
Ordering Heuristics for Parallel Graph Coloring

William Hasenplaugh Tim Kaler Tao B. Schardl Charles E. Leiserson
MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street
Cambridge, MA 02139

ABSTRACT
This paper introduces the largest-log-degree-first (LLF) and
smallest-log-degree-last (SLL) ordering heuristics for paral-
lel greedy graph-coloring algorithms, which are inspired by
the largest-degree-first (LF) and smallest-degree-last (SL) serial
heuristics, respectively. We show that although LF and SL, in prac-
tice, generate colorings with relatively small numbers of colors,
they are vulnerable to adversarial inputs for which any paralleliza-
tion yields a poor parallel speedup. In contrast, LLF and SLL allow
for provably good speedups on arbitrary inputs while, in practice,
producing colorings of competitive quality to their serial analogs.

We applied LLF and SLL to the parallel greedy coloring algo-
rithm introduced by Jones and Plassmann, referred to here as JP.
Jones and Plassman analyze the variant of JP that processes the ver-
tices of a graph in a random order, and show that on an O(1)-degree
graph G = (V,E), this JP-R variant has an expected parallel run-
ning time of O(lgV/ lg lgV) in a PRAM model. We improve this
bound to show, using work-span analysis, that JP-R, augmented
to handle arbitrary-degree graphs, colors a graph G = (V,E) with
degree ∆ using Θ(V +E) work and O(lgV + lg∆ ·min{

√
E,∆+

lg∆ lgV/ lg lgV}) expected span. We prove that JP-LLF and
JP-SLL— JP using the LLF and SLL heuristics, respectively —
execute with the same asymptotic work as JP-R and only logarith-
mically more span while producing higher-quality colorings than
JP-R in practice.

We engineered an efficient implementation of JP for modern
shared-memory multicore computers and evaluated its performance
on a machine with 12 Intel Core-i7 (Nehalem) processor cores. Our
implementation of JP-LLF achieves a geometric-mean speedup of
7.83 on eight real-world graphs and a geometric-mean speedup of
8.08 on ten synthetic graphs, while our implementation using SLL
achieves a geometric-mean speedup of 5.36 on these real-world
graphs and a geometric-mean speedup of 7.02 on these synthetic
graphs. Furthermore, on one processor, JP-LLF is slightly faster
than a well-engineered serial greedy algorithm using LF, and like-
wise, JP-SLL is slightly faster than the greedy algorithm using SL.

This research was supported in part by the National Science Foundation
under Grants CNS-1017058, CCF-1162148, and CCF-1314547 and in part
by grants from Intel Corporation and Foxconn Technology Group. Tao B.
Schardl was supported in part by an NSF Graduate Research Fellowship.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPAA’14, June 23–25, 2014, Prague, Czech Republic.
Copyright 2014 ACM 978-1-4503-2821-0/14/06 ...$15.00.
http://dx.doi.org/10.1145/2612669.2612697.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
parallel programming; E.1 [Data Structures]: graphs and net-
works; F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—graph algorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—graph labeling

Keywords
Parallel algorithms; graph coloring; ordering heuristics; Cilk

1. INTRODUCTION
Graph coloring is a heavily studied problem with many real-

world applications, including the scheduling of conflicting jobs
[4, 25, 44, 51], register allocation [13, 15, 16], high-dimensional
nearest-neighbor search [6], and sparse-matrix computation [19,
36, 48], to name just a few. Formally, a (vertex)-coloring of an
undirected graph G = (V,E) is an assignment of a color v.color
to each vertex v ∈ V such that for every edge (u,v) ∈ E, we have
u.color 6= v.color, that is, no two adjacent vertices have the same
color. The graph-coloring problem is the problem of determining
a coloring which uses as few colors as possible.

We were motivated to work on graph coloring in the context of
“chromatic scheduling” [1, 7, 37] of parallel “data-graph computa-
tions.” A data graph is a graph with data associated with its ver-
tices and edges. A data-graph computation is an algorithm imple-
mented as a sequence of “updates” on the vertices of a data graph
G = (V,E), where updating a vertex v ∈ V involves computing a
new value associated with v as a function of v’s old value and the
values associated with the neighbors of v: the set of vertices ad-
jacent to v in G, denoted v.adj = {u ∈ V : (v,u) ∈ E}. To ensure
atomicity of each update, rather than using mutual-exclusion locks
or other nondeterministic means of data synchronization, chromatic
scheduling first colors the vertices of G and then sequences through
the colors, scheduling all vertices of the same color in parallel. The
time to perform a data-graph computation thus depends both on
how long it takes to color G and on the number of colors produced
by the graph-coloring algorithm: more colors means less paral-
lelism. Although the coloring can be performed offline for some
data-graph computations, for other computations the coloring must
be produced online, and one must accept a trade-off between col-
oring quality — number of colors — and the time to produce the
coloring.

Although the problem of finding an optimal coloring of a
graph — a coloring using the fewest colors possible — is in
NP-complete [26], heuristic “greedy” algorithms work reasonably
well in practice. Welsh and Powell [51] introduced the original
greedy coloring algorithm, which iterates over the vertices and as-

166

signs each vertex the smallest color not assigned to a neighbor.
For a graph G = (V,E), define the degree of a vertex v ∈ V by
deg(v) = |v.adj|, the number of neighbors of v, and let the degree
of G be ∆ = maxv∈V {deg(v)}. Welsh and Powell show that the
greedy algorithm colors a graph G with degree ∆ using at most
∆+1 colors.

Ordering heuristics
In practice, however, greedy coloring algorithms tend to produce
much better colorings than the ∆+1 bound implies, and moreover,
the order in which a greedy coloring algorithm colors the vertices
affects the quality of the coloring.1 To reduce the number of colors
a greedy coloring algorithm uses, practitioners therefore employ
ordering heuristics to determine the order in which the algorithm
colors the vertices [2, 11, 35, 45].

The literature includes many studies of ordering heuristics and
how they affect running time and coloring quality. Here are six of
the more popular heuristics:

FF The first-fit ordering heuristic [42, 51] colors vertices in the
order they appear in the input graph representation.

R The random ordering heuristic [35] colors vertices in a uni-
formly random order.

LF The largest-degree-first ordering heuristic [51] colors ver-
tices in order of decreasing degree.

ID The incidence-degree ordering heuristic [19] iteratively
colors an uncolored vertex with the largest number of col-
ored neighbors.

SL The smallest-degree-last ordering heuristic [2, 45] colors
the vertices in the order induced by first removing all the
lowest-degree vertices from the graph, then recursively col-
oring the resulting graph, and finally coloring the removed
vertices.

SD The saturation-degree ordering heuristic [11] iteratively
colors an uncolored vertex whose colored neighbors use the
largest number of distinct colors.

The experimental results overviewed in the Appendix (Section 12)
indicate that we have listed these heuristics in rough order of
coloring quality from worst to best, confirming the findings of
Gebremedhin and Manne [27], who also rank the relative quality
of R, LF, ID, and SD in this order.

Although an ordering heuristic can be viewed as producing a
permutation of the vertices of a graph G = (V,E), we shall find
it convenient to think of an ordering heuristic H as producing an
injective (1-to-1) priority function ρ : V → R.2 We shall use the
notation ρ ∈ H to mean that the ordering heuristic H produces a
priority function ρ .

Figure 1 gives the pseudocode for GREEDY, a greedy coloring
algorithm. GREEDY takes a vertex-weighted graph G = (V,E,ρ)
as input, where ρ : V → R is a priority function produced by some
ordering heuristic. Each step of GREEDY simply selects the uncol-
1In fact, for any graph G = (V,E), some ordering of V causes a greedy
algorithm to color G optimally, although finding such an ordering is NP-
hard [46].
2If the rule for an ordering heuristic allows for ties in the priority function
(the priority function is not injective), we shall assume that ties are bro-
ken randomly. Formally, suppose that an ordering heuristic H produces a
priority function ρH which may contain ties. We extend ρH to a priority
function ρ that maps each vertex v ∈ V to an ordered pair 〈ρH(v),ρR(v)〉,
where the priority function ρR is produced by the random ordering heuris-
tic R. To determine which of two vertices u,v ∈ V has higher priority, we
compare the ordered pairs ρ(u) and ρ(v) lexicographically. Notwithstand-
ing this subtlety, we shall still adopt the simplifying convenience of viewing
the priority function as mapping vertices to real numbers. In fact, the range
of the priority function can be any linearly ordered set.

GREEDY(G)

1 let G = (V,E,ρ)
2 for v ∈V in order of decreasing ρ(v)
3 C = {1,2, . . . ,deg(v)+1}
4 for u ∈ v.adj such that ρ(u)> ρ(v)
5 C = C−{u.color}
6 v.color = minC

Figure 1: Pseudocode for a serial greedy graph-coloring algorithm. Given
a vertex-weighted graph G = (V,E,ρ), where the priority of a vertex v ∈V
is given by ρ(v), GREEDY colors each vertex v ∈ V in decreasing order
according to ρ(v).

JP(G)

7 let G = (V,E,ρ)
8 parallel for v ∈V
9 v.pred = {u ∈V : (u,v) ∈ E and ρ(u)> ρ(v)}

10 v.succ = {u ∈V : (u,v) ∈ E and ρ(u)< ρ(v)}
11 v.counter = |v.pred|
12 parallel for v ∈V
13 if v.pred = = /0
14 JP-COLOR(v)

JP-COLOR(v)
15 v.color = GET-COLOR(v)
16 parallel for u ∈ v.succ
17 if JOIN(u.counter) = = 0
18 JP-COLOR(u)

GET-COLOR(v)
19 C = {1,2, . . . , |v.pred|+1}
20 parallel for u ∈ v.pred
21 C =C−{u.color}
22 return minC

Figure 2: The Jones-Plassman parallel coloring algorithm. JP uses a recur-
sive helper function JP-COLOR to process a vertex once all of its predeces-
sors have been colored. JP-COLOR uses the helper routine GET-COLOR to
find the smallest color available to color a vertex v.

ored vertex with the highest priority according to ρ and colors it
with the smallest available color. Generally, for a coloring algo-
rithm A and ordering heuristic H, let A-H denote the coloring algo-
rithm A that runs on vertex-weighted graphs whose priority func-
tions are produced by H. In this way, we separate the behavior of
the coloring algorithm from that of the ordering heuristic.

GREEDY, using any of these six ordering heuristics, can
be made to run in Θ(V + E) time theoretically. Although
some of these ordering heuristics involve more bookkeeping
than others, achieving these theoretical bounds for GREEDY-FF,
GREEDY-R, GREEDY-LF, GREEDY-ID, and GREEDY-SL is
straightforward [29, 45]. Despite conjectures to the contrary [19,
29], GREEDY-SD can also be made to run in Θ(V +E) time, as we
shall show in Section 8.

