
Lease/Release: Architectural Support
for Scaling Contended Data Structures

Syed Kamran Haider
University of Connecticut ∗

William Hasenplaugh
MIT

Dan Alistarh
Microsoft Research

Abstract
High memory contention is generally agreed to be a worst-case sce-
nario for concurrent data structures. There has been a significant
amount of research effort spent investigating designs which min-
imize contention, and several programming techniques have been
proposed to mitigate its effects. However, there are currently few ar-
chitectural mechanisms to allow scaling contended data structures
at high thread counts.

In this paper, we investigate hardware support for scalable con-
tended data structures. We propose Lease/Release, a simple addi-
tion to standard directory-based MSI cache coherence protocols,
allowing participants to lease memory, at the granularity of cache
lines, by delaying coherence messages for a short, bounded period
of time. Our analysis shows that Lease/Release can significantly re-
duce the overheads of contention for both non-blocking (lock-free)
and lock-based data structure implementations, while ensuring that
no deadlocks are introduced. We validate Lease/Release empiri-
cally on the Graphite multiprocessor simulator, on a range of data
structures, including queue, stack, and priority queue implementa-
tions, as well as on transactional applications. Results show that
Lease/Release consistently improves both throughput and energy
usage, by up to 5x, both for lock-free and lock-based data structure
designs.

1. Introduction
The last decade has seen a tremendous amount of research effort
dedicated to designing and implementing concurrent data structures
which are able to scale, that is, to increase their performance as
more parallelism becomes available. Consequently, efficient con-
current variants have been proposed for most classic data struc-
tures, such as lists, e.g. [17, 26], hash tables, e.g. [8, 20, 26],
skip lists, e.g. [15, 20], search trees, e.g. [12, 31], queues [27],
stacks [39, 41], or priority queues, e.g. [4, 23].

One key principle for data structure scalability is avoiding con-
tention, or hotspots, roughly defined as data items accessed con-
currently by large numbers of threads. While for many search data
structures, such as hash tables or search trees, it is possible to avoid
contention and scale thanks to their “flat” structure and relatively

∗ Work performed while an intern at Microsoft Research Cambridge, UK

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications
Dept., ACM, Inc., fax +1 (212) 869-0481.

PPoPP ’16 March 12-16, 2016, Barcelona, Spain
Copyright c© 2016 ACM 978-1-4503-4092-2/16/03. . . $15.00
DOI: http://dx.doi.org/10.1145/2851141.2851155

uniform access patterns, e.g., [7, 8], it is much harder to avoid
hotspots in the case of data structures such as queues, stacks, or
priority queues. In fact, theoretical results [3, 13] suggest that such
data structures may be inherently contended: in the worst case, it
is impossible to avoid hotspots when implementing them, without
relaxing their semantics.

Several software techniques have been proposed to mitigate the
impact of contention, such as combining [18], elimination [39],
relaxed semantics [4, 19], back-offs [9], or data-structure and
architecture-specific optimizations [14, 29]. While these methods
can be very effective in improving the performance of individual
data structures, the general question of maximizing performance
under contention on current architectures is still a major challenge.
Contribution. In this paper, we investigate an alternative ap-
proach: providing hardware support for scaling concurrent data
structures under contention. We propose Lease/Release, a sim-
ple addition to standard directory-based MSI cache coherence
protocols, allowing a core to lease memory, at the granularity of
cache lines, by delaying incoming coherence requests for a short,
bounded period of time.

Our analysis shows that Lease/Release can significantly reduce
the overheads of contention for both non-blocking (lock-free) and
lock-based data structure implementations, while ensuring that no
deadlocks are introduced. Importantly, this mechanism should not
require the revalidation of the protocol logic, since it only intro-
duces finite delays. Lease/Release allows a core to lease either
single or multiple cache lines at the same time, while preserving
deadlock-freedom. We validate Lease/Release empirically on the
Graphite multi-processor simulator [28], on a range of data struc-
tures, including queue, stack, and priority queue implementations,
as well as on contended real-world applications. Results show that
Lease/Release can improve throughput and decrease communica-
tion by up to 5x for contended lock-free and lock-based programs.

The idea of leasing to mitigate contention has been explored be-
fore in the systems and networking literature, e.g. [32]. For cache
coherence, references [34, 38], covered in detail in the next section,
proposed transient delay mechanisms for single memory locations
in the context of the Load-Linked/Store-Conditional (LL/SC) prim-
itives, focusing on lock-based (blocking) data structures. By con-
trast, we propose a more general leasing mechanism which applies
to both blocking and non-blocking concurrency patterns, and to a
wider range of primitives. Moreover, we investigate multi-line leas-
ing, and show that leases can significantly improve the performance
of classic data structure designs.
An Example. To illustrate the ideas behind Lease/Release, let us
consider Treiber’s venerable stack algorithm [41], outlined in Fig-
ure 1, as a toy example. We start from a sequential design. To
push a new node onto the stack, a thread first reads the current
head, points its node’s next pointer to it, and then attempts to

1

1: function STACKPUSH(Node *node)
2: loop

. Take the lease on the head pointer
3: Lease(& Head)
4: h← Head
5: node→ (next← h)
6: success = CAS (& Head, node→next, node)

. Release the head pointer
7: Release(&Head)
8: if success then return

Figure 1: Illustration of leases on the Stack push operation. We lease
the head pointer for the duration of the read-CAS interval. This

ensures that the CAS validation is always successful, unless the lease
on the corresponding line expires.

2.5E+6

3.5E+6

4.5E+6

5.5E+6

6.5E+6

7.5E+6

8.5E+6

9.5E+6

1.1E+7

1.2E+7

0 10 20 30 40 50 60 70

#O
p

s.
/S

ec
o

n
d

#Threads

Lock-Free Stack Throughput
NO_LEASE

WITH_LEASE

Figure 2: Throughput of the lock-free Treiber stack with and without
leases, for 100% updates. The data points are at powers of 2.

compare-and-swap (CAS) the head to point to its new node, ex-
pecting to see the old head value. Under high concurrency, we can
expect to have several threads contending on the cache line cor-
responding to the head pointer, both for reads and updates. At the
level of cache coherence, the thread must first obtain exclusive own-
ership of the corresponding line. At this point, due to contention, its
operation is likely to be delayed by concurrent ownership requests
for the same line. Further, by the time the thread manages to re-
obtain exclusive ownership, the memory value may have changed,
which causes the CAS instruction to fail, and the whole operation to
be retried. The impact of contention on the performance of the data
structure is illustrated in Figure 2.

Lease/Release is based on the following principle: each time
a core gets ownership of the contended line, it should be able
to perform useful work. We provide a lease instruction, which
allows the core corresponding to the thread to delay incoming
ownership requests on a line it owns for a bounded time interval. An
incoming ownership request is queued at the core until either the
line is released voluntarily by the thread (via a symmetric release
instruction) or until the lease times out. Crucially, the maximum
time for which a lease can be held is upper bounded by a system-
wide constant. This ensures that the Lease/Release mechanism may
not cause deadlocks.

Returning to the stack, a natural point to set the lease on the
head pointer is before the read on line 4 of Figure 1. This populates
a lease table structure at the core, adding an entry corresponding to
the cache line and the lease timeout, and brings the line to the core
in exclusive state. The lease starts as soon as ownership is granted.
The natural release point is after the (probably successful) CAS
operation. If the length of the read-CAS pattern does not exceed the
lease interval, any incoming ownership request gets queued until
the release, allowing the thread to complete its operation without
delay. See Figure 2 for the relative throughput improvement.

Of note, leasing fits easily into protocols which support arbitrary
but bounded delays for coherence messages, or negative acknowl-
edgments. Intuitively, coherence messages delayed by leases can
be thought of as having been delayed by the system by a quantum
upper bounded by MAX LEASE TIME. Since this additional delay is
bounded, the protocols remain correct.
Non-Blocking Patterns. We have investigated lease usage for
a wide range of data structures. First, we found that most non-
blocking data structures have natural points where leases should
be inserted. Specifically, many non-blocking update operations are
based on an optimistic scan-and-validate pattern, usually mapping
to a load, followed by a later read-modify-write instruction on the
same cache line. Thus, it is natural to lease the corresponding line
on the scan, releasing it after the read-modify-write. We provide
detailed examples in the later sections.

