
Improving HTM Scaling with
Consistency-Oblivious Programming

Hillel Avni
Tel-Aviv University

hillel.avni@gmail.com

Bradley C. Kuszmaul
MIT

bradley@mit.edu

Abstract
We implemented two data structures in a consistency-oblivious pro-
gramming (COP) style: a red black tree and a dynamic cache-
oblivious B-tree. Unlike a naive transactional style, in which an
operation such as an insertion is enclosed in a hardware transac-
tion, in a COP-style there are two phases: an oblivious phase that
runs with no transactions or locking, and an atomic phase that sim-
ply verifies that the oblivious phase operated correctly. If the veri-
fication fails, we retry, and then fallback to performing the transac-
tion while holding a lock. We used the Intel hardware transactional
memory instructions to implement the atomic phase. We found that
the COP approach provides a performance improvement of more
than a factor of five over a naive HTM transaction for high thread-
count read-only workloads, and a factor of four for high thread-
count read/write workloads. To achieve good performance when
using HTM, one must distinguish between failures that are likely
to succeed upon retry (for example, a conflict on the lock) from
failures that indicate real conflicts (such as two threads both modi-
fying the data structure).

Keywords HTM, Transactional-Memory, Data-Structures, COP

1. Introduction and Related Work
A transactional-memory (TM) transaction maintains read and write
sets, either by software (in software transactional memory, STM)
or hardware (in hardware transactional memory, HTM). At commit
time, the TM infrastructure must verify the read set is a snapshot,
and update the write set atomically with respect to that snapshot
[6, 7, 12]. Together the read set and write set, can be referred to as
the footprint of a transaction. In HTM, the footprint must typically
fit in hardware cache

Several relaxed consistency approaches [1, 8], exclude non-
relevant addresses from the read set during the transaction. In STM,
these approaches can reduce the transaction footprint, and as a re-
sult, eliminate a portion of the conflicts and the false aborts. How-
ever, every shared memory access remains instrumented. Current
HTM realizations such as the Intel Haswell and the IBM Power
HTM systems maintain their read set in a way which does not al-
low software to access or modify it in any way, which makes these
approaches infeasible.

Consistency oblivious programming (COP) [2] provides one
way to write TM algorithms that use a smaller footprint. In our
version of COP adapted for HTM, a COP-transaction is divided into
two parts: a read-only prefix, and an updating suffix. The prefix runs
without any synchronization and generates a possibly inconsistent
output. The suffix starts a hardware transaction which has two
objectives: verify that the prefix produced an acceptable result, and
perform any writes needed by the COP-transaction.

Our version of COP is similar to STM-based COP, found for ex-
ample in running the read-only prefix outside transaction in [2, 3].

One of the big advantages of STM-based COP is that it reduces
the overhead of STM instrumentation. This benefit is irrelevant to
HTM, which does not have any instrumentation overhead. How-
ever, reducing the footprint of a transaction can make the differ-
ence between whether or not an application must execute a fall-
back code, such as obtaining a global lock. Furthermore, reducing
the footprint of a transaction can reduce the probability that two
separate transactions conflict. For example, sometimes the prefix
can run, and produce an acceptable result, even though the part of
the data structure examined by the prefix was not technically con-
sistent.

COP addresses two important limitations of HTM: the limited
capacity for transactional accesses and the inability to release items
from its read and write sets.

COP reduces the number of memory accesses in the transaction,
and thus make it more likely to fit within the limitations imposed
by hardware. Since the footprint of an HTM transaction must fit
in cache, and caches typically provided limited associativity, pro-
grammers may be surprised that some transactions with small foot-
prints cannot commit. Our experiments show that using COP, we
can compose many operations into a single COP transaction with-
out violating the resources of the hardware, while in a naive HTM
version can handle only a much smaller number of operations.

Since the prefix is run outside of any transaction, it cannot abort,
although it may cause conflicts with other transactions that write to
the locations read by the prefix. Consider, for example, a hundred-
core chip, in which 99 threads run read-only transactions, each of
which queries several keys in million-node red-black tree. A COP
version of this transaction can get away with only holding a small
constant footprint. On the other hand, a naive HTM version of that
same transaction will hold the root of the tree, and the entire path
down the tree. In naive HTM, if the 100th core performs an insert
that requires re-balancing the root, the other 99 will abort. In COP,
rebalancing the root is unlikely to disrupt a COP-transaction that is
still running.

A potential problem in composing multiple COP operation into
a single transaction, is that once the first operation started the trans-
actional part, the other prefixes will run in the context of that trans-
action. In our code, we group all prefixes and then, in a transaction,
we run all the suffixes. However, this limits us to perform updates
only in the last operation of a transaction, otherwise the transaction
will miss its own updates. One open problem is thus how to write
composable COP-style programs.

An upcoming POWER HTM implementation [5] plans to sup-
port a suspended transactional mode, which will permit combin-
ing multiple COP-style updating operations in the same hardware
transaction.