In practice, to produce a better quality coloring tends to cost
more in running time. That is, the six heuristics, which are listed
in increasing order of coloring quality, are also listed in increasing
order of running time. The only exception is GREEDY-ID, which
is dominated by GREEDY-SL in both coloring quality and runtime.
The experiments discussed in the Appendix (Section 12) summa-
rize our empirical findings for serial greedy coloring.

Parallel greedy coloring
There is a historical tension between coloring quality and the

parallel scalability of greedy graph coloring. While the traditional
ordering heuristics FF, LF, ID, and SL are efficient using GREEDY,
it can be shown that any parallelization of them requires worst-
case span of Ω(V) for a general graph G = (V,E). Of the various
attempts to parallelize greedy coloring [18, 22, 43], the algorithm
first proposed by Jones and Plassmann [35] extends the greedy al-
gorithm in a straightforward manner, uses work linear in size of the
graph, and is deterministic given a random seed. Jones and Plass-
mann’s original paper demonstrates good parallel performance for

167

O(1)-degree graphs using the random ordering heuristic R. Unfor-
tunately, in practice, R tends to produce colorings of relatively poor
quality relative to the other traditional ordering heuristics. But the
other traditional ordering heuristics are all vulnerable to adversar-
ial graph inputs which cause JP to operate in Ω(V) time and thus
exhibit poor parallel scalability. Consequently, there is need for
new ordering heuristics for JP that can achieve both good coloring
quality and guaranteed fast parallel performance.

Figure 2 gives the pseudocode for JP, which colors a given graph
G = (V,E,ρ) in the order specified by the priority function ρ . The
algorithm begins in lines 9 and 10 by partitioning the neighbors
of each vertex into predecessors — vertices with larger priorities
— and successors — vertices with smaller priorities. JP uses the
recursive JP-COLOR helper function to color a vertex v ∈ V once
all vertices in v.pred have been colored. Initially, lines 12–14 in
JP scan the vertices of V to find every vertex that has no prede-
cessors and colors each one using JP-COLOR. Within a call to
JP-COLOR(v), line 15 calls GET-COLOR to assign a color to v, and
the loop on lines 16–18 broadcasts in parallel to all of v’s succes-
sors the fact that v is colored. For each successor u∈ v.succ, line 17
tests whether all of u’s predecessors have already been colored, and
if so, line 18 recursively calls JP-COLOR on u.

Jones and Plassmann analyze the performance of JP-R for O(1)-
degree graphs. Although they do not discuss using the naive FF
ordering heuristic, it is apparent that there exist adversarial input
orderings for which their algorithm would fail to scale. For exam-
ple, if the graph G = (V,E) is simply a chain of vertices and the
input order of V corresponds to their in order in the chain, JP-FF
exhibits no parallelism. Jones and Plassmann show that a random
ordering produced by R, however, allows the algorithm to run in
O(lgV/ lg lgV) expected time on this chain graph — and on any
O(1)-degree graph, for that matter. Section 3 of this paper extends
their analysis of JP-R to arbitrary-degree graphs.

Although JP-R scales well in theory, as well as in practice, when
it comes to coloring quality, R is one of the weaker ordering heuris-
tics, as we have noted. Of the other heuristics, JP-LF and JP-SL
suffer from the same problem as FF, namely, it is possible to con-
struct adversarial graphs that cause them to scale poorly, which we
explore in Section 4. The ID heuristic tends to produce worse col-
orings than SL, and since GREEDY-ID also runs more slowly than
GREEDY-SL, we have dropped ID from consideration. Moreover,
because of our motivation to use the coloring algorithm for online
chromatic scheduling, where the performance of the coloring algo-
rithm cannot be sacrificed for marginal improvements in the qual-
ity of coloring, we also have dropped the SD heuristic. Since SD
produces the best-quality colorings of the six ordering heuristics,
however, we see parallelizing it as an interesting opportunity for
future research.

Consequently, this paper focuses on alternatives to the LF and
SL ordering heuristics that provide comparable coloring quality
while exhibiting the same resilience to adversarial graphs that R
shows compared with FF. Specifically, we introduce two new ran-
domized ordering heuristics — “largest log-degree first” (LLF) and
“smallest log-degree last” (SLL) — which resemble LF and SL, re-
spectively, but which scale provably well when used with JP. We
demonstrate that JP-LLF and JP-SLL provide good parallel scala-
bility in theory and practice and are resilient to adversarial graphs.

Figure 3 summarizes our empirical findings. The data suggest
that the LLF and SLL ordering heuristics produce colorings that
are nearly as good as LF and SL, respectively. With respect to
performance, our implementations of JP-LLF and JP-SLL actually
operate slightly faster on 1 processor than our highly tuned im-

H H′
CH′

CH

GREEDY-H
JP-H′1

JP-H′1
JP-H′12

FF R 1.011 0.417 7.039
LF LLF 1.021 1.058 7.980
SL SLL 1.037 1.092 6.082

Figure 3: Summary of ordering-heuristic behavior on a suite of 8 real-
world graphs and 10 synthetic graphs when run on a machine with 12 Intel
Xeon X5650 processor cores. Column H lists three serial heuristics tradi-
tionally used for GREEDY, and column H′ lists parallel heuristics for JP, of
which LLF and SLL are introduced in this paper. Column “CH′/CH” shows
the geometric mean of the ratio of the number of colors the parallel heuristic
uses compared to the serial heuristic. Column “GREEDY-H/JP-H′1” shows
the geometric mean of the ratio of serial running times of GREEDY with
the serial heuristic versus JP with the analogous parallel heuristic when run
on 1 processor. Column “JP-H′1/JP-H′12” shows the geometric mean of the
speedup of each parallel heuristic going from 1 processor to 12.

plementations of GREEDY-LF and GREEDY-SL, respectively, and
they scale comparably to JP-R.

Outline
The remainder of this paper is organized as follows. Section 2
reviews the asynchronous parallel greedy coloring algorithm first
proposed by Jones and Plassmann [35]. We show how JP can be
extended to handle arbitrary-degree graphs and arbitrary priority
functions. Using work-span analysis [21, Ch. 27], we show that
JP colors a ∆-degree graph G = (V,E,ρ) in Θ(V +E) work and
O(L lg∆+ lgV) span, where L is the length of the longest path in
G along which the priority function ρ decreases. Section 3 ana-
lyzes the performance of JP-R, showing that it operates using lin-
ear work and O(lgV + lg∆ ·min{

√
E,∆+ lg∆ lgV/ lg lgV}) span.

Section 4 shows that there exist “adversarial” graphs for which
JP-LF and JP-SL exhibit limited parallel speedup. Section 5 an-
alyzes the LLF and SLL ordering heuristics. We show that, given
a ∆-degree graph G, JP-LLF colors G = (V,E,ρ) using Θ(V +E)
work and O(lgV + lg∆(min{∆,

√
E}+ lg2

∆ lgV/ lg lgV)) expected
span, while JP-SLL colors G = (V,E,ρ) using same work and an
additive Θ(lg∆ lgV) additional span. Section 6 evaluates the per-
formance of JP-LLF and JP-SLL on a suite of 8 real-world and 10
synthetic benchmark graphs. Section 7 discusses the software en-
gineering techniques used in our implementation of JP-R, JP-LLF,
and JP-SLL. Section 8 introduces an algorithm for computing the
SD ordering heuristic using Θ(V +E) work. Section 9 discusses
related work, and Section 10 offers some concluding remarks. The
Appendix (Section 12) presents some experimental results for se-
rial ordering heuristics.

2. THE JONES-PLASSMANN ALGORITHM
This section reviews JP, the parallel greedy coloring algorithm

introduced by Jones and Plassmann [35], whose pseudocode is
given in Figure 2. We first review the dag model of dynamic mul-
tithreading and work-span analysis [21, Ch. 27]. Then we describe
how JP can be modified from Jones and Plassmann’s original algo-
rithm to handle arbitrary-degree graphs and arbitrary priority func-
tions. We analyze JP with an arbitrary priority function ρ and show
that on a ∆-degree graph G = (V,E,ρ), JP runs in Θ(V +E) work
and O(L lg∆+ lgV) span, where L is the longest path in the “prior-
ity dag” of G induced by ρ .

The dag model of dynamic multithreading
We shall analyze the parallel performance of JP using the dag
model of dynamic multithreading introduced by Blumofe and Leis-
erson [9, 10] and described in tutorial fashion in [21, Ch. 27]. The
dag model views the executed computation resulting from running
a parallel algorithm as a computation dag A, in which each vertex

168

denotes an instruction, and edges denote parallel control dependen-
cies between instructions. Although the model encompasses other
parallel control constructs, for our purposes, we need only under-
stand that the execution of a parallel for loop can be modeled as a
balanced binary tree of vertices in the dag, where the leaves of the
tree denote the initial instructions of the loop iterations.

To analyze the performance of a dynamic multithreading pro-
gram theoretically, we assume that the program executes on an
ideal parallel computer: each instruction executes in unit time,
the computer has ample memory bandwidth, and the computer
supports concurrent writes and read-modify-write instructions [33]
without incurring overheads due to contention.

Given a dynamic multithreading program whose execution is
modeled as a dag A, we can bound the parallel running time TP(A)
of the computation as follows. The work T1(A) is the number of
strands in the computation dag A. The span T∞(A) is the length
of the longest path in A. A deterministic algorithm with work T1
and span T∞ can always be executed on P processors in time TP
satisfying max{T1/P,T∞} ≤ Tp ≤ T1/P+T∞ [9,10,12,24,32]. The
speedup of an algorithm on P processors is T1/TP, which is at most
P in theory, since TP ≥ T∞. The parallelism T1/T∞ is the greatest
theoretical speedup possible for any number P of processors.

Analysis of JP
To analyze the performance of JP, it is convenient to think of the
algorithm as coloring the vertices in the partial order of a “pri-
ority dag,” similar to the priority dag described by Blelloch et
al. [8]. Specifically, on a vertex-weighted graph G = (V,E,ρ),
the priority function ρ induces a priority dag Gρ = (V,Eρ), where
Eρ = {(u,v)∈V ×V : (u,v)∈ E and ρ(u)> ρ(v)}. Notice that Gρ

is a dag, because ρ is an injective function and thus induces a total
order on the vertices V . We shall bound the span of JP running on
a graph G in terms of the depth of Gρ , that is, the length of the
longest path through Gρ . We analyze JP in two steps.

