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Abstract

A data-graph computation — popularized by such programming systems as Pregel,
GraphLab, Galois, Ligra, PowerGraph, and GraphChi — is an algorithm that iteratively
performs local updates on the vertices of a graph. During each round of a data-graph com-
putation, a user-supplied update function atomically modifies the data associated with a
vertex as a function of the vertex’s prior data and that of adjacent vertices. A dynamic
data-graph computation updates only an active subset of the vertices during a round, and
those updates determine the set of active vertices for the next round. In this thesis, I explore
two ways of scheduling deterministic parallel data-graph computations that provide perfor-
mance guarantees culminating in theoretical contributions to graph theory and practical,
high-performance systems. In particular, I describe a system called Prism which processes
dynamic and static data-graph computations on arbitrary graphs using a technique called
chromatic scheduling. Using a vertex-coloring to identify independent sets of vertices,
which may be safely processed in parallel, Prism serializes through the colors and processes
the independent sets in parallel, thus executing data-graph computations deterministically
and without the use of costly atomic instructions (e.g., Compare-And-Swap). Prism sup-
ports dynamic data-graph computations deterministically and work-efficiently through the
introduction of multibag and multivector data structures.

Prism requires a vertex-coloring, and since graphs are generally not supplied with one,
it is necessary to find one as a preprocessing step. Furthermore, the runtime of Prism is
linear in the number of colors and thus motivates a study in this thesis of fast parallel
coloring algorithms that provide vertex-colorings with few colors in practice. At the core
of the analysis of these coloring algorithms lies a new result about the maximum depth of
a random priority dag, the dag that results from randomly ordering vertices and directing
edges from lower to higher numbered vertices in the order. In particular, when the largest
degree ∆ in the graph G = (V,E) is less than ln |V |, I show a tight bound on the longest
path: Θ (lnV/ ln (e lnV/∆)) with high probability. When ∆ is greater than ln |V |, the longest
path in the dag is simply Θ

(
min {∆,

√
E}
)
, also with high probability.

I also present a system called Laika which processes data-graph computations for the
special, but important, case of graphs representing physical simulations. Such graphs typi-
cally have vertices with coordinates in 3D space and are connected to other “nearby” vertices.
We take advantage of these two properties to execute physical simulations, cast as data-graph
computations, that make efficient use of cache resources. I analyze a contrived graph con-
struction — a random cube graph — as a proxy for the mesh graphs that arise in physical
simulations: n vertices are uniformly randomly assigned positions in the unit cube and have
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edges connecting them to any other vertices that are within a distance r = O
(
V −1/3

)
. For

such a graph and given a cache sufficiently large to hold M vertices, I improve on previous
theory to show that a fraction O(M−1/3) of edges will connect to vertices not in the cache,
whereas previous theory held that this “miss rate” is O(M−1/4). Laika also guarantees lin-
ear speedup for any random cube graph G = (V,E) with constant average degree for any
number of workers P = O

(
V/ lg2 V

)
.

Thesis Supervisor: Charles E. Leiserson
Title: Professor
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This thesis is dedicated to my favorites: Marcy, Ella, and the Blueberry.
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Chapter 1

Introduction

Suppose that you are responsible for designing aerodynamic improvements for a critically

important fighter jet that has become obsolete. If successful, you may turn the tide of war

to your country’s advantage, but you are confronted with three constraints:

Quality — You must be sure that your modification is of sound design: Not only must it

be better than the current design, it must be reliable.

Time — Lives are lost with every second that your solution is delayed!

Cost — You have only a modest budget and thus can hire very few experts.

How would you proceed? Perhaps you could develop a computerized model for a new aileron

(i.e., the hinged flap attached to the trailing edge of each wing), which is used to perform the

tactically important roll maneuver. Next, you could use the finite element method [53,189]

to simulate how wind interacts with the shape of the aileron, ultimately allowing you to

measure how much lateral force can be applied to the jet in a roll maneuver. The finite

element method operates on a discretized approximation to the aileron, in the form a mesh

graph: The finer the mesh, the better the approximation. Here, you encounter a conflict

between the quality and time constraints: you need a high-quality estimate of the forces

acting on the wing, but the finer you make the mesh, the longer it takes to simulate. It may

be possible to use parallel programming to reduce the required simulation time, but parallel

programming is famously complex and error-prone. Would it violate the cost constraint if

you hired a parallel programming expert?
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By indulging this example (i.e., my naive approach to simulating the interaction of air

with an aileron) I have unwittingly demonstrated an unfortunate reality: the domain expert

(e.g., the aerodynamicist, data scientist, biochemist, etc.) and the algorithms expert (i.e.,

the person who makes the program go fast, allegedly me) are rarely the same person. Yet,

it is important that the work in both domains be done well. The essential motivation in my

research is then to help decouple domain-specific expertise from algorithm-specific expertise,

enabling more productive work on important,1 real-life problems. My general approach to

this problem is to develop new, practical systems which abstract the scheduling and data-

structuring techniques required to achieve high performance from the expression of the

domain-specific application. In addition, I analyze these systems theoretically to show that

they will perform well, regardless of the input. In particular, this thesis presents new, high-

performance systems that simplify the process of expressing a specific, though broad, class of

algorithms applied to graphs (e.g., the finite element method and other physical simulations,

machine learning algorithms, numerical methods, algorithms from operations research, etc.).

This thesis represents a collaborative effort, unifying work developed and published with

several other researchers. In all cases, the contributions described herein are shared with

my collaborators and I will identity them in each chapter. When I say, “In Chapter X I

will demonstrate that all science is either physics or stamp collecting,” I mean that I will

present the proof and that I co-discovered the fact with my collaborator, in this case Ernest

Rutherford.2

Data-graph computations

There is an active body of research which seeks to simplify the expression of a class of iter-

ative algorithms applied to graphs, called data-graph computations, and within this re-

search community there are many popular systems, such as Pregel [145], GraphLab [142,143],

Galois [128], Ligra [177] , PowerGraph [90] , and GraphChi [129]. A data-graph computation

is an algorithm that iteratively performs local updates on the vertices of a graph and during

each round, a user-supplied update function atomically modifies the data associated with a

vertex as a function of the vertex’s prior data and that of adjacent vertices. Many thousands

1Computer science is abstract and can be appreciated for its own sake, but its ultimate reason for being
is to solve just the sort of problem described above. Indeed, modern computers may not have come to exist
without the urgency of war [56,74].

2For clarity, this is a fictitious example: I have not collaborated with Ernest Rutherford, nor is there any
proof of his assertion to my knowledge.
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of software developers currently use the data-graph computation engines mentioned above

to write simple, fast, and scalable implementations of graph algorithms without needing to

know anything about parallel programming. That is, domain experts in physics, machine

learning, biochemistry, etc. write the update functions and algorithms experts write the un-

derlying scheduling software to optimize performance. This decoupling of domain-specific ex-

pertise and algorithm-specific expertise is a productivity improvement over prior approaches

relying on highly specialized, and thus comparatively rare, programmers. Motivated by such

productivity improvements, companies are raising substantial venture capital3 to monetize

this revolution in “easy” parallel programming. Nonetheless, the users of such systems face

obstacles: at present their programs are either slow, nondeterministic, or double-buffered.4

In this thesis, I demonstrate that none of these limitations are necessary. In particular, I

explore various ways of scheduling deterministic, parallel data-graph computations that pro-

vide theoretical performance guarantees culminating in practical, high-performance systems.

In Chapter 2, I give a short history of how the data-graph model of computation came to

be and illustrate opportunities for improvement among existing frameworks. In Section 1.1

I introduce one such improvement, a system called Prism, that processes data-graph com-

putations on arbitrary graphs using a technique called chromatic scheduling. Chromatic

scheduling uses a vertex-coloring to identify independent sets of vertices which may be safely

processed in parallel without risk of a determinacy race : A determinacy race occurs if two

workers5 may concurrently access a common memory address and at least one of them per-

forms a write. Prism requires a vertex-coloring as a preprocessing step, and so I investigate

deterministic, parallel graph coloring in Section 1.2, the results of which are of independent

interest.

In Section 1.3, I introduce a system called Laika, which is designed to process data-

graph computations for the special, but important, case of mesh graphs used in physical

simulations [65, 124]. Such graphs typically have vertices with coordinates in 3D space and

are connected to other “nearby” vertices. We take advantage of these properties to execute

physical simulations, cast as parallel data-graph computations, making more efficient use of

cache resources.

3For instance, as of November 2015, GraphLab has been productized by the startup Dato with the support
of $25.25M in venture capital.

4A double-buffered data-graph computation features two copies of the application data and toggling in
alternate cycles one is read-only and the other is write-only.

5A “worker” in this context is the same as a “process” in Netzer and Miller’s work on race conditions [156].
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1.1 Executing dynamic data-graph computations determinis-

tically using chromatic scheduling

Figure 1-1: Example of how a graph can be partitioned into independent sets of vertices
denoted by color, each set of which is able to be executed simultaneously without risk of data
races. Iterating through the colors serially and executing the corresponding independent sets
in parallel is a technique called chromatic scheduling.

In this section I summarize joint work with Charles E. Leiserson, Tim Kaler, and Tao B.

Schardl that was presented at the 2014 ACM Symposium on Parallelism in Algorithms and

Architectures under the title “Executing dynamic data-graph computations deterministically

using chromatic scheduling” [121].

In this research, I demonstrate theoretically and experimentally that general data-graph

computations can be made to be deterministic without giving up high-performance build-

ing on a known technique called chromatic scheduling [2, 18, 142], in fact, while increasing

performance. First, one finds a vertex-coloring of the graph as depicted in Figure 1-1, an

assignment of colors to vertices such that no two neighboring vertices share the same color,

and then loop through the colors serially. Since each subset of the vertices of a given color

form an independent set (i.e., no two members share an edge) they may be updated simul-

taneously without causing a determinacy race, assuming that the update function applied

to a vertex v reads the data associated with all of its neighbors and writes only the data

associated with v. Thus, chromatic scheduling enables deterministic parallel execution of

a data-graph computation without any concurrent operations on data. Prism removes the

overhead of mutual-exclusion locks or other atomic operations that would be required in
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a design with concurrent data modification, while also providing a deterministic execution

irrespective of the details of the update function. By contrast, other systems [143] ensure

atomicity of update functions that concurrently modify data through a nondeterministic

locking protocol.

Jacobi vs. Gauss-Seidel

PageRank-Jacobi(G, d, ε)

1 let G = (V,E)
2 δ = ∞
3 for v ∈ V
4 Pv = 1/ |V |
5 while δ < ε
6 δ = ∞
7 for v ∈ V
8 P̂v = (1− d)/ |V |
9 for u ∈ N(v)

10 P̂v = P̂v + d · Pu/deg(u)

11 δ = min {δ, (Pv − P̂v)/Pv}
12 P = P̂
13 return P

PageRank-Gauss-Seidel(G, d, ε)

14 let G = (V,E)
15 δ = ∞
16 for v ∈ V
17 Pv = 1/ |V |
18 while δ < ε
19 δ = ∞
20 for v ∈ V
21 p̂ = (1− d)/ |V |
22 for u ∈ N(v)
23 p̂ = p̂+ d · Pu/deg(u)
24 δ = min {δ, (Pv − p̂)/Pv}
25 Pv = p̂
26 return P

Figure 1-2: Two implementations of Google’s PageRank algorithm [35], where PageRanks
for each vertex are updated iteratively and stop once the estimates for all vertices in a round
change by less than a fraction ε. PageRank-Jacobi is a Jacobi-style or double-buffered
implementation where in each round estimates for each vertex are based exclusively on
the estimates of the previous round. PageRank-Gauss-Seidel is a Gauss-Seidel-style or
in-place implementation where a vertex v is updated in round r + 1 based on the most
recent estimates of each neighbor in N(v), some of which may be from round r and the rest
from round r + 1. The latter approach converges more quickly, as will be demonstrated in
Chapter 3.

One common assumption among many of the existing data-graph computation systems

described in Chapter 2 is that the update function may be applied to all vertices simulta-

neously. For instance, if the vertex data is “double-buffered” and we alternate between the

buffers in alternating time steps such that at any one time, one buffer is read-only and one

buffer is write-only, then this is a safe assumption. Indeed, many algorithms are written

this way, and such algorithms avoid overheads due to concurrent data access. Much like

the difference between the Jacobi [199] and Gauss-Seidel [120] iterative methods of solving

linear systems of equations, however, an “in-place” or single-buffering method like Gauss-

Seidel is often superior in both memory usage and convergence rate [188]. An example of
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such an application is Google’s PageRank algorithm, originally used to rank the relevance

of web pages returned by their search engine [35]. Specifically, for a graph G = (V,E) and

a damping factor d ∈ [0, 1], the pagerank Pv of each vertex v ∈ V can be circularly defined

as a function of its neighbors N(v) = {u ∈ V : (u, v) ∈ E}:

Pv =
1− d
|V |

+ d
∑

∀u∈N(v)

Pu
|N(u)|

.

An implementation of the Jacobi and Gauss-Seidel-style implementations of the PageRank

algorithm can be found in Figure 1-2, where the primary difference between PageRank-

Jacobi and PageRank-Gauss-Seidel is the indentation levels of lines 12 and 25, respec-

tively. That is, in PageRank-Gauss-Seidel we use a scalar temporary variable p̂ to collect

updates to any particular vertex, whereas PageRank-Jacobi requires a temporary for ev-

ery vertex, the vector P̂ , and is updated in bulk at the end of each iteration of the while

loop.

Dynamic data-graph computations

PageRank-Dynamic(G, d, ε)

27 let G = (V,E)

28 P1:|V | = |V |−1

29 r = 0
30 Qr = V
31 while Qr 6= ∅
32 Qr+1 = ∅
33 for v ∈ Qr
34 p̂ = (1− d)/ |V |
35 for u ∈ N(v)
36 p̂ = p̂+ d · Pu/deg(u)
37 if (Pv − p̂)/Pv > ε
38 Qr+1 = Qr+1 ∪ v ∪N(v)
39 Pv = p̂
40 r = r + 1
41 return P

Figure 1-3: An implementation of Google’s PageRank algorithm [35] using a dynamic
update rule. The vertex set Qr is updated on round r and any vertex v which changes by
more than a fraction ε and its neighbors N(v) are included in the set Qr+1 for execution in
the next round. By only updating vertices that change considerably in the previous round,
PageRank-Dynamic manages to avoid work and converge to a solution more efficiently.
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There are data-graph computations where an additional benefit in convergence rate

can be had by only updating a subset of vertices in each round.6 Such an algorithm is

called a dynamic data-graph computation, an example of which is a variant of PageRank,

shown in Figure 1-3, where only certain vertices are updated in a round: typically those

that change significantly in the previous round and their neighbors. Practitioners find that

this dynamic version of PageRank is faster and gives them “relevant” answers, even if the

static version (i.e., one that updates every vertex every round) yields a slightly “better”

answer. Many algorithms in machine learning feature this tradeoff, including loopy belief

propagation [154,165], coordinate descent [60], co-EM [160], alternating least-squares [107],

singular-value decomposition [89], and matrix factorization [193].

To demonstrate the relative convergence rates of PageRank-Jacobi, PageRank-

Gauss-Seidel, and PageRank-Dynamic, I ran each one on a collection of graphs, de-

scribed and used extensively in Chapter 4, and summarized the results in Table 3-3 in

Chapter 3. The static Gauss-Seidel method performs 2.5 times fewer updates in geometric

mean than the Jacobi method, and the dynamic Gauss-Seidel method performs 3.5 times

fewer updates in geometric mean than the Jacobi method. This performance advantage mo-

tivates my interest in supporting dynamic in-place data-graph computations. Unfortunately,

an in-place data-graph computation must cope with data races when updating neighboring

vertices deterministically in parallel, and a dynamic data-graph computation must make

careful use of data structures to ensure that the resulting algorithm is work-efficient : the

overheads incurred in an effort to parallelize the computation are at most linear in the work

used by the serial implementation. I seek these features not only because I am not a savage,

but because determinism is essential to the development of reliable software [28, 132] and

work-efficiency is a virtue in an increasingly power-constrained world [78]. In this research, I

address both challenges in developing and analyzing systems that enable deterministic, work-

efficient, in-place, dynamic data-graph computations while still guaranteeing good parallel

performance.

6In particular, the convergence rate in terms of the total work performed (i.e., number of vertex updates
times the number of neighbors in each update) can be improved by updating only a subset of vertices in
any given round, the subset typically being the vertices whose values changed significantly in the previous
round.
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Performance guarantees

I present the performance of Prism in the language of work-span analysis [52, Ch. 27], an

overview of which is in Appendix A. For now, it suffices to understand that the work of

a computation is the total number of instructions executed, and the span corresponds to

the longest path of dependencies in the parallel program. For convenience, I assume7 that a

single update executes in Θ(deg(v)) work and Θ(lg(deg(v))) span. Under this assumption,

on a data-graph G of degree ∆, Prism executes the updates in round r on the activation

set Qr containing vertices colored using χ colors on P processors using O(Qr + P ) work

and O(χ(lg (Qr/χ) + lg ∆) + lgP ) span.8 While the theoretical parallelism depends on the

size of Qr, I present extensive empirical evidence that Prism is highly scalable in prac-

tice. Surprisingly, the “price of determinism” incurred by the use of chromatic scheduling

instead of the more common locking strategy appears to be negative for real-world appli-

cations. For instance, as detailed in Chapter 3, Prism executes 1.1–2.3 times faster than

GraphLab’s comparable, but nondeterministic, locking strategy on a machine with 12 Intel

Core-i7 (Nehalem) processor cores

Prism behaves deterministically as long as every update is pure : it modifies no data

except for that associated with its target vertex. This assumption precludes the update

function from modifying global variables to aggregate or collect values. To support this

common use pattern, I will discuss an extension to Prism called Prism-R in Chapter 3.

It executes dynamic data-graph computations deterministically even when updates modify

global variables using associative operations (e.g., a reducer hyperobject [76]). Prism-R uses

a new “multivector” data structure whose contents are ordered deterministically, whereas

Prism uses a simpler “multibag” data structure. Nonetheless, Prism-R executes in the same

theoretical bounds as Prism despite its more complicated implementation. Empirically,

Prism-R is only 1.04 times slower in geometric mean than Prism and outperforms the

nondeterministic lock-based version of GraphLab on all application benchmarks described

in Chapter 3.

7Other assumptions about the work and span of an update can easily be made at the potential expense
of complicating the analysis.

8For convenience, I abuse the meaning of the notation Qr depending on the context. In pseudocode, Qr

is the set of vertices that are executed in round r. In big-O notation, it refers to the size of the set Qr and
all neighboring vertices (i.e., the work incurred by executing every vertex in Qr).
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1.2 Ordering heuristics for parallel graph coloring

In this section I summarize joint work with Charles E. Leiserson, Tim Kaler, and Tao B.

Schardl that was presented at the 2014 ACM Symposium on Parallelism in Algorithms and

Architectures under the title “Ordering heuristics for parallel graph coloring” [102].

Graph coloring is a heavily studied problem with many real-world applications, includ-

ing the scheduling of conflicting jobs [6, 73, 146, 197], register allocation [34, 42, 43], high-

dimensional nearest-neighbor search [14], sparse-matrix computation [50,119,172], etc. For-

mally, a (vertex)-coloring of an undirected graph G = (V,E) is an assignment of a color

v.color to each vertex v ∈ V such that for every edge (u, v) ∈ E, we have u.color 6= v.color ,

that is, no two adjacent vertices have the same color. The graph-coloring problem is the

problem of determining a coloring which uses as few colors as possible.

I am interested in the graph coloring problem as a means to speed up chromatic schedul-

ing [2, 18, 121] of parallel data-graph computations. As we saw in Section 1.1, a chromatic

scheduler first colors the vertices of the data-graph G and then sequences through the col-

ors, scheduling all vertices of the same color in parallel. The time to perform a data-graph

computation thus depends both on how long it takes to initially color G and on the number

of colors produced by the graph-coloring algorithm: more colors means less parallelism. Al-

though the coloring can be performed offline for some data-graph computations, for others

the coloring must be produced online, and one must accept a trade-off between coloring

quality — the number of colors used — and the time to produce the coloring.

Although the problem of finding an optimal coloring of a graph — a coloring using

the fewest colors possible — is in NP-complete [79], heuristic “greedy” algorithms work

reasonably well in practice. Welsh and Powell [197] introduced the original greedy coloring

algorithm, shown in Figure 1-4, which iterates over the vertices and assigns each vertex the

smallest color not yet assigned to a neighbor.

Ordering heuristics

In practice, however, greedy coloring algorithms tend to produce much better colorings than

the ∆+1 bound implies, and moreover, the order in which a greedy coloring algorithm colors

the vertices affects the quality of the coloring. To reduce the number of colors used by a

greedy coloring algorithm, practitioners therefore employ ordering heuristics to determine

the order in which the algorithm colors the vertices [4, 32,32,50,118,141,147,197].
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The literature includes many studies of ordering heuristics and how they affect running

time and coloring quality in practice. Here are three popular heuristics:

R The random ordering heuristic [118] colors vertices in a uniformly random order.

LF The largest-degree-first ordering heuristic [197] colors vertices in order of decreasing

degree.

SL The smallest-degree-last ordering heuristic [4, 147] colors the vertices in the order

induced by first removing all the lowest-degree vertices from the graph, then recursively

coloring the resulting graph, and finally coloring the removed vertices.

The experimental results overviewed in Chapter 4 indicate that I have listed these heuris-

tics in order of coloring quality from worst to best and in order of running time from fastest

to slowest.

Greedy(G)

42 let G = (V,E, ρ)
43 for v ∈ V in order of decreasing ρ(v)
44 C = {1, 2, . . . ,deg(v) + 1}
45 for u ∈ N(v) : ρ(u) > ρ(v)
46 C = C − {u.color}
47 v.color = minC

Figure 1-4: Pseudocode for a serial greedy graph-coloring algorithm. Given a vertex-
weighted graph G = (V,E, ρ), where the priority of a vertex v ∈ V is given by ρ(v),
Greedy colors each vertex v ∈ V in decreasing order according to ρ(v).

Although an ordering heuristic can be viewed as producing a permutation of the vertices

of a graph G = (V,E), it is convenient to think of an ordering heuristic as producing an

injective (1-to-1) priority function ρ : V → R (breaking ties randomly). Figure 1-4 gives

the pseudocode for Greedy, a greedy coloring algorithm. Greedy takes a vertex-weighted

graph G = (V,E, ρ) as input, where ρ is a priority function produced by some ordering

heuristic. Each step of Greedy simply selects the uncolored vertex with the highest priority

according to ρ and colors it with the smallest available color.

Parallel greedy coloring via dag scheduling

There is a historical tension between coloring quality and the parallel scalability of greedy

graph coloring. While the traditional ordering heuristics are efficient using Greedy, I show

in Chapter 4 that any parallelization of them requires worst-case span of Ω(V ) for a general
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JP(G)

48 let G = (V,E, ρ)
49 parallel for v ∈ V
50 v.pred = {u ∈ N(v) : ρ(u) > ρ(v)}
51 v.succ = {u ∈ N(v) : ρ(u) < ρ(v)}
52 v.counter = |v.pred |
53 parallel for v ∈ V
54 if v.pred == ∅
55 JP-Update(v)

JP-Update(v)

56 Update(v)
57 parallel for u ∈ v.succ
58 if Join(u.counter) == 0
59 JP-Update(u)

Update(v)

60 // Finds lowest available color
61 C = {1, 2, . . . , |v.pred |+ 1}
62 parallel for u ∈ v.pred
63 C = C − {u.color}
64 v.color = minC

Figure 1-5: The Jones-Plassmann [118] parallel priority-dag scheduling algorithm, shown
here as JP, is a generalization of Jones and Plassmann’s original distributed vertex-coloring
algorithm. A pictorial example of JP can be found in Figure 1-6. JP uses a recursive helper
function JP-Update to process a vertex using the user-supplied Update function once
all of its predecessors have been updated, recursively calling JP-Update in line 59 for
any successor u who is eligible to be updated (i.e., when u.counter == 0). The function
Join decrements its argument and returns the post-decrement value. To implement the
original Jones-Plassmann vertex-coloring algorithm, the Update(v) function merely assigns
the lowest available color to v not already taken by any of its predecessors v.pred .

graph G = (V,E), with the exception of the random ordering heuristic. Of the various

attempts to parallelize greedy coloring [49, 66, 144], the algorithm first proposed by Jones

and Plassmann [118] extends the greedy algorithm in a straightforward manner, uses work

linear in size of the graph, and is deterministic given a small random seed. Furthermore,

Jones and Plassmann’s original paper demonstrates good theoretical parallel performance

for O(1)-degree graphs using the random ordering heuristic.

Figure 1-5 gives the pseudocode for JP, which colors a given graph G = (V,E, ρ) in

the order specified by the priority function ρ. The JP and JP-Update functions form a
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general dag scheduling algorithm,9 where the user-supplied Update function implements

a specific data-graph computation, in this case vertex-coloring. The algorithm begins in

lines 50 and 51 by partitioning the neighbors of each vertex into predecessors — vertices

with larger priorities — and successors — vertices with smaller priorities. The priority

function ρ orients the edges in the graph such that the resulting directed graph forms a

dag, as depicted in Figure 1-6. JP uses the recursive JP-Update helper function to update

a vertex v ∈ V once all vertices in v.pred have been updated. Initially, lines 53–55 in JP

scan the vertices of V to find every vertex that has no predecessors and updates each one

using JP-Update. Within a call to JP-Update(v), line 56 calls the user-supplied function

Update to, in this case, assign a color to v, and the loop on lines 57–59 broadcasts in

parallel to all of v’s successors the fact that v is updated. For each successor u ∈ v.succ,

line 58 tests whether all of u’s predecessors have already been updated, and if so, line 59

recursively calls JP-Update(u).
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Figure 1-6: An alternative to chromatic scheduling which yields a deterministic output
is dag scheduling. A priority function ρ : V → R is used to create a partial order on the
vertices and orienting an edge from low to high priority results in a dag. For simplicity, the
vertices are shown with a random permutation of letters {a, b, . . . , x}, in lieu of a random
priority value. The vertices are processed in dag order: a vertex is not processed until all of
its predecessors have been processed.

9Actually, Jones and Plassmann specifically designed a distributed coloring algorithm using a random
priority function and analyzed it for O(1)-degree graphs. Here, I merely generalize their scheduling technique
for use with generic update functions.
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Parallel ordering heuristics

Jones and Plassmann showed that the expected length of the longest path in a random prior-

ity dagGρ, the dag induced onG = (V,E) by a random priority function ρ, is O(lg V/ lg lg V )

for any O(1)-degree graph, leading to an upper bound on the running time of the correspond-

ing parallel algorithm. In Chapter 4 I give matching upper and lower bounds for the expected

length of the longest directed path in a random priority dag of arbitrary degree. In particu-

lar, for a graph G = (V,E) of degree ∆ = O(lg V ), the expected length of the longest path

in Gρ is Θ (lnV/ ln (e lnV/∆)) with high probability. For ∆ = Ω(lg V ), the expected length

of the longest path is Θ(min {∆,
√
E}).

Although JP with a random priority function scales well in theory and in practice, it is

one of the weaker ordering heuristics in terms of coloring quality (i.e., it tends to produce

many colors). Of the other heuristics, it is possible to construct adversarial graphs that cause

JP with largest-first and smallest-last to scale poorly, requiring Ω(V ) time. Consequently, I

focus on alternatives to largest-first and smallest-last that provide comparable coloring qual-

ity while guaranteeing good parallel performance. Specifically, in Chapter 4 I will describe

two new parallel ordering heuristics — “largest-log-degree-first” and “smallest-log-degree-

last” — which resemble largest-first and smallest-last, respectively, but which scale provably

well when used with JP, requiring at most O (lg ∆) times more span, for ∆-degree graphs.

They both provide good parallel scalability in theory and practice: they achieve speedups

of 6–8 times on a machine with 12 Intel Core-i7 (Nehalem) processor cores and are resilient

to adversarial graphs.

1.3 Cache-efficient data-graph computations for physical sim-

ulations

In this section I summarize joint work with Predrag Gruevski, Charles E. Leiserson, and

James J. Thomas called “Cache-efficient data-graph computations for physical simula-

tions” [96].

Chapter 5 investigates an important special case of scheduling data-graph computations:

the specific problem of performing physical simulations on mesh graphs. For example, the

domain-specific language Simit [124] can be used to describe physical simulations (e.g., fluid

dynamics [17], the n-body problem [168,183,196], etc.) on a staticmesh graph, a wire mesh
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discretization of a continuous object in 3D space,10 like the scary dragon and cuddly bunny

depicted in Figure 1-7. The Simit compiler generates code for an update function which

is applied to all vertices over many time steps (e.g., typically millions), where the update

function typically approximates some physical force (e.g., Newton’s laws of motion [157]).

The scheduling technique described in Chapter 5 is general to other physical simulation

systems (e.g., Liszt [65]), but we use Simit as an illustrative motivation.

Figure 1-7: Mesh graph examples where lines correspond to edges and intersections of lines
correspond to vertices.

While chromatic scheduling enables high parallelism without data races, it can be ineffi-

cient for cache usage. For instance, to process the update function of a vertex v of color c the

worker needs to read data associated with all of its neighbors N(v), but by virtue of being

in different color sets by definition, each vertex w ∈ N(v) can not be processed until after

all vertices of color c have been processed. This squanders the potential cache advantage of

processing the neighbors of v soon after v itself is processed, while they are still in cache.

An alternative approach to chromatic scheduling is dag scheduling [118], depicted in

Figures 1-5 and 1-6 and used extensively in my research on parallel graph coloring. In dag

scheduling, the graph is turned into a dag through the use of a priority function ρ : V → R. In

particular, an undirected edge connecting vertices v and w is oriented as (v, w) if ρ(v) > ρ(w)

(ties are broken by comparing the vertex numbers). The vertices are then processed in dag

order, meaning that a vertex v may be processed only once all of its predecessors have been

10Simit is capable of describing objects in a space of arbitrary dimension, but is generally used to specify
3D simulations.
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processed. This scheduling approach affords us the opportunity to process vertices shortly

after they are read by their neighbors, a potential caching advantage.

In Chapter 5, I will describe a variation of dag scheduling optimized for the special case of

physical simulations which uses a priority function designed to exploit cache resources while

minimizing the overhead introduced by scheduling logic. I will also demonstrate empirically

that this system, called Laika, is able to transform a traditionally memory bandwidth-

bound problem [7, 65, 70, 83, 91, 139,162] into a compute-bound problem on a machine with

12 Intel Core-i7 (Nehalem) processor cores. For example, I tested the performance of Laika

executing a physical simulation, typical of the type expressed in Simit, on a set of four

graphs, each of which is approximately 1.9GB in size. Laika is 10.89 times faster running

on 12 cores than on 1 core and Laika running on 12 cores is 44.27 times faster than a naive

serial implementation.11

The Hilbert space-filling curve

Figure 1-8: Three recursion levels of a 2D Hilbert space-filling curve [106].

Laika makes use of a new priority function that makes dag scheduling of data-graph

computations on mesh graphs especially cache-efficient. This priority function is first used

to reorder the vertices in the graph to improve spatial locality.12 In particular, we use the

bounding box of the mesh graph in 3D space to normalize the graph to the unit cube. Then,

11This baseline is equivalent to Simit’s current shared-memory implementation.
12A cache block C is made up of B words. Suppose an algorithm reads a particular word, bringing C into

the cache. If it then reads a different word in C while it is still in cache, this is an example of spatial locality.
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we decompose the unit cube into a regular 2k × 2k × 2k grid, each grid point of which is

assigned a scalar value corresponding to the closest point on the discretized the Hilbert space-

filling curve [106]. A 2D example of the Hilbert space-filling curve13 is given in Figure 1-8.

The red dotted curve is the first recursion level and illustrates the basic inverted “U” shape.

The blue dashed curve shows how each quadrant is partitioned into four independent first-

level Hilbert curves (up to rotations) of half the size in each dimension. The black solid curve

illustrates the third recursion level. All vertices are assigned to the closest grid point and

assigned the corresponding scalar value along the Hilbert curve, as depicted in Figure 1-9.

This scalar value is a vertex’s value in Hilbert curve space. Since some vertices may be

assigned to the same grid point, ties are broken in the priority function randomly. Thus, the

vertices are processed in the order dictated by the Hilbert curve iterating through the 3D

grid.
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Figure 1-9: Example of how a locally-connected graph in 2 dimensions is mapped to a dag
via a second-order Hilbert curve priority function. Each vertex is mapped to its closest grid
point in the discretized Hilbert curve. Among vertices mapping to the same grid point, ties
are broken randomly.

Intuitively, we see why the Hilbert curve might be a good ordering for the vertices by

considering that mesh graphs are locally connected, meaning that the neighborhood of a

vertex is typically nearby in 3D space. One well-known property of the Hilbert curve is that

points that are close together in Hilbert curve space are also close in 3D space [92]. However,

13Many other space-filling curves exist [10, 39, 173] and many would be appropriate for use in Laika,
however, we specifically chose the Hilbert curve because it is known to produce better cache behavior, up to
constant factors, than others which are simpler to compute (e.g., Z-order [153]).
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it is also true that randomly chosen points that are close together in 3D space are quite likely

to be close in Hilbert curve space, as well [152, 192]. This property leads to excellent cache

behavior, since the neighbors of each vertex are close in 3D space for mesh graphs, and will

thus tend to also be close in memory.

Figure 1-10: The Russian street dog Laika is one of the first and most famous animals to
travel through space.

We call the priority-dag scheduling algorithm using the Hilbert curve priority function,

Laika.14 In Chapter 5, I describe a novel theoretical contribution to the relationship between

distances in 3D space and distances in Hilbert curve space, improving on the results of

Tirthapura, Seal, and Aluru [192], which leads to a stronger bound on cache performance

for Laika. In particular, for n vertices uniformly randomly distributed in the unit cube and

connected to other vertices within a distance r — a random cube graph — Tirthapura,

Seal, and Aluru’s bound states that a traversal of such a graph, reordered using the Hilbert

curve priority function,15 and using a cache sufficiently large to hold M vertices will incur

O(M−1/4) misses per edge. I will show that, in fact, we incur only O(M−1/3) misses per

edge. Furthermore, Laika achieves linear expected speedup on any random cube graph

G = (V,E) with constant expected degree for any number of workers P = O(V/ lg2 V ).

The use of space-filling curves for locality-preserving load-balancing is a known technique.

Algorithms for the n-body problem [183,196], database layout and scheduling [152], resource

14We take naming inspiration from the graph processing libraries GraphLab [142], which is named after a
Labrador Retriever, and GraphChi [129], which is named after a Chihuahua. Laika, pictured in Figure 1-10,
was a Russian street dog that was used in early space exploration [8] and we chose this name because Laika
is a dog who travels through space, much like the Hilbert curve.

15Tirthapura, Seal, and Aluru’s paper does not actually discuss priority functions, I merely extrapolate
their results to the context of data-graph computations of locally connected physical simulations.
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scheduling [138], and dynamic load balancing [101] all use variations on the general theme of

mappingND space onto a 1D curve that is subsequently partitioned among P processors. My

contribution to the empirical aspect of this research area is the use of the Hilbert space-filling

curve with dag scheduling and the development of Laika, which scales to large datasets

while preserving deterministic execution and excellent cache usage.
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Chapter 2

Related Work

In recent years, there has been growing interest in the development of frameworks for storage

and analysis of data on large compute clusters, Hadoop [55, 59] being among among the

most popular of these. Hadoop breaks up large datasets into pieces distributed across many

shared-memory multicore nodes in a cluster, each of which communicates via a message-

based network protocol. Users supply computations, or map operators, that are evaluated

over each of the pieces independently and other computations, or reduce operators, that

combine the results. Many problems can be cast into the Hadoop model, but in many cases

the Hadoop approach is far less effecient than more specialized methods optimized for graph

algorithms, as we will explore throughout this research.

The idea behind recent big data frameworks, including Hadoop, is to decouple scheduling

and data layout from the expression of the computation, enabling high programmer produc-

tivity and portable, best-in-class performance. Iterative graph algorithms, however, are one

class of problem not well-suited to the Hadoop approach. In particular, graphs are difficult

to split into completely independent sets (with no crossing edges) for the map phase of a

Hadoop computation, so the maps are often wasteful [145]. The idea of decoupling data and

scheduling from the expression of the algorithm, however, is useful for designing frameworks

for graph algorithms, even if Hadoop itself is ill-suited to the task.

A new paradigm

Malewicz et al. proposed the Pregel programming interface [145] and Low et al. developed the

GraphLab framework [142] to abstract scheduling from the application-specific specification

of iterative graph algorithms, initially targeting machine learning algorithms. These systems
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popularized the “think like a vertex” mindset of graph-centric algorithm frameworks, and

many such systems have been subsequently developed, optimizing different corners of the

design space. In particular, the Pregel / GraphLab interface is used to express a data-graph

computation, described in Chapter 1, with a user-specified update function and application-

specific data. The update function is iteratively applied to some subset of vertices, taking

as inputs the data associated with each vertex’s neighbors. Many interesting big data algo-

rithms, including Google’s PageRank, can be easily expressed under this model. Examples

of traditional graph algorithms that can be cast as data-graph computations include maxi-

mal independent set, maximal matching, vertex and edge coloring, breadth-first search, and

triangle counting [29]. Other examples arise in numerical methods and machine-learning

algorithms on sparse matrices, including loopy belief propagation [154, 165], coordinate de-

scent [60], co-EM [160], alternating least-squares [107], singular-value decomposition [89],

and matrix factorization [193]. The systems which currently implement the data-graph com-

putation interface, however, do not support work-efficient, deterministic, dynamic, in-place

updates, nor do any of them exploit the special structure of mesh graphs in physical sim-

ulations to optimize performance. My collaborators and I solve both problems in Chapters

3 and 5. Rather, most work in the field of data-graph computation engines is concerned

with performance-engineering techniques applied to the simplest version of the data-graph

computation problem (i.e., on every iteration update every vertex, simultaneously, in par-

allel), which amounts to the design of data layout and algorithmic techniques optimized for

random accesses to memory.

