

PageRank Pipeline Benchmark:
Proposal for a Holistic System Benchmark for Big-Data Platforms

Patrick Dreher1,4, Chansup Byun2, Chris Hill3, Vijay Gadepally,1,2, Bradley Kuszmaul1, Jeremy Kepner1,2

1MIT Computer Science & AI Laboratory, Cambridge, MA; 2MIT Lincoln Laboratory, Lexington, MA;
3MIT Department of Earth, Atmospheric and Planetary Sciences, Cambridge, MA;

4Department of Computer Science, North Carolina State University, Raleigh, NC
dreher@mit.edu, cbyun@ll.mit.edu, cnh@mit.edu, {gadepally, kepner}@ll.mit.edu, bradley@csail.mit.edu

Abstract – The rise of big data systems has created a need for
benchmarks to measure and compare the capabilities of these
systems. Big data benchmarks present unique scalability
challenges. The supercomputing community has wrestled with
these challenges for decades and developed methodologies for
creating rigorous scalable benchmarks (e.g., HPC Challenge).
The proposed PageRank pipeline benchmark employs
supercomputing benchmarking methodologies to create a
scalable benchmark that is reflective of many real-world big
data processing systems. The PageRank pipeline benchmark
builds on existing prior scalable benchmarks (Graph500, Sort,
and PageRank) to create a holistic benchmark with multiple
integrated kernels that can be run together or independently.
Each kernel is well defined mathematically and can be
implemented in any programming environment. The linear
algebraic nature of PageRank makes it well suited to being
implemented using the GraphBLAS standard. The
computations are simple enough that performance predictions
can be made based on simple computing hardware models.
The surrounding kernels provide the context for each kernel
that allows rigorous definition of both the input and the output
for each kernel. Furthermore, since the proposed PageRank
pipeline benchmark is scalable in both problem size and
hardware, it can be used to measure and quantitatively
compare a wide range of present day and future systems.
Serial implementations in C++, Python, Python with Pandas,
Matlab, Octave, and Julia have been implemented and their
single threaded performance has been measured.

Keywords – benchmarking, big data, supercomputing,
PageRank	

I. INTRODUCTION
Before describing the proposed benchmark we outline,

in some detail, the motivation and goals that underlie the
benchmark design and scope. Big data processing systems
are the backbone of many enterprises. The challenges
associated with big data are commonly referred to as the
three V’s of big data - volume, velocity, and variety [Laney
2001]. Big data volume stresses the storage, memory, and
compute capacity of a system and requires access to large
amount of computing infrastructure. Big data velocity
stresses the rate at which data can be absorbed and
meaningful answers produced. Big data variety emphasizes
the heterogeneity and dynamic characteristics of
information that is processed by big data systems, making it

difficult to develop algorithms and tools that can address
these diverse data formats.

Many technologies have been developed to address big
data volume, velocity, and variety challenges. A typical big
data system contains the services shown in Figure 1. A
typical big data processing scenario for such a system is as
follows. First, data is collected and stored as files. Second,
the data is parsed, sorted, and ingested into a database.
Third, data from the database is queried and analyzed.
Fourth, the results of the analysis are made available to
users via web services. The computing resources to run this
scenario are brokered by a scheduler on an elastic
computing platform.

	
Figure 1. Common architecture for connecting diverse data and
users. Typical systems consist of seven major components: files,
ingest processes, databases, analytics, web services, and a
scheduler that brokers the resources of an elastic computing
infrastructure.

The services of a big data processing system can be
implemented with a wide range of technologies drawn from
both the big data and supercomputing domains.

Common big data software includes the Hadoop
distributed file systems (HDFS); Hadoop, Yarn, and Mesos
schedulers [Bialecki et al 2005, Vavilapalli et al 2013,
Hindman et al 2011]; NoSQL and NewSQL databases
including HBase, Accumulo, Cassandra, and SciDB
[George 2011, Wall et al 2013, Lakshman & Malik 2010,
Balazinska et al 2009]; and analytics environments such as
Pig, Hive, Spark, pMatlab, and D4M [Thusoo 2009, Zaharia
et al 2010, Kepner 2009, Kepner et al 2012]. These big data

Users

Data

Analytics
A

C

D E

B

Computing

Web

Files

Scheduler

Ingest &
Enrichment Ingest &

Enrichment Ingest
Databases

01011
01100
101…

01011
01100
101…

01011
01100
101…

	

technologies are often bundled together by vendors into
software stacks that can be deployed onto a system.

Common supercomputing technologies include the
parallel file systems such as Lustre and GPFS [Bramm
2004, Schmuck & Haskin 2002]; resource
managers/schedulers such as SLURM, LSF, and Maui [Yoo
et al 2003, Jackson et al 2001]; and parallel programming
environments including MPI, OpenMP, and UPC [Gropp et
al 1996, Dagum & Enon 1998, Carlson et al 1999].

Each of the above choices in software can have a
significant effect on performance. Big data system builders
and technology providers are keenly interested in measuring
and understanding the impacts and trade-offs.

Real world big data applications such as text processing,
computer network defense, or bioinformatics may perform
some or all of these steps in Figure 1. Within a given
application, there are many specific operations such as
selecting files for further processing or extending a search
of a graph to nearest neighbors. Examples of these specific
operations are shown in Figure 2. These example operations
can be approximately grouped into three categories: initial
bulk storage and processing, search and analysis, and
administrative tasks.

	
Figure 2. Example operations performed by big data systems
divided into three categories: bulk storage and processing, search
and analysis, and administrative tasks.