First, we bound the work and span of calls during the execution
of JP to the helper routine GET-COLOR(v), which returns the min-
imum color not assigned to any vertex u ∈ v.pred.

LEMMA 1. The helper routine GET-COLOR, shown in Fig-
ure 2, can be implemented so that during the execution of JP on
a graph G = (V,E,ρ), a call to GET-COLOR(v) for a vertex v ∈V
costs Θ(k) work and Θ(lgk) span, where k = |v.pred|.

PROOF. Implement the set C in GET-COLOR as an array whose
ith entry initially stores the value i. The ith element from this array
can be removed by setting the ith element to ∞. With this imple-
mentation, lines 20–21 execute in Θ(k) work and Θ(lgk) span. The
min operation on line 22 can be implemented as a parallel minimum
reduction in the same bounds.

Second, we show that JP colors a graph G= (V,E,ρ) using work
Θ(V +E) and span linear in the depth of the priority dag Gρ .

THEOREM 2. Given a ∆-degree graph G = (V,E,ρ) for some
priority function ρ , let Gρ be the priority dag induced on G by ρ ,
and let L be the depth of Gρ . Then JP(G) runs in Θ(V +E) work
and O(L lg∆+ lgV) span.

PROOF. Let us first bound the work and span of JP-COLOR ex-
cluding any recursive calls. For a single call to JP-COLOR on a
vertex v ∈ V , Lemma 1 shows that line 15 takes Θ(deg(v)) work
and Θ(lg(deg(v))) span. The JOIN operation on line 17 can be im-
plemented as an atomic decrement-and-fetch operation [33] on the
specified counter. Hence, excluding the recursive call, the loop on
lines 16–18 performs Θ(deg(v)) work and Θ(lg(deg(v))) span to
decrement the counters of all successors of v.

Because JP-COLOR is called once per vertex, the total work that
JP spends in calls to JP-COLOR is Θ(V +E). Furthermore, the
span of JP-COLOR is the length of any path of vertices in Gρ ,
which is at most L, times Θ(lg∆). Finally, the loop on lines 8–11
executes in Θ(V +E) work and Θ(lgV + lg∆) span, and the paral-
lel loop on lines 12–14, excluding the call to JP-COLOR, executes
in Θ(V +E) work and Θ(lgV) span.

3. JP WITH RANDOM ORDERING
This section bounds the depth of a priority dag Gρ induced on

a ∆-degree graph G = (V,E,ρ) by a random priority function ρ

in R. We show that the expected depth of Gρ is O(min{
√

E,∆+
lg∆ lgV/ lg lgV}). Combined with Theorem 2, this bound im-
plies that the expected span of JP-R is O(lgV + lg∆ ·min{

√
E,∆+

lg∆ lgV/ lg lgV}). This bound extends Jones and Plassmann’s
O(lgV/ lg lgV) bound for the depth of Gρ when ∆ = Θ(1) [35].

To bound the depth of a priority dag Gρ induced on a graph G by
ρ ∈ R, let us start by bounding the number of length-k paths in Gρ .
Each path in Gρ corresponds to a unique simple path in G, that is, a
path in which each vertex in G appears at most once. The following
lemma bounds the number of length-k simple paths in G.

LEMMA 3. The number of length-k simple paths in any ∆-
degree graph G = (V,E) is at most |V | ·min{∆k−1,(2|E|/(k −
1))k−1}.

PROOF. Consider selecting a length-k simple path p =
〈v1, . . . ,vk〉 in G. There are |V | choices for v1, and for
all i ∈ {1, . . . ,k − 1}, given a choice of 〈v1, . . . ,vi〉, there are
at most deg(vi) choices for vi+1. Hence there are at most
J = |V | ·

∏k−1
i=1 deg(vi) simple paths in G of length k. Let

Vk ⊆ V denote some set of k − 1 vertices in V , and let δ =
maxVk−1{

∑
v∈Vk−1

deg(v)/(k−1)} be the maximum average degree
of any such set. Then we have J ≤ |V | ·δ k−1.

The proof follows from two upper bounds on δ . First, because
deg(v)≤ ∆ for all v ∈V , we have δ ≤ ∆. Second, for all Vk−1 ⊆V ,
we have

∑
v∈Vk−1

deg(v) ≤
∑

v∈V deg(v) = 2|E| by the handshak-
ing lemma [21, p. 1172–3], and thus δ ≤ 2|E|/(k−1).

Intuitively, the bound on the expected depth of Gρ follows by ar-
guing that although the number of simple length-k paths in a graph
G might be exponential in k, for sufficiently large k, the probabil-
ity is tiny that any such path is a path in Gρ . To formalize this
argument, we make use of the following technical lemma.

LEMMA 4. Define the function g(α,β) for α,β > 1 as

g(α,β) = e2 lnα

lnβ
ln
(

e
β lnα

α lnβ

)
.

Then for all β ≥ e2, α ≥ 2, and β ≥ α , we have g(α,β)≥ 1.
PROOF. We consider the cases when α ≥ e2 and when α < e2

separately.
When α > e2, the partial derivative of g(α,β) with respect to β

is
∂g(α,β)

∂β
= e2 lnα

β ln2
β

ln
(

α

e2
lnβ

lnα

)
≥ 0 ,

since α lnβ/e2 lnα ≥ 1 when α ≥ e2 and β ≥ α . Thus, g(α,β) is
a nondecreasing function in its second argument when α ≥ e2 and
β ≥ α . Since we have

g(α,α) = e2(lnα/ lnα) ln(e(α lnα)/(α lnα))

≥ 1 ,

169

it follows that g(α,β)≥ 1 for α ≥ e2 and β ≥ α .
When e2 > α ≥ 2, we make use of the fact that 2β/e lnβ >

√
β

for all β > e2:

g(α,β) ≥ (e2 ln2/ lnβ) ln(2β/(e lnβ))

≥ (e2 ln2/ lnβ) ln
(√

β

)
≥ (e2 ln2 lnβ)/(2lnβ)

≥ 1 .

The following theorem applies Lemmas 3 and 4 to establish the
bound on the depth of Gρ .

THEOREM 5. Let G = (V,E) be a ∆-degree graph, let n = |V |
and m = |E|, and let Gρ be a priority dag induced on G by a ran-
dom priority function ρ ∈R. For any constant ε > 0 and sufficiently
large n, with probability at most n−ε , there exists a directed path
of length e2 · min{∆,

√
m} + (1 + ε)min{e2 ln∆ lnn/ ln lnn, lnn}

in Gρ .

PROOF. Let p = 〈v1, . . . ,vk〉 be a length-k simple path in G.
Because ρ is a random priority function, ρ induces each possi-
ble permutation among {v1, . . . ,vk} with equal probability. If p
is a directed path in Gρ , then we must have that ρ(v1) < ρ(v2) <
· · · < ρ(vk). Hence, p is a length-k path in Gρ with probability at
most 1/k!. If J is the number of length-k simple paths in G, then
by the union bound, the probability that a length-k directed path
exists in Gρ is at most J/k!, which is at most J(e/k)k by Stirling’s
approximation [21, p. 57].

We consider cases when ∆ < lnn and ∆ ≥ lnn separately. First,
suppose that ∆ < lnn. By Lemma 3, the number of length-k simple
paths in G is at most n∆k−1 ≤ n∆k. By the union bound, the prob-
ability that a length-k path exists in Gρ is at most n(e∆/k)k. We
assume, without loss of generality, that ∆ > 2, since the theorem
holds for O(1)-degree graphs as a result of [35].

For ∆ ≥ 2, observe that, by Lemma 4, the function g(α,β) =
e2(lnα/ lnβ) ln(β lnα/α lnβ) is at least 1 for all α ≥ 2 and β ≥ e2.
Letting α = ∆, β = lnn, and k = e2(∆+(1+ε) ln∆ lnn/ ln lnn), we
conclude that

n(e∆/k)k = n · exp(−k ln(k/e∆))

≤ n · exp
(
−e2(1+ ε) lnn

ln∆

ln lnn
ln
(

e
lnn ln∆

∆ ln lnn

))
= n · exp(−(1+ ε)(lnn) ·g(∆, lnn))

≤ ne−(1+ε) lnn

= n−ε .

Next, given ∆ ≥ lnn, consider the cases when ∆ <
√

m and ∆ ≥√
m, separately. When ∆ <

√
m, letting k = e2∆+(1+ ε) lnn, the

theorem follows from the facts that k ≥ (1+ ε) lnn and k ≥ e2∆.
When ∆ ≥

√
m, let k = e2√m + (1 + ε) lnn. By Lemma 3, the

number of length-k simple paths is at most n(2m/(k− 1))k−1 ≤
n(4m/k)k, and thus the probability that a length-k path exists in Gρ

is at most n(4em/k2)k. The theorem follows from the facts that
k ≥ (1+ ε) lnn and k2 ≥ e4m.

COROLLARY 6. Given a graph G = (V,E,ρ), where ρ ∈ R is
a random priority function, the expected depth of the priority dag
Gρ is O(min{

√
E,∆+ lg∆ lgV/ lg lgV}), and thus JP-R colors all

vertices of G with O(lgV + lg∆ ·min{
√

E,∆+ lg∆ lgV/ lg lgV})
expected span.

PROOF. Theorems 2 and 5 imply the corollary.

4. THE LF AND SL HEURISTICS
This section shows that the largest-first (LF) and smallest-last

(SL) ordering heuristics can inhibit parallel speedup when used
by JP. We examine a “clique-chain” graph and show that JP-LF in-
curs Ω(∆2) span to color a ∆-degree clique-chain graph G = (V,E),
whereas JP-R colors G incurring only O(∆ lg∆+ lg2

∆ lgV/ lg lgV)
expected span. We formally review the SL ordering heuristic and
observe that this formulation of SL means that JP-SL requires
Ω(V) span to color a path graph G = (V,E).

The LF ordering heuristic
The LF ordering heuristic colors the vertices of a graph G =
(V,E,ρ) for some ρ in LF in order of decreasing degree. Formally,
ρ ∈ LF is defined for a vertex v ∈ V as ρ(v) = 〈deg(V),ρR(v)〉,
where ρR is randomly chosen from R.