Existing Systems

In the distributed setting, Pregel [145], Distributed GraphLab [142], PowerGraph [90], Na-

iad [155], PowerLyra [47], and GPS [174] provide a parallel programming model focused

on graphs. These systems often aim to minimize communication across nodes through data

replication and partitioning, as well as to avoid synchronization overheads. For example,

PowerGraph [90] accounts for the highly skewed degree distribution in real-world power-law

graphs by splitting popular vertices across nodes to perform partial aggregation.

In the shared-memory setting, many systems have been developed for multicore machines

and have typically shown significantly better performance than distributed frameworks given

sufficient memory capacity. Ligra [177] is an efficient multicore system that supports update
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functions for both vertices and edges. Ligra switches between multiple edge mapping imple-

mentations depending on the number of active vertices to take advantage of the choice of

dense vs. sparse updates. Galois [158] provides a multicore framework which does dataflow-

style scheduling with user-defined priorities and also provides a vertex-update interface.

GraphMat [190] converts vertex-centric programs with Scatter-Gather-Apply stages per step

into sparse matrix-vector primitives, and on many graph algorithms offers the best perfor-

mance among published systems. Its authors also find its performance to be within 1.2x of

hand-optimized code. Two other relevant systems are GraphChi [129] and X-Stream [171],

which focus on streaming through data sequentially from either a disk or from DRAM, and

performing random access on a much smaller fraction of the data stored in DRAM or cache

respectively. Polymer [204] is a NUMA-optimized framework that provides the Ligra inter-

face and implements optimizations similar to both distributed and shared-memory systems.

It focuses on minimizing both random access and cross-NUMA-node access.

Memory access optimizations

0 2 3 10 12 14 14 m-4

...

Edge Array

Vertex Array

Figure 2-1: Graphs can be stored in memory on a single cache-coherent multicore in a
compressed sparse row format. The vertex array contains vertex data and an index into an
edge array, which contains vertex IDs of the associated neighbors.

To optimize memory accesses in particular, many of the currently fastest systems try to

lay out data in a sequential manner and to reduce working sets. Ligra, Galois and GraphMat

use a “Compressed Sparse Row” layout for edges, as depicted in Figure 2-1, where the edge

lists for each vertex are sequential in memory, to turn most accesses to edge data into se-

quential scans. Many of these systems also use compressed data structures (e.g., using a bit

vector to track active nodes or even compressing IDs in edge lists [180]). The fastest systems

for multicores still perform random accesses to DRAM for vertex data, however, and these

accesses consume most of their execution time. Finally, vertex-centric updates like those
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in PageRank are analogous to sparse matrix-vector multiply problems, for which a great

variety of data layouts and parallelization techniques have been studied [13,198,202]. These

include layouts such as “Compressed Sparse Blocks” that maintain locality in both rows

and columns [37], and cache-oblivious Hilbert curve orderings [98, 201]. It should be noted

that a sparse matrix-vector multiply is a special-case of a single iteration of a data-graph

computation, where a general data-graph computation makes use of a user-supplied update

function and user-defined per-vertex state whereas the matrix-vector multiply performs an

inner product. In both cases, however, the data access pattern is the same, perhaps moti-

vating GraphMat [190] to use routines similar to those used in sparse matrix libraries in its

own data-graph computation implementation.

Researchers have made much progress in recent decades on an important and pervasive

special case of data-graph computations: physical simulations and graphics applications.

Brandt [31] developed the multigrid adaptive solver for boundary-value problems, an algo-

rithmic approach to reducing the overall work required in such physical simulations, which

exploits the observation that physically nearby vertices behave similarly and thus may be

initially approximated coarsely. Warren and Salmon [196] developed an efficient, albeit non-

deterministic, parallel algorithm for n-body simulation, which uses a Z-order curve [153]

to generate better empirical cache usage. Similarly, Singh et al. [183] use orthogonal recur-

sive bisection [75, p. 37–62] to empirically improve the performance of the fast multipole

method [95]. Neither work provides any theoretical guarantees of performance or analysis of

the expected cache behavior. Hoppe uses a similar intuition for ordering vertices in computer

graphics applications [109], showing empirically that a greedy algorithm for storing adja-

cent vertices can reduce memory bandwidth requirements, though the resulting algorithm

remains memory-bound. More generally, Asanovic et al. [7] analyzed the landscape of many

programming patterns — the so-called “dwarves” — and classified physical simulations as

memory-bound.

Some researchers have gone to more extreme lengths to combat the memory-boundedness

of physical simulation. For instance, Goodnight et al. [91] applied Brandt’s multigrid ap-

proach to a GPU implementation in order to take advantage of higher memory bandwidth

only to find that the implementation is awkward for the GPU and that memory bandwidth

still limits performance. Feichtinger et al. [70] continue in this path, painstakingly mapping

a lattice Boltzmann method for computational fluid dynamics to a distributed GPU system,
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where the network bandwidth dominates. Devito et al. [65] developed a domain-specific lan-

guage for describing mesh-based partial differential equation solvers, as a way of enabling

scientists to take advantage of high GPU memory bandwidth, without the awkwardness of

actually programming a GPU. Lindtjorn et al. [139] and Giefers, Plessl, and Förstner [83]

have gone to more extreme measures to tame the memory bandwidth thirst of physical

simulation: they use field-programmable gate array (FPGA) processor chips to hardcode

the computational pipeline and shift the balance of hardware resources toward memory

bandwidth. In Chapter 5 I demonstrate how my coauthors and I transform physical simu-

lations on mesh graphs into a compute-bound problem, thus enabling high performance on

shared-memory multicore computers, which are comparatively easy to program.
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Chapter 3

Executing Dynamic Data-Graph

Computations Deterministically

Using Chromatic Scheduling

3.1 Introduction

Many systems from physics, artificial intelligence, and scientific computing can be repre-

sented naturally as a data graph — a graph with data associated with its vertices and

edges. For example, some physical systems can be decomposed into a finite number of ele-

ments whose interactions induce a graph. Probabilistic graphical models in artificial intelli-

gence can be used to represent the dependency structure of a set of random variables. Sparse

matrices can be interpreted as graphs for scientific computing.

A data-graph computation is an algorithm that performs “local” updates on the vertices

of a data graph, taking as input data associated with a vertex and its neighbors. Several soft-

ware systems have been implemented to support parallel data-graph computations, includ-

ing GraphLab [142, 143], Pregel [145], Galois [158, 159], PowerGraph [90], Ligra1 [177, 180],

and GraphChi [129]. These systems can support “complex” data-graph computations, in

which data can be associated with edges as well as vertices and updating a vertex v can

modify any data associated with v, v’s incident edges, and the vertices adjacent to v. For

1While Ligra does not technically execute data-graph computations, it is designed to implement similar
algorithms by decoupling the scheduling and algorithm-specific code, as with the other data-graph compu-
tation frameworks.
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ease in discussing chromatic scheduling, however, we shall principally restrict ourselves to

“simple” data-graph computations (which correspond to “edge-consistent” computations in

GraphLab), although most of our results straightforwardly extend to more complex mod-

els. Indeed, six out of the seven GraphLab applications described in [142, 143] are simple

data-graph computations.

Jacobi vs. Gauss-Seidel

PageRank-Jacobi(G, d, ε)

65 let G = (V,E)
66 δ = ∞
67 for v ∈ V
68 Pv = 1/ |V |
69 while δ < ε
70 δ = ∞
71 for v ∈ V
72 P̂v = (1− d)/ |V |
73 for u ∈ N(v)

74 P̂v = P̂v + d · Pu/deg(u)

75 δ = min {δ, (Pv − P̂v)/Pv}
76 P = P̂
77 return P

PageRank-Gauss-Seidel(G, d, ε)

78 let G = (V,E)
79 δ = ∞
80 for v ∈ V
81 Pv = 1/ |V |
82 while δ < ε
83 δ = ∞
84 for v ∈ V
85 p̂ = (1− d)/ |V |
86 for u ∈ N(v)
87 p̂ = p̂+ d · Pu/deg(u)
88 δ = min {δ, (Pv − p̂)/Pv}
89 Pv = p̂
90 return P

Figure 3-1: Two implementations of Google’s PageRank algorithm [35], where PageRanks
for each vertex are updated iteratively and stop once the estimates for all vertices in a round
change by less than a fraction ε. PageRank-Jacobi is a Jacobi-style or double-buffered
implementation where in each round estimates for each vertex are based exclusively on the
estimates of the previous round. PageRank-Gauss-Seidel is a Gauss-Seidel-style or in-
place implementation where a vertex v is updated in round r + 1 based on the most recent
estimates of each neighbor in N(v), some of which may be from round r and the rest from
round r + 1. The latter approach converges more quickly, as summarized in Table 3-3.

One common assumption among many of the existing data-graph computation systems

described in Chapter 2 is that the update function may be applied to all vertices simulta-

neously. For instance, if the vertex data is “double-buffered” and we alternate between the

buffers in alternating time steps such that at any one time, one buffer is read-only and one

buffer is write-only, then this is a safe assumption. Indeed, many algorithms are written this

way and such algorithms avoid overheads due to concurrent data access. However, much like

the difference between the Jacobi [199] and Gauss-Seidel [120] iterative methods of solving

linear systems of equations, an “in-place” or single-buffering method like Gauss-Seidel is

often superior in both memory usage and convergence rate [188]. An example of such an
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application is Google’s PageRank algorithm, originally used to rank the relevance of web

pages returned by their search engine [35]. In particular, for a graph G = (V,E) and a

damping factor d ∈ [0, 1], the pagerank Pv of each vertex v ∈ V can be circularly defined as

a function of its neighbors N(v) = {u ∈ V : (u, v) ∈ E}:

Pv =
1− d
|V |

+ d
∑

∀u∈N(v)

Pu
|N(u)|

.

An implementation of the Jacobi and Gauss-Seidel-style implementations of PageRank can

be found in Figure 3-1, where the primary difference between PageRank-Jacobi and

PageRank-Gauss-Seidel is the indentation levels of lines 76 and 89, respectively. That

is, in PageRank-Gauss-Seidel we use a scalar temporary variable p̂ to collect updates to

any particular vertex, whereas PageRank-Jacobi requires a temporary for every vertex,

the vector P̂ , and is updated in bulk at the end of each iteration of the while loop.

Dynamic data-graph computations

PageRank-Dynamic(G, d, ε)

91 let G = (V,E)
92 for v ∈ V
93 Pv = 1/ |V |
94 r = 0
95 Qr = V
96 while Qr 6= ∅
97 Qr+1 = ∅
98 for v ∈ Qr
99 p̂ = (1− d)/ |V |

100 for u ∈ N(v)
101 p̂ = p̂+ d · Pu/deg(u)
102 if (Pv − p̂)/Pv > ε
103 Qr+1 = Qr+1 ∪ v ∪N(v)
104 Pv = p̂
105 r = r + 1
106 return P

Figure 3-2: An implementation of Google’s PageRank algorithm [35] using a dynamic
update rule. The vertex set Qr is updated on round r and any vertex v which changes by
more than a fraction ε and its neighbors N(v) are included in the set Qr+1 for execution in
the next round. By only updating vertices that change considerably in the previous round,
PageRank-Dynamic manages to avoid work and converge to a solution more efficiently,
as summarized in Table 3-3.
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There are data-graph computations where an additional benefit in convergence rate

can be had by only updating a subset of vertices in each round.2 Such an algorithm is

called a dynamic data-graph computation, an example of which is a variant of PageRank,

shown in Figure 3-2, where only certain vertices are updated in a round: typically those

that change significantly in the previous round and their neighbors. Practitioners find that

this dynamic version of PageRank is faster and gives them “relevant” answers, even if the

static version (i.e., one that updates every vertex every round) yields a slightly “better”

answer. Many algorithms in machine learning feature this tradeoff, including loopy belief

propagation [154,165], coordinate descent [60], co-EM [160], alternating least-squares [107],

singular-value decomposition [89], and matrix factorization [193]

To demonstrate the relative convergence rates of PageRank-Jacobi, PageRank-

Gauss-Seidel, and PageRank-Dynamic, we ran each one on a collection of graphs,

described and used extensively in Chapter 4, and summarized the results in Table 3-3.

The static Gauss-Seidel method performs 2.5 times fewer updates in geometric mean than

the Jacobi method and the dynamic Gauss-Seidel method performs 3.5 times fewer updates

in geometric mean than the Jacobi method. This performance advantage motivates my in-

terest in supporting dynamic in-place data-graph computations. Unfortunately, an in-place

data-graph computation must cope with data races when updating neighboring vertices de-

terministically in parallel and a dynamic data-graph computation must make careful use of

data structures to ensure that the resulting algorithm is work-efficient : if the overheads

incurred in an effort to parallelize the computation are at most linear in the work used by

the serial implementation, the parallel execution is work-efficient. We seek these features

because determinism is essential to the development of reliable software [28,132] and work-

efficiency is a virtue in an increasingly power-constrained world [78]. In this research, we

address both challenges in developing and analyzing systems that enable deterministic, work-

efficient, in-place, dynamic data-graph computations while still guaranteeing good parallel

performance.

2In particular, the convergence rate in terms of the total work performed (i.e., number of vertex updates
times the number of neighbors in each update) can be improved by updating only a subset of vertices in
any given round, the subset typically being the vertices whose values changed significantly in the previous
round.
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Graph |E| |E|
|V |

Jacobi
Gauss-
Seidel

Dynamic
Jacobi

Gauss-Seidel
Jacobi

Dynamic

com-orkut 117.2 38.1 21 11 8.3 1.91 2.53
liveJournal1 42.9 8.8 33 13 11.0 2.54 3.00
europe-osm 36.0 0.7 30 10 3.8 3.00 7.89
cit-Patents 16.5 2.7 32 12 8.2 2.67 3.90
as-skitter 11.1 1.0 34 13 11.1 2.62 3.06
wiki-Talk 4.7 1.9 33 14 13.0 2.36 2.54
web-Google 4.3 4.7 34 13 6.8 2.54 4.98
com-youtube 3.0 2.5 33 13 12.0 2.51 2.75

Table 3-3: Convergence rates for Jacobi (i.e., double-buffered) and Gauss-Seidel (i.e., in-
place) implementations of Google’s PageRank algorithm [35] using a damping factor of 0.85.
Each algorithm is iterated until the PageRank estimate for each vertex changes by less than
1% in the round. The coloumns |E| and |E| / |V | give the number of edges (in millions)
and the ratio of edges to vertices, respectively, for the graph named in the first column.
The column “Jacobi” gives the total amount of work performed divided by the number of
edges, for comparison across graphs, using a double-buffered approach estimates of a vertex’s
PageRank for round r + 1 are a function of round r [188]. The column “Static” uses an in-
place Gauss-Seidel implementation where the estimate of a vertex’s PageRank in round r+1
uses the most recent estimates (i.e., some from round r and some from r + 1) from each of
its neighbors. The version in column “Dynamic” only updates vertices in a round that have
changed or have neighbors that have changed by more than 1% in the previous round.

Problem statement

We formalize the computational model as follows. Let G = (V,E) be a data graph.

Denote the neighbors, or adjacent vertices, of a vertex v ∈ V by N(v) =

{u ∈ V : (u, v) ∈ E}. The degree of v is thus deg(v) = |N(v)|, and the degree of G is

deg(G) = max {deg(v) : v ∈ V }. A (simple) dynamic data-graph computation is a

triple 〈G, f,Q0〉, where

• G = (V,E) is a graph with data associated with each vertex v ∈ V ;

• f : V → 2V is an update function ; and

• Q0 ⊆ V is the initial activation set.

The update S = f(v) implicitly computes as a side effect a new value for the data associated

with v as a function of the old data associated with v and v’s neighbors. The update returns

a set S ⊆ N(v) of vertices that must be updated in the next round. For example, an update

f(v) might activate a neighbor u only if the value of v changes significantly. During a round
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r of a dynamic data-graph computation, each vertex v ∈ Qr is updated at most once, that

is, Qr is a set, not a multiset.

A serial reference implementation

Before we address the issues involved in scheduling and executing dynamic data-graph com-

putations in parallel, let us first hone our intuition with a serial implementation. Figure 3-4

gives the pseudocode for Serial-DDGC. This algorithm schedules the updates of a data-

graph computation by maintaining a FIFO queue Q of activated vertices that have yet to

be updated. Sentinel values enqueued in Q on lines 110 and 115 demarcate the rounds of

the computation such that the set of vertices in Q after the rth sentinel has been enqueued

is the activation set Qr for round r.

Serial-DDGC(G, f,Q0)

107 for v ∈ Q0

108 enqueue(Q, v)
109 r = 0
110 enqueue(Q,nil) // Sentinel nil denotes the end of a round.
111 while Q 6= {nil}
112 v = dequeue(Q)
113 if v == nil
114 r += 1
115 enqueue(Q,nil)
116 else
117 S = f(v)
118 for u ∈ S
119 if u /∈ Q
120 enqueue(Q, u)

Figure 3-4: Pseudocode for a serial algorithm to execute a data-graph computation
〈G, f,Q0〉. Serial-DDGC takes as input a data graph G and an update function f . The
computation maintains a FIFO queue Q of activated vertices that have yet to be updated
and sentinel values nil, each of which demarcates the end of a round. An update S = f(v)
returns the set S ⊆ N(v) of vertices activated by that update. Each vertex u ∈ S is added
to Q if it is not currently scheduled for a future update.

Given a data-graph G = (V,E), an update function f , and an initial activation set Q0,

Serial-DDGC executes the data-graph computation 〈G, f,Q0〉 as follows. Lines 107–108

initialize Q to contain all vertices in Q0. The while loop on lines 111–120 then repeatedly

dequeues the next scheduled vertex v ∈ Q on line 111 and executes the update f(v) on

line 117. Executing f(v) produces a set S of activated vertices, and lines 118–120 check each

vertex in S for membership in Q, enqueuing all vertices in S that are not already in Q.
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We can analyze the time Serial-DDGC takes to execute one round r of the data-graph

computation 〈G, f,Q0〉. Define the size of an activation set Qr as

size(Qr) = |Qr|+
∑
v∈Qr

deg(v) .

The size of Qr is asymptotically the space needed to store all the vertices in Qr and their

incident edges using a standard sparse-graph representation, such as compressed-sparse-

rows (CSR) format [187]. For example, if Q0 = V , we have size(Q0) = |V | + 2 |E| by

the handshaking lemma [52, p. 1172–3]. Let us make the reasonable assumption that the

time to execute f(v) serially is proportional to deg(v). If we implement the queue as a

dynamic (resizable) table [52, Section 17.4], then line 120 executes in Θ(1) amortized time.

Of course, a linked list would suffice to append operations in Θ(1) time, but would not

allow for convenient subsequent parallel iteration over its elements. All other operations in

the for loop on lines 118–120 take Θ(1) time, and thus all vertices activated by executing

f(v) are examined in Θ(deg(v)) time. The total time spent updating the vertices in Qr is

therefore Θ(Qr +
∑

v∈Qr
deg(v)) = Θ(size(Qr)), which is linear time: time proportional to

the storage requirements for the vertices in Qr and their incident edges.

Parallelizing dynamic data-graph computations

The salient challenge in parallelizing data-graph computations is to deal effectively with

races between updates, that is, logically parallel updates that read and write common data.

A determinacy race [71] (also called a general race [156]) occurs when two logically

parallel instructions access the same memory location and at least one of them writes to

that location. Two updates in a data-graph computation conflict if executing them in

parallel produces a determinacy race. A parallel scheduler must manage or avoid conflicting

updates to execute a data-graph computation correctly and deterministically.

The standard approach to preventing races associates a mutual-exclusion lock with each

vertex of the data graph to ensure that an update on a vertex v does not proceed until all

locks on v and v’s neighbors have been acquired. Although this locking strategy prevents

races, it can incur substantial overhead from lock acquisition and contention, hurting appli-

cation performance, especially when update functions are simple. Moreover, because runtime

happenstance can determine the order in which two logically parallel updates acquire locks,
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Benchmark |V | |E| χ RRLocks
Cilk+

Locks
Prism Prism-R

PR/G 916 5,105 43 15.5 14.3 9.7 12.6
PR/L 4,847 68,475 333 227.6 200.4 109.3 127.3
ID/2000 4,000 15,992 4 48.6 43.8 32.1 32.8
ID/4000 16,000 63,984 4 200.0 179.6 123.1 124.3
FBP/C1 87 265 2 8.7 8.9 6.9 7.0
FBP/C3 482 160 2 16.4 17.8 13.3 13.4
ALS/N 187 20,597 6 134.3 123.6 105.2 105.7

Table 3-5: Comparison of dynamic data-graph schedulers on seven application benchmarks.
Column “Graph” identifies the input graph, and columns |V | and |E| specify the number
of vertices and edges in the graph in thousands, respectively. All runtimes are in seconds
and were calculated by taking the median 12-core execution time of 5 runs on an Intel
Xeon X5650 with hyperthreading disabled. The runtimes of Prism and Prism-R include
the time used to color the input graph. PR/G and PR/L run a PageRank algorithm on the
web-Google [137] and soc-LiveJournal [9] graphs, respectively. ID/2000 and ID/4000 run an
image denoise algorithm to remove Gaussian noise from 2D grayscale images of dimension
2000 by 2000 and 4000 by 4000. FBP/C1 and FBP/C3 perform belief propagation on a factor
graph provided by the cora-1 and cora-3 datasets [148,184]. ALS/N runs an alternating least
squares algorithm on the NPIC-500 dataset [150].

the data-graph computation can act nondeterministically: different runs on the same inputs

can produce different results. Without repeatability, parallel programming is arguably much

harder [28,132]. Nondeterminism confounds debugging.

A known alternative to using locks is chromatic scheduling [2,18,142], which schedules

a data-graph computation based on a coloring of the data-graph computation’s conflict

graph — a graph with an edge between two vertices if updating them in parallel would

produce a race. For a simple data-graph computation, the conflict graph is simply the data

graph itself with undirected edges. The idea behind chromatic scheduling is fairly simple.

Chromatic scheduling begins by computing a (vertex) coloring of the conflict graph —

an assignment of colors to the vertices such that no two adjacent vertices share the same

color. Since no edge in the conflict graph connects two vertices of the same color, updates

on all vertices of a given color can execute in parallel without producing races. To execute

a round of a data-graph computation, the set of activated vertices Q is partitioned into χ

color sets — subsets of Q containing vertices of a single color. Updates are applied to

vertices in Q by serially stepping through each color set and updating all vertices within

a color set in parallel. Indeed, the special case where the active set Q == V is the entire
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graph (i.e., a static data-graph computation) can be executed using chromatic scheduling

using Distributed GraphLab [142]. The result of a data-graph computation executed using

chromatic scheduling is equivalent to that of a slightly modified version of Serial-DDGC

that starts each round (immediately before line 115 of Figure 3-4) by sorting the vertices

within its queue by color.

Chromatic scheduling avoids both of the pitfalls of the locking strategy. First, since only

nonadjacent vertices in the conflict graph are updated in parallel, no races can occur, and

the necessity for locks and their associated performance overheads are precluded. Second,

by establishing a fixed order for processing different colors, any two adjacent vertices are

always processed in the same order. The data-graph computation is therefore executed de-

terministically, as long as a deterministic coloring algorithm is used to color the conflict

graph. While chromatic scheduling potentially loses parallelism because colors are processed

serially, we shall see that this concern does not appear to be an issue in practice.

To date, chromatic scheduling has been applied to static data-graph computations [142],

but not to dynamic data-graph computations. This chapter addresses the question of how

to perform chromatic scheduling efficiently when the activation set changes on-the-fly, ne-

cessitating a data structure for maintaining dynamic sets of vertices in parallel.

Contributions

This chapter represents joint work with Charles E. Leiserson, Tim Kaler, and Tao B. Schardl

that was presented at the 2014 ACM Symposium on Parallelism in Algorithms and Architec-

tures under the title “Executing dynamic data-graph computations deterministically using

chromatic scheduling” [121].

This chapter introduces Prism, a chromatic-scheduling algorithm that executes dynamic

data-graph computations in parallel efficiently in a deterministic fashion. Prism employs a

“multibag” data structure to manage an activation set as a list of color sets. The multibag

achieves efficiency using “worker-local storage,” which is memory locally associated with each

“worker” thread executing the computation. By using the “multibag” and a deterministic col-

oring algorithm, Prism guarantees to execute the data-graph computation deterministically.

We analyze the performance of Prism using work-span analysis [52, Ch. 27], which is

described in detail in Appendix A. The work of a computation is the total number of instruc-

tions executed, and the span corresponds to the longest path of dependencies in the parallel
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program. We shall make the reasonable assumption that a single update f(v) executes in

Θ(deg(v)) work and Θ(lg(deg(v))) span.3 Under this assumption, on a degree-∆ data graph

G colored using χ colors, Prism executes the updates on the vertices in the activation set Qr

of a round r on P processors in O(size(Qr) + P ) work and O (χ (lg (Qr/χ) + lg ∆) + lgP )

span.

The “price of determinism” incurred by using chromatic scheduling instead of the more

common locking strategy appears to be negative for real-world applications. This discov-

ery is perhaps surprising since it would seem to be strictly harder to guarantee that the

computation behave deterministically than to allow for nondeterministic behaviors. Never-

theless, as Table 3-5 indicates, on seven application benchmarks, Prism executes 1.2–2.1

times faster than GraphLab’s comparable, but nondeterministic, locking strategy, which we

call RRLocks. This performance gap is not due solely to superior engineering or load bal-

ancing. A similar performance overhead is observed in a comparably engineered lock-based

scheduling algorithm, Cilk+Locks. Prism outperforms Cilk+Locks on each of the 7

application benchmarks and is on average (geometric mean) 1.4 times faster.

Our contribution is not a full-featured data-graph computation framework like

GraphLab, Pregel, Galois, PowerGraph, Ligra, or GraphChi. Each of these systems is the

result of countless hours of performance engineering and feature support. Instead, we pro-

vide a scheduling technique that could be adopted by any such framework to enable the

deterministic execution of work-efficient, dynamic data-graph computations, which no exist-

ing framework currently supports4 We use a modified shared-memory version of GraphLab

in order to isolate the effect of our scheduling algorithms. Thus, the empirical comparisons

in this chapter are apples-to-apples comparisons of scheduling strategies, not competitive

comparisons with other systems.

Prism behaves deterministically as long as every update is pure : it modifies no data

except for that associated with its target vertex. This assumption precludes the update func-

tion from modifying global variables to aggregate or collect values. To support this common

use pattern, we describe an extension to Prism, called Prism-R, which executes dynamic

data-graph computations deterministically even when updates modify global variables using

3Other assumptions about the work and span of an update can easily be made at the potential expense
of complicating the analysis.

4Deterministic Galois [159] has added support for deterministic execution of dynamic data-graph com-
putations by recursively removing and executing independent sets of vertices. However, their algorithm is
not work-efficient and, as a result, is much slower than the nondeterministic version.
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associative operations. Prism-R replaces each multibag Prism uses with a “multivector,”

maintaining color sets whose contents are ordered deterministically. Prism-R executes in

the same theoretical bounds as Prism, but its implementation is more involved. Empir-

ically Prism-R is on average (geometric mean) only 1.07 times slower than Prism and

outperforms Cilk+Locks on all but one of the seven application benchmarks.

Outline

The remainder of this chapter is organized as follows. Section 3.2 describes Prism, the

chromatic-scheduling algorithm for dynamic data-graph computations. Section 3.3 describes

the multibag data structure Prism uses to represent its color sets. Section 3.4 presents our

theoretical analysis of Prism. Section 3.5 describes a Cilk Plus [113] implementation of

Prism and presents empirical results measuring this implementation’s performance on seven

application benchmarks. Section 3.6 describes Prism-R which executes dynamic data-graph

computations deterministically even when update functions modify global variables using

associative operations. Section 3.7 describes and analyzes the multivector data structure

Prism-R uses to represent deterministically ordered color sets. Section 3.8 analyzes Prism-

R both theoretically, using work-span analysis, and empirically. Section 3.9 offers some

concluding remarks.

3.2 The Prism algorithm

This section presents Prism, a chromatic-scheduling algorithm for executing dynamic data-

graph computations deterministically. We describe how Prism differs from the serial algo-

rithm in Section 3.1, including how it maintains activation sets that are partitioned by color

using the multibag data structure.

Figure 3-6 shows the pseudocode for Prism, which differs from the Serial-DDGC

routine from Figure 3-4 in two main ways: the use of a multibag data structure to implement

Q, and the call to Color-Graph on line 121 to color the data graph.

A multibag Q represents a list 〈C0, C1, . . . , Cχ−1〉 of χ bags (unordered multisets) and

supports two operations:

• MB-Insert(Q, v, k) inserts an item v into bag Ck in Q. A multibag supports parallel

MB-Insert operations.
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• MB-Collect(Q) produces a collection C that represents a list of the nonempty bags

in Q, emptying Q in the process.

Although the multibag data structure supports duplicate items in a single bag, our im-

plementation of Prism actually ensures that no duplicate vertices are ever inserted into a

bag.

Prism calls Color-Graph on line 121 to color the given data graph G = (V,E)

and obtain the number χ of colors used. Although it is NP-complete to find an opti-

mal coloring of a graph [79] — a coloring that uses the smallest possible number of

colors — an optimal coloring is not necessary for Prism to perform well, as long as

the data graph is colored deterministically, in parallel,5 and with sufficiently few col-

ors in practice. Many parallel coloring algorithms exist that satisfy the needs of Prism

(see, for example, [5, 11, 86, 87, 102, 118, 126, 127, 140, 191]), however, our implementation

of Prism uses a multicore variant of the Jones and Plassmann algorithm [118] that pro-

duces a deterministic (∆ + 1)-coloring of a ∆-degree graph G = (V,E) in linear work and

O
(

lnV + lg ∆ ·min {
√
E,∆ + lnV/ ln (e lnV/∆)}

)
span, which is described in Chapter 4.

Let us now see how Prism uses chromatic scheduling to execute a dynamic data-graph

computation 〈G, f,Q0〉. After line 121 colors G, line 123 initializes the multibag Q with

the initial activation set Q0, and then the while loop on lines 124–133 executes the rounds

of the data-graph computation. At the start of each round, line 125 collects the nonempty

bags C from Q, which correspond to the nonempty color sets for the round. Lines 126–132

iterate through the color sets C ∈ C sequentially, and the parallel for loop on lines 127–132

processes the vertices of each C in parallel. For each vertex v ∈ C, line 129 performs the

update S = f(v), which returns a set S of activated vertices, and lines 130–132 insert into

Q the vertices in S that have been activated.

Although a vertex u can be activated by multiple neighbors, it must only be updated at

most once during a round. Prism enforces this constraint6 by using the atomic compare-

and-swap operator [105, p. 480], which is available as a synchronization primitive on most

machines and whose definition is given in lines 134–140. Lines 130–132 use the CAS primitive

5If the data-graph computation performs sufficiently many updates, a serial Θ(V + E)-work greedy
coloring algorithm, such as that introduced by Welsh and Powell [197], can suffice as well, since the time to
color the graph would be sufficiently amortized against the work performed.

6This constraint may be enforced without the use of an atomic compare-and-swap operation by dedupli-
cating the contents of Q at the start of each round. However, our empirical studies have shown that this
limited use of atomics is beneficial in practice.
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Prism(G, f,Q0)

121 χ = Color-Graph(G)
122 r = 0
123 Q = Q0

124 while Q 6= ∅
125 C = MB-Collect(Q)
126 for C ∈ C
127 parallel for v ∈ C
128 active[v] = false
129 S = f(v)
130 parallel for u ∈ S
131 if CAS(active[u], false,true)
132 MB-Insert(Q, u, color [u])
133 r = r + 1

CAS(current , test , value)

134 begin atomic
135 if current == test
136 current = value
137 return true
138 else
139 return false
140 end atomic

Figure 3-6: Pseudocode for Prism, including the compare-and-swap synchronization prim-
itive CAS. The procedure Prism takes as input a data graph G, an update function f , and
an initial activation set Q0. The procedure Color-Graph colors a given graph and returns
the number of colors it used. The procedures MB-Collect and MB-Insert operate the
multibag Q to maintain activation sets for Prism. The variable r tracks the number of
rounds executed.

to activate each vertex u ∈ S by atomically setting active[u] = true, and if active[u] was

previously false, then calling MB-Insert. Thus, each vertex is inserted into Q at most

once during a round.

Design considerations for the implementation of multibags

The theoretical performance of Prism depends upon the properties of the multibag data

structure. In particular, the multibag is carefully designed to ensure that Prism is work-

efficient — that is, it performs the same asymptotic work as the serial algorithm Serial-

DDGC in Figure 3-4. Before examining the design of the multibag in Section 3.3, let us

first explore why maintaining active color sets in Prism in a work-efficient manner is tricky.

Specifically, we shall consider two alternative strategies: bit vectors and an array of worker-

local queues.

The bit-vector approach avoids the multibag altogether and simply manages activation

sets using the bit vector active already used by Prism. Recall that if active[i] is true, then

the vertex vi ∈ V indexed by i is active. Suppose that active were the only data structure.

To iterate over all activated vertices of color k, a parallel for could scan through active,

updating the vertex vi whenever active[i] is true and color [i] is k. This scheme requires
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Ω(V χ) work per round of the computation, where χ is the number of colors returned by

Color-Graph in line 121 of Figure 3-6, since the entire bit vector must be scanned χ

times each round. At the cost of additional preprocessing, active could be organized such

that vertices of the same color are assigned contiguous indexes. Even with this optimization,

however, scanning active requires Ω(V ) work each round, which is not work-efficient for

dynamic computations that activate only a sparse subset of the vertices each round.

An alternative strategy that one might consider is to represent the active color sets

using an array of worker-local queues. A straightforward implementation of this approach,

however, is also not work-efficient. For a dynamic data-graph computation using χ colors

and P processors, a total of Pχ worker-local queues would be needed to maintain the set

of active vertices, and Ω(Pχ) work would be required to collect all nonempty queues. As

we shall see in Section 3.3, however, by using a carefully designed data structure to manage

worker-local queues, we can obtain a work-efficient data structure for maintaining color sets.

3.3 The multibag data structure

This section presents the multibag data structure employed by Prism. The multibag uses

worker-local sparse accumulators [84] and an efficient parallel collection operation. We de-

scribe how the MB-Insert and MB-Collect operations are implemented, and we analyze

them using work-span analysis [52, Ch. 27]. When used in a P -processor execution of a

parallel program, a multibag Q of χ bags storing n elements supports MB-Insert in Θ(1)

worst-case time and MB-Collect in O(n+χ+P ) work and O(lg n+χ+ lgP ) span. Such

a multibag storing k elements uses O(Pχ+ k) space.

A sparse accumulator (SPA) [84] implements an array that supports lazy initial-

ization of its elements. A SPA T contains a sparsely populated array T.array of elements

and a log T.log , which is a list of indices of initialized elements in T.array . To implement

multibags, we shall only need the ability to create a SPA, access an arbitrary SPA element,

or delete all elements from a SPA. For simplicity, we shall assume that an uninitialized ar-

ray element in a SPA has a value of nil. When an array element T.array [i] is modified for

the first time, the index i is appended to T.log . An appropriately designed SPA T storing

n = |T.log | elements admits the following performance properties:

• Creating T takes Θ(1) work.
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Figure 3-7: A multibag data structure. (a) A multibag containing 19 elements distributed
across 4 distinct bags: {C0, C2, C3, C6}, representing vertices of colors 0, 2, 3, and 6, re-
spectively. Each worker keeps track of its portion of a particular bag, its subbag, using a
worker-local SPA, thus avoiding initialization of unused subbags by maintaining a compact
log pointing to the set of populated subbags. For example, bag C6 is composed of three
subbag contributions from the three active workers: {v33, v44, v28}, {v84}, and {v5, v79, v10}.
(b) The output of MB-Collect when executed on the multibag in (a). Sets of subbags in
collected -subbags are labeled with the bag Ck that their union represents.

• Each element of T can be accessed in Θ(1) work.

• Reading all k initialized elements of T takes Θ(k) work and Θ(lg k) span.

• Emptying T takes Θ(1) work.

A multibag Q is an array of P worker-local SPA’s, where P is the number of workers

executing the program. We shall use p interchangeably to denote either a worker or that

worker’s unique identifier. Worker p’s local SPA in Q is thus denoted by Q[p]. For a multibag

Q of χ bags, each SPAQ[p] contains an arrayQ[p].array of size χ and a logQ[p].log . Figure 3-

7(a) illustrates a multibag with χ = 7 bags, 4 of which are nonempty. As Figure 3-7(a) shows,

the worker-local SPA’s in Q partition each bag Ck ∈ Q into subbags {Ck,0, Ck,1, . . . , Ck,P−1},

where Q[p].array [k] stores subbag Ck,p.