The specific operations listed in Figure 2 are at a
sufficient level of detail that it is possible to anticipate
which parts of a data processing system (hardware and
software) will have the largest impact on the performance of
those operations. The different elements of a big data
processing system are as diverse as the applications that are
performed with these systems and include internal network
bandwidth, processor capabilities, memory architectures,
database memory usage, implementation languages, and
programmer effort. Figure 3 illustrates how specific
operations required by a big data application might be
impacted by the specific elements of big data system. The
application impacts shown in Figure 3 are unique for each
application/system combination, so generalizing can be
difficult. However, it is often the case that big data systems
stress the parts of a system that intensively store and move
data around the system.

Qualitative analysis of big data applications, operations,
and systems is a useful starting point for assessing big data
technologies (hardware and software), but the qualitative
analysis must be supplemented with quantitative
measurements. Ideally, each real-world big data application
could be carefully measured against each big data
technology, but this is cost prohibitive. Benchmarks can
play a role in informing this discussion by allowing big data
technology providers, big data application developers, and
big data users to have a common point-of-reference for
comparing the capabilities of their systems. Benchmarks do
not eliminate the need for each stakeholder to analyze and
understand their requirements in detail. Benchmarks do
allow this analysis to be spread out among the stakeholders
and allow each stakeholder to focus on analyzing what they
know best.

	
Figure 3. Example analysis with black squares in the table
showing the connections between the performance impact of
specific elements of a big data system and the operations that the
system is performing. Such an analysis is unique to each specific
application/system combination.

The major purpose of our proposed benchmark is to
create a tool to efficiently inform this type of discussion in
the big data space. The design of the benchmark addresses
a delicate trade-off between complexity, simplicity,
generality, and specificity.

We describe a new big data benchmark rooted in the
widely used PageRank algorithm. The benchmark draws
heavily on prior benchmarking work that has proved
valuable. Section II reviews existing big data and
supercomputing benchmarks that have informed the
development of the proposed PageRank pipeline
benchmark. Section III summarizes PageRank. Section IV
describes the PageRank pipeline benchmark. Section V
gives a discussion of next steps and future work.		

II. SELECTED RELEVANT BENCHMARKS
The rise of big data has resulted in a corresponding rise

in big data benchmarks. It is not possible to survey all the

Store
- Pull data from sources
- Store data as raw files
- Select files for further processing
- Parse files into standard forms
- Filter for records of interest
- Enrich records with other data
- Ingest into database
- Correlate data in bulk
- Construct graph relationships
- Bulk analyze graphs

Search
- Verify permissions
- Display query metadata
- Collect query logic
- Collect query arguments/seed
- Form and optimize query
- Execute search
- Extend search/hop
- Correlate results, graph analysis
- Summarize results/cluster
- Anonymize results

Admin
- Create, start, stop, checkpoint, clone, upgrade, restart, …

S
to

re
- P

ul
l d

at
a

fro
m

 n
et

w
or

ke
d

so
ur

ce
s

- S
to

re
 d

at
a

as
 ra

w
 fi

le
s

- S
el

ec
t f

ile
s

fo
r f

ur
th

er
 p

ro
ce

ss
in

g
- P

ar
se

 fi
le

s
in

to
 s

ta
nd

ar
d

fo
rm

s
- F

ilt
er

 fo
r r

ec
or

ds
 o

f i
nt

er
es

t
- E

nr
ic

h
re

co
rd

s
w

ith
 o

th
er

 d
at

a
- I

ng
es

t i
nt

o
da

ta
ba

se
- C

or
re

la
te

 d
at

a
in

 b
ul

k
- C

on
st

ru
ct

 g
ra

ph
 re

la
tio

ns
hi

ps
- B

ul
k

an
al

yz
e

gr
ap

hs
S

ea
rc

h
- V

er
ify

 p
er

m
is

si
on

s
- D

is
pl

ay
 q

ue
ry

 m
et

ad
at

a
- C

ol
le

ct
 q

ue
ry

 lo
gi

c
- C

ol
le

ct
 q

ue
ry

 a
rg

um
en

ts
/s

ee
d

- F
or

m
 a

nd
 o

pt
im

iz
e

qu
er

y
- E

xe
cu

te
 s

ea
rc

h
- E

xt
en

d
se

ar
ch

/h
op

- C
or

re
la

te
 re

su
lts

, g
ra

ph
 a

na
ly

si
s

- S
um

m
ar

iz
e

re
su

lts
/c

lu
st

er
- A

no
ny

m
iz

e
re

su
lts

A
dm

in
- C

re
at

e
ne

w
 b

ig
 d

at
a

sy
st

em
- S

ta
rt

bi
g

da
ta

 s
ys

te
m

- S
to

p
bi

g
da

ta
 s

ys
te

m
- C

he
ck

po
in

t b
ig

 d
at

a
sy

st
em

- C
lo

ne
 b

ig
 d

at
a

sy
st

em

- U
pg

ra
de

 b
ig

 d
at

a
sy

st
em

- R
es

ta
rt

bi
g

da
ta

 s
ys

te
m

Network Bandwidth
- Internal
- External
Storage
- Bandwidth
- Capacity
- Metadata rate
Database
- Memory
- Load balance
- Locks
- Hotspots
String parsing
Scheduler overhead
Version lock
Programmer effort

	

relevant big data benchmarks and thus only a few
representative big data benchmarks are discussed.

Some important big data benchmarks are the HiBench
suite [Huang et al 2010], the Yahoo cloud serving
benchmark (YCSB) [Cooper et al 2010], the Big Data
Benchmark [Pavlo et al 2009], and Sort [Gray 1988]. The
most common element of these benchmarks is their focus on
data intensive operations. Most of the computations in the
above benchmarks do a relatively small number of
operations per data element.