The rest of this paper is organized as follows. Section 2 de-
scribes how we adapted the COP idea to an HTM context. Sec-
tion 3 explains our concurrent red-black tree implemented with

COP Template for Functionκ on GCC-4.8

retry-count = MAX-RETRY;1

κROPOutput←κROP();2

status← xbegin;3
if status = XBEGIN STARTED then4

κVerify(κROPOutput) // xabort (BAD ROP) if fails;5
κComplete(κROPOutput) // Perform updates;6
if locked then7

xabort (WAS LOCKED)8
xend;9

else10
if is explicit(status, WAS LOCKED) then11

goto line 3; // Reuse ROPOutput.12
decrement (retry-count);13
if status 6= XABORT CAPACITY then14

if retry-count > 0 then15
if is explicit(status, BAD ROP) then16

goto line 1; // Retry prefix17
else18

goto line 3; // Reuse ROPOutput.19
end20

lock;21
κ();22
unlock;23

end24

Figure 1: COP Template

COP. Section 4 explains our COP-based cache-oblivious B-tree.
Section 5 presents performance measurements and compares the
various schemes.

2. COP Template
The COP algorithms we developed should work with any HTM
block, but for this paper, we implemented them for the Intel
Haswell RTM, and used the intrinsics xbegin, xend and xabort,
that were introduced in the GCC-4.8. The xend commits a trans-
action, and xabort terminates it with an abort. The xbegin return
an error code. The codes which interest us in the context of COP,
are in the following table:

Code Meaning
XBEGIN STARTED Transaction started.
XABORT CONFLICT There was a conflict with a con-

current transaction.
XABORT CAPACITY Transaction is too large.
XABORT EXPLICIT Software called xabort
XABORT CODE The parameter given in xabort.

2.1 Operation Structure
Let κ (kappa) be a function, which is a sequential operation on
a data structure. The template for a COP version of κ, using the
GCC-4.8 intrinsics, is given in Figure 1.

To adapt κ to COP, we extract the longest read-only prefix of
it into κROP() (line 1). κROP() calculates κROPOutput, in an
unsafe mode, i.e., without any synchronization. ThusκROPOutput
might be inconsistent and wrong, due to conflicts with concurrent
operations.

After calculating κROPOutput, we start a transaction in line
3, and call κVerify(κROPOutput) in line 4. κVerify will call
xabort ifκROPOutput is inconsistent. IfκROPOutput is consis-

tent, we will continue the transaction to runκComplete(κROPOutput).
κComplete(κROPOutput) will use κROPOutput and do any up-
dates, consideringκROPOutput is correct.

Before we try to commit in line 9, we check in line 7 that the
global lock is free. If its locked, we abort with a specific code. We
could sample the lock in the beginning and abort for a conflict in
case some thread grabbed the lock, but this could lead to a false
fallbacks, as a conflict is considered as a retry, while a lock, as seen
in line 12 allows us to reuse the ROP output, and not considered as
a retry.

If the transaction failed and we want to retry, we will reach line
15. If the source of abort was capacity overflow, we do not retry
the transaction, as it will probably fail again. If it was an explicit
abort, i.e., κVerify called xabort, we must rerun κROP to get a
correctκROPOutput, otherwise, the abort was due to a conflict, so
κROPOutput may well be correct, and the transaction has a chance
to commit successfully, thus we can reuse κROPOutput and retry
the HTM transaction. If we have no more retries, we lock and run
κ sequential version.

2.2 Correctness Proof Method
A correct COP version ofκ will be equivalent to locking and run-
ningκComplete(κROP()), which in turn, is equivalent to running
κ in an HTM transaction. To have a correct COP version ofκ, we
need to demonstrate the following:

Property 1. Obliviousness:κROP() completes without faults, re-
gardless of concurrent executions, and will finish in a finite number
of steps if runs alone.

Obliviousness is progress related, as if κROP() will crash or
stuck in an infinite loop, no work will be done. The following two
properties imply that the COP version ofκ is correct.

Property 2. Verifiability: κROPOutput has attributes, that can
be tested locally, and that imply κROPOutput is consistent, and
κVerify is checking these attributes.

Property 3. Separation:κComplete is usingκROPOutput but is
not aware of any other data collected byκROP().

Verifiability imply that the consistency of κROPOutput can
be checked locally, by looking at its attributes. This may require
adding to the sequential κ code, without changing its function-
ality. As the κVerify and κComplete are in the same transac-
tion, we know κROPOutput stays consistent until commit, and as
κComplete runs virtually under a global lock, and according to
Separation, κComplete accesses only consistent data, we have a
linearizable, COP version ofκ.

The system model here is a global lock, i.e., a code segment that
runs in a transaction is semantically protected by a global lock, and
have all its necessary barriers inserted by the hardware TM.

Now, if we want to implement a COP version of a function
φ, we only need to show φROP, φVerify and φComplete. For
example, if we want to demonstrate a COP implementation of an
RB tree Insert function, we will present InsertROP, InsertVerify and
InsertComplete. After creating the COP version, we have to show
it has the three properties described above.

