HTM implementation uses a ded-
icated structure to maintain read and write sets, choosing not to extend the functionality of the
existing cache structures as with the Intel implementation. In addition, we observe that the dedi-
cated structures used for read and write set maintenance is not shared among the 8 threads per core,
but rather each thread is allocated its own copy.
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Figure 5: Lines Read/Written vs Success Rate. Figure 6: Stride vs Lines Read/Written.

The results of our sequential and strided access experiments for both read-only and write-only
transactions appear to be identical in Figure 5 and Figure 6, where the maximum number of reads
or writes in a transaction is 64 and that the maximum transaction size halves as we double the stride
amount with a minimum of 16. The maximum observed hardware transaction size is far too small
to be attributable to even the L1 cache, which holds 512 cache lines. Thus, we conclude that there
are dedicated caches for transactions in the IBM implementation independent of the standard core
caches, and that these caches likely each have 4 sets and an associativity of 16.

A natural next question is whether this IBM machine has 10 dedicated caches that are spread
across each core, or if there are 80 dedicated caches that are spread across each hardware thread.
To determine the difference, we experimented and measured the number of successful write-only
transactions that concurrently running threads were able to complete. Each thread makes 10,000
transaction attempts to write 40 thread-local cache lines and then commit. The transaction size of 40
cache lines is designed to sufficiently fill up the dedicated caches per transaction to induce capacity
aborts in the case of shared caches.
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Figure 7: Number of Threads vs Aggregate/Average Committed Transactions (Thousands).

We see in Figure 7 evidence that there are dedicated caches for each hardware thread and that
they are not shared among threads within a core. Each spawned software thread is pinned to a
unique hardware thread in round robin fashion such that the distribution is even across the 10 cores.
If all 8 of the hardware threads on a single core share a single dedicated cache, we would expect
to see sublinear (or even no) speedup as we spawn more running threads and assign them to the



same core. Instead, we observe a linear increase in the aggregate number of successfully committed
transactions, while the average per-thread number of successful transactions is constant. Although
the general 45% success rate suggests some level of contention between the running threads, it is
most likely not due to per-core sharing of a dedicated cache because the addition of other threads
does not decrease the aggregate throughput.
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