Although LF has been used in parallel greedy graph-coloring al-
gorithms in the past [2,29], Figure 4 illustrates a ∆-degree “clique-
chain” graph G = (V,E) for which JP-LF incurs Ω(∆2) span to
color, but JP-R colors with only O(∆ lg∆+ lg2

∆ lgV/ lg lgV) ex-
pected span. Conceptually, the clique-chain graph comprises a set
of cliques of increasing size that are connected in a “chain” such
that JP-LF is forced to color these cliques sequentially from largest
to smallest. Figure 4 illustrates a ∆-degree clique-chain graph
G = (V,E), where 3 evenly divides ∆. This clique-chain graph
contains a sequence of cliques K = {K1,K4, . . . ,K∆−2} of increas-
ing size, each pair of which is separated by two additional ver-
tices forming a linear chain. Specifically, for r ∈ {1,4, . . . ,∆−2},
each vertex u ∈ Kr is connected to each vertex u ∈ Kr+3 by a path
〈u,xr+1,xr+2,v〉 for distinct vertices xr+1,xr+2 ∈ V . Additional
vertices, shown above the chain in Figure 4, ensure that the de-
gree of each vertex in Kr is r + 2, and the degrees of the vertices
xr+1 and xr+2 are r+3 and r+4, respectively. Clique-chain graphs
of other degrees are structured similarly.

THEOREM 7. For any ∆> 0, there exists a ∆-degree graph G=
(V,E) such that JP-LF colors G in Ω(∆2) span and JP-R colors G
in O(∆ lg∆+ lg2

∆ lgV/ lg lgV) expected span.

PROOF. Assume without loss of generality that 3 evenly divides
∆ and that G is a clique-chain graph. The span of JP-R follows from
Corollary 6. Because JP-LF trivially requires Ω(1) span to process
each vertex in G, the span of JP-LF on G can be bounded by show-
ing that the length of the longest path p in the priority dag Gρ in-
duced on G by any priority function ρ in LF is ∆2/6+∆/2+2. Be-
cause LF assigns higher priority to higher-degree vertices, p starts
at some vertex in K∆−2, which has degree ∆, and passes through the
∆−2 vertices in K∆−2 followed by x∆−3 and x∆−4.3 The remainder
of p is a longest path through the clique-chain graph G′ of degree
∆−3 in the remaining graph G−K∆−2−{x∆−3,x∆−4}, which has
a longest path p′ of length |p′| = (∆− 3)2/6+ (∆− 3)/2+ 2 by
induction. The length of p is thus ∆+ |p′|= ∆2/6+∆/2+2.

The SL ordering heuristic
We focus on the formulation of the SL ordering heuristic due to
Allwright et al. [2], because our experiments indicate that it gives
colorings using fewer colors than other formulations [45].

Given a graph G = (V,E), the SL ordering heuristic produces
a priority function ρ via an iterative algorithm that assigns pri-
orities to the vertices V in rounds to induce an ordering on V .
For i ≥ 0, let Gi = (Vi,Ei) denote the subgraph of G remaining
at the start of round i, and let δi denote an upper bound on the
3Notice that it does not matter how ties are broken in the priority function.

170

KΔ–2

Δ

xΔ–3

Δ–1

xΔ–4

Δ–2

KΔ–5

Δ–3

xΔ–6

Δ–4

xΔ–7

Δ–5

KΔ–8

Δ–6

xΔ–9

Δ–7

x4

4 3

K1

Figure 4: A ∆-degree clique-chain graph G, which Theorem 7 shows is adversarial for JP-LF. This graph contains Θ(∆2) vertices arranged as a chain of
cliques. Each hexagon labeled Kr represents a clique of r vertices, and circles represent individual vertices. A thick edge between an individual vertex and a
clique indicates that the vertex is connected to every vertex within the clique. A label below an individual vertex indicates the degree of the associated vertex,
and a label below a clique indicates the degree of every vertex within that clique.

smallest degree of any vertex v ∈ Vi. Assume that δ0 = 1. At
the start of round i, remove all vertices v ∈ Vi such that deg(v) ≤
max{δi−1,minv∈Vi{deg(v)}}. For a vertex v removed in round i,
a priority function ρ ∈ SL is defined as ρ(v) = 〈i,ρR(v)〉 where
ρR ∈ R is a random priority function.

The following theorem shows that there exist graphs for which
JP-SL incurs a large span, whereas JP-R incurs only a small span.

THEOREM 8. There exists a class of graphs such that for any
G = (V,E,ρ) in the class and for any priority function ρ ∈ SL,
JP-SL incurs Ω(V) span and JP-R incurs O(lgV/ lg lgV) span.

PROOF. Consider the algorithm to compute the priority function
ρ for all vertices in a path graph G. By induction over the rounds,
the graph Gi at the start of round i is a path with |V |− 2i+ 2 ver-
tices, and in round i the 2 vertices at the endpoints of Gi will be
removed. Hence d|V |/2e rounds are required to assign priorities
for all vertices in G. A similar argument shows that the resulting
priority dag Gρ contains a path of length |V |/2 along which the pri-
orities strictly decrease. JP-SL trivially incurs Ω(1) span through
each vertex in the longest path in Gρ . Since there are Θ(V) to-
tal vertices along the path and by Corollary 6 with ∆ = Θ(1), the
theorem follows.

We shall see in Section 5 that it is possible to achieve coloring
quality comparable to LF and SL, but with guaranteed parallel per-
formance comparable to JP-R.

5. LOG ORDERING HEURISTICS
This section describes the largest-log-degree-first (LLF) and

smallest-log-degree-last (SLL) ordering heuristics. Given a ∆-
degree graph G, we show that the expected depth of the pri-
ority dag Gρ induced on G by a priority function ρ ∈ LLF is
O(min{∆,

√
E}+ lg2

∆ lgV/ lg lgV). The same bound applies to
the depth of a priority dag Gρ induced on a graph G by a prior-
ity function ρ ∈ SLL, though O(lg∆ lgV) additional span is re-
quired to calculate ρ using the method given in Figure 5. Com-
bined with Theorem 2, these bounds imply that the expected span
of JP-LLF is O(lgV + lg∆(min{∆,

√
E}+ lg2

∆ lgV/ lg lgV)) and
the expected span of JP-SLL is O(lg∆ lgV + lg∆(min{∆,

√
E}+

lg2
∆ lgV/ lg lgV)).

The LLF ordering heuristic
The LLF ordering heuristic orders the vertices in decreasing or-
der by the logarithm of their degree. More precisely, given a graph
G = (V,E,ρ) for some ρ ∈ LLF, the priority of each v ∈V is equal
to ρ(v) = 〈dlg(deg(v))e,ρR(v)〉, where ρR ∈R is a random priority

function and lgx denotes log2 x. 4 For a given graph G, the follow-
ing theorem bounds the depth of the priority dag Gρ induced by
ρ ∈ LLF.

THEOREM 9. Let G = (V,E) be a ∆-degree graph, and let
Gρ be the priority dag induced on G by a priority function ρ ∈
LLF. The expected length of the longest directed path in Gρ is
O(min{∆,

√
E}+ lg2

∆ lgV/ lg lgV).

PROOF. Consider a length-k path p = 〈v1, . . . ,vk〉 in Gρ . Let
G(`)⊆Gρ be the subdag of Gρ induced by those vertices v∈V for
which ρ(v) = dlg(deg(v))e = `. Suppose that vi ∈ G(`) for some
vi ∈ p. Since dlg(deg(vi−1))e ≥ dlg(deg(vi))e for all i > 1, we have
vi−1 ∈G(`′) for some `′ ≥ `. We can therefore decompose p into a
sequence of paths p = 〈pdlg∆e, . . . , p0〉 such that each subpath p` ∈
p is a path through G(`). By definition of LLF, the subdag G(`)
is a dag induced on a graph with degree 2` by a random priority
function.

By Corollary 6, the expected length of p` is O(2` +
` lgV/ lg lgV). Linearity of expectation therefore implies that

E[|p|] =
dlg∆e∑
`=0

O
(

2`+ ` lgV/ lg lgV
)

= O
(

∆+ lg2
∆ lgV/ lg lgV

)
.

To establish the
√

E bound, observe that at most E/2` vertices
have degree at least 2`. Consequently, for ` > lg

√
E, the depth of

G(`) can be at most E/2`. Hence we have

E[|p|] ≤
dlg
√

Ee∑
`=0

O
(

2`
)
+

∞∑
`=dlg

√
Ee

E/2`

+

dlg∆e∑
`=0

O(` lgV/ lg lgV)

= O
(√

E + lg2
∆ lgV/ lg lgV

)
.

COROLLARY 10. Given a graph G = (V,E,ρ) for some ρ ∈
LLF, JP-LLF colors all vertices in G with expected span O(lgV +
lg∆(min{

√
E,∆}+ lg2

∆ lgV/ lg lgV)).
4The theoretical results in this section assume only that the base b of the
logarithm is a constant. In practice, however, it is possible that the choice
of b could have impact on the coloring quality or runtime of JP-LLF. We
studied this trade-off and found that there is only a minor dependence on b.
In general, the coloring quality and runtime of JP-LLF smoothly transitions
from the behavior of JP-LF for small b and the behavior of JP-R for large
b, sweeping out a Pareto-efficient frontier of reasonable choices. We chose
b = 2 for our experiments, because log2 x can be calculated conveniently by
native instructions on modern architectures.

171

SLL-ASSIGN-PRIORITIES(G,r)
23 let G = (V,E)
24 i = 1
25 U = V
26 let ∆ be the degree of G
27 let ρR ∈ R be a random priority function
28 for d = 0 to lg∆

29 for j = 1 to r
30 Q = {u ∈U : |u.adj∩U | ≤ 2d}
31 parallel for v ∈ Q
32 ρ(v) = 〈i,ρR(v)〉
33 U = U−Q
34 i = i+1
35 return ρ

Figure 5: Pseudocode for SLL-ASSIGN-PRIORITIES, which computes a
priority function ρ ∈ SLL for the input graph. The input parameter r denotes
the maximum number of times SLL-ASSIGN-PRIORITIES is permitted to
remove vertices of at most a particular degree 2d on lines 29–34.

PROOF. The corollary follows from Theorem 2.

The SLL ordering heuristic
To understand the SLL ordering heuristic, it is convenient to con-
sider in isolation how to compute its priority function. The pseu-
docode in Figure 5 for SLL-ASSIGN-PRIORITIES describes algo-
rithmically how to perform this computation on a given graph G =
(V,E). As Figure 5 shows, a priority function ρ ∈ SLL can be
computed by iteratively removing low-degree vertices from G in
rounds. The priority of a vertex v ∈ V is the round number in
which v is removed, with ties broken randomly. As with SL, SLL
colors the vertices of G in the reverse order in which they are re-
moved, but SLL-ASSIGN-PRIORITIES determines when to remove
a vertex using a degree bound that grows exponentially. SLL-
ASSIGN-PRIORITIES considers each degree bound for a maximum
of r rounds. Effectively, a vertex is removed from G based on the
logarithm of its degree in the remaining graph.