3. COP Red-Black Tree
In Figure 2, we see two concurrent search operations that start a
search for the key 26 in an unbalanced RB-Tree. One is a COP
operation which is doing this read-only prefix in non transactional
context, and the other is a plain TM operation, which is in transac-
tional mode. When both searches reached 27 the tree was balanced
and 27 became the root of the tree. Now the COP search, which is
not in transactional context continues and reaches the leaf which

BALANCEDUNBALANCED

20

3010

27 40

2825

26

27

20

10

30

28 40

25

26
New node

TM fails

COP succeeds

Search is here

Search continues

Figure 2: COP and TM search for key 26 in an RB-Tree

holds 26. Plain TM search on the other hand, which is in transac-
tional context from the start, fails right after balancing. The reason
is that the search traversed the right pointer of 20 in the beginning
of the search, and balancing modified that pointer. In addition, bal-
ancing changed the color of 20 from black to red. As the color and
the pointer are in the same node, and thus probably in the same
cache line, changing the color by itself was enough to fail the TM
search. After COP completes the non transactional search, it will
resume the transaction to verify it got a valid result. Note that when
TM failed, it lost the whole transaction and not only the search for
26 operation. If for example, 26 was a product of a heavy prior op-
eration, that operation is lost as well, while the transaction that used
a COP operation continues.

We ported the COP Red-Black Tree with chained leaves from
[2] to our HTM COP template. Listing 1 shows the code for insert-
ing into a red black tree, using C notation to make the exposition as
close to the real code as practical.

The algorithm for insertion, which was introduced and proved in
[2], looks for a keyK and returns a nodeN . If K is found,N holds
K. Otherwise N is a leaf which is either the potential predecessor
or successor of K. If N is the potential predecessor, K should be
inserted in its right pointer, which must be NULL, and if N is the
potential successor, K should be inserted in its left pointer which
must be NULL.

The code first performs the read-only prefix with no locking
or synchronization (at line 4). We employ a type-preserving node
recycler of the node, and keep the nodes within the same tree,
so that arbitrary pointers will not lead us to undefined memory,
which could crash our code or fool it with locations which look
like valid nodes, but are not. Our RB-Tree implementation recycles
nodes within a thread, and if a thread accumulates more then a
threshold of idle nodes, it uses an epoch based memory reclamation
[9] scheme to free them.

The verification performs a straightfoward lookup, as shown in
Listing 2.

Returning to Listing 1, the code next waits until the tree is not
locked (at line 6). The fallback code acquires a mutex on the tree.
As we shall see, to make progress we will require that the lock is not
held, so there is no point in trying to start a transaction to operate
on the tree until the lock is released.

Next, the code begins a transaction (at line 7). The _xbegin()
function either returns _XBEGIN_STARTED, in which case the code is
running in a transaction, or the system attempted the transaction
and failed, and status tells us something about why it failed.

In the case that we are running the transaction, we must finish
the insertion. Since the read-only prefix ran without any synchro-
nization, it could yield an inconsistent result and we must verify its
correctness (at line 10). The verification code, shown in Listing 3,

1 void rb_insert(RBT *s, int K, int V) {
2 int retry_count = 0;
3 retry:
4 node_t *place = RBROP(t, K);
5 retry_verify:
6 while (tree_locked) pause();
7 int status = _xbegin ();
8 if (status == _xBEGIN_STARTED) {
9 RBVerify(place , K);

10 RbInsertComplete(t, K, V, place);
11 if (tree_locked) _xabort(WAS_LOCKED);
12 _xend();
13 } else {
14 if (is_explicit(status , WAS_LOCKED))
15 // Lock was held. Always try again.
16 goto retry_verify;
17 // Other failures prejudice us.
18 // Allow only RETRY_COUNT retries.
19 if (retry_count ++ RETRY_COUNT) {
20 if (is_explicit(status , BAD_ROP))
21 // Must redo the whole prefix
22 goto retry;
23 if (can_retry(status))
24 goto retry_verify;
25 }
26 // Fallback code.
27 lock_tree ();
28 place = RBROP(t, K);
29 RBInsertComplete(t, K, V, place);
30 unlock_tree ();
31 }
32 }

Listing 1: RBInsertComplete function.

33 node_t* RBROP(RBT *s, int K) {
34 node_t * p = s - root;
35 node_t *pp = NULL;
36 while (p != NULL) {
37 if (K == p - k) return p;
38 pp = p;
39 p = (K p - k) ? p - l : p - r;
40 }
41 return pp;
42 }

Listing 2: RB-Tree COP Lookup (ROP)

checks that the node is the right place to insert a keyK. To facilitate
the verification, we always insert two sentinel nodes with the keys
∞ and -∞. The node must exist and be allocated (lines 46–47). If
the node has a key matchingK then we’ve got a good result. Other-
wise, the previous node must have a smaller key and the next node
must have a larger key. Furthermore, if the node has a key larger
than K then there must be no left child (line 49), otherwise there
must be no right child. If the verification fails, it calls _xabort() to
explicitly abort the transaction with a code indicating that the verifi-
cation failed.. If the verification succeeds, we call code to complete
the insertion at line 10. Finally we check to see if the tree is locked
If it is, then some other code may be modifying the data structure
in a way that is inconsistent with our transaction. In this case, we
explicitly abort with a code indicating that the lock was held.

