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ABSTRACT
The skip list is an elegant dictionary data structure that is com-
monly deployed in RAM. A skip list with N elements supports
searches, inserts, and deletes in O(logN) operations with high
probability (w.h.p.) and range queries returning K elements in
O(logN +K) operations w.h.p.

A seemingly natural way to generalize the skip list to external
memory with block size B is to “promote” with probability 1/B,
rather than 1/2. However, there are practical and theoretical obsta-
cles to getting the skip list to retain its efficient performance, space
bounds, and high-probability guarantees.

We give an external-memory skip list that achieves write-
optimized bounds. That is, for 0 < ε < 1, range queries take
O(logBε N +K/B) I/Os w.h.p. and insertions and deletions take
O((logBε N)/B1−ε) amortized I/Os w.h.p.

Our write-optimized skip list inherits the virtue of simplicity
from RAM skip lists. Moreover, it matches or beats the asymptotic
bounds of prior write-optimized data structures such as Bε trees or
LSM trees. These data structures are deployed in high-performance
databases and file systems.
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The main technical challenge in proving our bounds comes from
the fact that there are so few levels in the skip list, an aspect of the
data structure that is essential to getting strong external-memory
bounds. We use extremal-graph coloring to show that it is possi-
ble to decompose paths in the skip list into uncorrelated groups,
regardless of the insertion/deletion pattern. Thus, we achieve our
bounds by averaging over these uncorrelated paths rather than by
averaging over uncorrelated levels, as in the standard skip list.

1. INTRODUCTION
The skip list [39] is an elegant randomized dictionary data structure
built from cascading linked lists of geometrically decreasing sizes.

A skip list with N elements supports searches, inserts, and
deletes in O(logN) operations with high probability1 (w.h.p.)
and range queries returning K elements in O(logN + K) op-
erations w.h.p. [18, 28, 36]. Skip lists have found broad applica-
tion [3, 5, 6, 19, 21, 25, 26, 35, 43], and they are widely deployed in
production [29, 37, 42].

In this paper, we propose a write-optimized skip list. The write-
optimized skip list is a randomized external-memory dictionary
that offers asymptotically optimal point-query and insertion per-
formance in the external-memory model while inheriting many of
the practical and theoretical advantages of a traditional skip list.

By external-memory, we mean that our data structure resides on
a large external storage device, such as a disk or SSD. The external
storage device is accessed via I/Os that transfer blocks of size B to
a smaller cache (e.g. RAM) of size M .

By write-optimized, we mean that the data structure has asymp-
totically better insertion performance than a B-tree [7] and query
performance at or near that of a B-tree. In practice, the best
write-optimized dictionaries match B-trees in terms of query speed
while performing insertions and deletions one or two orders-of-
magnitude faster. Over the past two decades, researchers have
developed write-optimized dictionaries for databases and file sys-
tems [4, 9–11, 13–15, 22, 23, 27, 30, 34, 40, 41, 48], several of which
have been shown to be asymptotically optimal [14, 48].

Skip list structure. A skip list consists of h = O(logN) lists
{L0,L1, ..,Lh}, called levels, where the base level L0 is a linked
list of all items of the set, in sorted order. Each item in level Li
also appears in (i.e., is promoted to) level Li+1 with probability
1/2. All elements that have been promoted to Li+1 are pivots with
respect to Li because they partition Li into ranges for searches.

1An event En on a problem of size n occurs with high proba-
bility if Pr [En] ≥ 1− 1/nc for some constant c.



An element promoted to level Li+1 has a pointer to its successor
in level Li+1 as well as a pointer to its own occurrence in level Li
(see Figure 1).

A query for element y begins at the first node on level Lh and
ends on level L0 at the smallest element no greater than y. At
level i, the search performs a sequential scan until it finds the last
element, e, that is less than or equal to y in Li. At that point,
the search follows the pointer to e in level Li−1 and resumes its
sequential scan from that point.

An insertion of element e first performs coin tosses to compute
the height he of e. The insertion then searches for e and inserts it
into lists L0, . . . ,Lhe , with appropriate pointer adjustments.

Inheriting the desirable properties of skip lists. Skip lists have
desirable algorithmic properties, which our write-optimized skip
list inherits.

For example, it is an advantage to be built from a collection of
linked lists. Practitioners generally like to make concurrent lock-
free dictionaries as lock-free skip lists [19,24,38,46,47] because it
is attractive to build on top of existing, production-quality lock-free
linked lists [31, 32, 45].

Moreover, skip lists are elegant and have an easy-to-understand
randomized balancing mechanism. Finally, skip-lists are weight
balanced [33] in a probabilistic sense, which makes them useful as
an algorithmic tool.

It is these desirable properties that makes us particularly ex-
cited to have another optimal write-optimized data structure at our
disposal, even though (a few) other optimal structures already ex-
ist [9, 13–15, 48].

See Section 7 for our speculation how a write-optimized skip list
may make it easier to implement concurrency and perhaps lock-
freedom. Given that the community is only now exploring how to
make full-featured, scalable, acid-compliant, write-optimized in-
dexing structures, it is worth having many options in an imple-
menter’s arsenal.

Adapting to External Memory
We now articulate the subtleties in adapting skip lists to work in
external memory. We review the external-memory model, which is
used to analyze disk-resident indexing structures in databases and
file systems.

External-memory model. The external-memory or disk-access
model (DAM) [2] consists of two levels of memory: a fast mem-
ory (RAM) of sizeM and a slow arbitrarily large external memory,
such as a disk. Block transfers, or I/Os, between disk and RAM
occur in blocks of size B. Performance is measured in terms of the
number of I/Os.