Lock-Based Patterns. It is interesting to examine how leasing can
help in the case of contended lock-based data structures. Consider
the case of a single highly-contended lock variable, implemented
via a standard test&test&set (TTS) pattern. A thread p first ac-
quiring the lock incurs a cache miss when first gaining ownership
of the corresponding cache line. While executing the critical sec-
tion, since the lock is contended, it is likely that the core corre-
sponding to thread p loses ownership of the lock’s cache line. This
will induce unnecessary overhead for thread p when releasing the
lock (since it needs to re-gain ownership), but also generates use-
less traffic between cores (since threads getting the line will not be
able to acquire the lock).

Leasing the line corresponding to the lock at p’s core for the
duration of the critical section eliminates both of these overheads.
First, the lock holder will not incur a second cache miss when
releasing the lock, as it retains ownership. Second, looking at other
threads requesting the lock, the first such thread (in the order of
request arrival at the directory) will be queued at p’s core, waiting
for the line to be released. All the other threads will be queued at
the directory. Thus, the communication cost of the critical section is
significantly reduced, and the lease mechanism ensures an efficient
“sequentialization” through a contended critical section.

We note that several software [6, 10, 24, 25] and hardware [16,
21, 35] solutions for reducing the communication overhead of
contended locks are known, and that similar behaviour will occur
for locks implemented using LL/SC with IQOLB [34].
Multiple Leases. In more complex data structures, such as trees,
it appears beneficial to be able to lease a small set of cache lines
(corresponding to a set of nodes, or to a set of locks), at the same
time. We show that the lease mechanism can be extended to allow
a core to lease a small set of cache lines for a fixed interval, while
still ensuring that no deadlocks occur.

A closer examination of this multi-line mechanism for several
classic concurrent patterns leads to the following conclusions. The
first is perhaps surprising: for many data structures, multiple leases
are not necessary, and may in fact introduce unnecessary overhead.
The intuition is that, in the case of concurrent lists or trees, data
access is often linear: it is sufficient to lease only a predecessor
node to prevent access to its successors. In turn, this ensures that a
sequence of operations involving the predecessor and a small set of
successors will probably succeed if the predecessor is leased.

The second observation is that, in scenarios where the opera-
tion requires ownership of two or more arbitrary locations, such as
transactional semantics, joint leases on these locations can be ben-
eficial for performance.
Experimental Results. We implemented Lease/Release in the
Graphite multi-processor simulator [28], and experimented with
several fundamental data structures, such as queues, stacks, priority

2

queues, hash tables and binary trees, as well as locks, and transac-
tional algorithms. We found that using leases on top of contended
data structures such as queues, stacks, and priority queues, can im-
prove throughput by up to 5x under contention, without affecting
performance in the uncontended case. Using single leases, the rela-
tively simple classic data structure designs such as the Treiber stack
match or improve the performance of optimized, complex imple-
mentations. Using leases inside a Pagerank implementation with
contended locks [] improves throughput by 8x, and allows the ap-
plication to scale. Similarly, multi-leases improve the throughput of
transactional algorithms which need to jointly acquire small sets of
objects, by up to 5x. In scenarios with no contention, leases do not
affect overall throughput in a discernible way; for low contention
data structures (such as hash tables and trees), improvements are
more modest (≤ 5%).

A notable benefit of using leases is reduced coherence traffic.
Specifically, leases reduce coherence traffic by up to 5x; conse-
quently, we believe that leases should also reduce the energy cost
of contended programming patterns.

Summing up, one can split the cost of concurrent operations into
sequential cost (time spent executing operations locally), traffic
cost (time spent waiting for coherence requests), and retry cost
(time spent because of failed lock acquisitions or CAS operations).
Leases allow the programmer to minimize both traffic and retry
costs for both lock-based and lock-free programming patterns.

The rest of our paper develops as follows. We discuss related
work in Section 2. We specify detailed semantics for both single-
location and multi-location Lease/Release, as well as implemen-
tation details, in Section 3. We cover detailed usage examples in
Section 6, and provide empirical validation in Section 7. We dis-
cuss our findings and the feasibility of a hardware implementation
in Section 8.

2. Related Work
We focus on software techniques and hardware mechanisms for
mitigating contention in concurrent data structures. Several soft-
ware methods have been proposed to build efficient contended data
structures. For instance, the elimination technique [39] proposes to
directly match producer and consumer operations, such as push
and pop for a stack, as a way to avoid memory hotspots. Combin-
ing proposes to reduce the contention overhead of data structures by
“shipping” operations directly to a chosen thread (the “combiner”)
which can apply them to a local version of the data structure, tak-
ing advantage of data-structure-specific optimizations [18]. Several
data structure designs, e.g. [4, 19, 36], aim to avoid hotspots by
relaxing ordering guarantees..

Finally, for almost all fundamental data structures, implementa-
tions exist which achieve good performance through careful data-
structure-specific or architecture-specific design. This is the case
for queues [14, 27, 29], stacks [1, 41], and priority queues [23]. In
our simulation, we obtain scalability trends comparable or exceed-
ing those of highly optimized implementations of these data struc-
tures by just adding leases to the classic designs of Treiber [41],
Michael–Scott [27], and Lotan–Shavit [23], respectively.

Lock cohorting [10] is a software mechanism for improving the
performance of lock-based synchronization in NUMA systems, op-
timizing the average “travel time” of a lock by assigning ownership
in a topology-aware fashion. Leases do not change the lock owner-
ship pattern, and should hence be compatible with cohorting.

Several hardware mechanisms have been proposed to simplify
the design of scalable data structures. Perhaps the best known is
hardware transactional memory (HTM). Current HTM implemen-
tations appear to suffer from high abort rates under contention [30],
and are probably not good candidates for contended data structure
implementations. QOLB (also known as QOSB) [16, 21] is a hard-

ware queue mechanism for efficiently executing a contended criti-
cal section, similar in spirit to a queue lock. QOLB has been shown
to speed up contended lock-based applications by up to an order
of magnitude [34], but requires complex protocol support, new in-
structions, and re-compilation of the application code [34].

Implicit QOLB (IQOLB) [34] is a technique which delays ser-
vicing requests on lock variables for a finite time, to reduce both the
overhead on the lock holder and the overall communication cost un-
der contention. The delay induces an implicit queue of requests, as
described in the previous section. For lock-based programs, the use
of IQOLB is virtually identical to the use of leases on the lock vari-
able, that is, Lease/Release can be used to implement IQOLB. Ref-
erence [34] implements IQOLB via LL/SC-based locks, by chang-
ing the LL instruction automatically to a deferrable ownership re-
quest. IQOLB was shown to improve performance by up to an
order of magnitude in contended workloads on the SPLASH-02
benchmark (within 1% of QOLB), and introduces no new instruc-
tions, but requires hardware structures for predictors, and a mis-
speculation recovery mechanism.

Compared to QOLB and IQOLB, Lease/Release introduces new
instructions, but allows for more flexibility, as it can be used in both
lock-based and lock-free patterns. Lease/Release does not require
predictor or recovery structures, although it could benefit from such
mechanisms. Further, Lease/Release allows multiple concurrent
leases. We also examine the applicability of this mechanism on a
range of programming patterns.

In [38], Shalev and Shavit propose similar transient blocking
semantics in the context of snoopy cache coherence, to imple-
ment Load&Lease and Store&Unlease instructions, and discuss
the interaction between this mechanism and hardware transactional
memory. Lease/Release provides slightly more general semantics,
and also allows for multiple leases. Further, we illustrate and eval-
uate leases in the context of modern data structures.

Several protocols have been recently proposed as alternatives to
MSI-based coherence, e.g. [5, 42], which show promise in a range
of scenarios. By comparison, Lease/Release has a narrower focus,
but is compatible with current protocols, and would, arguably, have
lower implementation costs.

3. Single-Location Memory Leases
The single-line leasing mechanism consists of two instructions:
Lease(addr, time), which leases the cache line correspond-
ing to the address addr for time consecutive core cycles, and
Release(addr), which voluntarily releases the address. Further,
the system defines two constants MAX LEASE TIME, which is an up-
per bound on the maximum length of a lease, and MAX NUM LEASES,
an upper bound on the maximum number of leases that a core may
hold at any given time. The core also maintains a lease table data
structure, with the rough semantics of a key-value queue, where
each key is associated with a (decreasing) time counter and with a
boolean flag. High-level pseudocode for these operations is given
in Algorithm 1.