Because the tree has the sentinel nodes, there is no need to check
predecessor and successor pointers are not NULL. When the tree is
empty, for example at the first insertion, the verification will fail
by following a NULL, and eventually fallback to the lock and skip
the verification. This is acceptable, as it will happen once, and once
for the other sentinel node, as the predecessor will be NULL, and
never happen again. On the other hand, it saves conditions in the
rb rop verify which is called frequently.

43 #define BAD_ROP 1
44 inline void RBVerify(node_t* p, int K) {
45 node_t *next;
46 if (!p) _xabort(BAD_ROP);
47 if (!p - live) _xabort(BAD_ROP);
48 if (p - k != K) {
49 if (p - k K) {
50 if (p - l != NULL) _xabort(BAD_ROP);
51 if (p - prev - k = K) _xabort(BAD_ROP);
52 } else {
53 if (p - r != NULL) _xabort(BAD_ROP);
54 if (p - succ - k = K) _xabort(BAD_ROP);
55 }
56 }
57 }

Listing 3: RB-Tree COP ROP Verify

In the case that the transaction failed, there are four interesting
kinds of failures handled in the else clause at line 13.

• The transaction could have failed because the lock was held.
In this case, at line 14 we always retry the transaction, since
when the lock is released, we have every reason to hope that
our transaction will succed.

• The transaction could have failed because the read-only-prefix
gave a bad answer. In this case, at line 22, we retry a limited
number of times, since we know there are actually conflicts
occuring from other transactions in the tree.

• The transaction could have failed in some other a way that
gives us hope that retrying will help. It turns out that almost
all failures have a chance of succeeding on retry, even failures
marked as failing because the buffers overflowed (capacity). At
line 24 we retry if the status has the retry bit set, if it has the
capacity bit set, or if the status is zero incication some other
failure (such as a time slice interrupt occured).

• Finally either we have exhausted our retry budget or we believe
that retrying won’t be helpful for some other reason, and at
lines 27–30 we throw in the towel: we lock the tree, redo the
prefix, complete the insertion, and unlock the tree.

We don’t show the code for completing an insertion or deletion.

3.1 Correctness
We assume there is some safe memory reclamation, which ensures
a node is not recycled until all tasks which access it terminate [9]. In
addition, when we recycle a node we set the left and right pointers
to NULL, as well as the live field to false, so there are no cycles in
the garbage nodes. We need to show our COP version of RB tree
has the three correctness properties.

Lemma 1. RBROP has the Obliviousness property.

Proof. As the HTM transaction and the fallback path, have global-
lock semantics, ROP sees only pointers that were part of the tree.
Thus, when it reaches a node N, either N is in the tree, and then
there is a finite path from N to a leaf or N was in the tree and was
removed in a deletion. As a result, after a finite number of solo
steps, ROP will reach a leaf or a deleted node.

ROP stops when it sees a NULLpointer. All pointers exiting a leaf
or a deleted node are NULL, thus, ROP will stop after a finite number
of solo steps.

As ROP visit nodes that are either deleted or in the tree, they
will point to NULLor to a valid node, and in both cases ROP will
not hit uninitialized pointers or unallocated memory and will not
crash.

When a ROP for tree T and key K completes, it returns a node
N and a flag F .

Lemma 2. N , F and RBVerify have the Verifiability property.

Proof. If N is live and holds K, we know it is part of T and has the
correct key.

If N is live and holds key K1, and N points to successor S which
holds key K2, and K1 > K > K2, we know K is not in the tree,
and K1 is the closest key to K from above. This is true, because
the successor-predecessor doubly linked list is accessed only in
transactions, and thus must be consistent. If N→l is NULL, we know
we can encapsulate K in a node and connect it as N left son. The
case we got the successor is symmetric.

It is left to prove that the completion is not using values seen
during the ROP:

Lemma 3. RBInsertComplete has the Separation property.

Proof. The parameters for both RBInsertComplete are the global
pointer to the tree, which is constant, and a pointer to the node and
flag which are the output of ROP and are verified. As the ROP ran in
a separate function than the complete, and did not write any global
data, the only information it can pass to the complete function is
the parameters.

The same way, with trivial modifications, we can show the
delete has the above properties.

As we proved all COP RB-Tree functions have the Oblivious-
ness, Verifiability and Separation properties, in conclusion, we
have shown the following.

Theorem 1. COP RB-Tree is linearizable.

4. Cache-Oblivious B-Tree
We also tested a dynamic cache-oblivius B-tree (COBT) [4]. A
COBT comprises two parts: a packed memory array (PMA) and
an index tree. The PMA holds all of the key-value pairs in a sorted
array with some empty slots. By judiciously leaving empty slots in
the array, the average cost of an insertion or deletion can be kept
small.

The index tree is a uniform binary tree. Rather than providing
a binary tree to index every element of the PMA, a COBT indexes
sections of the PMA. The COBT partitions the PMA into sections,
typically of size about log2N for an array of size N . Thus, the
index tree is of size about N/ log2N .

