Multithreaded Programming in Cilk

LECTURE 1

Charles E. Leiserson

Supercomputing Technologies Research Group
Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cilk

A C language for programming dynamic multithreaded applications on shared-memory multiprocessors.

Example applications:

- virus shell assembly
- graphics rendering
- n-body simulation
- heuristic search
- dense and sparse matrix computations
- friction-stir welding simulation
- artificial evolution
In particular, over the next decade, chip multiprocessors (CMP’s) will be an increasingly important platform!
Cilk Is Simple

• Cilk extends the C language with just a handful of keywords.
• Every Cilk program has a serial semantics.
• Not only is Cilk fast, it provides performance guarantees based on performance abstractions.
• Cilk is processor-oblivious.
• Cilk’s provably good runtime system automatically manages low-level aspects of parallel execution, including protocols, load balancing, and scheduling.
• Cilk supports speculative parallelism.
Minicourse Outline

● **LECTURE 1**
 Basic Cilk programming: Cilk keywords, performance measures, scheduling.

● **LECTURE 2**
 Analysis of Cilk algorithms: matrix multiplication, sorting, tableau construction.

● **LABORATORY**
 Programming matrix multiplication in Cilk — Dr. Bradley C. Kuszmaul

● **LECTURE 3**
 Advanced Cilk programming: inlets, abort, speculation, data synchronization, & more.
Lecture 1

• Basic Cilk Programming
• Performance Measures
• Parallelizing Vector Addition
• Scheduling Theory
• A Chess Lesson
• Cilk’s Scheduler
• Conclusion
Fibonacci

int fib (int n) {
 if (n<2) return (n);
 else {
 int x,y;
 x = fib(n-1);
 y = fib(n-2);
 return (x+y);
 }
}

Cilk code

Cilk is a faithful extension of C. A Cilk program’s serial elision is always a legal implementation of Cilk semantics. Cilk provides no new data types.
Basic Cilk Keywords

Identifies a function as a \textit{Cilk procedure}, capable of being spawned in parallel.

The named \textit{child} Cilk procedure can execute in parallel with the \textit{parent} caller.

Control cannot pass this point until all spawned children have returned.

```
cilk int fib (int n) {
    if (n<2) return (n);
    else {
        int x,y;
        x = spawn fib(n-1);
        y = spawn fib(n-2);
        sync;
        return (x+y);
    }
}
```
Dynamic Multithreading

```
cilk int fib (int n) {
  if (n<2) return (n);
  else {
    int x,y;
    x = spawn fib(n-1);
    y = spawn fib(n-2);
    sync;
    return (x+y);
  }
}
```

Example: \texttt{fib(4)}

"Processor oblivious"

The computation dag unfolds dynamically.
Multithreaded Computation

- The dag $G = (V, E)$ represents a parallel instruction stream.
- Each vertex $v \in V$ represents a (Cilk) thread: a maximal sequence of instructions not containing parallel control (spawn, sync, return).
- Every edge $e \in E$ is either a spawn edge, a return edge, or a continue edge.
Cactus Stack

Cilk supports C’s rule for pointers: A pointer to stack space can be passed from parent to child, but not from child to parent. (Cilk also supports `malloc`.)

Cilk’s *cactus stack* supports several views in parallel.
LECTURE 1

• Basic Cilk Programming
• Performance Measures
• Parallelizing Vector Addition
• Scheduling Theory
• A Chess Lesson
• Cilk’s Scheduler
• Conclusion
Algorithmic Complexity Measures

\[T_P = \text{execution time on } P \text{ processors} \]
Algorithmic Complexity Measures

\[T_P = \text{execution time on } P \text{ processors} \]

\[T_1 = \text{work} \]
Algorithmic Complexity Measures

\[T_P = \text{execution time on } P \text{ processors} \]

\[T_1 = \text{work} \]

\[T_\infty = \text{span}^* \]

* Also called *critical-path length* or *computational depth*.
Algorithmic Complexity Measures

\[T_P = \text{execution time on } P \text{ processors} \]

\[T_1 = \text{work} \]

\[T_\infty = \text{span}^* \]

LOWER BOUNDS

- \[T_P \geq T_1/P \]
- \[T_P \geq T_\infty \]

Also called critical-path length or computational depth.

\[*\text{Also called critical-path length or computational depth.} \]
Speedup

Definition: $T_1/T_P = \text{speedup}$ on P processors.