External-memory skip lists. Given the success of the skip list
in internal memory, it is natural to extend it to external memory.
Indeed, such a data structure exists and is called a B-skip list [1, 8,
12, 16, 17, 20].

The straightforward way to extend the skip list to external mem-
ory is to promote elements with probability 1/B rather than 1/2.
At a given level, each promoted element is stored in a contiguous
chunk along with the run of nonpromoted elements that follow it.
These chunks define the nodes of the B-skip-list. Since disk blocks
have size B, each node consumes at least B space, regardless of
how many elements it contains (see Figure 1).

This B-skip list retains the simplicity of the original RAM skip
list but unfortunately has optimal search performance only in ex-
pectation, not with high probability [8]. Each node has an ex-

pected Θ(B) elements, but w.h.p. there exist nodes with as many
as Θ(B logN) elements and nodes with as few as Θ(B/logN)
elements. Large nodes cause problems because we want searches
to take O(logB N) I/Os, but performing a linear scan of a node of
size Θ(B logN) requires Θ(logN) I/Os.

We can obtain high-probability bounds on the cost of searches
by changing the promotion probability to 1/

√
B, rather than

1/B [8]. Even with this larger promotion probability, there are
only O(log√B N) = O(logB N) levels. Each node now has

√
B

elements in expectation, with the actual number of elements rang-
ing from Θ(

√
B/logN) to Θ(

√
B logN) w.h.p. No matter how

big B is relative to logN , this version of the skip list has a search
cost of O(logB N).

However, now most nodes are mostly empty, so this version
wastes space.

Write-Optimized Skip List
Our write-optimized skip list uses the random and variable amount
of extra space in each node to store a buffer, similar to a Bε-
tree [10, 14]. By buffering elements within nodes, we can move
(or “flush”) inserted items down the skip list in batches. This
speeds up insertions on average, similar to buffer use in other write-
optimized data structures. However, unlike deterministic write-
optimized structures, the number of pivots in a node can vary by
a factor of as much as O(log2 N), which changes the effectiveness
of the buffer substantially, and threatens the attainability of optimal
high-probability amortized insert bounds.

The main contribution of the paper lies in the analysis. We show
that the write-optimized skip list has an asymptotically optimal
search-insert tradeoff [14, 48], similar to the Bε-tree [14, 15, 27],
the COLA [9], or the xdict [13]. Our search-insert bounds hold
both in expectation and with high probability.

Our write-optimized skip list has an additional technical compli-
cation at the leaves to ensure good range-queries and space con-
sumption. We promote with probability 1/B1−ε at the leaf level
and 1/Bε at all other levels. We delay the promotion of elements
from buffers at the leaf level as a simple mechanism to guarantee
that leaf nodes remain Θ(B) full.

Challenges in attaining high-probability bounds. A particularly
troublous aspect of this data structure is that the ratio of a node’s
buffer size to number of children can vary by a factor of Θ(log2 N).
For example, the root itself might be one of these outlier nodes, an
O(logN) factor larger than average. In that case, the large number
of pivots (and low amortized per-child buffer size) would affect all
insertions.

In data structures with depth O(logN) such local variation
would even out, both on average and w.h.p. But, our data struc-
ture has only O(logB N) depth, which is insufficient to overcome
unlucky coin tosses. The surprising result is that this buffered skip
list meets the desired I/O goals.

To prove high-probability bounds, we need to find, for any work-
load, sets of Ω(logBε) insert paths whose I/O complexity is un-
correlated. This appears to be challenging for some workloads. For
example, in a sequential-insert workload, any insert path lies on
the rightmost spine of the data structure. Furthermore, since all
insertions pass through the top level of the data structure, a large
node at the top of the skip list can affect the I/O performance of a
substantial fraction of insertions.

Fortunately, we are operating in external memory: we can as-
sume that the top few levels of the data structure are cached.
Traversing cached levels incurs no I/Os. We show that the remain-
ing levels of the tree offer enough disjoint root-to-leaf paths so that
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Figure 1: An in-memory (RAM) skip list (a) and external-memory B-skip list (b). In the B-skip list, the node size varies by a factor of
O(log2 N). While the B-skip list achieves asymptotically better bounds than the RAM skip list in expectation, they both achieve the same
high-probability bounds [8]. In contrast, the write-optimized skip list has better bounds than the B-skip list both in expectation and w.h.p.

we can prove the desired bounds for write optimization. Indeed,
even if all insert paths seem to follow the same root-to-leaf path
(e.g., the rightmost spine), the insert path changes structure suffi-
ciently frequently that we can find disjoint root-to-leaf paths.

This proof assumes an optimal paging algorithm. However, our
performance bounds still hold in systems that use LRU, since LRU
with constant resource augmentation is constant competitive with
the optimal paging algorithm.

For ease of presentation, we first give a proof of high-probability
bounds that applies when there are insertions, but no deletions. Our
proof relies on a coloring argument of the insert paths.

Deletions destroy this first proof: paths that are independent at
some point can be moved together by deletions of intervening el-
ements so that they become correlated. We show, via an extremal
graph-coloring argument, that there is always a good partitioning of
the paths into uncorrelated sets, no matter what the deletion pattern
is. This allows us to prove high-probability bounds under any mix
of insertions and deletions.

Results
We prove the following theorem establishing the performance of
write-optimized skip lists.

THEOREM 1. Consider an N -element write-optimized skip list
running in external memory. Let memory-hierarchy parame-
ters B and M obey the “tall-cache” assumption that M =
Ω(B2 log4 B). Let the block size B be large enough that
min{Bε, B1−ε} ≥ logN .