Specifically, whenever a Lease(addr, time) instruction is
first encountered on address addr,1 the system creates a new
entry corresponding to the cache line in the lease table. If the
size of the table is already the maximum MAX NUM LEASES, then
the new address replaces the oldest leased address (in FIFO or-
der), which is automatically released. The core then requests the
cache line corresponding to addr in exclusive state. When this
request is fulfilled, the core sets a corresponding counter with
length min(time, MAX LEASE TIME), and starts decrementing this
counter. Note that the operation does not bind the corresponding

1 We do not allow extending leases on an already-leased address, as this
could break the MAX LEASE TIME bound.

3

Algorithm 1 Single-Line Lease/Release Pseudocode.

1: function LEASE(addr, time)
. Check if lease is valid

2: found← Lease-Table.find(addr)
3: num← Lease-Table.num elements()

4: if (!found) then
5: time← min(time, MAX LEASE TIME)

6: if (num = MAX NUM LEASES) then
. Evict oldest existing lease

7: oldest← Oldest existing lease, in FIFO order
8: RELEASE(oldest)

9: Lease-Table[addr]← time
10: Request line corresponding to addr in Exclusive state

11: upon event ZERO-COUNTER(addr) do
12: RELEASE(addr)
13: upon event COHERENCE-PROBE(addr) do
14: found = Lease-Table.find(addr)
15: if found then Queue probe until lease on addr expires
16: upon event CLOCK-TICK do
17: for each addr in Lease-Table with started = true do
18: Decrement counter by 1, down to 0

19: function RELEASE(addr)
. Delete entry, returning true if entry exists

20: found← Lease-Table.delete(addr)
21: if found then
22: req← coherence requests queued for this address
23: Fulfill req as per the cache coherence protocol
24: return found

Algorithm 2 MultiLease/MultiRelease Pseudocode.

1: function MULTILEASE(num, time, addr1, addr2, ...)
. Release all currently held leases

2: RELEASEALL()
. Check if lease is valid

3: count← Lease-Table.num elements()
4: time← min(time, MAX LEASE TIME)
5: if (count + num) ≤ MAX NUM LEASES) then

. Lease all addresses within the group
6: for each addr in list, in fixed order do
7: LEASE(addr, time)

8: function RELEASEALL()
. Clear entries corresponding all lines in the group

9: addr list = Addresses currently leased

10: for each addr in addr list do
11: Lease-Table.delete(addr)

12: for each addr in addr list do
. A single queued request may exist per line

13: Service any outstanding coherence requests for addr

value to a register. This may occur on the next instruction on the
line, which typically follows the lease instruction.

Upon an incoming coherence probe on an address req, the
core scans the lease table for lines matching req. If a match is
found and the corresponding counter value is positive, the request
is queued at the core. Otherwise, the request is serviced as usual.
Upon every tick, the counter values corresponding to all started
leases are decremented, until they reach zero. When this counter
reaches zero, we say an involuntary release occurred. (A release
on a line not present in the lease table does nothing.) If the core calls
release before this event, we say a voluntary release occurred.
Optionally, the release instruction may return a boolean signaling
whether the target line was released voluntarily or involuntarily.

For a voluntary release, the core performs the following actions:
it deletes the entry in the lease table, looks for any queued requests
on the line, and fulfills them by downgrading its ownership and
sending messages as specified by the cache coherence protocol.

3.1 Properties of Single-Location Leases
We now state some of the properties of the Lease/Release mech-
anism described above. We will make the following observation
about the implementation of directory-based cache coherence pro-
tocols: at any given time, only a single request for each line may be
queued at a core. This upper bounds the number of queued requests
per core in the single-line mechanism by one.

Proposition 1. At any point during the execution of the protocol, a
core may have a single outstanding request queued.

Proof. This observation is based on the fact that directory-based
protocols queue multiple requests for each line at the directory, in
FIFO order [40] . (It is possible that requests for distinct lines may
be mapped to the same FIFO queue at the directory.) A request for
line x is not serviced by the directory until its predecessor requests
in the queue for line x are fully serviced.

Therefore, at any given point in time, of all the requests for line
x, at most a single request for a specific line may be queued at
a core, that is, the one being currently serviced by the directory.
All other requests for line x are queued in the directory queue
corresponding to the cache line.

We next prove that, since the lease interval is bounded, Lease/Release
may only introduce a bounded amount of delay for any coherence
request. In the following, we call the owning core the core which
currently has a given cache line in Exclusive state.

Proposition 2. Let M be a coherence message sent by a coherence
protocol C. If T is an upper bound on the maximum delay before
M is processed in C, then (T +MAX LEASE TIME) will be an upper
bound on the number of time steps by which M will be processed
in the version of C which implements Lease/Release.

Proof. For the proof of this claim, first notice that only coherence
messages which encounter a lease at a core will be delayed beyond
the standard delay of C. In particular, with Lease/Release, a mes-
sage corresponding to a coherence request which reached the top
of the directory queue and is in the process of being serviced may
be delayed by at most MAX LEASE TIME additional time steps, the
waiting time at the owning core if the line happens to be leased.

4

After this, the message is guaranteed to be processed. Therefore,
(T+MAX LEASE TIME) is an upper bound on the total waiting time
of the request.

We build on this claim to obtain that Lease/Release preserves
the correctness of coherence protocols which support arbitrary
bounded message delays.

Corollary 1. Any coherence protocol that is correct for arbitrary
bounded message delays will remain correct if bounded single-
location leases are implemented.

Proof. Consider a cache coherence protocol which is correct for
any finite bounded message delay B > 0. Let T be an upper bound
on the maximum delay supported by the protocol. By Proposition 2,
(T +MAX LEASE TIME) is an upper bound on the message delay in
the version with Lease/Release. Since the protocol remains correct
if the message delay is (T + MAX LEASE TIME), the claim follows.

4. Multi-Location Memory Leases
The multi-location leasing mechanism gives a way for a core to
jointly lease a set of memory locations for a fixed, bounded period
of time. To simplify the exposition, we will begin by sketching the
hardware implementation of joint leases, and then describe a soft-
ware emulation. Importantly, we do not allow concurrent use of
single-location and multi-location leases. We discuss implementa-
tion and usage issues in Section 5.

The interface to joint leases consists of two instructions: first,
MultiLease(num, time, addr1, addr2, ...) defines a joint
lease on num addresses, for an interval of time cycles. More pre-
cisely, MultiLease defines a group of addresses which will be
leased together. Second, when MultiRelease(addr) is called
on one address in the group, all leases on addresses in the group are
released at the same time.

MultiLeases will enforce the following two assumptions. First,
the MultiLease call will first release all currently held leases.
Second, a MultiLease request that causes the MAX NUM LEASES
bound to be exceeded is ignored. The pseudocode for these instruc-
tions is given in Algorithm 2.

The procedure uses the same Lease-Table data structure as for
single leases. The MultiLease procedure simply performs Lease
calls on each of the addresses in the argument list, using the same
time. This procedure does not actually bind the address values to
registers. This occurs on accesses by the core on the corresponding
lines in the group, which typically follow the lease instruction.

On a MultiLease call, the following occurs. We sort the ad-
dresses in the group according to some fixed, global comparison
criterion. We then request Exclusive ownership for these addresses
in sorted order, waiting for each ownership request to be granted
before moving to the next one. Notice that the fixed global order
of ownership requests is critical: otherwise, if two cores request the
same two lines A and B in inverted orders, the system might dead-
lock since the core delays incoming ownership requests during the
lease acquisition phase, e.g. [11, 22]. In this way, the acquisition
time is bounded, although it may increase because of concurrent
leases. A release on any address in the group causes all the other
leases to be canceled. The rest of the events are identical to single-
line leases, and are therefore omitted.
Software Implementation. While MultiLeases appear intuitively
straightforward, they may be cumbersome to implement in hard-
ware. (Please see Section 5 for details.) MultiLeases can be simu-
lated in software, with weaker semantics, on top of a the single-
location mechanism, as follows. The (software) MultiLease in-
struction requests leases on addresses in the group in sorted or-

der, using the single-location instructions, maintaining group id in-
formation in software. Additionally, the instruction can adjust the
lease timeout to maximize the probability that the leases are held
jointly for time time steps, by requesting the jth outer lease for an
interval of (time+jX) units, where X is a parameter approximat-
ing the time it takes to fulfill an ownership request. For instance,
when jointly leasing two lines A and B, the lease on A is taken
for (time + X) time units, whereas the lease on B is taken for
time time units. Notice that this mechanism does not guarantee
that leases will be held jointly.