We can formalize the behavior of SLL as follows. Given a graph
G, let Gi = (Vi,Ei) denote the subgraph of G remaining at the start
of round i. As Figure 5 shows, for each d ∈ {0,1, . . . , lg∆}, SLL-
ASSIGN-PRIORITIES executes r rounds in which it removes ver-
tices v ∈Vi such that deg(v)≤ 2d in Gi.5

For a given graph G, the following theorem bounds the depth of
the priority dag Gρ induced by a priority function ρ ∈ SLL.

THEOREM 11. Let G = (V,E) be a ∆-degree graph, and let Gρ

be the priority dag induced on G by a random priority function
ρ ∈ SLL. The expected length of the longest directed path in Gρ is
O(min{∆,

√
E}+ lg2

∆ lgV/ lg lgV).

PROOF. We begin with an argument similar to the proof of The-
orem 9. Let p = 〈v1, . . . ,vk〉 be a length-k path in Gρ , and let
G(`) ⊆ Gρ be the subdag of Gρ induced by those vertices v ∈ V ,
where ρ(v) = `. Since lines 29–34 of SLL-ASSIGN-PRIORITIES
remove vertices with degree at most 2d exactly r times for each
d ∈ [0, . . . , lg∆], we have that bρ(v)/rc = d, and thus the degree
of G(`) is at most 2b`/rc. Suppose that vi ∈ G(`) for some vi ∈ p.
Since ρ(vi−1)≤ ρ(vi) for all i > 1, we have vi−1 ∈ G(`′) for some
`′ ≥ `. We can therefore decompose p into a sequence of paths

5As with LLF, the degree cutoff 2d on line 30 of Figure 5 could be bd for
an arbitrary constant base b with no harm to the theoretical results. We
explored the choice of base empirically, but found that there was only a
minor dependence on b. Generally, JP-SLL smoothly transitions from the
behavior of JP-SL for small b to the behavior of JP-R and for large b. We
therefore chose b = 2 for our experiments because of its implementation
simplicity.

p = 〈pdr lg∆e, . . . , p0〉 where each p` ∈ p is a path in G(`). By defi-
nition of SLL, the subdag G(`) is a dag induced on a subgraph with
degree at most 2b`/rc by a random priority function.

By Corollary 6, the expected length of p` is O(2b`/rc +
b`/rc lgV/ lg lgV). Linearity of expectation therefore implies that

E[|p|] =
dr lg∆e∑
`=0

O
(

2b`/rc+ b`/rc lgV/ lg lgV
)

= O
(

∆+ lg2
∆ lgV/ lg lgV

)
.

Next, because at most E/2b`/rc vertices can have degree at least
2b`/rc, we have for ` > r lg

√
E that the longest path through the

subdag G(`) is no longer than E/2b`/rc. We thus conclude that

E[|p|] ≤
dr lg
√

Ee∑
`=0

O
(

2b`/rc
)
+

∞∑
`=dr lg

√
Ee

E/2b`/rc

+

dr lg∆e∑
`=0

O(b`/rc lgV/ lg lgV)

= O
(√

E + lg2
∆ lgV/ lg lgV

)
.

COROLLARY 12. Given a graph G = (V,E,ρ) for some ρ ∈
SLL, JP-SLL colors all vertices in G with expected span
O(lg∆ lgV + lg∆(min{

√
E,∆}+ lg2

∆ lgV/ lg lgV)).

PROOF. The procedure SLL-ASSIGN-PRIORITIES calls the
parallel loop on line 31 O(lg∆) times, each of which has expected
span O(lgV). The proof then follows from Theorems 2 and 11.

6. EMPIRICAL EVALUATION
This section evaluates the LLF and SLL ordering heuristics em-

pirically using a suite of eight real-world and ten synthetic graphs.
We describe the experimental setup used to evaluate JP-R, JP-LLF,
and JP-SLL, and we compare their performance with GREEDY-FF,
GREEDY-LF, and GREEDY-SL. We compare the ordering heuris-
tics in terms of the quality of the colorings they produce and their
execution times. We conclude that LLF and SLL produce col-
orings with quality comparable to LF and SL, respectively, and
that JP-LLF and JP-SLL scale well. We also show that the en-
gineering quality of our implementations appears to be competitive
with COLPACK [28], a publicly available graph-coloring library.
Our source code and data are available from http://supertech.
csail.mit.edu.

Experimental setup
To evaluate the ordering heuristics, we implemented JP using Intel
Cilk Plus [34] and engineered it to use the parallel ordering heuris-
tics R, LLF, and SLL. To compare these parallel codes against their
serial counterparts, we implemented GREEDY in C to use the FF,
LF, or SL ordering heuristics. In order to empirically evaluate the
potential parallel performance of the serial ordering heuristics, we
also engineered JP to use FF, LF, or SL. We evaluated our imple-
mentations on a dual-socket Intel Xeon X5650 with a total of 12
processor cores operating at 2.67-GHz (hyperthreading disabled);
49 GB of DRAM; 2 12-MB L3-caches, each shared between 6
cores; and private L2- and L1-caches with 128 KB and 32 KB, re-
spectively. Each measurement was taken as the median of 7 inde-
pendent trials, and the averages of those measurements reported in
Figure 7 were taken across 5 independent random seeds.

172

GREEDY JP JP

Graph H CH TS T1 T12 TS/T1 T1/T12 H′ CH′ T1 T12 TS/T1 T1/T12

com-orkut |E| = 117.2M FF 175 2.23 4.16 0.817 0.54 5.09 R 132 4.44 0.817 0.50 5.43
|E|/|V | = 38.1 LF 87 3.54 6.43 1.067 0.55 6.02 LLF 98 5.74 0.846 0.62 6.79

∆ = 33,313 SL 83 10.59 12.94 8.264 0.82 1.57 SLL 84 9.90 1.865 1.07 5.31

soc-LiveJournal1 |E| = 42.9M FF 352 0.89 1.69 0.275 0.52 6.15 R 330 2.08 0.231 0.43 8.98
|E|/|V | = 8.8 LF 323 2.34 2.89 0.365 0.81 7.91 LLF 326 2.23 0.286 1.05 7.80

∆ = 20,333 SL 322 4.69 4.76 2.799 0.98 1.70 SLL 327 4.03 0.704 1.16 5.73

europe-osm |E| = 36.0M FF 5 1.32 ∞ ∞ ∞ ∞ R 5 4.04 0.391 0.33 10.34
|E|/|V | = 0.7 LF 4 17.15 5.16 0.587 3.33 8.79 LLF 4 4.93 0.473 3.48 10.41

∆ = 9 SL 3 19.87 ∞ ∞ ∞ ∞ SLL 3 7.28 1.232 2.73 5.91

cit-Patents |E| = 16.5M FF 17 0.50 0.99 0.152 0.50 6.47 R 21 1.08 0.163 0.46 6.67
|E|/|V | = 2.7 LF 14 2.00 1.52 0.211 1.31 7.22 LLF 14 1.46 0.160 1.37 9.11

∆ = 793 SL 13 3.21 3.05 1.579 1.05 1.93 SLL 14 2.90 0.519 1.11 5.58

as-skitter |E| = 11.1M FF 103 0.24 0.55 0.109 0.45 5.00 R 81 0.58 0.114 0.42 5.07
|E|/|V | = 1.0 LF 71 2.43 0.69 0.133 3.51 5.21 LLF 72 0.63 0.106 3.84 5.99

∆ = 35,455 SL 70 2.79 1.19 0.733 2.35 1.62 SLL 71 1.04 0.269 2.67 3.88

wiki-Talk |E| = 4.7M FF 102 0.09 0.23 0.046 0.38 4.99 R 85 0.28 0.053 0.31 5.28
|E|/|V | = 1.9 LF 72 0.49 0.37 0.073 1.30 5.12 LLF 70 0.34 0.050 1.43 6.78

∆ = 100,029 SL 56 0.61 0.57 0.293 1.08 1.93 SLL 62 0.55 0.124 1.12 4.43

web-Google |E| = 4.3M FF 44 0.09 0.20 0.036 0.47 5.62 R 44 0.21 0.029 0.44 7.44
|E|/|V | = 4.7 LF 45 0.25 0.29 0.042 0.88 6.85 LLF 44 0.27 0.030 0.94 8.92

∆ = 6,332 SL 44 0.47 0.53 0.278 0.89 1.92 SLL 44 0.50 0.093 0.94 5.44

com-youtube |E| = 3.0M FF 57 0.06 0.16 0.027 0.39 6.07 R 46 0.18 0.026 0.36 6.86
|E|/|V | = 2.6 LF 32 0.25 0.24 0.040 1.03 6.12 LLF 33 0.22 0.028 1.11 7.97

∆ = 28,754 SL 28 0.35 0.36 0.181 0.98 1.99 SLL 28 0.35 0.073 1.01 4.75

constant1M-50 |E| = 50.0M FF 33 0.90 1.70 0.230 0.53 7.40 R 32 1.93 0.255 0.47 7.55
|E|/|V | = 50.0 LF 32 1.16 2.96 0.386 0.39 7.68 LLF 32 2.70 0.323 0.43 8.35

∆ = 100 SL 34 2.96 5.09 2.023 0.58 2.52 SLL 32 4.63 0.610 0.64 7.59

constant500K-100 |E| = 50.0M FF 52 0.74 1.26 0.286 0.59 4.42 R 52 1.50 0.190 0.49 7.89
|E|/|V | = 99.9 LF 52 0.84 2.55 0.444 0.33 5.73 LLF 52 2.01 0.273 0.42 7.34

∆ = 200 SL 53 1.97 3.50 1.435 0.56 2.44 SLL 52 3.33 0.498 0.59 6.69

graph500-5M |E| = 49.1M FF 220 1.83 2.86 0.560 0.64 5.11 R 220 2.99 0.558 0.61 5.35
|E|/|V | = 5.9 LF 159 3.69 3.99 0.649 0.92 6.15 LLF 160 3.74 0.542 0.99 6.89

∆ = 121,495 SL 158 8.43 9.45 5.576 0.89 1.69 SLL 162 7.63 1.056 1.10 7.23

graph500-2M |E| = 19.2M FF 206 0.52 0.98 0.208 0.53 4.72 R 208 1.01 0.212 0.51 4.77
|E|/|V | = 9.2 LF 153 0.98 1.34 0.221 0.73 6.06 LLF 154 1.24 0.151 0.79 8.19