A write-optimized skip list that performs insertions, deletions,
and queries achieves the following I/O bounds for tunable perfor-
mance parameter 0 < ε < 1:

• Insertions and deletions take O((logBε N)/(B1−ε)) amor-
tized I/Os in expectation and w.h.p.

• Range queries returning K elements take O(logBε N +
K/B) I/Os in expectation and w.h.p. (Point queries are
range queries with K = 1.)

• The structure takes O(N) space, in expectation and w.h.p.

The write-optimized skip list’s guarantees (like those of a reg-
ular skip list) are based on an oblivious adversary. The oblivious
adversary can issue arbitrary insert and delete operations, but does
not have access to the heights of the elements in the structure (i.e.,
the random tosses).

Organization. In Section 2, we explain how to build and use the
write-optimized skip list. In Section 3 we prove several structural

properties of the write-optimized skip list. In Section 4 we prove
performance bounds for point queries and range queries whp. We
also prove bounds on insertion and deletion in expectation. In Sec-
tion 5 we prove amortized insertions bounds w.h.p. and in Section 6
we adjust the argument to include deletions w.h.p. We conclude
with some extensions and implementation issues in Section 7.

2. STRUCTURE AND OPERATIONS OF
A WRITE-OPTIMIZED SKIP LIST

In this section we explain how to build the write-optimized skip
list. This section also sets up notation that will be used throughout
the rest of the paper.

Overall Structure. The write-optimized skip list has pointer
structure similar to that of the B-skip list [8, 20]. It is composed
of a sequence of hierarchical levels L0,L1, . . . ,Lh, where h is the
height of the data structure. We will show h = O(logBε N) w.h.p.

Each level consists of a linked list of nodes (which will have
size Θ(B) w.h.p.), where each node is partially filled with pivots.
Nodes at level 0 are leaves. Each pivot element e on level Li≥1 has
a pointer to the child node containing its occurrence on level Li−1.
(We will see that sometimes there may temporarily be no node that
contains e on level Li−1; in this case, the pointer points to the node
that would contain e based on the sort order.) The smallest pivot in
a node is called its leader. Each node at level i contains a pointer
to the next node at that level (see Figure 2).

Write-optimized skip list nodes are similar to nodes in a Bε-
tree [10, 14] in that each node also contains a buffer. All the el-
ements in a node’s buffer are greater than or equal to the node’s
leader and smaller than the leader of the next node on that level. In-
serted items are stored in nodes’ buffers and are flushed in batches
from parents to children. Thus, all elements move towards L0,
where they remain (until they are deleted).

Randomized balancing. Each element e in the data structure has
an integer height he determined by a sequence of biased coin flips.
Coin flips are implemented by hashing e, meaning that even if an
element is inserted, deleted, and reinserted, he does not change.
To determine he, flip a biased coin until the first tail and set he to
the length of the run of heads. For the first flip, the probability of
heads is 1/B1−ε, and on subsequent flips the probability of heads
is 1/Bε. We say that an element e has been promoted to level i > 0
if he ≥ i.

The promotion probabilities are set such that each node on lev-
els Li≥1 has Θ(Bε) pivot elements in expectation and each node
on level L0 has Θ(B1−ε) elements in expectation. The variable



(random) amount of extra space in each node serves as the buffer
space in our insertion algorithm and enables us to achieve amor-
tized high-probability write-optimized update bounds, as discussed
in Section 5 and Section 6.

As with a regular skip list, to ensure that there is a root for the
entire structure, there is a special element −∞ that is defined to
have the largest height of any element.

Insertions and deletions. When a new element is inserted, store
it qin the root’s buffer. When an element e is deleted, store a tomb-
stone ē in the root’s buffer.

Buffer-flushing mechanism. When the buffer in node D at level
Li≥1 becomes full (i.e., it overflows), perform a flush operation.
During a flush, distribute the elements in D’s buffer among the
buffers of D’s children. This may require an I/O per child to bring
the children nodes into main memory.

Whenever any one child has B1−ε delete messages destined for
it, flush those delete messages to the appropriate child immediately.
(This extra rule for flushing deletes helps us achieve the desired
range-query bounds; see Theorem 9).

Pivots and leaders. When an element e gets flushed out of the
buffer of a node D of height i ≤ he, e becomes a pivot of D in
addition to being flushed to the buffer of one of D’s children. This
new pivot will point to the node to which e is being flushed. This
means that D now has two (or more) pivots that point to the same
child.

If i < he, then split D into two nodes D′ and D′′, making the
current leader of D the leader of D′ and e the leader of D′′. Since
D may have multiple pivots pointing to the same child, splitting D
may result in some of D’s children having more than one parent.

Whenever a node D that has multiple parents is split, update all
of D’s parents to point to the newly created nodes. Splitting a node
D will not change the size of any of D’s parents so that, unlike
a B-tree, splitting can proceed in a purely top-to-bottom fashion.
This is because, whenever a node D is split to create a new node
D′′ with leader e, element emust already be a pivot inD’s parents.

When a delete message ē is flushed from a node, delete e as a
pivot of that node, if it happens to be one. If e is also the leader of
that node, then merge that node with its predecessor on that level.
Thus, merges are the reverse of splits.

Leaves require special handling. Whenever there is a flush from
a parent D at level 1 to all of its leaves, rebalance all the leaves
as follows: greedily choose the breaks between leaves so that each
leaf approximately fills a block and each leaf begins with a pivot of
D (but not every pivot of D begins a leaf).