The index tree is stored in an array. Unlike the usual breadth-
first ordering of a tree, in which a node stored at index i has children
at indexes 2i+1 and 2i+2, the COBT employs a Van Emde Boas
order in which the index calculations are a little more complex: the
layout recursively lays out the top half of the tree in the array (that
is of size approximately

√
N), and then recursively lays out each

of
√
N subtrees in the bottom of half of the tree, one after another.

We used code from [11].
Figure 3 shows an example COBT containing 18 elements in an

array of size 32. At the bottom of the figure is a PMA containing
values, which are the letters ’A’, ’C’, ’F’, ’G’, etc. In this example,
the sections are of size 2, but in a real implementation the sections
are typically larger. Shown in the middle of the figure is the index
tree. Each node of the index tree is shown with a dotted line that
shows how the node partitions the array into left and right. The
node contains the largest element in the left of the partition, so that
for example the root node contains an ’N’ indicating that the left
half of the array contains elements that are all less than or equal to
’N’. The right child of the root contains ’U’, indicating that the left
3/4ths of the array contains values less than or equal to ’U’.

To understand the Van Emde Boas layout, notice that the top
half of the tree contains ‘N’, ‘H’, and ‘U’, and there are four
subtrees rooted at ‘F’, ‘L’, ‘R’, and ‘W’ respectively. First the top
tree is laid out (‘N’, ‘H’, ‘U’), then each subtree is laid out starting
with ‘F’, ‘C’, and ‘G’.

The advantage of a COBT is that it can perform insertions and
deletions in amortized timeO(logB N) without knowing the cache
line size B. Thus this data structure is optimal and cache oblivious.
Although the average cost is low, our implementation has a worst-
case insertion cost of O(n). It turns out that one can build a COBT
in which the worse-case cost is also O(logB N), but we haven’t
implemented it.

To search for a key-value pair in a COBT, first traverse the index
tree to find the section in which the pair may reside, then perform a
linear search through the section to find the key.

To insert a key-value pair into a COBT, first find the location
where the pair belongs as though for a search. If there is already a
matching key, then replace the value. Otherwise slide pairs slightly
to the left or right, if needed, to make a space for the new pair, and
store the pair.

To convert to the COP style, we add a global lock, which is used
for the fallback code: If a COP transaction fails, grab the lock and
perform the operation.

The (hopefully) common case, when a COP transaction suc-
ceeds operates as follows.

The read-only prefix identifies the key’s location (without hold-
ing the lock). The memory allocation is simpler than for the red-
black tree, since the data structure comprises two arrays. The only
time that a pointer changes would be if the array were reallocated.
We allocate big enough arrays that the arrays are never reallocated,
and rely on the operating system’s lazy memory allocation scheme
to avoid using more physical memory than we need. This works
fine on a 64-bit machine, where we can afford to waste part of the
virtual address space.

The verification step has two cases:

1. For a successful search (the key was found), we check that the
key we want is in the location returned.

2. For a search of an object that is not present, we scan to the left
and right of the identified location to find the first nonempty
slot, and verify that the search key is greater than and less than
the respective nonempty slot keys. The data structure maintains
the invariant that each section is nonempty, so the scan to the
left and to the right is guaranteed to look at only O(log2N)
slots, and require only O((log2N)/B) cache misses.

Just as for the red-black tree, we must take care about to perform
retries. We check that the tree is not locked before attempting a
transaction (which will verify that the lock is not held). If the
transaction aborts because the lock was held, we always retry.
Otherwise we retry a few times (each time waiting for the lock
to free before retrying). If the verification fails, we must redo
the prefix. To execute multiple query operations within a single
transaction, one accumulates all the verification steps and performs
them at the end.

For lack of space, we do not include here a proof that COBT is
linearizable.

Debugging transactions is painful. We’d like to get some in-
formation out of the transaction besides the abort code. The abort
code seems useless except for the case of explicit aborts. The other
codes, such as conflict and capacity all seem to call for retrying the
transaction.the same. For example, conflict misses sometimes work
on retry, and sometimes the retry status is zero, which we suspect
is caused by a TLB miss or an interrupt.

58 volatile int dummy;
59 int test (volatile char *A, int stride) {
60 for (int txsize =1; 1; txsize ++) {
61 for (int trial =0; trial 2 0 ; trial ++) {
62 int sum=0;
63 for (int i=0; i txsize; i++) {
64 sum+=A[i*stride];
65 if (_xbegin () == _XBEGIN_STARTED) {
66 A[0]++;
67 for (int i=0; i txsize; i++) {
68 sum+=A[i*stride];
69 _xend();
70 dummy=sum;
71 goto next_txsize;
72 }
73 }
74 // 20 trials failed.
75 // Return the last txsize that worked.
76 return txsize -1;
77 next_txsize :;
78 }
79 }

Listing 4: Code for determining the capacity of a transaction.