∆ = 70,718 SL 153 2.22 2.72 1.559 0.81 1.75 SLL 156 2.25 0.324 0.99 6.94

rMat-ER-2M |E| = 20.0M FF 12 0.47 1.11 0.169 0.42 6.60 R 12 1.25 0.149 0.37 8.40
|E|/|V | = 9.5 LF 11 1.07 1.72 0.204 0.62 8.45 LLF 12 1.63 0.198 0.66 8.25

∆ = 44 SL 11 2.22 3.07 1.362 0.72 2.25 SLL 11 3.13 0.506 0.71 6.18

rMat-G-2M |E| = 20.0M FF 27 0.48 0.88 0.130 0.55 6.74 R 27 0.91 0.144 0.53 6.33
|E|/|V | = 9.5 LF 15 1.18 1.42 0.200 0.83 7.09 LLF 17 1.34 0.204 0.88 6.54

∆ = 938 SL 15 2.59 3.09 1.712 0.84 1.81 SLL 15 2.75 0.432 0.94 6.36

rMat-B-2M |E| = 19.8M FF 105 0.50 0.84 0.151 0.60 5.53 R 105 0.86 0.149 0.58 5.78
|E|/|V | = 9.4 LF 67 1.00 1.28 0.191 0.79 6.68 LLF 68 1.18 0.149 0.85 7.94

∆ = 14,868 SL 67 2.41 2.84 1.691 0.85 1.68 SLL 68 2.38 0.376 1.01 6.31

big3dgrid |E| = 29.8M FF 4 0.41 1.68 0.173 0.24 9.69 R 7 1.66 0.178 0.25 9.31
|E|/|V | = 3.0 LF 7 4.07 1.53 0.198 2.66 7.72 LLF 7 1.89 0.216 2.15 8.76

∆ = 6 SL 7 4.77 2.60 1.074 1.83 2.42 SLL 7 2.63 0.307 1.81 8.57

clique-chain-400 |E| = 3.6M FF 399 0.05 0.09 0.224 0.51 0.40 R 399 0.09 0.012 0.50 7.77
|E|/|V | = 132.4 LF 399 0.05 ∞ ∞ ∞ ∞ LLF 399 0.12 0.015 0.41 7.70

∆ = 400 SL 399 0.08 0.14 0.265 0.55 0.54 SLL 399 0.16 0.024 0.47 6.70

path-10M |E| = 10.0M FF 2 0.18 ∞ ∞ ∞ ∞ R 3 0.85 0.074 0.21 11.54
|E|/|V | = 1.0 LF 3 2.49 0.76 0.092 3.26 8.27 LLF 3 0.98 0.083 2.54 11.87

∆ = 2 SL 2 2.58 ∞ ∞ ∞ ∞ SLL 3 1.36 0.169 1.90 8.04

Figure 7: Performance measurements for a set of real-world graphs taken from Stanford’s SNAP project [40] are included above the center line. Five classes
of synthetically generated graph are included below the center line: constant degree, rMat, 3D grid, clique chain and path. The column heading H denotes
that the priority function used for the experiment in a particular row was produced by the ordering heuristic listed in the column. The average number of colors
used by the corresponding ordering heuristic and graph is CH . The time in seconds of GREEDY, JP with 1 worker and with 12 workers is given by TS, T1 and
T12, respectively, where a value of ∞ indicates that the program crashed due to excessive stack usage. Details of the experimental setup and graph suite can be
found in Section 6.

173

Graph |V | a b c d

graph500-5M 5M 0.57 0.19 0.19 0.05
graph500-2M 2M 0.57 0.19 0.19 0.05
rMat-ER-2M 2M 0.25 0.25 0.25 0.25
rMat-G-2M 2M 0.45 0.15 0.15 0.25
rMat-B-2M 2M 0.55 0.15 0.15 0.15

Figure 6: Parameters for the generation of rMat graphs [17], where a+b+
c+d = 1 and b = c, when the desired graph is undirected. An rMat graph is
built by adding |E| edges independently at random using the following rule:
Let k be the number of 1’s in a binary representation of i. As each edge
is added, the probability that the ith vertex vi is selected as an endpoint is
(a+ c)k(b+d)lgn−k .

These implementations were run on a suite of eight real-world
graphs and ten synthetic graphs. The real-world graphs came
from the Large Network Dataset Collection provided by Stan-
ford’s SNAP project [40]. The synthetic graphs consist of the ad-
versarial graphs described in Section 4 and a set of graphs from
three classes: constant degree, 3D grid, and “recursive matrix”
(rMat) [14, 17]. The adversarial graphs — clique-chain-400 and
path-10M — are described in Figure 4 with ∆= 400 and Theorem 8
with |V | = 10,000,000, respectively. The constant-degree graphs
— constant1M-50 and constant500K-100 — have 1M and 500K
vertices and constant degrees of 100 and 200, respectively. These
graphs were generated such that every pair of vertices is equally
likely to be connected and every vertex has the same degree. The
graph big3dgrid is a 3-dimensional grid on 10M vertices. The rMat
graphs were generated using the parameters in Figure 6.

Coloring quality of R, LLF, and SLL
Figure 7 presents the coloring quality of the three parallel ordering
heuristics R, LLF, and SLL alongside that of their serial counter-
parts FF, LF, and SL.

The number of colors used by LLF was comparable to that used
by LF on the vast majority of the 18 graphs. Indeed, LLF produced
colorings that were within 2 colors of LF on all synthetic graphs and
all but 2 real-world graphs: com-orkut and soc-LiveJournal. Simi-
larly, SLL produced colorings that were within 3 colors of SL for all
synthetic graphs and all but 2 real-world graphs: soc-LiveJournal
and wiki-Talk.

The soc-LiveJournal graph appears to benefit little from the or-
dering heuristics we considered. Every heuristic uses more than
300 colors, and the biggest difference between the number of col-
ors used by any heuristic is less than 10.

The wiki-Talk and com-orkut graphs appear to benefit from or-
dering heuristics and illustrate what we believe is a coarse hierarchy
of coloring quality in which FF < R < LLF < LF < SLL < SL. On
com-orkut, LLF produced a coloring of size 98, which was better
than the 175 and 132 colors used by FF and R, respectively, but
not as good as the 87 colors used by LF. In contrast, SLL nearly
matched the superior coloring quality of SL, producing a coloring
of size 84. On wiki-Talk, SLL produced a coloring of size 62,
which was better than LF, LLF, R, and FF by a margin of between
8 to 40 colors, but not as good as SL, which used only 56 colors.
These trends appear to exist, in general, for most of the graphs in
the suite.

Scalability of JP-R, JP-LLF, and JP-SLL
The parallel performance of JP was measured by computing the
speedup it achieved on 12 cores and by comparing the 1-core run-
times of JP to an optimized serial implementation of GREEDY.
These results are summarized in Figure 7.

Overall, JP-LLF obtains a geometric-mean speedup — the ratio
of the runtime on 1 core to the runtime on 12 cores — of 7.83 on
the eight real-world graphs and 8.08 on the ten synthetic graphs.

Similarly, JP-SLL obtains a geometric-mean speedup of 5.36 and
7.02 on the real-world and synthetic graphs, respectively.

Figure 7 also includes scalability data for JP-FF, JP-LF, and
JP-SL. Historically, JP-LF has been used with mixed success in
practical parallel settings [2, 29, 35, 49]. Despite the fact that it of-
fers little in terms of theoretical parallel performance guarantees,
we have measured its parallel performance for our graph suite, and
indeed JP-LF scales reasonably well: JP-LF1/JP-LF12 = 6.8 as
compared to JP-LLF1/JP-LLF12 = 8.0 in geometric mean, not in-
cluding clique-chain-400, which is omitted since JP-LF crashes
due to excessive stack usage on clique-chain-400. The omission of
clique-chain-400 highlights the dangers of using algorithms with-
out good performance guarantees: it is difficult to know if the algo-
rithm will behave badly given any particular input. In this respect,
JP-FF is particularly vulnerable to adversarial inputs, as we can see
by the fact that it crashes on europe-osm, which is not even inten-
tionally adversarial. We also see this vulnerability with JP-SL, as
well as generally poor scalability on the entire suite.

To measure the overheads introduced by using a parallel algo-
rithm, the runtime T1 of JP on 1 core was compared with the run-
time TS of an optimized implementation of GREEDY. This compar-
ison was performed for each of the three parallel ordering heuristics
we considered: R, LLF, and SLL. The serial runtime of GREEDY
using FF is 2.5 times faster than JP-R on 1 core for the eight real-
world graphs and 2.3 times faster on the ten synthetic graphs. We
conjecture that GREEDY gains its advantage due to the spatial-
locality advantage that results from processing the vertices in the
linear order they appear in the graph representation. JP-LLF and
JP-SLL on 1 core, however, are actually faster than GREEDY with
LF and SL by 43.3% and 19% on the eight real-world graphs and
6% and 3% on the whole suite, respectively.

In order to validate that our implementation of GREEDY is a
credible baseline, we compared it with a publicly available graph-
coloring library, COLPACK [28], developed by Gebremedhin et al.
and found that the two implementations appeared to achieve sim-
ilar performance. For example, using the SL ordering heuristic,
GREEDY is 19% faster than COLPACK in geometric-mean across
the graph suite, though GREEDY is slower on 5 of the 16 graphs
and as much 2.22 times slower for as-skitter.

7. IMPLEMENTATION TECHNIQUES
This section describes the techniques we employed to implement

JP and GREEDY for the evaluation in Section 6. We describe three
techniques — join-trees [23], bit-vectors, and software prefetching
— that improve the practical performance of JP. Where applicable,
these same techniques were used to optimize the implementation of
GREEDY. Overall, applying these techniques yielded a speedup of
between 1.6 and 2.9 for JP and a speedup of between 1.2 and 1.6
for GREEDY on the rMat-G-2M, rMat-B-2M, web-Google, and as-
skitter graphs used in Section 6.