Queries. To search for element e, traverse the root-to-leaf path to
e, and retain all these nodes in memory until the query is done. Our
assumptions on the size of memory imply that M > B logBε N ,
so that a complete root-to-leaf path fits in memory.

The leaf may or may not contain e itself. Insertions and dele-
tions of e may reside in buffers on the root-to-leaf path. Find the
messages in the highest buffer that affects e: if it is an insert, then
e is present. If it is a delete, then e is absent. The I/O complexity is
O(logBε N) w.h.p.

Each buffer could be checked on the way down, until the first
message that affects e is found. But the above method generalizes
to richer queries. Consider finding the successor of e. First, find
the successor of e in every root-to-leaf buffer and return the min-
value of these that is currently in the dictionary. A trivial way to do

this is to sort all the messages in all the buffers under consideration
by (f, i, t), where f is the key, i is the height, and t is the type
(insertion or deletion), then to remove all but the first occurrence of
each key. This yields the current state of each key. Finally, search
for e’s successor by finding the smallest f > e and then scanning
to the first insertion.

There is one missing detail. If e is the largest element in its leaf
and is larger than everything in the root-to-leaf buffers, then the
successor of e will reside in the root-to-leaf path of the successor
leaf. This does not increase the I/O complexity of successor, which
is O(logBε N).

A range query is implemented by repeated successor queries.
Once the beginning of the range is found, successive leaves contain
Θ(B) values in the range, and the I/Os for fetching internal nodes
is dominated by that of fetching leaves. Thus, a K-element range
query takes O(K/B + logBε N) I/Os.

Top-down splits and merges: another advantage of write-
optimized skip lists. Splits, merges, and promotions are per-
formed in a top-to-bottom fashion. As we describe briefly in Sec-
tion 7, this artifact of using a randomized rebalancing scheme
may, in fact, turn out to be another hidden advantage of the write-
optimized skip list over other data structures.

In particular, it may make it easier to implement concurrent
write-optimized skip lists. There may be advantages both for lock-
based implementations as well as well as lock-free versions. See
Section 7 for details.

3. STRUCTURAL BOUNDS
In this section we establish structural properties of the write-
optimized skip list, establishing both expected and high-probability
bounds.

We assume throughout that min{Bε, B1−ε} ≥ logN .

3.1 Local Structure

LEMMA 2 (PIVOTS IN AN INTERNAL NODE). An internal
node has Bε pivots in expectation. and O(Bε logN) = O(B)
pivots w.h.p.

PROOF. By construction, we begin a new internal node when
we see a promotion to the next level. Therefore, the number of
pivots in each internal node can be modeled as the number X of
tails before the first heads in a sequence of independent coin flips
with a head probability of B−ε. The expectation of X is Bε. The
high probability bounds follow from the Chernoff bounds.

The following lemma implies that accessing any node requires
O(1) I/Os w.h.p.

LEMMA 3 (NODE SIZE). For 0 < ε < 1, a node is com-
prised of O(1) blocks w.h.p.

PROOF. For levels greater than 0, nodes contain pivots and
Θ(B) buffer space. By Lemma 2, nodes have O(B) pivots w.h.p.,
so the total size of an internal node is O(1) disk blocks.

By the same argument, even though the promotion probability
at the leaves is 1/B1−ε, every run of Θ(B) elements at the leaf
level has a promoted element w.h.p. Thus, when packing elements
at the leaf level into blocks, we can create a new leaf every Θ(B)
blocks w.h.p. Hence, every node at level 0 consumes O(1) blocks
w.h.p.



Figure 2: Structure of a write-optimized B-skip list with block size B = 6. We illustrate the pointer structure of the skip list as well as the
pivot and buffer structure of nodes. Each node has size O(B) w.h.p. Any extra space in the nodes is used as buffer space. The number of
children at any (internal nonroot) node varies by an O(log2 N) factor, meaning that the contribution to the amortized I/O cost for insertions
and deletions from that node also varies by an O(log2 N) factor. This large variation is an obstacle for designing external-memory skip lists
with high-probability performance bounds.

The following lemma bounds the number of neighbors—parents,
children, successors and predecessors—of a node. This will help
us bound the cost of performing flushes, since flushes may have to
access all of a node’s neighbors.

LEMMA 4 (NEIGHBOR BOUNDS). Let D be a node at height
at least 1. The number of parents of D is O(1) w.h.p. The expected
number of children of D is O(Bε). If the height of D is exactly 1,
then D has O(logN) = O(Bε) children w.h.p.

PROOF. The bound on children breaks into two cases:

• If D is at level i > 1 then, by Lemma 2, its expected number
of pivots is O(Bε), and therefore so is the expected number
of children.

• Nodes at level 1 are split whenever an element is promoted
to level 2. Each element in level 0 has a 1/B chance of be-
ing promoted to level 2. By Chernoff bounds, any run of
Ω(B logN) elements at level 0 has at least 1 element pro-
moted to level 2 w.h.p. Thus, w.h.p. no node at level 1 has
more than O(B logN) elements in its children. Since each
child has Θ(B) elements, nodes at level 1 have O(logN) =
O(Bε) children w.h.p.

The number of parents of D is at most the number of messages
in D’s buffer that have height at least 2 larger than the height of
D. Since D has height at least 1, the probability that any particular
item in D’s buffer has height 2 greater than the height of D is at
most 1/B1+ε. SinceD’s buffer containsO(B) items, the expected
number of such elements in D’s buffer is O(1/Bε). Thus, by the
Chernoff bounds, the number of such elements is O((logN)/Bε)
w.h.p. Since logN < Bε, the number of such elements, and hence
the number of parents of D, is O(1).