5. Evaluation
We use a Core i7-4770 3.4 GHz Haswell processor, running Linux
3.9.1-64-net1 x86 64. This processor has 4 cores, each with 2
hyperthreads, and hyperthreads enabled. Each core has a private
32KB 8-way associative level-1 data cache and a 256KB 8-way
level-2 data cache. The chip further includes a shared 8MB level-3
cache. The cache lines are all 64-bytes.

The TLB may also affect the success of a transaction. In
Haswell, the level 1 data TLB has 64 entries, 4-way associative
and the level 2 unified data/instruction TLB has 1024 entries, 8-
way associative [10].

All benchmarks code was written in C and compiled with GCC-
4.8. We use HTM intrinsics that were introduced in that compiler
version.

Before we evaluate our algorithms,we want to better understand
the behavior of the HTM in practice. We initiate a test that reads
cache lines from a practically infinite array. We read the array with
power-of-two strides, i.e., we read a byte, skip a number of bytes,
read the next one, and so forth.

We found that if a transaction is read-only and the data is
already in level 3 cache, the system can accommodate very large
transactions. However, if there is even one instance of an address
that is written and then read, the capacity drops to level-1 cache
size, and is bounded by level-1 associativity. Since we expect most
transactions to perform a write, the meaningful transaction size is
whatever fits in level-1 cache.

Listing 4 shows the code for testing transaction size. One prob-
lem we faced on these experiments was to make sure the compiler
does not optimize our loop away. We declared dummy and A to be
volatile to convince the compiler that our needs to run. In each
transaction we perform one read-after-write as in line 66.

It turns out that if you write to a different location, you get
strange artifacts. For example if you write to A[128], then for
strides of 128 and less, the size is limited by level 1 cache, but
strides of 256 and larger do not read the written value, and the limit
appears to be from level 2 or level 3 cache. The blue line in Figure 4
shows what happens in this case, as the capacity drops from 32KB
as expected until the stride equals 27, and then for a stride of 28,
the capacity jumps up again.

Figure 4 shows the size of the largest observed transaction with
a given stride. For 64-byte stride (that is one cache line), we manage
to access about 512 different cache lines in a successful transaction.

C

F

G

H

J

L

M P

R

S

U

V

W

X

N H U F C G XL J M R P S W V

HA C F J L MG N P Q R S U V W X Z

N
Index tree logical layout

Index tree physical layout

PMA

Figure 3: An example dynamic cache-oblivious B-tree. The bottom array is a PMA containing values. The middle tree is an index structure
on the array. Each node of the tree contains the largest value to the left of the node. The top array shows the same index tree stored using a
Van Emde Boas physical layout.

 32

 128

 512

 2048

 8192

 32768

20 23 26 29 212 215 218 221

A
ss

oc
ia

tiv
ity

-l
im

ite
d

ca
pa

ci
ty

stride in bytes

A[0]++

A[128]++

Figure 4: Associativity limits on Haswell HTM capacity obtained
by measuring a read-only transaction that accesses a sequence of
memory locations with a particular stride. The horizontal axis is
the stride of the access. The vertical axis is the number size of the
largest transaction that succeeds. The black line shows what hap-
pens when we write to location A[0] at the beginning of the trans-
action. The blue line shows what happens if we write to A[128] at
the beginning of the transaction.

This is what we expected, since level-1 data cache has 512 cache
lines. Since level 1 is 8-way set associative, we expect to get at
least 8 accesses, for any stride size. When we double the stride, we
expect the number of accesses in a successful transaction to be the
maximum of CacheSize/(CacheLine∗Stride) and 8, which is what
Figure 4 shows.

To generate the data in Figure 4, we run the a given transaction
several times. Each time, before running the transaction we perform
all the reads (at lines 63–64) so that the cache will start out holding
as much of the relevant data as we can fit. If the xbegin returns
success, then we try a bigger transaction. Otherwise we repeat and
after 20 failures we consider ourselves to have found the largest
transaction that we can run with that stride.

5.1 RB-Tree Performance
COP reduces the number of capacity and conflict aborts in HTM.
To demonstrate these facts better on an RB-Tree, we needed to cre-
ate more complex tests, because the RB-Tree operations have natu-
rally low contention and, at least for small trees, simple transactions

usually succeed. Although these tests are synthetic, they represent
important scenarios.

Capacity: We combine multiple operations, to challenge the
capacity of the HTM buffer. In the COP template in Figure 1, we
see that if a transaction gets a capacity abort. it will take a lock and
not retry. This means that the number of capacity aborts is bound
by the number of successful transactions.

On a single thread, if a transaction will get the capacity abort
early, it will take the global lock and lose some performance,
however, in a parallel execution, the global lock will eliminate
scalability of the performance. To make the results more readable,
we count successful operations and not successful transactions, by
multiplying the number of successful transactions by the number of
operations per transaction. If we got a capacity abort, we also count
it as the number of operations in that transaction, as it would mean
this number of operations now will run under a global lock.

In Figure 5 we see a read-only workload, where the x axis is the
number of operations per transaction. We can see the COP version
manages to maintain almost the same bandwidth of operations, up
to 32 operations per transaction and much more, while the naive
HTM version hits capacity limit quickly. Note conflicts can not be
a factor in this workload as it is read only. Also, if conflicts were
the reason for locking, we would not see the capacity aborts line
at the operations count line. Another important insight is that for
single operation transaction on a small tree, capacity aborts seldom
occur.