4.1 Properties of Multi-Line Memory Leases
In this section, we prove that the hardware MultiLease protocol
ensures deadlock-freedom, under assumptions on the coherence
protocol. Notice that the software MultiLease protocol is correct,
since the protocol is a composition of single-location leases. We
make the following assumption on the cache coherence protocol,
which we discuss in detail in Section 5.

Assumption 1. Requests for each cache line are queued indepen-
dently in a FIFO queue at the directory. In particular, a coherence
request on a line A may not be queued behind a request corre-
sponding to a distinct line B.

Based on Assumption 1, we can prove that MultiLeases may only
introduce bounded message delays. It therefore follows that Corol-
lary 1 applies to MultiLeases as well.

Proposition 3. Let M be a coherence message sent by a coherence
protocol C. If there exists a finite bound on the maximum delay
before M is processed in C, then there exists a finite bound bound
on the maximum number of time steps until M will be processed in
the version of C which implements Lease/Release.

Proof Sketch. As in the previous section, we will bound the max-
imum delay for a coherence request once it reaches the top of the
directory queue corresponding to the requested cache line.

Consider a request r0, on cache line R0, by core p0, which is
currently being processed by the directory. Assume for contradic-
tion that request r0 is indefinitely delayed in the protocol variant
implementing MultiLeases. Without loss of generality, let us as-
sume that the line R0 is in modified (M) state. Since r0 has reached
the top of the directory request queue, it must hold that the direc-
tory forwards an invalidation request to the core owning R0, which
we call p1. We have two cases.

In the first case, the owning core p1 is executing outside lines
12–14 of the MultiLease protocol. Then, the invalidation request is
guaranteed to be processed within finite time, by protocol correct-
ness. In the second case, the core is executing a multiple lease se-
quence, and may delay incoming requests indefinitely during this
period, if itself is indefinitely delayed. Specifically, request r0 is
indefinitely delayed only if there exists a request r1, on a line R1,
part of p1’s MultiLease sequence which is infinitely delayed. First,
notice that R1 6= R0, since by construction p1 already owns R0.
Similarly, p1 6= p0. Second, notice that p1 must have acquired R0

as part of its current MultiLease call, since this call released all cur-
rently held addresses. This implies that cache line R0 must come
before R1 in the global order of addresses, since p1 has already
acquired it.

By Assumption 1, the requests r0 and r1 are mapped to dis-
tinct directory queues, therefore r0’s progress does not affect r1’s
progress. We can therefore assume without loss of generality that
r1 is at the top of its corresponding directory queue. By iterating
the same argument, we obtain that request r1 can be indefinitely
delayed only if line R1 is held by a core p2, which is executing
lines 12–14 of the MultiLease protocol, which is indefinitely de-
layed on a request r2 on a line R2.

5

We now make two observations. The first is that p2 /∈ {p0, p1}.
The fact that p2 6= p1 follows again by Assumption 1. Assume for
contradiction that p2 = p0. This would imply that p0 is holding
a lease on R1 and requesting R = R2 as part of a MultiLease
operation, while p1 is holding a lease on R and requesting R1 as
part of a MultiLease operation. However, this contradicts the sorted
order property of MultiLeases. Hence, p2 /∈ {p0, p1}. Similarly,
R2 /∈ {R0, R1}, and R2 must come after R0 and R1 in the global
sorting order of addresses.

We iterate this argument to obtain that, for request r0 to be
indefinitely delayed, there must exist a chain p1, p2, . . . of distinct
cores, where core pi owns line Ri−1, and is delayed on request
ri on line Ri. Further, it must hold that line Ri comes after lines
R0, R1, . . . , Ri−1 in the global sort order of addresses. Since the
cores are distinct and their number is finite, the chain is finite. Let
us examine the last core in this chain, pk. If line Rk is not currently
leased, then pk’s request must progress, by the correctness of the
original cache coherence protocol. If the line Rk is currently leased,
it cannot be leased as part of an ongoing MultiLease operation: it
could not be leased by a core outside p1, . . . , pk (since pk is the
last core in the chain), and none of the cores p0, p1, . . . , pk−1 may
have requested line Rk during their current MultiLease operation,
since these requests must be performed in order. Hence, the line
Rk can only be leased as part of a lease operation that has already
completed. It follows that the corresponding request rk will be
serviced within finite time, a contradiction.

It therefore follows that request r0 will be serviced within finite
time, which in turn implies that every request is serviced within
finite time. Finally, we note that the argument that transactional
requests performed in fixed sorted order do not deadlock is folklore,
and is given in full in [22].

5. Implementation Details
Core Modifications. A hardware implementation of Lease/Release
could be built by modifying the core structure which keeps track
of outstanding cache misses, which we call the load buffer, and by
adding a lease table structure, which keeps track of lease timers.

We add two new line states to the load buffer: lease and transi-
tion to lease. A line is in lease state if the data is already in the
cache, and the lease on the line is still valid. This state serves
to catch incoming coherence requests for the line, which will be
queued until either the lease expires, or the line is voluntarily re-
leased. Here, incoming requests exploit fact that the load buffer is
content-addressable. The transition to lease state corresponds to an
outstanding coherence request on which the core will take a lease
once the request is serviced. When the request is completed, the
entry is retained, and is transitioned to the lease request type.

The second component is the lease table, which mirrors the
load buffer in that each position in the lease table maps to the
corresponding position in the load buffer. The lease table contains
a collection of MAX NUM LEASES counters, counting down from
MAX LEASE TIME at each cycle. The lease table need not be con-
tent addressable, and should therefore be cheaper to implement.
When a counter reaches 0, or the lease is voluntarily released, the
corresponding entry in the load buffer is deleted, and the counter is
made available. This causes any outstanding coherence requests on
the line to be honored.

MultiLeases require the counters for the corresponding cache
lines to be correlated. For this, whenever a coherence request that
is part of a MultiLease is completed, the request transitions to lease
state, and checks whether all the other requests in the lease group
have also completed. (Recall that a single MultiLease group may be
active at a time.) If this is the case, then all corresponding counters
are allocated and started. When one of the entries is released, or the

counters reach 0, the counters are freed and the load buffer entries
are removed.
Directory Structure and Queuing. The MultiLease logic assumes
independent progress per cache line, by mapping each line to a dis-
tinct directory queue. This may not be the case for protocol im-
plementations where multiple cache lines map to the same request
queue at the directory. In particular, the following scenario may oc-
cur: core C1 holds a lease on line A, and requests a lease on line B.
Concurrently, Core C2 is requesting line A. If lines A and B map
to the same directory request queue, and C2’s request is ahead, then
C1 is waiting for its own lease on A to expire before it can make
progress on B.

We can avoid this issue by modifying the directory structure
to prioritize queued requests which are not waiting for a leased line
(effectively, this would allow C1’s request on B to be treated before
C2’s request on A, overriding FIFO order). We note that such
delay scenarios may also be an issue in the variant of the protocol
without leases, although we are not aware of implementations of
such priority-based solutions.

We note that this issue does not occur in the version of the pro-
tocol where a core may only have a single outstanding lease, i.e.
where MAX NUM LEASES = 1. We believe that the leasing mech-
anism can be implemented without any changes to the directory
structure in this case.

Another potential issue regarding directory structure is that
leases may increase the maximum queuing occupancy over time,
and may thus require the directory to have larger queues. However,
in the average case, leases enable the system to make more forward
progress at the application level, reducing the number of repeated
coherence requests, and therefore reducing system load.
Protocol Correctness. As shown in Propositions 2 and 3, the lease
mechanism fits well with protocols which support arbitrary but
bounded delays for coherence messages, or negative acknowledg-
ments (NACKs). For single-location leases, if the protocol is cor-
rect for any any finite message bound B, then we can simulate the
process by which a message is queued on the lease by an addi-
tional delay of MAX LEASE TIME units on the incoming message,
after which the request is immediately fulfilled, as in the standard
version of the protocol. This simulation step leads to a protocol in
which messages can be delayed by at most (MAX LEASE TIME+B)
time steps. This protocol is also correct, since this maximum delay
is also bounded. The same argument applies for protocols support-
ing NACKs, by simulating the lease delay using a finite number of
NACK messages.
Out of Order Execution. Modern architectures may alter program
order to gain efficiency. In particular, reads may be “hoisted” be-
fore a preceding write, to reduce the overhead of clearing the core’s
write buffer after every load. From this point of view, the lease in-
struction is almost identical to a standard prefetch instruction. It
can be moved before preceding instructions without impacting cor-
rectness. However, over-eager reordering may extend the lease in-
terval artificially, by introducing extra instructions inside the lease
interval. This reordering may impact performance if performed ag-
gressively, since it may cause leases to expire.