If $T_1/T_P = \Theta(P) \leq P$, we have \textit{linear speedup};

= P, we have \textit{perfect linear speedup};

> P, we have \textit{superlinear speedup},

which is not possible in our model, because of the lower bound $T_P \geq T_1/P$.
Parallelism

Because we have the lower bound $T_P \geq T_\infty$, the maximum possible speedup given T_1 and T_∞ is $T_1/T_\infty = \text{parallelism} = \text{the average amount of work per step along the span.}$
Example: \texttt{fib}(4)

Assume for simplicity that each Cilk thread in \texttt{fib()} takes unit time to execute.

\textit{Work:} \(T_1 = 17 \)

\textit{Span:} \(T_\infty = 8 \)
Example: \texttt{fib(4)}

Assume for simplicity that each Cilk thread in \texttt{fib()} takes unit time to execute.

\textbf{Work:} \(T_1 = 17 \)
\textbf{Span:} \(T_\infty = 8 \)
\textbf{Parallelism:} \(\frac{T_1}{T_\infty} = 2.125 \)

Using many more than 2 processors makes little sense.
Lecture 1

• Basic Cilk Programming
• Performance Measures
• Parallelizing Vector Addition
• Scheduling Theory
• A Chess Lesson
• Cilk’s Scheduler
• Conclusion
Parallelizing Vector Addition

C

```c
void vadd (real *A, real *B, int n)
{
    int i; for (i=0; i<n; i++) A[i]+=B[i];
}
```
Parallelizing Vector Addition

```c
void vadd (real *A, real *B, int n){
    int i; for (i=0; i<n; i++) A[i]+=B[i];
}
```

```c
void vadd (real *A, real *B, int n){
    if (n<=BASE) {
        int i; for (i=0; i<n; i++) A[i]+=B[i];
    } else {
        vadd (A, B, n/2);
        vadd (A+n/2, B+n/2, n-n/2);
    }
}
```

Parallelization strategy:
1. Convert loops to recursion.
Parallelizing Vector Addition

C

```c
void vadd (real *A, real *B, int n) {
    int i; for (i=0; i<n; i++) A[i] += B[i];
}
```

Cilk

```c
void vadd (real *A, real *B, int n) {
    if (n <= BASE) {
        int i; for (i=0; i<n; i++) A[i] += B[i];
    } else {
        vadd (A, B, n/2);
        vadd (A+n/2, B+n/2, n-n/2);
    }
    sync;
}
```

Parallelization strategy:
1. Convert loops to recursion.
2. Insert Cilk keywords.

Side benefit:
D&C is generally good for caches!
Vector Addition

cilk void vadd (real *A, real *B, int n) {
 if (n<=BASE) {
 int i; for (i=0; i<n; i++) A[i]+=B[i];
 } else {
 spawn vadd (A, B, n/2);
 spawn vadd (A+n/2, B+n/2, n-n/2);
 sync;
 }
}
Vector Addition Analysis

To add two vectors of length n, where $\text{BASE} = \Theta(1)$:

Work: $T_1 = \Theta(n)$

Span: $T_\infty = \Theta(\lg n)$

Parallelism: $T_1/T_\infty = \Theta(n/\lg n)$

BASE
Another Parallelization

C

```c
void vadd1 (real *A, real *B, int n){
    int i; for (i=0; i<n; i++) A[i]+=B[i];
}
void vadd (real *A, real *B, int n){
    int j; for (j=0; j<n; j+=BASE) {
        vadd1(A+j, B+j, min(BASE, n-j));
    }
}
```

Cilk

```cilk
void vadd1 (real *A, real *B, int n){
    int i; for (i=0; i<n; i++) A[i]+=B[i];
}
void vadd (real *A, real *B, int n){
    int j; for (j=0; j<n; j+=BASE) {
        spawn vadd1(A+j, B+j, min(BASE, n-j));
    }
    sync;
}
```
Analysis

To add two vectors of length n, where $\text{BASE} = \Theta(1)$:

Work: $T_1 = \Theta(n)$

Span: $T_{\infty} = \Theta(n)$

Parallelism: $T_1/T_{\infty} = \Theta(1)$
Optimal Choice of BASE

To add two vectors of length n using an optimal choice of BASE to maximize parallelism:

Work: $T_1 = \Theta(n)$

Span: $T_\infty = \Theta(BASE + n/BASE)$

Choosing $BASE = \sqrt{n} \Rightarrow T_\infty = \Theta(\sqrt{n})$

Parallelism: $T_1/T_\infty = \Theta(\sqrt{n})$
LECTURE 1

• Basic Cilk Programming
• Performance Measures
• Parallelizing Vector Addition
• Scheduling Theory
• A Chess Lesson
• Cilk’s Scheduler
• Conclusion
Scheduling

• Cilk allows the programmer to express potential parallelism in an application.

• The Cilk scheduler maps Cilk threads onto processors dynamically at runtime.

• Since on-line schedulers are complicated, we’ll illustrate the ideas with an off-line scheduler.
Greedy Scheduling

Idea: Do as much as possible on every step.

Definition: A thread is *ready* if all its predecessors have *executed*.
Greedy Scheduling

Idea: Do as much as possible on every step.

Definition: A thread is *ready* if all its predecessors have *executed*.

Complete step
- $\geq P$ threads ready.
- Run any P.

\[P = 3 \]
Greedy Scheduling

Idea: Do as much as possible on every step.

Definition: A thread is *ready* if all its predecessors have *executed*.

Complete step
- \(\geq P \) threads ready.
- Run any \(P \).

Incomplete step
- \(< P \) threads ready.
- Run all of them.
Greedy-Scheduling Theorem

Theorem [Graham ’68 & Brent ’75]. Any greedy scheduler achieves

\[T_P \leq T_1/P + T_\infty. \]

Proof.

• # complete steps \(\leq T_1/P \), since each complete step performs \(P \) work.

• # incomplete steps \(\leq T_\infty \), since each incomplete step reduces the span of the unexecuted dag by 1.
Optimality of Greedy

Corollary. Any greedy scheduler achieves within a factor of 2 of optimal.

Proof. Let T_P^* be the execution time produced by the optimal scheduler. Since $T_P^* \geq \max \{ T_1/P, T_\infty \}$ (lower bounds), we have

$$T_P \leq T_1/P + T_\infty \leq 2 \cdot \max \{ T_1/P, T_\infty \} \leq 2T_P^* .$$
Linear Speedup

Corollary. Any greedy scheduler achieves near-perfect linear speedup whenever $P \ll T_1/T_\infty$.

Proof. Since $P \ll T_1/T_\infty$ is equivalent to $T_\infty \ll T_1/P$, the Greedy Scheduling Theorem gives us

$$T_P \leq T_1/P + T_\infty \approx T_1/P.$$

Thus, the speedup is $T_1/T_P \approx P$. ■

Definition. The quantity $\left(\frac{T_1}{T_\infty}\right)/P$ is called the parallel slackness.
Cilk Performance

- Cilk’s “work-stealing” scheduler achieves
 - \(T_P = T_1/P + O(T_\infty) \) expected time (provably);
 - \(T_P \approx T_1/P + T_\infty \) time (empirically).
- Near-perfect linear speedup if \(P \ll T_1/T_\infty \).
- Instrumentation in Cilk allows the user to determine accurate measures of \(T_1 \) and \(T_\infty \).
- The average cost of a spawn in Cilk-5 is only 2–6 times the cost of an ordinary C function call, depending on the platform.
LECTURE 1

• Basic Cilk Programming
• Performance Measures
• Parallelizing Vector Addition
• Scheduling Theory
• A Chess Lesson
• Cilk’s Scheduler
• Conclusion
Cilk Chess Programs

- **Socrates 2.0** took 2nd place in the 1995 World Computer Chess Championship running on Sandia National Labs’ 1824-node Intel Paragon.

- **Cilkchess** tied for 3rd in the 1999 WCCC running on NASA’s 256-node SGI Origin 2000.
$T_P = T_\infty$

$T_P = T_1/P + T_\infty$

T_1/T_P

T_1/T_∞

$T_P = T_1/P$

measured speedup
Developing ★ Socrates

• For the competition, ★ Socrates was to run on a 512-processor Connection Machine Model CM5 supercomputer at the University of Illinois.