Some important supercomputing benchmarks include
Top500 (Linpack) [Dongarra 1988], NAS [Bailey et al
1991], HPC Challenge (Linpack, Stream, FFT,
RandomAccess) [Luszczek et al 2006], and Graph500
(Graph Analysis [Bader et al 2007], BFS) [Murphy et al
2010], and HPCG (conjugate gradient) [Dongarra & Heroux
2013]. The most common elements of these benchmarks
are their mathematical simplicity and their focus on
scalability both in data and in hardware resources.
Mathematical simplicity allows the performance of the
benchmark to be estimated using simple models of the
hardware, which is vital in validating the peak performance
of a system. Scalability allows the benchmark to be
relevant to a wide range of systems and stand the test of
time.

All of these benchmarks (as well as others) can be
divided into different categories: goal-oriented, algorithm-
oriented, code-oriented, and standards-oriented.

Goal-oriented benchmarks specify the required inputs
and outputs of the benchmark and usually provide an
example algorithm and/or implementation. The user can
implement the benchmark with the
algorithm/software/hardware combination of their choice.
Examples of this approach include NAS, Sort, and
Graph500. Goal-oriented benchmarks encourage
algorithm/software/hardware co-design and provide a
mechanism for highlighting these innovations. In exchange,
it is sometimes less clear what part of the system is being
measured and it can be difficult for others to correlate
benchmark performance with particular application
performance.

Algorithm-oriented benchmarks specify the required
inputs, outputs, and algorithm of the benchmark and provide
an example implementation. The user can implement the
benchmark with the software/hardware combination of their
choice. Examples of this approach include Top500, HPC
Challenge (optimized), and HPCG. Algorithm-oriented
benchmarks encourage software/hardware co-design and
provide a mechanism for highlighting these innovations, and
it is usually clear what part of the system is being measured.
Algorithm-oriented benchmarks usually allow for
proprietary optimizations, and users may not see the same
performance without these optimizations.

Code-oriented benchmarks provide a specific program
that must be run. The user runs the provided code on their
choice of system. Examples of this approach include SPEC

(spec.org), IOzone (iozone.org), and Intel HiBench. Code-
oriented benchmarks provide a mechanism for highlighting
hardware innovations and compiler/hardware co-design.
Code-oriented benchmarks are easy to produce and easy-to-
run, but they usually cannot be used to assess a complete
system stack.

Standards-oriented benchmarks provide a specific
program that must run using specific standard libraries (e.g.,
MPI, BLAS). The user can implement the benchmark with
the libraries/hardware of their choice. Examples of this
approach include HPC Challenge (reference) and TPC-C
(tpc.org). Standards-oriented benchmarks encourage
library/hardware co-design and provide a mechanism for
highlighting these innovations. In addition, standards-
oriented benchmarks provide a strong incentive for
optimizing standard libraries that can be of benefit to a wide
class of applications.

The performance of a big data system is strongly
influenced by the software environment on the system. Big
data benchmarks should be amenable to implementations in
diverse environments. Thus, in the big data domain,
algorithm-oriented benchmarks would appear to be the most
beneficial.

Based on these prior benchmark efforts there are certain
properties that are desirable to have in a big data
benchmark. These properties include a focus on data
intensive operations, mathematical simplicity, and
scalability. Existing data intensive benchmarks that satisfy
some of these properties include Graph500, Sort (included
in HiBench), and PageRank (included in HiBench).

III. PAGERANK ALGORITHM
PageRank is a link analysis algorithm developed by

Google co-founders Sergei Brin and Larry Page [Brin &
Page 1998, Page et al 1999]. The algorithm was originally
applied rank Web pages for keyword searches. The
algorithm measures each Web page’s relative importance by
assigning a numerical rating from the most important to the
least important page within the set of identified Web pages.
The PageRank algorithm analyzes the topology of a graph
representing links among Web pages and outputs a
probability distribution used to represent the likelihood that
a person randomly clicking on links will arrive at any
particular page.

This algorithm was originally applied specifically to
rank webpages within a Google search. However, the
mathematics can be applied to any graph or network [Gleich
2015]. The algorithm is applicable to social network
analysis [Java 2007, Kwak et al 2009], recommender
systems [Song et al 2012], biology [Morrison et al 2005],
chemistry [Mooney et al 2012], and neuroscience [Zuo et al
2011]. In chemistry, this algorithm is used in conjunction
with molecular dynamics simulations that provides
geometric locations for a solute in water. The graph
contains edges between the water molecules and can be
used to calculate whether the hydrogen bond potential can

	

act as a solvent. In neuroscience, the brain represents a
highly complex vertex/edge graph. PageRank has recently
been applied to evaluate the importance of brain regions
given observed correlations of brain activity. In network
analysis PageRank can analyze complex networks and sub-
networks that can reveal behavior that could not be
discerned by traditional methods.

The simplicity and generality of this algorithm makes it
a good candidate for use in a big data benchmark. By
judiciously constructing data sets from a graph generator
and then adding an ordered set of kernels consisting of file
reads, writes, sorts and shuffles, one can construct a data
pipeline flow similar to what is required of real world big
data systems.

IV. PAGERANK PIPELINE BENCHMARK
In many existing HPC micro benchmarks the extract,

transform and load operations are often not fully considered
when designing big graph and big data implementations. As
a result, the cost of these operations is not fully recognized
in many benchmark implementations. Nevertheless, they
are important components in determining performance and
this proposed benchmark addresses these often neglected
operations.