The release instruction should not be reordered, since artifi-
cially delaying the release may cause performance issues. (Please
see Section 7 for examples.) Thus, we propose that this instruction
should have memory fence semantics. While the overhead of mem-
ory fences is usually significant, we believe that it is reduced in this
case, since the release usually follows an instruction with fence se-
mantics, such as CAS, which already clears the store buffer.
Prioritization. One potential optimization is to split coherence re-
quests into “regular” requests (loads, stores, etc.) and “lease” re-
quests, where lease requests are given lower priority. More pre-

6

cisely, a “regular” request automatically breaks an existing lease,
while a lease request is queued at the core. This optimization re-
quires an extra “priority” bit in the coherence message, but can im-
prove performance in practice.
Speculative Execution. In complex cores, Lease/Release will need
to recover from misspeculation. For instance, a branch mispredic-
tion which acquires a lease will need to release it automatically.
Since lease usage is advisory, i.e., early release does not affect pro-
gram correctness, releasing all currently held leases is always a
valid strategy for recover from misspeculation. Moreover, we be-
lieve that Lease/Release could significantly benefit from a specula-
tive mechanism which keeps track of leases which cause frequent
involuntary releases, and ignores the corresponding lease. More
precisely, such a mechanism could track the program counter of the
lease, and count the number of involuntary releases or the average
number of cycles between the lease and the corresponding release.
If these numbers exceed a set threshold, the lease is ignored.
Cheap Snapshots. We also note that the variant of Lease/Release
which returns a boolean signaling whether the release was vol-
untary can be used to provide inexpensive lock-free snapshots, as
follows. The snapshot operation first leases the lines correspond-
ing to the locations, reads them, and then releases them. If all the
releases are voluntary, the values read form a correct snapshot. Oth-
erwise, the thread should repeat the procedure. This procedure may
be cheaper than the standard double-collect snapshot.

6. Detailed Examples
Leases for TryLocks. We assume a lock implementation which
provides try lock and unlock primitives, which can be easily
implemented via test&set, test&test&set, or compare&swap.

The basic idea is to take advantage of leases to prevent wasted
coherence traffic while a thread executes its critical section, by
leasing the lock variable while the lock is owned. The thread leases
the lock variable before attempting to acquire it, and maintains the
lease for the duration of the critical section. If the native try lock
call fails, the thread will immediately drop the lease, as holding it
may delay other threads.

This procedure can be very beneficial for the performance of
contended locks (see Figure 3). Notice that, if leases held by the
thread in the critical section do not expire involuntarily, the execu-
tion maintains the invariant that, whenever a thread is granted own-
ership of the line corresponding to the lock, the lock is unlocked
and ready to use. Further, we obtain the performance benefit of the
implicit queuing behavior on the lock, described in Section 1. On
the other hand, if several involuntary releases occur, the lock may
travel in locked state, which causes unwanted coherence traffic.
The Non-Blocking Michael-Scott Queue. For completeness, we
give a brief description of the non-blocking version of this classic
data structure, adapted from [27, 37]. Its pseudocode is given in
Figure 3. (Our description omits details related to memory recla-
mation and the ABA problem, which can be found in [37].)

We start from a singly-linked list, and maintain pointers to its
head and tail. The head of the list is a “dummy” node, which pre-
cedes the real items in the queue. A successful dequeue operation
linearizes at the CAS operation which moves the head pointer; an
unsuccessful one linearizes at the point where n is read in the last
loop iteration. For enqueues, two operations are necessary: one that
makes the next field of the previous last element point to the new
node, and one that swings the tail pointer to the new node. Opera-
tions are linearized at the CAS which updates the next pointer.

There are several ways of employing leases in the context of
the Michael-Scott queue. One natural option is to lease the head
pointer (for a Dequeue) and tail pointer (for an Enqueue) at the

beginning of the corresponding while loop, and releasing them
either on a successful operation, or at the end of the loop. This
usage is illustrated in Algorithm 3.

This option has the advantage of cleanly “ordering” the enqueue
and dequeue operations, since each needs to acquire the line corre-
sponding to the tail/head before proceeding. Let us examine the
common path for each operation in this scenario. For Dequeue, the
lease will likely not expire before the CAS operation on line 34 (as-
suming the probable case where the head and tail pointers do not
clash), which ensures that the CAS operation is successful, com-
pleting the method call. For Enqueue, the same is likely to hold for
the CAS on line 12, but for a more subtle reason: it is unlikely that
another thread will acquire and modify the next pointer of the last
node, as the tail is currently owned by the current core.

This usage has two apparent drawbacks. First, it may appear
that it reduces parallelism, since two threads may not hold one
of the sentinel (head/tail) pointers at the same time, and for in-
stance “helper” operations, such as the swinging of the tail in the
Enqueue, have to wait for release. However, it is not clear that the
slight increase in parallelism due to multiple threads accessing one
of the ends of the queue is helpful for performance, as the extra CAS
operations introduce significant coherence traffic. Experimental re-
sults appear to validate this intuition. A second issue is that, in the
case where head and tail point to the same node, the CAS on the tail
in line 31 of Dequeue may have to wait for a release of the tail by
a concurrent Enqueue. We note that this case is unlikely.

The throughput comparison for the queue with and without
leases is given in Figure 3. We have also considered alternative uses
of Lease/Release, such as leasing the next pointer of the tail for
the enqueue before line 9, or leasing the head and tail nodes them-
selves, instead of the sentinel pointers. The first option increases
parallelism, but slightly decreases performance since threads be-
come likely to see the tail trailing behind, and will therefore dupli-
cate the CAS operation swinging the tail. The second option leads to
complications (and severe loss of performance) in the corner cases
when the head and the tail point to the same node.
Leases for MultiQueues. MultiQueues [36] are a recently pro-
posed method for implementing a relaxed priority queue. The idea
is to share a set of M sequential priority queues, each protected by
a try lock, among the threads. To insert a new element, a thread
simply selects queues randomly, until it is able to acquire one, and
then inserts the element into the queue and releases the lock. To per-
form a deleteMin operation, the thread repeatedly tries to acquire
locks for two randomly chosen priority queues. When succeeding,
the thread pops the element of higher priority from the two queues,
and returns this element after unlocking the queues. This proce-
dure provides relaxed priority queue semantics, with the benefit of
increased scalability, as contention is distributed among the queues.

We use leases in the context of MultiQueues as described in
Algorithm 4. On insert, we lease the lock corresponding to
the queue, releasing it on unlock, as described in Section 6. On
deleteMin, we MultiLease on the locks corresponding to the cho-
sen queues, before attempting to acquire them. The thread then
attempts to acquire both locks. If successful, the thread compares
the top priority values. Let i be the index of the queue with the
top value, and k be the index of the other queue. As soon as the
comparison is done, the thread unlocks queue k, and releases both
of the leases on the locks. The thread then completes its operation,
removing the top element from queue i, unlocking the queue, and
returning the element.

It is tempting to hold the lease on queue i until the unlock
point at the end of the operation. As we have seen in Section 6,
this reduces useless coherence traffic for threads reading an owned
lock. However, this traffic is not useless in the case of MultiQueues:
it allows a thread to stop waiting on a locked queue, to get a

7

Algorithm 3 Michael-Scott Queue [27] with Leases.

1: type node { value v, node* next }
2: class queue { node* head, node* tail }

3: function ENQUEUE(value v)
4: node* w← new node (v)
5: node* t, n
6: while true do
7: Lease(& tail, MAX LEASE TIME)
8: t← tail
9: n← t→next

10: if t = tail then
11: if n = NULL then . tail pointing to last node
12: if CAS(& t→next, n, w) then . add w
13: CAS(& tail, t, w) . swing tail to inserted node
14: Release(& tail)
15: return . Success
16: else . tail not pointing to last node
17: CAS(& tail, t, n) . Swing tail
18: Release(& tail)

19: function DEQUEUE()
20: node* h, t, n
21: while true do
22: Lease(& head, MAX LEASE TIME)
23: h← head
24: t← tail
25: n← h→next
26: if h = head then . are pointers consistent?
27: if h = t then
28: if n = NULL then
29: Release(& head)
30: return NULL . empty queue
31: CAS(& tail, t, n) . tail fell behind, update it
32: else
33: ret← n→v
34: if CAS(& head, h, n) then . swing head
35: Release(& head)
36: break . success
37: Release(& head)
38: return ret

Algorithm 4 MultiQueues [36] with Leases.