• The developers had easy access to a similar 32-processor CM5 at MIT.

• One of the developers proposed a change to the program that produced a speedup of over 20% on the MIT machine.

• After a back-of-the-envelope calculation, the proposed “improvement” was rejected!
Socrates Speedup Paradox

Original program

\[T_{32} = 65 \text{ seconds} \]

\[T_{32} = 2048/32 + 1 = 65 \text{ seconds} \]

\[T_{512} = 2048/512 + 1 = 5 \text{ seconds} \]

Proposed program

\[T'_{32} = 40 \text{ seconds} \]

\[T'_{32} = 1024/32 + 8 = 40 \text{ seconds} \]

\[T'_{512} = 1024/512 + 8 = 10 \text{ seconds} \]

\[T_P \approx T_1/P + T_\infty \]

\[T_1 = 2048 \text{ seconds} \]

\[T_\infty = 1 \text{ second} \]

\[T'_{512} = 1024/512 + 8 = 10 \text{ seconds} \]
Lesson

Work and span can predict performance on large machines better than running times on small machines can.
Lecture 1

• Basic Cilk Programming
• Performance Measures
• Parallelizing Vector Addition
• Scheduling Theory
• A Chess Lesson
• Cilk’s Scheduler
• Conclusion
Cilk’s Work-Stealing Scheduler

Each processor maintains a *work deque* of ready threads, and it manipulates the bottom of the deque like a stack.
Cilk’s Work-Stealing Scheduler

Each processor maintains a *work deque* of ready threads, and it manipulates the bottom of the deque like a stack.

![Diagram showing work deque and spawn operations on multiple processors](image-url)
Cilk’s Work-Stealing Scheduler

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

Return!
Cilk’s Work-Stealing Scheduler

Each processor maintains a *work deque* of ready threads, and it manipulates the bottom of the deque like a stack.
Cilk’s Work-Stealing Scheduler

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a thread from the top of a random victim’s deque.
Cilk’s Work-Stealing Scheduler

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a thread from the top of a random victim’s deque.
Cilk’s Work-Stealing Scheduler

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a thread from the top of a random victim’s deque.
Cilk’s Work-Stealing Scheduler

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a thread from the top of a random victim’s deque.
Theorem: Cilk’s work-stealing scheduler achieves an expected running time of

\[T_P \leq T_1/P + O(T_\infty) \]

on \(P \) processors.

Pseudoproof. A processor is either working or stealing. The total time all processors spend working is \(T_1 \). Each steal has a \(1/P \) chance of reducing the span by 1. Thus, the expected cost of all steals is \(O(PT_\infty) \). Since there are \(P \) processors, the expected time is

\[(T_1 + O(PT_\infty))/P = T_1/P + O(T_\infty) \].
Space Bounds

Theorem. Let S_1 be the stack space required by a serial execution of a Cilk program. Then, the space required by a P-processor execution is at most $S_P \leq PS_1$.

Proof (by induction). The work-stealing algorithm maintains the *busy-leaves property*: every extant procedure frame with no extant descendents has a processor working on it. \blacksquare
Linguistic Implications

Code like the following executes properly without any risk of blowing out memory:

```c
for (i=1; i<1000000000; i++) {
    spawn foo(i);
}
```

MORAL

Better to steal parents than children!
LECTURE 1

• Basic Cilk Programming
• Performance Measures
• Parallelizing Vector Addition
• Scheduling Theory
• A Chess Lesson
• Cilk’s Scheduler
• Conclusion
Key Ideas

- Cilk is simple: cilk, spawn, sync
- Recursion, recursion, recursion, …
- Work & span
Minicourse Outline

● **Lecture 1**
 Basic Cilk programming: Cilk keywords, performance measures, scheduling.

● **Lecture 2**
 Analysis of Cilk algorithms: matrix multiplication, sorting, tableau construction.

● **Laboratory**
 Programming matrix multiplication in Cilk — Dr. Bradley C. Kuszmaul

● **Lecture 3**
 Advanced Cilk programming: inlets, abort, speculation, data synchronization, & more.