The proposed PageRank Pipeline benchmark consists of
four mathematically defined kernels that culminate with
performing the PageRank algorithm as defined by
PageRank on Wikipedia [Wikipedia 2015]. The kernels
consist of kernel 0 generating a graph and writing it to files;
kernel 1 reading in the files, sorting by the starting vertex
and writing out again; kernel 2 reading in the edges,
constructing an adjacency matrix, computing the in-degree,
eliminating high/low degree nodes, and normalizing each
row by total number of edges in the row; kernel 3
computing 20 iterations of PageRank via a sparse matrix
vector multiply. The linear algebraic nature of PageRank
makes it well suited to being implemented using the
GraphBLAS standard. Broadly kernels 0-1 characterize
canonical ingest processes (see Figure 1), while kernels 2-3
are akin to canonical analytics stages (see Figure 1). Each
kernel in the pipeline must be fully completed before the
next kernel can begin. Details of the individual kernels in
the benchmark are as follows.

A. Kernel 0: Generate Graph
Kernel 0 generates a list of edges from an approximately

power-law graph using the Graph500 graph generator (i.e.,
kernel 0 of Graph500). Matlab/Octave code for the
generator can be obtained from the Graph500 website
(Graph500.org). The parameters of the Graph500 generator
are the integer scale factor S and the average number of
edges per vertex k=16. The maximum vertex label is given
by

N = 2S

The total number of edges is given by

M = k N

Thus, for a value of S = 30, N = 1,073,741,824, and M =
17,179,869,184. A target scale for the benchmark could be
a value of S that results in the memory footprint of the edge
data consuming ~25% of the available RAM.

The Graph500 generator is scalable, can be run in parallel
without requiring communication between processors, and
has been used to generate some of the largest graphs in the
world [Burkhardt & Waring 2015, Kepner et al 2014]. Each
edge in the graph is defined by a pair of numbers
representing the start and end vertices of the edge. For
example, let all the starting and ending vertices be stored in
the M element vectors u and v. After the edges are
generated they are written to files on non-volatile storage as
pairs of tab separated numeric strings with a newline
between each edge:

u(1) v(1)
 : :

u(i) v(i)
 : :

u(M) v(M)

where i = 1, ..., M. The number of files is a free parameter
to be set by the implementer or the user. The graph
generation process is untimed and its performance is not
part of the benchmark.

The Graph500 generator has been a highly successful
generator. The subsequent kernels should be able to work
with input from any graph generator. Other generators also
exist such as block two-level Erdos-Rényi (BTER)
[Seshadhri et al 2012] and perfect power law (PPL) [Kepner
2012, Gadepally 2015]. These graph generators may be
worth investigating as they may make the validation of
subsequent kernels easier.

B. Kernel 1: Sort
Kernel 1 reads in the files generated in kernel 0, sorts the

edges by start vertex and writes the sorted edges to files on
non-volatile storage using the same format as in kernel 0:

u(1) v(1)
 : :
u(i) v(i)
 : :
u(M) v(M)

where u(i-1) ≤ u(i) ≤ u(i+1).

The number of files is a free parameter to be set by the
implementer or the user. The entire sorting process is timed
and its performance is reported in terms of edges sorted per
second (i.e., M divided by the run time). This kernel has
many similarities to the Sort benchmark and its performance
should be similar and be dominated by a combination of the

	

storage I/O time and the communication required to sort the
data. The type of sorting algorithm may depend upon the
scale parameter. For example, in the case where u and v fit
into the RAM of the system, an in-memory algorithm could
be used. Likewise, if u and v are too large to fit in memory,
then an out-of-core algorithm would be required.

C. Kernel 2: Filter
Kernel 2 reads in the files generated in kernel 1 and

performs several filtering steps that are common for
preparing a graph for subsequent analysis. The steps are
described below along with their Matlab/Octave
equivalents.

The first step consists of creating an N x N sparse
adjacency matrix of the graph

A = sparse(u,v,1,N,N)

where A(u,v) is the count of edges starting at vertex u and
ending at vertex v. The matrix construction stores a count at
each entry because a (u,v) edge may be generated during
kernel 0 more than once. Because of collisions, A should
have fewer than M non-zero entries, but all the entries in A
should sum to M. Many rows and columns of A may be
empty. Many entries along the diagonal of A are also
expected. Because of the deterministic nature of the
PageRank algorithm, none of these factors should
significantly impact the run-time of the benchmark.

The second step in kernel 2 is to compute the in-degree of
each vertex (i.e., the sum of entries in each column)

din = sum(A,1)

The third step is to zero-out the columns with the most

entries (i.e., eliminating the super-node) and zero-out the
columns with only one entry (i.e., eliminating the leaves)

A(:,din == max(din)) = 0
A(:,din == 1) = 0

The fourth step is to compute the out-degree of each

vertex (i.e., number of entries in each row) and divide each
non-zero entry by its out-degree.

dout = sum(A,2)
i = dout > 0
A(i,:) = A(i,:) ./ dout(i)

The entire process to perform all of these steps is timed,

and its performance is reported in terms of edges prepared
per second (i.e., M divided by the run time). In a parallel
implementation, a common decomposition would be to have
each processor hold a set of rows, since this would
correspond to how the files have been sorted in kernel 1. In
such a decomposition, the in-degree info will need to be
aggregated and the selected vertices for elimination

broadcast. This part of this kernel can characterize the
relevant network communication capabilities of a big-data
system. However, it is possible to construct scenarios in
which different steps of kernel 2 could be dominant: reading
in the edges (IO limited), constructing the sparse adjacency
matrix (memory limited), or computing the in-degree
(network limited).