In Figure 5a we run one thread, in Figure 5b we run four and
in Figure 5c eight, and as expected, the more threads we use the
higher the advantage of COP. The simple reason is that capacity
aborts force naive HTM to fallback to global locking, which makes
it unscalable, while virtually all COP operations complete success-
fully within an HTM transaction.

Another insight is that on one and four threads, naive HTM is
scalable up to 16 operations per transaction, while on eight it is
scalable only to 8. The reason is hyperthreading, where each thread
from the eight, is sharing the cache with another thread on the same
core, so available capacity for HTM is cut to half.

Conflicts: An RB-Tree has low contention, so to demonstrate
how COP reduces conflicts we devised a variation of the insert that
writes arbitrary data to the value field in the root node, as well as
inserting the key in the tree. The value is in the same cache line with
the pointers and the key, so any concurrent transaction which will
traverse the root will have to abort. In Figure 6 we see a workload
with 20% such inserts. In a single and two threads, we can see

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 8 12 16 20 24 28 32

M
 o

ps
 /

se
c

operations per transaction

op
cap

cop-op
cop-cap

(a) One thread.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

1 2 4 8 12 16 20 24 28 32

M
 o

ps
 /

se
c

operations per transaction

op
cap

cop-op
cop-cap

(b) Four threads.

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 12 16 20 24 28 32

M
 o

ps
 /

se
c

operations per transaction

op
cap

cop-op
cop-cap

(c) Eight threads.

Figure 5: RB-Tree Benchmark, with various number of read-only opera-
tions per transaction. We compare a simple HTM with COP, and count total
number of operations and not transactions (op for simple HTM and cop-op
for COP operations). We also show number of capacity aborts (cap for sim-
ple HTM and cop-cap for COP operations), to demonstrate that they are the
reason of COP better performance. We present graphs for 1, 4 and 8 threads.
The tree is initially populated with 100K nodes.

COP has the performance of naive HTM, but then naive HTM stops
scaling while COP version keeps climbing. The reason is conflict
aborts, which are accumulating from 3 threads for naive HTM
while COP does not suffer from conflicts at all. All the transactions
are of a single operation, so capacity aborts are insignificant as seen
in Figure 5.

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8

M
 o

ps
 /

se
c

threads

op
conf

cop-op
cop-conf

(a) Various threads, single operation per transaction, 20% insert operations
that change value in root, 20% deletes, 60% lookups. Counting operations
and conflict aborts.

Figure 6: An RB-Tree Benchmark, comparing COP and simple HTM.
Counting operation (op for simple HTM and cop-op for COP operations),
and conflict aborts (conf, cop-conf). We do not show capacity aborts, as
Figure 5 shows capacity aborts number for a single operation transactions
are negligible. We have a lot of conflicts in the simple HTM, as each
updating transaction is also writing a value in the root of the tree, which
does not distract COP. Each HTM transaction is retried up to 20 times before
locking. The tree is initially populated with 100K nodes.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35

M
 o

ps
/s

ec

operations per transaction

cop ops (8 threads)
cop ops (1 thread)
htm ops (1 thread)

htm ops (8 threads)

Figure 7: PMA performance for read-only operations on a PMA,
for COP and naive HTM for 1 thread and 8 threads. The horizontal
axis is the number of searches within a single transaction. The ver-
tical axis is the performance (more is better), measured in number
of successful searches per second. Each configuration was run ten
times. The error bars show the slowest, the fastest, and the average
runtime (through which the curve passes).

5.2 PMA Performance
Figure 7 shows the read-only performance of the PMA running
both with naive HTM and with COP, for 1 thread and 8 threads.
The error bars are negligible for all the runs except the 8-thread
COP version, which shows more than 30% variation in runtime.
The figure shows the number of successful searches per second,
whether the searches were done with HTM or with a lock. The
naive HTM code is running with virtually every successful search
being performed by the fallback code holding the global lock. Thta
is, there are essentially no successful HTM searches in the 8-thread
runs. We believe that this poor performance is a result of cache
associativity: the array is always a power of two in size, and a
binary search on the array hits the same cache line repeatedly. A

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

M
 o

ps
/s

ec

operations per transaction

COP (8 threads)

COP (1 thread)
Naive HTM (1 thread)

Naive HTM (8 threads)

Figure 8: Cache Oblivious B-Tree performance for read-only work-
loads on a tree containing 100,000 values. The horizontal axis is the
number of searches within a single transaction. The vertical axis is
performance, measured in number of successful searches per sec-
ond. The error bars show the slowest, the fastest, and the average.

binary search on a one-million element array requires 20 cache
lines, 9 of which are on different pages, and 9 of which all reside
in the same associativity set, and so even single searches often fail
under HTM. The COP code runs between almost exclusively with
transactions succeeding in the suffix code, rather than with locks.