Join trees for reducing memory contention
Although the theoretical analysis of JP in Section 2 does not con-
cern itself with contention, the implementation of JP works to
mitigate overheads due to contention. The pseudocode for JP in
Figure 2 shows that each vertex u in the graph has an associated
counter u.counter. Line 17 of JP-COLOR executes a JOIN oper-
ation on u.counter. Although Section 2 describes how JOIN can
treat u.counter as a join counter [20] and update u.counter using an
atomic decrement and fetch operation, the cache-coherence proto-
col [47] on the machine serializes such atomic operations, giving
rise to potential memory contention. In particular, memory con-

174

GREEDY-SD(G)

36 let G = (V,E)
37 for v ∈V
38 v.adjColors = /0
39 v.adjUncolored = v.adj
40 PUSHORADDKEY(v,Q[0][|v.adjUncolored|])
41 s = 0
42 while s≥ 0
43 v = POPORDELKEY(Q[s][max KEYS(Q[s])])
44 v.color = min({1,2, . . . , |v.adjUncolored|+1}− v.adjColors)
45 for u ∈ v.adjUncolored
46 REMOVEORDELKEY(u,Q[|u.adjColors|][|u.adjUncolored|])
47 u.adjColors = u.adjColors∪{v.color}
48 u.adjUncolored = u.adjUncolored−{v}
49 PUSHORADDKEY(u,Q[|u.adjColors|][|u.adjUncolored|])
50 s = max{s, |u.adjColors|}
51 while s≥ 0 and Q[s] = = /0
52 s = s−1

Figure 8: The GREEDY-SD algorithm computes a coloring for the in-
put graph G = (V,E) using the SD heuristic. Each uncolored vertex
v ∈ V maintains a set v.adjColors of colors used by its neighbors and a
set v.adjUncolored of uncolored neighbors of v. The PUSHORADDKEY
method adds a specified key, if necessary, and then adds an element to
that key’s associated set. The POPORDELKEY and REMOVEORDELKEY
methods remove an element from a specified key’s associated set, deleting
that key if the set becomes empty. The variable s maintains the maximum
saturation degree of G.

tention may harm the practical performance of JP on graphs with
large-degree vertices.

Our implementation of JP mitigates overheads due to contention
by replacing each join counter u.counter with a join tree having
Θ(|u.pred|) leaves. In particular, each join tree was sized such that
an average of 64 predecessors of u map to each leaf through a hash
function that maps predecessors to random leaves. We found that
the join tree reduces T1 for JP by a factor of 1.15 and reduces T12
for JP by between 1.1 and 1.3.

Bit vectors for assigning colors
To color vertices more efficiently, the implementation of JP uses
vertex-local bit vectors to store information about the availability
of low-numbered colors. Because JP assigns to each vertex the
lowest-numbered available color, vertices tend to be colored with
low-numbered colors. To take advantage of this observation, we
store a 64-bit word per vertex u to track the colors in the range
{1,2, . . . ,64} that have already been assigned to a neighbor of u.
The bit vector on u.vec is computed as a “self-timed” OR reduc-
tion that occurs during updates on u’s join tree. Effectively, as
each predecessor v of u executes JOIN on u’s join tree, if v.color
is in {1,2, . . . ,64}, then v OR’s the word 2v.color−1 into u.vec.
When GET-COLOR(u) subsequently executes, GET-COLOR first
scans for the lowest unset bit in u.vec to find the minimum color
in {1,2, . . . ,64} not assigned to a neighbor of u. Only when no
such color is available does GET-COLOR(u) scan its predecessors
to assign a color to u.

We discovered that a large fraction of vertices in a graph can be
colored efficiently using this practical optimization. We found that
this optimization improved T12 for JP by a factor of 1.4 to 2.2, and
a similar optimization sped up the implementation of GREEDY by
a factor of 1.2 to 1.6.

Software prefetching
We used software prefetching to improve the latency of memory
accesses in JP. In particular, JP uses software prefetching to mit-
igate the latency of the indirect memory access encountered when
accessing the join trees of the successors of a vertex v on line 16 of

JP-COLOR in Figure 2. This optimization improves T12 for JP by
a factor of 1.2 to 1.5.

Interestingly, our implementation of GREEDY did not appear to
benefit from using software prefetching in a similar context, specif-
ically, to access the predecessors of a vertex on line 4 of GREEDY
in Figure 1. We suspect that because GREEDY only reads the pre-
decessors of a vertex on this line and does not write them, the pro-
cessor hardware is able to generate many such reads in parallel,
thereby mitigating the latency penalty introduced by cache misses.

8. THE SD HEURISTIC
Our experiments with serial heuristics detailed in the Appendix

(Section 12) indicate that the SD heuristic tends to provide color-
ings with higher quality than the other heuristics we have consid-
ered, confirming similar findings by Gebremedhin and Manne [27].
Although we leave the problem of devising a good parallel algo-
rithm for SD as an open question, we were able to devise a linear-
time serial algorithm for the problem, despite conjectures in the
literature [19, 29] that superlinear time is required. This section
briefly describes our linear-time serial algorithm for SD.

Figure 8 gives pseudocode for the GREEDY-SD algorithm, which
implements the SD heuristic. Rather than trying to define a pri-
ority function for SD, the figure gives the coloring algorithm
GREEDY-SD itself, since the calculation of such a priority func-
tion would color the graph as a byproduct. At any moment during
the execution of the algorithm, the saturation degree of a vertex v
as the number |v.adjColors| of distinct colors of v’s neighbors, and
the effective degree of v as |v.adjUncolored|, its degree in the as yet
uncolored graph.

The main loop of GREEDY-SD (lines 42–52) first removes a ver-
tex v of maximum saturation degree from Q (line 43) and col-
ors it (line 44). It then updates each uncolored neighbor u ∈
v.adjUncolored of v (lines 45–50) in three steps. First, it removes
u from Q (line 46). Next, it updates the set u.adjUncolored of u’s
effective neighbors — u’s uncolored neighbors in G — and the set
u.adjColors of colors used by u’s neighbors (lines 47–48). Finally,
it enqueues u in Q based on u’s updated information (lines 49–50).

The crux of GREEDY-SD lies in the operation of the queue
data structure Q, which is organized as an array of saturation ta-
bles, each of which supports the three methods PUSHORADDKEY,
POPORDELKEY, and REMOVEORDELKEY described in the cap-
tion of Figure 8. A saturation table can support these operations
in Θ(1) time and allow its keys K to be read in Θ(K) time. At
the start of each main loop iteration, entry Q[i] stores the uncol-
ored vertices in the graph with saturation degree i in a saturation
table. The PUSHORADDKEY, POPORDELKEY, and REMOVE-
ORDELKEY methods maintain the invariant that, for each table
Q[i], each key j ∈ KEYS(Q[i]) is associated with a nonempty set
of vertices, such that each vertex v ∈ Q[i][j] has saturation degree i
and effective degree j.

THEOREM 13. GREEDY-SD colors a graph G=(V,E) accord-
ing to the SD ordering heuristic in Θ(V +E) time.

PROOF. PUSHORADDKEY, POPORDELKEY, and REMOVE-
ORDELKEY operate in Θ(1) time, and a given saturation table’s
key set K can be read in Θ(K) time. Line 43 can thus find a ver-
tex v with maximum saturation degree s in Θ(|KEYS(Q[s])|) time.
Line 44 can color v in Θ(deg(v)) time, and lines 50–52 maintain
s in Θ(s) time. Because s + |KEYS(Q[s])| ≤ deg(v), lines 42–
52 evaluate v in Θ(deg(v)) time. The handshaking lemma [21,
p. 1172–3] implies the theorem, because each vertex in V is evalu-
ated once.

175

C TS

Graph FF R LF ID SL SD Spark FF R LF ID SL SD Spark

com-orkut 175 132 87 86 83 76 2.23 3.39 3.54 44.13 10.59 46.60
soc-LiveJournal1 352 330 323 325 322 326 0.89 2.05 2.34 17.93 4.69 19.75
europe-osm 5 5 4 4 3 3 1.32 13.36 17.15 48.59 19.87 52.73
cit-Patents 17 21 14 14 13 12 0.50 1.62 2.00 9.82 3.21 10.08
as-skitter 103 81 71 72 70 70 0.24 1.70 2.43 9.41 2.79 9.94
wiki-Talk 102 85 72 57 56 51 0.09 0.35 0.49 2.79 0.61 2.90
web-Google 44 44 45 45 44 44 0.09 0.22 0.25 1.68 0.47 1.77
com-youtube 57 46 32 28 28 26 0.06 0.19 0.25 1.50 0.35 1.55

constant1M-50 33 32 32 34 34 26 0.90 1.13 1.16 16.07 2.96 17.23
constant500K-100 52 52 52 55 53 44 0.74 0.88 0.84 14.20 1.97 15.51
graph500-5M 220 220 159 157 158 147 1.83 3.14 3.69 25.19 8.43 35.29
graph500-2M 206 208 153 152 153 141 0.52 0.77 0.98 8.09 2.22 11.68
rMat-ER-2M 12 12 11 11 11 8 0.47 0.93 1.07 10.10 2.22 9.13
rMat-G-2M 27 27 15 15 15 11 0.48 0.92 1.18 9.17 2.59 9.07
rMat-B-2M 105 105 67 67 67 59 0.50 0.83 1.00 8.44 2.41 8.64
big3dgrid 4 7 7 4 7 5 0.41 3.34 4.07 13.61 4.77 15.30
clique-chain-400 399 399 399 399 399 399 0.05 0.05 0.05 0.81 0.08 2.06
path-10M 2 3 3 2 2 2 0.18 1.95 2.49 7.34 2.58 7.96

Figure 9: Performance measurements for six serial ordering heuristics used by GREEDY, where measurements for real-world graphs appear above the center
line and those for synthetic graphs appear below. The columns under the heading C present the average number of colors obtained by each ordering heuristic.
The columns under the heading TS present the average serial running time for each heuristic. The “Spark” columns under the C and TS headings contain bar
graphs that pictorially represent the coloring quality and serial running time, respectively, for each of the ordering heuristics. The height of the bar for the
coloring quality CH of ordering heuristic H is proportional to CH . The bar heights are similar for TS except that the log of times are used. Section 6 details the
experimental setup and graph suite used.

9. RELATED WORK
Parallel coloring algorithms have been explored extensively in

the distributed computing domain [3,5,30,31,35,38,39,41]. These
algorithms are evaluated in the message-passing model, where
nodes are allowed unlimited local computation and exchange mes-
sages through a sequence of synchronized rounds. Kuhn [38] and
Barenboim and Elkin [5] independently developed O(∆+ lg∗ n)-
round message passing algorithms to compute a deterministic
greedy coloring.

Several greedy coloring algorithms have been described in syn-
chronous PRAM models. Goldberg et al. [30] describe an al-
gorithm for finding a greedy coloring of O(1)-degree graphs in
O(lgn) time in the EREW PRAM model using a linear number
of processors. They observe that their technique can be applied
recursively to color ∆-degree graphs in O(∆ lg∆ lgn) time. Their
strategy incurs Ω(lg∆(V +E)) (superlinear) work, however.