It should be noted that in building the adjacency matrix
there may be nodes on the graph with no out edges. Various
authors [Boldi, et. al. 2007, Langville and Meyer 2004,
Govan et. al. 2008] have proposed adjustments to the
adjacency matrix to compensate for the appearance of these
dangling nodes. However, these initial Kernel 2
specifications have not adjusted for these for these vertices
because it is likely to have limited impact on the run time of
the benchmark. Future versions of this Kernel may adjust
for these vertices.

D. Kernel 3: PageRank

Kernel 3 performs 20 iterations of the PageRank
algorithm on the normalized adjacency matrix of the graph
provided by kernel 2. In a real application, PageRank
would be run until the result passes a convergence test such
as the normed sum of the differences between iterations. As
PageRank has become more used as a benchmark, this data
dependent element of the algorithm is been replaced by
running PageRank for a fixed number of iterations [Ewen et
al 2012, Gonzalez et al 2014, Kyrola et al 2012, Shun &
Blelloch 2013, McSherry et al 2015]. Running PageRank
with a set number of iterations yields more consistent timing
results that are less dependent on the specifics of the data
generator.

The PageRank algorithm is initialized by setting the N-
element row vector r to normalized random values

r = rand(1,N)
r = r ./ norm(r,1)

An N-element damping vector a is constructed by

 a = ones(1,N) .* (1-c) ./ N

where c = 0.85 is the damping factor associated with the
PageRank algorithm (see Appendix). Using the iterative
formulation of PageRank, each iteration of the algorithm
performs the following update to the vector r

r = ((c .* r) *A) + (a .* sum(r,2))

which can be simplifed to

r = ((c .* r) *A) + ((1-c) .* sum(r,2))

The appendix discusses this formula in somewhat more
detail.

	

It should be mentioned that in order to assure a full
stochastic construction, the additional term for the dangling
nodes in the iterative formulation should be included.
Several procedures have been proposed [Eiron McCurley
and Tomlin, 2004]. Ipsen and Selee [Ipsen and Selee, 2007]
have shown the inclusion of dangling nodes in the
PageRank calculation does not materially impact the
solution for the PageRank vector. Because this paper is
focused on a proposed Kernel 3 for benchmarking rather
than specifically finding the PageRank vector r, the
additional term for the dangling nodes in the iterative
formulation has been omitted.

The entire process to perform all of these steps is timed
and the performance is reported in terms of edges processed
per second (i.e., 20M divided by the run time). In a parallel
implementation, a common decomposition would be to have
each processor hold a set of rows, since this corresponds to
how the files are sorted in kernel 1. In such a
decomposition, each processor would compute its own
value of r that would be summed across all processors and
broadcast back to every processor. This is likely to be a
time consuming part of this step and is likely to be limited
by network communication.

The results of the above calculation can be checked by
comparing r with the first eigenvector of

c.*A.' + (1 - c)/N

For small enough problems where the above dense matrix
fits into memory, the first eigenvector can be computed via
the Matlab command

 [r1 ~] = eigs(c.*A.' + (1 - c)/N,1)

Normalizing both r and r1 by the sums of their absolute
values, these quantities should be equivalent and satisfy

 r./norm(r,1) = r1./norm(r1,1)

IV . SERIAL IMPLEMENTATIONS AND RESULTS
Each kernel discussed in the previous section is well

defined mathematically and can be implemented in any
programming environment. To test this proposed PageRank
Pipeline benchmark, serial codes have been developed in
several different languages. These include versions written
in C++, Python, Python with Pandas, Matlab, Octave, and
Julia.

Table I shows the source lines of code needed to
implement the serial version of the benchmark in each of the
various languages. The C++ implementation is the largest.
The other implementations are approximately comparable in
size.

TABLE I. SOURCE LINES OF CODE

Language Source Lines of Code

C++ 494

Python 162

Python w/Pandas 162

Matlab 102

Octave 102

Julia 162

Each implementation was run and timed over a variety of
problem sizes corresponding to scale factors that ranged
from 16 to 22 (see Table II). Scale 22 results in a problem
with maximum of 4M vertices, 67M edges, and an
approximate memory footprint of 1.6GB (assuming 16 bytes
per edge).

TABLE II. BENCHMARK RUN SIZES.

Scale Max Vertices Max Edges ~Memory

16 65K 1M 25MB

17 131K 2M 50MB

18 262K 4M 100MB

19 524K 8M 201MB

20 1M 16M 402MB

21 2M 33M 805MB

22 4M 67M 1.6GB

All of the serial versions of the benchmarks were run on
the same hardware architecture and storage environment.
The computer platform used was an Intel Xeon E5-2650 (2
GHz) with 64 Gbytes of memory. Each node had 16 cores
with hyper threading available. The cluster has both
InfiniBand and 10 GigE interconnects. However, because
these are all written as serial codes run using a single thread,
the network hardware and interconnections were not a major
factor impacting the results. The storage system attached to
the compute platform used for the read/write/store
operations is a Lustre file system.

The measurements for Kernel 0 are shown in Figured 4.
This measurement provides some insight into the
performance of the code for writing data to non-volatile
storage. Although for problems of this, caching in

	

unavoidable.

Figure 4. Kernel 0 measurements for each language listed showing
edges/sec versus number of edges run on a common hardware
platform and file system.