The naive HTM version usually fails due to capacity problems
when the threadcount equals one. For larger threadcounts, there are
a mix of capacity aborts, conflict aborts, and explicit aborts trig-
gered by the suffix code failing validation. For the explicit aborts,
we used the 24-bit abort code available in the Intel xabort instruc-
tion to determine why the abort happened. Usually the transaction
failed because the lock was held. Basically, the transactions failed,
the code reverted to the fallback code which grabbed the lock, and
then the system was never able to get back into transaction mode,
because the lock prevents any transaction from succeeding. This
runaway lock problem appears tricky: one way to attack runaway
locks is to use backoff, but it is not clear how to do this to get the
system back into an HTM mode. In the case of the naive HTM
code, it’s not clear that there is any alternative, since the transac-
tions usually fail due to capacity.

Under COP, the performance achieved is much better. The veri-
fication step typically needs to look at only one cache line.

We do not yet have PMA measurements for a mixed read/write
workload, but expect to have that for the final paper.

5.3 Cache-Oblivious B-Tree Performance
Figure 8 show the performance of the COBT on a 100,000-node
tree. As we can see, the COP implementation outperforms the
Naive version both for single threaded and multithreaded work-
loads. For single threaded workloads, the COP behavior remains
essentially flat at about 3.1Mop/s. On single threads, Naive HTM
does about the same on average, but has some slow outliers which
are about half as fast.

For an 8-threaded workload, the Naive HTM starts quite well for
a single query per transaction, but then performance collapses. The
COP approach achievs between 10 and 13.5Mop/s. The largest
speedup seen is about 4.4 compared with a single thread.

Single threaded COBT is a little faster than the PMA without
the index tree, and multithreaded COBT is on average similar to
the PMA, with much higher variance.

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

M
 o

ps
/s

ec

threads

COP

Naive HTM

Figure 9: Cache Oblivious B-Tree performance for read-only work-
loads on a tree containing 100,000 values performing 32 searches
per transaction. The horizontal axis is the number of threads. The
vertical axis is performance, measured in number of successful
searches per second. The error bars show the slowest, the fastest,
and the average.

We found that 1,000,000-element trees, the graphs were similar,
but that the naive transactions essentially never succeed for more
than 15 lookups per transaction.

Figure 9 shows for 32 searches per transaction how the perfor-
mance of COP and Naive HTM varies with the number of threads.
COP dominates HTM, and interestingly HTM has high variance
when it works well (sometimes giving very poor perforamnce),
whereas until the thread count becomes relatively as large as the
number of hardware threads, the COP has little variance. The COP
variance at high threads is a good kind of variance: sometimes
it runs much faster (getting near linear speedup), rather than the
HTM’s variance which makes it sometimes run much slower.

6. Conclusions
We show COP can make HTM useful in scenarios and data struc-
tures which it could not improve in its simple usage pattern.

The PMA is an important part of the infrastructure of some lead-
ing in-memory data bases. Without COP, HTM can not complete
even a single lookup operation on a quite small, 1M size data-base.
With COP, we produce an almost perfectly scalable PMA.

Combining operations is a key feature of TM, and in plain HTM
it is limited. For single operations, there are efficient algorithms in
the literature, while composing the operations scalably, is the con-
tribution of TM. We show COP greatly improves the scalability of
transactions that compose red-black tree operations. It also allows
writing values in in the root, as we do in another benchmark. This
can be useful, for example, to count the population of the tree. Yet,
in plan HTM, keeping this data in the root, will abort all read-only
transactions that are concurrent with an update, while With COP,
all the read-only transactions can complete successfully.

References
[1] Y. Afek, A. Morrison, and M. Tzafrir. Brief announcement: view

transactions: transactional model with relaxed consistency checks. In
PODC, pages 65–66, 2010.

[2] Y. Afek, H. Avni, and N. Shavit. Towards consistency oblivious
programming. In OPODIS, pages 65–79, 2011.

[3] H. Avni, N. Shavit, and A. Suissa. Leaplist: lessons learned in design-
ing tm-supported range queries. In PODC, pages 299–308, 2013.

[4] M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-oblivious
B-trees. SIAM J. Comput., 35(2):341–358, 2005.

[5] H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and H. Le.
Robust architectural support for transactional memory in the power
architecture. In ISCA, pages 225–236, 2013.

[6] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: streamlining
STM by abolishing ownership records. In PPOPP, pages 67–78, 2010.

[7] D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In DISC,
pages 194–208, 2006.

[8] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions. In DISC,
pages 93–107, 2009.

[9] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole. Performance
of memory reclamation for lockless synchronization. J. Parallel Dis-
trib. Comput., 67(12):1270–1285, 2007.

[10] D. Kanter. Intel’s Haswell CPU microarchitecture, 13 Nov. 2012.
http://www.realworldtech.com/haswell-cpu/5/.

[11] Z. Kasheff. Cache-oblivious dynamic search trees. M.eng. the-
sis, MIT, June 2004. http://people.csail.mit.edu/bradley/
papers/Kasheff04.pdf.

[12] N. Shavit and D. Touitou. Software transactional memory. Distributed
Computing, 10(2):99–116, 1997.