3.2 Global Structure

THEOREM 5 (LINEAR SPACE). A write-optimized skip list
on N elements uses O(N/B) blocks in expectation and w.h.p.

PROOF. Each leaf holds Θ(B) items by construction and from
Lemma 3 consumes O(1) blocks w.h.p. Thus, the total space con-
sumed by leaves is O(N/B) w.h.p.

The number of blocks at L1 is also O(N/B) since it is not more
than the number of leaves.

For levels 2 and above, the space consumption follows the same
analysis as the B-skip list.

The following two lemmas help us bound the I/O costs of queries
and inserts.

LEMMA 6 (HEIGHT UPPER BOUND). For constant 0 < ε <
1, the height of the write-optimized skip list is O(logBε N) both in
expectation and w.h.p.

PROOF. The probability that any given element has height at
least h ≥ 1 is 1/B1−ε+(h−1)ε.

Let c ≥ 2 be a constant. The probability that a given element
has height at least h = 1 + c logBε N is at most

1

B1+(h−2)ε
≤ 1

Bε(h−1)
≤ 1

Bεc logBε N
.

The probability that any given element has height at least 1 +
c logBε N is at most 1/Nc. By the union bound, the probability
that any of the N elements has height at least 1 + c logBε N , is at
most 1/Nc−1.

LEMMA 7 (PIVOTS ON A SEARCH PATH). The total number
of pivots at level 2 or higher touched by any root-to-leaf search
path in the data structure is O (Bε logN) w.h.p.

PROOF. Consider the search path “backwards.” That is, start
from the element xi in the leaf level, and consider the unique tra-
jectory from xi back to the root following pointers backwards. The
search path is comprised of some number of horizontal pointers
(point to pivots on the same level) and O(logBε N) vertical point-
ers (from Lemma 6).

We can model the length of this search path mathematically
as the number of coin flips until O(logBε N) heads have been
seen with high probability. At levels 1 and above, the probabil-
ity of a head is 1/Bε. Using Chernoff bounds, one can prove that
O(Bε logN) coin flips are enough to go back from level 1 to the
root w.h.p.

4. SIMPLE RUNTIME BOUNDS
This section gives high-probability bounds on the query perfor-
mance. It also gives expected bounds on the amortized cost of
insertion and deletion.

The amortization in the insertion bound is similar to the analy-
sis of flushes in a Bε-tree [14]. One interesting difference is that,
with Bε-trees, one must analyze the cost of splitting separately from
the cost of flushes, since splitting is a non-local operation. In the
write-optimized skip list, on the other hand, splitting and merging
is performed locally as part of flushing, so we can bound its cost as
part of the analysis of the flushing cost.



4.1 Query Performance
Next, we show bounds for point queries with constant tunable per-
formance parameter ε.

THEOREM 8 (POINT QUERIES). A point query has a worst
case I/O complexity O(logBε N) w.h.p.

PROOF. From Lemma 7, each search path contains
O(Bε logN) elements w.h.p. Furthermore, the height of the
tree is O(logBε N) w.h.p. (from Lemma 6). For any search path,
we must pay at most a single random I/O each time we descend a
level. However, elements of the same level are stored contiguously
in blocks (nodes), therefore we can make a linear scan over a level
reading O(B) elements per I/O.

Thus, the cost to read all elements in a particular search path is
O(logBε N + (Bε logN)/B) = O(logBε N) w.h.p.

THEOREM 9 (RANGE QUERIES). The I/O complexity of
range queries is O(logBε N + K/B) w.h.p. where K is the
number of elements in the requested interval.

PROOF. The cost for range queries can be analyzed using the
search paths of the left and right ends of the requested interval. The
complexity of a range query is bounded by the number of leaf nodes
holding the elements in the range plus O(logBε N) (the cost of a
point query w.h.p.). Between the two search paths is a small write-
optimized skip list of the K items returned by the range query. By
Theorem 5, the total space consumed by the nodes in this mini skip
list is O(K/B) w.h.p.

4.2 Insert and Delete Bounds in Expectation

THEOREM 10 (WRITE-OPTIMIZED UPDATES). For 0 <
ε < 1, the amortized cost of inserting or deleting an element in
the data structure is O((logBε N)/B1−ε) in expectation.

PROOF. We first analyze the expected cost of a flush. A flush of
a node D must access all the children and parents of D, in addition
to writing any new nodes that result from splitting or merging D.
By Lemma 4, there are O(Bε) parents and children in expectation.
If we do a merge, we may have to access D’s predecessor and its
parents, but this is O(1) additional nodes in expectation. Thus, the
total number of nodes accessed during a flush is O(Bε) in expec-
tation. From Lemma 3, each node fits in O(1) blocks w.h.p., so the
total number of I/Os required by a flush is O(Bε) in expectation.

We now analyze the expected amortized insertion/deletion cost.
By Lemma 6, Each element (or tombstone) must be flushed
O(logB N) times w.h.p. Thus, the total number of element flushes
we must perform during any sequence of N insertions and dele-
tions is O(N logB N) with high probability. Each flush performs
Θ(B) element-flushes with high probability. Thus, the total num-
ber of flushes performed is O((N logB N)/B) with high proba-
bility. Since each flush costs O(Bε) I/Os in expectation, the amor-
tized insertion cost isO((logB N)/B1−ε) I/Os in expectation.

5. HIGH PROBABILITY INSERTION-
ONLY BOUNDS

This section establishes expected and high-probability bounds on
the amortized insertion cost for a write optimized skip list that only
handles insertions. We prove these bounds for a skip list that also
handles deletes in Section 6.