Figure 5 measures Kernel 1. As was discussed in Section
3, if the start and end vertices are sufficiently small, they
can fit into memory and an in-memory algorithm can be
used. For these measurements, the scale factor of 22 is
sufficiently large so as to limit any L3 cache advantage but
some impacts on Kernel 1 advantages can still be impacted
by the storage cache.

Figure 5. Benchmark results for Kernel 1 showing the
performance for reading files generated in Kernel 0, sorting them
by the start vertex and re-writing the sorted data back to non-
volatile storage.

Kernel 2 measurements are shown in Figure 6. These
benchmark tests indicate the impact of I/O, and memory
limitations through a combination of reading data,
construction of the sparse adjacency matrix and
computations to determine the in-degree.

Figure 6. Benchmark results for Kernel 2 showing combined
impacts from I/O and memory limitations.

Figure 7 measures the calculation of the actual PageRank
algorithm. It should be noted that for this serial
implementation, there is a minimal dispersion among the
performance measurements in Kernel 3 for each of the
languages. This is not be surprising because of the fact that
there is no parallel implementation in these tests and
therefor there is little network communication. It is
expected that measurements of Kernel 3 in a parallel
implementation will show a wider dispersion in
performance between the languages.

Figure 7. Kernel 3 measurements reflecting the actual PageRank
calculations for scales between 16 and 22.

V. SUMMARY AND NEXT STEPS
The proposed PageRank Pipeline benchmark employs

supercomputing benchmarking methodologies to create a
scalable benchmark that is reflective of many real-world big
data processing systems. The PageRank pipeline
benchmark leverages existing prior scalable benchmarks
(Graph500, Sort, and PageRank) to create a holistic
benchmark with multiple integrated kernels that can be run
together or independently.

106 107 108

number of edges

105

106

107

ed
ge

s
pe

r s
ec

on
d

C++
Python
Python w/Pandas
Julia
Matlab
Octave

106 107 108

number of edges

105

106

107

ed
ge

s
pe

r s
ec

on
d

C++
Python
Python w/Pandas
Julia
Matlab
Octave

106 107 108

number of edges

105

106

107

ed
ge

s
pe

r s
ec

on
d

C++
Python
Python w/Pandas
Julia
Matlab
Octave

106 107 108

number of edges

107

108

109

ed
ge

s
pe

r s
ec

on
d

C++
Python
Python w/Pandas
Julia
Matlab
Octave

	

Initial measurements using serial code developed in
several difference languages have been presented here using
a common hardware platform and a Lustre file system.
Future work will include re-running these benchmarks using
local storage.

The key next step is to obtain community feedback on the
proposed benchmark and make improvements based on that
feedback. Possible points of feedback include: Should a
more deterministic generator be used in kernel 0 to facilitate
validation of all kernels? Should the end vertices in kernel 1
also be sorted? Should a diagonal entry be added to empty
rows/columns to allow the PageRank algorithm to
converge? Are the values of the adjacency matrix required
to be floating point values? What outputs should be
recorded to validate correctness?

The computations are also simple enough that
performance predictions can be made based on simple
hardware models. Additional studies are currently
underway that will provide a more detailed analysis of each
of the kernels with respect to standard models of parallel
computation and communication. The results from these
models can be used to predict the performance on current
and proposed systems.

Finally, after receiving community input and analyzing
the performance models, it would be appropriate to produce
an executable specification (i.e., Matlab, Python) and
reference implementations in various environments (i.e.,
C/MPI, Java/Hadoop, Python/Spark). Furthermore,
implementations using the GraphBLAS standard would
allow enable comparison of the GraphBLAS capabilities
with other technologies.

VI. ACKNOWLEDGMENTS
The authors would like to thank David Bader, Justin

Brukardt, Chris Clarke, and Steve Pritchard for their helpful
comments.

APPENDIX

The goal of PageRank is rank vertices in a graph based on
how likely a random walker of the graph will be at any
particular vertex. The strength of PageRank is that the core
random walker concept is very flexible and can be used to
incorporate a wide range of contextual information. A
variety of specific algorithms have been developed based on
this concept [Gliech 2015] with names such as strongly
preferential PageRank, weekly preferential PageRank, and
sink PageRank. For this benchmark, one of the simpler
PageRank algorithms is used. The simplest model says that
a random walker will walk to another vertex with equal
probability. Such a model can be represented by the
following iterative calculation

r = r * ./ N

where is a NxN matrix of all ones. The above equation
will converge to a value of

sum(r,2) ./ N

A more sophisticated model increases the probability of
randomly walking to a connected vertex and is described by
the iterative equation

r = ((c .* r) * A) + ((1-c) .* r * ./ N)

where A is the normalized adjacency matrix of the graph
constructed as the output of Kernel 2 and c is the weighting
factor that balances between walking to a neighbor vertex
versus a random vertex. The above equation simplifies to

r = ((c .* r) * A) + ((1-c) .* sum(r,2) ./ N)

REFERENCES

[Bader et al 2007] D.A. Bader, J. Feo, J. Gilbert, J. Kepner, D. Koester, E.
Loh, K. Madduri, W. Mann, Theresa Meuse, HPCS Scalable
Synthetic Compact Applications #2 Graph Analysis (SSCA#2 v2.2
Specification), 5 September 2007.

[Bailey et al 1991] Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D.
S., Carter, R. L., Dagum, L., ... & Weeratunga, S. K. (1991). The
NAS parallel benchmarks. International Journal of High Performance
Computing Applications, 5(3), 63-73.

[Balazinska et al 2009] M. Balazinska, J. Becla, D. Heath, D. Maier, M.
Stonebraker & S. Zdonik, “A Demonstration of SciDB: A Science-
Oriented DBMS, Cell, 1, a2. (2009).