Implementation of MB-Insert and MB-Collect

The worker-local SPA’s enable a multibag Q to support parallel MB-Insert operations

without creating races. Figure 3-8 shows the pseudocode for MB-Insert. When a worker p

executes MB-Insert(Q, v, k), it inserts element v into the subbag Ck,p as follows. Line 141

calls Get-Worker-ID to get worker p’s identifier. Line 142 checks if subbag Ck,p stored in

Q[p].array [k] is initialized, and if not, lines 143 and 144 initialize it. Line 145 inserts v into

Q[p].array [k].
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MB-Insert(Q, v, k)

141 p = Get-Worker-ID()
142 if Q[p].array [k] == nil
143 Append(Q[p].log , k)
144 Q[p].array [k] = new subbag
145 Append(Q[p].array [k], v)

Figure 3-8: Pseudocode for the MB-Insert multibag operation. MB-Insert(Q, v, k) in-
serts the element v into the kth bag Ck of the multibag Q.

Conceptually, the MB-Collect operation extracts the bags in Q to produce a compact

representation of those bags that can be read efficiently. Figure 3-7(b) illustrates the com-

pact representation of the elements of the multibag from Figure 3-7(a) that MB-Collect

returns. This representation consists of a pair 〈bag-offsets, collected -subbags〉 of arrays that

together resemble the representation of a graph in a CSR format. The collected -subbags ar-

ray stores all of the subbags in Q sorted by their corresponding bag’s index. The bag-offsets

array stores indices in collected -subbags that denote the sets of subbags comprised by each

bag. In particular, in this representation, the contents of bag Ck are stored in the subbags

in collected -subbags between indices bag-offsets[k] and bag-offsets[k + 1].

Figure 3-9 sketches how MB-Collect converts a multibag Q stored in worker-local

SPA’s into the representation illustrated in Figure 3-7(b). Steps 1 and 2 create an array

collected -subbags of nonempty subbags from the worker-local SPA’s in Q. Each subbag Ck,p

in collected -subbags is tagged with the integer index k of its corresponding bag Ck ∈ Q.

Step 3 sorts collected -subbags by these index tags, and Step 4 creates the bag-offsets array.

Step 5 removes all elements from Q, thereby emptying the multibag.

Analysis of multibags

We now analyze the work and span of the multibag’s MB-Insert and MB-Collect oper-

ations, starting with MB-Insert.

Lemma 1 Executing MB-Insert takes Θ(1) time in the worst case.

Proof. Consider each step of a call to MB-Insert(Q, v, k). The Get-Worker-ID pro-

cedure on line 141 obtains the executing worker’s identifier p from the runtime system in

Θ(1) time, and line 142 checks if the entry Q[p].array [k] is empty in Θ(1) time. Suppose

that Q[p].log and each subbag in Q[p].array are implemented as dynamic arrays that use a
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deamortized table-doubling scheme [36]. Lines 143–145 then take Θ(1) time each to append

k to Q[p].log , create a new subbag in Q[p].array [k], and append v to Q[p].array [k].

The next lemma analyzes the work and span of MB-Collect.

Lemma 2 In a P -processor parallel program execution, a call to MB-Collect(Q) on a

multibag Q with χ bags whose contents are distributed across m distinct subbags executes in

O(m+ χ+ P ) work and O(lgm+ χ+ lgP ) span.

Proof. We analyze each step of MB-Collect in turn. We shall use a helper procedure

Prefix-Sum(A), which computes the all-prefix sums of an array A of n integers in Θ(n) work

and Θ(lg n) span. (Blelloch [19] describes an appropriate implementation of Prefix-Sum.)

Step 1 replaces each entry in Q[p].log in each worker-local SPA Q[p] with the appropriate

index-subbag pair 〈k, Ck,p〉 in parallel, which requires Θ(m + P ) work and Θ(lgm + lgP )

span. Step 2 gathers all index-subbag pairs into a single array. Suppose that each worker-

local SPA Q[p] is augmented with the size of Q[p].log , as Figure 3-7(a) illustrates. Executing

Prefix-Sum on these sizes and then copying the entries of Q[p].log into collected -subbags

in parallel therefore completes Step 2 in Θ(m + P ) work and Θ(lgm + lgP ) span. Step 3

can sort the collected -subbags array in Θ(m+χ) work and Θ(lgm+χ) span using a variant

of a parallel radix sort [24,49,203] as follows:

1. Divide collected -subbags into m/χ groups of size χ, and create an (m/χ) × χ matrix

A, where entry Aij stores the number of subbags with index j in group i. Constructing

A can be done with Θ(m+χ) work and Θ(lgm+χ) span by evaluating the groups in

parallel and the subbags in each group serially.

2. Evaluate Prefix-Sum on AT (or, more precisely, the array formed by concatenating

the columns of A in order) to produce a matrix B such that Bij identifies which entries

in the sorted version of collected -subbags will store the subbags with index j in group i.

This Prefix-Sum call takes Θ(m+ χ) work and Θ(lgm+ lgχ) span.

3. Create a temporary array T of size m, and in parallel over the groups of

collected -subbags, serially move each subbag in the group to an appropriate index in T ,

as identified by B. Copying these subbags executes in Θ(m+χ) work and Θ(lgm+χ)

span.

4. Rename the temporary array T as collected -subbags in Θ(1) work and span.
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MB-Collect(Q)

1. For each SPA Q[p], map each bag index k in Q[p].log to the pair 〈k, Q[p].array [k]〉.
2. Concatenate the arrays Q[p].log for all workers p ∈ {0, 1, . . . , P − 1} into a single array,

collected -subbags.
3. Sort the entries of collected -subbags by their bag indices.
4. Create the array bag-offsets, where bag-offsets[k] stores the index of the first subbag

in collected -subbags that contains elements of the kth bag.
5. For p = 0, 1, . . . , P − 1, delete all elements from the SPA Q[p].
6. Return the pair 〈bag-offsets, collected -subbags〉.

Figure 3-9: Pseudocode for the MB-Collect multibag operation. Calling MB-Collect
on a multibag Q produces a pair of arrays collected -subbags, which contains all nonempty
subbags in Q sorted by their associated bag’s index, and bag-offsets, which associates sets
of subbags in Q with their corresponding bag.

Finally, Step 4 can scan collected -subbags for adjacent pairs of entries with different bag

indices to compute bag-offsets in Θ(m) work and Θ(lgm) span, and Step 5 can reset every

SPA in Q in parallel using Θ(P ) work and Θ(lgP ) span. Totaling the work and span of each

step completes the proof.

Remark 3 Let Q be a multibag in a P -processor execution with m distinct subbags that

represents bags whose indices lie in the range [0, k]. Then Q may be treated as a multibag

representing k bags so that MB-Collect(Q) executes in O(m+ k+P ) work and O(lgm+

k + lgP ) span.

Although different executions of a program can store the elements of Q in different

numbers m of distinct subbags, notice that m is never more than the total number of

elements in Q.

3.4 Analysis of Prism

This section analyzes the performance of Prism using work-span analysis [52, Ch. 27]. We

derive bounds on the work and span of Prism for any simple data-graph computation

〈G, f,Q0〉. Recall that we make the reasonable assumptions that a single update f(v) exe-

cutes in Θ(deg(v)) work and Θ(lg(deg(v))) span, and that the update only activates vertices

in N(v). These work and span bounds can be used to characterize the data-graph compu-

tations on which Prism achieves good parallel scalability. In particular, we show that on a

data-graph on n vertices colored using χ colors that Prism achieves good parallel speedup

whenever the average work per round is much greater than P χ lg n
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Let us first analyze the work and span of Prism for one round of a data-graph compu-

tation.

Theorem 4 Suppose that Prism colors a ∆-degree data graph G = (V,E) using χ colors,

and then executes the data-graph computation 〈G, f,Q0〉. Then, on P processors, Prism

executes updates on all vertices in the activation set Qr for a round r using O(size(Qr)+P )

work and O(χ(lg(Qr/χ) + lg ∆) + lgP ) span.

Proof. Let us first analyze the work and span of one iteration of lines 126–132 in Prism,

which perform the updates on the vertices belonging to one color set C ∈ Qr. Consider a

vertex v ∈ C. Lines 128 and 129 execute in Θ(deg(v)) work and Θ(lg(deg(v))) span. For

each vertex u in the set S of vertices activated by the update f(v), Lemma 1 implies that

lines 131–132 execute in Θ(1) total work. The parallel for loop on lines 130–132 therefore

executes in Θ(S) work and Θ(lgS) span. Because |S| ≤ deg(v), the parallel for loop on lines

127–132 thus executes in Θ(size(C)) work and Θ(lgC+maxv∈C lg(deg(v))) = O(lgC+lg ∆)

span.

By processing each of the χ color sets belonging to Qr, lines 126–132 therefore executes

in Θ(size(Qr) + χ) work and O(χ(lg(Qr/χ) + lg ∆)) span. Lemma 2 implies that line 125

executes MB-Collect in O(Qr + χr + P ) work and O(lgQr + χr + lgP ) span where

χr = maxv∈Qr {color [v]}. Note that we take advantage here of the observation made in

remark 3. The theorem follows since |Qr|+ χr ≤ size(Qr) + 1

Theoretical scalability of Prism

Dynamic data-graph computations typically run for multiple rounds until a convergence

criteria is met. We will now generalize Theorem 4 to prove work and span bounds for Prism

when executing a sequence of rounds.

Theorem 5 Suppose that Prism colors a ∆-degree data graph G = (V,E) using χ colors,

and then executes the data-graph computation 〈G, f,Q0〉 in r rounds applying updates to the

activation sets Q0, Q1, . . . , Qr−1. Define the multiset U =
⊎r−1
i=0 Qi so that |U| =

∑r−1
i=0 |Qi|

and size(U) =
∑r−1

i=0 size(Qi), where the symbol
⊎

indicates a multiset sum.7 Then, on

P processors, Prism executes the data-graph computation using O(size(U) + rP ) work and

O(r χ(lg((U/r)/χ) + lg ∆) + r lgP ) span.
7A multiset sum M =

⊎
i∈IMi has multiplicity of element m equal to M(m) =

∑
i∈IMi(m) for all

m ∈M .
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Proof. The work bound follows directly from Theorem 4 by taking the sum of work

performed in each of the r rounds of Prism. The total span of Prism is equal to the sum

of each round’s span which by Theorem 4 is bounded by
∑r−1

i=0 (χ(lg(Qi/χ) + lg ∆) + lgP ).

Observing that
∑r−1

i=0 χ lg(Qi/χ) ≤ r χ lg((U/r)/χ) completes the proof.

Given Theorem 5 we can compute the parallelism of Prism for a data-graph computation

that applies a multiset U of updates over r rounds. The following corollary expresses the

parallelism of Prism in terms of the average size of the activation sets in a sequence of

rounds.

Corollary 6 Suppose Prism executes a data-graph computation in r rounds during which

it applies a multiset U of updates. Define the average number of updates per round

Uavg = |U| /r and the average work per round Wavg = size(U)/r. Then Prism has

Ω(Wavg/(χ(lg(Uavg/χ) + lg ∆))) parallelism.

Proof. Follows from Theorem 5 by computing the parallelism as the ratio of the work

and span and then performing substitution.

Corollary 6 implies that Prism achieves near perfect linear parallel speedup on P

processors for a graph of n vertices when the average work performed in each round

Wavg � P χ lg n.

3.5 Empirical evaluation

This section explores the performance properties of Prism from an empirical perspective.

We describe three experiments designed to investigate the synchronization costs, dynamic-

scheduling overheads, and scalability properties of Prism. For the first experiment, on a suite

of 12 benchmark graphs, Prism executed between 1.0 and 2.1 times faster than a nondeter-

ministic locking protocol on PageRank [35], exhibiting a geometric-mean speedup of a factor

of 1.5, a substantial advantage in synchronization costs. The second experiment shows that

the slowdown that Prism incurs for dynamic scheduling using multibags, compared with

static scheduling, is only about 1.16 when all vertices are activated in every round. This ex-

periment shows that Prism can be effective even for relatively densely activated graphs. The

third experiment shows that Prism scales well and is relatively insensitive to the number of

colors needed to color the data graph, as long as there is sufficient parallelism.
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Experimental setup

All of the benchmarks presented in this section were run on an Intel Xeon X5650 machine

with 12 processor cores running at 2.67-GHz with hyperthreading disabled. Our test machine

has 49GB of DRAM, two 12-MB L3-caches, each shared among 6 cores, and private L2-

and L1-caches of sizes 128KB and 32KB, respectively.

As a platform for our experiments, we implemented a new parallel execution engine

within GraphLab [143] that uses Intel Cilk Plus8 [113] to expose parallelism. The new

execution engine and all of our scheduling algorithms were designed to be compatible with

the original GraphLab API in order to facilitate a fair evaluation of the relative merits

of different scheduling methodologies. In particular, to better understand the performance

properties of Prism, we developed four scheduling algorithms for comparison:

Serial-DDGC — is an implementation of the serial scheduling algorithm from Figure 3-

4. Serial-DDGC provides a serial performance baseline for measuring the parallel

speedup achieved by the other, more complex, scheduling algorithms for dynamic data-

graph computations.

Cilk+Locks — is a lock-based scheduling algorithm for dynamic data-graph computa-

tions. During each round, Cilk+Locks updates only an active subset of the vertices

in the graph. It uses a locking scheme to avoid executing conflicting updates in paral-

lel. The locking scheme associates a shared-exclusive (i.e., reader-writer) lock [54] with

each vertex in the graph. Prior to executing an update f(v), vertex v’s lock is acquired

exclusively, and a shared lock is acquired for each u ∈ N(v). A global ordering of locks

is used to avoid deadlock.

RRLocks — is the lock-based dynamic scheduling algorithm implemented by the round-

robin sweep scheduler in the original shared-memory version of GraphLab. A bit vec-

tor active is used to represent the active set of vertices. During each round, RRLocks

scans each vertex in the active set in a round-robin fashion, conditionally updating a

vertex vi if active[i] is true. To avoid races, a locking strategy is used to coordinate

updates that conflict.

8All code was compiled with Intel’s ICC version 13.1.1.

59



Graph |V | |E| χ
Cilk+

Locks
Prism Prism-R Coloring

cage15 5,154 94,044 17 36.9 35.5 35.6 12%
liveJournal 4,847 68,475 333 36.8 21.7 22.3 12%
randLocalDim25 1,000 49,992 36 26.7 14.4 14.6 18%
randLocalDim4 1,000 41,817 47 19.5 12.5 13.7 14%
rmat2Million 2,097 39,912 72 22.5 16.6 16.8 12%
powerGraph2M 2,000 29,108 15 12.1 9.8 10.1 13%
3dgrid5m 5,000 15,000 6 10.3 10.3 10.4 7%
2dgrid5m 4,999 9,999 4 17.7 8.9 9.0 4%
web-Google 916 5,105 43 3.9 2.4 2.4 8%
web-BerkStan 685 7,600 200 3.9 2.4 2.7 8%
web-Stanford 281 2,312 62 1.9 0.9 1.0 11%
web-
NotreDame

325 1,469 154 1.1 0.8 0.8 12%

Table 3-10: Performance of Prism versus Cilk+Locks when executing 10 · |V | updates of
the PageRank [35] data-graph computation on a suite of six real-world graphs and six syn-
thetic graphs. Column “Graph” identifies the input graph, and columns |V | and |E| specify
the number of vertices and edges in the graph in thousands, respectively. Column χ gives
the number of colors Prism used to color the graph. Columns “Cilk+Locks,” “Prism,”
and “Prism-R” present 12-core running times in seconds for each respective scheduler. Each
running time is the median of 5 runs. Column “Coloring” gives the percentage of Prism’s
running time spent coloring the graph. Prism-R, discussed in Section 3.6, provides deter-
ministic support for associative operations on global variables.

RRColor — is a coloring-based dynamic scheduling algorithm that uses a bit vector active

to represent the active set of vertices. Instead of using locks to coordinate conflicting

updates, however, RRColor uses a vertex-coloring of the graph. At the start of the

computation, RRColor partitions the vertices by color and stores them in static

arrays. For a graph colored using χ colors, each round of the computation is divided

into χ color steps. During the kth color step, RRColor scans all color-k vertices and

conditionally updates a color-kd vertex vi if active[i] is true.

Overheads for locking and for chromatic scheduling

We compared the overheads associated with coordinating conflicting updates of a dynamic

data-graph computation using locks versus using chromatic scheduling. We evaluated these

overheads by comparing the 12-core execution times for Prism and Cilk+Locks to execute

the PageRank [35] data-graph computation on a suite of graphs. We used PageRank for this
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study because of its comparatively cheap update function, which makes overheads due to

scheduling more pronounced. PageRank updates a vertex v by first scanning v’s incoming

edges to aggregate the data from its incoming neighbors, and then by scanning v’s outgoing

edges to activate its outgoing neighbors.

We executed the PageRank application on a suite of six synthetic and six real-world

graphs. The six real-world graphs came from the Stanford Large Network Dataset Collection

(SNAP) [136], and the University of Florida Sparse Matrix Collection [57]. The six synthetic

graphs were generated using the “randLocal,” “powerLaw,” “gridGraph,” and “rMatGraph”

generators included in the Problem Based Benchmark Suite [179]. We chose the graphs in

this suite to be large enough to stress the memory system and thus make parallel speedup

comparatively difficult. That is, given the random access inherent in data-graph compu-

tations, we expect most references to vertex data to come from DRAM, making DRAM

bandwidth a scarce shared commodity. Since the span of Prism is superconstant, however,

for a fixed number of workers, increasing the size of the graph only increases parallelism,

making good parallel speedup comparatively easy. Thus, we have pessimistically chosen the

graphs in the suite to be large enough to make DRAM bandwidth a shared bottleneck but

not unduly larger.

We observed that Prism often performs slightly fewer rounds of updates than

Cilk+Locks when both are allowed to run until convergence. Wishing to isolate scheduling

overheads, we controlled this variation by explicitly setting the total number of updates on

a graph to 10 times the number of vertices.

Table 3-10 presents the empirical results for this study. Table 3-10 shows that over the 12

benchmark graphs, Prism executes between 1.0 and 2.1 times faster than Cilk+Locks on

PageRank, exhibiting a geometric-mean speedup of a factor of 1.5. Moreover, from Table 3-

10 we see that an average of 10.9% of Prism’s total running time is spent coloring the data

graph, which is approximately equal to the cost of executing |V | updates. Prism colors the

data-graph once to execute the data-graph computation, however, meaning that its cost can

be amortized over all of the updates in the data-graph computation. By contrast, the locking

scheme implemented by Cilk+Locks incurs overhead for every update. Before updating

a vertex v, Cilk+Locks acquires each lock associated with v and every vertex u ∈ N(v).

For simple data-graph computations whose update functions perform relatively little work,

this step can account for a significant fraction of the time to execute an update.

61



Benchmark χ Updates RRLocks RRColor Prism Prism-R

PR/L 333 48,475K 35.25 14.5 17.7 18.4
ID/2000 4 40,000K 63.15 50.1 59.2 59.9
FBP/C3 2 16,001K 11.9 8.8 8.8 8.9
ID/1000 4 10,000K 15.7 12.6 14.9 15.0
PR/G 43 9,164K 3.1 1.3 2.1 2.2
FBP/C1 2 8,783K 5.9 4.7 4.8 4.8
ALS/N 6 1,877K 65.7 52.4 52.8 53.5

Table 3-11: Performance of three schedulers on the seven application benchmarks from Ta-
ble 3-5, modified so that all vertices are activated in every round. Column “Updates” specifies
the number of updates performed in the data-graph computation. Columns “RRLocks,”
“RRColor,” “Prism,” and “Prism-R” list the 12-core running times in seconds for the re-
spective schedulers to execute each benchmark. Each running time is the median of 5 runs.
The Prism-R algorithm, which provides deterministic support for associative operations on
global variables, will be discussed in Section 3.6.

Dynamic-scheduling overhead

To investigate the overhead of using multibags to maintain activation sets, we compared

the 12-core running times of Prism, RRColor, and RRLocks on the seven benchmark

applications from Table 3-5. For this study, we modified the benchmarks slightly for each

scheduler in order to provide a fair comparison. First, because Prism typically executes fewer

updates than a static data-graph computation scheduler, we modified the update functions

for each application so that every update on a vertex v always activates all vertices u ∈ N(v).

This modification guarantees that Prism executes the same set of updates each round as

RRLocks and RRColor, while still incurring the overhead that Prism requires in order

to maintain a dynamic set of active vertices. Thus, we compare the worst case conditions

for Prism with respect to scheduling overhead with the best case conditions for RRLocks

and RRColor.

Table 3-11 presents the results of these tests, revealing that the overhead Prism incurs

to maintain its activation sets using a multibag. As can be seen from the figure, Prism is

1.0 to 1.6 times slower than RRColor on the benchmarks with a geometric-mean rela-

tive slowdown of 1.16. That is, for static data-graph computations, Prism incurs only an

aggregate 16% slowdown through the use of a multibag, as opposed to the simple array

used by RRColor, which suffices for static scheduling. The Prism algorithm, which can

also support dynamic activation sets efficiently, incurred minimal overhead for the multibag

data structure. Prism outperformed RRLocks on all benchmarks, achieving a geometric-
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mean speedup of 30% due to RRLocks’s lock overhead. Thus, Prism incurs relatively little

overhead by maintaining activation sets with multibags.

The relative overhead of RRColor and Prism depends on the percentage of vertices

active during a given round. As a typical example, RRColor is approximately 1.09 times

faster than Prism on the image denoise benchmark when 80% of the vertices are active each

round, but is 1.11 times slower when 5% or less of the vertices are active each round. As

part of an effort to incorporate the Prism scheduling paradigm into an existing data-graph

computation framework (e.g., GraphLab, Pregel, etc.), one might consider using a heuristic

to switch between the use of a bitvector and a multibag depending on the density of the

activation set. A simple heuristic such as a fixed threshold on the relative density of the

activation set (e.g., 10% of the vertices) would likely suffice to maintain activation sets with

good performance: if fewer than 10% of vertices are active, use a multibag, otherwise use a

bitvector.

Scalability of Prism

To measure the scalability of Prism, and Cilk+Locks, we compared their 12-core runtimes

to the serial reference implementation Serial-DDGC. Figure 3-12 shows the empirical 12-

core speedups relative to Serial-DDGC of Prism and Cilk+Locks on seven application

benchmarks. (Data for Prism-R is also included, which will be discussed in Section 3.8.

In geometric mean, Cilk+Locks achieved 5.73 times speedup, Prism achieved 7.56 times

speedup, and Prism-R achieved 7.42 times speedup.

In order to study the effect of the number χ of colors used to color the application’s

data graph on the parallel scalability of Prism, we measured the parallelism T1/T∞ and

the 12-core speedup T1/T12 of Prism while executing the image-denoise application as we

varied the number of colors used. The image-denoise application performs belief propagation

to remove Gaussian noise added to a gray-scale image. The data graph for the image-denoise

application is a two-dimensional grid in which each vertex represents a pixel, and there is an

edge between any two adjacent pixels. The Color-Graph procedure invoked in line 121 of

Figure 3-6 typically colors this data-graph with just 4 colors.

To perform this study, we artificially increased χ by repeatedly taking a random

nonempty subset of the largest set of vertices with the same color and assigning a new

color to those vertices. Using this technique, we ran the image-denoise application on a
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Figure 3-12: Empirical speedup relative to Serial-DDGC on 12 processor cores. Shown
are the empirical speedups Ts/T12 of Cilk+Locks, Prism, and Prism-R, where Ts is the
runtime of the serial scheduling algorithm Serial-DDGC and T12 is the runtime of the
particular algorithm on 12 cores. The Prism-R algorithm is discussed in Section 3.6.

500-by-500 pixel input image for values of χ between 4 and 250, 000, the last data point cor-

responding to a coloring that assigns all pixels distinct colors. Figure 3-13 plots the results

of these tests. Although the parallelism of Prism is inversely proportional to χ, Prism’s

speedup on 12 cores is relatively insensitive to χ, as long as the parallelism is greater than

about 120. This result is consistent with the rule of thumb that a program with at least 10P

parallelism should achieve nearly perfect linear speedup on P processors [52, p. 783].

3.6 The Prism-R Algorithm

This section introduces Prism-R, a chromatic-scheduling algorithm that executes a dynamic

data-graph computation deterministically even when updates modify global reducer vari-

ables using associative operations such as a reducer hyperobject [76]. While the chromatic

scheduling technique employed by Prism ensures that there are no data races on the ver-

tex data of the graph, the order in which updates are made to a reducer variable among

vertices of a common color can yield a nondeterministic result to the final reducer variable

value. The multivector data structure, which is a theoretical improvement to the multibag,

is used by Prism-R to maintain activation sets that are partitioned by color and ordered

deterministically. We describe an extension of the model of simple data-graph computations
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Figure 3-13: Scalability of Prism on the image-denoise application as a function of χ, the
number of colors used to color the data graph. The parallelism T1/T∞ is plotted together
with the empirical speedup T1/T12 achieved on a 12-core execution. Parallelism values were
measured using the Cilkview scalability analyzer [103].

that permits an update function to perform associative operations on global variables using

a parallel reduction mechanism. In this extended model, Prism-R executes dynamic data-

graph computations deterministically while achieving the same work and span bounds as

Prism.

Data-graph computations with global reductions

Several frameworks for executing data-graph computations allow updates to modify global

variables in limited ways. Pregel aggregators [145], and GraphLab’s sync mechanism [143],

for example, both support data-graph computations in which an update can modify a global

variable in a restricted manner. These mechanisms coordinate parallel modifications to a

global variable using parallel reductions [20, 45, 112, 116, 125, 130, 149, 169], that is, they

coordinate these modifications by applying them to local views (copies) of the variable and

then reducing (combining) those copies together using a binary reduction operator.

A reducer (hyperobject) [76, 133] is a general parallel reduction mechanism provided

by Cilk Plus and other dialects of Cilk. A reducer is defined on an arbitrary data type

T , called a view type, by defining an Identity operator and a binary Reduce operator

for views of type T . The Identity operator creates a new view of the reducer. The binary

Reduce operator defines the reducer’s reduction operator. A reducer is a particularly general
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Prism-R(G, f,Q0)

146 χ = Color-Graph(G)
147 r = 0
148 updates = 0
149 Q = Q0

150 while Q 6= ∅
151 C = MV-Collect(Q)
152 for C ∈ C
153 parallel for i = 1, 2, . . . , |C|
154 〈v, p〉 = C[i]
155 if p == priority [v]
156 rank [f(v)] = updates + i
157 priority [v] = ∞
158 S = f(v)
159 parallel for u ∈ S
160 if PriorityWrite(priority [u], rank [f(v)])
161 MV-Insert(Q, 〈u, rank [f(v)]〉, color [u])
162 updates = updates + |C|
163 r = r + 1

PriorityWrite(current , value)

164 begin atomic
165 if current > value
166 current = value
167 return true
168 else
169 return false
170 end atomic

Figure 3-14: Pseudocode for Prism-R. The algorithm takes as input a data graph G, an
update function f , and an initial activation set Q0. Color-Graph colors a given graph
and returns the number of colors it used. The procedures MV-Collect and MV-Insert
operate the multivector Q to maintain activation sets for Prism-R. Prism-R updates the
value of updates after processing each color set and r after each round of the data-graph
computation.

reduction mechanism because it guarantees that, if its Reduce operator is associative, then

the final result in the global variable is deterministic: every parallel execution of the program

produces the same result. Other parallel reduction mechanisms, including Pregel aggregators

and GraphLab’s sync mechanism, provide this guarantee only if the reduction operator is

also commutative.

Although Prism is implemented in Cilk Plus, Prism does not produce a deterministic

result if updates modify global variables using a noncommutative reducer. The reason for this

is, in part, that the order of vertices within in a multibag depends on how the computation

was scheduled among participating workers. As a result, the order in which lines 127–132 of

Prism in Figure 3-6 evaluates the vertices in a color set C is nondeterministic. If two updates

on vertices in C modify the same reducer, then the relative order of these modifications can

differ between runs of Prism, even if a single worker happens to execute both updates.

Prism-R
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Prism-R is an extension to Prism that executes dynamic data-graph computations

deterministically even when update functions are allowed to perform associative operations

on global variables. The semantics of Prism-R mimic that of Serial-DDGC when its queue

of active vertices is stable sorted by color at the start of each round. In this modified version

of Serial-DDGC updates to active vertices of the same color are applied in increasing

order of their insertion into the queue. Prism-R guarantees that the result of associative

reductions performed by update functions reflect this same order.

Figure 3-14 shows the pseudocode for Prism-R which differs from Prism in its use of

alternate data structure to maintain partitioned activation sets and in its use of a priority

deduplication strategy for avoiding multiple updates to the same vertex in a round.

A multivector is used by Prism-R to represent a list of χ vectors (ordered multisets).

It supports the operations MV-Insert and MV-Collect, which are analogous to the

multibag operations MB-Insert and MB-Collect, respectively. Each vector maintained

by a multivector has serial semantics, meaning that the order of elements within each vector

is deterministic and equivalent to the insertion order in an execution of the serial elision of the

parallel program. Section 3.7 describes and analyzes the implementation of the multivector

data structure.

The serial semantics of the multivector are not alone sufficient to ensure that updates are

ordered deterministically in an execution of the serial elision of the program. Consider, for

example, a round of Prism that updates the three vertices x, y, z in parallel. Suppose that y

activates u and both x and z activate a common neighbor v. The atomic compare-and-swap

operator used by Prism on line 131 of Figure 3-6 ensures that x and z will not both insert v

into the activation set, but which of the two succeeds is nondeterministic. Inserting these two

activated vertices into a multivector would produce either the order u, v or v, u depending

on whether x or z activated v.

To eliminate this source of nondeterminism, Prism-R assigns each update f(v) a unique

integer rank [f(v)] on line 156 of Figure 3-14 that orders updates applied during a round

according to their execution order in an execution of the serial elision of Prism-R. Instead

of maintaining a bit vector denoting whether or not a vertex is active Prism-R maintains

an integer array priority of priorities. For each active vertex v the value priority [v] is equal

to the smallest rank of any update f(u) that activated v in the previous round. The priority

of a vertex v is reset on line 157 before applying f(v) by setting priority [v] =∞.
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For each vertex u ∈ N(v) activated by update f(v), Prism-R uses an atomic priority-

write operator [178] to set priority [u] = min {priority [u], rank [f(v)]} and inserts the vertex-

priority pair 〈u, rank [f(v)]〉 into the multivector if the priority write is successful on line 160.

The color sets returned by MV-Collect on line 151 can contain multiple vertex-priority

pairs for each active vertex. On lines 153–161 Prism-R iterates over the vertex-priority pairs

〈v, p〉 in a color set and only applies the update f(v) if priority [v] == p. Since priority [v]

is equal to the lowest ranked update that activated v, Prism-R updates each active vertex

exactly once during a round in the same order as a serial execution.

3.7 The multivector data structure

This section introduces the multivector data structure, which provides a theoretical improve-

ment to the multibag. The multivector data structure maintains several vectors (dynamic

arrays), each supporting a parallel append operation. Each vector has serial semantics, that

is, the order of elements within any vector is equivalent to their insertion order in an execu-

tion of the serial elision of the Cilk parallel program. The multivector can be used in place

of the multibag to provide a stronger encapsulation of nondeterminism in programs whose

behavior depends on the ordering of elements in each set. This section assumes familiarity

with the Cilk execution model [77], as well as its implementation of reducers [76].

A multivector represents a list of χ vectors (ordered multisets). It supports the op-

erations MV-Insert and MV-Collect, which are analogous to the multibag operations

MB-Insert and MB-Collect, respectively. Our implementation relies on properties of a

work-stealing runtime system. Consider a parallel program modeled by a computation dag A

in the Cilk model of multithreading. The serial execution order R(A) of the program lists

the vertices of A according to the order they would be visited if an execution of the serial

elision of the underlying Cilk program were executed, which corresponds to a left-to-right

depth-first execution of the dag.

A work-stealing scheduler partitions R(A) into a sequence R(A) = 〈t0, t1, . . . , tM−1〉,

where each trace ti ∈ R(A) is a contiguous subsequence of R(A) executed by exactly one

worker. A multivector represents each vector as a sequence of trace-local subvectors —

subvectors that are modified within exactly one trace. The ordering properties of traces

imply that concatenating a vector’s trace-local subvectors in order produces a vector whose
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Flatten(L,A, i)

171 A[i] = L
172 if L.left 6= nil
173 spawn Flatten(L.left , A, i− L.right .size − 1)
174 if L.right 6= nil
175 Flatten(L.right , A, i− 1)
176 sync

Figure 3-15: Pseudocode for the Flatten operation for a log tree. Flatten performs a
post-order parallel traversal of a log tree to place its nodes into a contiguous array.

Identity()

177 L = new log-tree node
178 L.sublog = new vector
179 L.size = 1
180 L.left = nil
181 L.right = nil
182 return L

Reduce(Ll, Lr)

183 L = Identity()
184 L.size = Ll.size + Lr.size + 1
185 L.left = Ll
186 L.right = Lr
187 return L

Figure 3-16: Pseudocode for the Identity and Reduce log-tree reducer operations. The
Identity operation creates and returns a new log-tree node L. The Reduce(Ll, Lr) oper-
ation concatenates a left log-tree node Ll with a right log-tree node Lr.

elements appear in the serial execution order. The multivector data structure assumes that

a worker can query the runtime system to determine when it starts executing a new trace.

The log-tree reducer

A multivector stores its nonempty trace-local subvectors in a log tree, which represents

an ordered multiset of elements and supports Θ(1)-work append operations. A log tree is a

binary tree in which each node L stores a dynamic array L.sublog . The ordered multiset that

a log tree represents corresponds to a concatenation of the tree’s dynamic arrays in a post-

order tree traversal. Each log-tree node L is augmented with the size of its subtree L.size

counting the number of log-tree nodes in the subtree rooted at L. Using this augmentation,

the operation Flatten(L,A,L.size − 1) described in Figure 3-15 flattens a log tree rooted

at L of n nodes and height h into a contiguous array A using Θ(n) work and Θ(h) span.

To handle parallel MV-Insert operations, a multivector employs a log-tree reducer,

that is, a Cilk Plus reducer whose view type is a log tree. Figure 3-16 presents the pseudocode

for the Identity and Reduce operations for the log-tree reducer.
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A(R)

188 Log-Insert(R, e1)
189 spawn B(R)
190 Log-Insert(R, e7)
191 sync
192 Log-Insert(R, e8)

B(R)

193 Log-Insert(R, e2)
194 spawn Log-Insert(R, e3)
195 Log-Insert(R, e4)
196 Log-Insert(R, e5)
197 sync
198 Log-Insert(R, e6)

Log-Insert(R, e)

199 L = Get-Local-View(R)
200 Append(L.subblog , e)

e8 

size 

5 

left right 

sublog 

e6 

size 

3 

left right 

sublog e7 

size 

1 

left right 

sublog 

e1 e2 e3 

size 

1 

left right 

sublog e4 e5 

size 

1 

left right 

sublog 

Figure 3-17: The state of a log-tree reducer R after a work-stealing execution of A(R).
Steals occur on line 189 of A and line 195 of B partitioning the execution into 5 traces. The
ordered multiset (e1, e2, . . . , e8) is represented by 5 trace-local sublogs ordered according to
a post-order traversal of the log tree.

The Identity operation creates a new log-tree node with an empty sublog. The

Reduce(Ll, Lr) operation creates a new root node L and assigns L.left = Ll and

L.right = Lr. Updates are performed using a log-tree reducer R by first obtaining a lo-

cal view L of the log-tree reducer using a runtime-provided function Get-Local-View(R)

and appending elements to L.sublog . A log tree’s Flatten operation uses a post-order

traversal to order the log tree’s nodes, which results in an ordering identical to that which

would be obtained by using a linked-list reducer in place of the log-tree reducer.

The log-tree reducer’s Reduce operation is logically associative, that is, for any three

log-tree reducer views a, b, and c, the views produced by Reduce(Reduce(a, b), c) and

Reduce(a,Reduce(b, c)) represent the same ordered multiset.

Figure 3-17 illustrates the state of a log-tree reducer R following the execution of a fork-

join parallel function A(R). Steals occur on line 189 of A and line 195 of B. The log-tree

reducer partitions this execution of A(R) into 5 traces each of which corresponds to one node

in the tree. The first trace corresponds to the worker that begins the execution of A(R) and

each steal creates two additional traces: one corresponding to the stolen continuation of the
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spawned function, and another corresponding to the portion of the program following the

associated sync statement.

To maintain trace-local subvectors, a multivector Q consists of an array of P worker-

local SPA’s, where P is the number of processors executing the computation, and a log-tree

reducer. The SPA Q[p] for worker p stores the trace-local subvectors that worker p has

appended since the start of its current trace. The log-tree reducer Q.log-reducer stores all

nonempty subvectors created.

Let us see how MV-Insert and MV-Collect are implemented.

Figure 3-19 sketches the MV-Insert(Q, v, k) operation to insert element v into the

vector Ck ∈ Q. MV-Insert differs from MB-Insert in two ways. First, when a new sub-

vector is created and added to a SPA, lines 206–207 additionally append that subvector

to Q.log-reducer , thereby maintaining the log-tree reducer. Second, lines 202–203 reset the

contents of the SPA Q[p] after worker p begins executing a new trace, thereby ensuring that

Q[p] stores only trace-local subvectors.