1: class MultiQueue { p queue MQ[M]; lock ptr Locks }
2: . Locks[i] points to lock i

3: function DELETEMIN()
4: int i, k
5: while true do
6: i = random(1, M)
7: k = random(1, M) . k can be chosen 6= i
8: MultiLease(2, MAX LEASE TIME, Locks[i], Locks[k])
9: if try lock (Locks[i]) then

10: if try lock (Locks[k]) then
11: i← queue containing higher priority element
12: k← index of the other queue
13: unlock(Locks[k])
14: ReleaseAll()
15: rtn←MQ[i].deleteMin() . Sequential
16: unlock(Locks[i])
17: return rtn
18: else

. Failed to acquire Locks[k]
19: unlock(Locks[i])
20: ReleaseAll()
21: else

. Failed to acquire Locks[i]
22: ReleaseAll()

23: function INSERT(value v)
24: node* w← new node (v)
25: while true do
26: i = random(1, M)
27: Lease(Locks[i], MAX LEASE TIME)
28: if try lock (Locks[i]) then
29: MQ[i].insert(w) . Sequential
30: unlock(Locks[i])
31: Release(Locks[i])
32: return i
33: else
34: Release(Locks[i])

new random choice, and make progress on another set of queues.
Since the operations on the sequential priority queue can be long,
allowing for fast retries brings a performance benefit. Please see
Figure 4 for the throughput comparison.

7. Empirical Evaluation
Setup. We use Graphite [28], which simulates a tiled multi-core
chip, for all our experiments. The hardware configuration is listed
in Table 1. We run the simulation in full mode, which ensures
accurate modeling of the application’s stack and instructions. We
have implemented Lease/Release in Graphite on top of a directory-
based MSI protocol for private L1 and shared L2 cache hierarchy.
In particular, we extended the L1 cache controller logic (at the
cores) to implement memory leases. As such, the directory did not
have to be modified in any way.

The Graphite simulator is loosely synchronized, which reduces
the number of interleavings with respect to real hardware. For vali-
dation, we have compared the behavior of some of the base (lease-
less) implementations on the simulator and on a real Intel processor
with similar characteristics. The scalability trends are similar, with
the note that the real implementations appear to incur more CAS
failures than the simulation (≤ 30%). Hence, our results may un-
derestimate the benefits of adding leases on a real implementation.

Further, Graphite simulates simple in-order cores, therefore re-
ordering effects are not simulated in our results, and only basic one-
bit branch prediction is applied. The directory structure in Graphite
implements a separate request queue per cache line, and hence ef-
fects due to collisions on the same queue are not simulated.
Experiments. We have tested leases for a range of classic concur-
rent data structure implementations, including the Treiber stack [41],
the Michael-Scott queue [27], the Lotan-Shavit skiplist-based pri-
ority queue [4, 23], the Java concurrent hash table, the Harris

8

0.0E+0

1.0E+6

2.0E+6

3.0E+6

4.0E+6

5.0E+6

6.0E+6

7.0E+6

8.0E+6

0 10 20 30 40 50 60 70

#O
p

s.
/S

ec
o

n
d

#Threads

Single Lock Throughput

TTAS_NO_LEASE

TTAS_WITH_LEASE

CLH

HTICKET

1.0E+0

1.0E+1

1.0E+2

1.0E+3

1.0E+4

1.0E+5

1.0E+6

1.0E+7

0 10 20 30 40 50 60 70

n
J/

O
p

er
at

io
n

 (
lo

g
sc

al
e)

Title

Single Lock Energy per Operation

TTAS_NO_LEASE

TTAS_WITH_LEASE

CLH

HTICKET

0.0E+0

1.0E+6

2.0E+6

3.0E+6

4.0E+6

5.0E+6

6.0E+6

7.0E+6

0 10 20 30 40 50 60 70

#O
p

s.
/S

ec
o

n
d

#Threads

Michael-Scott Queue Throughput
NO_LEASE
SINGLE_LEASE
MULTI_LEASE

0.0E+0

5.0E+3

1.0E+4

1.5E+4

2.0E+4

2.5E+4

0 10 20 30 40 50 60 70

n
J/

O
p

er
at

io
n

#Threads

Energy for the Michael-Scott Queue

NO_LEASE
SINGLE_LEASE
MULTI_LEASE

0.0E+0

2.0E+5

4.0E+5

6.0E+5

8.0E+5

1.0E+6

0 10 20 30 40 50 60 70

#O
p

s.
/S

ec
o

n
d

#Threads

Priority Queue Throughput

NO_LEASE

WITH_LEASE

0.0E+0

1.0E+5

2.0E+5

3.0E+5

4.0E+5

5.0E+5

6.0E+5

7.0E+5

8.0E+5

9.0E+5

0 10 20 30 40 50 60 70

n
J/

O
p

er
at

io
n

#Threads

Energy for Priority Queue

NO_LEASE

WITH_LEASE

Figure 3: Throughput and energy results for lock-based counter, queue, and skip-list-based priority queue. We tested for 2, 4, 8, 16, 32, 64 threads/cores.

Table 1: System Configuration

Parameter Value
Core model 1 GHz, in order core
L1-I/D Cache per tile 32 KB, 4-way, 1 cycle
L2 Cache per tile 256 KB, 8-way, Inclusive, Tag/Data: 3/8 cycles
Cacheline size 64 Bytes
Coherence Protocol MSI (Private L1, Shared L2 Cache hierarchy)

lock-free list [17], and skiplist implementations [15, 33]. We also
compared lock throughput against optimized hierarchical ticket
locks [8] and CLH queue locks [6, 24]. We tested multiple leases
on queues, lists, MultiQueues [36] and the TL2 transactional al-
gorithm [11]. Some of the implementations are built on top of
code from the ASCYLIB library [8]. Using Lease/Release usually
entailed modifying just a few lines of code in the base implemen-
tation, similarly to the examples given in Algorithms 1–4.
Scalability under Contention. Figure 3 shows the effect of using
leases in the context of highly contended shared structures (lock-
based counter, queue, priority queue), while Figure 2 showed re-
sults for the Treiber stack. Specifically, the counter benchmark is a

contended lock protecting a counter variable. The baseline Lotan-
Shavit priority queue is based on a fine-grained locking skiplist
design by Pugh [33]. The lease-based implementation relies on a
global lock. As we are interested in high contention, the bench-
marks are for 100% update operations. We illustrate both through-
put (operations per second) and energy (nanoJoules per operation).
We also recorded the number of coherence messages, and the num-
ber of cache misses. The messages and cache misses are correlated
with energy results, and we therefore only display the latter. The
MAX LEASE TIME variable is set to 20K cycles, corresponding to
20 microseconds.

The key finding from these graphs is that using leases can in-
crease throughput by up to 7x on lock-free data structures, and by
up to 20x for the lock-based counter, when compared to the base
implementations. Further, it reduces energy usage by up to 10x
(in the case of the counter). We believe the main reason for this
improvement is that leases keep both cache misses and coherence
messages per operation close to constant as contention grows. For
instance, average cache misses per operation for the stack are con-
stant around 2.1 from 4 to 64 threads; on the base implementation,
this parameter increases by 5x at 64 threads. The same holds if we
record average coherence messages per operation (constant around

9

9.5 for the stack), and even if we decrease MAX LEASE TIME to 1K
cycles. Results are similar for the queue, with different constants.

Throughput decreases with concurrency for the skiplist-based
priority queue (although the lease-based implementation is still
superior), since the number of cache misses per operation increases
with concurrency, due to the structure of the skiplist. (The increase
in messaging with contention is also apparent in the energy graph.)

In some of these data structures, there is potential for using mul-
tiple leases. For instance, in the Michael-Scott enqueue, we could
potentially lease both the tail pointer and the next pointer of the
last element, to further reduce retries. In general, we found that us-
ing multiple leases for “linear” data structures such as lists, queues,
or trees, does improve upon the base implementation, but has in-
ferior performance to simply using a lease on the predecessor of
the node we are trying to update. The queue graph in Figure 3 pro-
vides results for both single and multiple leases. The relative differ-
ence comes from the additional overhead of multiple leases, cou-
pled with the fact that, in such structures, leasing the predecessor
node makes extra cache misses on successors unlikely.
Comparison with Backoffs and Optimized Implementations.
We have also compared against variants of these data structures
which use backoffs to reduce the overhead of contention. In gen-
eral, we found that adding backoffs improves performance by up to
3x over the base implementation, but is considerably inferior to us-
ing leases. For instance, for the stack, we also compared against
a highly optimized implementation with carefully chosen back-
offs [14]. The implementation of [14] has superior performance to
both flat-combining and elimination techniques. While it improves
throughput by up to 3x over the base implementation, it is still 2.5x
lower on average than simply using leases on the Treiber stack. Fur-
ther, the ticket lock implementation in Figure 3 uses linear backoffs.