[Bialecki et al 2005] A. Bialecki, M. Cafarella, D. Cutting, & O. O’Malley,
“Hadoop: A Framework for Running Applications on Large Clusters
Built of Commodity Hardware,” 2005. Wiki at
http://lucene.apache.org/hadoop.

[Boldi, et al 2007] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis,
and S. Vigna. The query-flow graph: Model and applications. In
Proceedings of the 17th ACM Conference on Information and
Knowledge Management, pp. 609–618.

[Bramm 2004] P.J. Braam, “The Lustre storage architecture,” 2004,
http://idning-
paper.googlecode.com/svn/trunk/reference/Luster/The_Lustre_Storag
e_Architecture.pdf

[Brin & Page 1998] Brin, S.; Page, L. (1998). "The anatomy of a large-
scale hypertextual Web search engine", Computer Networks and
ISDN Systems 30: 107–117. doi:10.1016/S0169- 7552(98)00110-X .
ISSN 0169-7552

[Burkhardt & Waring 2015] Burkhardt, P. & Waring, C. “A Cloud-based
approach to Big Graphs,” IEEE HPEC 2015

[Carlson et al 1999] Carlson, W.W., Draper, J. M., Culler, D. E., Yelick,
K., Brooks, E., & Warren, K. (1999). Introduction to UPC and
language specification. Center for Computing Sciences, Institute for
Defense Analyses.

[Cooper et al 2010] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan,
R., & Sears, R. (2010, June). Benchmarking cloud serving systems
with YCSB. In Proceedings of the 1st ACM symposium on Cloud
computing (pp. 143-154). ACM.

[Dagum & Enon 1998] Dagum, L., & Enon, R. (1998). OpenMP: an
industry standard API for shared-memory programming.
Computational Science & Engineering, IEEE, 5(1), 46-55.

[Dongarra 1988] Dongarra, J. J. (1988, January). The linpack benchmark:
An explanation. In Supercomputing (pp. 456-474). Springer Berlin
Heidelberg.

[Dongarra & Heroux 2013] Dongarra, J., & Heroux, M. A. (2013). Toward
a new metric for ranking high performance computing systems.
Sandia Report, SAND2013-4744, 312.

	

[Eiron McCurley and Tomlin, 2004] N. Eiron, K. McCurley, and J. Tomlin,
“Ranking the Web Frontier”, Proceedings of the Thirteenth
International World Wide Web Conference (WWW2004), ACM
Press, New York, 2004, pp. 309–318.

[Ewen et al 2012] Stephan Ewen, Moritz Kaufmann, Kostas Tzoumas, and
Volker Mark,.Spinning Fast Iterative Data Flows, VLDB 2012.

[Gadepally 2015] Gadepally, V., & Kepner, J. (2015). Using a Power Law
Distribution to describe Big Data, IEEE HPEC 2015.

[George 2011] L. George, HBase: The Definitive Guide, O’Reilly,
Sebastapol, California, 2011.

[Gleich 2015] Gleich, D, PageRank Beyond the Web, SIAM Rev. 57-3
(2015), pp. 321-363

[Gonzalez et al 2014] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave,
Daniel Crankshaw, and Michael J. Franklin, and Ion Stoica. GraphX:
Graph Processing in a Distributed Dataflow Framework, OSDI, 2014.

[Govan et.al. 2008] A. Y. Govan, C. D. Meyer, and R. Albright.
Generalizing Google’s PageRank to rank national football league
teams. In SAS Global Forum 2008.

[Gray 1988] Gray, J. (1998). Sort benchmark home page (terasort.org now
sortbenchmark.org).

[Gropp et al 1996] Gropp, W., Lusk, E., Doss, N., & Skjellum, A. (1996).
A high-performance, portable implementation of the MPI message
passing interface standard. Parallel computing, 22(6), 789-828.

[Hindman et al 2011] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi,
A., Joseph, A. D., Katz, R. H., ... & Stoica, I. (2011, March). Mesos:
A Platform for Fine-Grained Resource Sharing in the Data Center. In
NSDI (Vol. 11, pp. 22-22).

[Huang et al 2010] Huang, S., Huang, J., Dai, J., Xie, T., & Huang, B.
(2010, March). The HiBench benchmark suite: Characterization of
the MapReduce-based data analysis. In Data Engineering Workshops
(ICDEW), 2010 IEEE 26th International Conference on (pp. 41-51).
IEEE.

[Ipsen and Selee, 2007] I. Ipsen and T. Selee, “Pagerank Computation, with
Special Attention to Dangling Nodes”, SIAM J. Matrix Anal. Appl.
29(4), pp 1281-1296.

[Jackson et al 2001] Jackson, D., Snell, Q., & Clement, M. (2001, January).
Core algorithms of the Maui scheduler. In Job Scheduling Strategies
for Parallel Processing (pp. 87-102). Springer Berlin Heidelberg.

[Java 2009] A. Java. Twitter social network analysis. UMBC ebquity blog,
http://ebiquity.umbc.edu/blogger/2007/04/19/twitter-social-network-
analysis/, 2007.

[Kepner 2009] J. Kepner, “Parallel Matlab for Multicore and Multinode
Computers,” SIAM Press, Philadelphia, 2009.

[Kepner 2012] J. Kepner, “Perfect Power Law Graphs: Generation,
Sampling, Construction and Fitting,” SIAM Annual Meeting, July 9-
13, 2012, Minneapolis, Minnesota

[Kepner et al 2012] J. Kepner et al., “Dynamic distributed dimensional data
model (D4M) database and computation system,” 37th IEEE
International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Kyoto, Japan, Mar 2012.