Unfortunately, Theorem 10 does not obviously generalize to give
matching high probability bounds on the amortized insertion cost.
This is because, although there are many node flushes, many are not

independent, preventing us from applying Chernoff bounds. We
may flush a node many times before it gets split or merged with
one of its siblings.

To overcome this problem, we partition the elements inserted
into the skip list into color classes, where all the elements of the
same color follow (mostly) disjoint flushing paths. As a result, all
the flushes (and flushing costs) involving these elements are inde-
pendent. As long as the number of elements in a color class is large
enough, we can use Chernoff bounds on the total cost of all the
flushes of all the elements in that class.

The main challenge is that we are not guaranteed enough disjoint
paths near the root of the skip list.

We use caching to address this problem. Flushes between nodes
in cache incur no I/O, and hence can be ignored. As long as enough
levels at the top of the skip list are cached, we can find large classes
of elements that all follow disjoint paths through the uncached por-
tion of the skip list.

5.1 Caching Assumptions and Structural
Bounds

Caching Assumptions. Our high-probability bounds assume that
the top Ω(1) levels of this data structure (those closest to the
root) are permanently pinned in cache. An optimal cache-
replacement policy will outperform these results, but an optimal
policy requires prescience, rendering it unimplementable. How-
ever, the LRU (least-recently used) cache-replacement strategy is a
2-approximation to optimal, given a cache of twice the size [44],
implying that our bounds still hold asymptotically with LRU. We
account for the doubled memory in the asymptotics of our tall cache
assumption.

For the analysis of the skip list assuming only insertions, we need
the cache size to be Ω(B2 log2 B); for the analysis with insertions
and deletions, Ω(B2 log4 B). Therefore, we generalize the analy-
sis to a cache of size M = Ω(B2X).

Structural Properties. We now establish preliminary lemmas
about the cached region (i.e., levels stored in cache).

We first give a lower bound on the number of levels that can be
cached and the size of the largest cached level.

LEMMA 11 (HEIGHT OF CACHED REGION). Suppose that
internal memory has size M = Ω(XB2) and let h′ be the height
of the lowest level with O(XBε logN) nodes. Then every node in
level at least h′ fits in memory w.h.p.

PROOF. The number of nodes at level h′ is O(XBε logN).
Each node requires Θ(B) space w.h.p. The amount of space for
all nodes at height h′ is order the following:

BXBε logN ≤ XB1+εB1−ε = XB2.

Thus, the size needed to store nodes of level h′ is O(XB2) w.h.p.
By Chernoff bounds, the number of nodes in higher levels de-
creases exponentially. Once the expected number of elements at
a level is at most logN , w.h.p, that level consumes at most one
block. So the total number of nodes in all levels at or above h′ is
O(XBε logN + logBε N). Given the tall cache assumption that
M = Ω(XB2), there is sufficient space to store all levels with
height at least h′.

LEMMA 12 (PIVOTS IN LAST LEVEL CACHED). With a
cache of size Ω(B2X), the lowest level that fits in cache has
ω(X logN) pivots with separate children w.h.p.



PROOF. Let h be the height of the highest level that does not
fit into internal memory. (Since M < N , h exists.) Then, from
Lemma 11, the number of nodes at that level is ω(XBε logN).
This means that the number of pivots at level h+ 1 that have sepa-
rate children is ω(XBε logN).

The following theorem will help us argue the existence of inde-
pendent paths through the disk-resident region.

THEOREM 13 (CACHED ELEMENT FREQUENCY). If M =
Ω(XB2), then, in any set of Ω(N/X) contiguous distinct elements
at least one element is promoted into a cached level w.h.p.

PROOF. Let p be the probability that an element has been pro-
moted to the cached region. Using Lemma 12, p ≥ (cX logN)/N
with high probability for all constants c > 0.

Now, let q be the probability that no element is promoted to the
cached region in a group of Ω(N/X) elements.

q = (1− p)Ω(N/X) = exp

(
Ω

(
N

X

)
log(1− p)

)
≤ exp

(
−Ω

(
pN

X

))
≤ exp

(
−Ω

(
cNX logN

NX

))
=

1

Ω(Nc)
.

Thus, in any such such group of Ω(N/X) elements, w.h.p. at least
one element is promoted to a cached level.

5.2 Element Coloring Algorithm and Analy-
sis

We use the aforementioned bounds on the size of the cached re-
gion and the frequency of cached elements to present an element
coloring algorithm for insertion analysis.

We describe why normal Chernoff-bound analysis is insufficient
and then use a coloring argument on disjoint root-to-leaf paths in a
skip list with a large enough cache to establish the amortized cost
of insert operations w.h.p.

The obstacle to using Chernoff bounds as above is that insertions
that pass through the same node of the skip list will have correlated
flushing costs. However, flushes between nodes in cache require
no I/Os. Thus, if enough levels at the top of the tree are cached,
then many insertions will follow independent paths through the un-
cached levels of the skip list enabling us to use Chernoff bounds to
bound their overall cost.

The rank of an element is its position in the sorted list of all
elements in the data structure regardless of whether or not it has
reached the leaves. That is, the ith smallest element in the data
structure has rank i, even if it is still making its way through the
internal nodes due to the buffer-flushing scheme described earlier.

The insertion paths of two elements a, b are independent if they
are node-disjoint in the part of the skip list that is not cached in
memory. The following lemma proves the existence of a coloring
of elements into such independence classes.