Catalyurek et al. [14] present the algorithm ITERATIVE, which
first speculatively colors a graph G and then fixes coloring con-
flicts, that is, corrects the coloring where two adjacent vertices are
assigned the same color. The process of fixing conflicting colors
can introduce new conflicts, though the authors observe empirically
that comparatively few iterations suffice to find a valid coloring. We
ran ITERATIVE on our test system and found that JP-LLF uses 13%
fewer colors and takes 19% less time in geometric mean of number
of colors and relative time, respectively, over all graphs in our test
suite. Furthermore, we found that JP-SLL uses 17% fewer colors,
but executes in twice the time of ITERATIVE. We do not know the
extent to which the optimizations enjoyed by our algorithms could
be adopted by speculative-coloring algorithms, however, and so it
is likely too soon to draw conclusions about comparisons between
the strategies.

10. CONCLUSION
Because of the importance of graph coloring, considerable ef-

fort has been invested over the years to develop ordering heuristics
for serial graph-coloring algorithms. For the traditional “serial” LF

and SL ordering heuristics, we have developed “parallel” analogs
— the LLF and SLL heuristics, respectively — which approximate
the traditional orderings, generating colorings of comparable qual-
ity while offering provable guarantees on parallel scalability. The
correspondence between serial ordering heuristics and their parallel
analogs is fairly direct for LF and LLF . LLF colors any two ver-
tices whose degrees differ by more than a factor of 2 in the same
order as LF. In this sense, LLF can be viewed as a simple coars-
ening of the vertex ordering used by LF. Although SLL is inspired
by SL, and both heuristics tend to color vertices of smaller degree
later, the correspondence between SL and SLL is not as straight-
forward. We relied on empirical results to determine the degree to
which SLL captures the salient properties of SL.

We had hoped that the coarsening strategy LLF and SLL em-
body would generalize to the other serial ordering heuristics, and
we are disappointed that we have not yet been able to devise parallel
analogs for the other ordering heuristics, and in particular, for SD.
Because the SD heuristic appears to produce better colorings in
practice than all of the other serial ordering heuristics, SD appears
to capture an important phenomenon that the others miss.

The problem with applying the coarsening strategy to SD stems
from the way that SD is defined. Because SD determines the order
to color vertices while serially coloring the graph itself, it seems
difficult to parallelize, and it is not clear how SD might correspond
to a possible parallel analog. Thus, it remains an intriguing open
question as to whether a parallel ordering heuristic exists that cap-
tures the same “insights” as SD while offering provable guarantees
on scalability.

11. ACKNOWLEDGMENTS
Thanks to Guy Blelloch of Carnegie Mellon University for shar-

ing utility functions from his Problem Based Benchmark Suite with
us [50]. Thanks to Aydın Buluç of Lawrence Berkeley Laboratory
for helping us in our search for collections of large sparse graphs.
Thanks to Mahantesh Halappanavar of Pacific Northwest National
Laboratory for providing us with the code for ITERATIVE [14].
Thanks to Assefaw Gebremedhin for input regarding the publicly

176

available graph-coloring library COLPACK [28]. Thanks to Jack
Dennis of MIT CSAIL for helping us track down early work on
parallel sorting and join counters. Thanks to Jeremy Fineman for
helpful discussions on the amortized analysis of SD. Thanks to An-
gelina Lee and Justin Zhang of MIT CSAIL and Julian Shun and
Harsha Vardhan Simhadri of Carnegie Mellon University for sev-
eral helpful discussions.

12. APPENDIX: PERFORMANCE OF
SERIAL ORDERING HEURISTICS

Figure 9 summarizes our empirical evaluation of GREEDY run
on our suite of real-world and synthetic graphs using the six order-
ing heuristics from Section 1. The measurements were taken using
the same machine and methodology as was used for Figure 7. As
Figure 9 shows, we found that, in order, FF, R, LF, SL, and SD gen-
erally produce better colorings at the cost of greater running times.
ID was outperformed in both time and quality by SL. The figure
indicates that LF tends to produce better colorings than FF and R at
some performance cost, and SL produces better colorings than LF
at additional cost. We found that SD produces the best colorings
overall, at the cost of a 4.5 geometric-mean slowdown versus SL.

13. REFERENCES
[1] L. Adams and J. Ortega. A multi-color SOR method for parallel

computation. In ICPP, 1982.
[2] J. R. Allwright, R. Bordawekar, P. D. Coddington, K. Dincer, and

C. L. Martin. A comparison of parallel graph coloring algorithms.
Technical report, Northeast Parallel Architecture Center, Syracuse
University, 1995.

[3] N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel
algorithm for the maximal independent set problem. J. Algorithms,
1986.

[4] E. M. Arkin and E. B. Silverberg. Scheduling jobs with fixed start
and end times. Discrete Applied Mathematics, 1987.

[5] L. Barenboim and M. Elkin. Distributed (∆+1)-coloring in linear (in
∆) time. In ACM STOC, 2009.

[6] S. Berchtold, C. Böhm, B. Braunmüller, D. A. Keim, and H.-P.
Kriegel. Fast parallel similarity search in multimedia databases. In
ACM SIGMOD Int. Conf. on Management of Data, 1997.

[7] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Prentice-Hall, 1989.

[8] G. E. Blelloch, J. T. Fineman, and J. Shun. Greedy sequential
maximal independent set and matching are parallel on average. In
ACM SPAA, 2012.

[9] R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of
multithreaded computations. SICOMP, 1998.

[10] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded
computations by work stealing. JACM, 1999.

[11] D. Brélaz. New methods to color the vertices of a graph. CACM,
1979.

[12] R. P. Brent. The parallel evaluation of general arithmetic expressions.
JACM, 1974.

[13] P. Briggs. Register allocation via graph coloring. PhD thesis, Rice
University, 1992.

[14] Ü. V. Çatalyürek, J. Feo, A. H. Gebremedhin, M. Halappanavar, and
A. Pothen. Graph coloring algorithms for muti-core and massively
multithreaded architectures. CoRR, 2012.

[15] G. J. Chaitin. Register allocation & spilling via graph coloring. In
ACM SIGPLAN Notices, 1982.

[16] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E.
Hopkins, and P. W. Markstein. Register allocation via coloring.
Computer Languages, 1981.

[17] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-MAT: A recursive
model for graph mining. In SDM. SIAM, 2004.

[18] R. Cole and U. Vishkin. Deterministic coin tossing with applications
to optimal parallel list ranking. Inf. Control, 1986.

[19] T. Coleman and J. Moré. Estimation of sparse Jacobian matrices and
graph coloring problems. SIAM J. Numer. Anal., 1983.

[20] M. E. Conway. A multiprocessor system design. In AFIPS, 1963.
[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. The MIT Press, third edition, 2009.
[22] K. Diks. A fast parallel algorithm for six-colouring of planar graphs.

In Mathematical Foundations of Computer Science. 1986.
[23] C. Dwork, M. Herlihy, and O. Waarts. Contention in shared memory

algorithms. In STOC, 1993.
[24] D. L. Eager, J. Zahorjan, and E. D. Lazowska. Speedup versus

efficiency in parallel systems. IEEE Trans. Comput., 1989.
[25] M. Fischetti, S. Martello, and P. Toth. The fixed job schedule

problem with spread-time constraints. Operations Research, 1987.
[26] M. Garey, D. Johnson, and L. Stockmeyer. Some simplified

NP-complete graph problems. Theoretical Computer Science, 1976.
[27] A. H. Gebremedhin and F. Manne. Scalable parallel graph coloring

algorithms. Concurrency: Practice and Experience, 2000.
[28] A. H. Gebremedhin, D. Nguyen, M. M. A. Patwary, and A. Pothen.

ColPack: Software for graph coloring and related problems in
scientific computing. ACM Trans. on Mathematical Software, 2013.

[29] R. K. Gjertsen Jr., M. T. Jones, and P. E. Plassmann. Parallel
heuristics for improved, balanced graph colorings. JPDC, 1996.

[30] A. V. Goldberg, S. A. Plotkin, and G. E. Shannon. Parallel
symmetry-breaking in sparse graphs. In SIAM J. Disc. Math, 1987.

[31] M. Goldberg and T. Spencer. A new parallel algorithm for the
maximal independent set problem. SICOMP, 1989.

[32] R. L. Graham. Bounds for certain multiprocessing anomalies. The
Bell System Technical Journal, 1966.

[33] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann Publishers Inc., 2008.

[34] Intel. Intel Cilk Plus. Available from http://software.intel.com,
2013.

[35] M. T. Jones and P. E. Plassmann. A parallel graph coloring heuristic.
SIAM Journal on Scientific Computing, 1993.

[36] M. T. Jones and P. E. Plassmann. Scalable iterative solution of sparse
linear systems. Parallel Computing, 1994.

[37] T. Kaler, W. Hasenplaugh, T. B. Schardl, and C. E. Leiserson.
Executing dynamic data-graph computations deterministically using
chromatic scheduling. In SPAA, 2014.

[38] F. Kuhn. Weak graph colorings: distributed algorithms and
applications. In ACM SPAA, 2009.

[39] F. Kuhn and R. Wattenhofer. On the complexity of distributed graph
coloring. In PODC, 2006.

[40] J. Leskovec. SNAP: Stanford Network Analysis Platform. Available
from http://snap.stanford.edu/data/index.html, 2013.

[41] N. Linial. Locality in distributed graph algorithms. SICOMP, 1992.
[42] L. Lov́asz, M. Saks, and W. T. Trotter. An on-line graph coloring

algorithm with sublinear performance ratio. Discrete Math., 1989.
[43] M. Luby. A simple parallel algorithm for the maximal independent

set problem. SIAM J. Comput., 1986.
[44] D. Marx. Graph colouring problems and their applications in

scheduling. John von Neumann Ph.D. Students Conf., 2004.
[45] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering

and graph coloring algorithms. JACM, 1983.
[46] J. Mitchem. On various algorithms for estimating the chromatic

number of a graph. The Computer Journal, 1976.
[47] M. S. Papamarcos and J. H. Patel. A low-overhead coherence

solution for multiprocessors with private cache memories. In ISCA,
1984.

[48] Y. Saad. SPARSKIT: A basic toolkit for sparse matrix computations.
Research Institute for Advanced Computer Science, NASA Ames
Research Center, 1990.

[49] A. Sariyuce, E. Saule, and U. Catalyurek. Improving graph coloring
on distributed-memory parallel computers. In HiPC, 2011.

[50] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola,
H. V. Simhadri, and K. Tangwongsan. Brief announcement: the
Problem Based Benchmark Suite. In SPAA, 2012.

[51] D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic
number of a graph and its application to timetabling problems. The
Computer Journal, 1967.

177