The performance difference between leases and backoffs is nat-
ural since backoffs also introduce “dead time” in which no oper-
ations are executed, and do not fully mitigate the coherence over-
head of contention. As such, given hardware support for leases, we
believe backoffs would be an inferior alternative.
Low Contention. We have also examined the impact of using
leases in scenarios with low contention, such as lock-free linked
lists [17], skiplists [15], binary trees [31], and lock-based hash ta-
bles, with 20% updates on uniform random keys and 80% searches.
We found that throughput is the same on these structures, as they
have little or no contention. Using leases slightly improves through-
put (≤5%) at high thread counts (≥ 32).
MultiLease Examples. To test multiple leases, we have imple-
mented MultiQueues [36], and a variant of the TL2 STM algo-
rithm [11]. In the MultiQueue benchmark, threads alternate be-
tween insert and deleteMin operations, implemented as de-
scribed in Section 6, on a set of eight queues. In the TL2 bench-
mark, transactions attempt to modify the values of two randomly
chosen transactional objects out of a fixed set of ten, by acquiring
locks on both. If an acquisition fails, the transaction aborts and is
retried. Figure 4 illustrates the results.

For MultiQueues, the improvement is of about 50% (due to the
long critical section), while in the case of TL2 the improvement is
of up to 5x, as leases significantly decrease the abort rate. Leasing
just the lock associated to the first object improves throughput only
moderately, although it suggests that single leases may be useful
even in transactional scenarios.
Additional Experiments. Figure 5 (left) presents a comparison
of software and hardware MultiLeases on the TL2 benchmark.
Their performance is comparable; software MultiLeases incur a
slight, but consistent performance hit because of the extra software
operations, and because joint leasing is not guaranteed. Figure 5
(right) considers the lock-based Pagerank implementation of [2].

In this application, the variable corresponding to inaccessible pages
in the web graph (around 25%) is protected by a contended lock.
Protecting this critical section by a lease improves throughput by
8x at 32 threads, and allows the application to scale.
Observations and Limitations. While the use of leases does not
usually decrease performance when compared to the baseline, we
did find that improper use can introduce overheads. For instance,
not releasing a lock variable already acquired by another thread
may slow down the application, since the owner thread is delayed
while attempting to reset the lock. This issue can be mitigated
by two mechanisms: a thread should immediately release a lock
that is already owned, and the prioritization mechanism discussed
in Section 5 ensures the lock owner’s reset instruction has high
priority, and automatically breaks an existing lease.

One potential complication is false sharing, i.e. inadvertently
leasing multiple variables located on the same line. (For instance,
in the MS queue example, the head and tail pointers may be
located on the same cache line.) False sharing may significantly
degrade performance by increasing contention, and inducing cyclic
dependencies among lease requests. This behavior can be prevented
via careful programming, and could be enforced automatically via
the compiler, by ensuring that leased variables are allocated in a
cache-aligned fashion.

8. Discussion
Summary. We have investigated an extension to standard cache
coherence protocols which would allow the leasing of memory
locations for short, bounded time intervals, and explored the po-
tential of this technique to speed up concurrent data structures.
Our empirical results show that Lease/Release can improve both
throughput and energy efficiency under contention by up to 5x,
while preserving performance in uncontended executions. Employ-
ing Lease/Release on classic, relatively simple, data structure de-
signs compares well with complex, highly optimized software tech-
niques for scaling the same constructs.

The key feature of Lease/Release is that it minimizes the coher-
ence cost of operations under contention: on average, each opera-
tion pays a constant number of coherence messages for each con-
tended cache line it needs to access; further, the number of retried
operations is minimized. Thus, Lease/Release allows the program-
mer to improve throughput in the presence of bottlenecks, beyond
what is possible with current software techniques.
Implementation Proposal. We have investigated several lease se-
mantics. We find that the variant which allows a core to lease a sin-
gle line at any given time provides a good trade-off between per-
formance improvements, ease of verification, and the complexity
of the hardware implementation. In particular, this variant should
not require modification of the directory logic, and needs relatively
small changes at the core. Empirical evidence suggests that sin-
gle leases are sufficient to significantly improve the performance of
contended data structures and applications.
Other Protocols. For simplicity, our presentation assumes a ba-
sic MSI coherence protocol. Lease/Release also applies to MESI
and MOESI-type protocols, with the same semantics: a core leas-
ing a line demands it in Exclusive state, and will delay incom-
ing coherence requests on the line until the (voluntary or invol-
untary) release. (A leased line cannot be in Owned state, since
this state implies that a coherence request has already been served
since the point when the line was in Exclusive state.) Similarly,
Lease/Release can be applied to non-MSI protocol types, such as
Tardis [42], to delay messages which would downgrade the owner-
ship level for a leased cache line. The protocol requirements for the
applicability of Lease/Release are discussed in Section 5.

10

0.0E+0

2.0E+5

4.0E+5

6.0E+5

8.0E+5

1.0E+6

1.2E+6

0 10 20 30 40 50 60 70

#O
p

s.
/S

ec
o

n
d

#Threads

Multi-Queue Throughput

NO_LEASE

WITH_LEASE

0.0E+0

5.0E+3

1.0E+4

1.5E+4

2.0E+4

2.5E+4

3.0E+4

3.5E+4

4.0E+4

4.5E+4

0 10 20 30 40 50 60 70

n
J/

O
p

er
at

io
n

#Threads

Multi-Queue Energy

NO_LEASE

WITH_LEASE

0.0E+0

1.0E+6

2.0E+6

3.0E+6

4.0E+6

5.0E+6

6.0E+6

0 10 20 30 40 50 60 70

#O
p

s.
/S

ec
o

n
d

#Threads

TL2 Benchmark Throughput

NO_LEASE
SINGLE_LEASE
DOUBLE_LEASE

0.0E+0

5.0E+3

1.0E+4

1.5E+4

2.0E+4

2.5E+4

3.0E+4

0 10 20 30 40 50 60 70

n
J/

O
p

er
at

io
n

#Threads

TL2 Benchmark Energy

NO_LEASE
SINGLE_LEASE
DOUBLE_LEASE

Figure 4: Throughput and energy graphs for MultiLease benchmarks. We tested for 2, 4, 8, 16, 32, 64 threads/cores.

0.0E+0

1.0E+6

2.0E+6

3.0E+6

4.0E+6

5.0E+6

6.0E+6

0 10 20 30 40 50 60 70

#O
p

s/
se

co
n

d

#Threads

TL2 Benchmark Throughput

NO_LEASE

SW_DOUBLE_LEASE

HW_DOUBLE_LEASE

0.0E+0

5.0E+9

1.0E+10

1.5E+10

2.0E+10

2.5E+10

0 5 10 15 20 25 30 35

C
o

m
p

le
ti

o
n

 T
im

e
(n

s)

#Threads

Pagerank Benchmark Performance

NO_LEASE

WITH_LEASE

Figure 5: Experiments for Hardware versus Software Multi-Leases, and the Lock-based Pagerank Implementation of [2].

Future Work. Lease/Release is not without limitations. It requires
careful programming; for lock-free data structures, a basic under-
standing of the underlying mechanics is required. Improper use can
lead to performance degradation. To address this, we plan to in-
vestigate automatic lease insertion, using compiler and hardware
techniques. The first goal is to automatically identify lease-friendly
patterns, reducing the likelihood of erroneous use. Second, it would
allow automatic optimization of lease times.

A second topic for investigation is leasing in the context of
transactional memory (TM). In particular, recent work suggests that
hardware TM has limited performance under contention [30]; using
leases inside short hardware transactions could reduce these costs.
In general, the usage of leases in the context of TM appears an
interesting topic for future work. Finally, our experimental study
mostly focuses on classic data structures. It would be interesting
to see if leases can be used to speed up other, more complex,
applications, and whether it can inform new data structure designs
which take explicit advantage of the leasing mechanism.

9. Acknowledgments
We would like to thank Richard Black, Miguel Castro, Dave
Dice, Aleksandar Dragojevic, Maurice Herlihy, Ant Rowstron, Nir
Shavit, and Vasileios Trigonakis, as well as the anonymous review-
ers, for helpful suggestions during the development of this paper.