LEMMA 14. There exists a coloring of elements inserted in the
data structure such that elements in the same color class experience
disjoint root-to-leaf paths w.h.p.

PROOF. The following algorithm colors elements such that after
every operation, the difference in rank between any two elements
of the same color is at least N/2X .

Coloring Algorithm:

• Insert the first N/X elements with distinct colors, establish-
ing the set of colors C.

• When a new element e is inserted at rank k, let CI be the set
of colors of the elements at ranks [k −N/2X, k + N/2X].
Assign e the color in C \ CI that currently has the fewest
elements.

If the difference in rank between two elements a and b (where
a < b) is Ω(N/X), then there exists at least one element (greater
than a and at most b) between them promoted into the cached re-
gion w.h.p. (from Theorem 13). This element will be a leader at
every level not cached in internal memory. The presence of such an
element is enough to isolate the insertion paths of a and b.

Later insertions in the data structure do not affect this property,
because the difference in rank between two elements can only in-
crease over time.

Now we prove, using the above coloring scheme, that the ex-
pected amortized cost of insertions holds w.h.p. We use the union
bound on the amortized insertion costs for each color class as de-
scribed in Theorem 15.

THEOREM 15. The amortized insertion cost for Ω(logB) el-
ements with independent insertion paths in the data structure is
O((logBε N)/B1−ε) w.h.p.

PROOF. We show that the amortized cost of flushes is
O((logBε N)/B1−ε) w.h.p. Recall from Lemma 4 that the amor-
tized cost of flushes from level 1 to level 0 is O(1/B1−ε) I/Os
w.h.p. Thus, we need to bound the amortized cost of flushing ele-
ments only to levels 1 and above.

As an element moves down the logBε N levels, there is a flush
at each level. Each flush moves Θ(B) elements down one level.
The total number of I/Os for all these flushes is the total number
of pivots on the path, since each pivot has a child at the next lower
level which could receive elements in a flush. Lemma 7 shows that
the total number of pivots on levels 1 and above along any root-
to-leaf search path of length logBε N is O(Bε logN) w.h.p., not
matching the expected bounds.

For the amortized analysis to hold w.h.p., we need
Θ(Bε logBε N) pivots at levels two and above per path when
averaged over all paths. At a high level, when we only consider
one path there are not enough trials for us to avoid paying an
additional asymptotic cost.

By identifying Ω(logB) disjoint paths through the above color-
ing scheme, we can “concatenate” them. We model the total num-
ber of pivots at level 2 and above along this grouped search path
mathematically as the number of coin flips needed until Ω(logN)
heads have been seen with high probability.

By Chernoff bounds, we need O(Bε logN) coin flips in to-
tal for Ω(logB) heads. Therefore, the amortized number of
pivots at level 2 or above per path is O((Bε logN)/logB) =
O(Bε logBε N) w.h.p.

Since we transfer B elements with each I/O, the amortized
cost of inserting an element along each of these disjoint paths is
O((Bε logBε N)/B) = O((logBε N)/B1−ε).

Recall our “tall cache” assumption that the size of memory
M = Ω(XB2) for some memory parameterX . We now show that
X = Ω(log2 B) is sufficient to achieve the desired write-optimized
bounds in an insert-only data structure.



THEOREM 16 (WRITE-OPTIMIZED INSERTIONS). If the size
of memory M = Ω(XB2) = Ω(B2 log2 B) in an insert-only skip
list, the insertion cost per element is O((logBε N)/B1−ε) w.h.p.

PROOF. After an insertion sequence, the elements have been di-
vided into color classes. Consider the following two cases for the
color classes:

Case 1: A color class has at least logB elements in it. We can
apply the Chernoff bound analysis for concatenated paths and ob-
tain O((logBε N)/B1−ε) amortized insert cost per element w.h.p.

Case 2: A color class has fewer than logB elements in it.
If X = Ω(log2 B), there are O(N/X) = O(N/log2 B) color
classes by construction. Therefore, there are at mostO(N/log2 B)
“bad” color classes for which we cannot apply Chernoff bounds
to acquire the same asymptotic bound w.h.p. as in Theorem 15.
Furthermore, there are strictly fewer than logB elements in each
of these “bad” classes. Therefore, there are at most O(N/logB)
“bad” elements. For a “bad” element we may have to pay
the naïve (single path analysis) cost of (logN)/B1−ε (w.h.p.).
However, the total cost amortized for these elements is at most
O((N logBε N)/B1−ε) w.h.p.

Finally, we calculate the amortized insertion cost per element
over N inserts. That is,(

O(N)
logBε N

B1−ε +O

(
N

logB

)
logN

B1−ε

)
/N

= O

(
logBε N

B1−ε

)
.

6. HIGH PROBABILITY BOUNDS WITH
INSERTIONS AND DELETIONS

The previously described coloring scheme allows us to build groups
of Ω(logB) independent paths. However, we cannot perform
delete operations, because the proofs do not allow the difference
in rank between elements to decrease.

As the coloring algorithm is only a theoretical tool, we can as-
sume that the adversary has no knowledge of the chosen colors.
Equivalently, we can assume that we know all the requests from
the beginning creating an “offline” coloring problem. We show that
this allows us to extend the w.h.p. update bounds to include deletes.

We begin by describing a modified coloring scheme based on
building a conflict graph of keys less than X apart in rank. Next,
we show that this analysis technique allows us to prove the desired
write-optimized bounds for both insertions and deletions.

Specifically, we describe a scheme to color Θ(N) updates on a
skip list of size N . We introduce an undirected graph G = (V,E),
with the set of vertices V being the keys in the skip list. An edge
{u, v} is added to E if and only if at some point the difference in
rank between keys u and v is smaller than N/X .