MV-Collect(Q)

1. Flatten the log-reducer tree so that all subvectors in the log appear in a contiguous
array collected -subvectors.

2. Sort the subvectors in collected -subvectors by their vector indices using a stable sort.
3. Create the array vector -offsets, where vector -offsets[k] stores the index of the first

subvector in collected -subvectors that contains elements of the vector Ck ∈ Q.
4. Reset Q.log-reducer , and for p = 0, 1, . . . , P − 1, reset Q[p].
5. Return the pair 〈vector -offsets, collected -subvectors〉.

Figure 3-18: Pseudocode for the MV-Collect multivector operation. Calling MV-
Collect on a multivector Q produces a pair 〈vector -offsets, collected -subvectors〉 of arrays,
where collected -subvectors contains all nonempty subvectors in Q sorted by their associated
vector’s color, and vector -offsets associates sets of subvectors in Q with their corresponding
vector.

Figure 3-18 sketches the details of the MV-Collect operation, which returns a pair

〈subvector -offsets, collected -subvectors〉 analogous to the return value of MB-Collect.

The procedure MV-Collect differs from MB-Collect primarily in that Step 1, which

replaces Steps 1 and 2 in MB-Collect, flattens the log tree underlying Q.log-reducer

to produce the unsorted array collected -subvectors. MV-Collect also requires that

collected -subvectors be sorted using a stable sort on Step 2. The integer sort described

in the proof of Lemma 2 for MB-Collect is a suitable stable sort for this purpose.
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MV-Insert(Q, v, k)

201 p = Get-Worker-ID()
202 if worker p began a new trace since last insert
203 reset Q[p]
204 if Q[p].array [k] == nil
205 Q[p].array [k] = newsubvector
206 L = Get-Local-View(Q.log-reducer)
207 Append(L.sublog , Q[p].array [k])
208 Append(Q[p].array [k], v)

Figure 3-19: Pseudocode for the MV-Insert multivector operation. MV-Insert(Q, v, k)
inserts an element v into the kth vector Ck maintained by the multivector Q.

Analysis of multivector operations

We now analyze the work and span of the MV-Insert and MV-Collect operations,

starting with MV-Insert.

Lemma 7 Executing MV-Insert takes Θ(1) time in the worst case.

Proof. Resetting the SPA Q[p] on line 203 can be done in Θ(1) worst-case time with an

appropriate SPA implementation, and appending a new subvector to a log tree takes Θ(1)

time. The theorem thus follows from the analysis of MB-Insert in Lemma 1.

Lemma 8 bounds the work and span of MV-Collect.

Lemma 8 Consider a computation A with span T∞(A), and suppose that the contents

of a multivector Q of χ vectors are distributed across m subvectors. Then a call to

MV-Collect(Q) incurs Θ(m+ χ) work and Θ(lgm+ χ+ T∞(A)) span.

Proof. Flattening the log-tree reducer in Step 1 is accomplished in two steps. First,

the Flatten operation writes the nodes of the log tree to a contiguous array. Execution of

Flatten has span proportional to the depth of the log tree, which is bounded by O(T∞(A)),

since at most O(T∞(A)) reduction operations can occur along any path in A, and Reduce

for log trees executes in Θ(1) work [76]. Second, using a parallel-prefix sum computation, the

log entries associated with each node in the log tree can be packed into a contiguous array,

incurring Θ(m) work and Θ(lgm) span. Step 1 thus incurs Θ(m) work and O(lgm+T∞(A))

span. The remaining steps of MV-Collect, which are analogous to those of MB-Collect

and analyzed in Lemma 2, execute in Θ(χ+ lgm) span.
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3.8 Analysis and Evaluation of Prism-R

This section presents a theoretical work-span analysis of Prism-R, demonstrating that its

work and span are asymptotically equivalent to Prism. This section also discusses Prism-R’s

empirical performance relative to Prism, which was evaluated in Section 3.5. In particular,

Prism-R is only 2-7% slower than Prism, overall, while providing deterministic support for

associative operations on global variables.

Work-span analysis of Prism-R

We begin by analyzing the work and span of Prism-R for simple data-graph computations

that perform associative operations on global variables. In this extended model, Prism-R

executes dynamic data-graph computations deterministically while achieving the same work

and span bounds as Prism.

Theorem 9 Let G be a ∆-degree data graph. Suppose that Prism-R colors G using χ colors.

Then Prism-R executes updates on all vertices in the activation set Qr for a round r of a

simple data-graph computation 〈G, f,Q0〉 in O(size(Qr)) work and O(χ(lg(Qr/χ) + lg ∆))

span.

Proof. Prism-R can perform a priority write to its active array with Θ(1) work, and

it can remove duplicates from the output of MV-Collect in O(size(Qr)) work and

O(lg(size(Qr))) = O(lgQr + lg ∆) span. The theorem follows by applying Lemmas 7 and 8

appropriately to the analysis of Prism in Theorem 4.

Theorem 10 Suppose that Prism-R colors a ∆-degree data graph G = (V,E) using χ

colors, and then executes the data-graph computation 〈G, f,Q0〉 in r rounds applying up-

dates to the activation sets Q0, Q1, . . . , Qr−1. Define the multiset U =
⊎r−1
i=0 Qi so that

|U| =
∑r−1

i=0 |Qi| and size(U) =
∑r−1

i=0 size(Qi). Then Prism-R executes the data-graph

computation using O(size(U)) work and O(r · χ(lg((U/r)/χ) + lg ∆)) span.

Proof. By Theorem 9 Prism-R executes a round of a data-graph computation using the

same asymptotic work and span as Prism. We mirror the arguments in Theorem 5 to bound

the work and span of Prism-R for a sequence of rounds.

Given Theorem 10 we can compute the parallelism of Prism-R for a data-graph compu-

tation that applies a multiset U of updates over r rounds. The following corollary expresses
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the parallelism of Prism-R in terms of the average size of the activation sets in a sequence

of rounds.

Corollary 11 Suppose Prism-R executes a data-graph computation in r rounds during

which it applies a multiset U of updates. Define the average number of updates per round

Uavg = |U| /r and the average work per round Wavg = size(U)/r. Then Prism-R has

Ω(Wavg/(χ(lg(Uavg/χ) + lg ∆))) parallelism.

Proof. Follows from Theorem 10 by computing the parallelism as the ratio of the work

and span and then performing substitution.

Empirical evaluation of Prism-R

Prism-R provides deterministic support for associative operations on global variables at

the cost of additional complexity versus Prism, specifically in the maintenance of activa-

tion sets. Nonetheless, Prism-R guarantees the same asymptotic work and span as Prism.

Empirically, we find that Prism-R suffers a geomean slowdown of only 2–7% versus Prism

in various scenarios. In particular, the 12-core performance for each dynamic data-graph

computation application featured in Table 3-5 demonstrate that for real-world applications

Prism-R is 7% slower in geometric mean than Prism. in Table 3-11 we see that Prism-R

is only 1.8% slower than Prism for static versions of the applications featured in Table 3-5

(i.e., all vertices are updated every round). Finally, in Table 3-10 we present the 12-core

performance of Prism-R on PageRank [35] for a suite of six synthetic and six real-world

graphs. In this case, Prism-R is 3.5% slower in geometric mean than Prism.

3.9 Conclusion

Researchers over multiple decades have soberly advised the rest of the community that the

difficulty of parallel programming can be greatly reduced by using some form of determinis-

tic parallelism [15,16,21,28,62,63,71,72,82,100,110,161,164,185,200]. With a deterministic

parallel program, the programmer observes no logical concurrency, that is, no nondetermi-

nacy in the behavior of the program due to the relative and nondeterministic timing of

communicating processes (e.g., when two processes try to acquire a lock simultaneously).

The semantics of a deterministic parallel program are therefore serial and reasoning about

such a program’s correctness is theoretically no harder than reasoning about the correctness
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of a serial program, which is already sufficiently hard for most people. Testing, debugging,

and formal verification is simplified by determinism, because there is no need to consider all

possible relative timings (i.e., interleavings) of operations on shared mutable state.

The behavior of Prism corresponds to a variant of Serial-DDGC that sorts the acti-

vated vertices in its queue by color at the start of each round. Whether Prism executes a

given data graph on 1 processor or many, it always behaves the same way. With Prism-R,

this property holds even when the update function can perform reductions (e.g., associa-

tive operators on global variables). By contrast, lock-based schedulers provide no such a

guarantee of determinism. Instead, updates in a round executed by a lock-based scheduler

appear to execute according to some linear order, the so-called sequential consistency model

employed by GraphLab [142,143] and others. This order is nondeterministic due to races on

the acquisition of locks.

Blelloch, Fineman, Gibbons, and Shun [22] argue that deterministic programs can be fast

compared with nondeterministic programs, and they document many examples where the

overhead for converting a nondeterministic program into a deterministic one is small. They

even document a few cases where this “price of determinism” is slightly negative. To their list,

we add the execution of dynamic data-graph computations as having a price of determinism

which is significantly negative. We leave as an open problem how one might support dynamic

data-graph computations deterministically in the face of dynamically changing graphs, while

maintaining time and space bounds similar to Prism. We also put forward a related open

problem: how might high quality colorings be maintained efficiently in the face of dynamically

changing graphs?
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Chapter 4

Ordering Heuristics for Parallel

Graph Coloring

4.1 Introduction

A (vertex)-coloring of an undirected graph G = (V,E) is an assignment of a color v.color

to each vertex v ∈ V such that for every edge (u, v) ∈ E, we have u.color 6= v.color , that is,

no two adjacent vertices have the same color. We were motivated to work on graph coloring

in the context of “chromatic scheduling” [2, 18, 121] of parallel “data-graph computations.”

A data graph is a graph with data associated with its vertices and edges. A data-graph

computation is an algorithm implemented as a sequence of “updates” on the vertices of a

data graph G = (V,E), where updating a vertex v ∈ V involves computing a new value

associated with v as a function of v’s old value and the values associated with the neighbors

of v: the set of vertices adjacent to v in G, denoted N(v) = {u ∈ V : (v, u) ∈ E}. To ensure

atomicity of each update, rather than using mutual-exclusion locks or other nondeterministic

means of data synchronization, chromatic scheduling first colors the vertices of G and then

sequences through the colors, scheduling all vertices of the same color in parallel. The time

to perform a data-graph computation thus depends both on how long it takes to color

G and on the number of colors produced by the graph-coloring algorithm: more colors

means less parallelism. Although the coloring can be performed offline for some data-graph

computations, for other computations the coloring must be produced online, and one must

accept a trade-off between coloring quality — number of colors — and the time to produce

the coloring.
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Although the problem of finding an optimal coloring of a graph — a coloring us-

ing the fewest colors possible — is in NP-complete [79], heuristic “greedy” algorithms

work reasonably well in practice. Welsh and Powell [197] introduced the original greedy

coloring algorithm, which iterates over the vertices and assigns each vertex the smallest

color not assigned to a neighbor. For a graph G = (V,E), define the degree of a vertex

v ∈ V by deg(v) = |N(v)|, the number of neighbors of v, and let the degree of G be

∆ = maxv∈V {deg(v)}. Welsh and Powell show that the greedy algorithm colors a graph G

with degree ∆ using at most ∆ + 1 colors.

Ordering heuristics

Greedy(G)

209 let G = (V,E, ρ)
210 for v ∈ V in order of decreasing ρ(v)
211 C = {1, 2, . . . ,deg(v) + 1}
212 for u ∈ N(v) such that ρ(u) > ρ(v)
213 C = C − {u.color}
214 v.color = minC

Figure 4-1: Pseudocode for a serial greedy graph-coloring algorithm. Given a vertex-
weighted graph G = (V,E, ρ), where the priority of a vertex v ∈ V is given by ρ(v),
Greedy colors each vertex v ∈ V in decreasing order according to ρ(v).

In practice, however, greedy coloring algorithms tend to produce much better colorings

than the ∆+1 bound implies, and moreover, the order in which a greedy coloring algorithm

colors the vertices affects the quality of the coloring.1 To reduce the number of colors a greedy

coloring algorithm uses, practitioners therefore employ ordering heuristics to determine

the order in which the algorithm colors the vertices [4, 32,118,147].

The literature includes many studies of ordering heuristics and how they affect running

time and coloring quality. Here are six of the more popular heuristics:

1In fact, for any graph G = (V,E), some ordering of V causes a greedy algorithm to color G optimally,
although finding such an ordering is NP-hard [151].
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FF The first-fit ordering heuristic [141, 197] colors vertices in the order they appear in

the input graph representation.

R The random ordering heuristic [118] colors vertices in a uniformly random order.

LF The largest-degree-first ordering heuristic [197] colors vertices in order of decreasing

degree.

ID The incidence-degree ordering heuristic [50] iteratively colors an uncolored vertex

with the largest number of colored neighbors.

SL The smallest-degree-last ordering heuristic [4, 147] colors the vertices in the order

induced by first removing all the lowest-degree vertices from the graph, then recursively

coloring the resulting graph, and finally coloring the removed vertices.

SD The saturation-degree ordering heuristic [32] iteratively colors an uncolored vertex

whose colored neighbors use the largest number of distinct colors.

Tables 4-2 and 4-3 summarizes our empirical evaluation of the six ordering heuristics

above run on our suite of real-world and synthetic graphs. The measurements were taken

using the same machine and methodology as was used for Tables 4-13 and 4-14. As Tables

4-2 and 4-3 show, we found that, in order, FF, R, LF, SL, and SD generally produce better

colorings at the cost of greater running times, confirming the findings of Gebremedhin and

Manne [80], who also rank the relative quality of R, LF, ID, and SD in this order. ID was

outperformed in both time and quality by SL. The figure indicates that LF tends to produce

better colorings than FF and R at some performance cost, and SL produces better colorings

than LF at additional cost. We found that SD produces the best colorings overall, at the

cost of a 4.5 geometric-mean slowdown versus SL.

Although an ordering heuristic can be viewed as producing a permutation of the vertices

of a graph G = (V,E), we shall find it convenient to think of an ordering heuristic H as

producing an injective (1-to-1) priority function2 ρ : V → R. We shall use the notation

ρ ∈ H to mean that the ordering heuristic H produces a priority function ρ.

2If the rule for an ordering heuristic allows for ties in the priority function (the priority function is not
injective), we shall assume that ties are broken randomly. Formally, suppose that an ordering heuristic H
produces a priority function ρH which may contain ties. We extend ρH to a priority function ρ that maps
each vertex v ∈ V to an ordered pair 〈ρH (v), ρR(v)〉, where the priority function ρR is produced by the
random ordering heuristic R. To determine which of two vertices u, v ∈ V has higher priority, we compare
the ordered pairs ρ(u) and ρ(v) lexicographically. Notwithstanding this subtlety, we shall still adopt the
simplifying convenience of viewing the priority function as mapping vertices to real numbers. In fact, the
range of the priority function can be any linearly ordered set.
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Figure 4-1 gives the pseudocode for Greedy, a greedy coloring algorithm. Greedy

takes a vertex-weighted graph G = (V,E, ρ) as input, where ρ : V → R is a priority function

produced by some ordering heuristic. Each step of Greedy simply selects the uncolored

vertex with the highest priority according to ρ and colors it with the smallest available color.

Generally, for a coloring algorithm A and ordering heuristic H , let A-H denote the coloring

algorithm A that runs on vertex-weighted graphs whose priority functions are produced

by H . In this way, we separate the behavior of the coloring algorithm from that of the

ordering heuristic.

C

Graph FF R LF ID SL SD Spark

com-orkut 175 132 87 86 83 76

liveJournal1 352 330 323 325 322 326

europe-osm 5 5 4 4 3 3

cit-Patents 17 21 14 14 13 12

as-skitter 103 81 71 72 70 70

wiki-Talk 102 85 72 57 56 51

web-Google 44 44 45 45 44 44

com-youtube 57 46 32 28 28 26

constant1M 33 32 32 34 34 26

constant500K 52 52 52 55 53 44

graph500-5M 220 220 159 157 158 147

graph500-2M 206 208 153 152 153 141

rMat-ER-2M 12 12 11 11 11 8

rMat-G-2M 27 27 15 15 15 11

rMat-B-2M 105 105 67 67 67 59

big3dgrid 4 7 7 4 7 5

cliqueChain400 399 399 399 399 399 399

path-10M 2 3 3 2 2 2

Table 4-2: Coloring quality performance measurements for six serial ordering heuristics
used by Greedy in Figure 4-1, where measurements for real-world graphs appear above the
center line and those for synthetic graphs appear below. The “Spark ” column contains bar
graphs that pictorially represent the coloring quality for each of the ordering heuristics. The
height of the bar for the coloring quality CH of ordering heuristic H is proportional to CH .
Section 4.6 details the experimental setup and graph suite used.
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Using any of these six ordering heuristics, Greedy can be made to run in Θ(V + E)

time. Although some of these ordering heuristics involve more bookkeeping than others,

achieving these theoretical bounds for Greedy-FF, Greedy-R, Greedy-LF, Greedy-ID,

and Greedy-SL is straightforward [85, 147]. Despite conjectures to the contrary [50, 85],

Greedy-SD can also be made to run in Θ(V + E) time, as we shall show in Section 4.8.

TS

Graph FF R LF ID SL SD Spark

com-orkut 2.23 3.39 3.54 44.13 10.59 46.60

liveJournal1 0.89 2.05 2.34 17.93 4.69 19.75

europe-osm 1.32 13.36 17.15 48.59 19.87 52.73

cit-Patents 0.50 1.62 2.00 9.82 3.21 10.08

as-skitter 0.24 1.70 2.43 9.41 2.79 9.94

wiki-Talk 0.09 0.35 0.49 2.79 0.61 2.90

web-Google 0.09 0.22 0.25 1.68 0.47 1.77

com-youtube 0.06 0.19 0.25 1.50 0.35 1.55

constant1M 0.90 1.13 1.16 16.07 2.96 17.23

constant500K 0.74 0.88 0.84 14.20 1.97 15.51

graph500-5M 1.83 3.14 3.69 25.19 8.43 35.29

graph500-2M 0.52 0.77 0.98 8.09 2.22 11.68

rMat-ER-2M 0.47 0.93 1.07 10.10 2.22 9.13

rMat-G-2M 0.48 0.92 1.18 9.17 2.59 9.07

rMat-B-2M 0.50 0.83 1.00 8.44 2.41 8.64

big3dgrid 0.41 3.34 4.07 13.61 4.77 15.30

cliqueChain400 0.05 0.05 0.05 0.81 0.08 2.06

path-10M 0.18 1.95 2.49 7.34 2.58 7.96

Table 4-3: Performance measurements for six serial ordering heuristics used by Greedy in
Figure 4-1, where measurements for real-world graphs appear above the center line and those
for synthetic graphs appear below. The “Spark ” column contains bar graphs that pictorially
represent the serial running time for each of the ordering heuristics. The height of the bar for
the serial running time TS of ordering heuristic H is proportional to the log of TS . Section 4.6
details the experimental setup and graph suite used.

In practice, to produce a better quality coloring tends to cost more in running time. That

is, the six heuristics, which are listed in increasing order of coloring quality, are also listed

in increasing order of running time. The only exception is Greedy-ID, which is dominated

by Greedy-SL in both coloring quality and runtime.
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Parallel greedy coloring

JP(G)

215 let G = (V,E, ρ)
216 parallel for v ∈ V
217 v.pred = {u ∈ V : (u, v) ∈ E and ρ(u) > ρ(v)}
218 v.succ = {u ∈ V : (u, v) ∈ E and ρ(u) < ρ(v)}
219 v.counter = |v.pred |
220 parallel for v ∈ V
221 if v.pred == ∅
222 JP-Color(v)

JP-Color(v)

223 v.color = Get-Color(v)
224 parallel for u ∈ v.succ
225 if Join(u.counter) == 0
226 JP-Color(u)

Get-Color(v)

227 C = {1, 2, . . . , |v.pred |+ 1}
228 parallel for u ∈ v.pred
229 C = C − {u.color}
230 return minC

Figure 4-4: The Jones-Plassmann (JP) parallel coloring algorithm. JP uses a recursive
helper function JP-Color to process a vertex once all of its predecessors have been colored.
JP-Color uses the helper routine Get-Color to find the smallest color available to color
a vertex v.

There is a practical tradeoff between coloring quality and the parallel scalability of greedy

graph coloring. While the traditional ordering heuristics FF, LF, ID, and SL are efficient

using Greedy, it can be shown that any parallelization of them requires worst-case span

of Ω(V ) for a general graph G = (V,E). Of the various attempts to parallelize greedy

coloring [49,66,144], the algorithm first proposed by Jones and Plassmann [118] extends the

greedy algorithm in a straightforward manner, uses work linear in size of the graph, and is

deterministic given a small (e.g., O(lg V ) random bits) random seed. Jones and Plassmann’s

original paper demonstrates good theoretical parallel performance for O(1)-degree graphs

using the random ordering heuristic R, though their implementation failed to generate a

parallel speedup. Unfortunately, in practice, R tends to produce colorings of relatively poor

quality relative to the other traditional ordering heuristics. But the other traditional ordering

heuristics are all vulnerable to adversarial graph inputs which cause JP to operate in Ω(V )

time and thus exhibit poor parallel scalability. Consequently, there is need for new ordering

heuristics for JP that can achieve both good coloring quality and guaranteed fast parallel

performance.
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Figure 4-4 gives the pseudocode for JP, which colors a given graph G = (V,E, ρ) in

the order specified by the priority function ρ. The algorithm begins in lines 217 and 218 by

partitioning the neighbors of each vertex into predecessors — vertices with larger priorities

— and successors — vertices with smaller priorities. JP uses the recursive JP-Color

helper function to color a vertex v ∈ V once all vertices in v.pred have been colored. Initially,

lines 220–222 in JP scan the vertices of V to find every vertex that has no predecessors and

colors each one using JP-Color. Within a call to JP-Color(v), line 223 calls Get-Color

to assign a color to v, and the loop on lines 224–226 broadcasts in parallel to all of v’s

successors the fact that v is colored. For each successor u ∈ v.succ, line 225 tests whether all

of u’s predecessors have already been colored, and if so, line 226 recursively calls JP-Color

on u.

Jones and Plassmann analyzed the performance of JP-R for O(1)-degree graphs. Al-

though they do not discuss using the naive FF ordering heuristic, it is apparent that there

exist adversarial input orderings for which their algorithm would fail to scale. For example,

if the graph G = (V,E) is simply a chain of vertices and the input order of V corresponds to

their in order in the chain, JP-FF exhibits no parallelism. Jones and Plassmann show that

a random ordering produced by R, however, allows the algorithm to run in O(lg V/ lg lg V )

expected time on this chain graph — and on any O(1)-degree graph, for that matter. Sec-

tion 4.3 of this chapter extends their analysis of JP-R to arbitrary-degree graphs.

Although JP-R scales well in theory, when it comes to coloring quality, R is one of the

weaker ordering heuristics, as we have noted. Of the other heuristics, JP-LF and JP-SL

suffer from the same problem as FF, namely, it is possible to construct adversarial graphs

that cause them to scale poorly, which we explore in Section 4.4. The ID heuristic tends

to produce worse colorings than SL, and since Greedy-ID also runs more slowly than

Greedy-SL, we have dropped ID from consideration. Moreover, because of our motivation

to use the coloring algorithm for online chromatic scheduling, where the performance of the

coloring algorithm cannot be sacrificed for marginal improvements in the quality of coloring,

we also have dropped the SD heuristic. Since SD produces the best-quality colorings of the

six ordering heuristics, however, we see parallelizing it as an interesting opportunity for

future research.

Consequently, this chapter focuses on alternatives to the LF and SL ordering heuristics

that provide comparable coloring quality while exhibiting the same resilience to adversarial
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graphs that R shows compared with FF. Specifically, we introduce two new randomized

ordering heuristics — “largest-log-degree-first” (LLF) and “smallest-log-degree-last” (SLL)

— which resemble LF and SL, respectively, but which scale provably well when used with JP.

We demonstrate that JP-LLF and JP-SLL provide good parallel scalability in theory and

practice and are resilient to adversarial graphs.

Table 4-5 summarizes our empirical findings. The data suggest that the LLF and SLL

ordering heuristics produce colorings that are nearly as good as LF and SL, respectively.

With respect to performance, our implementations of JP-LLF and JP-SLL actually operate

slightly faster on 1 processor than our highly tuned implementations of Greedy-LF and

Greedy-SL, respectively, and they scale comparably to JP-R.

H H ′
CH ′

CH

Greedy-H
JP-H ′1

JP-H ′1
JP-H ′12

FF R 1.011 0.417 7.039

LF LLF 1.021 1.058 7.980

SL SLL 1.037 1.092 6.082

Table 4-5: Summary of ordering-heuristic behavior on a suite of 8 real-world graphs and 10
synthetic graphs when run on a machine with 12 Intel Xeon X5650 processor cores. Column
H lists three serial heuristics traditionally used for Greedy, and column H ′ lists parallel
heuristics for JP, of which LLF and SLL are introduced in this chapter. Column “CH ′/CH ”
shows the geometric mean of the ratio of the number of colors the parallel heuristic uses
compared to the serial heuristic. Column “Greedy-H /JP-H ′1” shows the geometric mean
of the ratio of serial running times of Greedy with the serial heuristic versus JP with the
analogous parallel heuristic when run on 1 processor. Column “JP-H ′1/JP-H ′12” shows the
geometric mean of the speedup of each parallel heuristic going from 1 processor to 12.

Outline

This chapter represents joint work with Charles E. Leiserson, Tim Kaler, and Tao B. Schardl

that was presented at the 2014 ACM Symposium on Parallelism in Algorithms and Archi-

tectures under the title “Ordering heuristics for parallel graph coloring” [102].

The remainder of this chapter is organized as follows. Section 4.2 reviews the asyn-

chronous parallel greedy coloring algorithm first proposed by Jones and Plassmann [118].

We show how JP can be extended to handle arbitrary-degree graphs and arbitrary pri-

ority functions. Using work-span analysis [52, Ch. 27], we show that JP colors a ∆-

degree graph G = (V,E, ρ) in Θ(V + E) work and O(L lg ∆ + lg V ) span, where L
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is the length of the longest path in G along which the priority function ρ decreases.

Section 4.3 analyzes the performance of JP-R, showing that it operates using linear

work and O
(

lnV + ln ∆ ·min {
√
E,∆ + lnV/ ln (e lnV/∆)}

)
span. Section 4.4 shows that

there exist “adversarial” graphs for which JP-LF and JP-SL exhibit limited parallel

speedup. Section 4.5 analyzes the LLF and SLL ordering heuristics. We show that,

given a ∆-degree graph G, JP-LLF colors G = (V,E, ρ) using Θ(V + E) work and

O
(

lnV + ln ∆
(

min {
√
E,∆}+ ln ∆ lnV/ ln (e lnV/∆)

))
expected span, while JP-SLL col-

ors G = (V,E, ρ) using same work and an additive Θ(lg ∆ lg V ) additional span. Section 4.6

evaluates the performance of JP-LLF and JP-SLL on a suite of 8 real-world and 10 syn-

thetic benchmark graphs. Section 4.7 discusses the software engineering techniques used in

our implementation of JP-R, JP-LLF, and JP-SLL. Section 4.8 introduces an algorithm for

computing the SD ordering heuristic using Θ(V + E) work. Section 4.9 discusses related

work, and Section 4.10 offers some concluding remarks.

4.2 The Jones-Plassmann algorithm

This section reviews JP, the parallel greedy coloring algorithm introduced by Jones and

Plassmann [118], whose pseudocode is given in Figure 4-4. We first review the dag model

of dynamic multithreading and work-span analysis [52, Ch. 27]. Then we describe how JP

can be modified from Jones and Plassmann’s original algorithm to handle arbitrary-degree

graphs and arbitrary priority functions. We analyze JP with an arbitrary priority function

ρ and show that on a ∆-degree graph G = (V,E, ρ), JP runs in Θ(V + E) work and

O(L lg ∆ + lg V ) span, where L is the longest path in the “priority dag” of G induced by ρ.

The dag model of dynamic multithreading

We shall analyze the parallel performance of JP using the dag model of dynamic multi-

threading introduced by Blumofe and Leiserson [25, 26] and described in more detail in

Appendix A. The dag model views the executed computation resulting from running a par-

allel algorithm as a computation dag A, in which each vertex denotes an instruction, and

edges denote parallel control dependencies between instructions. Although the model en-

compasses other parallel control constructs, for our purposes, we need only understand that

the execution of a parallel for loop can be modeled as a balanced binary tree of vertices in

the dag, where the leaves of the tree denote the initial instructions of the loop iterations.
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To analyze the performance of a dynamic multithreading program theoretically, we as-

sume that the program executes on an ideal parallel computer : each instruction executes

in unit time, the computer has ample memory bandwidth, and the computer supports con-

current writes and read-modify-write instructions [105] without incurring overheads due to

contention.

Given a dynamic multithreading program whose execution is modeled as a dag A, we can

bound the parallel running time TP (A) of the computation as follows. The work T1(A) is the

number of strands in the computation dag A. The span T∞(A) is the length of the longest

path in A. A deterministic algorithm with work T1 and span T∞ can always be executed on

P processors in time TP satisfying max {T1/P, T∞} ≤ Tp ≤ T1/P + T∞ [25, 26, 33, 69, 94].

The speedup of an algorithm on P processors is T1/TP , which is at most P in theory,

since TP ≥ T∞. The parallelism T1/T∞ is the greatest theoretical speedup possible for any

number P of processors.

Analysis of JP

To analyze the performance of JP, it is convenient to think of the algorithm as color-

ing the vertices in the partial order of a “priority dag,” similar to the priority dag de-

scribed by Blelloch, Fineman, and Shun [23]. Specifically, on a vertex-weighted graph

G = (V,E, ρ), the priority function ρ induces a priority dag Gρ = (V,Eρ), where

Eρ = {(u, v) ∈ V × V : (u, v) ∈ E and ρ(u) > ρ(v)}. Notice that Gρ is a dag, because ρ

is an injective function and thus induces a total order on the vertices V . We shall bound

the span of JP running on a graph G in terms of the depth of Gρ, that is, the length of the

longest path through Gρ. We analyze JP in two steps.

First, we bound the work and span of calls during the execution of JP to the helper

routine Get-Color(v), which returns the minimum color not assigned to any vertex u ∈

v.pred .

Lemma 12 The helper routine Get-Color, shown in Figure 4-4, can be implemented so

that during the execution of JP on a graph G = (V,E, ρ), a call to Get-Color(v) for a

vertex v ∈ V costs Θ(k) work and Θ(lg k) span, where k = |v.pred |.

Proof. Implement the set C in Get-Color as an array whose ith entry initially stores

the value i. The ith element from this array can be removed by setting the ith element

to ∞. With this implementation, lines 228–229 execute in Θ(k) work and Θ(lg k) span. The
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min operation on line 230 can be implemented as a parallel minimum reduction in the same

bounds.

Second, we show that JP colors a graph G = (V,E, ρ) using work Θ(V + E) and span

linear in the depth of the priority dag Gρ.

Theorem 13 Given a ∆-degree graph G = (V,E, ρ) for some priority function ρ, let Gρ

be the priority dag induced on G by ρ, and let L be the depth of Gρ. Then JP(G) runs in

Θ(V + E) work and O(L lg ∆ + lg V ) span.

Proof. Let us first bound the work and span of JP-Color excluding any recursive calls.

For a single call to JP-Color on a vertex v ∈ V , Lemma 12 shows that line 223 takes

Θ(deg(v)) work and Θ(lg(deg(v))) span. The Join operation on line 225 can be implemented

as an atomic decrement-and-fetch operation [105] on the specified counter. Hence, excluding

the recursive call, the loop on lines 224–226 performs Θ(deg(v)) work and Θ(lg(deg(v)))

span to decrement the counters of all successors of v.

Because JP-Color is called once per vertex, the total work that JP spends in calls to

JP-Color is Θ(V + E). Furthermore, the span of JP-Color is the length of any path of

vertices in Gρ, which is at most L, times Θ(lg ∆). Finally, the loop on lines 216–219 executes

in Θ(V +E) work and Θ(lg V +lg ∆) span, and the parallel loop on lines 220–222, excluding

the call to JP-Color, executes in Θ(V + E) work and Θ(lg V ) span.

4.3 Jones-Plassmann with random ordering

This section bounds the depth of a priority dag Gρ induced on a ∆-degree graph3

G = (V,E, ρ) by a random priority function ρ in R. We show that the expected

depth of Gρ is Θ
(

min {
√
E,∆ + lnV/ ln (e lnV/∆)}

)
. This bound extends Jones and

Plassmann’s O(lg V/ lg lg V ) bound for the depth of Gρ when ∆ = Θ(1) [118]. Com-

bined with Theorem 13, our new bound implies that the expected span of JP-R is

O
(

lnV + ln ∆ ·min {
√
E,∆ + lnV/ ln (e lnV/∆)}

)
.

To bound the depth of a priority dag Gρ induced on a graph G by ρ ∈ R, let us start

by bounding the number of length-k paths in Gρ. Each path in Gρ corresponds to a unique

simple path in G, that is, a path in which each vertex in G appears at most once. The

following lemma bounds the number of length-k simple paths in G.
3Throughout this chapter we assume that graphs are simple and connected.
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Lemma 14 The number of length-k simple paths in any ∆-degree graph G = (V,E) is at

most |V | ·min {∆k−1, (2 |E| /(k − 1))k−1}.

Proof. Consider selecting a length-k simple path p = 〈v1, . . . , vk〉 in G. There are |V |

choices for v1, and for all i ∈ {1, . . . , k − 1}, given a choice of 〈v1, . . . , vi〉, there are at

most deg(vi) choices for vi+1. Hence there are at most J = |V | ·
∏k−1
i=1 deg(vi) simple

paths in G of length k. Let Vk ⊆ V denote some set of k − 1 vertices in V , and let

δ = maxVk−1
{
∑

v∈Vk−1
deg(v)/(k − 1)} be the maximum average degree of any such set.

Then we have J ≤ |V | · δk−1.

The proof follows from two upper bounds on δ. First, because deg(v) ≤ ∆ for all v ∈ V ,

we have δ ≤ ∆. Second, for all Vk−1 ⊆ V , we have
∑

v∈Vk−1
deg(v) ≤

∑
v∈V deg(v) = 2 |E|

by the handshaking lemma [52, p. 1172–3], and thus δ ≤ 2 |E| /(k − 1).

Intuitively, the bound on the expected depth of Gρ follows by arguing that although the

number of simple length-k paths in a graph G might be exponential in k, for sufficiently large

k, the probability is tiny that any such path is a path in Gρ. To formalize this argument,

we consider the cases where ∆ is large and small separately, specifically when ∆ > lnn and

when ∆ ≤ lnn.

The longest path in random priority dags of large degree

We show that when ∆ is larger than ln |V |, the depth of the random priority dag Gρ, induced

on G = (V,E, ρ) by the random priority function ρ, has a tight bound Θ
(

min {∆,
√
E}
)
.

The following two lemmas show the upper bound and lower bound, respectively.

Lemma 15 Let G = (V,E) be a ∆-degree graph for any ∆ > lnn, let n = |V | and m = |E|,

and let Gρ be a priority dag induced on G by a random priority function ρ ∈ R. For any

constant c > 0 and sufficiently large n, there exists a directed path of length e2·min {∆,
√
m}+

(1 + c) lnn in Gρ with probability at most n−c.

Proof. Let p = 〈v1, . . . , vk〉 be a length-k simple path in G. Because ρ is a random priority

function, ρ induces each possible permutation among {v1, . . . , vk} with equal probability. If

p is a directed path in Gρ, then we must have that ρ(v1) < ρ(v2) < · · · < ρ(vk). Hence, p is

a length-k path in Gρ with probability at most 1/k!. If J is the number of length-k simple

paths in G, then by the union bound, the probability that a length-k directed path exists in

Gρ is at most J/k!, which is at most J(e/k)k by Stirling’s approximation [52, p. 57] [186].
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We consider the cases when ∆ <
√
m and ∆ ≥

√
m, separately. When ∆ <

√
m, letting

k = e2∆+(1+c) lnn and J = n·∆k−1, the theorem follows from the facts that k ≥ (1+c) lnn

and k ≥ e2∆:

J (e/k)k = n ·∆k−1 (e/k)k

≤ n · (e∆/k)k

= n · exp (−k ln (k/e∆))

= n · exp

(
−
(
e2∆ + (1 + c) lnn

)
ln

(
e2∆ + (1 + c) lnn

e∆

))
≤ n · exp

(
−
(
e2∆ + (1 + c) lnn

)
ln

(
e2∆

e∆

))
= n · exp

(
−
(
e2∆ + (1 + c) lnn

)
ln e
)

≤ n · exp (− ((1 + c) lnn))

= n−c.

When ∆ ≥
√
m, let k = e2√m + (1 + c) lnn. By Lemma 14, the number of length-k

simple paths is at most n(2m/(k − 1))k−1 ≤ n(4m/k)k, and thus the probability that a

length-k path exists in Gρ is at most n(4em/k2)k. The theorem follows from the facts that

k ≥ (1 + c) lnn and k2 ≥ e4m.

Lemma 16 There exists a ∆-degree graph G = (V,E) with ∆ > ln |V | such that the length

of the longest directed path in Gρ is at least max {∆,
√
|E|}, where Gρ is the priority dag

induced on G by any priority function ρ.

Proof. Let G be formed by two subgraphs. The first is a clique, K∆+1, with ∆+1 vertices

and ∆ (∆ + 1) edges. The second subgraph is a graph with n−∆− 1 vertices and no edges,

thus ∆ <
√
|E| < ∆ + 1. The longest path in K∆+1 is ∆ + 1 irrespective of the ordering by

the priority function ρ.