References
[1] Y. Afek, M. Hakimi, and A. Morrison. Fast and scalable rendezvous-

ing. Distributed computing, 26(4):243–269, 2013.
[2] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan. Crono: A benchmark suite

for multithreaded graph algorithms executing on futuristic multicores.
In Workload Characterization (IISWC), 2015 IEEE International Sym-
posium on, pages 44–55. IEEE, 2015.

[3] D. Alistarh, J. Aspnes, K. Censor-Hillel, S. Gilbert, and R. Guer-
raoui. Tight bounds for asynchronous renaming. Journal of the ACM
(JACM), 61(3):18, 2014.

[4] D. Alistarh, J. Kopinsky, J. Li, and N. Shavit. The spraylist: A scal-
able relaxed priority queue. In Proceedings of the 20th ACM SIG-

11

PLAN Symposium on Principles and Practice of Parallel Program-
ming, PPoPP 2015, pages 11–20, New York, NY, USA, 2015. ACM.

[5] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V.
Adve, V. S. Adve, N. P. Carter, and C.-T. Chou. Denovo: Rethink-
ing the memory hierarchy for disciplined parallelism. In Parallel Ar-
chitectures and Compilation Techniques (PACT), 2011 International
Conference on, pages 155–166. IEEE, 2011.

[6] T. Craig. Building fifo and priorityqueuing spin locks from atomic
swap. Technical report, Technical Report 93-02-02, University of
Washington, Seattle, Washington, 1994.

[7] T. Crain, V. Gramoli, and M. Raynal. A speculation-friendly binary
search tree. ACM SIGPLAN Notices, 47(8):161–170, 2012.

[8] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concur-
rency: The secret to scaling concurrent search data structures. In Pro-
ceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
631–644. ACM, 2015.

[9] D. Dice, D. Hendler, and I. Mirsky. Lightweight contention manage-
ment for efficient compare-and-swap operations. In Euro-Par 2013
Parallel Processing, pages 595–606. Springer, 2013.

[10] D. Dice, V. J. Marathe, and N. Shavit. Lock cohorting: A general
technique for designing numa locks. ACM Trans. Parallel Comput.,
1(2):13:1–13:42, Feb. 2015.

[11] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In
Distributed Computing, pages 194–208. Springer, 2006.

[12] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking
binary search trees. In Proceedings of the 29th ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, PODC ’10, pages
131–140, New York, NY, USA, 2010. ACM.

[13] F. Ellen, D. Hendler, and N. Shavit. On the inherent sequentiality of
concurrent objects. SIAM J. Comput., 41(3):519–536, 2012.

[14] P. Fatourou and N. D. Kallimanis. A highly-efficient wait-free uni-
versal construction. In Proceedings of the twenty-third annual ACM
symposium on Parallelism in algorithms and architectures, pages 325–
334. ACM, 2011.

[15] K. Fraser. Practical lock-freedom. PhD thesis, PhD thesis, Cambridge
University Computer Laboratory, 2003. Also available as Technical
Report UCAM-CL-TR-579, 2004.

[16] J. R. Goodman, M. K. Vernon, and P. J. Woest. Efficient synchro-
nization primitives for large-scale cache-coherent multiprocessors.
SIGARCH Comput. Archit. News, 17(2):64–75, Apr. 1989.

[17] T. L. Harris. A pragmatic implementation of non-blocking linked-
lists. In Proceedings of the 15th International Conference on Dis-
tributed Computing, DISC ’01, pages 300–314, London, UK, UK,
2001. Springer-Verlag.

[18] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and the
synchronization-parallelism tradeoff. In Proceedings of the twenty-
second annual ACM symposium on Parallelism in algorithms and
architectures, pages 355–364. ACM, 2010.

[19] T. A. Henzinger, C. M. Kirsch, H. Payer, A. Sezgin, and A. Sokolova.
Quantitative relaxation of concurrent data structures. In Proceedings
of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’13, pages 317–328, New York,
NY, USA, 2013. ACM.

[20] M. Herlihy and N. Shavit. The art of multiprocessor programming.
Morgan Kaufmann, 2008.

[21] A. Kägi, D. Burger, and J. R. Goodman. Efficient synchronization: Let
them eat qolb. SIGARCH Comput. Archit. News, 25(2):170–180, May
1997.

[22] C. Leiserson. A simple deterministic algorithm for guaranteeing the
forward progress of transactions. Transact 2015.

[23] I. Lotan and N. Shavit. Skiplist-based concurrent priority queues. In
Parallel and Distributed Processing Symposium, 2000. IPDPS 2000.
Proceedings. 14th International, pages 263–268. IEEE, 2000.

[24] P. Magnusson, A. Landin, and E. Hagersten. Queue locks on cache
coherent multiprocessors. In Parallel Processing Symposium, 1994.
Proceedings., Eighth International, pages 165–171. IEEE, 1994.

[25] J. M. Mellor-Crummey and M. L. Scott. Synchronization without
contention. SIGPLAN Not., 26(4):269–278, Apr. 1991.

[26] M. M. Michael. High performance dynamic lock-free hash tables
and list-based sets. In Proceedings of the fourteenth annual ACM
symposium on Parallel algorithms and architectures, pages 73–82.
ACM, 2002.

[27] M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Proceedings
of the Fifteenth Annual ACM Symposium on Principles of Distributed
Computing, PODC ’96, pages 267–275, New York, NY, USA, 1996.
ACM.

[28] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald III, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal. Graphite: A distributed parallel
simulator for multicores. In High Performance Computer Architecture
(HPCA), 2010 IEEE 16th International Symposium on, pages 1–12.
IEEE, 2010.

[29] A. Morrison and Y. Afek. Fast concurrent queues for x86 processors.
In ACM SIGPLAN Notices, volume 48, pages 103–112. ACM, 2013.

[30] T. Nakaike, R. Odaira, M. Gaudet, M. M. Michael, and H. Tomari.
Quantitative comparison of hardware transactional memory for blue
gene/q, zenterprise ec12, intel core, and power8. In Proceedings of
the 42Nd Annual International Symposium on Computer Architecture,
ISCA ’15, pages 144–157, New York, NY, USA, 2015. ACM.

[31] A. Natarajan and N. Mittal. Fast concurrent lock-free binary search
trees. In ACM SIGPLAN Notices, volume 49, pages 317–328. ACM,
2014.

[32] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani. Scaling memcache at facebook. In Presented as
part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), pages 385–398, Lombard, IL, 2013.
USENIX.

[33] W. Pugh. Concurrent maintenance of skip lists. 1998.
[34] R. Rajwar, A. Kagi, and J. R. Goodman. Improving the throughput

of synchronization by insertion of delays. In High-Performance Com-
puter Architecture, 2000. HPCA-6. Proceedings. Sixth International
Symposium on, pages 168–179. IEEE, 2000.

[35] R. Rajwar, A. Kägi, and J. R. Goodman. Inferential queueing and spec-
ulative push for reducing critical communication latencies. In Pro-
ceedings of the 17th Annual International Conference on Supercom-
puting, ICS ’03, pages 273–284, New York, NY, USA, 2003. ACM.

[36] H. Rihani, P. Sanders, and R. Dementiev. Brief announcement: Multi-
queues: Simple relaxed concurrent priority queues. In Proceedings of
the 27th ACM on Symposium on Parallelism in Algorithms and Archi-
tectures, SPAA ’15, pages 80–82, New York, NY, USA, 2015. ACM.

[37] M. L. Scott. Shared-Memory Synchronization. Synthesis Lectures on
Computer Architecture. Morgan & Claypool Publishers, 2013.

[38] O. Shalev and N. Shavit. Transient blocking synchronization. Techni-
cal report, Mountain View, CA, USA, 2005.

[39] N. Shavit and D. Touitou. Elimination trees and the construction of
pools and stacks: preliminary version. In Proceedings of the seventh
annual ACM symposium on Parallel algorithms and architectures,
pages 54–63. ACM, 1995.

[40] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory
Consistency and Cache Coherence. Morgan & Claypool Publishers,
1st edition, 2011.

[41] R. K. Treiber. Systems programming: Coping with parallelism. Tech-
nical Report RJ 5118, IBM Almaden Research Center, 1986.

[42] X. Yu and S. Devadas. Tardis: Timestamp based coherence algorithm
for distributed shared memory. arXiv preprint arXiv:1501.04504,
2015.

12