• When inserting an element at rank k, we add at most 2N/X
edges to the graph, binding all the keys for which the dif-
ference in rank with k is smaller than N/X not to be of the
same color.

• When removing an element at rank k, we add at most N/X
edges between the key of rank k + i−N/X − 1 and key of
rank k + i for 0 ≤ i ≤ N/X .

The total number of edges is therefore O(N2/X). We will use
this information with Lemma 17.

Recall from Theorem 13 that if M = Ω(B2X), then at least
one element is promoted into the cached region in a block of N/X
elements w.h.p.

Therefore, two elements with the same color will have at least
one “splitting element” between them that causes them to have dis-
joint paths outside of the cached region.

At a high level, assume that we have a write-optimized skiplist
with someN active elements. In the very beginning (startup stage),
allow the data structure to fill to some chosen constant size Cmin—
all operations in this stage therefore have constant cost. We set this
as our first N in the following analysis.

We build a conflict graph for some sequence of N ′ operations
such that even if all N ′ operations are deletes, we still have Θ(N)
active elements in the data structure for our amortized analysis.
Thus, N ′ is some constant fraction of N , e.g., N/4. We also stop
the sequence if the size of the data structure falls below Cmin.

Coloring the conflict graph. The analysis of the update cost
based on the conflict graph is done in stages, or epochs, based on
the length of the sequence of operations. At the beginning of a se-
quence we have N active elements. After N ′ operations, we have
some N0 active elements such that N0 = Θ(N). At the end of this
epoch, we set N0 as the new N and repeat.

LEMMA 17. Given an undirected graph G = (V,E), let χ(G)
be the smallest number of colors needed to color the vertices (chro-
matic number). Then χ(G) = O(

√
|E|).

PROOF. Assume that we have fewer than
(
χ(G)

2

)
edges. There

must be two colors that can be merged together, contradicting the
fact that χ(G) is optimal. Therefore, χ(G) = O(

√
|E|).

We can therefore color the keys using O(N/
√
X) colors.

Analysis using color classes. The analysis is similar to the proof
of Theorem 16. We use the grouping technique again with the col-
oring of the conflict graph and bound the number of color classes
with fewer than logB elements.

If a color class has at least logB elements, we can do the analysis
using Chernoff bounds within this color.

We can bound the number of elements for which the “grouped”
analysis is not feasible by O((N logB)/

√
X). For those ele-

ments, we can apply Chernoff bounds naïvely for a total cost of
O
(
N logB√

X
· logN
B1−ε

)
.

Since X = Ω(log4 B), the amortized complexity for the “bad”
elements is O((logBε N)/B1−ε).

At the end of each epoch, start a new conflict graph from scratch.
That is, start with a vertex for each of the N ′′ keys currently in
the data structure and add edges between each pair of keys whose
ranks differ by at mostN/X . Now repeat the analysis process with
N = N ′′. We thus obtain the following:

THEOREM 18 (WRITE-OPTIMIZED INSERTS/DELETES). If
the size of memory M = Ω(B2 log4 B) in a skip list with inserts
and deletes, then with high probability, the amortized insertion
and deletion cost per element is O((logBε N)/B1−ε) w.h.p.

7. CONCLUSION
The write-optimized skip list achieves the asymptotically optimal
I/O bounds of the best write-optimized data structure while retain-
ing the elegance and simplicity of skip lists. The high probabil-
ity bounds are established via extremal graph-coloring arguments
based on the elements’ root-to-leaf paths through the data structure.



We are hopeful that the skip list’s randomized rebalancing will
have practical (as well as theoretical) impact in the burgeoning area
of write-optimization (e.g., as a basis for full-featured production
data structures). We briefly try to articulate why we are so hopeful.

Regular skip lists have formed the basis for concurrent and lock-
free production dictionaries. Part of the reason why is that they
have simpler implementations because they are built out of regular
linked lists.

We believe that write-optimized skip lists will benefit from these
advantages as well. Consider, for example, the node-splitting
mechanisms in write-optimized skip lists versus a B-tree or Bε-tree.
In a write-optimized skip list, node splits and merges are triggered
“on the way down,” i.e., as insert and delete messages make their
way deeper into the structure.

In contrast, in B-trees and Bε-trees, splits are triggered “on the
way up,” once inserts and deletes have reached the leaves. In a con-
current data structure based on locks, it is important to grab locks
according to a prespecified partial order in order to avoid dead-
lock. Naïve “hand-over-hand” locking (grab and release locks as
you walk down the tree to avoid throttling concurrency) is insuffi-
cient to design concurrent B-trees or Bε-trees. If an insert reaches a
leaf and triggers some splits higher up in the tree, the data structure
no longer has the necessary locks higher up in the tree. Industrial
B-trees and Bε-trees generally deal with this concurrency issue by
implementing delayed splitting mechanisms.

For example, when we built TokuDB, we built a mechanism for
delaying splits, letting node sizes grow, and letting future inserts or
deletes take care of the splits. Clearly, this locking issue is solvable,
but the coding seems simpler in a write-optimized skip list.

Similarly, skip lists have been the data structure of choice for
theoretically good, in-production lock-free dictionaries. This is not
only because they are built out of separate linked lists, but also
because of other structural properties (such as level pointers along
the entire level). Perhaps write-optimized skip lists will become the
easiest-to-implement lock-free write-optimized data structures.

In future research, we will perform an implementation study to
explore whether the theoretical advantages revealed in this paper
can lead to benefits for implementers and users.
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