[Kepner et al 2014] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C.
Byun, V. Gadepally, M. Hubbell, P. Michaleas, J. Mullen, A. Prout,
A. Reuther, A. Rosa, & C. Yee, “Achieving 100,000,000 database
inserts per second using Accumulo and D4M,” IEEE High
Performance Extreme Computing (HPEC) Conference, Walham, MA,
September 2014.

[Kwak et al 2009] H. Kwak, C. Lee, H. Park, and S. Moon. What is
Twitter, a social network or a news media? In WWW ’10:
Proceedings of the 19th international conference on World wide web,
pp. 591–600. 2010. doi:10.1145/1772690.1772751.

[Kyrola et al 2012] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin.
GraphChi: Large-Scale Graph Computation on Just a PC, OSDI 2012.

[Lakshman & Malik 2010] A. Lakshman & P. Malik, “Cassandra: A
Decentralized Structured Storage System,” ACM SIGOPS Operating
Systems Review, Volume 44 Issue 2, April 2010.

[Laney 2001] Laney, D., “3d data management: Controlling data volume,
velocity and variety,” META Group Research Note, vol. 6, 2001.

[Langville and Meyer 2004] A. N. Langville and C. D. Meyer. Deeper
inside PageRank. Internet Mathematics, 1 (3), pp. 335–380, 2004.

[Luszczek et al 2006] Luszczek, P., Dongarra, J., & Kepner, J. (2006).
Design and implementation of the HPC Challenge benchmark suite.
CT Watch Quarterly, 2(4A).

[McSherry et al 2015] McSherry, Frank, Michael Isard, and Derek G.
Murray. "Scalability! But at what COST." 15th Workshop on Hot
Topics in Operating Systems (HotOS XV). USENIX Association,
2015.

[Mooney et al 2012] B. L. Mooney, L. R. Corrales, and A. E. Clark.
Molecularnetworks: An integrated graph theoretic and data mining
tool to explore solvent organization in molecular simulation. Journal
of Computational Chemistry, 33 (8), pp. 853–860, 2012.
doi:10.1002/jcc.22917.

[Morrison et al 2005] J. L. Morrison, R. Breitling, D. J. Higham, and D. R.
Gilbert. GeneRank: using search engine technology for the analysis of
microarray experiments. BMC Bioinformatics, 6 (1), p. 233, 2005.
doi:10.1186/1471-2105-6-233.

[Murphy et al 2010] Murphy, R. C., Wheeler, K. B., Barrett, B. W., & Ang,
J. A. (2010). Introducing the graph 500. Cray User’s Group (CUG).

[Page et al 1999] Page, L., Brin, S., Motwani, R., & Winograd, T. (1999).
The PageRank citation ranking: bringing order to the Web.

[Pavlo et al 2009] Pavlo, A., Paulson, E., Rasin, A., Abadi, D. J., DeWitt,
D. J., Madden, S., & Stonebraker, M. (2009, June). A comparison of
approaches to large-scale data analysis. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of data
(pp. 165-178). ACM.

[Schmuck & Haskin 2002] Schmuck, F. B., & Haskin, R. L. (2002,
January). GPFS: A Shared-Disk File System for Large Computing
Clusters. In FAST (Vol. 2, p. 19).

[Seshadhri et al 2012] Seshadhri, C., Kolda, T. G., & Pinar, A. (2012).
Community structure and scale-free collections of Erdős-Rényi
graphs. Physical Review E, 85(5), 056109.

[Shun & Blelloch 2013] Julian Shun and Guy Blelloch. Ligra: A
Lightweight Graph Processing Framework for Shared Memory,
PPoPP 2013.

[Thusoo 2009] Thusoo, Ashish, Joydeep Sen Sarma, Namit Jain, Zheng
Shao, Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and
Raghotham Murthy. "Hive: a warehousing solution over a map-
reduce framework." Proceedings of the VLDB Endowment 2, no. 2
(2009): 1626-1629.

[Vavilapalli et al 2013] Vavilapalli, V. K., Murthy, A. C., Douglas, C.,
Agarwal, S., Konar, M., Evans, R., ... & Baldeschwieler, E. (2013,
October). Apache hadoop yarn: Yet another resource negotiator. In
Proceedings of the 4th annual Symposium on Cloud Computing (p.
5). ACM.

[Wall et al 2013] M. Wall, A. Cordova & B. Rinaldi, Accumulo
Application Development, Table Design, and Best Practices,
O’Reilly, Sebastapol, California, US, 2013.

[Wikipedia 2015] Wikipedia PageRank Pipeline Benchmark
(https://en.wikipedia.org/wiki/PageRank)

[Yoo et al 2003] Yoo, A. B., Jette, M. A., & Grondona, M. (2003, January).
Slurm: Simple linux utility for resource management. In Job
Scheduling Strategies for Parallel Processing (pp. 44-60). Springer
Berlin Heidelberg.

[Zaharia et al 2010] M. Zaharia, M. Chowdhury, M. J. Franklin, S.
Shenker, & I. Stoica, “Spark: cluster computing with working sets,”
Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing (Vol. 10, p. 10) 2010

[Zuo et al 2011] X.-N. Zuo, R. Ehmke, M. Mennes, D. Imperati, F. X.
Castellanos, O. Sporns, and M. P. Milham. Network centrality in the
human functional connectome. Cerebral Cortex, 2011.
doi:10.1093/cercor/bhr269.