Corollary 17 Let G = (V,E) be a ∆-degree graph for any ∆ > ln |V | and let Gρ be a

priority dag induced on G by a random priority function ρ ∈ R. The expected length of the

longest path in Gρ is Θ
(

min {∆,
√
E}
)
.

Proof. The proof follows from Lemmas 15 and 16.
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The longest path in random priority dags of small degree

We show that when ∆ is smaller than ln |V |, the depth of the random priority dag

Gρ, induced on G = (V,E, ρ) by random priority function ρ, has a tight bound

Θ (lnV/ ln (e lnV/∆)). Lemmas 18 and 20 show the upper bound and lower bound, re-

spectively.

Lemma 18 Let G = (V,E) be a ∆-degree graph for any ∆ ≤ ln |V |, let n = |V |, and let

Gρ be a priority dag induced on G by a random priority function ρ ∈ R. For any c > 0 and

sufficiently large n, there exists a directed path of length (1 + e+ c) lnn/ ln (e lnn/∆) in Gρ

with probability at most n−c.

Proof. Let p = 〈v1, . . . , vk〉 be a length-k simple path in G. Because ρ is a random priority

function, ρ induces each possible permutation among {v1, . . . , vk} with equal probability. If

p is a directed path in Gρ, then we must have that ρ(v1) < ρ(v2) < · · · < ρ(vk). Hence, p is

a length-k path in Gρ with probability at most 1/k!. If J is the number of length-k simple

paths in G, then by the union bound, the probability that a length-k directed path exists in

Gρ is at most J/k!, which is at most J(e/k)k by Stirling’s approximation [52, p. 57] [186].

Let a = 1 + e+ c, let k = a lnn/ ln (e lnn/∆), and let J = n ·∆k−1. Using the fact that

ln (x) ≥ 1− 1/x for all x > 0, which follows4 from the primitive fact that ex > 1 + x for all

x, the probability that there exists a directed path of length at least k is at most

J (e/k)k ≤ n (e∆/k)k

= n · exp (−k ln (k/e∆))

= n · exp

(
− a lnn

ln (e lnn/∆)
ln

(
a lnn

ln (e lnn/∆)
· 1

e∆

))
= n · exp

(
− a lnn

ln (e lnn/∆)

(
ln (e lnn/∆)− ln e+ ln

(
a

e ln (e lnn/∆)

)))
≤ n · exp

(
− a lnn

ln (e lnn/∆)

(
ln (e lnn/∆)− ln e+

(
1−

(
a

e ln (e lnn/∆)

)−1
)))

= n · exp

(
− a lnn

ln (e lnn/∆)

(
ln (e lnn/∆)−

(
a

e ln (e lnn/∆)

)−1
))

= n · exp

(
− a lnn

ln (e lnn/∆)

(
ln (e lnn/∆)− e

a
ln (e lnn/∆)

))
4Rearranging the identity e−y ≥ 1 − y shows us that y ≥ 1 − e−y. Substituting y = lnx gives us

lnx ≥ 1− 1/x for all x > 0.
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= n · exp (− (a− e) lnn)

= n1+e−a

= n−c.

Lemma 19 For any positive integers d and any real number k > 0, ((k − 1) /k)d ≤

k/ (k + d).

Proof. The proof is by induction on d.

The base case, with d = 1, holds, since k2/
(
k2 − 1

)
> 1:

k − 1

k
≤ k2

k2 − 1
· k − 1

k

≤ k2

(k − 1) (k + 1)
· k − 1

k

=
k

k + 1
.

Assuming that the lemma holds for d− 1, the inductive step follows similarly:

(
k − 1

k

)d
=

(
k − 1

k

)d−1

· k − 1

k

≤ k

k + d− 1
· k − 1

k

=
k − 1

k + d− 1

≤ k (k + d− 1)

k (k + d− 1)− d
· k − 1

k + d− 1

=
k (k + d− 1)

(k + d) (k − 1)
· k − 1

k + d− 1

=
k

k + d
.

Lemma 20 Let G = (V,E) be a ∆-degree graph for any ∆ < ln |V |, let n = |V |, and

let Gρ be a priority dag induced on G by a random priority function ρ ∈ R. For any

c > 0 and sufficiently large n, the length of the longest directed path in Gρ is less than

((e/4)− logn (c lnn)) lnn/ ln (e lnn/∆) with probability at most n−c.

91



d

k

...
	
  

...
	
  

...
	
  

...
	
  

...	
  
...
	
  

...
	
  

...
	
  

...
	
  

...	
  

...
	
  

...
	
  

...
	
  

...
	
  

...	
  

n
dk

Figure 4-6: Example graph demonstrating an existential lower bound for the longest path
in a random priority dag. The graph consists of n/dk independent subgraphs, each with
k columns and d rows. Each column is connected to its adjacent columns as a complete
bipartite graph.

Proof. Let G be the graph depicted in Figure 4-6, where d = ∆/2, and let Gi,ρ be

the priority dag induced on the ith slice of G by the random priority function ρ, where a

“slice” is a sequence of k columns each adjacent pair of which is connected as a complete

bipartite graph. For convenience and without loss of generality, assume that the priority

function ρ : V → [0, 1] maps each vertex uniformly randomly to the unit interval. If the jth

column of Gi,ρ has at least one vertex mapped to the interval [j/k, (j + 1) /k) by ρ for all j,

then a directed path of length k would exist in Gi,ρ. Since every vertex in every column is

connected to every other vertex in the adjacent columns, having at least one vertex in the

k such non-overlapping intervals would guarantee a directed path in Gi,ρ. Each individual

column has at least one vertex in the required interval with probability (1− 1/k)d. The

probability that all columns in Gi,ρ have at least one vertex in the required interval is then(
1− (1− 1/k)d

)k
. Let a = ((e/4)− logn (c lnn)), which is less than e/4 for all n, c > 0, and

note that ne/4 < n/dk for all n > e and the given values of d and k. Since each identical

slice is independent and by Lemma 19, the probability that no slice has a k-length directed
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path is at most

≤
(

1−
(

1− (1− 1/k)d
)k)n/dk

≤
(

1− (1− (k/ (k + d)))k
)n/dk

=
(

1− (d/ (k + d))k
)n/dk

≤
(

1− (d/2k)k
)n/dk

= (1− exp (−k ln (2k/d)))n/dk

= (1− exp (−k ln (4k/∆)))n/dk

=

(
1− exp

(
−k ln

(
4

∆
· a lnn

ln (e lnn/∆)

)))n/dk
=

(
1− exp

(
−k
(

ln (e lnn/∆) + ln

(
4a

e ln (e lnn/∆)

))))n/dk
≤ (1− exp (−k ln (e lnn/∆)))n/dk

=

(
1− exp

(
− a lnn

ln (e lnn/∆)
ln (e lnn/∆)

))n/dk
=
(
1− n−a

)n/dk
≤
(
1− n−a

)ne/4

≤ exp
(
−n(e/4)−a

)
= exp

(
−nlogn(c lnn)

)
= exp (−c lnn)

= n−c.

Corollary 21 Let G = (V,E) be a ∆-degree graph for any ∆ ≤ ln |V | and let Gρ be a

priority dag induced on G by a random priority function ρ ∈ R. The expected length of the

longest path in Gρ is Θ (lnV/ ln (e lnV/∆)).

Proof. The proof follows from Lemmas 18 and 20.
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The longest path in random priority dags of arbitrary degree

We combine the previous results for the cases where ∆ is larger and smaller than ln |V |,

respectively, to show a tight bound on the depth of the random priority dag Gρ induced on

the arbitrary graph G = (V,E, ρ) by the random priority function ρ. Then, we show that

JP-R colors arbitrary graphs with low span.

Theorem 22 Let G = (V,E) be a ∆-degree graph for any ∆ ≤ ln |V | and let Gρ be a

priority dag induced on G by a random priority function ρ ∈ R. The expected length of the

longest path in Gρ is Θ
(

min {
√
E,∆ + lnV/ ln (e lnV/∆)}

)
.

Proof. The proof follows from Corollaries 17 and 21.

Corollary 23 Given a priority dag Gρ induced on graph G = (V,E, ρ) by ran-

dom priority function ρ ∈ R, JP-R colors all vertices of G with expected span

O
(

lnV + ln ∆ ·min {
√
E,∆ + lnV/ ln (e lnV/∆)}

)
.

Proof. Theorems 13 and 22 imply the corollary.

4.4 The largest-first and smallest-last heuristics

This section shows that the largest-first (LF) and smallest-last (SL) ordering heuristics can

inhibit parallel speedup when used by JP. We examine a “clique-chain” graph and show

that JP-LF incurs Ω(∆2) span to color a ∆-degree clique-chain graph G = (V,E), whereas

JP-R colors G, incurring only O(lnV + ∆ ln ∆ + ln ∆ lg V/ ln (e lnV/∆)) expected span. We

formally review the SL ordering heuristic and observe that this formulation of SL means

that JP-SL requires Ω(V ) span to color a path graph G = (V,E).

Tables 4-7 and 4-8 summarize the performance of FF, LF and SL on a suite of 8 real-

world and 10 synthetic benchmark graphs. The number of edges, ratio of edges to vertices

and maximum degree of each benchmark graph is given in Table 4-12.

The LF ordering heuristic

The LF ordering heuristic colors the vertices of a graph G = (V,E, ρ) for some ρ in LF

in order of decreasing degree. Formally, ρ ∈ LF is defined for a vertex v ∈ V as ρ(v) =

〈deg(V ), ρR(v)〉, where ρR is randomly chosen from R.

94



Greedy JP

Graph H CH TS T1 T12 TS/T1 T1/T12

com-orkut FF 175 2.23 4.16 0.817 0.54 5.09
LF 87 3.54 6.43 1.067 0.55 6.02
SL 83 10.59 12.94 8.264 0.82 1.57

liveJournal1 FF 352 0.89 1.69 0.275 0.52 6.15
LF 323 2.34 2.89 0.365 0.81 7.91
SL 322 4.69 4.76 2.799 0.98 1.70

europe-osm FF 5 1.32 ∞ ∞ ∞ ∞
LF 4 17.15 5.16 0.587 3.33 8.79
SL 3 19.87 ∞ ∞ ∞ ∞

cit-Patents FF 17 0.50 0.99 0.152 0.50 6.47
LF 14 2.00 1.52 0.211 1.31 7.22
SL 13 3.21 3.05 1.579 1.05 1.93

as-skitter FF 103 0.24 0.55 0.109 0.45 5.00
LF 71 2.43 0.69 0.133 3.51 5.21
SL 70 2.79 1.19 0.733 2.35 1.62

wiki-Talk FF 102 0.09 0.23 0.046 0.38 4.99
LF 72 0.49 0.37 0.073 1.30 5.12
SL 56 0.61 0.57 0.293 1.08 1.93

web-Google FF 44 0.09 0.20 0.036 0.47 5.62
LF 45 0.25 0.29 0.042 0.88 6.85
SL 44 0.47 0.53 0.278 0.89 1.92

com-youtube FF 57 0.06 0.16 0.027 0.39 6.07
LF 32 0.25 0.24 0.040 1.03 6.12
SL 28 0.35 0.36 0.181 0.98 1.99

Table 4-7: Performance measurements for a set of real-world graphs taken from Stanford’s
SNAP project [136]. The column heading H denotes that the priority function used for the
experiment in a particular row was produced by the ordering heuristic listed in the column.
The average number of colors used by the corresponding ordering heuristic and graph is
CH . The time in seconds of Greedy, JP with 1 worker and with 12 workers is given by
TS , T1 and T12, respectively, where a value of ∞ indicates that the program crashed due
to excessive stack usage. Details of the experimental setup and graph suite can be found in
Section 4.6.

Although LF has been used in parallel greedy graph-coloring algorithms in the past [4,85],

Figure 4-9 illustrates a ∆-degree “clique-chain” graph G = (V,E) for which JP-LF incurs

Ω(∆2) span to color, but JP-R colors with only O (lnV + ∆ ln ∆ + lnV/ ln (e lnV/∆)) ex-

pected span. Conceptually, the clique-chain graph comprises a set of cliques of increas-

ing size that are connected in a “chain” such that JP-LF is forced to color these cliques

sequentially from largest to smallest. Figure 4-9 illustrates a ∆-degree clique-chain graph
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Greedy JP

Graph H CH TS T1 T12 TS/T1 T1/T12

constant1M FF 33 0.90 1.70 0.230 0.53 7.40
LF 32 1.16 2.96 0.386 0.39 7.68
SL 34 2.96 5.09 2.023 0.58 2.52

constant500K FF 52 0.74 1.26 0.286 0.59 4.42
LF 52 0.84 2.55 0.444 0.33 5.73
SL 53 1.97 3.50 1.435 0.56 2.44

graph500-5M FF 220 1.83 2.86 0.560 0.64 5.11
LF 159 3.69 3.99 0.649 0.92 6.15
SL 158 8.43 9.45 5.576 0.89 1.69

graph500-2M FF 206 0.52 0.98 0.208 0.53 4.72
LF 153 0.98 1.34 0.221 0.73 6.06
SL 153 2.22 2.72 1.559 0.81 1.75

rMat-ER-2M FF 12 0.47 1.11 0.169 0.42 6.60
LF 11 1.07 1.72 0.204 0.62 8.45
SL 11 2.22 3.07 1.362 0.72 2.25

rMat-G-2M FF 27 0.48 0.88 0.130 0.55 6.74
LF 15 1.18 1.42 0.200 0.83 7.09
SL 15 2.59 3.09 1.712 0.84 1.81

rMat-B-2M FF 105 0.50 0.84 0.151 0.60 5.53
LF 67 1.00 1.28 0.191 0.79 6.68
SL 67 2.41 2.84 1.691 0.85 1.68

big3dgrid FF 4 0.41 1.68 0.173 0.24 9.69
LF 7 4.07 1.53 0.198 2.66 7.72
SL 7 4.77 2.60 1.074 1.83 2.42

cliqueChain400 FF 399 0.05 0.09 0.224 0.51 0.40
LF 399 0.05 ∞ ∞ ∞ ∞
SL 399 0.08 0.14 0.265 0.55 0.54

path-10M FF 2 0.18 ∞ ∞ ∞ ∞
LF 3 2.49 0.76 0.092 3.26 8.27
SL 2 2.58 ∞ ∞ ∞ ∞

Table 4-8: Performance measurements for five classes of synthetically generated graphs:
constant degree, rMat, 3D grid, clique chain and path. The column headings are equivalent
to those in Table 4-7.

G = (V,E), where 3 evenly divides ∆. This clique-chain graph contains a sequence of cliques

K = {K1,K4, . . . ,K∆−2} of increasing size, each pair of which is separated by two addi-

tional vertices forming a linear chain. Specifically, for r ∈ {1, 4, . . . ,∆− 2}, each vertex

u ∈ Kr is connected to each vertex u ∈ Kr+3 by a path 〈u, xr+1, xr+2, v〉 for distinct vertices
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Figure 4-9: A ∆-degree clique-chain graph G, which Theorem 24 shows is adversarial for
JP-LF. This graph contains Θ(∆2) vertices arranged as a chain of cliques. Each hexagon
labeled Kr represents a clique of r vertices, and circles represent individual vertices. A thick
edge between an individual vertex and a clique indicates that the vertex is connected to
every vertex within the clique. A label below an individual vertex indicates the degree of
the associated vertex, and a label below a clique indicates the degree of every vertex within
that clique.

xr+1, xr+2 ∈ V . Additional vertices, shown above the chain in Figure 4-9, ensure that the

degree of each vertex in Kr is r+ 2, and the degrees of the vertices xr+1 and xr+2 are r+ 3

and r + 4, respectively. Clique-chain graphs of other degrees are structured similarly.

Theorem 24 For any ∆ > 0, there exists a ∆-degree graph G = (V,E) such that JP-LF

colors G in Ω(∆2) span and JP-R colors G in O (lnV + ∆ ln ∆ + ln ∆ lg V/ ln (e lnV/∆))

expected span.

Proof. Assume without loss of generality that 3 evenly divides ∆ and that G is a clique-

chain graph. The span of JP-R follows from Corollary 23. Because JP-LF trivially requires

Ω(1) span to process each vertex in G, the span of JP-LF on G can be bounded by showing

that the length of the longest path p in the priority dag Gρ induced on G by any priority

function ρ in LF is ∆2/6 + ∆/2 + 2. Because LF assigns higher priority to higher-degree

vertices, p starts at some vertex in K∆−2, which has degree ∆, and passes through the ∆−2

vertices in K∆−2 followed by x∆−3 and x∆−4.5 The remainder of p is a longest path through

the clique-chain graph G′ of degree ∆−3 in the remaining graph G−K∆−2−{x∆−3, x∆−4},

which has a longest path p′ of length |p′| = (∆ − 3)2/6 + (∆ − 3)/2 + 2 by induction. The

length of p is thus ∆ + |p′| = ∆2/6 + ∆/2 + 2.

5Notice that it does not matter how ties are broken in the priority function.
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The SL ordering heuristic

We focus on the formulation of the SL ordering heuristic due to Allwright et al. [4], be-

cause our experiments indicate that it gives colorings using fewer colors than other formu-

lations [147].

Given a graph G = (V,E), the SL ordering heuristic produces a priority function ρ

via an iterative algorithm that assigns priorities to the vertices V in rounds to induce an

ordering on V . For i ≥ 0, let Gi = (Vi, Ei) denote the subgraph of G remaining at the

start of round i, and let δi denote an upper bound on the smallest degree of any vertex

v ∈ Vi. Assume that δ0 = 1. At the start of round i, remove all vertices v ∈ Vi such

that deg(v) ≤ max {δi−1,minv∈Vi {deg(v)}}. For a vertex v removed in round i, a priority

function ρ ∈ SL is defined as ρ(v) = 〈i, ρR(v)〉 where ρR ∈ R is a random priority function.

The following theorem shows that there exist graphs for which JP-SL incurs a large

span, whereas JP-R incurs only a small span.

Theorem 25 There exists a class of graphs such that for any G = (V,E, ρ) in the class and

for any priority function ρ ∈ SL, JP-SL incurs Ω(V ) span and JP-R incurs O(lg V/ lg lg V )

span.

Proof. Consider the algorithm to compute the priority function ρ for all vertices in a

path graph G. By induction over the rounds, the graph Gi at the start of round i is a

path with |V | − 2i + 2 vertices, and in round i the 2 vertices at the endpoints of Gi will

be removed. Hence d|V | /2e rounds are required to assign priorities for all vertices in G. A

similar argument shows that the resulting priority dag Gρ contains a path of length |V | /2

along which the priorities strictly decrease. JP-SL trivially incurs Ω(1) span through each

vertex in the longest path in Gρ. Since there are Θ(V ) total vertices along the path and by

Corollary 23 with ∆ = Θ(1), the theorem follows.

We shall see in Section 4.5 that it is possible to achieve coloring quality comparable to

LF and SL, but with guaranteed parallel performance comparable to JP-R.

4.5 New ordering heuristics

This section describes the largest-log-degree-first (LLF) and smallest-log-degree-last

(SLL) ordering heuristics. Given a ∆-degree graph G, we show that the expected
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depth of the priority dag Gρ induced on G by a priority function ρ ∈ LLF is

O
(

min {∆,
√
E}+ ln ∆ lnV/ ln (e lnV/∆)

)
. The same bound applies to the depth of

a priority dag Gρ induced on a graph G by a priority function ρ ∈ SLL, though

O(lg ∆ lg V ) additional span is required to calculate ρ using the method given in Fig-

ure 4-10. Combined with Theorem 13, these bounds imply that the expected span of

JP-LLF is O
(

lnV + ln ∆ ·
(

min {
√
E,∆}+ ln ∆ lnV/ ln (e lnV/∆)

))
and the expected

span of JP-SLL is O
(

ln ∆ lnV + ln ∆
(

min {
√
E,∆}+ ln ∆ lnV/ ln (e lnV/∆)

))
.

The LLF ordering heuristic

The LLF ordering heuristic orders the vertices in decreasing order by the logarithm of

their degree. More precisely, given a graph G = (V,E, ρ) for some ρ ∈ LLF, the priority

of each v ∈ V is equal to ρ(v) = 〈dlg(deg(v))e , ρR(v)〉, where ρR ∈ R is a random priority

function and lg x denotes log2 x. 6 For a given graph G, the following theorem bounds the

depth of the priority dag Gρ induced by ρ ∈ LLF.

Theorem 26 Let G = (V,E) be a ∆-degree graph, and let Gρ be the priority dag induced

on G by a priority function ρ ∈ LLF. The expected length of the longest directed path in Gρ

is O
(

min {∆,
√
E}+ ln ∆ lnV/ ln (e lnV/∆)

)
.

Proof. Consider a length-k path p = 〈v1, . . . , vk〉 inGρ. LetG(`) ⊆ Gρ be the subdag ofGρ

induced by those vertices v ∈ V for which ρ(v) = dlg(deg(v))e = `. Suppose that vi ∈ G(`)

for some vi ∈ p. Since dlg(deg(vi−1))e ≥ dlg(deg(vi))e for all i > 1, we have vi−1 ∈ G(`′) for

some `′ ≥ `. We can therefore decompose p into a sequence of paths p =
〈
pdlg ∆e, . . . , p0

〉
such that each subpath p` ∈ p is a path through G(`). By definition of LLF, the subdag

G(`) is a dag induced on a graph with degree 2` by a random priority function.

By Corollary 23, the expected length of p` is O(2` + lnV/ ln
(
e lnV/2`

)
). Linearity of

expectation therefore implies that the expected length of the longest path in G is at most

E [|p|] ≤
dlg ∆e∑
`=0

O

(
2` +

lnV

ln (e lnV/2`)

)
6The theoretical results in this section assume only that the base b of the logarithm is a constant. In

practice, however, it is possible that the choice of b could have impact on the coloring quality or runtime of
JP-LLF. We studied this trade-off and found that there is only a minor dependence on b. In general, the
coloring quality and runtime of JP-LLF smoothly transitions from the behavior of JP-LF for small b and
the behavior of JP-R for large b, sweeping out a Pareto-efficient frontier of reasonable choices. We chose
b = 2 for our experiments, because log2 x can be calculated conveniently by native instructions on modern
architectures.

99



≤
dlg ∆e∑
`=0

O

(
2` +

lnV

ln (e lnV/∆)

)
≤ O

(
∆ +

lg ∆ lnV

ln (e lnV/∆)

)
≤ O

(
∆ +

ln ∆ lnV

ln (e lnV/∆)

)
.

To establish the
√
E bound, observe that at most E/2` vertices have degree at least 2`.

Consequently, for ` > lg
√
E, the depth of G(`) can be at most E/2`. Hence we have

E [|p|] ≤
dlg
√
Ee∑

`=0

O
(

2`
)

+
∞∑

`=dlg
√
Ee
E/2` +

dlg ∆e∑
`=0

O

(
lnV

ln (e lnV/∆)

)

≤ O

(√
E +

lg ∆ lnV

ln (e lnV/∆)

)
≤ O

(√
E +

ln ∆ lnV

ln (e lnV/∆)

)
.

Corollary 27 Given a graph G = (V,E, ρ) for some ρ ∈ LLF, JP-LLF colors all vertices

in G with expected span O
(

lnV + ln ∆ ·
(

min {
√
E,∆}+ ln ∆ lnV/ ln (e lnV/∆)

))
.

Proof. The corollary follows from Theorem 13.

The SLL ordering heuristic

To understand the SLL ordering heuristic, it is convenient to consider in isolation how to

compute its priority function. The pseudocode in Figure 4-10 for SLL-Assign-Priorities

describes algorithmically how to perform this computation on a given graph G = (V,E).

As Figure 4-10 shows, a priority function ρ ∈ SLL can be computed by iteratively removing

low-degree vertices from G in rounds. The priority of a vertex v ∈ V is the round number in

which v is removed, with ties broken randomly. As with SL, SLL colors the vertices of G in

the reverse order in which they are removed, but SLL-Assign-Priorities determines when

to remove a vertex using a degree bound that grows exponentially. SLL-Assign-Priorities

considers each degree bound for a maximum of r rounds. Effectively, a vertex is removed

from G based on the logarithm of its degree in the remaining graph.
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SLL-Assign-Priorities(G, r)

231 let G = (V,E)
232 i = 1
233 U = V
234 let ∆ be the degree of G
235 let ρR ∈ R be a random priority function
236 for d = 0 to lg ∆
237 for j = 1 to r
238 Q = {u ∈ U : |N(u) ∩ U | ≤ 2d}
239 parallel for v ∈ Q
240 ρ(v) = 〈i, ρR(v)〉
241 U = U −Q
242 i = i+ 1
243 return ρ

Figure 4-10: Pseudocode for SLL-Assign-Priorities, which computes a priority function
ρ ∈ SLL for the input graph. The input parameter r denotes the maximum number of times
SLL-Assign-Priorities is permitted to remove vertices of at most a particular degree 2d

on lines 237–242.

We can formalize the behavior of SLL as follows. Given a graph G, let Gi = (Vi, Ei)

denote the subgraph of G remaining at the start of round i. As Figure 4-10 shows, for each

d ∈ {0, 1, . . . , lg ∆}, SLL-Assign-Priorities executes r rounds in which it removes vertices

v ∈ Vi such that deg(v) ≤ 2d in Gi.7

For a given graph G, the following theorem bounds the depth of the priority dag Gρ

induced by a priority function ρ ∈ SLL.

Theorem 28 Let G = (V,E) be a ∆-degree graph, and let Gρ be the priority dag induced

on G by a random priority function ρ ∈ SLL. The expected length of the longest directed

path in Gρ is O
(

min {∆,
√
E}+ ln ∆ lnV/ ln (e lnV/∆)

)
.

Proof. We begin with an argument similar to the proof of Theorem 26. Let p = 〈v1, . . . , vk〉

be a length-k path in Gρ, and let G(`) ⊆ Gρ be the subdag of Gρ induced by those vertices

v ∈ V , where ρ(v) = `. Since lines 237–242 of SLL-Assign-Priorities remove vertices

with degree at most 2d exactly r times for each d ∈ [0, . . . , lg ∆], we have that bρ(v)/rc = d,

and thus the degree of G(`) is at most 2b`/rc. Suppose that vi ∈ G(`) for some vi ∈ p.
7As with LLF, the degree cutoff 2d on line 238 of Figure 4-10 could be bd for an arbitrary constant base

b with no harm to the theoretical results. We explored the choice of base empirically, but found that there
was only a minor dependence on b. Generally, JP-SLL smoothly transitions from the behavior of JP-SL for
small b to the behavior of JP-R and for large b. We therefore chose b = 2 for our experiments because of its
implementation simplicity.
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Since ρ(vi−1) ≤ ρ(vi) for all i > 1, we have vi−1 ∈ G(`′) for some `′ ≥ `. We can therefore

decompose p into a sequence of paths p =
〈
pdr lg ∆e, . . . , p0

〉
where each p` ∈ p is a path

in G(`). By definition of SLL, the subdag G(`) is a dag induced on a subgraph with degree

at most 2b`/rc by a random priority function.

By Corollary 23, the expected length of p` isO
(
2b`/rc + lnV/ ln

(
e lnV/2b`/rc

))
. Linearity

of expectation therefore implies that

E [|p|] =

dr lg ∆e∑
`=0

O

(
2b`/rc +

lnV

ln
(
e lnV/2b`/rc

))

≤
dr lg ∆e∑
`=0

O

(
2b`/rc +

lnV

ln (e lnV/∆)

)
≤ O

(
∆ +

ln ∆ lnV

ln (e lnV/∆)

)
.

Next, because at most E/2b`/rc vertices can have degree at least 2b`/rc, we have for

` > r lg
√
E that the longest path through the subdag G(`) is no longer than E/2b`/rc. We

thus conclude that

E [|p|] ≤
dr lg

√
Ee∑

`=0

O
(

2b`/rc
)

+
∞∑

`=dr lg
√
Ee
E/2b`/rc +

dr lg ∆e∑
`=0

O

(
lnV

ln
(
e lnV/2b`/rc

))

E [|p|] ≤ O
(√

E
)

+O
(√

E
)

+

dr lg ∆e∑
`=0

O

(
lnV

ln (e lnV/∆)

)
≤ O

(√
E +

ln ∆ lnV

ln (e lnV/∆)

)
.

Corollary 29 Given a graph G = (V,E, ρ) for some ρ ∈ SLL, JP-SLL colors all vertices

in G with expected span O
(

ln ∆ lnV + ln ∆
(

min {
√
E,∆}+ ln ∆ lnV/ ln (e lnV/∆)

))
.

Proof. The procedure SLL-Assign-Priorities calls the parallel loop on line 239 O(lg ∆)

times, each of which has expected span O(lg V ). The proof then follows from Theorems 13

and 28.
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4.6 Empirical evaluation

This section evaluates the LLF and SLL ordering heuristics empirically using a suite of

eight real-world and ten synthetic graphs. We describe the experimental setup used to eval-

uate JP-R, JP-LLF, and JP-SLL, and we compare their performance with Greedy-FF,

Greedy-LF, and Greedy-SL. We compare the ordering heuristics in terms of the quality

of the colorings they produce and their execution times. We conclude that LLF and SLL

produce colorings with quality comparable to LF and SL, respectively, and that JP-LLF

and JP-SLL scale well. We also show that the engineering quality of our implementations

appears to be competitive with ColPack [81], a publicly available graph-coloring library.

Our source code and data are available from http://supertech.csail.mit.edu.

Experimental setup

To evaluate the ordering heuristics, we implemented JP using Intel Cilk Plus [113] and

engineered it to use the parallel ordering heuristics R, LLF, and SLL. To compare these

parallel codes against their serial counterparts, we implemented Greedy in C to use the

FF, LF, or SL ordering heuristics. In order to empirically evaluate the potential parallel

performance of the serial ordering heuristics, we also engineered JP to use FF, LF, or SL.

We evaluated our implementations on a dual-socket Intel Xeon X5650 with a total of 12

processor cores operating at 2.67-GHz (hyperthreading disabled); 49GB of DRAM; 2 12-

MB L3-caches, each shared between 6 cores; and private L2- and L1-caches with 128KB and

32KB, respectively. Each measurement was taken as the median of 7 independent trials, and

the averages of those measurements reported in Tables 4-13 and 4-14 were taken across 5

independent random seeds.

These implementations were run on a suite of eight real-world graphs and ten synthetic

graphs. The real-world graphs came from the Large Network Dataset Collection provided

by Stanford’s SNAP project [136]. The synthetic graphs consist of the adversarial graphs

described in Section 4.4 and a set of graphs from three classes: constant degree, 3D grid,

and “recursive matrix” (rMat) [40,44]. The adversarial graphs — cliqueChain400 and path-

10M — are described in Figure 4-9 with ∆ = 400 and Theorem 25 with |V | = 10, 000, 000,

respectively. The constant-degree graphs — constant1M and constant500K — have 1M and

500K vertices and constant degrees of 100 and 200, respectively. These graphs were generated

such that every pair of vertices is equally likely to be connected and every vertex has the
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Graph |V | a b c d

graph500-5M 5M 0.57 0.19 0.19 0.05
graph500-2M 2M 0.57 0.19 0.19 0.05
rMat-ER-2M 2M 0.25 0.25 0.25 0.25
rMat-G-2M 2M 0.45 0.15 0.15 0.25
rMat-B-2M 2M 0.55 0.15 0.15 0.15

Table 4-11: Parameters for the generation of rMat graphs [44], where a+ b+ c+d = 1 and
b = c, when the desired graph is undirected. An rMat graph is built by adding |E| edges
independently at random using the following rule: Let k be the number of 1’s in a binary
representation of i. As each edge is added, the probability that the ith vertex vi is selected
as an endpoint is (a+ c)k(b+ d)lgn−k.

Graph |E| |E| / |V | ∆

com-orkut 117.2M 38.1 33,313
liveJournal1 42.9M 8.8 20,333
europe-osm 36.0M 0.7 9
cit-Patents 16.5M 2.7 793
as-skitter 11.1M 1.0 35,455
wiki-Talk 4.7M 1.9 100,029
web-Google 4.3M 4.7 6,332
com-youtube 3.0M 2.6 28,754

constant1M 50.0M 50.0 100
constant500K 50.0M 99.9 200
graph500-5M 49.1M 5.9 121,495
graph500-2M 19.2M 9.2 70,718
rMat-ER-2M 20.0M 9.5 44
rMat-G-2M 20.0M 9.5 938
rMat-B-2M 19.8M 9.4 14,868
big3dgrid 29.8M 3.0 6
cliqueChain400 3.6M 132.4 400
path-10M 10.0M 1.0 2

Table 4-12: Number of edges, ratio of edges to vertices and maximum vertex degree for
a collection of real-world and synthetic graphs, which lie above and below the center line,
respectively.

same degree. The graph big3dgrid is a 3-dimensional grid on 10M vertices. The rMat graphs

were generated using the parameters in Table 4-11.
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Greedy JP

Graph H CH TS H ′ CH ′ T1 T12 TS/T1 T1/T12

com-orkut FF 175 2.23 R 132 4.44 0.817 0.50 5.43
LF 87 3.54 LLF 98 5.74 0.846 0.62 6.79
SL 83 10.59 SLL 84 9.90 1.865 1.07 5.31

liveJournal1 FF 352 0.89 R 330 2.08 0.231 0.43 8.98
LF 323 2.34 LLF 326 2.23 0.286 1.05 7.80
SL 322 4.69 SLL 327 4.03 0.704 1.16 5.73

europe-osm FF 5 1.32 R 5 4.04 0.391 0.33 10.34
LF 4 17.15 LLF 4 4.93 0.473 3.48 10.41
SL 3 19.87 SLL 3 7.28 1.232 2.73 5.91

cit-Patents FF 17 0.50 R 21 1.08 0.163 0.46 6.67
LF 14 2.00 LLF 14 1.46 0.160 1.37 9.11
SL 13 3.21 SLL 14 2.90 0.519 1.11 5.58

as-skitter FF 103 0.24 R 81 0.58 0.114 0.42 5.07
LF 71 2.43 LLF 72 0.63 0.106 3.84 5.99
SL 70 2.79 SLL 71 1.04 0.269 2.67 3.88

wiki-Talk FF 102 0.09 R 85 0.28 0.053 0.31 5.28
LF 72 0.49 LLF 70 0.34 0.050 1.43 6.78
SL 56 0.61 SLL 62 0.55 0.124 1.12 4.43

web-Google FF 44 0.09 R 44 0.21 0.029 0.44 7.44
LF 45 0.25 LLF 44 0.27 0.030 0.94 8.92
SL 44 0.47 SLL 44 0.50 0.093 0.94 5.44

com-youtube FF 57 0.06 R 46 0.18 0.026 0.36 6.86
LF 32 0.25 LLF 33 0.22 0.028 1.11 7.97
SL 28 0.35 SLL 28 0.35 0.073 1.01 4.75

Table 4-13: Performance measurements for a set of real-world graphs taken from Stanford’s
SNAP project [136]. The column heading H denotes that the priority function used for the
experiment in a particular row was produced by the ordering heuristic listed in the column.
The average number of colors used by the corresponding ordering heuristic and graph is CH .
The time in seconds of Greedy, JP with 1 worker and with 12 workers is given by TS ,
T1 and T12, respectively. Details of the experimental setup and graph suite can be found in
Section 4.6.

Coloring quality of R, LLF, and SLL

Tables 4-13 and 4-14 present the coloring quality of the three parallel ordering heuristics R,

LLF, and SLL alongside that of their serial counterparts FF, LF, and SL.

The number of colors used by LLF was comparable to that used by LF on the vast

majority of the 18 graphs. Indeed, LLF produced colorings that were within 2 colors of

LF on all synthetic graphs and all but 2 real-world graphs: com-orkut and liveJournal1.
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Greedy JP

Graph H CH TS H ′ CH ′ T1 T12 TS/T1 T1/T12

constant1M FF 33 0.90 R 32 1.93 0.255 0.47 7.55
LF 32 1.16 LLF 32 2.70 0.323 0.43 8.35
SL 34 2.96 SLL 32 4.63 0.610 0.64 7.59

constant500K FF 52 0.74 R 52 1.50 0.190 0.49 7.89
LF 52 0.84 LLF 52 2.01 0.273 0.42 7.34
SL 53 1.97 SLL 52 3.33 0.498 0.59 6.69

graph500-5M FF 220 1.83 R 220 2.99 0.558 0.61 5.35
LF 159 3.69 LLF 160 3.74 0.542 0.99 6.89
SL 158 8.43 SLL 162 7.63 1.056 1.10 7.23

graph500-2M FF 206 0.52 R 208 1.01 0.212 0.51 4.77
LF 153 0.98 LLF 154 1.24 0.151 0.79 8.19
SL 153 2.22 SLL 156 2.25 0.324 0.99 6.94

rMat-ER-2M FF 12 0.47 R 12 1.25 0.149 0.37 8.40
LF 11 1.07 LLF 12 1.63 0.198 0.66 8.25
SL 11 2.22 SLL 11 3.13 0.506 0.71 6.18

rMat-G-2M FF 27 0.48 R 27 0.91 0.144 0.53 6.33
LF 15 1.18 LLF 17 1.34 0.204 0.88 6.54
SL 15 2.59 SLL 15 2.75 0.432 0.94 6.36

rMat-B-2M FF 105 0.50 R 105 0.86 0.149 0.58 5.78
LF 67 1.00 LLF 68 1.18 0.149 0.85 7.94
SL 67 2.41 SLL 68 2.38 0.376 1.01 6.31

big3dgrid FF 4 0.41 R 7 1.66 0.178 0.25 9.31
LF 7 4.07 LLF 7 1.89 0.216 2.15 8.76
SL 7 4.77 SLL 7 2.63 0.307 1.81 8.57

cliqueChain400 FF 399 0.05 R 399 0.09 0.012 0.50 7.77
LF 399 0.05 LLF 399 0.12 0.015 0.41 7.70
SL 399 0.08 SLL 399 0.16 0.024 0.47 6.70

path-10M FF 2 0.18 R 3 0.85 0.074 0.21 11.54
LF 3 2.49 LLF 3 0.98 0.083 2.54 11.87
SL 2 2.58 SLL 3 1.36 0.169 1.90 8.04

Table 4-14: Performance measurements for five classes of synthetically generated graphs:
constant degree, rMat, 3D grid, clique chain and path. The column headings are equivalent
to those in Table 4-13.

Similarly, SLL produced colorings that were within 3 colors of SL for all synthetic graphs

and all but 2 real-world graphs: liveJournal1 and wiki-Talk.
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The liveJournal1 graph appears to benefit little from the ordering heuristics we con-

sidered. Every heuristic uses more than 300 colors, and the biggest difference between the

number of colors used by any heuristic is less than 10.

The wiki-Talk and com-orkut graphs appear to benefit from ordering heuristics and

illustrate what we believe is a coarse hierarchy of coloring quality in which FF < R <

LLF < LF < SLL < SL. On com-orkut, LLF produced a coloring of size 98, which was

better than the 175 and 132 colors used by FF and R, respectively, but not as good as the

87 colors used by LF. In contrast, SLL nearly matched the superior coloring quality of SL,

producing a coloring of size 84. On wiki-Talk, SLL produced a coloring of size 62, which was

better than LF, LLF, R, and FF by a margin of between 8 to 40 colors, but not as good

as SL, which used only 56 colors. These trends appear to exist, in general, for most of the

graphs in the suite.

Scalability of JP-R, JP-LLF, and JP-SLL

The parallel performance of JP was measured by computing the speedup it achieved on 12

cores and by comparing the 1-core runtimes of JP to an optimized serial implementation of

Greedy. These results are summarized in Tables 4-13 and 4-14.

Overall, JP-LLF obtains a geometric-mean speedup — the ratio of the runtime on 1

core to the runtime on 12 cores — of 7.83 on the eight real-world graphs and 8.08 on the

ten synthetic graphs. Similarly, JP-SLL obtains a geometric-mean speedup of 5.36 and 7.02

on the real-world and synthetic graphs, respectively.

Tables 4-13 and 4-14 also include scalability data for JP-FF, JP-LF, and JP-SL. Histor-

ically, JP-LF has been used with mixed success in practical parallel settings [4,85,118,175].

Despite the fact that it offers little in terms of theoretical parallel performance guarantees,

we have measured its parallel performance for our graph suite, and indeed JP-LF scales

reasonably well: JP-LF1/JP-LF12 = 6.8 as compared to JP-LLF1/JP-LLF12 = 8.0 in ge-

ometric mean, not including cliqueChain400, which is omitted since JP-LF crashes due to

excessive stack usage on cliqueChain400. The omission of cliqueChain400 highlights the dan-

gers of using algorithms without good performance guarantees: it is difficult to know if the

algorithm will behave badly given any particular input. In this respect, JP-FF is particularly

vulnerable to adversarial inputs, as we can see by the fact that it crashes on europe-osm,
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which is not even intentionally adversarial. We also see this vulnerability with JP-SL, as

well as generally poor scalability on the entire suite.

To measure the overheads introduced by using a parallel algorithm, the runtime T1

of JP on 1 core was compared with the runtime TS of an optimized implementation of

Greedy. This comparison was performed for each of the three parallel ordering heuristics

we considered: R, LLF, and SLL. The serial runtime of Greedy using FF is 2.5 times

faster than JP-R on 1 core for the eight real-world graphs and 2.3 times faster on the ten

synthetic graphs. We conjecture that Greedy gains its advantage due to the spatial-locality

advantage that results from processing the vertices in the linear order they appear in the

graph representation. JP-LLF and JP-SLL on 1 core, however, are actually faster than

Greedy with LF and SL by 43.3% and 19% on the eight real-world graphs and 6% and 3%

on the whole suite, respectively.

In order to validate that our implementation of Greedy is a credible baseline, we com-

pared it with a publicly available graph-coloring library, ColPack [81], developed by Ge-

bremedhin et al. and found that the two implementations appeared to achieve similar perfor-

mance. For example, using the SL ordering heuristic, Greedy is 19% faster than ColPack

in geometric-mean across the graph suite, though Greedy is slower on 5 of the 16 graphs

and as much 2.22 times slower for as-skitter.

4.7 Implementation techniques

This section describes the techniques we employed to implement JP and Greedy for the

evaluation in Section 4.6. We describe three techniques — join-trees [68], bit-vectors, and

software prefetching — that improve the practical performance of JP. Where applicable,

these same techniques were used to optimize the implementation of Greedy. Overall, ap-

plying these techniques yielded a speedup of between 1.6 and 2.9 for JP and a speedup of

between 1.2 and 1.6 for Greedy on the rMat-G-2M, rMat-B-2M, web-Google, and as-skitter

graphs used in Section 4.6.

Join trees for reducing memory contention

Although the theoretical analysis of JP in Section 4.2 does not concern itself with contention,

the implementation of JP works to mitigate overheads due to contention. The pseudocode for

JP in Figure 4-4 shows that each vertex u in the graph has an associated counter u.counter .
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Greedy-SD(G)

244 let G = (V,E)
245 for v ∈ V
246 v.adjColors = ∅
247 v.adjUncolored = N(v)
248 PushOrAddKey(v,Q[0][|v.adjUncolored |])
249 s = 0
250 while s ≥ 0
251 v = PopOrDelKey(Q[s][max Keys(Q[s])])
252 v.color = min({1, 2, . . . , |v.adjUncolored |+ 1} − v.adjColors)
253 for u ∈ v.adjUncolored
254 RemoveOrDelKey(u,Q[|u.adjColors|][|u.adjUncolored |])
255 u.adjColors = u.adjColors ∪ {v.color}
256 u.adjUncolored = u.adjUncolored − {v}
257 PushOrAddKey(u,Q[|u.adjColors|][|u.adjUncolored |])
258 s = max {s, |u.adjColors|}
259 while s ≥ 0 and Q[s] == ∅
260 s = s− 1

Figure 4-15: The Greedy-SD algorithm computes a coloring for the input graph G =
(V,E) using the SD heuristic. Each uncolored vertex v ∈ V maintains a set v.adjColors
of colors used by its neighbors and a set v.adjUncolored of uncolored neighbors of v. The
PushOrAddKey method adds a specified key, if necessary, and then adds an element to
that key’s associated set. The PopOrDelKey and RemoveOrDelKey methods remove
an element from a specified key’s associated set, deleting that key if the set becomes empty.
The variable s maintains the maximum saturation degree of G.

Line 225 of JP-Color executes a Join operation on u.counter . Although Section 4.2 de-

scribes how Join can treat u.counter as a join counter [51] and update u.counter using an

atomic decrement and fetch operation, the cache-coherence protocol [163] on the machine

serializes such atomic operations, giving rise to potential memory contention. In particular,

memory contention may harm the practical performance of JP on graphs with large-degree

vertices.

Our implementation of JP mitigates overheads due to contention by replacing each join

counter u.counter with a join tree having Θ(|u.pred |) leaves. In particular, each join tree was

sized such that an average of 64 predecessors of u map to each leaf through a hash function

that maps predecessors to random leaves. We found that the join tree reduces T1 for JP by

a factor of 1.15 and reduces T12 for JP by between 1.1 and 1.3.
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Bit vectors for assigning colors

To color vertices more efficiently, the implementation of JP uses vertex-local bit vectors to

store information about the availability of low-numbered colors. Because JP assigns to each

vertex the lowest-numbered available color, vertices tend to be colored with low-numbered

colors. To take advantage of this observation, we store a 64-bit word per vertex u to track

the colors in the range {1, 2, . . . , 64} that have already been assigned to a neighbor of u. The

bit vector on u.vec is computed as a “self-timed” OR reduction that occurs during updates

on u’s join tree. Effectively, as each predecessor v of u executes Join on u’s join tree, if

v.color is in {1, 2, . . . , 64}, then v OR’s the word 2v.color−1 into u.vec. When Get-Color(u)

subsequently executes, Get-Color first scans for the lowest unset bit in u.vec to find the

minimum color in {1, 2, . . . , 64} not assigned to a neighbor of u. Only when no such color is

available does Get-Color(u) scan its predecessors to assign a color to u.

We discovered that a large fraction of vertices in a graph can be colored efficiently using

this practical optimization. We found that this optimization improved T12 for JP by a factor

of 1.4 to 2.2, and a similar optimization sped up the implementation of Greedy by a factor

of 1.2 to 1.6.

Software prefetching

We used software prefetching to improve the latency of memory accesses in JP. In particular,

JP uses software prefetching to mitigate the latency of the indirect memory access encoun-

tered when accessing the join trees of the successors of a vertex v on line 224 of JP-Color

in Figure 4-4. This optimization improves T12 for JP by a factor of 1.2 to 1.5.

Interestingly, our implementation of Greedy did not appear to benefit from using soft-

ware prefetching in a similar context, specifically, to access the predecessors of a vertex on

line 212 of Greedy in Figure 4-1. We suspect that because Greedy only reads the prede-

cessors of a vertex on this line and does not write them, the processor hardware is able to

generate many such reads in parallel, thereby mitigating the latency penalty introduced by

cache misses.
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4.8 The saturation-degree heuristic

Our experiments with serial heuristics detailed in Tables 4-2 and 4-3 indicate that the

SD heuristic tends to provide colorings with higher quality than the other heuristics we

have considered, confirming similar findings by Gebremedhin and Manne [80]. Although we

leave the problem of devising a good parallel algorithm for SD as an open question, we

were able to devise a linear-time serial algorithm for the problem, despite conjectures in

the literature [50, 85] that superlinear time is required. This section briefly describes our

linear-time serial algorithm for SD.

Figure 4-15 gives pseudocode for the Greedy-SD algorithm, which implements the SD

heuristic. Rather than trying to define a priority function for SD, the figure gives the coloring

algorithm Greedy-SD itself, since the calculation of such a priority function would color the

graph as a byproduct. At any moment during the execution of the algorithm, the saturation

degree of a vertex v as the number |v.adjColors| of distinct colors of v’s neighbors, and the

effective degree of v as |v.adjUncolored |, its degree in the as yet uncolored graph.

The main loop of Greedy-SD (lines 250–260) first removes a vertex v of maximum

saturation degree from Q (line 251) and colors it (line 252). It then updates each uncolored

neighbor u ∈ v.adjUncolored of v (lines 253–258) in three steps. First, it removes u from

Q (line 254). Next, it updates the set u.adjUncolored of u’s effective neighbors — u’s

uncolored neighbors in G — and the set u.adjColors of colors used by u’s neighbors (lines

255–256). Finally, it enqueues u in Q based on u’s updated information (lines 257–258).

The crux of Greedy-SD lies in the operation of the queue data structure Q, which

is organized as an array of saturation tables, each of which supports the three methods

PushOrAddKey, PopOrDelKey, and RemoveOrDelKey described in the caption of

Figure 4-15. A saturation table can support these operations in Θ(1) time and allow its

keys K to be read in Θ(K) time. At the start of each main loop iteration, entry Q[i]

stores the uncolored vertices in the graph with saturation degree i in a saturation table.

The PushOrAddKey, PopOrDelKey, and RemoveOrDelKey methods maintain the

invariant that, for each table Q[i], each key j ∈ Keys(Q[i]) is associated with a nonempty

set of vertices, such that each vertex v ∈ Q[i][j] has saturation degree i and effective degree j.

Theorem 30 Greedy-SD colors a graph G = (V,E) according to the SD ordering heuristic

in Θ(V + E) time.
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Proof. PushOrAddKey, PopOrDelKey, and RemoveOrDelKey operate in Θ(1)

time, and a given saturation table’s key set K can be read in Θ(K) time. Line 251 can

thus find a vertex v with maximum saturation degree s in Θ(|Keys(Q[s])|) time. Line 252

can color v in Θ(deg(v)) time, and lines 258–260 maintain s in Θ(s) time. Because s +

|Keys(Q[s])| ≤ deg(v), lines 250–260 evaluate v in Θ(deg(v)) time. The handshaking lemma

[52, p. 1172–3] implies the theorem, because each vertex in V is evaluated once.

4.9 Related work

Parallel coloring algorithms have been explored extensively in the distributed computing

domain [5,11,86,87,118,126,127,140]. These algorithms are evaluated in the message-passing

model, where nodes are allowed unlimited local computation and exchange messages through

a sequence of synchronized rounds. Kuhn [126] and Barenboim and Elkin [11] independently

developed O(∆+lg∗ n)-round message passing algorithms to compute a deterministic greedy

coloring.

Several greedy coloring algorithms have been described in synchronous PRAM models.

Goldberg, Plotkin, and Shannon [86] describe an algorithm for finding a greedy coloring of

O(1)-degree graphs in O(lg n) time in the EREW PRAM model using a linear number of

processors. They observe that their technique can be applied recursively to color ∆-degree

graphs in O(∆ lg ∆ lg n) time. Their strategy incurs Ω(lg ∆(V + E)) (superlinear) work,

however.

Çatalyürek et al. [40] present the algorithm Iterative, which first speculatively colors

a graph G and then fixes coloring conflicts, that is, corrects the coloring where two adjacent

vertices are assigned the same color. The process of fixing conflicting colors can introduce new

conflicts, though the authors observe empirically that comparatively few iterations suffice

to find a valid coloring. We ran Iterative on our test system and found that JP-LLF uses

13% fewer colors and takes 19% less time in geometric mean of number of colors and relative

time, respectively, over all graphs in our test suite. Furthermore, we found that JP-SLL uses

17% fewer colors, but executes in twice the time of Iterative. We do not know the extent to

which the optimizations enjoyed by our algorithms could be adopted by speculative-coloring

algorithms, however, and so it is likely too soon to draw conclusions about comparisons

between the strategies.
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4.10 Conclusion

Because of the importance of graph coloring, considerable effort has been invested over the

years to develop ordering heuristics for serial graph-coloring algorithms. For the traditional

“serial” LF and SL ordering heuristics, we have developed “parallel” analogues — the LLF

and SLL heuristics, respectively — which approximate the traditional orderings, generating

colorings of comparable quality while offering provable guarantees on parallel scalability.

The correspondence between serial ordering heuristics and their parallel analogues is fairly

direct for LF and LLF . LLF colors any two vertices whose degrees differ by more than a

factor of 2 in the same order as LF. In this sense, LLF can be viewed as a simple coarsening

of the vertex ordering used by LF. Although SLL is inspired by SL, and both heuristics

tend to color vertices of smaller degree later, the correspondence between SL and SLL is

not as straightforward. We relied on empirical results to determine the degree to which SLL

captures the salient properties of SL.

We had hoped that the coarsening strategy LLF and SLL embody would generalize to

the other serial ordering heuristics, and we are disappointed that we have not yet been

able to devise parallel analogues for the other ordering heuristics, and in particular, for SD.

Because the SD heuristic appears to produce better colorings in practice than all of the

other serial ordering heuristics, SD appears to capture an important phenomenon that the

others miss.

The problem with applying the coarsening strategy to SD stems from the way that SD

is defined. Because SD determines the order to color vertices while serially coloring the

graph itself, it seems difficult to parallelize, and it is not clear how SD might correspond

to a possible parallel analogue. Thus, it remains an intriguing open question as to whether

a parallel ordering heuristic exists that captures the same “insights” as SD while offering

provable guarantees on scalability.

SD has a high running time, if only a constant factor higher than optimal. One way to

potentially improve the overall running time without compromising the coloring quality of

SD is to exploit the “deferred coloring property:” If G = (V,E, ρ) is a graph colored with χ

colors when ordered according to the priority function ρ, then G = (V,E, ρ′) is colored with

at most χ colors, where Vχ = {v ∈ V : |N(v)| < χ} and ρ′(v) = 〈IsMember(v, Vχ), ρ(v)〉.

That is, if a vertex with less than χ neighbors is assigned a color, it can never be assigned a
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color larger than χ. We could exploit the deferred coloring property by successively removing

sets of vertices with degree less than a specified value, until the χ-core remains [117]. The

resulting χ-core may be colored using SD at a reduced cost, since there are fewer remaining

vertices. Finally, the low-degree vertices may be cheaply colored in the reverse order of their

removal, using a greedy algorithm. An open question remains: under what circumstances or

for what inputs is this a parallel algorithm with provably good span?
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Chapter 5

Cache-Efficient Data-Graph

Computations for Physical

Simulations

5.1 Introduction

Scientists, governments, and companies are wrestling with the “other” Moore’s Law: the

amount of data in the world doubles every two years [194]. Untold treasures lie within this

data and thus a battalion of data wonks are marching on Insightsville. One such type of

big data problem is the space of physical simulations (e.g., fluid dynamics [17], the n-body

problem [168, 183, 196], computer graphics, etc.). We investigate the specific problem of

performing physical simulations on large datasets quickly and deterministically. Figure 5-1

depicts a typical dataset: a mesh graph, where vertices have positions in 3D space and edges

connect physically nearby vertices. A function, typically some approximation of physical

forces (e.g., Newton’s laws of motion [157]), that operates on each vertex and its neighbors

is applied to all vertices over many (e.g., at least millions of) time steps. This research

introduces a software platform called Laika that performs these physical simulations in a

fast and provably scalable manner on a shared-memory multicore computer.

In recent years, there has been growing interest in developing frameworks for the storage

and analysis of data on large compute clusters, Hadoop [55,59] being among among the most

popular of these. Hadoop distributes data across many shared-memory multicore nodes,
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Figure 5-1: The Stanford dragon [1] mesh graph where lines correspond to edges and
intersections of lines correspond to vertices.

which communicates via a message-based network protocol. Users supply map operators,

that operate on each data item independently, and reduce operators, that combine the

results. Many problems can be cast into the Hadoop model, but in many cases the Hadoop

approach is less effecient than more specialized methods optimized for graph algorithms.

The idea behind recent big data frameworks, like Hadoop, is to decouple scheduling and

data layout from the expression of the computation, enabling high programmer productivity

and portable, best-in-class performance. Iterative graph algorithms, however, are one class

of problem that is not well-suited to the Hadoop approach. For example, graphs are difficult

to split into completely independent sets (i.e., with no crossing edges) for the map phase of

a Hadoop computation, so the maps are often wasteful. Nonetheless, the idea of decoupling

scheduling and data layout from the expression of the algorithm is useful for designing

frameworks for graph algorithms, even if Hadoop itself is ill-suited to the task.

Data-graph computations

In response to the shortcomings of applying Hadoop and similar systems to graph problems,

Low et al. developed the GraphLab framework [142, 143] for iterative graph algorithms,
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primarily targeting machine learning algorithms. In particular, GraphLab is a framework

for implementing a data-graph computation, which consists of a graph G = (V,E), where

each vertex has associated user-specified data, and a user-specified update function which

is applied to every vertex, taking as inputs the data associated with the associated neighbors.

On each round or time step the update function is applied to some subset of, or all, vertices.

Many interesting big data algorithms, including Google’s PageRank, can be conveniently

expressed under this model.

Chromatic scheduling

Recently, Kaler et al. [121] demonstrated that general data-graph computations could be

made to be deterministic without giving up high-performance, in fact, while increasing per-

formance. Their system Prism is 1.2-2.1 times faster than the nondeterministic GraphLab

framework on a representative suite of data-graph computations in a multicore setting. The

algorithm Kaler et al. proposed is called Prism, which uses a well-known technique, chro-

matic scheduling [2, 18,142].

In chromatic scheduling one finds a valid coloring of the graph as depicted in Figure 1-1,

an assignment of colors to vertices such that no two neighboring vertices share the same

color,1 and then serializes through the colors. Since each subset of the graph of a given color

is an independent set (i.e., no two members share an edge) they may be processed simulta-

neously without causing a data race. This strategy assumes that the update function applied

to a vertex v reads the data associated with all of its neighbors N(v) = {w ∈ V |(v, w) ∈ E}

and writes only the data associated with v. Chromatic scheduling is a powerful technique

because it allows the parallel execution of a data-graph computation without any concurrent

operations on data, removing the overhead of mutual-exclusion locks incurred by GraphLab

or other atomic operations that would be required in a design with concurrency.

While chromatic scheduling does a good job of enabling high parallelism without any

concurrency, it can be inefficient for cache usage. For instance, in order to process the

update function of a vertex v of color c, the worker needs to read data associated with

all of its neighbors, denoted N(v). However, by virtue of being in different color sets, by

definition, each vertex w ∈ N(v) can not be processed until after all vertices of color c

1We define a “neighbor” of a vertex v ∈ V in a graph G = (V,E) to be any w ∈ V such that (v, w) ∈ E
or (w, v) ∈ E.
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have been processed, potentially squandering the potential cache advantage of processing

the neighbors of v soon after v itself is processed, while they are still in cache.

Dag scheduling

An alternative approach to chromatic scheduling is dag scheduling [118], depicted in Fig-

ure 1-6 and used extensively by Hasenplaugh et al. [102] in the context of graph coloring.

In dag scheduling, the graph is turned into a dag through the use of a priority function

ρ : V → R. In particular, an undirected edge connecting vertices v and w is oriented as

(v, w) if ρ(v) < ρ(w) (ties can be broken randomly or by comparing vertex numbers). The

vertices are then processed in dag order, meaning that a vertex v may be processed only

once all of its predecessors v.pred = {w ∈ N(v) : ρ(w) < ρ(v)} have been processed. A rel-

atively simple implementation of dag scheduling is called JP, described in Figure 5-2. A

counter at each vertex is initialized with the number of predecessors in the dag. Then, af-

ter a vertex v is updated the worker atomically decrements the counters for all successors

v.succ = N(v) \ v.pred , recursively updating any successors whose counters drop to zero.

This scheduling approach affords us the opportunity to process vertices shortly after they

are read by their neighbors, a potential caching advantage. We will explore a technique for

achieving such cache behavior for a special class of mesh graphs used in physical simulations

in Section 5.3.

Simit: A domain-specific language for specifying physical simulations

Simit [124] is a language used by scientists to describe physical simulations (e.g., fluid dynam-

ics, the n-body problem, computer graphics, etc.) and used by us to motivate the scheduling

of such simulations. Simit generates a mesh graph (i.e., a wire mesh discretization of a con-

tinuous 3D object) of an object in physical 3D space, like the one depicted in Figure 5-1.

These meshes can contain vertices at intersections of line segments, hyperedges (e.g., tri-

angular faces), and tetrahedron volumes, each of which has associated data. An immediate

hurdle presents itself when trying to cast operations on such a mesh graph as a data-graph

computation: data-graphs do not natively support hyperedges or tetrahedra. Simit is a pro-

gramming language, and thus the compiler can intervene to represent the mesh graph as a

data-graph where each vertex has a type.
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JP(G)

261 let G = (V,E, ρ)
262 parallel for v ∈ V
263 v.pred = {u ∈ N(v) : ρ(u) > ρ(v)}
264 v.succ = {u ∈ N(v) : ρ(u) < ρ(v)}
265 v.counter = |v.pred |
266 parallel for v ∈ V
267 if v.pred == ∅
268 JP-Update(v)

JP-Update(v)

269 Update(v)
270 parallel for u ∈ v.succ
271 if Join(u.counter) == 0
272 JP-Update(u)

Figure 5-2: The Jones-Plassmann [118] parallel priority-dag scheduling algorithm, shown
here as JP, is a generalization of Jones and Plassmann’s original distributed vertex-coloring
algorithm. JP uses a recursive helper function JP-Update to process a vertex using the
user-supplied Update function once all of its predecessors have been updated, recursively
calling JP-Update in line 59 for any successor u who is eligible to be updated (i.e., when
u.counter == 0). The function Join decrements its argument and returns the post-decrement
value.

We see in Figure 5-3 how a face (or hyperedge) connecting vertices B, D, and E, for

example, can be represented as a new type of vertex (i.e., the blue squares in the figure)

which is conntected to B, D, and E by individual edges. In addition, a tetrahedron can

be viewed as a set of four adjacent triangular faces (or hyperedges). In Figure 5-4 we see

such an example, where a third type of vertex (i.e., the purple diamond in the figure) is

connected to four face type vertices. Finally, the update function, which is generated by the

Simit compiler, can generate an update function which takes the type of the vertex as a

parameter and jumps to the relevant code, as in a case statement.

The Hilbert space-filling curve

We propose a new priority function for use with dag scheduling of data-graph computations

for the special case of physical simulations, like those generated by Simit. This priority

function is used to reorder the vertices in the graph to exploit improved cache behavior as

we explore in Section 5.2. In particular, we use the bounding box of the graph in 3D space

to normalize the graph to the unit cube. Then, we decompose the unit cube into a regular

2k × 2k × 2k grid, each grid point of which is assigned a scalar value by the Hilbert space-
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Figure 5-3: Graphs generated by the language Simit feature hyperedges, an example of
which is in blue on the left. Hyperedges are represented by different types of vertices in the
resulting data-graph computation. The square vertices in the figure represent hyperedges
and have associated per-hyperedge data.
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Tetrahedron: 
<A,B,C,D>

Figure 5-4: Graphs generated by the language Simit have tetrahedrons, as depicted on the
left above. A tetrahedron is composed of four hyperedges (or faces), an example of which is
in blue on the left. Tetrahedra are represented by different types of vertices in the resulting
data-graph computation. The diamond vertex on the right represents a tetrahedron and is
connected to its four constituent hyperedges.

filling curve [106]. A 2D example of the Hilbert space-filling curve is given in Figure 1-8. The

red dotted curve is the first recursion level and illustrates the basic inverted “U” shape. The

blue dashed curve shows how each quadrant is partitioned into four independent first-level

Hilbert curves (up to rotations) of half the size in each dimension. The black solid curve

120



illustrates the third recursion level. All vertices are assigned to the closest grid point and

assigned the corresponding the scalar value along the Hilbert curve, as depicted in Figure 5-

5. This scalar value is known as a point’s value in Hilbert curve space. Since some vertices

may be assigned to the same grid point, ties are broken in the ordering randomly. Thus, the

vertices are processed in the order dictated by the Hilbert curve iterating through the 3D

grid. We call the priority-dag scheduling algorithm, using the Hilbert curve priority function,

Laika.

The Hilbert curve has another convenient property that we can exploit toward the goal

of partitioning a mesh graph to improve cache usage. That is, a subinterval in Hilbert curve

space corresponds to a compact subspace in 3D space which has a low surface area to volume

ratio [166,183,196]. Since mesh graphs are locally connected, we would then expect that the

relative number of edges crossing from one such subspace to another would be low [152].

Thus, to distribute the computation among P different workers in a multicore system, we

merely split the vertices, presorted on the Hilbert priority function, evenly in P chunks while

exposing relatively few inter-processor edges. The use of space-filling curves for locality-

preserving load-balancing is a known technique. Algorithms for the n-body problem [183,

196], database layout and scheduling [152], resource scheduling [138], and dynamic load

balancing [101] all use variations on the general theme of mapping ND space onto a 1D

curve that is subsequently partitioned among P processors. We extend this field by offering

an improved analysis of the relationship between distance in Hilbert curve space and distance

in memory, when vertices are ordered by the Hilbert priority function.

Chapter organization

This chapter represents a collaborative effort with Predrag Gruevski, Charles E. Leiserson,

and James J. Thomas and also exists in a standalone unpublished manunscript called “Cache-

efficient data-graph computations for physical simulations” [96].

We will explore the theoretical and experimental cache behavior of Hilbert-ordered data-

graph computations of locally-connected mesh graphs in Section 5.2. In Section 5.3 we will

describe a new scheduling algorithm Laika which exploits this cache advantage and test its

performance in Section 5.6 using an example physical simulation described in Section 5.5.
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5.2 Reordering Vertices for Cache Locality
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Figure 5-5: Example of how a locally-connected graph in 2D is mapped to a dag via a
second-order Hilbert priority function. Each vertex is mapped to its closest grid point in the
discretized Hilbert curve. Among vertices mapping to the same Hilbert grid point, ties are
broken randomly.

In this section, we describe the rationale behind and empirical evidence supporting our

use of the Hilbert space-filling curve as a way of mapping a 3D space onto the real line.

Specifically, we use this mapping to reorder the vertices of a 3D, locally-connected mesh

graph to gain cache locality. We provide a theoretical analysis which shows that a random

cube graph — a specific type of mesh graph — reordered in this fashion exhibits good cache

behavior. We then show empirically that a random cube graph is an adequate proxy for a

mesh graph that is generated using a tetrahedralization of a surface mesh,2 which is the

typical method in the space of physical simulations. For instance, we used a popular open-

source program TetGen [181,182] to generate the tetrahedral mesh graphs in our test suite,

described in Section 5.6.

Figure 5-5 illustrates a set of points on the unit square overlaid with a second-order 2D

Hilbert curve; the priority function and Hilbert curve both extend naturally to 3 dimensions.

The Hilbert priority function, ρH : V → R, for a vertex is equal to the value along the

closest Hilbert curve grid point, breaking ties between vertices nearest to the same Hilbert

curve grid point at random. The Hilbert priority function takes a parameter k which indicates
2There are many strategies for tetrahedralizing a surface mesh, which means tesselating the volume

encased by the surface mesh with tetrahedra. The tetrahedra are then subdivided into additional smaller
tetrahedra until the desired level of granularity is achieved, a process called “mesh refinement.”

122



the order of the Hilbert curve recursion, where one thinks of the curve dividing up a cubic

space into 2k × 2k × 2k blocks. This priority function is used to sort the vertices in input

graphs that are known to be locally-connected. We pick k such that 23k = O(n) and thus

we can sort the vertices in linear time using a counting sort [52, Ch. 8].3

We analyze the canonical traversal of a mesh graph to approximate the cache behavior

of a single iteration of a static data-graph computation on the same graph. In particular,

we stream through the vertices in sequence while keeping a cache of nearby vertices, and we

measure the number of neighbors that lie outside the cache. For example, during the course

of a traversal with a cache of size M vertices, we arrive at vertex number v, and the cache

is stocked with all vertices in the range [v −M/2, v +M/2− 1]. Any neighbor of v outside

that range would incur a cache miss. In order to simulate a traversal of the graphs in our

suite, we measured the absolute difference |v − w| for every neighboring pair v and w of

vertices, where we abuse the notation v to mean both the vertex v and v’s location within

the vertex array. We used the cumulative distribution of the pairwise differences to simulate

the miss rate per edge for all cache sizes of size M . We can see in Figure 5-6 that reordering

the vertices according to the Hilbert priority function depicted in Figure 5-5 yields excellent

cache behavior. For instance, when using a cache of 2048 vertices — roughly the size of the

L2 cache of modern Intel processors — less than 13% of the neighbors lie outside the L2

cache.

The gray line in Figure 5-6 is an upper bound on the cache miss rate resulting from

an analysis due to Tirthapura, Seal, and Aluru [192]. They analyze a generic recursively

defined space-filling curve, which is any partitioning of a 3D unit cube that recursively

divides the cube into 8 ordered, equal-sized subvolumes, specifically, those that would result

from centering the cube at the origin and separating the portions that lie in each octant.

The leaves of such a partitioning may then be lexicographically compared by appending the

respective orders from each recursion level. Tirthapura, Seal, and Aluru leave as an open

problem the challenge of analyzing specific space-filling curves to achieve tighter bounds.

3For problems generated by Simit and many other physical simulations, there are generally sufficiently
many time steps that the cost of any preprocessing, even O(n logn)-time sorting, is completely amortized.

123



100 1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

Cache Size in Vertices

0.002

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

Av
er

ag
e 

Ca
ch

e 
M

iss
es

 p
er

 E
dg

e

L1 L2 L3 TLB Main Memory

Figure 5-6: Measured and predicted miss rates (i.e., fraction of neighbors that would miss
a cache of the size given by the X-axis) for a selection of graphs described in Section 5.6 as
a function of cache size, in number of vertices. Various cache sizes from our Intel Xeon [111]
test system are listed as vertical black lines. The red lines refer to graphs whose vertices are
ordered randomly, in four sizes: the thinnest line corresponds to the smallest graph (29.8MB)
and the thickest line corresponds to the largest graph (1.9GB). The blue lines correspond to
the same graphs as in the red lines, except that their vertices are ordered using the Hilbert
priority function. The gray line is an upper bound on the cache miss rate due to an analysis
Tirthapura, Seal, and Aluru [192]. The green line is an upper bound on the cache miss rate
resulting from an the analysis in this section.

Definition 1 Given distance parameter r and norm4 LP , an n-vertex random cube graph

G = (V,E) is generated by choosing the position ~pv of each vertex v uniformly randomly in

the unit cube for all v ∈ V and defining the edge set E = {(u, v) ∈ V × V : ‖~pu − ~pv‖P < r}.

That is, vertices in a random cube graph separated by a distance at most r under the

LP norm are connected by an edge.5 The average degree of a vertex v in a random cube

graph is at most the expected number of vertices that fall within a sphere of radius r. Since

the vertices in G are distributed uniformly randomly in the unit cube, the expected degree

4The LP norm of an m-dimensional vector ~x = {x1, x2, . . . , xm} equals
(
|x1|P + |x2|P + . . . |xm|P

)1/P
.

5A small subtly exists at the borders of the random cube graph. In particular, when the radius-r sphere
centered on a vertex v falls outside the unit cube, the sphere “wraps around” to the other side of the cube in
a toroidal fashion. In practice, only a tiny fraction of edges are made this way, but we define random cube
graphs this way for analytical convenience.
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Figure 5-7: Measured and predicted amounts of bandwidth relative to optimum for a cache
size given by the X-axis (i.e., the average number of times a vertex needs to be read into a
cache of the size of the X-axis). The horizontal asymptote of 1 is due to the fact that each
vertex must be read at least once. The meaning of each line is the same as in Figure 5-6.

is equal to the volume of the sphere in the LP norm times the number of potential neighbors

|V |, a fact that will be exploited in Lemma 31.

Let the vertices of a random cube graph G = (V,E) be ordered by a recursively defined

space-filling curve. Tirthapura, Seal, and Aluru find that the expected number of edges

connecting vertices separated by a distance (i.e., in the order) of more than |V |1−α /2 is

O(V (3+α)/4), when |E| / |V | = O(1). A traversal of G would yield O(V ) work. Thus, the

miss rate per vertex equals O(V (3+α)/4/V ) = O(V (−1+α)/4). With a cache of sizeM = V 1−α,

the miss rate per vertex would equal O(M−1/4).

Improved expected miss rate for recursive space-filling curves

Using an improved analysis, we can show that the expected miss rate of the traversal of a ran-

dom cube graph, reordered using a recursive space-filling curve (e.g., the Hilbert curve [106])

with a cache of size M vertices is O(M−1/3), the green line in Figure 5-6, improving on the

O(M−1/4) bound of Tirthapura, Seal, and Aluru, the gray line in Figure 5-6. In order to

visualize the proof technique in this section, consider a vertex v in a subcube C of size

2−j × 2−j × 2−j for some 2−j ∈ [0, 1] within the unit cube and aligned with the recursive
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decomposition of the space-filling curve, as depicted in Figure 5-8. We can calculate the

probability that another vertex w in the random cube graph is connected to v, yet lies

outside C.

Lemma 31 Given distance parameter r and norm LP , let G = (V,E) be a random cube

graph, let G be decomposed into a grid of 2−j × 2−j × 2−j-sized subcubes, and let M be the

expected number of vertices per subcube. The expected number of edges that connect vertices

in different subcubes is O
(
r4V 2 3

√
V/M

)
for all LP .

Proof. Consider a vertex v in a subcube C and another vertex w, to be placed uniformly

randomly in the unit cube. The probability that w is placed within a distance r of v, yet

outside C, is equal to the fraction of the volume of the radius-r sphere under the LP norm

centered on v that lies outside of C. This volume is at most the sum of the volume of the

spherical caps — the section of a sphere that lies on one side of a plane intersecting the

sphere — that lie on the other side (i.e., outside of C) of the planes coincident with the faces

of C. When v is at a distance h of a face of C, the volume of such a spherical cap [123] is at

most 4r2(r− h), maximized by the L∞ norm [67]. Thus, we find the expected value of Vcap

by integrating over h:

Vcap = 4r2

∫ r

0
(r − h) dh

= 4r4 − 1

2
4r4

= 2r4

The position of v is uniformly distributed within C, so we can merely integrate over the shell

of C that is within a distance r of each face. A 2D illustration of this construction under

the L2 norm is given in Figure 5-8 where we integrate over the shaded portion of C, the

example square in the figure. We need only to multiply Vcap by the area of each face, 2−2j ,

and multiply by the 6 faces to find an upper bound on the probability that w is connected

to v, but not in C, resulting in a probability of 6r42−2j . There are 23j total subcubes, so

the probability that a particular pair of vertices are connected, but lie in different subcubes

is then at most 6r42j . There are at most |V |2 /2 pairs of vertices, so the expected number

of edges crossing between different subcubes is 3r4 |V |2 2j .
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The average number of vertices per subcube M is 2−3j |V |, so 2j = 3
√
|V | /M . Thus, the

expected number of edges that connect vertices in different subcubes is 3r4 |V |2 3
√
|V | /M =

O
(
r4V 2 3

√
V/M

)
.

r 

Vcap 

p 

q 
s 

1 

1 

C 

2-j 
2-j 

Figure 5-8: A 2D analogy to a random cube graph, showing three hypothetical vertices s,
p, and q. Each vertex has a different distance to the border of the subcube, C, where the
probability that another vertex is randomly placed outside of C, but within a radius r, is
equal to the volume of the corresponding spherical cap, e.g., Vcap.

Lemma 32 Let G = (V,E) be a random cube graph graph subdivided by a recursive space-

filling curve. Given any value of M ∈ [72 ln |V | , |V |], let j be the minimum recursion level

such that M ≥ 2−3j |V |+
√

(2−3j |V |) (9 ln |V |). The probability that any subcube at the jth

recursion level holds more M vertices is less than |V |−2.

Proof. For convenience, let n = |V | and let M ′ = 2−3jn be the expected number of

vertices per subcube. Let Xv an indicator variable where a value of 1 indicates that vertex

v is in a particular subcube for all v ∈ V . We use the Chernoff bound [48]

Pr {X ≥ (1 + σ)µ} ≤ exp
(
−σ2µ/3

)
∀σ ∈ [0, 1], (5.1)

letting µ be the mean of random variable X =
∑

vXv, to show that the probability that a

particular subcube holds more than M vertices is less than n−3. By the lemma statement,
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M ≥ 2−3jn+
√

(2−3jn) (9 lnn), and substituting M ′, M ≥
(

1 +
√

(9 lnn) /M ′
)
M ′. Thus,√

(9 lnn) /M ′ ≤ 1, since 8M ′ > M and M ≥ 72 lnn. Applying Equation (5.1) with µ =

2−3jn and σ =
√

(9 lnn) /M ′, the probability that a particular subcube holds X ≥ M

vertices is at most

Pr

{
X ≥

(
1 +

√
9 lnn

M ′

)
M ′

}
≤ exp

(
−9 lnn

M ′
M ′

3

)
= exp (−3 lnn)

= n−3.

There are at most n subcubes, so by the union bound, the probability that any subcube

holds more than M vertices is at most n · n−3 = |V |−2.

Lemma 33 Let G = (V,E) be a random cube graph with distance parameter r and norm

LP . Given a cache of M vertices for any M ∈ [72 ln |V | , |V |], a traversal of G, reordered

using a recursive space-filling curve, incurs O
(
r4V 3

√
V/M

)
expected misses per vertex for

all LP .

Proof. Consider a recursion level of the space-filling curve used to order the vertices in

the random cube graph such that each subcube is of size 2−j × 2−j × 2−j . For convenience,

let n = |V | and let M ′ = 2−3jn be the expected number of vertices held by subcube. Let j

be the minimum integer value such 2−3jn+
√

(2−3jn) (9 lnn) ≤M .

Let Xi be the number of vertices held by the ith subcube. If each 2−j × 2−j × 2−j-sized

subcube holds fewer than M vertices (i.e., Xi < M ∀i), then the expected number of edges

connecting vertices in different subcubes is at most O
(
r4n2 3

√
n/M

)
by Lemma 31 for any

given norm LP . Each such edge could cause a miss in an M -vertex cache. The fact that not

all subcubes have M vertices can only reduce the number of cache misses, as all pairwise

distances between vertices in memory would decrease upon removing vertices from sparsely

filled subcubes.

Finally, the probability that not all 2−j × 2−j × 2−j-sized subcubes hold fewer than M

vertices is at most n−2, and the since number of edges is at most n2, the expected number

of misses is at most

Pr {Xi < M ∀i} ·O
(
r4n2 3

√
n

M ′

)
+ Pr

{
Xi < M ∀i

}
· n2 ≤ O

(
r4n2 3

√
n

M ′

)
+ n−2 · n2
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≤ O
(
r4n2 3

√
n

M ′

)
.

And since 8M ′ > M and there are |V | vertices, the expected number of misses per vertex is

O
(
r4V 3

√
V/M

)

Theorem 34 Let G = (V,E) be a random cube graph with distance parameter r and norm

LP . Given a cache of M vertices for any M ∈ [72 ln |V | , |V |], a traversal of G, reordered

using a recursive space-filling curve, incurs O(M−1/3) expected misses per vertex for all LP

when E [|E| / |V |] = O(1).

Proof. The expected number of edges d = E [|E| / |V |] in a random cube graph is equal to

the volume of the radius-r sphere under the LP norm times the number of vertices |V |. To

maximize the number of expected misses, we choose LP = L1 to maximize r. The volume of

the radius-r sphere in 3 dimensions under the L1 norm is (4/3)r3 and thus r = 3
√

3d/(4 |V |).

By Lemma 33 and given that d = O(1), the expected number of misses per vertex is at most

O

(
r4V

3

√
V

M ′

)
= O

((
3d

4V

) 4
3

V
3

√
V

M ′

)

= O

(
3d

4V
V

3

√
3dV

4VM ′

)

= O

(
3d

4

3

√
3d

4M ′

)
= O

(
M−1/3

)
.

Goodness of approximation

Why should we believe that good cache behavior for traversals of random cube graphs would

generalize to tetrahedralized mesh graphs? That is, we rely heavily on the way in which

random cube graphs are generated, particularly that vertices are uniformly randomly dis-

tributed, to show that traversals of them with a cache ofM vertices leads to only O(M−1/3)

cache misses per vertex. Furthermore, we can see in Figure 5-9 that the distribution of edge

lengths appears quite different for random cube graphs and the others in our graph suite. For
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Figure 5-9: The distribution of edge lengths, relative to each graph’s average edge length,
for four different graphs described in Section 5.6. The first three graphs, bunny (orange),
dragon (green), and cube (blue), were generated using a tetrahedralizing mesh refinement
engine TetGen [181,182]. The last graph, rand (red), is a random cube graph.

instance, notice that the cube, bunny, and dragon graphs all appear to have the same pecu-

liar distribution of edge length, presumably an artifact of the particular tetrahedralization

algorithm used by TetGen. When we examine the actual miss rate behavior in Figure 5-10,

however, we see that the cube and rand graphs are similar despite their differences in edge

length.

Why should we believe that good cache behavior for traversals of mesh graphs filling the

unit cube would generalize to arbitrary topologies? That is, practitioners simulate complex

models and generally not cubes. We see in Figure 5-10 that the miss rate curves for the

bunny and dragon graphs seem to track the general slope of rand and cube, but with a

constant offset.6 To account for the difference in the shapes of realistic mesh graphs, we

analyze a generalization of random cube graphs.

6The Y-axis in Figure 5-10 uses a log scale, so the constant offset corresponds to a constant multiplicative
factor higher miss rate.
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Figure 5-10: Measured miss rates (i.e., fraction of neighbors that would miss a cache of the
size given by the X-axis) for a selection of similar sized graphs described in Section 5.6 as a
function of cache size, in number of vertices. Various cache sizes from our Intel Xeon [111]
test system are listed as vertical black lines. The first three graphs, bunny (orange), dragon
(green), and cube (blue), were generated using a tetrahedralizing mesh refinement engine
TetGen [181,182]. The last graph, rand (red), is a random cube graph.

Definition 2 Given distance parameter r and norm LP , an n-vertex random arbitrary-

topology graph G = (V,E) with surface S is generated by choosing the position ~pv of

each vertex v uniformly randomly within S for all v ∈ V and defining the edge set E =

{(u, v) ∈ V × V : ‖~pu − ~pv‖P < r}.

Each such graph has a fill-factor p, the fraction of the unit cube that is occupied by the

surface.7 For example, the bunny graph occupies 16.8% of the unit cube and the dragon

graph occupies 26.6% of the unit cube. We will see that the offset in miss rate is directly

related to the fraction of the unit cube occupied by the topology.

Lemma 35 Given distance parameter r and norm LP , let G = (V,E) be an a random

arbitrary-topology graph with surface S, filling some fraction p ∈ (0, 1] of the unit cube.

Given a cache of M vertices for any M ∈ [72 ln |V | , |V |], a traversal of G reordered using a

recursive space-filling curve incurs O
((
r4V/p2

)
3
√
V/pM

)
misses per vertex for all LP .

7It is assumed that the surface is translated and scaled to fit in the unit cube.

131



Figure 5-11: The cube and bunny mesh graphs, described in detail in Section 5.6.
Proof. First, we imagine that we start with a random cube graph, with vertices ordered

using a recursive space-filling curve. Then, we proceed to remove vertices which lie outside

the surface S, noting that the distance in memory between all remaining vertex pairs either

stays the same or decreases by one after each removal. We continue to remove vertices in

this manner, revealing e.g., the angel inside Michelangelo’s block of marble8 or the bunny

inside the cube, as in Figure 5-11. Thus, by Lemma 33 the total expected number of misses

out of an M -vertex cache is no more than with a (|V | /p)-vertex random cube graph,

O

(
r4V 2

p2
3

√
V

pM

)
.

SinceG has |V | vertices, the expected number of misses per vertex is O
((
r4V/p2

)
3
√
V/pM

)
.

Lemma 36 Given distance parameter r and norm LP , let G = (V,E) be an a random

arbitrary-topology graph with surface S, filling some fraction p ∈ (0, 1] of the unit cube.

Given a cache of M vertices for any M ∈ [72 ln |V | , |V |], a traversal of G reordered using

a recursive space-filling curve incurs O
(
(1/p)M−1/3

)
misses per vertex for all LP and all

r = O
(
(p/V )1/3

)
.

Proof. The proof follows from Lemma 35. To maximize the expected number of misses

per vertex, we maximize r = O
(
(p/V )1/3

)
, the value of r that would yield a (|V | /p)-vertex

8“Ho visto un angelo nel marmo ed ho scolpito fino a liberarlo” – Michelangelo Buonarroti [195].
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random cube graph with constant average degree by Theorem 34. Thus, the expected number

of total misses is

O

(
r4V

2

p2
3

√
V

pM

)
= O

(( p
V

) 4
3 V 2

p2
3

√
V

pM

)

= O

(
pV 2

V p2
3

√
pV

pVM

)

= O

(
V

p

3

√
1

M

)
.

Since G has |V | expected vertices, the expected number of misses per vertex is

O
(
(1/p)M−1/3

)
.

The practical implications of Theorem 34 and Lemma 36 can be seen in Table 5-12, which

summarizes how reordering the vertices of our graph suite, described in detail in Section 5.6,

results in a real performance advantage. For example, Lax, the baseline scheduler which

simply updates each vertex in parallel, achieves a speedup of 4.51–5.95 times using the

Hilbert priority function ρH to order the vertices compared to the baseline which orders the

vertices using the random priority function ρR.

Scheduler T1
T1,ρR

T1,ρN

T12
T12,ρR

T12,ρN

ρR / ρN ρR / ρN

Lax 89.25 / 19.78 4.51 9.96 / 1.67 5.95
BSP 91.59 / 21.16 4.33 10.21 / 1.91 5.35
Laika 93.64 / 21.95 4.27 10.56 / 2.02 5.24
Prism 96.44 / 33.92 2.84 11.03 / 3.74 2.95
JP 61.37 / 29.82 2.06 7.34 / 6.25 1.17

Table 5-12: Performance comparison of data-graph computation schedulers random or-
dering of vertices, denoted ρR, and reordering of vertices using the Hilbert priority curve,
denoted ρH . Each runtime is the geometric mean across the largest size of four different
graph topologies described in Section 5.6. T1 and T12 are the runtimes on 1 and 12 workers,
respectively.
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Figure 5-13: Diagram describing the scheduling algorithm Laika detailed in Figure 5-14.
The diagram consists of 2b-vertex “chunks”, where b is a configuration parameter, each of
which is processed serially. Due to the locality resulting from the Hilbert priority function
described in Section 5.2, the neighbors of vertices labeled u and v, respectively, predomi-
nantly lie in the shaded regions surrounding them. Chunks are processed serially, so it is
not necessary to keep track of predecessors and successors that lie within a single chunk. As
a result, vertex u merely executes its update function and incurs no overhead for updating
the counters of its neighbors, as with JP. The vertex v illustrates a common phenomenon,
where vertices near the beginning of a chunk (i.e., chunk 3) have successors toward the end
of the previous chunk (i.e., chunk 2), a backward dependency, which is why Laika processes
chunks in two phases, obviating the need to track such dependencies.

5.3 The Laika data-graph computation scheduler

In this section we describe a new scheduling algorithm called Laika which takes advantage of

the reordering of the vertices by the Hilbert priority function. It is a priority-dag scheduling

algorithm, like JP, in that each vertex has a dependency counter which is decremented

for each predecessor that is processed. But many of the (atomic) decrements that would

normally appear in JP are removed by design in Laika in order to reduce overhead. Details

of JP can be found in Section 5.1 and Figures 1-6 and 5-2. A diagram depicting Laika can

be found in Figure 5-13, and pseudocode can be found in Figures 5-14—5-17. The algorithm

breaks up the vertices into contiguous chunks of size 2b, where b is a configuration parameter,

each of which is processed serially in two phases.9 The first half of each chunk is processed in

the first phase and the second half in the second phase. The barrier between the two phases

obviates the need to protect against a data race between neighboring vertices in different

9Laika is deterministic given a fixed value of b, irrespective of the number P of workers. In practice,
we use the rule of thumb that a program with at least 10P parallelism should achieve nearly perfect linear
speedup on P processors [52, p. 783] to find the maximum b such that |V | /2b > 10P .
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phases, as depicted in Figure 5-13. Thus, by reordering the vertices with the Hilbert priority

function such that most neighbors of a vertex v lie within a 2b-vertex window centered on

v, as dictated by Lemma 36, Laika effectively removes the bulk of the scheduling overhead

incurred by JP.

Laika(G, b,numRounds)

273 Laika-Init(G, b, ρ ∈ R)
274 P = Get-Num-Workers( )
275 Q = Allocate-Queues(P )
276 cnt = 0
277 for p = 1 to P
278 spawn Laika-Worker(G,Q, b, cnt ,numRounds, P )

Figure 5-14: The Laika data-graph computation scheduling algorithm. First, Laika calls
Laika-Init, detailed in Figure 5-15, to initialize the graph, using a random priority function
(i.e., ρ ∈ R) to break ties between vertices at the same position within their respective
(different) chunks. Next, Laika allocates the work queues, through which the workers will
share the work of processing chunks. Finally, Laika spawns P independent instances of the
function Laika-Workers, detailed in Figure 5-16, to process the graph over numRounds
rounds.

Laika-Init(G, b, ρ)

279 let G = (V,E)
280 parallel for v ∈ V
281 N ′(v) = {w ∈ N(v) : Same-Phase(w, v) ∧Different-Chunk(w, v)}
282 v.pred = {w ∈ N ′(v) : ρ (w) > ρ (v)}
283 v.counter = |v.pred |
284 v.succ = {w ∈ N ′(v) : ρ (w) < ρ (v)}

Figure 5-15: Initialization function for Laika, which finds for each vertex the predeces-
sor and successor vertex sets, which lie in different chunks and the same phase (i.e., the
same half of each vertex’s respective chunk). The counter value for each vertex is initial-
ized to be the cardinality of the predecessor set. The function Different-Chunk(w, v)
returns True if w and v are in different chunks

(
i.e.,

⌊
w/2b

⌋
6=
⌊
v/2b

⌋)
and False oth-

erwise. The function Same-Phase(w, v) returns True if w and v are in the same phase(
i.e.,

⌊(
w (mod 2b)

)
/2b−1

⌋
==

⌊(
v (mod 2b)

)
/2b−1

⌋)
and False otherwise.
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Laika uses an explicit randomized work-stealing scheduler10 to coordinate the processing

of chunks among P workers. Work is exposed to other workers via a set of P concurrent

queues [105, Ch. 10], allocated in line 275 of Figure 5-14, all of which are visible to all

workers. Each worker executes the function Laika-Worker in parallel, coordinating their

work through the work queues, Q[0:P -1], and a shared counter cnt initialized in the parent

function Laika.

Laika-Worker(G,Q, b, cnt ,numRounds, P )

285 let G = (V,E)
286 p = Get-Worker-ID( )
287 start [0] = 0
288 start [1] = 2b−1

289 end [0] = 2b−1

290 end [1] = 2b

291 N = |V | /P
292 for round = 1 to numRounds
293 for phase = 0 to 1
294 Atomic-Add(cnt , N)
295 Push-Chunks(Q[p], N · p,N, start [phase])
296 while cnt > 0
297 〈c, idx 〉 = Pop(Q[Rand( ) (mod P )])
298 if c 6= nil
299 v = V [idx + c · 2b]
300 if Process-Chunk(v,Q[p], b) == end [phase]
301 Atomic-Dec(cnt)
302 Barrier( )

Figure 5-16: The Laika-Worker function is executed by each worker, where the round
number and phase number is maintained by each worker independently (i.e., in lines 292
and 293) through a shared variable, cnt . Each chunk is initially pushed onto the work queue
in line 295 and the shared counter cnt is incremented for each chunk on line 294. Then, each
chunk is processed serially on line 300, where workers steal chunks to process at random
on line 297 from the P work queues. Chunks can be “shelved” when the current vertex
within the chunk has unmet dependencies. When a worker resolves a vertex’s dependencies,
the chunk is enabled and pushed onto the work queue. When a chunk is completed, the
shared variable cnt is decremented. When cnt goes to 0, the workers all meet at a barrier
on line 302, before resuming the next phase.

10Programs written in Cilk [113] implicitly use a randomized work-stealing scheduler, which is embedded
in the Cilk runtime system, even though Cilk programs do not explicitly comprehend workers or how work
is allocated among the workers. By contrast, Laika uses an application-specific runtime to coordinate the
work in the data-graph computation using a randomized work-stealing algorithm [26]. Laika uses a set of
queues that are allocated on the heap to expose the work to the other workers, whereas the Cilk runtime
system uses the stack of each worker to do so [104, Appendix A].
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Here we describe the logical flow of the function Laika-Worker in Figure 5-14. Each

worker independently counts the rounds of the data-graph computation and the two phases of

each round. Each phase begins with all workers pushing the chunks that nominally “belong”

to them into their respective queues, as implemented in function Push-Chunks in Figure 5-

17. For example, there are N = |V | /P chunks per worker11 and worker p pushes chunks

[N · p,N · (p+ 1) − 1] into Q[p] in line 295. The counter cnt is incremented once for each

chunk, in line 294, and it will be decremented once for each completed chunk in line 301.

Next, the workers proceed to independently steal work from randomly selected queues in

line 297. Specifically, a successful steal retrieves the pair 〈c, idx 〉, where c is a chunk and

idx is the index of the next vertex to be processed in line 300. The worker will work on

chunk c, as implemented by the function Process-Chunk in Figure 5-17, until it either

finishes the last vertex in the phase or it cannot proceed due to an unmet dependency. Let

w be the next vertex to be processed in c, and consider the case that it has a dependency

counter greater than 0. The worker must prematurely stop processing c, and it is shelved.

The worker indicates that it has been shelved by decrementing the dependency counter

of w. Thus, when the last predecessor of w is processed, w’s dependency counter will be

decremented to a value of −1, indicating that w had been shelved when it was the next

vertex to be processed in its respective chunk. We use this mechanism to allow a worker to

discover that a chunk has been enabled and should be processed. Finally, the workers all

meet at a barrier in line 302 once they see that the shared counter cnt == 0, indicating

that the final chunk has been completed for the current phase. This process repeats until all

phases of all rounds have been completed.

Next, we describe the logical flow of the function Process-Chunk(v,Q, b) in Figure 5-

17. Process-Chunk sequentially processes each vertex in the chunk, starting with v, until

it cannot proceed due to an unmet dependency, as detected by the two logical clauses in

line 305. In the first clause, if the dependency counter v.counter is greater than 0, then the

counter will be atomically decremented to potentially shelve the chunk.12 If another worker

happens to perform the final decrement to v.counter in between the evaluation of the two

clauses, then the value of v.counter after the call to Dec-And-Fetch will be −1, which

indicates that all dependencies for v have been met. If Dec-And-Fetch(v.counter) returns

11We assume for convenience and without loss of generality that P evenly divides |V |.
12We assume that the conditionals are executed in the standard left to right order and will break as soon

as the condition is met. Thus, v.counter will not be decremented if v.counter == 0
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Push-Chunks(Q, chunk ,numChunks, start)

303 parallel for c = 0 to numChunks − 1
304 Push(Q, 〈chunk + c, start〉)

Process-Chunk(v,Q, b)

305 while v.counter == 0 or Dec-And-Fetch(v.counter) == −1
306 Update(v)
307 v.counter = |v.pred |
308 for w ∈ v.succ
309 if Dec-And-Fetch(w.counter) == −1
310 c =

⌊
w/2b

⌋
311 idx = w mod 2b

312 Push(Q, 〈c, idx 〉)
313 v = v + 1
314 if v ≡ 0 (mod 2b−1)
315 return v
316 return v

Figure 5-17: The function Push-Chunks merely pushes the range of chunks “belonging”
to the worker calling the function, specifically [chunk , chunk + numChunks − 1], each with
the vertex position within the chunk of the starting vertex, given by start . The function
Process-Chunk attempts to make as much progress as possible on the chunk, starting
with vertex v, until it either finishes the chunk on line 314 or reaches a vertex with unmet
dependencies on line 305 (i.e., the counter value indicates that the current vertex v still
has unprocessed predecessors). For each vertex v a sequence of steps occurs. First, the user-
supplied Update function (i.e., the only part of Laika that is specific to the data-graph
computation application) is called. Second, the counter v.counter is reset on line 307 for the
following round. Then, for each successor w in v.succ, the counter w.counter is decremented
on line 309 and w is pushed onto the work queue on line 312 if the decrement enabled it.

any value greater than −1, it means that the dependencies are not met and the chunk will

be shelved. If v is indeed enabled (i.e., all vertices in the set v.pred have been updated),

then the user-supplied Update(v) function is called and the counter v.counter is reset to

|v.pred |, in lines 306 and 307, respectively. Next, the counters for each successor, w, in the

set v.succ are decremented. If any post-decrement counter value w.counter equals −1, it

means that w had been previously shelved and is now enabled, in which case it is pushed

into the work queue in line 312. Finally, Process-Chunk moves on to the next vertex in

line 313 and tests if the new vertex is the last one in the phase in line 314, in which case it

returns.
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NUMA-aware scheduling

Laika features an explicit randomized work-stealing scheduler, and so there exists the op-

portunity to bias theft decisions (i.e., which queue to steal from) to optimize for Non-Uniform

Memory Access (NUMA) [104]. In particular, we implemented two variations of Laika:

Random — When processor p enables a chunk, it is placed in the pth work queue. Pro-

cessors randomly select a work queue to “steal” work. This algorithm mirrors the Cilk

runtime system, which uses a deque per worker to expose available work to other

workers.

NUMA-aware — When processor p enables a chunk c, it is placed in the work queue

that “owns” it, specifically the bN/ccth work queue, where N is the number of chunks

per worker. Processors attempt to steal work from their own work queue first and,

failing that, resort to stealing from a randomly selected queue. Finally, the vertex

and edge arrays are allocated using a NUMA-aware memory allocation, such that

the portions of each array owned by a particular worker are allocated at the closest

memory controller [104, ch. 5.4].

We find that the NUMA-aware variation is superior, but with only a modest advantage.

The data summarized in Table 5-18 demonstrates that the NUMA-aware variation is never

outperformed by the random variation, but that the advantage decreases with increasing

graph size. Furthermore, the NUMA-aware variation performs O(1) work per steal attempt,

thus, by the standard analysis of randomized work-stealing schedulers [26], both variations

enjoy the same asymptotic runtime guarantees.

5.4 Theoretical analysis of Laika

In this section, we show that Laika is work efficient on any input graph and that on random

cube graphs, Laika can achieve linear expected speedup with the number of workers. We

only consider ordinary data-graph computations, those with serial Update(v) functions

with O(N(v)) work for all v ∈ V , though other assumptions can be made at the expense of

more cumbersome analysis. In addition, we only consider random cube graphs as opposed

to arbitrary graphs generated by a mesh refinement engine, such as TetGen [181, 182]. In
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Size T1
T1,SR

T1,SN

T12
T12,SR

T12,SN

SR / SN SR / SN

0 22.73 / 22.37 1.02 2.30 / 2.10 1.09
1 25.29 / 24.01 1.05 2.26 / 2.19 1.03
2 23.94 / 23.23 1.03 2.12 / 2.07 1.03
3 21.93 / 21.95 1.00 2.04 / 2.02 1.01

Table 5-18: Performance comparison of Laika with and without using a NUMA-aware
randomized work-stealing scheduler and data allocation across all sizes of input graph. The
column headings SR and SN correspond to the randomized and NUMA-aware policies,
respectively. Each runtime is the geometric mean across four graph topologies described in
Section 5.6. T1 and T12 are the runtimes on 1 and 12 workers, respectively.

Section 5.6 we demonstrate empirically that the theoretical insights earned in this section

are also relevant to graphs “in the wild.”

Lemma 37 Laika is work-efficient for any ordinary data-graph computation on any graph

G = (V,E).

Proof. From inspection of the pseudocode in Figures 5-14—5-17, one can see that Update

is called once per vertex per round, just as in the baseline serial execution. Furthermore,

there are at most |E| calls to Dec-And-Fetch made to counters in line 309. Thus, it suffices

to show that the overhead incurred by the shelving and subsequent enabling of chunks in

a given round requires at most O(V + E) work. When a chunk c is shelved, it is due to a

particular vertex having unmet dependencies. A vertex v can be responsible for shelving a

chunk c at most once, since the chunk can only be subsequently enabled once all predecessors

of v have been updated. Consequently, when the chunk is later processed, at least one vertex,

specifically v, will be updated before being shelved again. Because shelving a chunk costs

only O(1) work (i.e., a single Dec-And-Fetch), the total cost due to shelving chunks can

be at most O(V ). The baseline serial algorithm performs O(V + E) work since it is an

ordinary data-graph computation, and thus Laika is work-efficient.

Lemma 38 Let G = (V,E) be a random cube graph with average degree d. For any c > 0,

the maximum degree maxv∈V |N(v)| is greater than 2d+ 3(4 + c) ln |V | with probability less

than |V |−(3+c).
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Proof. Let r be the radius of the sphere such that vertices within a distance r are connected

by an edge. Since the average degree in G is d, the distance parameter r and norm LP must

be set such that the probability that a vertex w is connected to v is d/ |V |. Consider a vertex

v in a random cube graph G = (V,E) and let Xw be a indicator variable where Xw == 1

denotes the event that a vertex w is connected to vertex v. In order to bound the probability

that more than 2d+3(4+c) ln |V | vertices are connected to v, we use the Chernoff bound [48]

formulated for deviations of more than 1 times the mean:

Pr {D ≥ (1 + β) · E [D]} ≤ exp

(
−β

3
E [D]

)
∀β > 1,

where D =
∑

wXw [52, p. 1203]. Then, we have D = |N(v)| and thus, by the lemma

statement, E [D] = d. Let β = (d+ 3 (4 + c) ln |V |) /d ≥ 1 so that

Pr {|N(v)| ≥ 2d+ 3 (4 + c) ln |V |} ≤ exp

(
−β

3
E [|N(v)|]

)
≤ exp

(
−1

3

d+ 3 (4 + c) ln |V |
d

d

)
≤ exp

(
−1

3
(d+ 3 (4 + c) ln |V |)

)
≤ exp

(
−1

3
(3 (4 + c) ln |V |)

)
≤ exp (− (4 + c) ln |V |)

≤ |V |−(4+c) .

We use the union bound across all |V | vertices to see that G has maximum degree greater

than 2d+ 3 (4 + c) ln |V | with probability at most |V | · |V |−(4+c) = |V |−(3+c).

Lemma 39 Let G = (V,E) be a ∆-degree graph,13 let nG = |V |, and let Gρ be a priority

dag induced on G by a random priority function ρ. For any c > 0, there exists a directed path

of length e2 ·max {∆, (4 + c) lnn} in Gρ for any n ≥ nG with probability at most n−(3+c).

Proof. Let p = 〈v1, v2, . . . , vk〉 be a length-k path in G. Because ρ is a random priority

function, ρ induces each possible permutation among {v1, v2, . . . , vk} with equal probability.

If p is a directed path in Gρ, then we must have that ρ(v1) < ρ(v2) < . . . < ρ(vk). Hence, p

is a length-k path in Gρ with probability at most 1/k!, which is at most (e/k)k by Stirling’s
13A ∆-degree graph G = (V,E) has |N(v)| ≤ ∆ for all v ∈ V .
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approximation [52, p. 57] [186]. There are at most nG∆k paths in G, since we have nG

potential starting points and, for each step in the path, each vertex has at most ∆ potential

neighbors.

We use the union bound to show that no directed path of length k ≥ e2 ·

max {∆, (4 + c) lnn}, exists in Gρ. In particular, the probability that a length-k path exists

in Gρ is at most

nG

(
e∆

k

)k
= nG · exp

(
−k ln

(
k

e∆

))
≤ nG · exp

(
−k ln

(
e2 max {∆, (4 + c) lnn}

e∆

))
≤ nG · exp

(
−k ln

(
e2∆

e∆

))
≤ nG · exp (−k)

≤ nG · exp
(
−
(
e2 max {∆, (4 + c) lnn}

))
≤ nG · exp (−(4 + c) lnn)

≤ nG · n−(4+c)

≤ n−(3+c).

Theorem 40 Let G = (V,E) be a random cube graph with n = |V | vertices and average

degree d. For any c > 0 and for any positive b < lg n− 1, Laika with chunk size 2b executes

an ordinary data-graph computation on G using more than e2 (2d+ 3 (4 + c) lnn)2 2b span

with probability less than n−(2+c).

Proof. Consider the algorithm Laikb, which is a synchronous version of Laika. That

is, each chunk will be processed synchronously in parallel: the kth vertex from all chunks

will be processed before the k + 1st vertex from any chunk is processed. Since Laika is at

least as fast as Laikb on all inputs, it suffices to show that the span of Laikb satisfies the

lemma statement. The dependent edges between vertices at the kth position within each

chunk form the priority dag Gk induced by a random priority function. Thus, the depth of

each such dag, denoted L (Gk), is governed by Lemma 39. The span of Laikb applied to G

will be less than the product of
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1. the maximum degree (recall: Update(v) is serial and uses |N(v)| work), and

2. the maximum depth among the 2b random priority dags, {G1, G2, . . . , G2b}, and

3. the total number of priority dags: (maxv∈V |N(v)|) ·
(

maxk∈[1,2b] L (Gk)
)
· 2b.

Let A∆ be the event that the maximum degree in G exceeds ∆ = 2d+ 3 (4 + c) lnn and let

AGk
be the event that the depth of the priority dag Gk exceeds e2∆, for all k ∈ [1, 2b]. The

event A∆ ∩ {
⋂
∀k AGk

} would imply that the overall span of Laikb applied to G is at most

e2 (2d+ 3 (4 + c) lnn)2 2b, since ∆ > (4 + c) lnn when A∆ is true, as required by Lemma 39.

We use De Morgan’s law [58] to find the negation of this event, and following from Lemmas

38 and 39, we see that the probability of the event A∆ ∪ {
⋃
∀k AGk

} is thus at most

≤ Pr {A∆}+
∑

k∈[1,2b]

Pr {AGk
}

≤ Pr {A∆}+
∑

k∈[1,2b]

[
Pr {AGk

|A∆}Pr {A∆}+ Pr
{
AGk
|A∆

}
Pr
{
A∆

}]
≤ Pr {A∆}+

∑
k∈[1,2b]

[
1 · Pr {A∆}+ Pr

{
AGk
|A∆

}
· 1
]

≤ Pr {A∆}+
∑

k∈[1,2b]

[
n−(3+c) + Pr

{
AGk
|A∆

}
· 1
]

≤ Pr {A∆}+
∑

k∈[1,2b]

[
n−(3+c) + n−(3+c)

]
≤ Pr {A∆}+ 2 · 2b · n−(3+c)

≤ n−(3+c) + 2 · 2b · n−(3+c)

≤ n · n−(3+c)

≤ n−(2+c).

Corollary 41 Let G = (V,E) be a random cube graph G = (V,E) with average degree d.

For any c > 0 and any number of workers P < 2 |E| / (e (2d+ 3 (4 + c) ln |V |))2, there exists

a choice of chunk size 2b such that Laika executes an ordinary data-graph computation on

G using P workers in O((V + E)/P ) expected time.
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Proof. The expected work of the data-graph computation described in the corollary state-

ment is 2 |E| by linearity of expectation:

E

[∑
v∈V
|N(v)|

]
=
∑
v∈V

E [|N(v)|]

=
∑
v∈V

d

= d |V |

= 2 |E| .

For convenience, let n = |V |. Let AS denote the event that the data-graph computation

in the corollary statement has span exceeding e2 (2d+ 3 (4 + c) lnn)2, which occurs with

probability at most n−(2+c) by Theorem 40, letting 2b equal 1. Thus, the expected parallelism

— the ratio of work to span — is at least

≥ Pr
{
AS
} 2 |E|
e2 (2d+ 3 (4 + c) lnn)2 + Pr {AS} · 1

≥
(

1− n−(2+c)
) 2 |E|
e2 (2d+ 3 (4 + c) lnn)2 + n−(2+c) · 1

≥ 2 |E|
e2 (2d+ 3 (4 + c) lnn)2 + n−(2+c)

(
1− 2 |E|

e2 (2d+ 3 (4 + c) lnn)2

)
≥ 2 |E|
e2 (2d+ 3 (4 + c) lnn)2 + n−(2+c)

(
1− n2

)
≥ 2 |E|
e2 (2d+ 3 (4 + c) lnn)2 .

Laika is a randomized work-stealing scheduler [26], and so the expected runtime is

at most the work O(E + V ) divided by the number P of workers, plus the span

e2 (2d+ 3 (4 + c) lnn)2. By constraining our choice of P to be less than the parallelism,

however, the first term dominates, and thus Laika runs in O((E + V ) /P ) time. A similar

analysis holds for smaller values of P and correspondingly larger values of 2b.

Corollary 42 Laika achieves linear speedup for any ordinary data-graph computation ap-

plied to an O(1)-degree random cube graph G = (V,E) using P = O(V/ lg2 V ) workers.

Proof. The proof follows from Corollary 41.
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5.5 The Mass-Spring-Dashpot model

A
B C

D
E F

G
H

I

 
!vD

fixed

 
!vH

 
!vE

 
!vB

 
!vC

Figure 5-19: An example of the Mass-Spring-Dashpot model. The vertices encircled by
a dashed yellow line are fixed in place, modeled as having infinite mass. The springs obey
Hooke’s Law, generating a force k(1− x/L) along the direction of the edge, where k is the
stiffness coefficient, L is the rest length, and x is the distance between the endpoints. The
average edge length (i.e., the physical distance between the endpoints) is the “rest length”
for all springs. The gray springs are quite close to the rest length and thus exert little force.
The red springs are stretched out to have length longer than the rest length, generating
a restoring force (e.g., the edge (A,D)). The blue springs are compressed and generate a
separating force (e.g., the edge (D,H)). The net velocity (e.g., ~vH), induced by the net forces
acting on each vertex, is shown with magnitude (i.e., length) and direction for each vertex.

This section describes an example physical simulation which is used to test the perfor-

mance of Laika. We use the Mass-Spring-Dashpot model as a proxy for other types of

physical simulations (e.g., the finite element method [53], etc.). It can be thought of as a set

of vertices in 3D space connected by springs, as depicted in Figure 5-19. Each spring has a

“rest length” L: springs stretched to be longer than L try to pull the endpoints together and

springs compressed to be shorter than L try to push the endpoints apart. The simulation
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steps through time, incrementally updating the position and velocity of each vertex until a

steady-state is achieved where the spring forces cancel and each vertex is at rest. We use

the Mass-Spring-Dashpot model because it is among the simplest physical models that is

also realistic. By simplest, we mean that it has a low number of instructions per byte of

vertex data, which exacerbates the effect of scheduling overheads relative to simulations

with a higher number of instructions per vertex. Thus, performance characteristics in the

Mass-Spring-Dashpot model would be pessimal for most other physical simulations (i.e.,

those that perform more work per vertex).

The Mass-Spring-Dashpot model is an example of a physical system under Newton’s

laws of motion [157]. In particular, by Newton’s second law, each vertex u ∈ V in a graph

G = (V,E) is subject to the ordinary differential equation

mu
∂~vu
∂t

= ~Fu,

∂~pu
∂t

= ~vu,

where the position, velocity, and mass of vertex u is given by ~pu, ~vu, and mu, respectively.

The force term14 ~Fu is solely a function of the neighborhood of vertex u, N(u), and thus the

Mass-Spring-Dashpot model is easily expressed as a data-graph computation, an example of

which is in Figure 5-19. One component of ~Fu is a spring force that exists between every pair

of connected vertices. By Newton’s third law, this force acts in equal and opposite directions

between the connected vertices. The spring force is a consequence of Hooke’s law [108], where

a spring with rest length L, stiffness coefficent k, and length x exerts a force k(1 − x/L)

along the direction of the spring’s orientation. When x > L (i.e., the spring is stretched out),

Hooke’s law implies that the spring will produce a negative restoring force and when x < L

(i.e., the spring is compressed), it will produce a positive separating force, as depicted in

Figure 5-20. For example, a spring between two vertices u and w exerts the following force

on vertex u:

~Fu,w = k

(
1− ‖~pu − ~pw‖

L

)
︸ ︷︷ ︸

magnitude

· ~pu − ~pw
‖~pu − ~pw‖︸ ︷︷ ︸

direction

.

14We use the arrow notation in ~Fu to denote the vector nature of the variable associated with vertex u,
thus being comprised of both a magnitude

∥∥∥~Fu

∥∥∥ and a direction F̂u = ~Fu/
∥∥∥~Fu

∥∥∥. The hat notation in F̂u

denotes a unit-length vector in the direction of ~Fu.
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Such a force exists for every edge (u,w) ∈ E.
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Figure 5-20: Detail on the Mass-Spring-Dashpot model depicted in Figure 5-19 for vertex
D. Vertex D has two neighbors, G and H, which have separating forces pushing D upward.
Vertex D has two other neighbors, A and E, which have restoring forces pulling D up and
to the right. Each spring force is given by the equation shown e.g., for ~FD,E , where ~pD
is the position in 3D space of vertex D and ‖~pD − ~pE‖ is the Euclidian distance between
vertices D and E. The net force, ~FD, also includes the dashpot term, which is the velocity,
~vD, multiplied by a negative coefficient (e.g., wind resistance). The net force influences both
the velocity and position of vertex D through the ordinary differential equation given in
Newton’s second law [157]: mD (∂~vD/∂t) = ~FD and (∂~pD/∂t) = ~vD.

The Mass-Spring-Dashpot model also features the dashpot force,15 which is a type of

resistance force that complements the spring forces. A vertex u travelling with velocity ~vu

will incur a force −c~vu in the opposite direction of travel, where c is the dashpot coefficient.

15The dashpot force is also sometimes called a damper or drag force and is the principal reason that the
Mass-Spring-Dashpot system does not oscillate indefinitely.
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Thus, the net force on each vertex u ∈ V is

~Fu = −c~vu︸ ︷︷ ︸
dashpot force

+
∑

w∈N(u)

~Fu,w︸ ︷︷ ︸
net spring force

.

For each vertex, this force may be calculated by examining the position and velocity of every

neighbor w in N(u), as depicted in Figure 5-20.

In practice, an implementation of the Mass-Spring-Dashpot model uses a numerical

solution to Newton’s laws to update the position and velocity of each vertex, ultimately

pushing the edges in the graph to be closer to the rest length. For example, the initial

distribution of edge lengths for four graphs in our graph suite are shown in Figure 5-9 and

after 10,000 iterations, the edge lengths evolve to the distribution shown in Figure 5-21.
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Figure 5-21: Distribution of edge lengths after 10,000 iterations for each graph topology:
bunny (orange), dragon (green), cube (blue), and rand (red).
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A numerical solution for the Mass-Spring-Dashpot model

We use a standard finite difference method [30, 61] to implement the Mass-Spring-Dashpot

model. In particular, we approximate the derivative of the position and velocity vectors16

at a time t using finite differences, as follows:

∂~vu(t)

∂t
≈
~vu(t+ 1

2∂t)− ~vu(t− 1
2∂t)

∂t
,

∂~pu(t)

∂t
≈ ~pu(t)− ~pu(t− ∂t)

∂t
.

These approximations lead to a straightforward update function implementing Newton’s

laws. First, we use the central difference approximation to update the velocity vector:

mu
~vu(t+ ∂t)− ~vu(t)

∂t
= ~Fu(t+

1

2
∂t),

~vu(t+ ∂t) = ~vu(t) + ∂t
~Fu(t+ 1

2∂t)

mu
.

Next, we use the backward difference approximation to update the position vector, using

the newly updated value of ~vu(t+ ∂t):

~pu(t+ ∂t)− ~pu(t)

∂t
= ~vu(t+ ∂t),

~pu(t+ ∂t) = ~pu(t) + ∂t~vu(t+ ∂t).

We approximate the velocity vector ~vu(t) at time t using the central difference because

it produces a better estimate than the backward difference used for the position vector

~pu(t). The central difference requires that we evaluate the force vector ~Fu(t + ∂t/2) in the

middle of the tth time step. Evaluating the force vector is comparatively easy: we merely

add a scalar multiple of the velocity vector to the position vector (i.e., use ~pu(t) + ∂t~vu(t)/2

in place of ~pu(t) for for all force calculations involving vertex u). If we were to also use

the central difference approximation for the position vector, however, we would need to

evaluate the expensive force vector twice. This tradeoff yields good convergence properties

with minimal extra computational overhead and is thus favored by practitioners in budget-

conscious scenarios [61, 93].

16We use the notation ~Fu(t), ~vu(t), and ~pu(t) to refer to the force, velocity, and position of vertex u at
time t, respectively.
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A specific instance of the Mass-Spring-Dashpot model
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Figure 5-22: The kinetic energy, in joules, of the entire graph over 100,000 iterations of the
Mass-Spring-Dashpot model for an in-place implementation (i.e., in orange) and a double-
buffered implementation (i.e., in blue). At any given point in time, the kinetic energy is
calculated as

∑
u∈V mu‖~vu‖ 2/2, where ~vu and mu are the velocity and mass of vertex u,

respectively.

We designed a specific instance of the Mass-Spring-Dashpot model, cast as a data-graph

computation, that allows us to compare performance properties across a set of parallel

schedulers, the results of which are detailed in Section 5.6. Given an input graph G =

(V,E), where each vertex u ∈ V has an associated position ~pu in 3D space,17 and a number

of iterations, each scheduler updates each vertex once per iteration in a scheduler-specific

order. We measure the time to execute the iterations, thus excluding the initialization time

for each scheduler, because we want to isolate the effects of scheduling. In addition, most

physical simulations typically execute sufficiently many iterations that any initialization time

is completely amortized away.

We anchor a set of vertices in each graph that is independent of the ordering of the

vertices so that experiments differing only in the order of the vertices will converge to the

17The code supports an arbitrary number of dimensions via a compile-time constant.
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Figure 5-23: The kinetic energy, in joules, of the entire graph over the last 50,000 iterations
of the Mass-Spring-Dashpot model, highlighting how the in-place version (i.e., in orange) of
the model converges faster than the double-buffered version (i.e., in blue).

same result. The set VA of anchored vertices are those that lie on a face of the axis-aligned

minimum bounding box of G and are modeled as having infinite mass (i.e., mu =∞ ∀u ∈

VA). All other vertices are modeled as having unit mass (i.e., mu = 1 ∀u ∈ V \ VA).

While there is no guarantee of convergence to a unique optimum state, we find that this

anchoring strategy typically yields evidence of convergence, as we see in Figure 5-22, whereas

if the graph were unmoored, it would float away and we would not be able to observe such

convergence. Figure 5-23 also provides some motivation for the design of Laika: many in-

place simulations of this type [170], and particularly iterative solvers of linear systems [188],

converge faster than their double-buffered analogues. For instance, at roughly the halfway

point of the simulation, the kinetic energy in the double-buffered implementation is 22%

higher than the the in-place counterpart. This ratio grows until the end of the simulation

when the kinetic energy in the double-buffered implementation is 57% higher than the in-

place implementation. A typical strategy would be to iterate until, for example, the kinetic

energy drops below a specific threshold, giving the in-place implementation an advantage in

total iterations.
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Since the parameters of the Mass-Spring-Dashpot model do not impact the running

time of any of the schedulers for any fixed number of rounds, we merely desire a set of

parameters that are stable and convergent across all runs. For simplicity, we choose the

following parameters: spring stiffness k = 1, dashpot coefficient c = 1, timestep ∂t = 0.1.

The rest length of each spring (i.e., edge) in the graph is set to the average initial length:

L =
1

|E|
∑

(u,w)∈E

‖~pu − ~pw‖ .

5.6 Experimental results

This section presents empirical data comparing the performance of Laika with four other

data-graph computation schedulers using the Mass-Spring-Dashpot model, described in Sec-

tion 5.5, as an example update function. The Mass-Spring-Dashpot model is comparatively

simple, amortizing comparatively few instructions against the movement of much data, 2.22

instructions per byte, making it pessimal for Laika. We expect Laika to perform data-

graph computations with more instructions per byte of application data at least as well as

it performs in this section.

BSP(G, rounds)

317 let G = (V,E)
318 for i = 0 to rounds − 1
319 parallel for v ∈ V
320 Update(v, i)

Lax(G, rounds)

321 let G = (V,E)
322 for i = 0 to rounds − 1
323 parallel for v ∈ V
324 Update(v)

Figure 5-24: The Bulk-Synchronous Parallel (BSP) scheduling algorithm is a best-case
scheduling algorithm in that all vertices are eligible to be updated at the beginning of each
round and thus BSP incurs the minimum possible scheduling overhead. BSP uses double-
buffering of application data to ensure that there are no data races when simultaneously
updating neighboring vertices. By contrast, Lax updates all vertices simultaneously, in-place
using a single copy of the application data, resulting in a nondeterministic parallel execution.

The experiments in this section demonstrate that Laika is 5.27 times faster when the

vertices are reordered by a recursive space-filling curve (e.g., the Hilbert curve) than when

they are ordered randomly. Laika also achieves a 10.89 times speedup on 12 cores. Overall,

Laika is 44.27 times faster than the naive baseline serial implementation Lax in Figure 5-24,

which is equivalent to Simit’s current shared-memory implementation, effectively converting
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the problem of scheduling physical simulations from a traditionally memory-bound prob-

lem [7,65,70,83,91,139,162] to a compute-bound problem. Laika is approximately 80% as

fast as an empirically-measured maximum speed for any scheduler on our test system and

adds novel support for deterministic, in-place updates.

Scheduler implementations

We compare Laika to four other data-graph computation schedulers, described below.

All schedulers were developed fairly, with a similar level of performance engineering. All

schedulers were written in Cilk Plus [113] / C++ and compiled with the same compiler

(g++-5 v. 5.1.0) and switches (full optimizations18), and tested on the same hardware [111],

an Intel® Xeon® CPU X5650 with 12 processor cores running at 2.67GHz.

The five schedulers that we test in this section can be found online19 and are described

briefly here:

Lax — An in-place scheduler that updates all vertices in parallel, yielding a nondetermin-

istic result with minimal scheduling overhead. Pseudocode can be found in Figure 5-24.

BSP — A double-buffered scheduler that updates all vertices in parallel, yielding a de-

terministic result with minimal scheduling overhead, but at the expense of double

memory usage for application data. Pseudocode can be found in Figure 5-24.

Laika — An in-place, priority-dag scheduler that exploits the locality offered by reorder-

ing the vertices according to a recursive space-filling curve. Figure 5-13 gives a pictorial

description of Laika and complete pseudocode can be found in Figures 5-14—5-17.

Prism — An in-place scheduler that uses a vertex-coloring of the graph to parcel out

independent sets of vertices that may be updated safely in parallel, as depicted in

Figure 1-1.

JP — An in-place, priority-dag scheduler that uses a priority function to order the vertices

as depicted in Figure 1-6. Pseudocode can be found in Figure 5-2.

Each scheduler has different requirements for the data included in the vertex data struc-

ture, presenting advantages or challenges, respectively, to the performance of each. In par-

ticular, each scheduler requires three data components at each vertex:
18All schedulers were compiled with the following compiler switches: -fcilkplus -std=c++11 -O3 -Wall

-m64 -march=native -mtune=native -pthread -ffast-math -fgcse-las.
19The code is available at https://github.com/obi1kenobi/laika [97].
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Scheduler data_t sched_t vertex_t

Lax 32 0 48
BSP 64 0 80
Laika 32 32 80
Prism 32 0 48
JP 32 32 80

Table 5-25: Data structure memory usage in bytes for each scheduler and each component
of the data at each vertex: data_t, sched_t, and vertex_t.

Graph Size |V | |E| |E| / |V |

dragon 0 106,140 1,200,470 11.31
1 392,839 4,793,440 12.20
2 1,637,007 22,054,694 13.47
3 6,473,215 91,245,260 14.09

bunny 0 108,726 1,272,116 11.70
1 416,929 5,496,990 13.18
2 1,652,984 23,372,040 14.13
3 6,202,402 89,551,696 14.43

cube 0 105,792 1,465,792 13.85
1 397,165 5,652,760 14.23
2 1,698,509 24,578,428 14.47
3 6,363,260 92,992,976 14.61

rand 0 105,792 1,543,530 14.59
1 397,165 5,904,290 14.86
2 1,698,509 25,689,086 15.12
3 6,363,260 97,937,358 15.39

Table 5-26: Sizes of each size of each graph topology used in our test suite. The dragon
topology is pictured in Figure 5-1. The bunny and cube topologies are pictured in Figure 5-
11. The rand topology is not pictured, but is a random cube graph, described in Section 5.2.

data_t — The data_t struct is defined by the application (e.g., Mass-Spring-Dashpot

model) and is completely independent of the scheduler. An in-place scheduler has

one copy per vertex and a double-buffered scheduler has two.

sched_t — The sched_t struct is defined by the scheduler and is completely independent

of the application. It includes whatever per-vertex data is required by the scheduler

to coordinate updates between workers.
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vertex_t — The vertex_t struct includes the sched_t and data_t structs as payloads and

also includes a pointer into the edge array and the number of neighbors, which are

used by the Update function to marshal data.

The size, in bytes, of each struct for each scheduler is given in Table 5-25, where the Lax

and Prism schedulers have notably smaller overall vertex data sizes than the rest.

Relevance of random cube graphs

Our goal is to provide a scheduler for physical simulations on graphs that matter in practice.

Unfortunately, since practitioners typically use mesh graphs modeling complex physical ob-

jects rather than random cube graphs, our analysis in Section 5.4 is only insightful if typical

graphs share essential properties with random cube graphs in practice. In order to test the

empirical relevance of analysis on the random cube graph, we generated a graph suite of

four sizes of four different graphs, summarized in Table 5-26. The graph topologies labeled

dragon, bunny, and cube were generated using TetGen v. 5.1 [181, 182], a tetrahedralizing

mesh refinement engine. TetGen converts a 2D surface mesh (e.g., a surface tessellated by

triangles, in this case supplied by the Stanford Computer Graphics Laboratory [1]) into a

corresponding 3D mesh tessellated by non-overlapping tetrahedra. TetGen allows the user

to specify the maximum edge length in the model. Through a binary search for each graph

topology, we found the maximum edge length that leads to the desired number of vertices.

We generated four sizes of each graph topology, where the number of vertices increases

roughly by a multiple of 4 for each size. The graph topology labeled rand in Table 5-26 is a

random cube graph generated by our own generator.20

We see from Figure 5-10 that typical graphs (i.e., those generated by TetGen: labeled

dragon, bunny, and cube, respectively) have cache behavior which closely tracks that of the

random cube graph, labeled rand. In particular, the rand and cube graphs, which occupy

100% of the unit cube have nearly identical cache miss rate curves, whereas the dragon and

bunny graphs are shifted up, meaning they have a constant multiple more misses than the

rand or cube graph at any given cache size, a consequence of Lemma 36. Furthermore, in

Table 5-27, we see that measured serial and parallel runtimes, the metrics we ultimately

care about, are quite consistent across each graph topology for all schedulers.

20The code is available at https://github.com/obi1kenobi/laika [97].
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Random (ρR) Hilbert (ρH)

Scheduler Graph T1 T12 TS/T1 T1/T12 T1 T12 TS/T1 T1/T12 TS/T12

Lax dragon 89.4 9.99 1.00 8.95 19.9 1.70 4.50 11.72 52.68
bunny 89.2 9.97 1.00 8.94 19.9 1.70 4.49 11.67 52.35
cube 89.2 9.92 1.00 9.00 20.0 1.66 4.47 12.03 53.79
rand 89.1 9.95 1.00 8.96 19.4 1.63 4.60 11.86 54.57

BSP dragon 91.7 10.23 0.97 8.97 21.4 1.94 4.17 11.03 46.00
bunny 91.6 10.19 0.97 8.99 21.5 1.95 4.16 10.99 45.67
cube 91.5 10.22 0.97 8.96 21.0 1.89 4.25 11.12 47.28
rand 91.5 10.20 0.97 8.97 20.7 1.85 4.30 11.21 48.18

Laika dragon 93.8 10.66 0.95 8.79 22.4 2.02 4.00 11.07 44.23
bunny 93.7 10.63 0.95 8.81 22.5 2.11 3.97 10.66 42.28
cube 93.6 10.60 0.95 8.83 21.7 2.00 4.11 10.86 44.61
rand 93.5 10.36 0.95 9.03 21.3 1.94 4.19 10.98 46.06

Prism dragon 96.7 11.05 0.92 8.75 34.3 3.79 2.60 9.05 23.57
bunny 96.3 11.02 0.93 8.74 34.3 3.83 2.60 8.96 23.29
cube 96.4 11.01 0.93 8.75 32.9 3.59 2.71 9.16 24.87
rand 96.4 11.03 0.92 8.74 34.2 3.77 2.61 9.07 23.66

JP dragon 62.6 7.55 1.43 8.28 31.2 5.48 2.87 5.69 16.31
bunny 62.4 7.56 1.43 8.25 32.2 6.64 2.77 4.84 13.43
cube 62.3 7.43 1.43 8.39 28.2 6.60 3.17 4.27 13.52
rand 58.4 6.83 1.53 8.55 28.0 6.34 3.18 4.41 14.05

Table 5-27: Runtimes of all data-graph computation schedulers across all graph topolo-
gies for the largest size (i.e., size 3) of each running the Mass-Spring-Dashpot model. The
multi-column with heading “Random (ρR)” lists runtimes for graphs using randomly ordered
vertices. In particular, TS is the serial runtime of Lax, which serves as the baseline imple-
mentation. The multi-column with heading “Hilbert (ρH)” lists runtimes for graphs whose
vertices are ordered by the Hilbert priority function. The columns labeled “Tk” list runtimes
of the schedulers running with k workers. The columns labeled “TS/T1” list the speedup of
the serial scheduler over the baseline. The columns labeled “T1/T12” list the parallel speedup
of the scheduler when running on 12 cores.

Performance autopsy using event counters

Table 5-28 demonstrates the first bit of evidence that Laika successfully transformed the

Mass-Spring-Dashpot model into a compute-bound problem. We can see that as the size

of each graph increases from the smallest to the largest size, corresponding to a range of

29.8MB to 1.9GB, the random ordering (the multi-column under “Random (ρR)”) timings
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Random (ρR) Hilbert (ρH)

Scheduler Size T1 T12 TS/T1 T1/T12 T1 T12 TS/T1 T1/T12 TS/T12

Lax 0 34.0 3.61 1.00 9.43 19.6 1.79 1.74 10.95 19.01
1 54.1 5.64 1.00 9.58 19.8 1.75 2.72 11.33 30.86
2 78.8 8.86 1.00 8.89 19.7 1.70 3.99 11.63 46.39
3 89.2 9.96 1.00 8.96 19.8 1.67 4.51 11.82 53.34

BSP 0 34.6 3.96 0.98 8.73 21.1 2.01 1.62 10.45 16.90
1 66.4 7.25 0.81 9.16 21.3 1.99 2.54 10.71 27.17
2 85.0 9.59 0.93 8.86 21.2 1.94 3.71 10.95 40.64
3 91.6 10.21 0.97 8.97 21.2 1.91 4.22 11.09 46.77

Laika 0 37.4 5.19 0.91 7.21 22.4 2.10 1.52 10.64 16.18
1 75.0 7.90 0.72 9.50 24.0 2.19 2.25 10.95 24.65
2 92.8 9.98 0.85 9.30 23.2 2.07 3.39 11.22 38.03
3 93.6 10.56 0.95 8.87 22.0 2.02 4.07 10.89 44.27

Prism 0 37.0 4.48 0.92 8.27 25.3 3.16 1.35 7.99 10.76
1 65.2 7.08 0.83 9.21 33.7 3.69 1.60 9.14 14.65
2 87.2 10.27 0.90 8.48 34.1 3.95 2.31 8.63 19.96
3 96.4 11.03 0.93 8.74 33.9 3.74 2.63 9.06 23.84

JP 0 37.9 6.77 0.90 5.60 29.0 5.47 1.17 5.30 6.23
1 51.1 7.29 1.06 7.01 30.4 5.67 1.78 5.37 9.54
2 58.4 7.99 1.35 7.31 30.2 5.97 2.61 5.06 13.20
3 61.4 7.34 1.45 8.37 29.8 6.25 2.99 4.77 14.28

Table 5-28: Geometric mean of runtimes across all graph topologies for each scheduler and
each size running the Mass-Spring-Dashpot model. The column headings are equivalent to
those in Table 5-27.

for all schedulers increase dramatically. Whereas, when using the Hilbert priority function

to order the vertices (the multi-column under “Hilbert (ρH)”), the timings are comparatively

insensitive to graph size. Furthermore, we see in Table 5-29 that even when the graph fits

entirely in the L1 cache, the number of instructions per cycle issued by the processor (i.e.,

1.377 instructions / cycle) is only 8% higher than with a large graph (i.e., 1.272 instructions

/ cycle).

In order to get a better sense of what hardware limitations govern the performance of

each scheduler, we measured several performance counters [115, Ch. 18] (e.g., the number

of instruction, cycles, branch mispredictions, last level cache (LLC) misses, data translation
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|V | |E| / |V | Graph Size Fits in?
Instructions

Cycle

64 15.21 19.4KB L1 Cache 1.377
512 14.88 155.6KB L2 Cache 1.311

32,768 14.67 9.9MB L3 Cache 1.296
108,792 14.59 29.8MB dTLB 1.285

6,363,260 15.39 1.9GB Memory 1.272

Table 5-29: Instructions per cycle in a serial execution of the Lax data-graph computa-
tion scheduler as a function of graph size, for increasing sizes of random cube graphs. The
column“|V |” shows the number of vertices in the graph and the average degree is listed under
the heading “|E| / |V |”. The column “Graph Size” shows the total memory space allocated
for the vertex array and edge array. For reference, the smallest memory structure (e.g., L1
Cache, Memory, etc.) that can hold the entire is listed under the heading “Fits in?” Finally,
the instruction throughput in instructions per cycle is given under the heading “Instructions
/ Cycle.”

lookaside buffer (dTLB) misses, etc.) using the linux utility, perf stat v. 3.13.11. A

summary of such measurements, using the largest size (i.e., size 3) of the “rand” graph as a

test input, can be found in Tables 5-30 and 5-31.

We combine information from the performance counters for the LLC with measured

runtimes to estimate memory bandwidth used in each configuration, listed under the heading

“Gigabytes / Second” (GB/s) in Table 5-30. Since the Intel Xeon [111] test system can sustain

64GB/s peak memory bandwidth, we can see that in all scenarios the performance falls far

short of the maximum.

The failure to saturate memory bandwidth using random ordering may be due to the fact

that all schedulers suffer nearly 1 dTLB miss per edge, which has a high latency penalty [104,

App. B]. Furthermore, all schedulers, except JP, incur roughly 2 LLC misses per edge, which

may seem puzzling since the data portion of the vertex_t struct is only 32B and would fit on

a single cache line. Such dTLB misses also frequently incur an additional LLC miss: roughly

500,000 pages are used to map the test graph (i.e., size-3 rand), which consumes roughly

4MB of memory space, much of which would be pushed out of the LLC by the actual graph

state.21 The fact that JP is faster than the other schedulers for both serial and parallel

21The dTLB is a small cache of translations between virtual memory and physical memory. When a dTLB
miss occurs because e.g., a virtual address being loaded is not present, a “page walk” occurs. A page walk
traverses a tree in memory, called the “page table,” which organizes the mapping between virtual and physical
memory. The leaves of this tree data structure reside in memory and are cached (e.g., in L3 cache) like any
other memory state, and thus compete for cache space with the data in the application itself. Thus, a dTLB
miss could cause extra LLC misses and latency in the process of retrieving the leaf of the page table.
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Scheduler Workers
Nanoseconds

Edge
Gigabytes
Second

LLC Misses
Edge

dTLB Misses
Edge

ρR / ρH ρR / ρH ρR / ρH ρR / ρH

Lax 1 89.48 / 19.75 1.49 / 0.62 1.91 / 0.015 0.79 / 9.81e-5
12 9.98 / 1.69 13.42 / 8.03 1.92 / 0.035 0.82 / 1.39e-4

BSP 1 91.75 / 21.21 1.50 / 0.71 1.94 / 0.023 0.88 / 8.68e-5
12 10.23 / 1.92 13.55 / 8.75 1.96 / 0.051 0.90 / 1.01e-4

Laika 1 94.47 / 22.17 1.50 / 0.88 2.01 / 0.092 0.93 / 7.10e-4
12 10.57 / 2.03 13.37 / 9.09 2.00 / 0.078 0.96 / 1.17e-3

Prism 1 96.62 / 33.94 1.57 / 1.87 2.19 / 0.818 0.80 / 4.49e-4
12 11.06 / 3.73 13.74 / 18.20 2.20 / 0.885 0.83 / 4.85e-4

JP 1 61.58 / 29.92 1.04 / 0.73 0.79 / 0.119 0.89 / 2.21e-4
12 7.30 / 6.45 9.03 / 3.84 0.82 / 0.165 0.87 / 9.92e-4

Table 5-30: Memory-level hardware performance counter measurements of data-graph com-
putation schedulers executing the Mass-Spring-Dashpot model on the size-3 rand graph.
Each scheduler is measured both with 1 and 12 workers, given under the Workers heading.
The subheadings ρR and ρH imply that the data for random ordering and Hilbert ordering,
respectively, can be found on each side of the slash. The column “Nanoseconds / Edge” shows
the nanoseconds required to execute the data-graph computation divided by the number of
edges, as measured using the clock_gettime function in the time.h C++ header. The column
“LLC Misses / Edge” shows the average number of measured LLC load, store, and prefetch
misses in a single round, divided by the number of edges. The column “dTLB Misses / Edge”
shows the average number of measured dTLB load and store misses in a single round, di-
vided by the number of edges. The column “Gigabytes / Second” shows the ratio of the sum
of the LLC load, store, and prefetch misses, in gigabytes, divided by time.

executions with random ordering corroborates the observation that it incurs comparatively

few LLC misses. It would seem that JP traverses the graph in a way that exploits the

locally-connected nature of the graph, even though the vertices are not explicitly ordered to

expose it. JP also requires an atomic Dec-And-Fetch instruction per edge to coordinate

updates in the priority dag (see Figure 5-2 for details), a significant overhead that limits

JP’s effectiveness relative to the other schedulers.

The schedulers also fail to saturate memory bandwidth using Hilbert ordering, but for a

different reason: they use the cache more efficiently and are much faster (e.g., Laika is 5.23

times faster with Hilbert ordering than with random ordering). All schedulers incur many

fewer LLC and dTLB misses per edge under Hilbert ordering, a consequence of the cache

advantages detailed theoretically in Section 3.4. Prism is an outlier in that it still incurs
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Scheduler Workers
Nanoseconds

Edge
Instructions

Cycle
Instructions

Edge
Branch Misses

Edge

ρR / ρH ρR / ρH ρR / ρH ρR / ρH

Lax 1 89.48 / 19.75 0.28 / 1.25 65.7 / 65.7 0.101 / 0.096
12 9.98 / 1.69 0.21 / 1.23 66.9 / 66.3 0.097 / 0.095

BSP 1 91.75 / 21.21 0.27 / 1.16 65.8 / 65.7 0.096 / 0.092
12 10.23 / 1.92 0.21 / 1.09 66.8 / 66.0 0.096 / 0.093

Laika 1 94.47 / 22.17 0.28 / 1.14 71.4 / 68.1 0.167 / 0.100
12 10.57 / 2.03 0.21 / 1.10 72.3 / 71.0 0.171 / 0.099

Prism 1 96.62 / 33.94 0.26 / 0.73 66.1 / 65.9 0.095 / 0.094
12 11.06 / 3.73 0.21 / 0.58 74.1 / 69.1 0.101 / 0.098

JP 1 61.58 / 29.92 0.47 / 1.01 77.6 / 80.1 0.282 / 0.381
12 7.30 / 6.45 0.46 / 1.25 105.4 / 256.4 0.303 / 0.491

Table 5-31: Instruction-level hardware performance counter measurements of data-graph
computation schedulers executing the Mass-Spring-Dashpot model on the size-3 rand graph.
Each scheduler is measured both with 1 and 12 workers, given under the Workers heading.
The subheadings ρR and ρH imply that the data for random ordering and Hilbert ordering,
respectively, can be found on each side of the slash. The column “Nanoseconds / Edge” shows
the nanoseconds required to execute the data-graph computation divided by the number of
edges, as measured using the clock_gettime function in the time.h C++ header. The column
“Instructions / Cycle” shows the measured number of x86 insructions divided by the number
of measured cycles, as measure by perf stat, and “Instructions / Edge” and “Branch Misses
/ Edge” were both measured the same way.

nearly 1 LLC miss per edge: it reads the graph approximately once for every color used to

color the graph, typically 3–5 colors for mesh graphs. For example, a vertex v of color c reads

inputs of different colors, however the vertices in N(v) cannot be updated until all of the

vertices of color c have been updated, squandering the opportunity for temporal locality.

In Table 5-31 we confirm our expectations about the instruction-level behavior of each

scheduler. For example, Lax, BSP, and Prism all have instructions and branch misses per

edge that are largely independent of the ordering, since each has ample parallelism and

predictable allocation of work to each worker. By contrast, Laika has more instructions

and branch misses per edge when it operates on randomly ordered vertices, which is outside

its intended operating conditions. Lax, BSP, and Laika all lose efficiency in instructions

per cycle with random ordering when going from 1 worker to 12. By contrast, with Hilbert
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ordering the efficiency in instructions per cycle is approximately the same between 1 and 12

workers, and 5–6 times higher than with random ordering.

5.7 Conclusion

We are optimistic that the vertex reordering and scheduling techniques will be widely

adopted in the physical simulation community, given the provably good bounds we pro-

vide for mesh graphs and the empirically demonstrated fact that we make such problems

compute-bound. However, we wonder if a more general scheduling algorithm may emerge

out of this work on Laika. In particular, we rely on the Hilbert space-filling curve to or-

der vertices such that relatively few edges cross between chunks (i.e., contiguous blocks of

vertices). Could we not use a graph clustering algorithm [64, 122] on generic graphs with

locality (e.g., power law graphs [44]) or on mesh graphs where we do not know their position

in 3D space to form the chunks? Such a clustering may suffice in limiting the inter-chunk

edge crossings and yield high performance on a broader class of input graphs. In particular,

we note that JP incurs suspiciously few LLC misses on randomly ordered mesh graphs in

Table 5-30. We leave as an open question why JP performs so well in this respect and if an

ordering of vertices based on JP’s traversal of the graph would suffice for ordering graphs

where the Hilbert ordering is not possible.

Finally, we acknowledge that support for dynamically changing graphs (i.e., those whose

structure changes over time) would be a valuable extension to Laika. For instance, it may be

useful to dynamically refine a mesh graph in a data-dependent way. Our future work includes

an investigation of what data-structures and algorithms would be required to support such

graphs. Furthermore, while most physical simulations are static data-graph computations

(i.e., they update every vertex every round) there may be efficiency gains in executing such

physical simulations using data dependent subsets of vertices, e.g., using dynamic data-graph

computations as in Table 3-3.
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Chapter 6

Conclusion

“You can have a second computer once
you have shown you know how to use
the first one.”

Paul Barham

In reflection on what I set out to accomplish in my PhD studies, I reviewed the Statement

of Purpose that accompanied my application to MIT, which opened with the following

paragraph:

Determined to outclass a French magician, Wolfgang von Kempelen unveiled
The Mechanical Turk in Vienna. Skeptics were invited to inspect the gears, cogs
and other complications that were housed in the desk. The chessboard on top
and the statue of the Turkish man which stood before it also defied inspection,
but it did little to quell the incredulity of the audience. For several decades, this
Automaton Chess Player defeated nobles and statesmen, including Benjamin
Franklin, and its abilities seemed as attributable to magic as science. The claim
that Napoleon responded to his ignominious defeat by invading Russia has never
been confirmed, though it must have delighted the chess master / co-conspirator
who surreptitiously controlled The Turk from within. In an ironic turnabout,
the modern equivalent of his hoax might be that an ordinary person defeats
a chess master with the help of an actual Automaton Chess Player concealed
about their person. An iPhone would probably be sufficient; it has roughly the
same computational power as Deep Blue, the supercomputer that defeated Garry
Kasparov.

— William Hasenplaugh, 2010

I was, and still am, awed by how the exponential march of technology has fundamentally

changed society and accelerates discovery in the sciences. Much of this historical acceleration
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was due to increasing clock speeds: ENIAC [88] ran at 5KHz in 1946 and Intel’s Haswell

processor [114] ran at 4GHz in 2014, a mere 800,000 times faster. However, in the last

decade, processor clock rates have stalled: processor performance now comes in the form

of more cores, not faster cores. Thus, to make use of so many cores and keep the scientific

revolution alive, one needs parallelism. But parallel programming is famously hard, so the

parallel programming community has taken up the task of making it accessible to more

people [15,16,21,28,62,63,71,72,82,100,110,161,164,185,200]. An overwhelming concensus

of this effort is that determinism is essential to writing correct parallel programs. With

determinism, one can reason about a parallel program in the same way that they reason

about the equivalent serial program, which is already adequately difficult.

The goal in developing Prism and Laika was to provide tools that enable practitioners

who are not parallel programming experts to solve problems in their respective domains with

guarantees about performance and correctness. We have done that through a combination

of theoretical analysis and empirical evaluation of performance engineering techniques. The

next challenge is to evolve those systems, making them expressive enough to describe broader

classes of problems that matter in the real world. I will be satisfied if my 2 year old daughter

Ella is able to bend a cluster of 1,000,000 processors to her will for a future high school

science project without worrying about determinacy races.1

1Ella, if you are reading this, no pressure.
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Appendix A

The Cilk Model of Multithreading

All code in this thesis was implemented in Cilk Plus [112], a dynamic multithreading con-

currency platform. This section provides background on the dag model of multithread-

ing that embodies this and other similar concurrency platforms, including MIT Cilk [77],

Cilk++ [135], Fortress [3], Habenero [12, 41], Hood [27], Java Fork/Join Framework [131],

Task Parallel Library [134], Threading Building Blocks [169], and X10 [46]. We review the

Cilk model of multithreading, the notions of work and span, and the basic properties of the

work-stealing runtime systems underlying these concurrency platforms. We briefly discuss

worker-local storage, which Prism’s multibag data structure uses to achieve efficiency.

The Cilk model of multithreading [25,26] is described in tutorial fashion in [52, Ch. 27].

The model views the executed computation resulting from running a parallel program as

a computation dag in which each vertex denotes an instruction, and edges denote paral-

lel control dependencies between instructions. To analyze the theoretical performance of a

multithreaded program, such as Prism, we assume that the program executes on an ideal

parallel computer, where each instruction executes in unit time, the computer has ample

bandwidth to shared memory, and concurrent reads and writes incur no overheads due to

contention.

We assume that algorithms for the dag model are expressed using the Cilk-like prim-

itives [52, Ch. 27] spawn, sync, and parallel for. The keyword spawn when preceding

a function call F allows F to execute in parallel with its continuation — the statement

immediately after the spawn of F . The complement of spawn is the keyword sync, which

acts as a local barrier and prevents statements after the sync from executing until all ear-
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lier spawned functions return. These keywords can be used to implement other convenient

parallel control constructs, such as the parallel for loop, which allows all of its iterations

to operate logically in parallel. The work of a parallel for loop with n iterations is the total

number of instructions in all executed iterations. The span is Θ(lg n) plus the maximum

span of any loop iteration. The Θ(lg n) span term comes from the fact that the runtime

system executes the loop iterations using parallel divide-and-conquer, and thus fans out the

iterations as a balanced binary tree in the dag.

Work-span analysis

Given a multithreaded program whose execution is modeled as a dag A, we can bound the

P -processor running time TP (A) of the program using work-span analysis [52, Ch. 27].

Recall that the work T1(A) is the number of instructions in A, and that the span T∞(A) is

the length of a longest path in A. Greedy schedulers [33,69,94] can execute a deterministic

program with work T1 and span T∞ on P processors in time TP satisfying

max {T1/P, T∞} ≤ Tp ≤ T1/P + T∞ , (A.1)

and a similar bound can be achieved by more practical “work-stealing” schedulers [25, 26].

The speedup of an algorithm on P processors is T1/TP , which Inequality (A.1) shows to be

at most P in theory. The parallelism T1/T∞ is the greatest theoretical speedup possible

for any number of processors.

Work-stealing runtime systems

Runtime systems underlying concurrency platforms that support the dag model of mul-

tithreading usually implement a work stealing scheduler [26, 38, 99], which operates as

follows. The runtime system initially allocates as many operating-system threads, called

workers, as there are processors. Each worker keeps a ready queue of tasks that can op-

erate in parallel with the task it is currently executing. Whenever the execution of code

generates parallel work, the worker puts the excess work into the queue. Whenever it needs

work, it fetches work from its queue. When a worker’s ready queue runs out of tasks, how-

ever, the worker becomes a thief and “steals” work from another victim worker’s queue.

If an application exhibits sufficient parallelism compared to the actual number of work-
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ers/processors, one can prove mathematically that the computation executes with linear

speedup.

Worker-local storage

We refer to memory that is private to a particular worker thread asworker-local storage. In

a P -processor execution of a parallel program, a worker-local variable x can be implemented

using a shared-memory array of length P . A worker accesses its local copy of x using a

runtime-provided worker identifier to index the array of worker-local copies of x. The Cilk

Plus runtime system, for example, provides the __cilkrts_get_worker_number() API call,

which returns an integer identifying the current worker. Our implementation of Prism

assumes the existence of a runtime-provided Get-Worker-ID function that executes in

Θ(1) time and returns an integer from 0 to P −1. Other strategies for implementing worker-

local storage exist that are comparable to the strategy outlined here.
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